]> git.sur5r.net Git - openocd/blob - src/flash/nor/stm32f1x.c
flash: don't write to FLASH_CR in stm32x_write_block
[openocd] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 by Andreas Fritiofson                              *
9  *   andreas.fritiofson@gmail.com                                          *
10  *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR     0x00
42 #define STM32_FLASH_KEYR    0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR      0x0C
45 #define STM32_FLASH_CR      0x10
46 #define STM32_FLASH_AR      0x14
47 #define STM32_FLASH_OBR     0x1C
48 #define STM32_FLASH_WRPR    0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51  * There are valid cases, on dual flash devices the protection of the
52  * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0     0x40022000
54 #define STM32_FLASH_KEYR_B0    0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0      0x4002200C
57 #define STM32_FLASH_CR_B0      0x40022010
58 #define STM32_FLASH_AR_B0      0x40022014
59 #define STM32_FLASH_OBR_B0     0x4002201C
60 #define STM32_FLASH_WRPR_B0    0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP            0x1FFFF800
65 #define STM32_OB_USER           0x1FFFF802
66 #define STM32_OB_DATA0          0x1FFFF804
67 #define STM32_OB_DATA1          0x1FFFF806
68 #define STM32_OB_WRP0           0x1FFFF808
69 #define STM32_OB_WRP1           0x1FFFF80A
70 #define STM32_OB_WRP2           0x1FFFF80C
71 #define STM32_OB_WRP3           0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG                (1 << 0)
76 #define FLASH_PER               (1 << 1)
77 #define FLASH_MER               (1 << 2)
78 #define FLASH_OPTPG             (1 << 4)
79 #define FLASH_OPTER             (1 << 5)
80 #define FLASH_STRT              (1 << 6)
81 #define FLASH_LOCK              (1 << 7)
82 #define FLASH_OPTWRE    (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY               (1 << 0)
87 #define FLASH_PGERR             (1 << 2)
88 #define FLASH_WRPRTERR  (1 << 4)
89 #define FLASH_EOP               (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR               0
94 #define OPT_READOUT             1
95 #define OPT_RDWDGSW             2
96 #define OPT_RDRSTSTOP   3
97 #define OPT_RDRSTSTDBY  4
98 #define OPT_BFB2                5       /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1                    0x45670123
103 #define KEY2                    0xCDEF89AB
104
105 struct stm32x_options {
106         uint16_t RDP;
107         uint16_t user_options;
108         uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112         struct stm32x_options option_bytes;
113         struct working_area *write_algorithm;
114         int ppage_size;
115         int probed;
116
117         bool has_dual_banks;
118         /* used to access dual flash bank stm32xl */
119         uint32_t register_base;
120 };
121
122 static int stm32x_mass_erase(struct flash_bank *bank);
123 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126  */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129         struct stm32x_flash_bank *stm32x_info;
130
131         if (CMD_ARGC < 6)
132                 return ERROR_COMMAND_SYNTAX_ERROR;
133
134         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
135
136         bank->driver_priv = stm32x_info;
137         stm32x_info->write_algorithm = NULL;
138         stm32x_info->probed = 0;
139         stm32x_info->has_dual_banks = false;
140         stm32x_info->register_base = FLASH_REG_BASE_B0;
141
142         return ERROR_OK;
143 }
144
145 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
148         return reg + stm32x_info->register_base;
149 }
150
151 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
152 {
153         struct target *target = bank->target;
154         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159         struct target *target = bank->target;
160         uint32_t status;
161         int retval = ERROR_OK;
162
163         /* wait for busy to clear */
164         for (;;) {
165                 retval = stm32x_get_flash_status(bank, &status);
166                 if (retval != ERROR_OK)
167                         return retval;
168                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169                 if ((status & FLASH_BSY) == 0)
170                         break;
171                 if (timeout-- <= 0) {
172                         LOG_ERROR("timed out waiting for flash");
173                         return ERROR_FAIL;
174                 }
175                 alive_sleep(1);
176         }
177
178         if (status & FLASH_WRPRTERR) {
179                 LOG_ERROR("stm32x device protected");
180                 retval = ERROR_FAIL;
181         }
182
183         if (status & FLASH_PGERR) {
184                 LOG_ERROR("stm32x device programming failed");
185                 retval = ERROR_FAIL;
186         }
187
188         /* Clear but report errors */
189         if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
190                 /* If this operation fails, we ignore it and report the original
191                  * retval
192                  */
193                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
194                                 FLASH_WRPRTERR | FLASH_PGERR);
195         }
196         return retval;
197 }
198
199 int stm32x_check_operation_supported(struct flash_bank *bank)
200 {
201         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
202
203         /* if we have a dual flash bank device then
204          * we need to perform option byte stuff on bank0 only */
205         if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
206                 LOG_ERROR("Option Byte Operation's must use bank0");
207                 return ERROR_FLASH_OPERATION_FAILED;
208         }
209
210         return ERROR_OK;
211 }
212
213 static int stm32x_read_options(struct flash_bank *bank)
214 {
215         uint32_t optiondata;
216         struct stm32x_flash_bank *stm32x_info = NULL;
217         struct target *target = bank->target;
218
219         stm32x_info = bank->driver_priv;
220
221         /* read current option bytes */
222         int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
227         stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
228
229         if (optiondata & (1 << OPT_READOUT))
230                 LOG_INFO("Device Security Bit Set");
231
232         /* each bit refers to a 4bank protection */
233         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
234         if (retval != ERROR_OK)
235                 return retval;
236
237         stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
238         stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
239         stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
240         stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
241
242         return ERROR_OK;
243 }
244
245 static int stm32x_erase_options(struct flash_bank *bank)
246 {
247         struct stm32x_flash_bank *stm32x_info = NULL;
248         struct target *target = bank->target;
249
250         stm32x_info = bank->driver_priv;
251
252         /* read current options */
253         stm32x_read_options(bank);
254
255         /* unlock flash registers */
256         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
257         if (retval != ERROR_OK)
258                 return retval;
259
260         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* unlock option flash registers */
265         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
266         if (retval != ERROR_OK)
267                 return retval;
268         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
269         if (retval != ERROR_OK)
270                 return retval;
271
272         /* erase option bytes */
273         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
274         if (retval != ERROR_OK)
275                 return retval;
276         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
277         if (retval != ERROR_OK)
278                 return retval;
279
280         retval = stm32x_wait_status_busy(bank, 10);
281         if (retval != ERROR_OK)
282                 return retval;
283
284         /* clear readout protection and complementary option bytes
285          * this will also force a device unlock if set */
286         stm32x_info->option_bytes.RDP = 0x5AA5;
287
288         return ERROR_OK;
289 }
290
291 static int stm32x_write_options(struct flash_bank *bank)
292 {
293         struct stm32x_flash_bank *stm32x_info = NULL;
294         struct target *target = bank->target;
295
296         stm32x_info = bank->driver_priv;
297
298         /* unlock flash registers */
299         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
300         if (retval != ERROR_OK)
301                 return retval;
302         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
303         if (retval != ERROR_OK)
304                 return retval;
305
306         /* unlock option flash registers */
307         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
308         if (retval != ERROR_OK)
309                 return retval;
310         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
311         if (retval != ERROR_OK)
312                 return retval;
313
314         /* program option bytes */
315         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
316         if (retval != ERROR_OK)
317                 return retval;
318
319         /* write user option byte */
320         retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
321         if (retval != ERROR_OK)
322                 return retval;
323
324         retval = stm32x_wait_status_busy(bank, 10);
325         if (retval != ERROR_OK)
326                 return retval;
327
328         /* write protection byte 1 */
329         retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
330         if (retval != ERROR_OK)
331                 return retval;
332
333         retval = stm32x_wait_status_busy(bank, 10);
334         if (retval != ERROR_OK)
335                 return retval;
336
337         /* write protection byte 2 */
338         retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
339         if (retval != ERROR_OK)
340                 return retval;
341
342         retval = stm32x_wait_status_busy(bank, 10);
343         if (retval != ERROR_OK)
344                 return retval;
345
346         /* write protection byte 3 */
347         retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         retval = stm32x_wait_status_busy(bank, 10);
352         if (retval != ERROR_OK)
353                 return retval;
354
355         /* write protection byte 4 */
356         retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
357         if (retval != ERROR_OK)
358                 return retval;
359
360         retval = stm32x_wait_status_busy(bank, 10);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         /* write readout protection bit */
365         retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
366         if (retval != ERROR_OK)
367                 return retval;
368
369         retval = stm32x_wait_status_busy(bank, 10);
370         if (retval != ERROR_OK)
371                 return retval;
372
373         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
374         if (retval != ERROR_OK)
375                 return retval;
376
377         return ERROR_OK;
378 }
379
380 static int stm32x_protect_check(struct flash_bank *bank)
381 {
382         struct target *target = bank->target;
383         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
384
385         uint32_t protection;
386         int i, s;
387         int num_bits;
388         int set;
389
390         if (target->state != TARGET_HALTED) {
391                 LOG_ERROR("Target not halted");
392                 return ERROR_TARGET_NOT_HALTED;
393         }
394
395         int retval = stm32x_check_operation_supported(bank);
396         if (ERROR_OK != retval)
397                 return retval;
398
399         /* medium density - each bit refers to a 4bank protection
400          * high density - each bit refers to a 2bank protection */
401         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
402         if (retval != ERROR_OK)
403                 return retval;
404
405         /* medium density - each protection bit is for 4 * 1K pages
406          * high density - each protection bit is for 2 * 2K pages */
407         num_bits = (bank->num_sectors / stm32x_info->ppage_size);
408
409         if (stm32x_info->ppage_size == 2) {
410                 /* high density flash/connectivity line protection */
411
412                 set = 1;
413
414                 if (protection & (1 << 31))
415                         set = 0;
416
417                 /* bit 31 controls sector 62 - 255 protection for high density
418                  * bit 31 controls sector 62 - 127 protection for connectivity line */
419                 for (s = 62; s < bank->num_sectors; s++)
420                         bank->sectors[s].is_protected = set;
421
422                 if (bank->num_sectors > 61)
423                         num_bits = 31;
424
425                 for (i = 0; i < num_bits; i++) {
426                         set = 1;
427
428                         if (protection & (1 << i))
429                                 set = 0;
430
431                         for (s = 0; s < stm32x_info->ppage_size; s++)
432                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
433                 }
434         } else {
435                 /* low/medium density flash protection */
436                 for (i = 0; i < num_bits; i++) {
437                         set = 1;
438
439                         if (protection & (1 << i))
440                                 set = 0;
441
442                         for (s = 0; s < stm32x_info->ppage_size; s++)
443                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
444                 }
445         }
446
447         return ERROR_OK;
448 }
449
450 static int stm32x_erase(struct flash_bank *bank, int first, int last)
451 {
452         struct target *target = bank->target;
453         int i;
454
455         if (bank->target->state != TARGET_HALTED) {
456                 LOG_ERROR("Target not halted");
457                 return ERROR_TARGET_NOT_HALTED;
458         }
459
460         if ((first == 0) && (last == (bank->num_sectors - 1)))
461                 return stm32x_mass_erase(bank);
462
463         /* unlock flash registers */
464         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
465         if (retval != ERROR_OK)
466                 return retval;
467         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
468         if (retval != ERROR_OK)
469                 return retval;
470
471         for (i = first; i <= last; i++) {
472                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
473                 if (retval != ERROR_OK)
474                         return retval;
475                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
476                                 bank->base + bank->sectors[i].offset);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 retval = target_write_u32(target,
480                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
481                 if (retval != ERROR_OK)
482                         return retval;
483
484                 retval = stm32x_wait_status_busy(bank, 100);
485                 if (retval != ERROR_OK)
486                         return retval;
487
488                 bank->sectors[i].is_erased = 1;
489         }
490
491         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
492         if (retval != ERROR_OK)
493                 return retval;
494
495         return ERROR_OK;
496 }
497
498 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
499 {
500         struct stm32x_flash_bank *stm32x_info = NULL;
501         struct target *target = bank->target;
502         uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
503         int i, reg, bit;
504         int status;
505         uint32_t protection;
506
507         stm32x_info = bank->driver_priv;
508
509         if (target->state != TARGET_HALTED) {
510                 LOG_ERROR("Target not halted");
511                 return ERROR_TARGET_NOT_HALTED;
512         }
513
514         int retval = stm32x_check_operation_supported(bank);
515         if (ERROR_OK != retval)
516                 return retval;
517
518         if ((first % stm32x_info->ppage_size) != 0) {
519                 LOG_WARNING("aligned start protect sector to a %d sector boundary",
520                                 stm32x_info->ppage_size);
521                 first = first - (first % stm32x_info->ppage_size);
522         }
523         if (((last + 1) % stm32x_info->ppage_size) != 0) {
524                 LOG_WARNING("aligned end protect sector to a %d sector boundary",
525                                 stm32x_info->ppage_size);
526                 last++;
527                 last = last - (last % stm32x_info->ppage_size);
528                 last--;
529         }
530
531         /* medium density - each bit refers to a 4bank protection
532          * high density - each bit refers to a 2bank protection */
533         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         prot_reg[0] = (uint16_t)protection;
538         prot_reg[1] = (uint16_t)(protection >> 8);
539         prot_reg[2] = (uint16_t)(protection >> 16);
540         prot_reg[3] = (uint16_t)(protection >> 24);
541
542         if (stm32x_info->ppage_size == 2) {
543                 /* high density flash */
544
545                 /* bit 7 controls sector 62 - 255 protection */
546                 if (last > 61) {
547                         if (set)
548                                 prot_reg[3] &= ~(1 << 7);
549                         else
550                                 prot_reg[3] |= (1 << 7);
551                 }
552
553                 if (first > 61)
554                         first = 62;
555                 if (last > 61)
556                         last = 61;
557
558                 for (i = first; i <= last; i++) {
559                         reg = (i / stm32x_info->ppage_size) / 8;
560                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
561
562                         if (set)
563                                 prot_reg[reg] &= ~(1 << bit);
564                         else
565                                 prot_reg[reg] |= (1 << bit);
566                 }
567         } else {
568                 /* medium density flash */
569                 for (i = first; i <= last; i++) {
570                         reg = (i / stm32x_info->ppage_size) / 8;
571                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
572
573                         if (set)
574                                 prot_reg[reg] &= ~(1 << bit);
575                         else
576                                 prot_reg[reg] |= (1 << bit);
577                 }
578         }
579
580         status = stm32x_erase_options(bank);
581         if (status != ERROR_OK)
582                 return status;
583
584         stm32x_info->option_bytes.protection[0] = prot_reg[0];
585         stm32x_info->option_bytes.protection[1] = prot_reg[1];
586         stm32x_info->option_bytes.protection[2] = prot_reg[2];
587         stm32x_info->option_bytes.protection[3] = prot_reg[3];
588
589         return stm32x_write_options(bank);
590 }
591
592 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
593                 uint32_t offset, uint32_t count)
594 {
595         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
596         struct target *target = bank->target;
597         uint32_t buffer_size = 16384;
598         struct working_area *source;
599         uint32_t address = bank->base + offset;
600         struct reg_param reg_params[5];
601         struct armv7m_algorithm armv7m_info;
602         int retval = ERROR_OK;
603
604         /* see contrib/loaders/flash/stm32f1x.S for src */
605
606         static const uint8_t stm32x_flash_write_code[] = {
607                 /* #define STM32_FLASH_SR_OFFSET 0x0C */
608                 /* wait_fifo: */
609                         0x16, 0x68,   /* ldr   r6, [r2, #0] */
610                         0x00, 0x2e,   /* cmp   r6, #0 */
611                         0x18, 0xd0,   /* beq   exit */
612                         0x55, 0x68,   /* ldr   r5, [r2, #4] */
613                         0xb5, 0x42,   /* cmp   r5, r6 */
614                         0xf9, 0xd0,   /* beq   wait_fifo */
615                         0x2e, 0x88,   /* ldrh  r6, [r5, #0] */
616                         0x26, 0x80,   /* strh  r6, [r4, #0] */
617                         0x02, 0x35,   /* adds  r5, #2 */
618                         0x02, 0x34,   /* adds  r4, #2 */
619                 /* busy: */
620                         0xc6, 0x68,   /* ldr   r6, [r0, #STM32_FLASH_SR_OFFSET] */
621                         0x01, 0x27,   /* movs  r7, #1 */
622                         0x3e, 0x42,   /* tst   r6, r7 */
623                         0xfb, 0xd1,   /* bne   busy */
624                         0x14, 0x27,   /* movs  r7, #0x14 */
625                         0x3e, 0x42,   /* tst   r6, r7 */
626                         0x08, 0xd1,   /* bne   error */
627                         0x9d, 0x42,   /* cmp   r5, r3 */
628                         0x01, 0xd3,   /* bcc   no_wrap */
629                         0x15, 0x46,   /* mov   r5, r2 */
630                         0x08, 0x35,   /* adds  r5, #8 */
631                 /* no_wrap: */
632                         0x55, 0x60,   /* str   r5, [r2, #4] */
633                         0x01, 0x39,   /* subs  r1, r1, #1 */
634                         0x00, 0x29,   /* cmp   r1, #0 */
635                         0x02, 0xd0,   /* beq   exit */
636                         0xe5, 0xe7,   /* b     wait_fifo */
637                 /* error: */
638                         0x00, 0x20,   /* movs  r0, #0 */
639                         0x50, 0x60,   /* str   r0, [r2, #4] */
640                 /* exit: */
641                         0x30, 0x46,   /* mov   r0, r6 */
642                         0x00, 0xbe,   /* bkpt  #0 */
643         };
644
645         /* flash write code */
646         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
647                         &stm32x_info->write_algorithm) != ERROR_OK) {
648                 LOG_WARNING("no working area available, can't do block memory writes");
649                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
650         };
651
652         retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
653                         sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
654         if (retval != ERROR_OK)
655                 return retval;
656
657         /* memory buffer */
658         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
659                 buffer_size /= 2;
660                 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
661                 if (buffer_size <= 256) {
662                         /* if we already allocated the writing code, but failed to get a
663                          * buffer, free the algorithm */
664                         if (stm32x_info->write_algorithm)
665                                 target_free_working_area(target, stm32x_info->write_algorithm);
666
667                         LOG_WARNING("no large enough working area available, can't do block memory writes");
668                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
669                 }
670         };
671
672         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
673         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
674         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer start */
675         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* buffer end */
676         init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
677
678         buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
679         buf_set_u32(reg_params[1].value, 0, 32, count);
680         buf_set_u32(reg_params[2].value, 0, 32, source->address);
681         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
682         buf_set_u32(reg_params[4].value, 0, 32, address);
683
684         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
685         armv7m_info.core_mode = ARMV7M_MODE_ANY;
686
687         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
688                         0, NULL,
689                         5, reg_params,
690                         source->address, source->size,
691                         stm32x_info->write_algorithm->address, 0,
692                         &armv7m_info);
693
694         if (retval == ERROR_FLASH_OPERATION_FAILED) {
695                 LOG_ERROR("flash write failed at address 0x%"PRIx32,
696                                 buf_get_u32(reg_params[4].value, 0, 32));
697
698                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
699                         LOG_ERROR("flash memory not erased before writing");
700                         /* Clear but report errors */
701                         target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
702                 }
703
704                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
705                         LOG_ERROR("flash memory write protected");
706                         /* Clear but report errors */
707                         target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
708                 }
709         }
710
711         target_free_working_area(target, source);
712         target_free_working_area(target, stm32x_info->write_algorithm);
713
714         destroy_reg_param(&reg_params[0]);
715         destroy_reg_param(&reg_params[1]);
716         destroy_reg_param(&reg_params[2]);
717         destroy_reg_param(&reg_params[3]);
718         destroy_reg_param(&reg_params[4]);
719
720         return retval;
721 }
722
723 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
724                 uint32_t offset, uint32_t count)
725 {
726         struct target *target = bank->target;
727         uint32_t words_remaining = (count / 2);
728         uint32_t bytes_remaining = (count & 0x00000001);
729         uint32_t address = bank->base + offset;
730         uint32_t bytes_written = 0;
731         int retval;
732
733         if (bank->target->state != TARGET_HALTED) {
734                 LOG_ERROR("Target not halted");
735                 return ERROR_TARGET_NOT_HALTED;
736         }
737
738         if (offset & 0x1) {
739                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
740                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
741         }
742
743         /* unlock flash registers */
744         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
745         if (retval != ERROR_OK)
746                 return retval;
747         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
748         if (retval != ERROR_OK)
749                 return retval;
750
751         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
752         if (retval != ERROR_OK)
753                 return retval;
754
755         /* multiple half words (2-byte) to be programmed? */
756         if (words_remaining > 0) {
757                 /* try using a block write */
758                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
759                 if (retval != ERROR_OK) {
760                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
761                                 /* if block write failed (no sufficient working area),
762                                  * we use normal (slow) single dword accesses */
763                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
764                         }
765                 } else {
766                         buffer += words_remaining * 2;
767                         address += words_remaining * 2;
768                         words_remaining = 0;
769                 }
770         }
771
772         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
773                 goto reset_pg_and_lock;
774
775         while (words_remaining > 0) {
776                 uint16_t value;
777                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
778
779                 retval = target_write_u16(target, address, value);
780                 if (retval != ERROR_OK)
781                         goto reset_pg_and_lock;
782
783                 retval = stm32x_wait_status_busy(bank, 5);
784                 if (retval != ERROR_OK)
785                         goto reset_pg_and_lock;
786
787                 bytes_written += 2;
788                 words_remaining--;
789                 address += 2;
790         }
791
792         if (bytes_remaining) {
793                 uint16_t value = 0xffff;
794                 memcpy(&value, buffer + bytes_written, bytes_remaining);
795
796                 retval = target_write_u16(target, address, value);
797                 if (retval != ERROR_OK)
798                         goto reset_pg_and_lock;
799
800                 retval = stm32x_wait_status_busy(bank, 5);
801                 if (retval != ERROR_OK)
802                         goto reset_pg_and_lock;
803         }
804
805         return target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
806
807 reset_pg_and_lock:
808         target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
809         return retval;
810 }
811
812 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
813 {
814         /* This check the device CPUID core register to detect
815          * the M0 from the M3 devices. */
816
817         struct target *target = bank->target;
818         uint32_t cpuid, device_id_register = 0;
819
820         /* Get the CPUID from the ARM Core
821          * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
822         int retval = target_read_u32(target, 0xE000ED00, &cpuid);
823         if (retval != ERROR_OK)
824                 return retval;
825
826         if (((cpuid >> 4) & 0xFFF) == 0xC20) {
827                 /* 0xC20 is M0 devices */
828                 device_id_register = 0x40015800;
829         } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
830                 /* 0xC23 is M3 devices */
831                 device_id_register = 0xE0042000;
832         } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
833                 /* 0xC24 is M4 devices */
834                 device_id_register = 0xE0042000;
835         } else {
836                 LOG_ERROR("Cannot identify target as a stm32x");
837                 return ERROR_FAIL;
838         }
839
840         /* read stm32 device id register */
841         retval = target_read_u32(target, device_id_register, device_id);
842         if (retval != ERROR_OK)
843                 return retval;
844
845         return retval;
846 }
847
848 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
849 {
850         struct target *target = bank->target;
851         uint32_t cpuid, flash_size_reg;
852
853         int retval = target_read_u32(target, 0xE000ED00, &cpuid);
854         if (retval != ERROR_OK)
855                 return retval;
856
857         if (((cpuid >> 4) & 0xFFF) == 0xC20) {
858                 /* 0xC20 is M0 devices */
859                 flash_size_reg = 0x1FFFF7CC;
860         } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
861                 /* 0xC23 is M3 devices */
862                 flash_size_reg = 0x1FFFF7E0;
863         } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
864                 /* 0xC24 is M4 devices */
865                 flash_size_reg = 0x1FFFF7CC;
866         } else {
867                 LOG_ERROR("Cannot identify target as a stm32x");
868                 return ERROR_FAIL;
869         }
870
871         retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
872         if (retval != ERROR_OK)
873                 return retval;
874
875         return retval;
876 }
877
878 static int stm32x_probe(struct flash_bank *bank)
879 {
880         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
881         int i;
882         uint16_t flash_size_in_kb;
883         uint32_t device_id;
884         int page_size;
885         uint32_t base_address = 0x08000000;
886
887         stm32x_info->probed = 0;
888         stm32x_info->register_base = FLASH_REG_BASE_B0;
889
890         /* read stm32 device id register */
891         int retval = stm32x_get_device_id(bank, &device_id);
892         if (retval != ERROR_OK)
893                 return retval;
894
895         LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
896
897         /* get flash size from target. */
898         retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
899         if (retval != ERROR_OK) {
900                 LOG_WARNING("failed reading flash size, default to max target family");
901                 /* failed reading flash size, default to max target family */
902                 flash_size_in_kb = 0xffff;
903         }
904
905         if ((device_id & 0xfff) == 0x410) {
906                 /* medium density - we have 1k pages
907                  * 4 pages for a protection area */
908                 page_size = 1024;
909                 stm32x_info->ppage_size = 4;
910
911                 /* check for early silicon */
912                 if (flash_size_in_kb == 0xffff) {
913                         /* number of sectors incorrect on revA */
914                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
915                         flash_size_in_kb = 128;
916                 }
917         } else if ((device_id & 0xfff) == 0x412) {
918                 /* low density - we have 1k pages
919                  * 4 pages for a protection area */
920                 page_size = 1024;
921                 stm32x_info->ppage_size = 4;
922
923                 /* check for early silicon */
924                 if (flash_size_in_kb == 0xffff) {
925                         /* number of sectors incorrect on revA */
926                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
927                         flash_size_in_kb = 32;
928                 }
929         } else if ((device_id & 0xfff) == 0x414) {
930                 /* high density - we have 2k pages
931                  * 2 pages for a protection area */
932                 page_size = 2048;
933                 stm32x_info->ppage_size = 2;
934
935                 /* check for early silicon */
936                 if (flash_size_in_kb == 0xffff) {
937                         /* number of sectors incorrect on revZ */
938                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
939                         flash_size_in_kb = 512;
940                 }
941         } else if ((device_id & 0xfff) == 0x418) {
942                 /* connectivity line density - we have 2k pages
943                  * 2 pages for a protection area */
944                 page_size = 2048;
945                 stm32x_info->ppage_size = 2;
946
947                 /* check for early silicon */
948                 if (flash_size_in_kb == 0xffff) {
949                         /* number of sectors incorrect on revZ */
950                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
951                         flash_size_in_kb = 256;
952                 }
953         } else if ((device_id & 0xfff) == 0x420) {
954                 /* value line density - we have 1k pages
955                  * 4 pages for a protection area */
956                 page_size = 1024;
957                 stm32x_info->ppage_size = 4;
958
959                 /* check for early silicon */
960                 if (flash_size_in_kb == 0xffff) {
961                         /* number of sectors may be incorrrect on early silicon */
962                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
963                         flash_size_in_kb = 128;
964                 }
965         } else if ((device_id & 0xfff) == 0x422) {
966                 /* stm32f30x - we have 2k pages
967                  * 2 pages for a protection area */
968                 page_size = 2048;
969                 stm32x_info->ppage_size = 2;
970
971                 /* check for early silicon */
972                 if (flash_size_in_kb == 0xffff) {
973                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
974                         flash_size_in_kb = 256;
975                 }
976         } else if ((device_id & 0xfff) == 0x428) {
977                 /* value line High density - we have 2k pages
978                  * 4 pages for a protection area */
979                 page_size = 2048;
980                 stm32x_info->ppage_size = 4;
981
982                 /* check for early silicon */
983                 if (flash_size_in_kb == 0xffff) {
984                         /* number of sectors may be incorrrect on early silicon */
985                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
986                         flash_size_in_kb = 128;
987                 }
988         } else if ((device_id & 0xfff) == 0x430) {
989                 /* xl line density - we have 2k pages
990                  * 2 pages for a protection area */
991                 page_size = 2048;
992                 stm32x_info->ppage_size = 2;
993                 stm32x_info->has_dual_banks = true;
994
995                 /* check for early silicon */
996                 if (flash_size_in_kb == 0xffff) {
997                         /* number of sectors may be incorrrect on early silicon */
998                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
999                         flash_size_in_kb = 1024;
1000                 }
1001
1002                 /* split reported size into matching bank */
1003                 if (bank->base != 0x08080000) {
1004                         /* bank 0 will be fixed 512k */
1005                         flash_size_in_kb = 512;
1006                 } else {
1007                         flash_size_in_kb -= 512;
1008                         /* bank1 also uses a register offset */
1009                         stm32x_info->register_base = FLASH_REG_BASE_B1;
1010                         base_address = 0x08080000;
1011                 }
1012         } else if ((device_id & 0xfff) == 0x432) {
1013                 /* stm32f37x - we have 2k pages
1014                  * 2 pages for a protection area */
1015                 page_size = 2048;
1016                 stm32x_info->ppage_size = 2;
1017
1018                 /* check for early silicon */
1019                 if (flash_size_in_kb == 0xffff) {
1020                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
1021                         flash_size_in_kb = 256;
1022                 }
1023         } else if ((device_id & 0xfff) == 0x440) {
1024                 /* stm32f0x - we have 1k pages
1025                  * 4 pages for a protection area */
1026                 page_size = 1024;
1027                 stm32x_info->ppage_size = 4;
1028
1029                 /* check for early silicon */
1030                 if (flash_size_in_kb == 0xffff) {
1031                         /* number of sectors incorrect on revZ */
1032                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 64k flash");
1033                         flash_size_in_kb = 64;
1034                 }
1035         } else {
1036                 LOG_WARNING("Cannot identify target as a STM32 family.");
1037                 return ERROR_FAIL;
1038         }
1039
1040         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
1041
1042         /* did we assign flash size? */
1043         assert(flash_size_in_kb != 0xffff);
1044
1045         /* calculate numbers of pages */
1046         int num_pages = flash_size_in_kb * 1024 / page_size;
1047
1048         /* check that calculation result makes sense */
1049         assert(num_pages > 0);
1050
1051         if (bank->sectors) {
1052                 free(bank->sectors);
1053                 bank->sectors = NULL;
1054         }
1055
1056         bank->base = base_address;
1057         bank->size = (num_pages * page_size);
1058         bank->num_sectors = num_pages;
1059         bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1060
1061         for (i = 0; i < num_pages; i++) {
1062                 bank->sectors[i].offset = i * page_size;
1063                 bank->sectors[i].size = page_size;
1064                 bank->sectors[i].is_erased = -1;
1065                 bank->sectors[i].is_protected = 1;
1066         }
1067
1068         stm32x_info->probed = 1;
1069
1070         return ERROR_OK;
1071 }
1072
1073 static int stm32x_auto_probe(struct flash_bank *bank)
1074 {
1075         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1076         if (stm32x_info->probed)
1077                 return ERROR_OK;
1078         return stm32x_probe(bank);
1079 }
1080
1081 #if 0
1082 COMMAND_HANDLER(stm32x_handle_part_id_command)
1083 {
1084         return ERROR_OK;
1085 }
1086 #endif
1087
1088 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1089 {
1090         uint32_t device_id;
1091         int printed;
1092
1093                 /* read stm32 device id register */
1094         int retval = stm32x_get_device_id(bank, &device_id);
1095         if (retval != ERROR_OK)
1096                 return retval;
1097
1098         if ((device_id & 0xfff) == 0x410) {
1099                 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1100                 buf += printed;
1101                 buf_size -= printed;
1102
1103                 switch (device_id >> 16) {
1104                         case 0x0000:
1105                                 snprintf(buf, buf_size, "A");
1106                                 break;
1107
1108                         case 0x2000:
1109                                 snprintf(buf, buf_size, "B");
1110                                 break;
1111
1112                         case 0x2001:
1113                                 snprintf(buf, buf_size, "Z");
1114                                 break;
1115
1116                         case 0x2003:
1117                                 snprintf(buf, buf_size, "Y");
1118                                 break;
1119
1120                         default:
1121                                 snprintf(buf, buf_size, "unknown");
1122                                 break;
1123                 }
1124         } else if ((device_id & 0xfff) == 0x412) {
1125                 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1126                 buf += printed;
1127                 buf_size -= printed;
1128
1129                 switch (device_id >> 16) {
1130                         case 0x1000:
1131                                 snprintf(buf, buf_size, "A");
1132                                 break;
1133
1134                         default:
1135                                 snprintf(buf, buf_size, "unknown");
1136                                 break;
1137                 }
1138         } else if ((device_id & 0xfff) == 0x414) {
1139                 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1140                 buf += printed;
1141                 buf_size -= printed;
1142
1143                 switch (device_id >> 16) {
1144                         case 0x1000:
1145                                 snprintf(buf, buf_size, "A");
1146                                 break;
1147
1148                         case 0x1001:
1149                                 snprintf(buf, buf_size, "Z");
1150                                 break;
1151
1152                         default:
1153                                 snprintf(buf, buf_size, "unknown");
1154                                 break;
1155                 }
1156         } else if ((device_id & 0xfff) == 0x418) {
1157                 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1158                 buf += printed;
1159                 buf_size -= printed;
1160
1161                 switch (device_id >> 16) {
1162                         case 0x1000:
1163                                 snprintf(buf, buf_size, "A");
1164                                 break;
1165
1166                         case 0x1001:
1167                                 snprintf(buf, buf_size, "Z");
1168                                 break;
1169
1170                         default:
1171                                 snprintf(buf, buf_size, "unknown");
1172                                 break;
1173                 }
1174         } else if ((device_id & 0xfff) == 0x420) {
1175                 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1176                 buf += printed;
1177                 buf_size -= printed;
1178
1179                 switch (device_id >> 16) {
1180                         case 0x1000:
1181                                 snprintf(buf, buf_size, "A");
1182                                 break;
1183
1184                         case 0x1001:
1185                                 snprintf(buf, buf_size, "Z");
1186                                 break;
1187
1188                         default:
1189                                 snprintf(buf, buf_size, "unknown");
1190                                 break;
1191                 }
1192         } else if ((device_id & 0xfff) == 0x422) {
1193                 printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
1194                 buf += printed;
1195                 buf_size -= printed;
1196
1197                 switch (device_id >> 16) {
1198                         case 0x1000:
1199                                 snprintf(buf, buf_size, "1.0");
1200                                 break;
1201
1202                         default:
1203                                 snprintf(buf, buf_size, "unknown");
1204                                 break;
1205                 }
1206         } else if ((device_id & 0xfff) == 0x428) {
1207                 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1208                 buf += printed;
1209                 buf_size -= printed;
1210
1211                 switch (device_id >> 16) {
1212                         case 0x1000:
1213                                 snprintf(buf, buf_size, "A");
1214                                 break;
1215
1216                         case 0x1001:
1217                                 snprintf(buf, buf_size, "Z");
1218                                 break;
1219
1220                         default:
1221                                 snprintf(buf, buf_size, "unknown");
1222                                 break;
1223                 }
1224         } else if ((device_id & 0xfff) == 0x430) {
1225                 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1226                 buf += printed;
1227                 buf_size -= printed;
1228
1229                 switch (device_id >> 16) {
1230                         case 0x1000:
1231                                 snprintf(buf, buf_size, "A");
1232                                 break;
1233
1234                         default:
1235                                 snprintf(buf, buf_size, "unknown");
1236                                 break;
1237                 }
1238         } else if ((device_id & 0xfff) == 0x432) {
1239                 printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
1240                 buf += printed;
1241                 buf_size -= printed;
1242
1243                 switch (device_id >> 16) {
1244                         case 0x1000:
1245                                 snprintf(buf, buf_size, "1.0");
1246                                 break;
1247
1248                         default:
1249                                 snprintf(buf, buf_size, "unknown");
1250                                 break;
1251                 }
1252         } else if ((device_id & 0xfff) == 0x440) {
1253                 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1254                 buf += printed;
1255                 buf_size -= printed;
1256
1257                 switch (device_id >> 16) {
1258                         case 0x1000:
1259                                 snprintf(buf, buf_size, "1.0");
1260                                 break;
1261
1262                         case 0x2000:
1263                                 snprintf(buf, buf_size, "2.0");
1264                                 break;
1265
1266                         default:
1267                                 snprintf(buf, buf_size, "unknown");
1268                                 break;
1269                 }
1270         } else {
1271                 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1272                 return ERROR_FAIL;
1273         }
1274
1275         return ERROR_OK;
1276 }
1277
1278 COMMAND_HANDLER(stm32x_handle_lock_command)
1279 {
1280         struct target *target = NULL;
1281         struct stm32x_flash_bank *stm32x_info = NULL;
1282
1283         if (CMD_ARGC < 1)
1284                 return ERROR_COMMAND_SYNTAX_ERROR;
1285
1286         struct flash_bank *bank;
1287         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1288         if (ERROR_OK != retval)
1289                 return retval;
1290
1291         stm32x_info = bank->driver_priv;
1292
1293         target = bank->target;
1294
1295         if (target->state != TARGET_HALTED) {
1296                 LOG_ERROR("Target not halted");
1297                 return ERROR_TARGET_NOT_HALTED;
1298         }
1299
1300         retval = stm32x_check_operation_supported(bank);
1301         if (ERROR_OK != retval)
1302                 return retval;
1303
1304         if (stm32x_erase_options(bank) != ERROR_OK) {
1305                 command_print(CMD_CTX, "stm32x failed to erase options");
1306                 return ERROR_OK;
1307         }
1308
1309         /* set readout protection */
1310         stm32x_info->option_bytes.RDP = 0;
1311
1312         if (stm32x_write_options(bank) != ERROR_OK) {
1313                 command_print(CMD_CTX, "stm32x failed to lock device");
1314                 return ERROR_OK;
1315         }
1316
1317         command_print(CMD_CTX, "stm32x locked");
1318
1319         return ERROR_OK;
1320 }
1321
1322 COMMAND_HANDLER(stm32x_handle_unlock_command)
1323 {
1324         struct target *target = NULL;
1325
1326         if (CMD_ARGC < 1)
1327                 return ERROR_COMMAND_SYNTAX_ERROR;
1328
1329         struct flash_bank *bank;
1330         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1331         if (ERROR_OK != retval)
1332                 return retval;
1333
1334         target = bank->target;
1335
1336         if (target->state != TARGET_HALTED) {
1337                 LOG_ERROR("Target not halted");
1338                 return ERROR_TARGET_NOT_HALTED;
1339         }
1340
1341         retval = stm32x_check_operation_supported(bank);
1342         if (ERROR_OK != retval)
1343                 return retval;
1344
1345         if (stm32x_erase_options(bank) != ERROR_OK) {
1346                 command_print(CMD_CTX, "stm32x failed to unlock device");
1347                 return ERROR_OK;
1348         }
1349
1350         if (stm32x_write_options(bank) != ERROR_OK) {
1351                 command_print(CMD_CTX, "stm32x failed to lock device");
1352                 return ERROR_OK;
1353         }
1354
1355         command_print(CMD_CTX, "stm32x unlocked.\n"
1356                         "INFO: a reset or power cycle is required "
1357                         "for the new settings to take effect.");
1358
1359         return ERROR_OK;
1360 }
1361
1362 COMMAND_HANDLER(stm32x_handle_options_read_command)
1363 {
1364         uint32_t optionbyte;
1365         struct target *target = NULL;
1366         struct stm32x_flash_bank *stm32x_info = NULL;
1367
1368         if (CMD_ARGC < 1)
1369                 return ERROR_COMMAND_SYNTAX_ERROR;
1370
1371         struct flash_bank *bank;
1372         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1373         if (ERROR_OK != retval)
1374                 return retval;
1375
1376         stm32x_info = bank->driver_priv;
1377
1378         target = bank->target;
1379
1380         if (target->state != TARGET_HALTED) {
1381                 LOG_ERROR("Target not halted");
1382                 return ERROR_TARGET_NOT_HALTED;
1383         }
1384
1385         retval = stm32x_check_operation_supported(bank);
1386         if (ERROR_OK != retval)
1387                 return retval;
1388
1389         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1390         if (retval != ERROR_OK)
1391                 return retval;
1392         command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1393
1394         if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1395                 command_print(CMD_CTX, "Option Byte Complement Error");
1396
1397         if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1398                 command_print(CMD_CTX, "Readout Protection On");
1399         else
1400                 command_print(CMD_CTX, "Readout Protection Off");
1401
1402         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1403                 command_print(CMD_CTX, "Software Watchdog");
1404         else
1405                 command_print(CMD_CTX, "Hardware Watchdog");
1406
1407         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1408                 command_print(CMD_CTX, "Stop: No reset generated");
1409         else
1410                 command_print(CMD_CTX, "Stop: Reset generated");
1411
1412         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1413                 command_print(CMD_CTX, "Standby: No reset generated");
1414         else
1415                 command_print(CMD_CTX, "Standby: Reset generated");
1416
1417         if (stm32x_info->has_dual_banks) {
1418                 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1419                         command_print(CMD_CTX, "Boot: Bank 0");
1420                 else
1421                         command_print(CMD_CTX, "Boot: Bank 1");
1422         }
1423
1424         return ERROR_OK;
1425 }
1426
1427 COMMAND_HANDLER(stm32x_handle_options_write_command)
1428 {
1429         struct target *target = NULL;
1430         struct stm32x_flash_bank *stm32x_info = NULL;
1431         uint16_t optionbyte = 0xF8;
1432
1433         if (CMD_ARGC < 4)
1434                 return ERROR_COMMAND_SYNTAX_ERROR;
1435
1436         struct flash_bank *bank;
1437         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1438         if (ERROR_OK != retval)
1439                 return retval;
1440
1441         stm32x_info = bank->driver_priv;
1442
1443         target = bank->target;
1444
1445         if (target->state != TARGET_HALTED) {
1446                 LOG_ERROR("Target not halted");
1447                 return ERROR_TARGET_NOT_HALTED;
1448         }
1449
1450         retval = stm32x_check_operation_supported(bank);
1451         if (ERROR_OK != retval)
1452                 return retval;
1453
1454         /* REVISIT: ignores some options which we will display...
1455          * and doesn't insist on the specified syntax.
1456          */
1457
1458         /* OPT_RDWDGSW */
1459         if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1460                 optionbyte |= (1 << 0);
1461         else    /* REVISIT must be "HWWDG" then ... */
1462                 optionbyte &= ~(1 << 0);
1463
1464         /* OPT_RDRSTSTOP */
1465         if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1466                 optionbyte |= (1 << 1);
1467         else    /* REVISIT must be "RSTSTNDBY" then ... */
1468                 optionbyte &= ~(1 << 1);
1469
1470         /* OPT_RDRSTSTDBY */
1471         if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1472                 optionbyte |= (1 << 2);
1473         else    /* REVISIT must be "RSTSTOP" then ... */
1474                 optionbyte &= ~(1 << 2);
1475
1476         if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1477                 /* OPT_BFB2 */
1478                 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1479                         optionbyte |= (1 << 3);
1480                 else
1481                         optionbyte &= ~(1 << 3);
1482         }
1483
1484         if (stm32x_erase_options(bank) != ERROR_OK) {
1485                 command_print(CMD_CTX, "stm32x failed to erase options");
1486                 return ERROR_OK;
1487         }
1488
1489         stm32x_info->option_bytes.user_options = optionbyte;
1490
1491         if (stm32x_write_options(bank) != ERROR_OK) {
1492                 command_print(CMD_CTX, "stm32x failed to write options");
1493                 return ERROR_OK;
1494         }
1495
1496         command_print(CMD_CTX, "stm32x write options complete.\n"
1497                                 "INFO: a reset or power cycle is required "
1498                                 "for the new settings to take effect.");
1499
1500         return ERROR_OK;
1501 }
1502
1503 static int stm32x_mass_erase(struct flash_bank *bank)
1504 {
1505         struct target *target = bank->target;
1506
1507         if (target->state != TARGET_HALTED) {
1508                 LOG_ERROR("Target not halted");
1509                 return ERROR_TARGET_NOT_HALTED;
1510         }
1511
1512         /* unlock option flash registers */
1513         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1514         if (retval != ERROR_OK)
1515                 return retval;
1516         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1517         if (retval != ERROR_OK)
1518                 return retval;
1519
1520         /* mass erase flash memory */
1521         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1522         if (retval != ERROR_OK)
1523                 return retval;
1524         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1525                         FLASH_MER | FLASH_STRT);
1526         if (retval != ERROR_OK)
1527                 return retval;
1528
1529         retval = stm32x_wait_status_busy(bank, 100);
1530         if (retval != ERROR_OK)
1531                 return retval;
1532
1533         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1534         if (retval != ERROR_OK)
1535                 return retval;
1536
1537         return ERROR_OK;
1538 }
1539
1540 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1541 {
1542         int i;
1543
1544         if (CMD_ARGC < 1)
1545                 return ERROR_COMMAND_SYNTAX_ERROR;
1546
1547         struct flash_bank *bank;
1548         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1549         if (ERROR_OK != retval)
1550                 return retval;
1551
1552         retval = stm32x_mass_erase(bank);
1553         if (retval == ERROR_OK) {
1554                 /* set all sectors as erased */
1555                 for (i = 0; i < bank->num_sectors; i++)
1556                         bank->sectors[i].is_erased = 1;
1557
1558                 command_print(CMD_CTX, "stm32x mass erase complete");
1559         } else
1560                 command_print(CMD_CTX, "stm32x mass erase failed");
1561
1562         return retval;
1563 }
1564
1565 static const struct command_registration stm32x_exec_command_handlers[] = {
1566         {
1567                 .name = "lock",
1568                 .handler = stm32x_handle_lock_command,
1569                 .mode = COMMAND_EXEC,
1570                 .usage = "bank_id",
1571                 .help = "Lock entire flash device.",
1572         },
1573         {
1574                 .name = "unlock",
1575                 .handler = stm32x_handle_unlock_command,
1576                 .mode = COMMAND_EXEC,
1577                 .usage = "bank_id",
1578                 .help = "Unlock entire protected flash device.",
1579         },
1580         {
1581                 .name = "mass_erase",
1582                 .handler = stm32x_handle_mass_erase_command,
1583                 .mode = COMMAND_EXEC,
1584                 .usage = "bank_id",
1585                 .help = "Erase entire flash device.",
1586         },
1587         {
1588                 .name = "options_read",
1589                 .handler = stm32x_handle_options_read_command,
1590                 .mode = COMMAND_EXEC,
1591                 .usage = "bank_id",
1592                 .help = "Read and display device option byte.",
1593         },
1594         {
1595                 .name = "options_write",
1596                 .handler = stm32x_handle_options_write_command,
1597                 .mode = COMMAND_EXEC,
1598                 .usage = "bank_id ('SWWDG'|'HWWDG') "
1599                         "('RSTSTNDBY'|'NORSTSTNDBY') "
1600                         "('RSTSTOP'|'NORSTSTOP')",
1601                 .help = "Replace bits in device option byte.",
1602         },
1603         COMMAND_REGISTRATION_DONE
1604 };
1605
1606 static const struct command_registration stm32x_command_handlers[] = {
1607         {
1608                 .name = "stm32f1x",
1609                 .mode = COMMAND_ANY,
1610                 .help = "stm32f1x flash command group",
1611                 .usage = "",
1612                 .chain = stm32x_exec_command_handlers,
1613         },
1614         COMMAND_REGISTRATION_DONE
1615 };
1616
1617 struct flash_driver stm32f1x_flash = {
1618         .name = "stm32f1x",
1619         .commands = stm32x_command_handlers,
1620         .flash_bank_command = stm32x_flash_bank_command,
1621         .erase = stm32x_erase,
1622         .protect = stm32x_protect,
1623         .write = stm32x_write,
1624         .read = default_flash_read,
1625         .probe = stm32x_probe,
1626         .auto_probe = stm32x_auto_probe,
1627         .erase_check = default_flash_blank_check,
1628         .protect_check = stm32x_protect_check,
1629         .info = get_stm32x_info,
1630 };