int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
-int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int get_num_by_target(target_t *query_target)
{
target_t *target = targets;
- int i = 0;
-
+ int i = 0;
+
while (target)
{
if (target == query_target)
target = target->next;
i++;
}
-
+
return -1;
}
target_t* get_current_target(command_context_t *cmd_ctx)
{
target_t *target = get_target_by_num(cmd_ctx->current_target);
-
+
if (target == NULL)
{
LOG_ERROR("BUG: current_target out of bounds");
exit(-1);
}
-
- return target;
-}
-/* Process target initialization, when target entered debug out of reset
- * the handler is unregistered at the end of this function, so it's only called once
- */
-int target_init_handler(struct target_s *target, enum target_event event, void *priv)
-{
- struct command_context_s *cmd_ctx = priv;
-
- if (event == TARGET_EVENT_HALTED)
- {
- target_unregister_event_callback(target_init_handler, priv);
- target_invoke_script(cmd_ctx, target, "post_reset");
- jtag_execute_queue();
- }
-
- return ERROR_OK;
+ return target;
}
-int target_run_and_halt_handler(void *priv)
-{
- target_t *target = priv;
-
- target_halt(target);
-
- return ERROR_OK;
-}
int target_poll(struct target_s *target)
{
int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
{
int retval;
-
+
/* We can't poll until after examine */
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
-
+
/* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
* even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
* the application.
*/
if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
return retval;
-
+
return retval;
}
target_invoke_script(cmd_ctx, target, "pre_reset");
target = target->next;
}
-
+
if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
return retval;
-
+
keep_alive(); /* we might be running on a very slow JTAG clk */
-
- /* First time this is executed after launching OpenOCD, it will read out
+
+ /* First time this is executed after launching OpenOCD, it will read out
* the type of CPU, etc. and init Embedded ICE registers in host
- * memory.
- *
+ * memory.
+ *
* It will also set up ICE registers in the target.
- *
- * However, if we assert TRST later, we need to set up the registers again.
- *
+ *
+ * However, if we assert TRST later, we need to set up the registers again.
+ *
* For the "reset halt/init" case we must only set up the registers here.
*/
if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
return retval;
-
+
keep_alive(); /* we might be running on a very slow JTAG clk */
-
+
target = targets;
while (target)
{
LOG_WARNING("JTAG communication failed asserting reset.");
retval = ERROR_OK;
}
-
+
/* request target halt if necessary, and schedule further action */
target = targets;
while (target)
{
- switch (reset_mode)
+ if (reset_mode!=RESET_RUN)
{
- case RESET_RUN:
- /* nothing to do if target just wants to be run */
- break;
- case RESET_RUN_AND_HALT:
- /* schedule halt */
- target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
- break;
- case RESET_RUN_AND_INIT:
- /* schedule halt */
- target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
- target_register_event_callback(target_init_handler, cmd_ctx);
- break;
- case RESET_HALT:
- if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
- target_halt(target);
- break;
- case RESET_INIT:
- if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
- target_halt(target);
- target_register_event_callback(target_init_handler, cmd_ctx);
- break;
- default:
- LOG_ERROR("BUG: unknown target->reset_mode");
+ if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
+ target_halt(target);
}
target = target->next;
}
-
+
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
- retval = ERROR_OK;
+ retval = ERROR_OK;
}
-
+
target = targets;
while (target)
{
LOG_WARNING("Failed to reset target into halted mode - issuing halt");
target->type->halt(target);
}
-
+
target = target->next;
}
-
+
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_WARNING("JTAG communication failed while deasserting reset.");
/* If TRST was asserted we need to set up registers again */
if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
return retval;
- }
-
+ }
+
LOG_DEBUG("Waiting for halted stated as appropriate");
-
- /* Wait for reset to complete, maximum 5 seconds. */
- gettimeofday(&timeout, NULL);
- timeval_add_time(&timeout, 5, 0);
- for(;;)
+
+ if ((reset_mode == RESET_HALT) || (reset_mode == RESET_INIT))
{
- gettimeofday(&now, NULL);
-
- target_call_timer_callbacks_now();
-
- target = targets;
- while (target)
+ /* Wait for reset to complete, maximum 5 seconds. */
+ if (((retval=target_wait_state(target, TARGET_HALTED, 5000)))==ERROR_OK)
{
- LOG_DEBUG("Polling target");
- target_poll(target);
- if ((reset_mode == RESET_RUN_AND_INIT) ||
- (reset_mode == RESET_RUN_AND_HALT) ||
- (reset_mode == RESET_HALT) ||
- (reset_mode == RESET_INIT))
- {
- if (target->state != TARGET_HALTED)
- {
- if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
- {
- LOG_USER("Timed out waiting for halt after reset");
- goto done;
- }
- /* this will send alive messages on e.g. GDB remote protocol. */
- usleep(500*1000);
- LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/
- goto again;
- }
- }
- target = target->next;
+ if (reset_mode == RESET_INIT)
+ target_invoke_script(cmd_ctx, target, "post_reset");
}
- /* All targets we're waiting for are halted */
- break;
-
- again:;
}
- done:
-
-
+
/* We want any events to be processed before the prompt */
target_call_timer_callbacks_now();
- /* if we timed out we need to unregister these handlers */
- target = targets;
- while (target)
- {
- target_unregister_timer_callback(target_run_and_halt_handler, target);
- target = target->next;
- }
- target_unregister_event_callback(target_init_handler, cmd_ctx);
-
return retval;
}
/* Targets that correctly implement init+examine, i.e.
* no communication with target during init:
- *
- * XScale
+ *
+ * XScale
*/
int target_examine(struct command_context_s *cmd_ctx)
{
int target_init(struct command_context_s *cmd_ctx)
{
target_t *target = targets;
-
+
while (target)
{
target->type->examined = 0;
{
target->type->examine = default_examine;
}
-
+
if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
{
LOG_ERROR("target '%s' init failed", target->type->name);
exit(-1);
}
-
+
/* Set up default functions if none are provided by target */
if (target->type->virt2phys == NULL)
{
target->type->run_algorithm_imp = target->type->run_algorithm;
target->type->run_algorithm = target_run_algorithm_imp;
-
+
if (target->type->mmu == NULL)
{
target->type->mmu = default_mmu;
}
target = target->next;
}
-
+
if (targets)
{
target_register_user_commands(cmd_ctx);
target_register_timer_callback(handle_target, 100, 1, NULL);
}
-
+
return ERROR_OK;
}
int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
{
target_event_callback_t **callbacks_p = &target_event_callbacks;
-
+
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
-
+
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
-
+
(*callbacks_p) = malloc(sizeof(target_event_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
-
+
return ERROR_OK;
}
{
target_timer_callback_t **callbacks_p = &target_timer_callbacks;
struct timeval now;
-
+
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
-
+
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
-
+
(*callbacks_p) = malloc(sizeof(target_timer_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->periodic = periodic;
(*callbacks_p)->time_ms = time_ms;
-
+
gettimeofday(&now, NULL);
(*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
time_ms -= (time_ms % 1000);
(*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
(*callbacks_p)->when.tv_sec += 1;
}
-
+
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
-
+
return ERROR_OK;
}
{
target_event_callback_t **p = &target_event_callbacks;
target_event_callback_t *c = target_event_callbacks;
-
+
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
-
+
while (c)
{
target_event_callback_t *next = c->next;
p = &(c->next);
c = next;
}
-
+
return ERROR_OK;
}
{
target_timer_callback_t **p = &target_timer_callbacks;
target_timer_callback_t *c = target_timer_callbacks;
-
+
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
-
+
while (c)
{
target_timer_callback_t *next = c->next;
p = &(c->next);
c = next;
}
-
+
return ERROR_OK;
}
{
target_event_callback_t *callback = target_event_callbacks;
target_event_callback_t *next_callback;
-
+
LOG_DEBUG("target event %i", event);
-
+
while (callback)
{
next_callback = callback->next;
callback->callback(target, event, callback->priv);
callback = next_callback;
}
-
+
return ERROR_OK;
}
struct timeval now;
keep_alive();
-
+
gettimeofday(&now, NULL);
-
+
while (callback)
{
next_callback = callback->next;
-
+
if ((!checktime&&callback->periodic)||
(((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
|| (now.tv_sec > callback->when.tv_sec)))
target_unregister_timer_callback(callback->callback, callback->priv);
}
}
-
+
callback = next_callback;
}
-
+
return ERROR_OK;
}
{
working_area_t *c = target->working_areas;
working_area_t *new_wa = NULL;
-
+
/* Reevaluate working area address based on MMU state*/
if (target->working_areas == NULL)
{
target->working_area = target->working_area_phys;
}
}
-
+
/* only allocate multiples of 4 byte */
if (size % 4)
{
LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
size = CEIL(size, 4);
}
-
+
/* see if there's already a matching working area */
while (c)
{
}
c = c->next;
}
-
+
/* if not, allocate a new one */
if (!new_wa)
{
working_area_t **p = &target->working_areas;
u32 first_free = target->working_area;
u32 free_size = target->working_area_size;
-
+
LOG_DEBUG("allocating new working area");
-
+
c = target->working_areas;
while (c)
{
p = &c->next;
c = c->next;
}
-
+
if (free_size < size)
{
LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
-
+
new_wa = malloc(sizeof(working_area_t));
new_wa->next = NULL;
new_wa->size = size;
new_wa->address = first_free;
-
+
if (target->backup_working_area)
{
new_wa->backup = malloc(new_wa->size);
{
new_wa->backup = NULL;
}
-
+
/* put new entry in list */
*p = new_wa;
}
-
+
/* mark as used, and return the new (reused) area */
new_wa->free = 0;
*area = new_wa;
-
+
/* user pointer */
new_wa->user = area;
-
+
return ERROR_OK;
}
{
if (area->free)
return ERROR_OK;
-
+
if (restore&&target->backup_working_area)
target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
-
+
area->free = 1;
-
+
/* mark user pointer invalid */
*area->user = NULL;
area->user = NULL;
-
+
return ERROR_OK;
}
{
working_area_t *next = c->next;
target_free_working_area_restore(target, c, restore);
-
+
if (c->backup)
free(c->backup);
-
+
free(c);
-
+
c = next;
}
-
+
target->working_areas = NULL;
-
+
return ERROR_OK;
}
int target_free_all_working_areas(struct target_s *target)
{
- return target_free_all_working_areas_restore(target, 1);
+ return target_free_all_working_areas_restore(target, 1);
}
int target_register_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
- register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
LOG_USER("No target has been configured");
return ERROR_OK;
}
-
+
LOG_USER("target state: %s", target_state_strings[target->state]);
-
+
if (target->state!=TARGET_HALTED)
return ERROR_OK;
-
+
retval=target->type->arch_state(target);
return retval;
}
-/* Single aligned words are guaranteed to use 16 or 32 bit access
- * mode respectively, otherwise data is handled as quickly as
+/* Single aligned words are guaranteed to use 16 or 32 bit access
+ * mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
-
+
if (address+size<address)
{
/* GDB can request this when e.g. PC is 0xfffffffc*/
LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
return ERROR_FAIL;
}
-
+
if (((address % 2) == 0) && (size == 2))
{
return target->type->write_memory(target, address, 2, 1, buffer);
}
-
+
/* handle unaligned head bytes */
if (address % 4)
{
int unaligned = 4 - (address % 4);
-
+
if (unaligned > size)
unaligned = size;
if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
return retval;
-
+
buffer += unaligned;
address += unaligned;
size -= unaligned;
}
-
+
/* handle aligned words */
if (size >= 4)
{
int aligned = size - (size % 4);
-
+
/* use bulk writes above a certain limit. This may have to be changed */
if (aligned > 128)
{
if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
return retval;
}
-
+
buffer += aligned;
address += aligned;
size -= aligned;
}
-
+
/* handle tail writes of less than 4 bytes */
if (size > 0)
{
if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval;
}
-
+
return ERROR_OK;
}
-/* Single aligned words are guaranteed to use 16 or 32 bit access
- * mode respectively, otherwise data is handled as quickly as
+/* Single aligned words are guaranteed to use 16 or 32 bit access
+ * mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
-
+
if (address+size<address)
{
/* GDB can request this when e.g. PC is 0xfffffffc*/
LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
return ERROR_FAIL;
}
-
+
if (((address % 2) == 0) && (size == 2))
{
return target->type->read_memory(target, address, 2, 1, buffer);
}
-
+
/* handle unaligned head bytes */
if (address % 4)
{
int unaligned = 4 - (address % 4);
-
+
if (unaligned > size)
unaligned = size;
if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
return retval;
-
+
buffer += unaligned;
address += unaligned;
size -= unaligned;
}
-
+
/* handle aligned words */
if (size >= 4)
{
int aligned = size - (size % 4);
-
+
if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
return retval;
-
+
buffer += aligned;
address += aligned;
size -= aligned;
}
-
+
/* handle tail writes of less than 4 bytes */
if (size > 0)
{
if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval;
}
-
+
return ERROR_OK;
}
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
-
+
if ((retval = target->type->checksum_memory(target, address,
size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
retval = image_calculate_checksum( buffer, size, &checksum );
free(buffer);
}
-
+
*crc = checksum;
-
+
return retval;
}
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
-
+
if (target->type->blank_check_memory == 0)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
-
+
retval = target->type->blank_check_memory(target, address, size, blank);
-
+
return retval;
}
}
int retval = target->type->read_memory(target, address, 4, 1, value_buf);
-
+
if (retval == ERROR_OK)
{
*value = target_buffer_get_u32(target, value_buf);
*value = 0x0;
LOG_DEBUG("address: 0x%8.8x failed", address);
}
-
+
return retval;
}
}
int retval = target->type->read_memory(target, address, 2, 1, value_buf);
-
+
if (retval == ERROR_OK)
{
*value = target_buffer_get_u16(target, value_buf);
*value = 0x0;
LOG_DEBUG("address: 0x%8.8x failed", address);
}
-
+
return retval;
}
*value = 0x0;
LOG_DEBUG("address: 0x%8.8x failed", address);
}
-
+
return retval;
}
LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
- target_buffer_set_u32(target, value_buf, value);
+ target_buffer_set_u32(target, value_buf, value);
if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
-
+
return retval;
}
LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
- target_buffer_set_u16(target, value_buf, value);
+ target_buffer_set_u16(target, value_buf, value);
if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
-
+
return retval;
}
{
LOG_DEBUG("failed: %i", retval);
}
-
+
return retval;
}
register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
- register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
+ register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init]");
register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
-
+
register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
-
- register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
+
+ register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
- register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
+ register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
-
+
register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
-
+
target_request_register_commands(cmd_ctx);
trace_register_commands(cmd_ctx);
-
+
return ERROR_OK;
}
{
target_t *target = targets;
int count = 0;
-
+
if (argc == 1)
{
int num = strtoul(args[0], NULL, 0);
-
+
while (target)
{
count++;
target = target->next;
}
-
+
if (num < count)
cmd_ctx->current_target = num;
else
command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
-
+
return ERROR_OK;
}
-
+
while (target)
{
command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
target = target->next;
}
-
+
return ERROR_OK;
}
{
int i;
int found = 0;
-
+
if (argc < 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
/* search for the specified target */
if (args[0] && (args[0][0] != 0))
{
if (strcmp(args[0], target_types[i]->name) == 0)
{
target_t **last_target_p = &targets;
-
+
/* register target specific commands */
if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
{
}
*last_target_p = malloc(sizeof(target_t));
-
+
/* allocate memory for each unique target type */
(*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
- *((*last_target_p)->type) = *target_types[i];
-
+ *((*last_target_p)->type) = *target_types[i];
+
if (strcmp(args[1], "big") == 0)
(*last_target_p)->endianness = TARGET_BIG_ENDIAN;
else if (strcmp(args[1], "little") == 0)
LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
if (strcmp(args[2], "reset_halt") == 0)
{
LOG_WARNING("reset_mode argument is obsolete.");
args--;
argc++;
}
- (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
-
+
(*last_target_p)->working_area = 0x0;
(*last_target_p)->working_area_size = 0x0;
(*last_target_p)->working_areas = NULL;
(*last_target_p)->backup_working_area = 0;
-
+
(*last_target_p)->state = TARGET_UNKNOWN;
(*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
(*last_target_p)->reg_cache = NULL;
(*last_target_p)->watchpoints = NULL;
(*last_target_p)->next = NULL;
(*last_target_p)->arch_info = NULL;
-
+
/* initialize trace information */
(*last_target_p)->trace_info = malloc(sizeof(trace_t));
(*last_target_p)->trace_info->num_trace_points = 0;
(*last_target_p)->trace_info->trace_history = NULL;
(*last_target_p)->trace_info->trace_history_pos = 0;
(*last_target_p)->trace_info->trace_history_overflowed = 0;
-
+
(*last_target_p)->dbgmsg = NULL;
(*last_target_p)->dbg_msg_enabled = 0;
-
+
(*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
-
+
found = 1;
break;
}
}
}
-
+
/* no matching target found */
if (!found)
{
int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
{
- return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
- get_num_by_target(target), name,
+ return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
+ get_num_by_target(target), name,
get_num_by_target(target), name);
}
-int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
-{
- target_t *target = NULL;
-
- if (argc < 2)
- {
- return ERROR_COMMAND_SYNTAX_ERROR;
- }
-
- target = get_target_by_num(strtoul(args[0], NULL, 0));
- if (!target)
- {
- return ERROR_COMMAND_SYNTAX_ERROR;
- }
-
- target->run_and_halt_time = strtoul(args[1], NULL, 0);
-
- return ERROR_OK;
-}
-
int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = NULL;
-
+
if ((argc < 4) || (argc > 5))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
target = get_target_by_num(strtoul(args[0], NULL, 0));
if (!target)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target_free_all_working_areas(target);
-
+
target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
if (argc == 5)
{
target->working_area_virt = strtoul(args[4], NULL, 0);
}
target->working_area_size = strtoul(args[2], NULL, 0);
-
+
if (strcmp(args[3], "backup") == 0)
{
target->backup_working_area = 1;
LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
return ERROR_OK;
}
int handle_target(void *priv)
{
target_t *target = targets;
-
+
while (target)
{
if (target_continous_poll)
/* polling may fail silently until the target has been examined */
target_poll(target);
}
-
+
target = target->next;
}
-
+
return ERROR_OK;
}
reg_t *reg = NULL;
int count = 0;
char *value;
-
+
LOG_DEBUG("-");
-
+
target = get_current_target(cmd_ctx);
-
+
/* list all available registers for the current target */
if (argc == 0)
{
reg_cache_t *cache = target->reg_cache;
-
+
count = 0;
while(cache)
{
}
cache = cache->next;
}
-
+
return ERROR_OK;
}
-
+
/* access a single register by its ordinal number */
if ((args[0][0] >= '0') && (args[0][0] <= '9'))
{
int num = strtoul(args[0], NULL, 0);
reg_cache_t *cache = target->reg_cache;
-
+
count = 0;
while(cache)
{
break;
cache = cache->next;
}
-
+
if (!reg)
{
command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
} else /* access a single register by its name */
{
reg = register_get_by_name(target->reg_cache, args[0], 1);
-
+
if (!reg)
{
command_print(cmd_ctx, "register %s not found in current target", args[0]);
{
if ((argc == 2) && (strcmp(args[1], "force") == 0))
reg->valid = 0;
-
+
if (reg->valid == 0)
{
reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
free(value);
return ERROR_OK;
}
-
+
/* set register value */
if (argc == 2)
{
LOG_ERROR("BUG: encountered unregistered arch type");
return ERROR_OK;
}
-
+
arch_type->set(reg, buf);
-
+
value = buf_to_str(reg->value, reg->size, 16);
command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
free(value);
-
+
free(buf);
-
+
return ERROR_OK;
}
-
+
command_print(cmd_ctx, "usage: reg <#|name> [value]");
-
+
return ERROR_OK;
}
command_print(cmd_ctx, "arg is \"on\" or \"off\"");
}
}
-
-
+
+
return ERROR_OK;
}
int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int ms = 5000;
-
+
if (argc > 0)
{
char *end;
}
target_t *target = get_current_target(cmd_ctx);
- return target_wait_state(target, TARGET_HALTED, ms);
+ return target_wait_state(target, TARGET_HALTED, ms);
}
int target_wait_state(target_t *target, enum target_state state, int ms)
int once=1;
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, 0, ms * 1000);
-
+
for (;;)
{
if ((retval=target_poll(target))!=ERROR_OK)
once=0;
LOG_USER("waiting for target %s...", target_state_strings[state]);
}
-
+
gettimeofday(&now, NULL);
if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
{
LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
- break;
+ return ERROR_FAIL;
}
}
-
+
return ERROR_OK;
}
{
return retval;
}
-
+
return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
}
int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
-
+
LOG_USER("requesting target halt and executing a soft reset");
-
+
target->type->soft_reset_halt(target);
-
+
return ERROR_OK;
}
{
target_t *target = get_current_target(cmd_ctx);
enum target_reset_mode reset_mode = RESET_RUN;
-
- LOG_DEBUG("-");
-
+
if (argc >= 1)
{
if (strcmp("run", args[0]) == 0)
reset_mode = RESET_HALT;
else if (strcmp("init", args[0]) == 0)
reset_mode = RESET_INIT;
- else if (strcmp("run_and_halt", args[0]) == 0)
- {
- reset_mode = RESET_RUN_AND_HALT;
- if (argc >= 2)
- {
- target->run_and_halt_time = strtoul(args[1], NULL, 0);
- }
- }
- else if (strcmp("run_and_init", args[0]) == 0)
- {
- reset_mode = RESET_RUN_AND_INIT;
- if (argc >= 2)
- {
- target->run_and_halt_time = strtoul(args[1], NULL, 0);
- }
- }
else
{
- command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
- return ERROR_OK;
+ return ERROR_COMMAND_SYNTAX_ERROR;
}
}
-
+
/* reset *all* targets */
target_process_reset(cmd_ctx, reset_mode);
-
+
return ERROR_OK;
}
{
int retval;
target_t *target = get_current_target(cmd_ctx);
-
+
target_invoke_script(cmd_ctx, target, "pre_resume");
-
+
if (argc == 0)
retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
else if (argc == 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
return retval;
}
int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
-
+
LOG_DEBUG("-");
-
+
if (argc == 0)
target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
if (argc == 1)
target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
-
+
return ERROR_OK;
}
count = strtoul(args[1], NULL, 0);
address = strtoul(args[0], NULL, 0);
-
+
switch (cmd[2])
{
if (retval == ERROR_OK)
{
output_len = 0;
-
+
for (i = 0; i < count; i++)
{
if (i%line_modulo == 0)
output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
-
+
switch (size)
{
case 4:
output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
break;
}
-
+
if ((i%line_modulo == line_modulo-1) || (i == count - 1))
{
command_print(cmd_ctx, output);
}
free(buffer);
-
+
return retval;
}
value = strtoul(args[1], NULL, 0);
if (argc == 3)
count = strtoul(args[2], NULL, 0);
-
+
switch (cmd[2])
{
case 'w':
int i;
int retval;
- image_t image;
-
+ image_t image;
+
duration_t duration;
char *duration_text;
-
+
target_t *target = get_current_target(cmd_ctx);
if ((argc < 1)||(argc > 5))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
/* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
if (argc >= 2)
{
{
image.base_address_set = 0;
}
-
-
+
+
image.start_address_set = 0;
-
+
if (argc>=4)
{
min_address=strtoul(args[3], NULL, 0);
{
max_address=strtoul(args[4], NULL, 0)+min_address;
}
-
+
if (min_address>max_address)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
duration_start_measure(&duration);
-
+
if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
{
return ERROR_OK;
}
-
+
image_size = 0x0;
retval = ERROR_OK;
for (i = 0; i < image.num_sections; i++)
command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
break;
}
-
+
if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
{
free(buffer);
break;
}
-
+
u32 offset=0;
u32 length=buf_cnt;
-
-
+
+
/* DANGER!!! beware of unsigned comparision here!!! */
-
+
if ((image.sections[i].base_address+buf_cnt>=min_address)&&
(image.sections[i].base_address<max_address))
{
offset+=min_address-image.sections[i].base_address;
length-=offset;
}
-
+
if (image.sections[i].base_address+buf_cnt>max_address)
{
length-=(image.sections[i].base_address+buf_cnt)-max_address;
}
-
+
if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
{
free(buffer);
image_size += length;
command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
}
-
+
free(buffer);
}
command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
}
free(duration_text);
-
+
image_close(&image);
return retval;
int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
fileio_t fileio;
-
+
u32 address;
u32 size;
u8 buffer[560];
int retval=ERROR_OK;
-
+
duration_t duration;
char *duration_text;
-
+
target_t *target = get_current_target(cmd_ctx);
if (argc != 3)
command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
return ERROR_OK;
}
-
+
if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
-
+
duration_start_measure(&duration);
-
+
while (size > 0)
{
u32 size_written;
u32 this_run_size = (size > 560) ? 560 : size;
-
+
retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
if (retval != ERROR_OK)
{
break;
}
-
+
retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
if (retval != ERROR_OK)
{
break;
}
-
+
size -= this_run_size;
address += this_run_size;
}
command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
}
free(duration_text);
-
+
return ERROR_OK;
}
u32 checksum = 0;
u32 mem_checksum = 0;
- image_t image;
-
+ image_t image;
+
duration_t duration;
char *duration_text;
-
+
target_t *target = get_current_target(cmd_ctx);
-
+
if (argc < 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
-
+
if (!target)
{
LOG_ERROR("no target selected");
return ERROR_FAIL;
}
-
+
duration_start_measure(&duration);
-
+
if (argc >= 2)
{
image.base_address_set = 1;
{
return retval;
}
-
+
image_size = 0x0;
retval=ERROR_OK;
for (i = 0; i < image.num_sections; i++)
free(buffer);
break;
}
-
+
/* calculate checksum of image */
image_calculate_checksum( buffer, buf_cnt, &checksum );
-
+
retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
if( retval != ERROR_OK )
{
free(buffer);
break;
}
-
+
if( checksum != mem_checksum )
{
/* failed crc checksum, fall back to a binary compare */
u8 *data;
-
+
command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
-
+
data = (u8*)malloc(buf_cnt);
-
+
/* Can we use 32bit word accesses? */
int size = 1;
int count = buf_cnt;
}
}
}
-
+
free(data);
}
-
+
free(buffer);
image_size += buf_cnt;
}
-done:
+done:
duration_stop_measure(&duration, &duration_text);
if (retval==ERROR_OK)
{
command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
}
free(duration_text);
-
+
image_close(&image);
-
+
return retval;
}
u32 length = 0;
length = strtoul(args[1], NULL, 0);
-
+
if (argc >= 3)
if (strcmp(args[2], "hw") == 0)
hw = BKPT_HARD;
command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
watchpoint = watchpoint->next;
}
- }
+ }
else if (argc >= 2)
{
enum watchpoint_rw type = WPT_ACCESS;
u32 data_value = 0x0;
u32 data_mask = 0xffffffff;
-
+
if (argc >= 3)
{
switch(args[2][0])
{
data_mask = strtoul(args[4], NULL, 0);
}
-
+
if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
{
{
command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
}
-
+
return ERROR_OK;
}
if (argc > 0)
watchpoint_remove(target, strtoul(args[0], NULL, 0));
-
+
return ERROR_OK;
}
}
else
{
- /* lower levels will have logged a detailed error which is
- * forwarded to telnet/GDB session.
+ /* lower levels will have logged a detailed error which is
+ * forwarded to telnet/GDB session.
*/
}
return retval;
for (i=0; i<4; i++)
{
char c=(l>>(i*8))&0xff;
- fwrite(&c, 1, 1, f);
+ fwrite(&c, 1, 1, f);
}
-
+
}
static void writeString(FILE *f, char *s)
{
- fwrite(s, 1, strlen(s), f);
+ fwrite(s, 1, strlen(s), f);
}
writeLong(f, 0); // padding
writeLong(f, 0); // padding
writeLong(f, 0); // padding
-
- fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST
+
+ fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST
// figure out bucket size
u32 min=samples[0];
}
int addressSpace=(max-min+1);
-
+
static int const maxBuckets=256*1024; // maximum buckets.
int length=addressSpace;
if (length > maxBuckets)
{
- length=maxBuckets;
+ length=maxBuckets;
}
int *buckets=malloc(sizeof(int)*length);
if (buckets==NULL)
long long a=address-min;
long long b=length-1;
long long c=addressSpace-1;
- int index=(a*b)/c; // danger!!!! int32 overflows
+ int index=(a*b)/c; // danger!!!! int32 overflows
buckets[index]++;
}
-
+
// append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
writeLong(f, min); // low_pc
writeLong(f, max); // high_pc
fwrite("", 1, 1, f); // padding
}
writeString(f, "s");
-
+
// append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
-
+
char *data=malloc(2*length);
if (data!=NULL)
{
{
target_t *target = get_current_target(cmd_ctx);
struct timeval timeout, now;
-
+
gettimeofday(&timeout, NULL);
if (argc!=2)
{
}
char *end;
timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
- if (*end)
+ if (*end)
{
return ERROR_OK;
}
-
+
command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
static const int maxSample=10000;
u32 *samples=malloc(sizeof(u32)*maxSample);
if (samples==NULL)
return ERROR_OK;
-
+
int numSamples=0;
int retval=ERROR_OK;
// hopefully it is safe to cache! We want to stop/restart as quickly as possible.
reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
-
+
for (;;)
{
target_poll(target);
{
break;
}
-
+
gettimeofday(&now, NULL);
if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
{
}
}
free(samples);
-
+
return ERROR_OK;
}
namebuf = alloc_printf("%s(%d)", varname, idx);
if (!namebuf)
return JIM_ERR;
-
+
nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
valObjPtr = Jim_NewIntObj(interp, val);
if (!nameObjPtr || !valObjPtr)
/* argv[1] = name of array to receive the data
* argv[2] = desired width
- * argv[3] = memory address
+ * argv[3] = memory address
* argv[4] = count of times to read
*/
if (argc != 5) {
if (e != JIM_OK) {
return e;
}
-
+
e = Jim_GetLong(interp, argv[3], &l);
addr = l;
if (e != JIM_OK) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
return JIM_ERR;
- }
-
+ }
+
if ((width == 1) ||
((width == 2) && ((addr & 1) == 0)) ||
((width == 4) && ((addr & 3) == 0))) {
} else {
char buf[100];
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
- sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
+ sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
return JIM_ERR;
}
LOG_ERROR("mem2array: no current target");
return JIM_ERR;
}
-
+
/* Transfer loop */
/* index counter */
e = JIM_OK;
while (len) {
/* Slurp... in buffer size chunks */
-
+
count = len; /* in objects.. */
if (count > (sizeof(buffer)/width)) {
count = (sizeof(buffer)/width);
}
-
+
retval = target->type->read_memory( target, addr, width, count, buffer );
if (retval != ERROR_OK) {
/* BOO !*/
len -= count;
}
}
-
+
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
return JIM_OK;
/* argv[1] = name of array to get the data
* argv[2] = desired width
- * argv[3] = memory address
+ * argv[3] = memory address
* argv[4] = count to write
*/
if (argc != 5) {
if (e != JIM_OK) {
return e;
}
-
+
e = Jim_GetLong(interp, argv[3], &l);
addr = l;
if (e != JIM_OK) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
return JIM_ERR;
- }
-
+ }
+
if ((width == 1) ||
((width == 2) && ((addr & 1) == 0)) ||
((width == 4) && ((addr & 3) == 0))) {
} else {
char buf[100];
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
- sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
+ sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
return JIM_ERR;
}
LOG_ERROR("array2mem: no current target");
return JIM_ERR;
}
-
+
/* Transfer loop */
/* index counter */
e = JIM_OK;
while (len) {
/* Slurp... in buffer size chunks */
-
+
count = len; /* in objects.. */
if (count > (sizeof(buffer)/width)) {
count = (sizeof(buffer)/width);
len = 0;
}
}
-
+
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
return JIM_OK;