]> git.sur5r.net Git - openocd/blob - src/flash/nor/kinetis.c
flash Kinetis: fix mdm check_security regression in JTAG mode
[openocd] / src / flash / nor / kinetis.c
1 /***************************************************************************
2  *   Copyright (C) 2011 by Mathias Kuester                                 *
3  *   kesmtp@freenet.de                                                     *
4  *                                                                         *
5  *   Copyright (C) 2011 sleep(5) ltd                                       *
6  *   tomas@sleepfive.com                                                   *
7  *                                                                         *
8  *   Copyright (C) 2012 by Christopher D. Kilgour                          *
9  *   techie at whiterocker.com                                             *
10  *                                                                         *
11  *   Copyright (C) 2013 Nemui Trinomius                                    *
12  *   nemuisan_kawausogasuki@live.jp                                        *
13  *                                                                         *
14  *   Copyright (C) 2015 Tomas Vanek                                        *
15  *   vanekt@fbl.cz                                                         *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
29  ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45  * Implementation Notes
46  *
47  * The persistent memories in the Kinetis chip families K10 through
48  * K70 are all manipulated with the Flash Memory Module.  Some
49  * variants call this module the FTFE, others call it the FTFL.  To
50  * indicate that both are considered here, we use FTFX.
51  *
52  * Within the module, according to the chip variant, the persistent
53  * memory is divided into what Freescale terms Program Flash, FlexNVM,
54  * and FlexRAM.  All chip variants have Program Flash.  Some chip
55  * variants also have FlexNVM and FlexRAM, which always appear
56  * together.
57  *
58  * A given Kinetis chip may have 1, 2 or 4 blocks of flash.  Here we map
59  * each block to a separate bank.  Each block size varies by chip and
60  * may be determined by the read-only SIM_FCFG1 register.  The sector
61  * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62  * The sector size may be different for flash and FlexNVM.
63  *
64  * The first half of the flash (1 or 2 blocks) is always Program Flash
65  * and always starts at address 0x00000000.  The "PFLSH" flag, bit 23
66  * of the read-only SIM_FCFG2 register, determines whether the second
67  * half of the flash is also Program Flash or FlexNVM+FlexRAM.  When
68  * PFLSH is set, the second from the first half.  When PFLSH is clear,
69  * the second half of flash is FlexNVM and always starts at address
70  * 0x10000000.  FlexRAM, which is also present when PFLSH is clear,
71  * always starts at address 0x14000000.
72  *
73  * The Flash Memory Module provides a register set where flash
74  * commands are loaded to perform flash operations like erase and
75  * program.  Different commands are available depending on whether
76  * Program Flash or FlexNVM/FlexRAM is being manipulated.  Although
77  * the commands used are quite consistent between flash blocks, the
78  * parameters they accept differ according to the flash sector size.
79  *
80  */
81
82 /* Addressess */
83 #define FCF_ADDRESS     0x00000400
84 #define FCF_FPROT       0x8
85 #define FCF_FSEC        0xc
86 #define FCF_FOPT        0xd
87 #define FCF_FDPROT      0xf
88 #define FCF_SIZE        0x10
89
90 #define FLEXRAM         0x14000000
91
92 #define FMC_PFB01CR     0x4001f004
93 #define FTFx_FSTAT      0x40020000
94 #define FTFx_FCNFG      0x40020001
95 #define FTFx_FCCOB3     0x40020004
96 #define FTFx_FPROT3     0x40020010
97 #define FTFx_FDPROT     0x40020017
98 #define SIM_SDID        0x40048024
99 #define SIM_SOPT1       0x40047000
100 #define SIM_FCFG1       0x4004804c
101 #define SIM_FCFG2       0x40048050
102 #define WDOG_STCTRH     0x40052000
103 #define SMC_PMCTRL      0x4007E001
104 #define SMC_PMSTAT      0x4007E003
105
106 /* Values */
107 #define PM_STAT_RUN             0x01
108 #define PM_STAT_VLPR            0x04
109 #define PM_CTRL_RUNM_RUN        0x00
110
111 /* Commands */
112 #define FTFx_CMD_BLOCKSTAT  0x00
113 #define FTFx_CMD_SECTSTAT   0x01
114 #define FTFx_CMD_LWORDPROG  0x06
115 #define FTFx_CMD_SECTERASE  0x09
116 #define FTFx_CMD_SECTWRITE  0x0b
117 #define FTFx_CMD_MASSERASE  0x44
118 #define FTFx_CMD_PGMPART    0x80
119 #define FTFx_CMD_SETFLEXRAM 0x81
120
121 /* The older Kinetis K series uses the following SDID layout :
122  * Bit 31-16 : 0
123  * Bit 15-12 : REVID
124  * Bit 11-7  : DIEID
125  * Bit 6-4   : FAMID
126  * Bit 3-0   : PINID
127  *
128  * The newer Kinetis series uses the following SDID layout :
129  * Bit 31-28 : FAMID
130  * Bit 27-24 : SUBFAMID
131  * Bit 23-20 : SERIESID
132  * Bit 19-16 : SRAMSIZE
133  * Bit 15-12 : REVID
134  * Bit 6-4   : Reserved (0)
135  * Bit 3-0   : PINID
136  *
137  * We assume that if bits 31-16 are 0 then it's an older
138  * K-series MCU.
139  */
140
141 #define KINETIS_SOPT1_RAMSIZE_MASK  0x0000F000
142 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
143
144 #define KINETIS_SDID_K_SERIES_MASK  0x0000FFFF
145
146 #define KINETIS_SDID_DIEID_MASK 0x00000F80
147
148 #define KINETIS_SDID_DIEID_K22FN128     0x00000680 /* smaller pflash with FTFA */
149 #define KINETIS_SDID_DIEID_K22FN256     0x00000A80
150 #define KINETIS_SDID_DIEID_K22FN512     0x00000E80
151 #define KINETIS_SDID_DIEID_K24FN256     0x00000700
152
153 #define KINETIS_SDID_DIEID_K24FN1M      0x00000300 /* Detect Errata 7534 */
154
155 /* We can't rely solely on the FAMID field to determine the MCU
156  * type since some FAMID values identify multiple MCUs with
157  * different flash sector sizes (K20 and K22 for instance).
158  * Therefore we combine it with the DIEID bits which may possibly
159  * break if Freescale bumps the DIEID for a particular MCU. */
160 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
161 #define KINETIS_K_SDID_K10_M50   0x00000000
162 #define KINETIS_K_SDID_K10_M72   0x00000080
163 #define KINETIS_K_SDID_K10_M100  0x00000100
164 #define KINETIS_K_SDID_K10_M120  0x00000180
165 #define KINETIS_K_SDID_K11               0x00000220
166 #define KINETIS_K_SDID_K12               0x00000200
167 #define KINETIS_K_SDID_K20_M50   0x00000010
168 #define KINETIS_K_SDID_K20_M72   0x00000090
169 #define KINETIS_K_SDID_K20_M100  0x00000110
170 #define KINETIS_K_SDID_K20_M120  0x00000190
171 #define KINETIS_K_SDID_K21_M50   0x00000230
172 #define KINETIS_K_SDID_K21_M120  0x00000330
173 #define KINETIS_K_SDID_K22_M50   0x00000210
174 #define KINETIS_K_SDID_K22_M120  0x00000310
175 #define KINETIS_K_SDID_K30_M72   0x000000A0
176 #define KINETIS_K_SDID_K30_M100  0x00000120
177 #define KINETIS_K_SDID_K40_M72   0x000000B0
178 #define KINETIS_K_SDID_K40_M100  0x00000130
179 #define KINETIS_K_SDID_K50_M72   0x000000E0
180 #define KINETIS_K_SDID_K51_M72   0x000000F0
181 #define KINETIS_K_SDID_K53               0x00000170
182 #define KINETIS_K_SDID_K60_M100  0x00000140
183 #define KINETIS_K_SDID_K60_M150  0x000001C0
184 #define KINETIS_K_SDID_K70_M150  0x000001D0
185
186 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
187 #define KINETIS_SDID_SERIESID_K   0x00000000
188 #define KINETIS_SDID_SERIESID_KL   0x00100000
189 #define KINETIS_SDID_SERIESID_KW   0x00500000
190 #define KINETIS_SDID_SERIESID_KV   0x00600000
191
192 #define KINETIS_SDID_SUBFAMID_MASK  0x0F000000
193 #define KINETIS_SDID_SUBFAMID_KX0   0x00000000
194 #define KINETIS_SDID_SUBFAMID_KX1   0x01000000
195 #define KINETIS_SDID_SUBFAMID_KX2   0x02000000
196 #define KINETIS_SDID_SUBFAMID_KX3   0x03000000
197 #define KINETIS_SDID_SUBFAMID_KX4   0x04000000
198 #define KINETIS_SDID_SUBFAMID_KX5   0x05000000
199 #define KINETIS_SDID_SUBFAMID_KX6   0x06000000
200
201 #define KINETIS_SDID_FAMILYID_MASK  0xF0000000
202 #define KINETIS_SDID_FAMILYID_K0X   0x00000000
203 #define KINETIS_SDID_FAMILYID_K1X   0x10000000
204 #define KINETIS_SDID_FAMILYID_K2X   0x20000000
205 #define KINETIS_SDID_FAMILYID_K3X   0x30000000
206 #define KINETIS_SDID_FAMILYID_K4X   0x40000000
207 #define KINETIS_SDID_FAMILYID_K6X   0x60000000
208 #define KINETIS_SDID_FAMILYID_K7X   0x70000000
209
210 struct kinetis_flash_bank {
211         bool probed;
212         uint32_t sector_size;
213         uint32_t max_flash_prog_size;
214         uint32_t protection_size;
215         uint32_t prog_base;             /* base address for FTFx operations */
216                                         /* same as bank->base for pflash, differs for FlexNVM */
217         uint32_t protection_block;      /* number of first protection block in this bank */
218
219         uint32_t sim_sdid;
220         uint32_t sim_fcfg1;
221         uint32_t sim_fcfg2;
222
223         enum {
224                 FC_AUTO = 0,
225                 FC_PFLASH,
226                 FC_FLEX_NVM,
227                 FC_FLEX_RAM,
228         } flash_class;
229
230         enum {
231                 FS_PROGRAM_SECTOR = 1,
232                 FS_PROGRAM_LONGWORD = 2,
233                 FS_PROGRAM_PHRASE = 4, /* Unsupported */
234                 FS_INVALIDATE_CACHE = 8,
235         } flash_support;
236 };
237
238 #define MDM_AP                  1
239
240 #define MDM_REG_STAT            0x00
241 #define MDM_REG_CTRL            0x04
242 #define MDM_REG_ID              0xfc
243
244 #define MDM_STAT_FMEACK         (1<<0)
245 #define MDM_STAT_FREADY         (1<<1)
246 #define MDM_STAT_SYSSEC         (1<<2)
247 #define MDM_STAT_SYSRES         (1<<3)
248 #define MDM_STAT_FMEEN          (1<<5)
249 #define MDM_STAT_BACKDOOREN     (1<<6)
250 #define MDM_STAT_LPEN           (1<<7)
251 #define MDM_STAT_VLPEN          (1<<8)
252 #define MDM_STAT_LLSMODEXIT     (1<<9)
253 #define MDM_STAT_VLLSXMODEXIT   (1<<10)
254 #define MDM_STAT_CORE_HALTED    (1<<16)
255 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
256 #define MDM_STAT_CORESLEEPING   (1<<18)
257
258 #define MDM_CTRL_FMEIP          (1<<0)
259 #define MDM_CTRL_DBG_DIS        (1<<1)
260 #define MDM_CTRL_DBG_REQ        (1<<2)
261 #define MDM_CTRL_SYS_RES_REQ    (1<<3)
262 #define MDM_CTRL_CORE_HOLD_RES  (1<<4)
263 #define MDM_CTRL_VLLSX_DBG_REQ  (1<<5)
264 #define MDM_CTRL_VLLSX_DBG_ACK  (1<<6)
265 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
266
267 #define MDM_ACCESS_TIMEOUT      500 /* msec */
268
269
270 static bool allow_fcf_writes;
271 static uint8_t fcf_fopt = 0xff;
272
273
274 struct flash_driver kinetis_flash;
275 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
276                         uint32_t offset, uint32_t count);
277 static int kinetis_auto_probe(struct flash_bank *bank);
278
279
280 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
281 {
282         int retval;
283         LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
284
285         retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
286         if (retval != ERROR_OK) {
287                 LOG_DEBUG("MDM: failed to queue a write request");
288                 return retval;
289         }
290
291         retval = dap_run(dap);
292         if (retval != ERROR_OK) {
293                 LOG_DEBUG("MDM: dap_run failed");
294                 return retval;
295         }
296
297
298         return ERROR_OK;
299 }
300
301 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
302 {
303         int retval;
304
305         retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
306         if (retval != ERROR_OK) {
307                 LOG_DEBUG("MDM: failed to queue a read request");
308                 return retval;
309         }
310
311         retval = dap_run(dap);
312         if (retval != ERROR_OK) {
313                 LOG_DEBUG("MDM: dap_run failed");
314                 return retval;
315         }
316
317         LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
318         return ERROR_OK;
319 }
320
321 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
322                         uint32_t mask, uint32_t value, uint32_t timeout_ms)
323 {
324         uint32_t val;
325         int retval;
326         int64_t ms_timeout = timeval_ms() + timeout_ms;
327
328         do {
329                 retval = kinetis_mdm_read_register(dap, reg, &val);
330                 if (retval != ERROR_OK || (val & mask) == value)
331                         return retval;
332
333                 alive_sleep(1);
334         } while (timeval_ms() < ms_timeout);
335
336         LOG_DEBUG("MDM: polling timed out");
337         return ERROR_FAIL;
338 }
339
340 /*
341  * This command can be used to break a watchdog reset loop when
342  * connecting to an unsecured target. Unlike other commands, halt will
343  * automatically retry as it does not know how far into the boot process
344  * it is when the command is called.
345  */
346 COMMAND_HANDLER(kinetis_mdm_halt)
347 {
348         struct target *target = get_current_target(CMD_CTX);
349         struct cortex_m_common *cortex_m = target_to_cm(target);
350         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
351         int retval;
352         int tries = 0;
353         uint32_t stat;
354         int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
355
356         if (!dap) {
357                 LOG_ERROR("Cannot perform halt with a high-level adapter");
358                 return ERROR_FAIL;
359         }
360
361         while (true) {
362                 tries++;
363
364                 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
365
366                 alive_sleep(1);
367
368                 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
369                 if (retval != ERROR_OK) {
370                         LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
371                         continue;
372                 }
373
374                 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
375                  * reset with flash ready and without security
376                  */
377                 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
378                                 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
379                         break;
380
381                 if (timeval_ms() >= ms_timeout) {
382                         LOG_ERROR("MDM: halt timed out");
383                         return ERROR_FAIL;
384                 }
385         }
386
387         LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
388
389         target_poll(target);
390         /* enable polling in case kinetis_check_flash_security_status disabled it */
391         jtag_poll_set_enabled(true);
392
393         alive_sleep(100);
394
395         target->reset_halt = true;
396         target->type->assert_reset(target);
397
398         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
399         if (retval != ERROR_OK) {
400                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
401                 return retval;
402         }
403
404         target->type->deassert_reset(target);
405
406         return ERROR_OK;
407 }
408
409 COMMAND_HANDLER(kinetis_mdm_reset)
410 {
411         struct target *target = get_current_target(CMD_CTX);
412         struct cortex_m_common *cortex_m = target_to_cm(target);
413         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
414         int retval;
415
416         if (!dap) {
417                 LOG_ERROR("Cannot perform reset with a high-level adapter");
418                 return ERROR_FAIL;
419         }
420
421         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
422         if (retval != ERROR_OK) {
423                 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
424                 return retval;
425         }
426
427         retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
428         if (retval != ERROR_OK) {
429                 LOG_ERROR("MDM: failed to assert reset");
430                 return retval;
431         }
432
433         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
434         if (retval != ERROR_OK) {
435                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
436                 return retval;
437         }
438
439         return ERROR_OK;
440 }
441
442 /*
443  * This function implements the procedure to mass erase the flash via
444  * SWD/JTAG on Kinetis K and L series of devices as it is described in
445  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
446  * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
447  * the core remains halted after this function completes as suggested
448  * by the application note.
449  */
450 COMMAND_HANDLER(kinetis_mdm_mass_erase)
451 {
452         struct target *target = get_current_target(CMD_CTX);
453         struct cortex_m_common *cortex_m = target_to_cm(target);
454         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
455
456         if (!dap) {
457                 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
458                 return ERROR_FAIL;
459         }
460
461         int retval;
462
463         /*
464          * ... Power on the processor, or if power has already been
465          * applied, assert the RESET pin to reset the processor. For
466          * devices that do not have a RESET pin, write the System
467          * Reset Request bit in the MDM-AP control register after
468          * establishing communication...
469          */
470
471         /* assert SRST if configured */
472         bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
473         if (has_srst)
474                 adapter_assert_reset();
475
476         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
477         if (retval != ERROR_OK && !has_srst) {
478                 LOG_ERROR("MDM: failed to assert reset");
479                 goto deassert_reset_and_exit;
480         }
481
482         /*
483          * ... Read the MDM-AP status register repeatedly and wait for
484          * stable conditions suitable for mass erase:
485          * - mass erase is enabled
486          * - flash is ready
487          * - reset is finished
488          *
489          * Mass erase is started as soon as all conditions are met in 32
490          * subsequent status reads.
491          *
492          * In case of not stable conditions (RESET/WDOG loop in secured device)
493          * the user is asked for manual pressing of RESET button
494          * as a last resort.
495          */
496         int cnt_mass_erase_disabled = 0;
497         int cnt_ready = 0;
498         int64_t ms_start = timeval_ms();
499         bool man_reset_requested = false;
500
501         do {
502                 uint32_t stat = 0;
503                 int64_t ms_elapsed = timeval_ms() - ms_start;
504
505                 if (!man_reset_requested && ms_elapsed > 100) {
506                         LOG_INFO("MDM: Press RESET button now if possible.");
507                         man_reset_requested = true;
508                 }
509
510                 if (ms_elapsed > 3000) {
511                         LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
512                         LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
513                         LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
514                         goto deassert_reset_and_exit;
515                 }
516                 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
517                 if (retval != ERROR_OK) {
518                         cnt_ready = 0;
519                         continue;
520                 }
521
522                 if (!(stat & MDM_STAT_FMEEN)) {
523                         cnt_ready = 0;
524                         cnt_mass_erase_disabled++;
525                         if (cnt_mass_erase_disabled > 10) {
526                                 LOG_ERROR("MDM: mass erase is disabled");
527                                 goto deassert_reset_and_exit;
528                         }
529                         continue;
530                 }
531
532                 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
533                         cnt_ready++;
534                 else
535                         cnt_ready = 0;
536
537         } while (cnt_ready < 32);
538
539         /*
540          * ... Write the MDM-AP control register to set the Flash Mass
541          * Erase in Progress bit. This will start the mass erase
542          * process...
543          */
544         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
545         if (retval != ERROR_OK) {
546                 LOG_ERROR("MDM: failed to start mass erase");
547                 goto deassert_reset_and_exit;
548         }
549
550         /*
551          * ... Read the MDM-AP control register until the Flash Mass
552          * Erase in Progress bit clears...
553          * Data sheed defines erase time <3.6 sec/512kB flash block.
554          * The biggest device has 4 pflash blocks => timeout 16 sec.
555          */
556         retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
557         if (retval != ERROR_OK) {
558                 LOG_ERROR("MDM: mass erase timeout");
559                 goto deassert_reset_and_exit;
560         }
561
562         target_poll(target);
563         /* enable polling in case kinetis_check_flash_security_status disabled it */
564         jtag_poll_set_enabled(true);
565
566         alive_sleep(100);
567
568         target->reset_halt = true;
569         target->type->assert_reset(target);
570
571         /*
572          * ... Negate the RESET signal or clear the System Reset Request
573          * bit in the MDM-AP control register.
574          */
575         retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
576         if (retval != ERROR_OK)
577                 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
578
579         target->type->deassert_reset(target);
580
581         return retval;
582
583 deassert_reset_and_exit:
584         kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
585         if (has_srst)
586                 adapter_deassert_reset();
587         return retval;
588 }
589
590 static const uint32_t kinetis_known_mdm_ids[] = {
591         0x001C0000,     /* Kinetis-K Series */
592         0x001C0020,     /* Kinetis-L/M/V/E Series */
593 };
594
595 /*
596  * This function implements the procedure to connect to
597  * SWD/JTAG on Kinetis K and L series of devices as it is described in
598  * AN4835 "Production Flash Programming Best Practices for Kinetis K-
599  * and L-series MCUs" Section 4.1.1
600  */
601 COMMAND_HANDLER(kinetis_check_flash_security_status)
602 {
603         struct target *target = get_current_target(CMD_CTX);
604         struct cortex_m_common *cortex_m = target_to_cm(target);
605         struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
606
607         if (!dap) {
608                 LOG_WARNING("Cannot check flash security status with a high-level adapter");
609                 return ERROR_OK;
610         }
611
612         if (!dap->ops)
613                 return ERROR_OK;        /* too early to check, in JTAG mode ops may not be initialised */
614
615         uint32_t val;
616         int retval;
617
618         /*
619          * ... The MDM-AP ID register can be read to verify that the
620          * connection is working correctly...
621          */
622         retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
623         if (retval != ERROR_OK) {
624                 LOG_ERROR("MDM: failed to read ID register");
625                 return ERROR_OK;
626         }
627
628         if (val == 0)
629                 return ERROR_OK;        /* dap not yet initialised */
630
631         bool found = false;
632         for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
633                 if (val == kinetis_known_mdm_ids[i]) {
634                         found = true;
635                         break;
636                 }
637         }
638
639         if (!found)
640                 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
641
642         /*
643          * ... Read the System Security bit to determine if security is enabled.
644          * If System Security = 0, then proceed. If System Security = 1, then
645          * communication with the internals of the processor, including the
646          * flash, will not be possible without issuing a mass erase command or
647          * unsecuring the part through other means (backdoor key unlock)...
648          */
649         retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
650         if (retval != ERROR_OK) {
651                 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
652                 return ERROR_OK;
653         }
654
655         /*
656          * System Security bit is also active for short time during reset.
657          * If a MCU has blank flash and runs in RESET/WDOG loop,
658          * System Security bit is active most of time!
659          * We should observe Flash Ready bit and read status several times
660          * to avoid false detection of secured MCU
661          */
662         int secured_score = 0, flash_not_ready_score = 0;
663
664         if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
665                 uint32_t stats[32];
666                 int i;
667
668                 for (i = 0; i < 32; i++) {
669                         stats[i] = MDM_STAT_FREADY;
670                         dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
671                 }
672                 retval = dap_run(dap);
673                 if (retval != ERROR_OK) {
674                         LOG_DEBUG("MDM: dap_run failed when validating secured state");
675                         return ERROR_OK;
676                 }
677                 for (i = 0; i < 32; i++) {
678                         if (stats[i] & MDM_STAT_SYSSEC)
679                                 secured_score++;
680                         if (!(stats[i] & MDM_STAT_FREADY))
681                                 flash_not_ready_score++;
682                 }
683         }
684
685         if (flash_not_ready_score <= 8 && secured_score > 24) {
686                 jtag_poll_set_enabled(false);
687
688                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
689                 LOG_WARNING("****                                                          ****");
690                 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that,  ****");
691                 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD    ****");
692                 LOG_WARNING("**** interface will NOT work. In order to restore its         ****");
693                 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase'      ****");
694                 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD.        ****");
695                 LOG_WARNING("****                                                          ****");
696                 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
697
698         } else if (flash_not_ready_score > 24) {
699                 jtag_poll_set_enabled(false);
700                 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
701                 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector).  ****");
702                 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected   ****");
703                 LOG_WARNING("**** and configured, use 'reset halt'                           ****");
704                 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running  ****");
705                 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase'         ****");
706
707         } else {
708                 LOG_INFO("MDM: Chip is unsecured. Continuing.");
709                 jtag_poll_set_enabled(true);
710         }
711
712         return ERROR_OK;
713 }
714
715 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
716 {
717         struct kinetis_flash_bank *bank_info;
718
719         if (CMD_ARGC < 6)
720                 return ERROR_COMMAND_SYNTAX_ERROR;
721
722         LOG_INFO("add flash_bank kinetis %s", bank->name);
723
724         bank_info = malloc(sizeof(struct kinetis_flash_bank));
725
726         memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
727
728         bank->driver_priv = bank_info;
729
730         return ERROR_OK;
731 }
732
733 /* Disable the watchdog on Kinetis devices */
734 int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid)
735 {
736         struct working_area *wdog_algorithm;
737         struct armv7m_algorithm armv7m_info;
738         uint16_t wdog;
739         int retval;
740
741         static const uint8_t kinetis_unlock_wdog_code[] = {
742 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
743         };
744
745         /* Decide whether the connected device needs watchdog disabling.
746          * Disable for all Kx and KVx devices, return if it is a KLx */
747
748         if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL)
749                 return ERROR_OK;
750
751         /* The connected device requires watchdog disabling. */
752         retval = target_read_u16(target, WDOG_STCTRH, &wdog);
753         if (retval != ERROR_OK)
754                 return retval;
755
756         if ((wdog & 0x1) == 0) {
757                 /* watchdog already disabled */
758                 return ERROR_OK;
759         }
760         LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog);
761
762         if (target->state != TARGET_HALTED) {
763                 LOG_ERROR("Target not halted");
764                 return ERROR_TARGET_NOT_HALTED;
765         }
766
767         retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm);
768         if (retval != ERROR_OK)
769                 return retval;
770
771         retval = target_write_buffer(target, wdog_algorithm->address,
772                         sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code);
773         if (retval != ERROR_OK) {
774                 target_free_working_area(target, wdog_algorithm);
775                 return retval;
776         }
777
778         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
779         armv7m_info.core_mode = ARM_MODE_THREAD;
780
781         retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address,
782                         wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2),
783                         10000, &armv7m_info);
784
785         if (retval != ERROR_OK)
786                 LOG_ERROR("error executing kinetis wdog unlock algorithm");
787
788         retval = target_read_u16(target, WDOG_STCTRH, &wdog);
789         if (retval != ERROR_OK)
790                 return retval;
791         LOG_INFO("WDOG_STCTRLH = 0x%x", wdog);
792
793         target_free_working_area(target, wdog_algorithm);
794
795         return retval;
796 }
797
798 COMMAND_HANDLER(kinetis_disable_wdog_handler)
799 {
800         int result;
801         uint32_t sim_sdid;
802         struct target *target = get_current_target(CMD_CTX);
803
804         if (CMD_ARGC > 0)
805                 return ERROR_COMMAND_SYNTAX_ERROR;
806
807         result = target_read_u32(target, SIM_SDID, &sim_sdid);
808         if (result != ERROR_OK) {
809                 LOG_ERROR("Failed to read SIMSDID");
810                 return result;
811         }
812
813         result = kinetis_disable_wdog(target, sim_sdid);
814         return result;
815 }
816
817
818 static int kinetis_ftfx_decode_error(uint8_t fstat)
819 {
820         if (fstat & 0x20) {
821                 LOG_ERROR("Flash operation failed, illegal command");
822                 return ERROR_FLASH_OPER_UNSUPPORTED;
823
824         } else if (fstat & 0x10)
825                 LOG_ERROR("Flash operation failed, protection violated");
826
827         else if (fstat & 0x40)
828                 LOG_ERROR("Flash operation failed, read collision");
829
830         else if (fstat & 0x80)
831                 return ERROR_OK;
832
833         else
834                 LOG_ERROR("Flash operation timed out");
835
836         return ERROR_FLASH_OPERATION_FAILED;
837 }
838
839
840 static int kinetis_ftfx_prepare(struct target *target)
841 {
842         int result, i;
843         uint8_t fstat;
844
845         /* wait until busy */
846         for (i = 0; i < 50; i++) {
847                 result = target_read_u8(target, FTFx_FSTAT, &fstat);
848                 if (result != ERROR_OK)
849                         return result;
850
851                 if (fstat & 0x80)
852                         break;
853         }
854
855         if ((fstat & 0x80) == 0) {
856                 LOG_ERROR("Flash controller is busy");
857                 return ERROR_FLASH_OPERATION_FAILED;
858         }
859         if (fstat != 0x80) {
860                 /* reset error flags */
861                 result = target_write_u8(target, FTFx_FSTAT, 0x70);
862         }
863         return result;
864 }
865
866 /* Kinetis Program-LongWord Microcodes */
867 static const uint8_t kinetis_flash_write_code[] = {
868         /* Params:
869          * r0 - workarea buffer
870         * r1 - target address
871         * r2 - wordcount
872         * Clobbered:
873         * r4 - tmp
874         * r5 - tmp
875         * r6 - tmp
876         * r7 - tmp
877         */
878
879                                                         /* .L1: */
880                                                 /* for(register uint32_t i=0;i<wcount;i++){ */
881         0x04, 0x1C,                                     /* mov    r4, r0          */
882         0x00, 0x23,                                     /* mov    r3, #0          */
883                                                         /* .L2: */
884         0x0E, 0x1A,                                     /* sub    r6, r1, r0      */
885         0xA6, 0x19,                                     /* add    r6, r4, r6      */
886         0x93, 0x42,                                     /* cmp    r3, r2          */
887         0x16, 0xD0,                                     /* beq    .L9             */
888                                                         /* .L5: */
889                                                 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
890         0x0B, 0x4D,                                     /* ldr    r5, .L10        */
891         0x2F, 0x78,                                     /* ldrb   r7, [r5]        */
892         0x7F, 0xB2,                                     /* sxtb   r7, r7          */
893         0x00, 0x2F,                                     /* cmp    r7, #0          */
894         0xFA, 0xDA,                                     /* bge    .L5             */
895                                                 /* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
896         0x70, 0x27,                                     /* mov    r7, #112        */
897         0x2F, 0x70,                                     /* strb   r7, [r5]        */
898                                                 /* FTFx_FCCOB3 = faddr; */
899         0x09, 0x4F,                                     /* ldr    r7, .L10+4      */
900         0x3E, 0x60,                                     /* str    r6, [r7]        */
901         0x06, 0x27,                                     /* mov    r7, #6          */
902                                                 /* FTFx_FCCOB0 = 0x06;  */
903         0x08, 0x4E,                                     /* ldr    r6, .L10+8      */
904         0x37, 0x70,                                     /* strb   r7, [r6]        */
905                                                 /* FTFx_FCCOB7 = *pLW;  */
906         0x80, 0xCC,                                     /* ldmia  r4!, {r7}       */
907         0x08, 0x4E,                                     /* ldr    r6, .L10+12     */
908         0x37, 0x60,                                     /* str    r7, [r6]        */
909                                                 /* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
910         0x80, 0x27,                                     /* mov    r7, #128        */
911         0x2F, 0x70,                                     /* strb   r7, [r5]        */
912                                                         /* .L4: */
913                                                 /* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
914         0x2E, 0x78,                                     /* ldrb    r6, [r5]       */
915         0x77, 0xB2,                                     /* sxtb    r7, r6         */
916         0x00, 0x2F,                                     /* cmp     r7, #0         */
917         0xFB, 0xDA,                                     /* bge     .L4            */
918         0x01, 0x33,                                     /* add     r3, r3, #1     */
919         0xE4, 0xE7,                                     /* b       .L2            */
920                                                         /* .L9: */
921         0x00, 0xBE,                                     /* bkpt #0                */
922                                                         /* .L10: */
923         0x00, 0x00, 0x02, 0x40,         /* .word    1073872896    */
924         0x04, 0x00, 0x02, 0x40,         /* .word    1073872900    */
925         0x07, 0x00, 0x02, 0x40,         /* .word    1073872903    */
926         0x08, 0x00, 0x02, 0x40,         /* .word    1073872904    */
927 };
928
929 /* Program LongWord Block Write */
930 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
931                 uint32_t offset, uint32_t wcount)
932 {
933         struct target *target = bank->target;
934         uint32_t buffer_size = 2048;            /* Default minimum value */
935         struct working_area *write_algorithm;
936         struct working_area *source;
937         struct kinetis_flash_bank *kinfo = bank->driver_priv;
938         uint32_t address = kinfo->prog_base + offset;
939         struct reg_param reg_params[3];
940         struct armv7m_algorithm armv7m_info;
941         int retval = ERROR_OK;
942
943         /* Params:
944          * r0 - workarea buffer
945          * r1 - target address
946          * r2 - wordcount
947          * Clobbered:
948          * r4 - tmp
949          * r5 - tmp
950          * r6 - tmp
951          * r7 - tmp
952          */
953
954         /* Increase buffer_size if needed */
955         if (buffer_size < (target->working_area_size/2))
956                 buffer_size = (target->working_area_size/2);
957
958         /* allocate working area with flash programming code */
959         if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
960                         &write_algorithm) != ERROR_OK) {
961                 LOG_WARNING("no working area available, can't do block memory writes");
962                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
963         }
964
965         retval = target_write_buffer(target, write_algorithm->address,
966                 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
967         if (retval != ERROR_OK)
968                 return retval;
969
970         /* memory buffer */
971         while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
972                 buffer_size /= 4;
973                 if (buffer_size <= 256) {
974                         /* free working area, write algorithm already allocated */
975                         target_free_working_area(target, write_algorithm);
976
977                         LOG_WARNING("No large enough working area available, can't do block memory writes");
978                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
979                 }
980         }
981
982         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
983         armv7m_info.core_mode = ARM_MODE_THREAD;
984
985         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
986         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* faddr */
987         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
988
989         /* write code buffer and use Flash programming code within kinetis       */
990         /* Set breakpoint to 0 with time-out of 1000 ms                          */
991         while (wcount > 0) {
992                 uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
993
994                 retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
995                 if (retval != ERROR_OK)
996                         break;
997
998                 buf_set_u32(reg_params[0].value, 0, 32, source->address);
999                 buf_set_u32(reg_params[1].value, 0, 32, address);
1000                 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
1001
1002                 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1003                                 write_algorithm->address, 0, 100000, &armv7m_info);
1004                 if (retval != ERROR_OK) {
1005                         LOG_ERROR("Error executing kinetis Flash programming algorithm");
1006                         retval = ERROR_FLASH_OPERATION_FAILED;
1007                         break;
1008                 }
1009
1010                 buffer += thisrun_count * 4;
1011                 address += thisrun_count * 4;
1012                 wcount -= thisrun_count;
1013         }
1014
1015         target_free_working_area(target, source);
1016         target_free_working_area(target, write_algorithm);
1017
1018         destroy_reg_param(&reg_params[0]);
1019         destroy_reg_param(&reg_params[1]);
1020         destroy_reg_param(&reg_params[2]);
1021
1022         return retval;
1023 }
1024
1025 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1026 {
1027         int i;
1028
1029         if (allow_fcf_writes) {
1030                 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1031                 return ERROR_FAIL;
1032         }
1033
1034         if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1035                 LOG_ERROR("No protection possible for current bank!");
1036                 return ERROR_FLASH_BANK_INVALID;
1037         }
1038
1039         for (i = first; i < bank->num_prot_blocks && i <= last; i++)
1040                 bank->prot_blocks[i].is_protected = set;
1041
1042         LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1043         LOG_INFO("Do not issue 'flash info' command until protection is written,");
1044         LOG_INFO("doing so would re-read protection status from MCU.");
1045
1046         return ERROR_OK;
1047 }
1048
1049 static int kinetis_protect_check(struct flash_bank *bank)
1050 {
1051         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1052         int result;
1053         int i, b;
1054         uint32_t fprot;
1055
1056         if (kinfo->flash_class == FC_PFLASH) {
1057
1058                 /* read protection register */
1059                 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1060                 if (result != ERROR_OK)
1061                         return result;
1062
1063                 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1064
1065         } else if (kinfo->flash_class == FC_FLEX_NVM) {
1066                 uint8_t fdprot;
1067
1068                 /* read protection register */
1069                 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1070                 if (result != ERROR_OK)
1071                         return result;
1072
1073                 fprot = fdprot;
1074
1075         } else {
1076                 LOG_ERROR("Protection checks for FlexRAM not supported");
1077                 return ERROR_FLASH_BANK_INVALID;
1078         }
1079
1080         b = kinfo->protection_block;
1081         for (i = 0; i < bank->num_prot_blocks; i++) {
1082                 if ((fprot >> b) & 1)
1083                         bank->prot_blocks[i].is_protected = 0;
1084                 else
1085                         bank->prot_blocks[i].is_protected = 1;
1086
1087                 b++;
1088         }
1089
1090         return ERROR_OK;
1091 }
1092
1093
1094 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1095 {
1096         uint32_t fprot = 0xffffffff;
1097         uint8_t fsec = 0xfe;             /* set MCU unsecure */
1098         uint8_t fdprot = 0xff;
1099         int i;
1100         uint32_t pflash_bit;
1101         uint8_t dflash_bit;
1102         struct flash_bank *bank_iter;
1103         struct kinetis_flash_bank *kinfo;
1104
1105         memset(fcf, 0xff, FCF_SIZE);
1106
1107         pflash_bit = 1;
1108         dflash_bit = 1;
1109
1110         /* iterate over all kinetis banks */
1111         /* current bank is bank 0, it contains FCF */
1112         for (bank_iter = bank; bank_iter; bank_iter = bank_iter->next) {
1113                 if (bank_iter->driver != &kinetis_flash
1114                     || bank_iter->target != bank->target)
1115                         continue;
1116
1117                 kinetis_auto_probe(bank_iter);
1118
1119                 kinfo = bank->driver_priv;
1120                 if (!kinfo)
1121                         continue;
1122
1123                 if (kinfo->flash_class == FC_PFLASH) {
1124                         for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1125                                 if (bank_iter->prot_blocks[i].is_protected == 1)
1126                                         fprot &= ~pflash_bit;
1127
1128                                 pflash_bit <<= 1;
1129                         }
1130
1131                 } else if (kinfo->flash_class == FC_FLEX_NVM) {
1132                         for (i = 0; i < bank_iter->num_prot_blocks; i++) {
1133                                 if (bank_iter->prot_blocks[i].is_protected == 1)
1134                                         fdprot &= ~dflash_bit;
1135
1136                                 dflash_bit <<= 1;
1137                         }
1138
1139                 }
1140         }
1141
1142         target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1143         fcf[FCF_FSEC] = fsec;
1144         fcf[FCF_FOPT] = fcf_fopt;
1145         fcf[FCF_FDPROT] = fdprot;
1146         return ERROR_OK;
1147 }
1148
1149 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1150                                 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1151                                 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1152                                 uint8_t *ftfx_fstat)
1153 {
1154         uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1155                         fccob7, fccob6, fccob5, fccob4,
1156                         fccobb, fccoba, fccob9, fccob8};
1157         int result;
1158         uint8_t fstat;
1159         int64_t ms_timeout = timeval_ms() + 250;
1160
1161         result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1162         if (result != ERROR_OK)
1163                 return result;
1164
1165         /* start command */
1166         result = target_write_u8(target, FTFx_FSTAT, 0x80);
1167         if (result != ERROR_OK)
1168                 return result;
1169
1170         /* wait for done */
1171         do {
1172                 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1173
1174                 if (result != ERROR_OK)
1175                         return result;
1176
1177                 if (fstat & 0x80)
1178                         break;
1179
1180         } while (timeval_ms() < ms_timeout);
1181
1182         if (ftfx_fstat)
1183                 *ftfx_fstat = fstat;
1184
1185         if ((fstat & 0xf0) != 0x80) {
1186                 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1187                          fstat, command[3], command[2], command[1], command[0],
1188                          command[7], command[6], command[5], command[4],
1189                          command[11], command[10], command[9], command[8]);
1190
1191                 return kinetis_ftfx_decode_error(fstat);
1192         }
1193
1194         return ERROR_OK;
1195 }
1196
1197
1198 static int kinetis_check_run_mode(struct target *target)
1199 {
1200         int result, i;
1201         uint8_t pmctrl, pmstat;
1202
1203         if (target->state != TARGET_HALTED) {
1204                 LOG_ERROR("Target not halted");
1205                 return ERROR_TARGET_NOT_HALTED;
1206         }
1207
1208         result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1209         if (result != ERROR_OK)
1210                 return result;
1211
1212         if (pmstat == PM_STAT_RUN)
1213                 return ERROR_OK;
1214
1215         if (pmstat == PM_STAT_VLPR) {
1216                 /* It is safe to switch from VLPR to RUN mode without changing clock */
1217                 LOG_INFO("Switching from VLPR to RUN mode.");
1218                 pmctrl = PM_CTRL_RUNM_RUN;
1219                 result = target_write_u8(target, SMC_PMCTRL, pmctrl);
1220                 if (result != ERROR_OK)
1221                         return result;
1222
1223                 for (i = 100; i; i--) {
1224                         result = target_read_u8(target, SMC_PMSTAT, &pmstat);
1225                         if (result != ERROR_OK)
1226                                 return result;
1227
1228                         if (pmstat == PM_STAT_RUN)
1229                                 return ERROR_OK;
1230                 }
1231         }
1232
1233         LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1234         LOG_ERROR("Issue a 'reset init' command.");
1235         return ERROR_TARGET_NOT_HALTED;
1236 }
1237
1238
1239 static void kinetis_invalidate_flash_cache(struct flash_bank *bank)
1240 {
1241         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1242         uint8_t pfb01cr_byte2 = 0xf0;
1243
1244         if (!(kinfo->flash_support & FS_INVALIDATE_CACHE))
1245                 return;
1246
1247         target_write_memory(bank->target, FMC_PFB01CR + 2, 1, 1, &pfb01cr_byte2);
1248         return;
1249 }
1250
1251
1252 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1253 {
1254         int result, i;
1255         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1256
1257         result = kinetis_check_run_mode(bank->target);
1258         if (result != ERROR_OK)
1259                 return result;
1260
1261         /* reset error flags */
1262         result = kinetis_ftfx_prepare(bank->target);
1263         if (result != ERROR_OK)
1264                 return result;
1265
1266         if ((first > bank->num_sectors) || (last > bank->num_sectors))
1267                 return ERROR_FLASH_OPERATION_FAILED;
1268
1269         /*
1270          * FIXME: TODO: use the 'Erase Flash Block' command if the
1271          * requested erase is PFlash or NVM and encompasses the entire
1272          * block.  Should be quicker.
1273          */
1274         for (i = first; i <= last; i++) {
1275                 /* set command and sector address */
1276                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, kinfo->prog_base + bank->sectors[i].offset,
1277                                 0, 0, 0, 0,  0, 0, 0, 0,  NULL);
1278
1279                 if (result != ERROR_OK) {
1280                         LOG_WARNING("erase sector %d failed", i);
1281                         return ERROR_FLASH_OPERATION_FAILED;
1282                 }
1283
1284                 bank->sectors[i].is_erased = 1;
1285
1286                 if (bank->base == 0
1287                         && bank->sectors[i].offset <= FCF_ADDRESS
1288                         && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1289                         if (allow_fcf_writes) {
1290                                 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1291                                 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1292                         } else {
1293                                 uint8_t fcf_buffer[FCF_SIZE];
1294
1295                                 kinetis_fill_fcf(bank, fcf_buffer);
1296                                 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1297                                 if (result != ERROR_OK)
1298                                         LOG_WARNING("Flash Configuration Field write failed");
1299                                 bank->sectors[i].is_erased = 0;
1300                         }
1301                 }
1302         }
1303
1304         kinetis_invalidate_flash_cache(bank);
1305
1306         return ERROR_OK;
1307 }
1308
1309 static int kinetis_make_ram_ready(struct target *target)
1310 {
1311         int result;
1312         uint8_t ftfx_fcnfg;
1313
1314         /* check if ram ready */
1315         result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1316         if (result != ERROR_OK)
1317                 return result;
1318
1319         if (ftfx_fcnfg & (1 << 1))
1320                 return ERROR_OK;        /* ram ready */
1321
1322         /* make flex ram available */
1323         result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1324                                  0, 0, 0, 0,  0, 0, 0, 0,  NULL);
1325         if (result != ERROR_OK)
1326                 return ERROR_FLASH_OPERATION_FAILED;
1327
1328         /* check again */
1329         result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1330         if (result != ERROR_OK)
1331                 return result;
1332
1333         if (ftfx_fcnfg & (1 << 1))
1334                 return ERROR_OK;        /* ram ready */
1335
1336         return ERROR_FLASH_OPERATION_FAILED;
1337 }
1338
1339
1340 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1341                          uint32_t offset, uint32_t count)
1342 {
1343         int result;
1344         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1345         uint8_t *buffer_aligned = NULL;
1346         /*
1347          * Kinetis uses different terms for the granularity of
1348          * sector writes, e.g. "phrase" or "128 bits".  We use
1349          * the generic term "chunk". The largest possible
1350          * Kinetis "chunk" is 16 bytes (128 bits).
1351          */
1352         uint32_t prog_section_chunk_bytes = kinfo->sector_size >> 8;
1353         uint32_t prog_size_bytes = kinfo->max_flash_prog_size;
1354
1355         while (count > 0) {
1356                 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1357                 uint32_t align_begin = offset % prog_section_chunk_bytes;
1358                 uint32_t align_end;
1359                 uint32_t size_aligned;
1360                 uint16_t chunk_count;
1361                 uint8_t ftfx_fstat;
1362
1363                 if (size > count)
1364                         size = count;
1365
1366                 align_end = (align_begin + size) % prog_section_chunk_bytes;
1367                 if (align_end)
1368                         align_end = prog_section_chunk_bytes - align_end;
1369
1370                 size_aligned = align_begin + size + align_end;
1371                 chunk_count = size_aligned / prog_section_chunk_bytes;
1372
1373                 if (size != size_aligned) {
1374                         /* aligned section: the first, the last or the only */
1375                         if (!buffer_aligned)
1376                                 buffer_aligned = malloc(prog_size_bytes);
1377
1378                         memset(buffer_aligned, 0xff, size_aligned);
1379                         memcpy(buffer_aligned + align_begin, buffer, size);
1380
1381                         result = target_write_memory(bank->target, FLEXRAM,
1382                                                 4, size_aligned / 4, buffer_aligned);
1383
1384                         LOG_DEBUG("section @ %08" PRIx32 " aligned begin %" PRIu32 ", end %" PRIu32,
1385                                         bank->base + offset, align_begin, align_end);
1386                 } else
1387                         result = target_write_memory(bank->target, FLEXRAM,
1388                                                 4, size_aligned / 4, buffer);
1389
1390                 LOG_DEBUG("write section @ %08" PRIx32 " with length %" PRIu32 " bytes",
1391                           bank->base + offset, size);
1392
1393                 if (result != ERROR_OK) {
1394                         LOG_ERROR("target_write_memory failed");
1395                         break;
1396                 }
1397
1398                 /* execute section-write command */
1399                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1400                                 kinfo->prog_base + offset - align_begin,
1401                                 chunk_count>>8, chunk_count, 0, 0,
1402                                 0, 0, 0, 0,  &ftfx_fstat);
1403
1404                 if (result != ERROR_OK) {
1405                         LOG_ERROR("Error writing section at %08" PRIx32, bank->base + offset);
1406                         break;
1407                 }
1408
1409                 if (ftfx_fstat & 0x01)
1410                         LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1411
1412                 buffer += size;
1413                 offset += size;
1414                 count -= size;
1415         }
1416
1417         free(buffer_aligned);
1418         return result;
1419 }
1420
1421
1422 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1423                          uint32_t offset, uint32_t count)
1424 {
1425         int result, fallback = 0;
1426         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1427
1428         if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) {
1429                 /* fallback to longword write */
1430                 fallback = 1;
1431                 LOG_WARNING("This device supports Program Longword execution only.");
1432         } else {
1433                 result = kinetis_make_ram_ready(bank->target);
1434                 if (result != ERROR_OK) {
1435                         fallback = 1;
1436                         LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1437                 }
1438         }
1439
1440         LOG_DEBUG("flash write @08%" PRIx32, bank->base + offset);
1441
1442         if (fallback == 0) {
1443                 /* program section command */
1444                 kinetis_write_sections(bank, buffer, offset, count);
1445         }
1446         else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) {
1447                 /* program longword command, not supported in FTFE */
1448                 uint8_t *new_buffer = NULL;
1449
1450                 /* check word alignment */
1451                 if (offset & 0x3) {
1452                         LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1453                         return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1454                 }
1455
1456                 if (count & 0x3) {
1457                         uint32_t old_count = count;
1458                         count = (old_count | 3) + 1;
1459                         new_buffer = malloc(count);
1460                         if (new_buffer == NULL) {
1461                                 LOG_ERROR("odd number of bytes to write and no memory "
1462                                         "for padding buffer");
1463                                 return ERROR_FAIL;
1464                         }
1465                         LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1466                                 "and padding with 0xff", old_count, count);
1467                         memset(new_buffer + old_count, 0xff, count - old_count);
1468                         buffer = memcpy(new_buffer, buffer, old_count);
1469                 }
1470
1471                 uint32_t words_remaining = count / 4;
1472
1473                 kinetis_disable_wdog(bank->target, kinfo->sim_sdid);
1474
1475                 /* try using a block write */
1476                 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1477
1478                 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1479                         /* if block write failed (no sufficient working area),
1480                          * we use normal (slow) single word accesses */
1481                         LOG_WARNING("couldn't use block writes, falling back to single "
1482                                 "memory accesses");
1483
1484                         while (words_remaining) {
1485                                 uint8_t ftfx_fstat;
1486
1487                                 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1488
1489                                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, kinfo->prog_base + offset,
1490                                                 buffer[3], buffer[2], buffer[1], buffer[0],
1491                                                 0, 0, 0, 0,  &ftfx_fstat);
1492
1493                                 if (result != ERROR_OK) {
1494                                         LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset);
1495                                         break;
1496                                 }
1497
1498                                 if (ftfx_fstat & 0x01)
1499                                         LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
1500
1501                                 buffer += 4;
1502                                 offset += 4;
1503                                 words_remaining--;
1504                         }
1505                 }
1506                 free(new_buffer);
1507         } else {
1508                 LOG_ERROR("Flash write strategy not implemented");
1509                 return ERROR_FLASH_OPERATION_FAILED;
1510         }
1511
1512         kinetis_invalidate_flash_cache(bank);
1513         return result;
1514 }
1515
1516
1517 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1518                          uint32_t offset, uint32_t count)
1519 {
1520         int result;
1521         bool set_fcf = false;
1522         int sect = 0;
1523
1524         result = kinetis_check_run_mode(bank->target);
1525         if (result != ERROR_OK)
1526                 return result;
1527
1528         /* reset error flags */
1529         result = kinetis_ftfx_prepare(bank->target);
1530         if (result != ERROR_OK)
1531                 return result;
1532
1533         if (bank->base == 0 && !allow_fcf_writes) {
1534                 if (bank->sectors[1].offset <= FCF_ADDRESS)
1535                         sect = 1;       /* 1kb sector, FCF in 2nd sector */
1536
1537                 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1538                         && offset + count > bank->sectors[sect].offset)
1539                         set_fcf = true; /* write to any part of sector with FCF */
1540         }
1541
1542         if (set_fcf) {
1543                 uint8_t fcf_buffer[FCF_SIZE];
1544                 uint8_t fcf_current[FCF_SIZE];
1545
1546                 kinetis_fill_fcf(bank, fcf_buffer);
1547
1548                 if (offset < FCF_ADDRESS) {
1549                         /* write part preceding FCF */
1550                         result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1551                         if (result != ERROR_OK)
1552                                 return result;
1553                 }
1554
1555                 result = target_read_memory(bank->target, FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1556                 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1557                         set_fcf = false;
1558
1559                 if (set_fcf) {
1560                         /* write FCF if differs from flash - eliminate multiple writes */
1561                         result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1562                         if (result != ERROR_OK)
1563                                 return result;
1564                 }
1565
1566                 LOG_WARNING("Flash Configuration Field written.");
1567                 LOG_WARNING("Reset or power off the device to make settings effective.");
1568
1569                 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1570                         uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1571                         /* write part after FCF */
1572                         result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1573                 }
1574                 return result;
1575
1576         } else
1577                 /* no FCF fiddling, normal write */
1578                 return kinetis_write_inner(bank, buffer, offset, count);
1579 }
1580
1581
1582 static int kinetis_probe(struct flash_bank *bank)
1583 {
1584         int result, i;
1585         uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
1586         uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
1587         uint32_t nvm_size = 0, pf_size = 0, df_size = 0, ee_size = 0;
1588         unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0,
1589                         pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0;
1590         struct target *target = bank->target;
1591         struct kinetis_flash_bank *kinfo = bank->driver_priv;
1592
1593         kinfo->probed = false;
1594
1595         result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
1596         if (result != ERROR_OK)
1597                 return result;
1598
1599         if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
1600                 /* older K-series MCU */
1601                 uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
1602
1603                 switch (mcu_type) {
1604                 case KINETIS_K_SDID_K10_M50:
1605                 case KINETIS_K_SDID_K20_M50:
1606                         /* 1kB sectors */
1607                         pflash_sector_size_bytes = 1<<10;
1608                         nvm_sector_size_bytes = 1<<10;
1609                         num_blocks = 2;
1610                         kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1611                         break;
1612                 case KINETIS_K_SDID_K10_M72:
1613                 case KINETIS_K_SDID_K20_M72:
1614                 case KINETIS_K_SDID_K30_M72:
1615                 case KINETIS_K_SDID_K30_M100:
1616                 case KINETIS_K_SDID_K40_M72:
1617                 case KINETIS_K_SDID_K40_M100:
1618                 case KINETIS_K_SDID_K50_M72:
1619                         /* 2kB sectors, 1kB FlexNVM sectors */
1620                         pflash_sector_size_bytes = 2<<10;
1621                         nvm_sector_size_bytes = 1<<10;
1622                         num_blocks = 2;
1623                         kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1624                         kinfo->max_flash_prog_size = 1<<10;
1625                         break;
1626                 case KINETIS_K_SDID_K10_M100:
1627                 case KINETIS_K_SDID_K20_M100:
1628                 case KINETIS_K_SDID_K11:
1629                 case KINETIS_K_SDID_K12:
1630                 case KINETIS_K_SDID_K21_M50:
1631                 case KINETIS_K_SDID_K22_M50:
1632                 case KINETIS_K_SDID_K51_M72:
1633                 case KINETIS_K_SDID_K53:
1634                 case KINETIS_K_SDID_K60_M100:
1635                         /* 2kB sectors */
1636                         pflash_sector_size_bytes = 2<<10;
1637                         nvm_sector_size_bytes = 2<<10;
1638                         num_blocks = 2;
1639                         kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1640                         break;
1641                 case KINETIS_K_SDID_K21_M120:
1642                 case KINETIS_K_SDID_K22_M120:
1643                         /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
1644                         pflash_sector_size_bytes = 4<<10;
1645                         kinfo->max_flash_prog_size = 1<<10;
1646                         nvm_sector_size_bytes = 4<<10;
1647                         num_blocks = 2;
1648                         kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1649                         break;
1650                 case KINETIS_K_SDID_K10_M120:
1651                 case KINETIS_K_SDID_K20_M120:
1652                 case KINETIS_K_SDID_K60_M150:
1653                 case KINETIS_K_SDID_K70_M150:
1654                         /* 4kB sectors */
1655                         pflash_sector_size_bytes = 4<<10;
1656                         nvm_sector_size_bytes = 4<<10;
1657                         num_blocks = 4;
1658                         kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1659                         break;
1660                 default:
1661                         LOG_ERROR("Unsupported K-family FAMID");
1662                 }
1663         } else {
1664                 /* Newer K-series or KL series MCU */
1665                 switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
1666                 case KINETIS_SDID_SERIESID_K:
1667                         switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1668                         case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
1669                                 /* K02FN64, K02FN128: FTFA, 2kB sectors */
1670                                 pflash_sector_size_bytes = 2<<10;
1671                                 num_blocks = 1;
1672                                 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1673                                 break;
1674
1675                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
1676                                 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
1677                                 uint32_t sopt1;
1678                                 result = target_read_u32(target, SIM_SOPT1, &sopt1);
1679                                 if (result != ERROR_OK)
1680                                         return result;
1681
1682                                 if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
1683                                                 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
1684                                         /* MK24FN1M */
1685                                         pflash_sector_size_bytes = 4<<10;
1686                                         num_blocks = 2;
1687                                         kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1688                                         kinfo->max_flash_prog_size = 1<<10;
1689                                         break;
1690                                 }
1691                                 if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
1692                                         || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
1693                                         || (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
1694                                         /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
1695                                         pflash_sector_size_bytes = 2<<10;
1696                                         /* autodetect 1 or 2 blocks */
1697                                         kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1698                                         break;
1699                                 }
1700                                 LOG_ERROR("Unsupported Kinetis K22 DIEID");
1701                                 break;
1702                         }
1703                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
1704                                 pflash_sector_size_bytes = 4<<10;
1705                                 if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
1706                                         /* K24FN256 - smaller pflash with FTFA */
1707                                         num_blocks = 1;
1708                                         kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1709                                         break;
1710                                 }
1711                                 /* K24FN1M without errata 7534 */
1712                                 num_blocks = 2;
1713                                 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1714                                 kinfo->max_flash_prog_size = 1<<10;
1715                                 break;
1716
1717                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
1718                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1:     /* errata 7534 - should be K63 */
1719                                 /* K63FN1M0 */
1720                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
1721                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2:     /* errata 7534 - should be K64 */
1722                                 /* K64FN1M0, K64FX512 */
1723                                 pflash_sector_size_bytes = 4<<10;
1724                                 nvm_sector_size_bytes = 4<<10;
1725                                 kinfo->max_flash_prog_size = 1<<10;
1726                                 num_blocks = 2;
1727                                 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1728                                 break;
1729
1730                         case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
1731                                 /* K26FN2M0 */
1732                         case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
1733                                 /* K66FN2M0, K66FX1M0 */
1734                                 pflash_sector_size_bytes = 4<<10;
1735                                 nvm_sector_size_bytes = 4<<10;
1736                                 kinfo->max_flash_prog_size = 1<<10;
1737                                 num_blocks = 4;
1738                                 kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
1739                                 break;
1740                         default:
1741                                 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
1742                         }
1743                         break;
1744
1745                 case KINETIS_SDID_SERIESID_KL:
1746                         /* KL-series */
1747                         pflash_sector_size_bytes = 1<<10;
1748                         nvm_sector_size_bytes = 1<<10;
1749                         /* autodetect 1 or 2 blocks */
1750                         kinfo->flash_support = FS_PROGRAM_LONGWORD;
1751                         break;
1752
1753                 case KINETIS_SDID_SERIESID_KV:
1754                         /* KV-series */
1755                         switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
1756                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
1757                                 /* KV10: FTFA, 1kB sectors */
1758                                 pflash_sector_size_bytes = 1<<10;
1759                                 num_blocks = 1;
1760                                 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1761                                 break;
1762
1763                         case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
1764                                 /* KV11: FTFA, 2kB sectors */
1765                                 pflash_sector_size_bytes = 2<<10;
1766                                 num_blocks = 1;
1767                                 kinfo->flash_support = FS_PROGRAM_LONGWORD;
1768                                 break;
1769
1770                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
1771                                 /* KV30: FTFA, 2kB sectors, 1 block */
1772                         case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
1773                                 /* KV31: FTFA, 2kB sectors, 2 blocks */
1774                                 pflash_sector_size_bytes = 2<<10;
1775                                 /* autodetect 1 or 2 blocks */
1776                                 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1777                                 break;
1778
1779                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
1780                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
1781                         case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
1782                                 /* KV4x: FTFA, 4kB sectors */
1783                                 pflash_sector_size_bytes = 4<<10;
1784                                 num_blocks = 1;
1785                                 kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
1786                                 break;
1787
1788                         default:
1789                                 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
1790                         }
1791                         break;
1792
1793                 default:
1794                         LOG_ERROR("Unsupported K-series");
1795                 }
1796         }
1797
1798         if (pflash_sector_size_bytes == 0) {
1799                 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid);
1800                 return ERROR_FLASH_OPER_UNSUPPORTED;
1801         }
1802
1803         result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
1804         if (result != ERROR_OK)
1805                 return result;
1806
1807         result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
1808         if (result != ERROR_OK)
1809                 return result;
1810
1811         LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
1812                         kinfo->sim_fcfg1, kinfo->sim_fcfg2);
1813
1814         fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
1815         fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
1816         fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
1817         fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
1818
1819         fcfg2_pflsh = (uint8_t)((kinfo->sim_fcfg2 >> 23) & 0x01);
1820         fcfg2_maxaddr0 = (uint8_t)((kinfo->sim_fcfg2 >> 24) & 0x7f);
1821         fcfg2_maxaddr1 = (uint8_t)((kinfo->sim_fcfg2 >> 16) & 0x7f);
1822
1823         if (num_blocks == 0)
1824                 num_blocks = fcfg2_maxaddr1 ? 2 : 1;
1825         else if (fcfg2_maxaddr1 == 0 && num_blocks >= 2) {
1826                 num_blocks = 1;
1827                 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
1828         } else if (fcfg2_maxaddr1 != 0 && num_blocks == 1) {
1829                 num_blocks = 2;
1830                 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
1831         }
1832
1833         /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
1834         if (!fcfg2_pflsh) {
1835                 switch (fcfg1_nvmsize) {
1836                 case 0x03:
1837                 case 0x05:
1838                 case 0x07:
1839                 case 0x09:
1840                 case 0x0b:
1841                         nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
1842                         break;
1843                 case 0x0f:
1844                         if (pflash_sector_size_bytes >= 4<<10)
1845                                 nvm_size = 512<<10;
1846                         else
1847                                 /* K20_100 */
1848                                 nvm_size = 256<<10;
1849                         break;
1850                 default:
1851                         nvm_size = 0;
1852                         break;
1853                 }
1854
1855                 switch (fcfg1_eesize) {
1856                 case 0x00:
1857                 case 0x01:
1858                 case 0x02:
1859                 case 0x03:
1860                 case 0x04:
1861                 case 0x05:
1862                 case 0x06:
1863                 case 0x07:
1864                 case 0x08:
1865                 case 0x09:
1866                         ee_size = (16 << (10 - fcfg1_eesize));
1867                         break;
1868                 default:
1869                         ee_size = 0;
1870                         break;
1871                 }
1872
1873                 switch (fcfg1_depart) {
1874                 case 0x01:
1875                 case 0x02:
1876                 case 0x03:
1877                 case 0x04:
1878                 case 0x05:
1879                 case 0x06:
1880                         df_size = nvm_size - (4096 << fcfg1_depart);
1881                         break;
1882                 case 0x08:
1883                         df_size = 0;
1884                         break;
1885                 case 0x09:
1886                 case 0x0a:
1887                 case 0x0b:
1888                 case 0x0c:
1889                 case 0x0d:
1890                         df_size = 4096 << (fcfg1_depart & 0x7);
1891                         break;
1892                 default:
1893                         df_size = nvm_size;
1894                         break;
1895                 }
1896         }
1897
1898         switch (fcfg1_pfsize) {
1899         case 0x03:
1900         case 0x05:
1901         case 0x07:
1902         case 0x09:
1903         case 0x0b:
1904         case 0x0d:
1905                 pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
1906                 break;
1907         case 0x0f:
1908                 /* a peculiar case: Freescale states different sizes for 0xf
1909                  * K02P64M100SFARM      128 KB ... duplicate of code 0x7
1910                  * K22P121M120SF8RM     256 KB ... duplicate of code 0x9
1911                  * K22P121M120SF7RM     512 KB ... duplicate of code 0xb
1912                  * K22P100M120SF5RM     1024 KB ... duplicate of code 0xd
1913                  * K26P169M180SF5RM     2048 KB ... the only unique value
1914                  * fcfg2_maxaddr0 seems to be the only clue to pf_size
1915                  * Checking fcfg2_maxaddr0 later in this routine is pointless then
1916                  */
1917                 if (fcfg2_pflsh)
1918                         pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks;
1919                 else
1920                         pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks / 2;
1921                 if (pf_size != 2048<<10)
1922                         LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", pf_size>>10);
1923
1924                 break;
1925         default:
1926                 pf_size = 0;
1927                 break;
1928         }
1929
1930         LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
1931                   nvm_size, pf_size, ee_size, fcfg2_pflsh);
1932
1933         num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
1934         first_nvm_bank = num_pflash_blocks;
1935         num_nvm_blocks = num_blocks - num_pflash_blocks;
1936
1937         LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
1938                         num_blocks, num_pflash_blocks, num_nvm_blocks);
1939
1940         LOG_INFO("Probing flash info for bank %d", bank->bank_number);
1941
1942         if ((unsigned)bank->bank_number < num_pflash_blocks) {
1943                 /* pflash, banks start at address zero */
1944                 kinfo->flash_class = FC_PFLASH;
1945                 bank->size = (pf_size / num_pflash_blocks);
1946                 bank->base = 0x00000000 + bank->size * bank->bank_number;
1947                 kinfo->prog_base = bank->base;
1948                 kinfo->sector_size = pflash_sector_size_bytes;
1949                 /* pflash is divided into 32 protection areas for
1950                  * parts with more than 32K of PFlash. For parts with
1951                  * less the protection unit is set to 1024 bytes */
1952                 kinfo->protection_size = MAX(pf_size / 32, 1024);
1953                 bank->num_prot_blocks = 32 / num_pflash_blocks;
1954                 kinfo->protection_block = bank->num_prot_blocks * bank->bank_number;
1955
1956         } else if ((unsigned)bank->bank_number < num_blocks) {
1957                 /* nvm, banks start at address 0x10000000 */
1958                 unsigned nvm_ord = bank->bank_number - first_nvm_bank;
1959                 uint32_t limit;
1960
1961                 kinfo->flash_class = FC_FLEX_NVM;
1962                 bank->size = (nvm_size / num_nvm_blocks);
1963                 bank->base = 0x10000000 + bank->size * nvm_ord;
1964                 kinfo->prog_base = 0x00800000 + bank->size * nvm_ord;
1965                 kinfo->sector_size = nvm_sector_size_bytes;
1966                 if (df_size == 0) {
1967                         kinfo->protection_size = 0;
1968                 } else {
1969                         for (i = df_size; ~i & 1; i >>= 1)
1970                                 ;
1971                         if (i == 1)
1972                                 kinfo->protection_size = df_size / 8;   /* data flash size = 2^^n */
1973                         else
1974                                 kinfo->protection_size = nvm_size / 8;  /* TODO: verify on SF1, not documented in RM */
1975                 }
1976                 bank->num_prot_blocks = 8 / num_nvm_blocks;
1977                 kinfo->protection_block = bank->num_prot_blocks * nvm_ord;
1978
1979                 /* EEPROM backup part of FlexNVM is not accessible, use df_size as a limit */
1980                 if (df_size > bank->size * nvm_ord)
1981                         limit = df_size - bank->size * nvm_ord;
1982                 else
1983                         limit = 0;
1984
1985                 if (bank->size > limit) {
1986                         bank->size = limit;
1987                         LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
1988                                 bank->bank_number, limit);
1989                 }
1990
1991         } else if ((unsigned)bank->bank_number == num_blocks) {
1992                 LOG_ERROR("FlexRAM support not yet implemented");
1993                 return ERROR_FLASH_OPER_UNSUPPORTED;
1994         } else {
1995                 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
1996                                 bank->bank_number, num_blocks);
1997                 return ERROR_FLASH_BANK_INVALID;
1998         }
1999
2000         if (bank->bank_number == 0 && ((uint32_t)fcfg2_maxaddr0 << 13) != bank->size)
2001                 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2002                                 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2003         if (fcfg2_pflsh) {
2004                 if (bank->bank_number == 1 && ((uint32_t)fcfg2_maxaddr1 << 13) != bank->size)
2005                         LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2006                                 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2007         } else {
2008                 if ((unsigned)bank->bank_number == first_nvm_bank
2009                                 && ((uint32_t)fcfg2_maxaddr1 << 13) != df_size)
2010                         LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2011                                 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2012         }
2013
2014         if (bank->sectors) {
2015                 free(bank->sectors);
2016                 bank->sectors = NULL;
2017         }
2018         if (bank->prot_blocks) {
2019                 free(bank->prot_blocks);
2020                 bank->prot_blocks = NULL;
2021         }
2022
2023         if (kinfo->sector_size == 0) {
2024                 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
2025                 return ERROR_FLASH_BANK_INVALID;
2026         }
2027
2028         if (kinfo->flash_support & FS_PROGRAM_SECTOR
2029                          && kinfo->max_flash_prog_size == 0) {
2030                 kinfo->max_flash_prog_size = kinfo->sector_size;
2031                 /* Program section size is equal to sector size by default */
2032         }
2033
2034         bank->num_sectors = bank->size / kinfo->sector_size;
2035
2036         if (bank->num_sectors > 0) {
2037                 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2038                 bank->sectors = alloc_block_array(0, kinfo->sector_size, bank->num_sectors);
2039                 if (!bank->sectors)
2040                         return ERROR_FAIL;
2041
2042                 bank->prot_blocks = alloc_block_array(0, kinfo->protection_size, bank->num_prot_blocks);
2043                 if (!bank->prot_blocks)
2044                         return ERROR_FAIL;
2045
2046         } else {
2047                 bank->num_prot_blocks = 0;
2048         }
2049
2050         kinfo->probed = true;
2051
2052         return ERROR_OK;
2053 }
2054
2055 static int kinetis_auto_probe(struct flash_bank *bank)
2056 {
2057         struct kinetis_flash_bank *kinfo = bank->driver_priv;
2058
2059         if (kinfo && kinfo->probed)
2060                 return ERROR_OK;
2061
2062         return kinetis_probe(bank);
2063 }
2064
2065 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2066 {
2067         const char *bank_class_names[] = {
2068                 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2069         };
2070
2071         struct kinetis_flash_bank *kinfo = bank->driver_priv;
2072
2073         (void) snprintf(buf, buf_size,
2074                         "%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
2075                         bank->driver->name, bank_class_names[kinfo->flash_class],
2076                         bank->name, bank->base);
2077
2078         return ERROR_OK;
2079 }
2080
2081 static int kinetis_blank_check(struct flash_bank *bank)
2082 {
2083         struct kinetis_flash_bank *kinfo = bank->driver_priv;
2084         int result;
2085
2086         /* suprisingly blank check does not work in VLPR and HSRUN modes */
2087         result = kinetis_check_run_mode(bank->target);
2088         if (result != ERROR_OK)
2089                 return result;
2090
2091         /* reset error flags */
2092         result = kinetis_ftfx_prepare(bank->target);
2093         if (result != ERROR_OK)
2094                 return result;
2095
2096         if (kinfo->flash_class == FC_PFLASH || kinfo->flash_class == FC_FLEX_NVM) {
2097                 bool block_dirty = false;
2098                 uint8_t ftfx_fstat;
2099
2100                 if (kinfo->flash_class == FC_FLEX_NVM) {
2101                         uint8_t fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
2102                         /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2103                         if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2104                                 block_dirty = true;
2105                 }
2106
2107                 if (!block_dirty) {
2108                         /* check if whole bank is blank */
2109                         result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, kinfo->prog_base,
2110                                                          0, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
2111
2112                         if (result != ERROR_OK || (ftfx_fstat & 0x01))
2113                                 block_dirty = true;
2114                 }
2115
2116                 if (block_dirty) {
2117                         /* the whole bank is not erased, check sector-by-sector */
2118                         int i;
2119                         for (i = 0; i < bank->num_sectors; i++) {
2120                                 /* normal margin */
2121                                 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2122                                                 kinfo->prog_base + bank->sectors[i].offset,
2123                                                 1, 0, 0, 0,  0, 0, 0, 0, &ftfx_fstat);
2124
2125                                 if (result == ERROR_OK) {
2126                                         bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2127                                 } else {
2128                                         LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2129                                         bank->sectors[i].is_erased = -1;
2130                                 }
2131                         }
2132                 } else {
2133                         /* the whole bank is erased, update all sectors */
2134                         int i;
2135                         for (i = 0; i < bank->num_sectors; i++)
2136                                 bank->sectors[i].is_erased = 1;
2137                 }
2138         } else {
2139                 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2140                 return ERROR_FLASH_OPERATION_FAILED;
2141         }
2142
2143         return ERROR_OK;
2144 }
2145
2146
2147 COMMAND_HANDLER(kinetis_nvm_partition)
2148 {
2149         int result, i;
2150         unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2151         enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2152         bool enable;
2153         uint8_t load_flex_ram = 1;
2154         uint8_t ee_size_code = 0x3f;
2155         uint8_t flex_nvm_partition_code = 0;
2156         uint8_t ee_split = 3;
2157         struct target *target = get_current_target(CMD_CTX);
2158         struct flash_bank *bank;
2159         struct kinetis_flash_bank *kinfo;
2160         uint32_t sim_fcfg1;
2161
2162         if (CMD_ARGC >= 2) {
2163                 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2164                         sz_type = DF_SIZE;
2165                 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2166                         sz_type = EEBKP_SIZE;
2167
2168                 par = strtoul(CMD_ARGV[1], NULL, 10);
2169                 while (par >> (log2 + 3))
2170                         log2++;
2171         }
2172         switch (sz_type) {
2173         case SHOW_INFO:
2174                 result = target_read_u32(target, SIM_FCFG1, &sim_fcfg1);
2175                 if (result != ERROR_OK)
2176                         return result;
2177
2178                 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2179                 switch (flex_nvm_partition_code) {
2180                 case 0:
2181                         command_print(CMD_CTX, "No EEPROM backup, data flash only");
2182                         break;
2183                 case 1:
2184                 case 2:
2185                 case 3:
2186                 case 4:
2187                 case 5:
2188                 case 6:
2189                         command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2190                         break;
2191                 case 8:
2192                         command_print(CMD_CTX, "No data flash, EEPROM backup only");
2193                         break;
2194                 case 0x9:
2195                 case 0xA:
2196                 case 0xB:
2197                 case 0xC:
2198                 case 0xD:
2199                 case 0xE:
2200                         command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2201                         break;
2202                 case 0xf:
2203                         command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)");
2204                         break;
2205                 default:
2206                         command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2207                 }
2208                 return ERROR_OK;
2209
2210         case DF_SIZE:
2211                 flex_nvm_partition_code = 0x8 | log2;
2212                 break;
2213
2214         case EEBKP_SIZE:
2215                 flex_nvm_partition_code = log2;
2216                 break;
2217         }
2218
2219         if (CMD_ARGC == 3)
2220                 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2221         else if (CMD_ARGC >= 4) {
2222                 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2223                 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2224         }
2225
2226         enable = ee1 + ee2 > 0;
2227         if (enable) {
2228                 for (log2 = 2; ; log2++) {
2229                         if (ee1 + ee2 == (16u << 10) >> log2)
2230                                 break;
2231                         if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2232                                 LOG_ERROR("Unsupported EEPROM size");
2233                                 return ERROR_FLASH_OPERATION_FAILED;
2234                         }
2235                 }
2236
2237                 if (ee1 * 3 == ee2)
2238                         ee_split = 1;
2239                 else if (ee1 * 7 == ee2)
2240                         ee_split = 0;
2241                 else if (ee1 != ee2) {
2242                         LOG_ERROR("Unsupported EEPROM sizes ratio");
2243                         return ERROR_FLASH_OPERATION_FAILED;
2244                 }
2245
2246                 ee_size_code = log2 | ee_split << 4;
2247         }
2248
2249         if (CMD_ARGC >= 5)
2250                 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2251         if (enable)
2252                 load_flex_ram = 0;
2253
2254         LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2255                  flex_nvm_partition_code, ee_size_code);
2256
2257         result = kinetis_check_run_mode(target);
2258         if (result != ERROR_OK)
2259                 return result;
2260
2261         /* reset error flags */
2262         result = kinetis_ftfx_prepare(target);
2263         if (result != ERROR_OK)
2264                 return result;
2265
2266         result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2267                                       ee_size_code, flex_nvm_partition_code, 0, 0,
2268                                       0, 0, 0, 0,  NULL);
2269         if (result != ERROR_OK)
2270                 return result;
2271
2272         command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU.");
2273
2274         for (i = 1; i < 4; i++) {
2275                 bank = get_flash_bank_by_num_noprobe(i);
2276                 if (bank == NULL)
2277                         break;
2278
2279                 kinfo = bank->driver_priv;
2280                 if (kinfo && kinfo->flash_class == FC_FLEX_NVM)
2281                         kinfo->probed = false;  /* re-probe before next use */
2282         }
2283
2284         command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size.");
2285         return ERROR_OK;
2286 }
2287
2288 COMMAND_HANDLER(kinetis_fcf_source_handler)
2289 {
2290         if (CMD_ARGC > 1)
2291                 return ERROR_COMMAND_SYNTAX_ERROR;
2292
2293         if (CMD_ARGC == 1) {
2294                 if (strcmp(CMD_ARGV[0], "write") == 0)
2295                         allow_fcf_writes = true;
2296                 else if (strcmp(CMD_ARGV[0], "protection") == 0)
2297                         allow_fcf_writes = false;
2298                 else
2299                         return ERROR_COMMAND_SYNTAX_ERROR;
2300         }
2301
2302         if (allow_fcf_writes) {
2303                 command_print(CMD_CTX, "Arbitrary Flash Configuration Field writes enabled.");
2304                 command_print(CMD_CTX, "Protection info writes to FCF disabled.");
2305                 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
2306         } else {
2307                 command_print(CMD_CTX, "Protection info writes to Flash Configuration Field enabled.");
2308                 command_print(CMD_CTX, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
2309         }
2310
2311         return ERROR_OK;
2312 }
2313
2314 COMMAND_HANDLER(kinetis_fopt_handler)
2315 {
2316         if (CMD_ARGC > 1)
2317                 return ERROR_COMMAND_SYNTAX_ERROR;
2318
2319         if (CMD_ARGC == 1)
2320                 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
2321         else
2322                 command_print(CMD_CTX, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
2323
2324         return ERROR_OK;
2325 }
2326
2327
2328 static const struct command_registration kinetis_security_command_handlers[] = {
2329         {
2330                 .name = "check_security",
2331                 .mode = COMMAND_EXEC,
2332                 .help = "Check status of device security lock",
2333                 .usage = "",
2334                 .handler = kinetis_check_flash_security_status,
2335         },
2336         {
2337                 .name = "halt",
2338                 .mode = COMMAND_EXEC,
2339                 .help = "Issue a halt via the MDM-AP",
2340                 .usage = "",
2341                 .handler = kinetis_mdm_halt,
2342         },
2343         {
2344                 .name = "mass_erase",
2345                 .mode = COMMAND_EXEC,
2346                 .help = "Issue a complete flash erase via the MDM-AP",
2347                 .usage = "",
2348                 .handler = kinetis_mdm_mass_erase,
2349         },
2350         {       .name = "reset",
2351                 .mode = COMMAND_EXEC,
2352                 .help = "Issue a reset via the MDM-AP",
2353                 .usage = "",
2354                 .handler = kinetis_mdm_reset,
2355         },
2356         COMMAND_REGISTRATION_DONE
2357 };
2358
2359 static const struct command_registration kinetis_exec_command_handlers[] = {
2360         {
2361                 .name = "mdm",
2362                 .mode = COMMAND_ANY,
2363                 .help = "MDM-AP command group",
2364                 .usage = "",
2365                 .chain = kinetis_security_command_handlers,
2366         },
2367         {
2368                 .name = "disable_wdog",
2369                 .mode = COMMAND_EXEC,
2370                 .help = "Disable the watchdog timer",
2371                 .usage = "",
2372                 .handler = kinetis_disable_wdog_handler,
2373         },
2374         {
2375                 .name = "nvm_partition",
2376                 .mode = COMMAND_EXEC,
2377                 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
2378                         " set two EEPROM sizes in bytes and FlexRAM loading during reset",
2379                 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
2380                 .handler = kinetis_nvm_partition,
2381         },
2382         {
2383                 .name = "fcf_source",
2384                 .mode = COMMAND_EXEC,
2385                 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
2386                         " Mode 'protection' is safe from unwanted locking of the device.",
2387                 .usage = "['protection'|'write']",
2388                 .handler = kinetis_fcf_source_handler,
2389         },
2390         {
2391                 .name = "fopt",
2392                 .mode = COMMAND_EXEC,
2393                 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
2394                 .usage = "[num]",
2395                 .handler = kinetis_fopt_handler,
2396         },
2397         COMMAND_REGISTRATION_DONE
2398 };
2399
2400 static const struct command_registration kinetis_command_handler[] = {
2401         {
2402                 .name = "kinetis",
2403                 .mode = COMMAND_ANY,
2404                 .help = "Kinetis flash controller commands",
2405                 .usage = "",
2406                 .chain = kinetis_exec_command_handlers,
2407         },
2408         COMMAND_REGISTRATION_DONE
2409 };
2410
2411
2412
2413 struct flash_driver kinetis_flash = {
2414         .name = "kinetis",
2415         .commands = kinetis_command_handler,
2416         .flash_bank_command = kinetis_flash_bank_command,
2417         .erase = kinetis_erase,
2418         .protect = kinetis_protect,
2419         .write = kinetis_write,
2420         .read = default_flash_read,
2421         .probe = kinetis_probe,
2422         .auto_probe = kinetis_auto_probe,
2423         .erase_check = kinetis_blank_check,
2424         .protect_check = kinetis_protect_check,
2425         .info = kinetis_info,
2426 };