--- /dev/null
+/*
+ * (C) Copyright 2016 Xilinx, Inc.
+ *
+ * Xilinx Zynq NAND Flash Controller Driver
+ * This driver is based on plat_nand.c and mxc_nand.c drivers
+ *
+ * SPDX-License-Identifier: GPL-2.0+
+ */
+
+#include <common.h>
+#include <malloc.h>
+#include <asm/io.h>
+#include <linux/errno.h>
+#include <nand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/arch/hardware.h>
+
+/* The NAND flash driver defines */
+#define ZYNQ_NAND_CMD_PHASE 1
+#define ZYNQ_NAND_DATA_PHASE 2
+#define ZYNQ_NAND_ECC_SIZE 512
+#define ZYNQ_NAND_SET_OPMODE_8BIT (0 << 0)
+#define ZYNQ_NAND_SET_OPMODE_16BIT (1 << 0)
+#define ZYNQ_NAND_ECC_STATUS (1 << 6)
+#define ZYNQ_MEMC_CLRCR_INT_CLR1 (1 << 4)
+#define ZYNQ_MEMC_SR_RAW_INT_ST1 (1 << 6)
+#define ZYNQ_MEMC_SR_INT_ST1 (1 << 4)
+#define ZYNQ_MEMC_NAND_ECC_MODE_MASK 0xC
+
+/* Flash memory controller operating parameters */
+#define ZYNQ_NAND_CLR_CONFIG ((0x1 << 1) | /* Disable interrupt */ \
+ (0x1 << 4) | /* Clear interrupt */ \
+ (0x1 << 6)) /* Disable ECC interrupt */
+
+/* Assuming 50MHz clock (20ns cycle time) and 3V operation */
+#define ZYNQ_NAND_SET_CYCLES ((0x2 << 20) | /* t_rr from nand_cycles */ \
+ (0x2 << 17) | /* t_ar from nand_cycles */ \
+ (0x1 << 14) | /* t_clr from nand_cycles */ \
+ (0x3 << 11) | /* t_wp from nand_cycles */ \
+ (0x2 << 8) | /* t_rea from nand_cycles */ \
+ (0x5 << 4) | /* t_wc from nand_cycles */ \
+ (0x5 << 0)) /* t_rc from nand_cycles */
+
+
+#define ZYNQ_NAND_DIRECT_CMD ((0x4 << 23) | /* Chip 0 from interface 1 */ \
+ (0x2 << 21)) /* UpdateRegs operation */
+
+#define ZYNQ_NAND_ECC_CONFIG ((0x1 << 2) | /* ECC available on APB */ \
+ (0x1 << 4) | /* ECC read at end of page */ \
+ (0x0 << 5)) /* No Jumping */
+
+#define ZYNQ_NAND_ECC_CMD1 ((0x80) | /* Write command */ \
+ (0x00 << 8) | /* Read command */ \
+ (0x30 << 16) | /* Read End command */ \
+ (0x1 << 24)) /* Read End command calid */
+
+#define ZYNQ_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \
+ (0x05 << 8) | /* Read col change cmd */ \
+ (0xE0 << 16) | /* Read col change end cmd */ \
+ (0x1 << 24)) /* Read col change
+ end cmd valid */
+/* AXI Address definitions */
+#define START_CMD_SHIFT 3
+#define END_CMD_SHIFT 11
+#define END_CMD_VALID_SHIFT 20
+#define ADDR_CYCLES_SHIFT 21
+#define CLEAR_CS_SHIFT 21
+#define ECC_LAST_SHIFT 10
+#define COMMAND_PHASE (0 << 19)
+#define DATA_PHASE (1 << 19)
+#define ONDIE_ECC_FEATURE_ADDR 0x90
+#define ONDIE_ECC_FEATURE_ENABLE 0x08
+
+#define ZYNQ_NAND_ECC_LAST (1 << ECC_LAST_SHIFT) /* Set ECC_Last */
+#define ZYNQ_NAND_CLEAR_CS (1 << CLEAR_CS_SHIFT) /* Clear chip select */
+
+/* ECC block registers bit position and bit mask */
+#define ZYNQ_NAND_ECC_BUSY (1 << 6) /* ECC block is busy */
+#define ZYNQ_NAND_ECC_MASK 0x00FFFFFF /* ECC value mask */
+
+
+/* SMC register set */
+struct zynq_nand_smc_regs {
+ u32 csr; /* 0x00 */
+ u32 reserved0[2];
+ u32 cfr; /* 0x0C */
+ u32 dcr; /* 0x10 */
+ u32 scr; /* 0x14 */
+ u32 sor; /* 0x18 */
+ u32 reserved1[249];
+ u32 esr; /* 0x400 */
+ u32 emcr; /* 0x404 */
+ u32 emcmd1r; /* 0x408 */
+ u32 emcmd2r; /* 0x40C */
+ u32 reserved2[2];
+ u32 eval0r; /* 0x418 */
+};
+#define zynq_nand_smc_base ((struct zynq_nand_smc_regs __iomem *)\
+ ZYNQ_SMC_BASEADDR)
+
+/*
+ * struct zynq_nand_info - Defines the NAND flash driver instance
+ * @parts: Pointer to the mtd_partition structure
+ * @nand_base: Virtual address of the NAND flash device
+ * @end_cmd_pending: End command is pending
+ * @end_cmd: End command
+ */
+struct zynq_nand_info {
+ void __iomem *nand_base;
+ u8 end_cmd_pending;
+ u8 end_cmd;
+};
+
+/*
+ * struct zynq_nand_command_format - Defines NAND flash command format
+ * @start_cmd: First cycle command (Start command)
+ * @end_cmd: Second cycle command (Last command)
+ * @addr_cycles: Number of address cycles required to send the address
+ * @end_cmd_valid: The second cycle command is valid for cmd or data phase
+ */
+struct zynq_nand_command_format {
+ u8 start_cmd;
+ u8 end_cmd;
+ u8 addr_cycles;
+ u8 end_cmd_valid;
+};
+
+/* The NAND flash operations command format */
+static const struct zynq_nand_command_format zynq_nand_commands[] = {
+ {NAND_CMD_READ0, NAND_CMD_READSTART, 5, ZYNQ_NAND_CMD_PHASE},
+ {NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, ZYNQ_NAND_CMD_PHASE},
+ {NAND_CMD_READID, NAND_CMD_NONE, 1, 0},
+ {NAND_CMD_STATUS, NAND_CMD_NONE, 0, 0},
+ {NAND_CMD_SEQIN, NAND_CMD_PAGEPROG, 5, ZYNQ_NAND_DATA_PHASE},
+ {NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0},
+ {NAND_CMD_ERASE1, NAND_CMD_ERASE2, 3, ZYNQ_NAND_CMD_PHASE},
+ {NAND_CMD_RESET, NAND_CMD_NONE, 0, 0},
+ {NAND_CMD_PARAM, NAND_CMD_NONE, 1, 0},
+ {NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 0},
+ {NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0},
+ {NAND_CMD_NONE, NAND_CMD_NONE, 0, 0},
+ /* Add all the flash commands supported by the flash device */
+};
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_ecclayout nand_oob_16 = {
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = {
+ { .offset = 8, .length = 8 }
+ }
+};
+
+static struct nand_ecclayout nand_oob_64 = {
+ .eccbytes = 12,
+ .eccpos = {
+ 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ { .offset = 2, .length = 50 }
+ }
+};
+
+static struct nand_ecclayout ondie_nand_oob_64 = {
+ .eccbytes = 32,
+
+ .eccpos = {
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 56, 57, 58, 59, 60, 61, 62, 63
+ },
+
+ .oobfree = {
+ { .offset = 4, .length = 4 },
+ { .offset = 20, .length = 4 },
+ { .offset = 36, .length = 4 },
+ { .offset = 52, .length = 4 }
+ }
+};
+
+/* bbt decriptors for chips with on-die ECC and
+ chips with 64-byte OOB */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 4,
+ .len = 4,
+ .veroffs = 20,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 4,
+ .len = 4,
+ .veroffs = 20,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/*
+ * zynq_nand_waitfor_ecc_completion - Wait for ECC completion
+ *
+ * returns: status for command completion, -1 for Timeout
+ */
+static int zynq_nand_waitfor_ecc_completion(void)
+{
+ unsigned long timeout;
+ u32 status;
+
+ /* Wait max 10us */
+ timeout = 10;
+ status = readl(&zynq_nand_smc_base->esr);
+ while (status & ZYNQ_NAND_ECC_BUSY) {
+ status = readl(&zynq_nand_smc_base->esr);
+ if (timeout == 0)
+ return -1;
+ timeout--;
+ udelay(1);
+ }
+
+ return status;
+}
+
+/*
+ * zynq_nand_init_nand_flash - Initialize NAND controller
+ * @option: Device property flags
+ *
+ * This function initializes the NAND flash interface on the NAND controller.
+ *
+ * returns: 0 on success or error value on failure
+ */
+static int zynq_nand_init_nand_flash(int option)
+{
+ u32 status;
+
+ /* disable interrupts */
+ writel(ZYNQ_NAND_CLR_CONFIG, &zynq_nand_smc_base->cfr);
+ /* Initialize the NAND interface by setting cycles and operation mode */
+ writel(ZYNQ_NAND_SET_CYCLES, &zynq_nand_smc_base->scr);
+ if (option & NAND_BUSWIDTH_16)
+ writel(ZYNQ_NAND_SET_OPMODE_16BIT, &zynq_nand_smc_base->sor);
+ else
+ writel(ZYNQ_NAND_SET_OPMODE_8BIT, &zynq_nand_smc_base->sor);
+
+ writel(ZYNQ_NAND_DIRECT_CMD, &zynq_nand_smc_base->dcr);
+
+ /* Wait till the ECC operation is complete */
+ status = zynq_nand_waitfor_ecc_completion();
+ if (status < 0) {
+ printf("%s: Timeout\n", __func__);
+ return status;
+ }
+
+ /* Set the command1 and command2 register */
+ writel(ZYNQ_NAND_ECC_CMD1, &zynq_nand_smc_base->emcmd1r);
+ writel(ZYNQ_NAND_ECC_CMD2, &zynq_nand_smc_base->emcmd2r);
+
+ return 0;
+}
+
+/*
+ * zynq_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd: Pointer to the mtd_info structure
+ * @data: Pointer to the page data
+ * @ecc_code: Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and returns
+ * ECC data back to the MTD subsystem.
+ *
+ * returns: 0 on success or error value on failure
+ */
+static int zynq_nand_calculate_hwecc(struct mtd_info *mtd, const u8 *data,
+ u8 *ecc_code)
+{
+ u32 ecc_value = 0;
+ u8 ecc_reg, ecc_byte;
+ u32 ecc_status;
+
+ /* Wait till the ECC operation is complete */
+ ecc_status = zynq_nand_waitfor_ecc_completion();
+ if (ecc_status < 0) {
+ printf("%s: Timeout\n", __func__);
+ return ecc_status;
+ }
+
+ for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+ /* Read ECC value for each block */
+ ecc_value = readl(&zynq_nand_smc_base->eval0r + ecc_reg);
+
+ /* Get the ecc status from ecc read value */
+ ecc_status = (ecc_value >> 24) & 0xFF;
+
+ /* ECC value valid */
+ if (ecc_status & ZYNQ_NAND_ECC_STATUS) {
+ for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+ /* Copy ECC bytes to MTD buffer */
+ *ecc_code = ecc_value & 0xFF;
+ ecc_value = ecc_value >> 8;
+ ecc_code++;
+ }
+ } else {
+ debug("%s: ecc status failed\n", __func__);
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * onehot - onehot function
+ * @value: value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if one bit is set.
+ *
+ * FIXME: Try to move this in common.h
+ */
+static bool onehot(unsigned short value)
+{
+ bool onehot;
+
+ onehot = value && !(value & (value - 1));
+ return onehot;
+}
+
+/*
+ * zynq_nand_correct_data - ECC correction function
+ * @mtd: Pointer to the mtd_info structure
+ * @buf: Pointer to the page data
+ * @read_ecc: Pointer to the ECC value read from spare data area
+ * @calc_ecc: Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * returns: 0 if no ECC errors found
+ * 1 if single bit error found and corrected.
+ * -1 if multiple ECC errors found.
+ */
+static int zynq_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+ unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+ unsigned char bit_addr;
+ unsigned int byte_addr;
+ unsigned short ecc_odd, ecc_even;
+ unsigned short read_ecc_lower, read_ecc_upper;
+ unsigned short calc_ecc_lower, calc_ecc_upper;
+
+ read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+ read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+ calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+ calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+ ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+ ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+ if ((ecc_odd == 0) && (ecc_even == 0))
+ return 0; /* no error */
+
+ if (ecc_odd == (~ecc_even & 0xfff)) {
+ /* bits [11:3] of error code is byte offset */
+ byte_addr = (ecc_odd >> 3) & 0x1ff;
+ /* bits [2:0] of error code is bit offset */
+ bit_addr = ecc_odd & 0x7;
+ /* Toggling error bit */
+ buf[byte_addr] ^= (1 << bit_addr);
+ return 1;
+ }
+
+ if (onehot(ecc_odd | ecc_even))
+ return 1; /* one error in parity */
+
+ return -1; /* Uncorrectable error */
+}
+
+/*
+ * zynq_nand_read_oob - [REPLACABLE] the most common OOB data read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ * @sndcmd: flag whether to issue read command or not
+ */
+static int zynq_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ unsigned long data_phase_addr = 0;
+ int data_width = 4;
+ u8 *p;
+
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+
+ p = chip->oob_poi;
+ chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+ p += mtd->oobsize - data_width;
+
+ data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+ data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+ chip->read_buf(mtd, p, data_width);
+
+ return 0;
+}
+
+/*
+ * zynq_nand_write_oob - [REPLACABLE] the most common OOB data write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+static int zynq_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ int status = 0, data_width = 4;
+ const u8 *buf = chip->oob_poi;
+ unsigned long data_phase_addr = 0;
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+
+ chip->write_buf(mtd, buf, (mtd->oobsize - data_width));
+ buf += mtd->oobsize - data_width;
+
+ data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+ data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+ chip->write_buf(mtd, buf, data_width);
+
+ /* Send command to program the OOB data */
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+ status = chip->waitfunc(mtd, chip);
+
+ return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/*
+ * zynq_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to read
+ */
+static int zynq_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ unsigned long data_width = 4;
+ unsigned long data_phase_addr = 0;
+ u8 *p;
+
+ chip->read_buf(mtd, buf, mtd->writesize);
+
+ p = chip->oob_poi;
+ chip->read_buf(mtd, p, (mtd->oobsize - data_width));
+ p += (mtd->oobsize - data_width);
+
+ data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+ data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+ chip->read_buf(mtd, p, data_width);
+ return 0;
+}
+
+static int zynq_nand_read_page_raw_nooob(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+ chip->read_buf(mtd, buf, mtd->writesize);
+ return 0;
+}
+
+static int zynq_nand_read_subpage_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, u32 data_offs,
+ u32 readlen, u8 *buf, int page)
+{
+ if (data_offs != 0) {
+ chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_offs, -1);
+ buf += data_offs;
+ }
+ chip->read_buf(mtd, buf, readlen);
+
+ return 0;
+}
+
+/*
+ * zynq_nand_write_page_raw - [Intern] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int zynq_nand_write_page_raw(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+ unsigned long data_width = 4;
+ unsigned long data_phase_addr = 0;
+ u8 *p;
+
+ chip->write_buf(mtd, buf, mtd->writesize);
+
+ p = chip->oob_poi;
+ chip->write_buf(mtd, p, (mtd->oobsize - data_width));
+ p += (mtd->oobsize - data_width);
+
+ data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+ data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+
+ chip->write_buf(mtd, p, data_width);
+
+ return 0;
+}
+
+/*
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ */
+static int zynq_nand_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+ int i, eccsteps, eccsize = chip->ecc.size;
+ u8 *ecc_calc = chip->buffers->ecccalc;
+ const u8 *p = buf;
+ u32 *eccpos = chip->ecc.layout->eccpos;
+ unsigned long data_phase_addr = 0;
+ unsigned long data_width = 4;
+ u8 *oob_ptr;
+
+ for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
+ chip->write_buf(mtd, p, eccsize);
+ p += eccsize;
+ }
+ chip->write_buf(mtd, p, (eccsize - data_width));
+ p += eccsize - data_width;
+
+ /* Set ECC Last bit to 1 */
+ data_phase_addr = (unsigned long) chip->IO_ADDR_W;
+ data_phase_addr |= ZYNQ_NAND_ECC_LAST;
+ chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+ chip->write_buf(mtd, p, data_width);
+
+ /* Wait for ECC to be calculated and read the error values */
+ p = buf;
+ chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ~(ecc_calc[i]);
+
+ /* Clear ECC last bit */
+ data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+ data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
+ chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+
+ /* Write the spare area with ECC bytes */
+ oob_ptr = chip->oob_poi;
+ chip->write_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+ data_phase_addr = (unsigned long)chip->IO_ADDR_W;
+ data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+ data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+ chip->IO_ADDR_W = (void __iomem *)data_phase_addr;
+ oob_ptr += (mtd->oobsize - data_width);
+ chip->write_buf(mtd, oob_ptr, data_width);
+
+ return 0;
+}
+
+/*
+ * zynq_nand_write_page_swecc - [REPLACABLE] software ecc based page
+ * write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ */
+static int zynq_nand_write_page_swecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const u8 *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ u8 *ecc_calc = chip->buffers->ecccalc;
+ const u8 *p = buf;
+ u32 *eccpos = chip->ecc.layout->eccpos;
+
+ /* Software ecc calculation */
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[i];
+
+ return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+}
+
+/*
+ * nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd: Pointer to the mtd info structure
+ * @chip: Pointer to the NAND chip info structure
+ * @buf: Pointer to the buffer to store read data
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * returns: 0 always and updates ECC operation status in to MTD structure
+ */
+static int zynq_nand_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+ int i, stat, eccsteps, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ u8 *p = buf;
+ u8 *ecc_calc = chip->buffers->ecccalc;
+ u8 *ecc_code = chip->buffers->ecccode;
+ u32 *eccpos = chip->ecc.layout->eccpos;
+ unsigned long data_phase_addr = 0;
+ unsigned long data_width = 4;
+ u8 *oob_ptr;
+
+ for (eccsteps = chip->ecc.steps; (eccsteps - 1); eccsteps--) {
+ chip->read_buf(mtd, p, eccsize);
+ p += eccsize;
+ }
+ chip->read_buf(mtd, p, (eccsize - data_width));
+ p += eccsize - data_width;
+
+ /* Set ECC Last bit to 1 */
+ data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+ data_phase_addr |= ZYNQ_NAND_ECC_LAST;
+ chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+ chip->read_buf(mtd, p, data_width);
+
+ /* Read the calculated ECC value */
+ p = buf;
+ chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+ /* Clear ECC last bit */
+ data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+ data_phase_addr &= ~ZYNQ_NAND_ECC_LAST;
+ chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+ /* Read the stored ECC value */
+ oob_ptr = chip->oob_poi;
+ chip->read_buf(mtd, oob_ptr, (mtd->oobsize - data_width));
+
+ /* de-assert chip select */
+ data_phase_addr = (unsigned long)chip->IO_ADDR_R;
+ data_phase_addr |= ZYNQ_NAND_CLEAR_CS;
+ chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+
+ oob_ptr += (mtd->oobsize - data_width);
+ chip->read_buf(mtd, oob_ptr, data_width);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = ~(chip->oob_poi[eccpos[i]]);
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ /* Check ECC error for all blocks and correct if it is correctable */
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/*
+ * zynq_nand_read_page_swecc - [REPLACABLE] software ecc based page
+ * read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @page: page number to read
+ */
+static int zynq_nand_read_page_swecc(struct mtd_info *mtd,
+ struct nand_chip *chip, u8 *buf, int oob_required, int page)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ u8 *p = buf;
+ u8 *ecc_calc = chip->buffers->ecccalc;
+ u8 *ecc_code = chip->buffers->ecccode;
+ u32 *eccpos = chip->ecc.layout->eccpos;
+
+ chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+ for (i = 0; i < chip->ecc.total; i++)
+ ecc_code[i] = chip->oob_poi[eccpos[i]];
+
+ eccsteps = chip->ecc.steps;
+ p = buf;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ int stat;
+
+ stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+ if (stat < 0)
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += stat;
+ }
+ return 0;
+}
+
+/*
+ * zynq_nand_select_chip - Select the flash device
+ * @mtd: Pointer to the mtd_info structure
+ * @chip: Chip number to be selected
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void zynq_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ /* Not support multiple chips yet */
+}
+
+/*
+ * zynq_nand_cmd_function - Send command to NAND device
+ * @mtd: Pointer to the mtd_info structure
+ * @command: The command to be sent to the flash device
+ * @column: The column address for this command, -1 if none
+ * @page_addr: The page address for this command, -1 if none
+ */
+static void zynq_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct nand_chip *chip = mtd->priv;
+ const struct zynq_nand_command_format *curr_cmd = NULL;
+ struct zynq_nand_info *xnand = (struct zynq_nand_info *)chip->priv;
+ void *cmd_addr;
+ unsigned long cmd_data = 0;
+ unsigned long cmd_phase_addr = 0;
+ unsigned long data_phase_addr = 0;
+ u8 end_cmd = 0;
+ u8 end_cmd_valid = 0;
+ u32 index;
+
+ if (xnand->end_cmd_pending) {
+ /* Check for end command if this command request is same as the
+ * pending command then return
+ */
+ if (xnand->end_cmd == command) {
+ xnand->end_cmd = 0;
+ xnand->end_cmd_pending = 0;
+ return;
+ }
+ }
+
+ /* Emulate NAND_CMD_READOOB for large page device */
+ if ((mtd->writesize > ZYNQ_NAND_ECC_SIZE) &&
+ (command == NAND_CMD_READOOB)) {
+ column += mtd->writesize;
+ command = NAND_CMD_READ0;
+ }
+
+ /* Get the command format */
+ for (index = 0; index < ARRAY_SIZE(zynq_nand_commands); index++)
+ if (command == zynq_nand_commands[index].start_cmd)
+ break;
+
+ if (index == ARRAY_SIZE(zynq_nand_commands)) {
+ printf("%s: Unsupported start cmd %02x\n", __func__, command);
+ return;
+ }
+ curr_cmd = &zynq_nand_commands[index];
+
+ /* Clear interrupt */
+ writel(ZYNQ_MEMC_CLRCR_INT_CLR1, &zynq_nand_smc_base->cfr);
+
+ /* Get the command phase address */
+ if (curr_cmd->end_cmd_valid == ZYNQ_NAND_CMD_PHASE)
+ end_cmd_valid = 1;
+
+ if (curr_cmd->end_cmd == NAND_CMD_NONE)
+ end_cmd = 0x0;
+ else
+ end_cmd = curr_cmd->end_cmd;
+
+ cmd_phase_addr = (unsigned long)xnand->nand_base |
+ (curr_cmd->addr_cycles << ADDR_CYCLES_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT) |
+ (COMMAND_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (curr_cmd->start_cmd << START_CMD_SHIFT);
+
+ cmd_addr = (void __iomem *)cmd_phase_addr;
+
+ /* Get the data phase address */
+ end_cmd_valid = 0;
+
+ data_phase_addr = (unsigned long)xnand->nand_base |
+ (0x0 << CLEAR_CS_SHIFT) |
+ (end_cmd_valid << END_CMD_VALID_SHIFT) |
+ (DATA_PHASE) |
+ (end_cmd << END_CMD_SHIFT) |
+ (0x0 << ECC_LAST_SHIFT);
+
+ chip->IO_ADDR_R = (void __iomem *)data_phase_addr;
+ chip->IO_ADDR_W = chip->IO_ADDR_R;
+
+ /* Command phase AXI Read & Write */
+ if (column != -1 && page_addr != -1) {
+ /* Adjust columns for 16 bit bus width */
+ if (chip->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ cmd_data = column;
+ if (mtd->writesize > ZYNQ_NAND_ECC_SIZE) {
+ cmd_data |= page_addr << 16;
+ /* Another address cycle for devices > 128MiB */
+ if (chip->chipsize > (128 << 20)) {
+ writel(cmd_data, cmd_addr);
+ cmd_data = (page_addr >> 16);
+ }
+ } else {
+ cmd_data |= page_addr << 8;
+ }
+ } else if (page_addr != -1) { /* Erase */
+ cmd_data = page_addr;
+ } else if (column != -1) { /* Change read/write column, read id etc */
+ /* Adjust columns for 16 bit bus width */
+ if ((chip->options & NAND_BUSWIDTH_16) &&
+ ((command == NAND_CMD_READ0) ||
+ (command == NAND_CMD_SEQIN) ||
+ (command == NAND_CMD_RNDOUT) ||
+ (command == NAND_CMD_RNDIN)))
+ column >>= 1;
+ cmd_data = column;
+ }
+
+ writel(cmd_data, cmd_addr);
+
+ if (curr_cmd->end_cmd_valid) {
+ xnand->end_cmd = curr_cmd->end_cmd;
+ xnand->end_cmd_pending = 1;
+ }
+
+ ndelay(100);
+
+ if ((command == NAND_CMD_READ0) ||
+ (command == NAND_CMD_RESET) ||
+ (command == NAND_CMD_PARAM) ||
+ (command == NAND_CMD_GET_FEATURES))
+ /* wait until command is processed */
+ nand_wait_ready(mtd);
+}
+
+/*
+ * zynq_nand_read_buf - read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void zynq_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+
+ /* Make sure that buf is 32 bit aligned */
+ if (((unsigned long)buf & 0x3) != 0) {
+ if (((unsigned long)buf & 0x1) != 0) {
+ if (len) {
+ *buf = readb(chip->IO_ADDR_R);
+ buf += 1;
+ len--;
+ }
+ }
+
+ if (((unsigned long)buf & 0x3) != 0) {
+ if (len >= 2) {
+ *(u16 *)buf = readw(chip->IO_ADDR_R);
+ buf += 2;
+ len -= 2;
+ }
+ }
+ }
+
+ /* copy aligned data */
+ while (len >= 4) {
+ *(u32 *)buf = readl(chip->IO_ADDR_R);
+ buf += 4;
+ len -= 4;
+ }
+
+ /* mop up any remaining bytes */
+ if (len) {
+ if (len >= 2) {
+ *(u16 *)buf = readw(chip->IO_ADDR_R);
+ buf += 2;
+ len -= 2;
+ }
+ if (len)
+ *buf = readb(chip->IO_ADDR_R);
+ }
+}
+
+/*
+ * zynq_nand_write_buf - write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void zynq_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ const u32 *nand = chip->IO_ADDR_W;
+
+ /* Make sure that buf is 32 bit aligned */
+ if (((unsigned long)buf & 0x3) != 0) {
+ if (((unsigned long)buf & 0x1) != 0) {
+ if (len) {
+ writeb(*buf, nand);
+ buf += 1;
+ len--;
+ }
+ }
+
+ if (((unsigned long)buf & 0x3) != 0) {
+ if (len >= 2) {
+ writew(*(u16 *)buf, nand);
+ buf += 2;
+ len -= 2;
+ }
+ }
+ }
+
+ /* copy aligned data */
+ while (len >= 4) {
+ writel(*(u32 *)buf, nand);
+ buf += 4;
+ len -= 4;
+ }
+
+ /* mop up any remaining bytes */
+ if (len) {
+ if (len >= 2) {
+ writew(*(u16 *)buf, nand);
+ buf += 2;
+ len -= 2;
+ }
+
+ if (len)
+ writeb(*buf, nand);
+ }
+}
+
+/*
+ * zynq_nand_device_ready - Check device ready/busy line
+ * @mtd: Pointer to the mtd_info structure
+ *
+ * returns: 0 on busy or 1 on ready state
+ */
+static int zynq_nand_device_ready(struct mtd_info *mtd)
+{
+ u32 csr_val;
+
+ csr_val = readl(&zynq_nand_smc_base->csr);
+ /* Check the raw_int_status1 bit */
+ if (csr_val & ZYNQ_MEMC_SR_RAW_INT_ST1) {
+ /* Clear the interrupt condition */
+ writel(ZYNQ_MEMC_SR_INT_ST1, &zynq_nand_smc_base->cfr);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int zynq_nand_init(struct nand_chip *nand_chip, int devnum)
+{
+ struct zynq_nand_info *xnand;
+ struct mtd_info *mtd;
+ unsigned long ecc_page_size;
+ u8 maf_id, dev_id, i;
+ u8 get_feature[4];
+ u8 set_feature[4] = {ONDIE_ECC_FEATURE_ENABLE, 0x00, 0x00, 0x00};
+ unsigned long ecc_cfg;
+ int ondie_ecc_enabled = 0;
+ int err = -1;
+
+ xnand = calloc(1, sizeof(struct zynq_nand_info));
+ if (!xnand) {
+ printf("%s: failed to allocate\n", __func__);
+ goto fail;
+ }
+
+ xnand->nand_base = (void __iomem *)ZYNQ_NAND_BASEADDR;
+ mtd = (struct mtd_info *)&nand_info[0];
+
+ nand_chip->priv = xnand;
+ mtd->priv = nand_chip;
+
+ /* Set address of NAND IO lines */
+ nand_chip->IO_ADDR_R = xnand->nand_base;
+ nand_chip->IO_ADDR_W = xnand->nand_base;
+
+ /* Set the driver entry points for MTD */
+ nand_chip->cmdfunc = zynq_nand_cmd_function;
+ nand_chip->dev_ready = zynq_nand_device_ready;
+ nand_chip->select_chip = zynq_nand_select_chip;
+
+ /* If we don't set this delay driver sets 20us by default */
+ nand_chip->chip_delay = 30;
+
+ /* Buffer read/write routines */
+ nand_chip->read_buf = zynq_nand_read_buf;
+ nand_chip->write_buf = zynq_nand_write_buf;
+
+ nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+
+ /* Initialize the NAND flash interface on NAND controller */
+ if (zynq_nand_init_nand_flash(nand_chip->options) < 0) {
+ printf("%s: nand flash init failed\n", __func__);
+ goto fail;
+ }
+
+ /* first scan to find the device and get the page size */
+ if (nand_scan_ident(mtd, 1, NULL)) {
+ printf("%s: nand_scan_ident failed\n", __func__);
+ goto fail;
+ }
+ /* Send the command for reading device ID */
+ nand_chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+ nand_chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ maf_id = nand_chip->read_byte(mtd);
+ dev_id = nand_chip->read_byte(mtd);
+
+ if ((maf_id == 0x2c) && ((dev_id == 0xf1) ||
+ (dev_id == 0xa1) || (dev_id == 0xb1) ||
+ (dev_id == 0xaa) || (dev_id == 0xba) ||
+ (dev_id == 0xda) || (dev_id == 0xca) ||
+ (dev_id == 0xac) || (dev_id == 0xbc) ||
+ (dev_id == 0xdc) || (dev_id == 0xcc) ||
+ (dev_id == 0xa3) || (dev_id == 0xb3) ||
+ (dev_id == 0xd3) || (dev_id == 0xc3))) {
+ nand_chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES,
+ ONDIE_ECC_FEATURE_ADDR, -1);
+ for (i = 0; i < 4; i++)
+ writeb(set_feature[i], nand_chip->IO_ADDR_W);
+
+ /* Wait for 1us after writing data with SET_FEATURES command */
+ ndelay(1000);
+
+ nand_chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES,
+ ONDIE_ECC_FEATURE_ADDR, -1);
+ nand_chip->read_buf(mtd, get_feature, 4);
+
+ if (get_feature[0] & ONDIE_ECC_FEATURE_ENABLE) {
+ debug("%s: OnDie ECC flash\n", __func__);
+ ondie_ecc_enabled = 1;
+ } else {
+ printf("%s: Unable to detect OnDie ECC\n", __func__);
+ }
+ }
+
+ if (ondie_ecc_enabled) {
+ /* Bypass the controller ECC block */
+ ecc_cfg = readl(&zynq_nand_smc_base->emcr);
+ ecc_cfg &= ~ZYNQ_MEMC_NAND_ECC_MODE_MASK;
+ writel(ecc_cfg, &zynq_nand_smc_base->emcr);
+
+ /* The software ECC routines won't work
+ * with the SMC controller
+ */
+ nand_chip->ecc.mode = NAND_ECC_HW;
+ nand_chip->ecc.strength = 1;
+ nand_chip->ecc.read_page = zynq_nand_read_page_raw_nooob;
+ nand_chip->ecc.read_subpage = zynq_nand_read_subpage_raw;
+ nand_chip->ecc.write_page = zynq_nand_write_page_raw;
+ nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
+ nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
+ nand_chip->ecc.read_oob = zynq_nand_read_oob;
+ nand_chip->ecc.write_oob = zynq_nand_write_oob;
+ nand_chip->ecc.size = mtd->writesize;
+ nand_chip->ecc.bytes = 0;
+
+ /* NAND with on-die ECC supports subpage reads */
+ nand_chip->options |= NAND_SUBPAGE_READ;
+
+ /* On-Die ECC spare bytes offset 8 is used for ECC codes */
+ if (ondie_ecc_enabled) {
+ nand_chip->ecc.layout = &ondie_nand_oob_64;
+ /* Use the BBT pattern descriptors */
+ nand_chip->bbt_td = &bbt_main_descr;
+ nand_chip->bbt_md = &bbt_mirror_descr;
+ }
+ } else {
+ /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+ nand_chip->ecc.mode = NAND_ECC_HW;
+ nand_chip->ecc.strength = 1;
+ nand_chip->ecc.size = ZYNQ_NAND_ECC_SIZE;
+ nand_chip->ecc.bytes = 3;
+ nand_chip->ecc.calculate = zynq_nand_calculate_hwecc;
+ nand_chip->ecc.correct = zynq_nand_correct_data;
+ nand_chip->ecc.hwctl = NULL;
+ nand_chip->ecc.read_page = zynq_nand_read_page_hwecc;
+ nand_chip->ecc.write_page = zynq_nand_write_page_hwecc;
+ nand_chip->ecc.read_page_raw = zynq_nand_read_page_raw;
+ nand_chip->ecc.write_page_raw = zynq_nand_write_page_raw;
+ nand_chip->ecc.read_oob = zynq_nand_read_oob;
+ nand_chip->ecc.write_oob = zynq_nand_write_oob;
+
+ switch (mtd->writesize) {
+ case 512:
+ ecc_page_size = 0x1;
+ /* Set the ECC memory config register */
+ writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+ &zynq_nand_smc_base->emcr);
+ break;
+ case 1024:
+ ecc_page_size = 0x2;
+ /* Set the ECC memory config register */
+ writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+ &zynq_nand_smc_base->emcr);
+ break;
+ case 2048:
+ ecc_page_size = 0x3;
+ /* Set the ECC memory config register */
+ writel((ZYNQ_NAND_ECC_CONFIG | ecc_page_size),
+ &zynq_nand_smc_base->emcr);
+ break;
+ default:
+ nand_chip->ecc.mode = NAND_ECC_SOFT;
+ nand_chip->ecc.calculate = nand_calculate_ecc;
+ nand_chip->ecc.correct = nand_correct_data;
+ nand_chip->ecc.read_page = zynq_nand_read_page_swecc;
+ nand_chip->ecc.write_page = zynq_nand_write_page_swecc;
+ nand_chip->ecc.size = 256;
+ break;
+ }
+
+ if (mtd->oobsize == 16)
+ nand_chip->ecc.layout = &nand_oob_16;
+ else if (mtd->oobsize == 64)
+ nand_chip->ecc.layout = &nand_oob_64;
+ else
+ printf("%s: No oob layout found\n", __func__);
+ }
+
+ /* Second phase scan */
+ if (nand_scan_tail(mtd)) {
+ printf("%s: nand_scan_tail failed\n", __func__);
+ goto fail;
+ }
+ if (nand_register(devnum, mtd))
+ goto fail;
+ return 0;
+fail:
+ free(xnand);
+ return err;
+}
+
+static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
+
+void board_nand_init(void)
+{
+ struct nand_chip *nand = &nand_chip[0];
+
+ if (zynq_nand_init(nand, 0))
+ puts("ZYNQ NAND init failed\n");
+}