]> git.sur5r.net Git - openocd/blob - src/flash/nor/stm32f1x.c
Add stm32f0x probe and info working
[openocd] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 by Andreas Fritiofson                              *
9  *   andreas.fritiofson@gmail.com                                          *
10  *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR     0x00
42 #define STM32_FLASH_KEYR    0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR      0x0C
45 #define STM32_FLASH_CR      0x10
46 #define STM32_FLASH_AR      0x14
47 #define STM32_FLASH_OBR     0x1C
48 #define STM32_FLASH_WRPR    0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51  * There are valid cases, on dual flash devices the protection of the
52  * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0     0x40022000
54 #define STM32_FLASH_KEYR_B0    0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0      0x4002200C
57 #define STM32_FLASH_CR_B0      0x40022010
58 #define STM32_FLASH_AR_B0      0x40022014
59 #define STM32_FLASH_OBR_B0     0x4002201C
60 #define STM32_FLASH_WRPR_B0    0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP            0x1FFFF800
65 #define STM32_OB_USER           0x1FFFF802
66 #define STM32_OB_DATA0          0x1FFFF804
67 #define STM32_OB_DATA1          0x1FFFF806
68 #define STM32_OB_WRP0           0x1FFFF808
69 #define STM32_OB_WRP1           0x1FFFF80A
70 #define STM32_OB_WRP2           0x1FFFF80C
71 #define STM32_OB_WRP3           0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG                (1 << 0)
76 #define FLASH_PER               (1 << 1)
77 #define FLASH_MER               (1 << 2)
78 #define FLASH_OPTPG             (1 << 4)
79 #define FLASH_OPTER             (1 << 5)
80 #define FLASH_STRT              (1 << 6)
81 #define FLASH_LOCK              (1 << 7)
82 #define FLASH_OPTWRE    (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY               (1 << 0)
87 #define FLASH_PGERR             (1 << 2)
88 #define FLASH_WRPRTERR  (1 << 4)
89 #define FLASH_EOP               (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR               0
94 #define OPT_READOUT             1
95 #define OPT_RDWDGSW             2
96 #define OPT_RDRSTSTOP   3
97 #define OPT_RDRSTSTDBY  4
98 #define OPT_BFB2                5       /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1                    0x45670123
103 #define KEY2                    0xCDEF89AB
104
105 struct stm32x_options {
106         uint16_t RDP;
107         uint16_t user_options;
108         uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112         struct stm32x_options option_bytes;
113         struct working_area *write_algorithm;
114         int ppage_size;
115         int probed;
116
117         bool has_dual_banks;
118         /* used to access dual flash bank stm32xl */
119         uint32_t register_base;
120 };
121
122 static int stm32x_mass_erase(struct flash_bank *bank);
123 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126  */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129         struct stm32x_flash_bank *stm32x_info;
130
131         if (CMD_ARGC < 6)
132                 return ERROR_COMMAND_SYNTAX_ERROR;
133
134         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
135
136         bank->driver_priv = stm32x_info;
137         stm32x_info->write_algorithm = NULL;
138         stm32x_info->probed = 0;
139         stm32x_info->has_dual_banks = false;
140         stm32x_info->register_base = FLASH_REG_BASE_B0;
141
142         return ERROR_OK;
143 }
144
145 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
148         return reg + stm32x_info->register_base;
149 }
150
151 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
152 {
153         struct target *target = bank->target;
154         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159         struct target *target = bank->target;
160         uint32_t status;
161         int retval = ERROR_OK;
162
163         /* wait for busy to clear */
164         for (;;) {
165                 retval = stm32x_get_flash_status(bank, &status);
166                 if (retval != ERROR_OK)
167                         return retval;
168                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169                 if ((status & FLASH_BSY) == 0)
170                         break;
171                 if (timeout-- <= 0) {
172                         LOG_ERROR("timed out waiting for flash");
173                         return ERROR_FAIL;
174                 }
175                 alive_sleep(1);
176         }
177
178         if (status & FLASH_WRPRTERR) {
179                 LOG_ERROR("stm32x device protected");
180                 retval = ERROR_FAIL;
181         }
182
183         if (status & FLASH_PGERR) {
184                 LOG_ERROR("stm32x device programming failed");
185                 retval = ERROR_FAIL;
186         }
187
188         /* Clear but report errors */
189         if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
190                 /* If this operation fails, we ignore it and report the original
191                  * retval
192                  */
193                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
194                                 FLASH_WRPRTERR | FLASH_PGERR);
195         }
196         return retval;
197 }
198
199 int stm32x_check_operation_supported(struct flash_bank *bank)
200 {
201         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
202
203         /* if we have a dual flash bank device then
204          * we need to perform option byte stuff on bank0 only */
205         if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
206                 LOG_ERROR("Option Byte Operation's must use bank0");
207                 return ERROR_FLASH_OPERATION_FAILED;
208         }
209
210         return ERROR_OK;
211 }
212
213 static int stm32x_read_options(struct flash_bank *bank)
214 {
215         uint32_t optiondata;
216         struct stm32x_flash_bank *stm32x_info = NULL;
217         struct target *target = bank->target;
218
219         stm32x_info = bank->driver_priv;
220
221         /* read current option bytes */
222         int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
227         stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
228
229         if (optiondata & (1 << OPT_READOUT))
230                 LOG_INFO("Device Security Bit Set");
231
232         /* each bit refers to a 4bank protection */
233         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
234         if (retval != ERROR_OK)
235                 return retval;
236
237         stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
238         stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
239         stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
240         stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
241
242         return ERROR_OK;
243 }
244
245 static int stm32x_erase_options(struct flash_bank *bank)
246 {
247         struct stm32x_flash_bank *stm32x_info = NULL;
248         struct target *target = bank->target;
249
250         stm32x_info = bank->driver_priv;
251
252         /* read current options */
253         stm32x_read_options(bank);
254
255         /* unlock flash registers */
256         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
257         if (retval != ERROR_OK)
258                 return retval;
259
260         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* unlock option flash registers */
265         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
266         if (retval != ERROR_OK)
267                 return retval;
268         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
269         if (retval != ERROR_OK)
270                 return retval;
271
272         /* erase option bytes */
273         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
274         if (retval != ERROR_OK)
275                 return retval;
276         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
277         if (retval != ERROR_OK)
278                 return retval;
279
280         retval = stm32x_wait_status_busy(bank, 10);
281         if (retval != ERROR_OK)
282                 return retval;
283
284         /* clear readout protection and complementary option bytes
285          * this will also force a device unlock if set */
286         stm32x_info->option_bytes.RDP = 0x5AA5;
287
288         return ERROR_OK;
289 }
290
291 static int stm32x_write_options(struct flash_bank *bank)
292 {
293         struct stm32x_flash_bank *stm32x_info = NULL;
294         struct target *target = bank->target;
295
296         stm32x_info = bank->driver_priv;
297
298         /* unlock flash registers */
299         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
300         if (retval != ERROR_OK)
301                 return retval;
302         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
303         if (retval != ERROR_OK)
304                 return retval;
305
306         /* unlock option flash registers */
307         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
308         if (retval != ERROR_OK)
309                 return retval;
310         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
311         if (retval != ERROR_OK)
312                 return retval;
313
314         /* program option bytes */
315         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
316         if (retval != ERROR_OK)
317                 return retval;
318
319         /* write user option byte */
320         retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
321         if (retval != ERROR_OK)
322                 return retval;
323
324         retval = stm32x_wait_status_busy(bank, 10);
325         if (retval != ERROR_OK)
326                 return retval;
327
328         /* write protection byte 1 */
329         retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
330         if (retval != ERROR_OK)
331                 return retval;
332
333         retval = stm32x_wait_status_busy(bank, 10);
334         if (retval != ERROR_OK)
335                 return retval;
336
337         /* write protection byte 2 */
338         retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
339         if (retval != ERROR_OK)
340                 return retval;
341
342         retval = stm32x_wait_status_busy(bank, 10);
343         if (retval != ERROR_OK)
344                 return retval;
345
346         /* write protection byte 3 */
347         retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         retval = stm32x_wait_status_busy(bank, 10);
352         if (retval != ERROR_OK)
353                 return retval;
354
355         /* write protection byte 4 */
356         retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
357         if (retval != ERROR_OK)
358                 return retval;
359
360         retval = stm32x_wait_status_busy(bank, 10);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         /* write readout protection bit */
365         retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
366         if (retval != ERROR_OK)
367                 return retval;
368
369         retval = stm32x_wait_status_busy(bank, 10);
370         if (retval != ERROR_OK)
371                 return retval;
372
373         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
374         if (retval != ERROR_OK)
375                 return retval;
376
377         return ERROR_OK;
378 }
379
380 static int stm32x_protect_check(struct flash_bank *bank)
381 {
382         struct target *target = bank->target;
383         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
384
385         uint32_t protection;
386         int i, s;
387         int num_bits;
388         int set;
389
390         if (target->state != TARGET_HALTED) {
391                 LOG_ERROR("Target not halted");
392                 return ERROR_TARGET_NOT_HALTED;
393         }
394
395         int retval = stm32x_check_operation_supported(bank);
396         if (ERROR_OK != retval)
397                 return retval;
398
399         /* medium density - each bit refers to a 4bank protection
400          * high density - each bit refers to a 2bank protection */
401         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
402         if (retval != ERROR_OK)
403                 return retval;
404
405         /* medium density - each protection bit is for 4 * 1K pages
406          * high density - each protection bit is for 2 * 2K pages */
407         num_bits = (bank->num_sectors / stm32x_info->ppage_size);
408
409         if (stm32x_info->ppage_size == 2) {
410                 /* high density flash/connectivity line protection */
411
412                 set = 1;
413
414                 if (protection & (1 << 31))
415                         set = 0;
416
417                 /* bit 31 controls sector 62 - 255 protection for high density
418                  * bit 31 controls sector 62 - 127 protection for connectivity line */
419                 for (s = 62; s < bank->num_sectors; s++)
420                         bank->sectors[s].is_protected = set;
421
422                 if (bank->num_sectors > 61)
423                         num_bits = 31;
424
425                 for (i = 0; i < num_bits; i++) {
426                         set = 1;
427
428                         if (protection & (1 << i))
429                                 set = 0;
430
431                         for (s = 0; s < stm32x_info->ppage_size; s++)
432                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
433                 }
434         } else {
435                 /* low/medium density flash protection */
436                 for (i = 0; i < num_bits; i++) {
437                         set = 1;
438
439                         if (protection & (1 << i))
440                                 set = 0;
441
442                         for (s = 0; s < stm32x_info->ppage_size; s++)
443                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
444                 }
445         }
446
447         return ERROR_OK;
448 }
449
450 static int stm32x_erase(struct flash_bank *bank, int first, int last)
451 {
452         struct target *target = bank->target;
453         int i;
454
455         if (bank->target->state != TARGET_HALTED) {
456                 LOG_ERROR("Target not halted");
457                 return ERROR_TARGET_NOT_HALTED;
458         }
459
460         if ((first == 0) && (last == (bank->num_sectors - 1)))
461                 return stm32x_mass_erase(bank);
462
463         /* unlock flash registers */
464         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
465         if (retval != ERROR_OK)
466                 return retval;
467         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
468         if (retval != ERROR_OK)
469                 return retval;
470
471         for (i = first; i <= last; i++) {
472                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
473                 if (retval != ERROR_OK)
474                         return retval;
475                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
476                                 bank->base + bank->sectors[i].offset);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 retval = target_write_u32(target,
480                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
481                 if (retval != ERROR_OK)
482                         return retval;
483
484                 retval = stm32x_wait_status_busy(bank, 100);
485                 if (retval != ERROR_OK)
486                         return retval;
487
488                 bank->sectors[i].is_erased = 1;
489         }
490
491         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
492         if (retval != ERROR_OK)
493                 return retval;
494
495         return ERROR_OK;
496 }
497
498 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
499 {
500         struct stm32x_flash_bank *stm32x_info = NULL;
501         struct target *target = bank->target;
502         uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
503         int i, reg, bit;
504         int status;
505         uint32_t protection;
506
507         stm32x_info = bank->driver_priv;
508
509         if (target->state != TARGET_HALTED) {
510                 LOG_ERROR("Target not halted");
511                 return ERROR_TARGET_NOT_HALTED;
512         }
513
514         int retval = stm32x_check_operation_supported(bank);
515         if (ERROR_OK != retval)
516                 return retval;
517
518         if ((first % stm32x_info->ppage_size) != 0) {
519                 LOG_WARNING("aligned start protect sector to a %d sector boundary",
520                                 stm32x_info->ppage_size);
521                 first = first - (first % stm32x_info->ppage_size);
522         }
523         if (((last + 1) % stm32x_info->ppage_size) != 0) {
524                 LOG_WARNING("aligned end protect sector to a %d sector boundary",
525                                 stm32x_info->ppage_size);
526                 last++;
527                 last = last - (last % stm32x_info->ppage_size);
528                 last--;
529         }
530
531         /* medium density - each bit refers to a 4bank protection
532          * high density - each bit refers to a 2bank protection */
533         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         prot_reg[0] = (uint16_t)protection;
538         prot_reg[1] = (uint16_t)(protection >> 8);
539         prot_reg[2] = (uint16_t)(protection >> 16);
540         prot_reg[3] = (uint16_t)(protection >> 24);
541
542         if (stm32x_info->ppage_size == 2) {
543                 /* high density flash */
544
545                 /* bit 7 controls sector 62 - 255 protection */
546                 if (last > 61) {
547                         if (set)
548                                 prot_reg[3] &= ~(1 << 7);
549                         else
550                                 prot_reg[3] |= (1 << 7);
551                 }
552
553                 if (first > 61)
554                         first = 62;
555                 if (last > 61)
556                         last = 61;
557
558                 for (i = first; i <= last; i++) {
559                         reg = (i / stm32x_info->ppage_size) / 8;
560                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
561
562                         if (set)
563                                 prot_reg[reg] &= ~(1 << bit);
564                         else
565                                 prot_reg[reg] |= (1 << bit);
566                 }
567         } else {
568                 /* medium density flash */
569                 for (i = first; i <= last; i++) {
570                         reg = (i / stm32x_info->ppage_size) / 8;
571                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
572
573                         if (set)
574                                 prot_reg[reg] &= ~(1 << bit);
575                         else
576                                 prot_reg[reg] |= (1 << bit);
577                 }
578         }
579
580         status = stm32x_erase_options(bank);
581         if (status != ERROR_OK)
582                 return status;
583
584         stm32x_info->option_bytes.protection[0] = prot_reg[0];
585         stm32x_info->option_bytes.protection[1] = prot_reg[1];
586         stm32x_info->option_bytes.protection[2] = prot_reg[2];
587         stm32x_info->option_bytes.protection[3] = prot_reg[3];
588
589         return stm32x_write_options(bank);
590 }
591
592 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
593                 uint32_t offset, uint32_t count)
594 {
595         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
596         struct target *target = bank->target;
597         uint32_t buffer_size = 16384;
598         struct working_area *source;
599         uint32_t address = bank->base + offset;
600         struct reg_param reg_params[5];
601         struct armv7m_algorithm armv7m_info;
602         int retval = ERROR_OK;
603
604         /* see contrib/loaders/flash/stm32f1x.S for src */
605
606         static const uint8_t stm32x_flash_write_code[] = {
607                 /* #define STM32_FLASH_CR_OFFSET 0x10 */
608                 /* #define STM32_FLASH_SR_OFFSET 0x0C */
609                 /* wait_fifo: */
610                         0x16, 0x68,   /* ldr   r6, [r2, #0] */
611                         0x00, 0x2e,   /* cmp   r6, #0 */
612                         0x1a, 0xd0,   /* beq   exit */
613                         0x55, 0x68,   /* ldr   r5, [r2, #4] */
614                         0xb5, 0x42,   /* cmp   r5, r6 */
615                         0xf9, 0xd0,   /* beq   wait_fifo */
616                         0x01, 0x26,   /* movs  r6, #1 */
617                         0x06, 0x61,   /* str   r6, [r0, #STM32_FLASH_CR_OFFSET] */
618                         0x2e, 0x88,   /* ldrh  r6, [r5, #0] */
619                         0x26, 0x80,   /* strh  r6, [r4, #0] */
620                         0x02, 0x35,   /* adds  r5, #2 */
621                         0x02, 0x34,   /* adds  r4, #2 */
622                 /* busy: */
623                         0xc6, 0x68,   /* ldr   r6, [r0, #STM32_FLASH_SR_OFFSET] */
624                         0x01, 0x27,   /* movs  r7, #1 */
625                         0x3e, 0x42,   /* tst   r6, r7 */
626                         0xfb, 0xd1,   /* bne   busy */
627                         0x14, 0x27,   /* movs  r7, #0x14 */
628                         0x3e, 0x42,   /* tst   r6, r7 */
629                         0x08, 0xd1,   /* bne   error */
630                         0x9d, 0x42,   /* cmp   r5, r3 */
631                         0x01, 0xd3,   /* bcc   no_wrap */
632                         0x15, 0x46,   /* mov   r5, r2 */
633                         0x08, 0x35,   /* adds  r5, #8 */
634                 /* no_wrap: */
635                         0x55, 0x60,   /* str   r5, [r2, #4] */
636                         0x01, 0x39,   /* subs  r1, r1, #1 */
637                         0x00, 0x29,   /* cmp   r1, #0 */
638                         0x02, 0xd0,   /* beq   exit */
639                         0xe3, 0xe7,   /* b     wait_fifo */
640                 /* error: */
641                         0x00, 0x20,   /* movs  r0, #0 */
642                         0x50, 0x60,   /* str   r0, [r2, #4] */
643                 /* exit: */
644                         0x30, 0x46,   /* mov   r0, r6 */
645                         0x00, 0xbe,   /* bkpt  #0 */
646         };
647
648         /* flash write code */
649         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
650                         &stm32x_info->write_algorithm) != ERROR_OK) {
651                 LOG_WARNING("no working area available, can't do block memory writes");
652                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
653         };
654
655         retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
656                         sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
657         if (retval != ERROR_OK)
658                 return retval;
659
660         /* memory buffer */
661         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
662                 buffer_size /= 2;
663                 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
664                 if (buffer_size <= 256) {
665                         /* if we already allocated the writing code, but failed to get a
666                          * buffer, free the algorithm */
667                         if (stm32x_info->write_algorithm)
668                                 target_free_working_area(target, stm32x_info->write_algorithm);
669
670                         LOG_WARNING("no large enough working area available, can't do block memory writes");
671                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
672                 }
673         };
674
675         /* Set up working area. First word is write pointer, second word is read pointer,
676          * rest is fifo data area. */
677         uint32_t wp_addr = source->address;
678         uint32_t rp_addr = source->address + 4;
679         uint32_t fifo_start_addr = source->address + 8;
680         uint32_t fifo_end_addr = source->address + source->size;
681
682         uint32_t wp = fifo_start_addr;
683         uint32_t rp = fifo_start_addr;
684
685         retval = target_write_u32(target, wp_addr, wp);
686         if (retval != ERROR_OK)
687                 return retval;
688         retval = target_write_u32(target, rp_addr, rp);
689         if (retval != ERROR_OK)
690                 return retval;
691
692         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
693         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
694         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer start */
695         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* buffer end */
696         init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
697
698         buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
699         buf_set_u32(reg_params[1].value, 0, 32, count);
700         buf_set_u32(reg_params[2].value, 0, 32, source->address);
701         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
702         buf_set_u32(reg_params[4].value, 0, 32, address);
703
704         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
705         armv7m_info.core_mode = ARMV7M_MODE_ANY;
706
707         /* Start up algorithm on target and let it idle while writing the first chunk */
708         retval = target_start_algorithm(target, 0, NULL, 5, reg_params,
709                         stm32x_info->write_algorithm->address,
710                         0,
711                         &armv7m_info);
712         if (retval != ERROR_OK) {
713                 LOG_ERROR("error starting stm32x flash write algorithm");
714                 goto cleanup;
715         }
716
717         while (count > 0) {
718                 retval = target_read_u32(target, rp_addr, &rp);
719                 if (retval != ERROR_OK) {
720                         LOG_ERROR("failed to get read pointer");
721                         break;
722                 }
723
724                 LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp);
725
726                 if (rp == 0) {
727                         LOG_ERROR("flash write algorithm aborted by target");
728                         retval = ERROR_FLASH_OPERATION_FAILED;
729                         break;
730                 }
731
732                 if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr) {
733                         LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp);
734                         break;
735                 }
736
737                 /* Count the number of bytes available in the fifo without
738                  * crossing the wrap around. Make sure to not fill it completely,
739                  * because that would make wp == rp and that's the empty condition. */
740                 uint32_t thisrun_bytes;
741                 if (rp > wp)
742                         thisrun_bytes = rp - wp - 2;
743                 else if (rp > fifo_start_addr)
744                         thisrun_bytes = fifo_end_addr - wp;
745                 else
746                         thisrun_bytes = fifo_end_addr - wp - 2;
747
748                 if (thisrun_bytes == 0) {
749                         /* Throttle polling a bit if transfer is (much) faster than flash
750                          * programming. The exact delay shouldn't matter as long as it's
751                          * less than buffer size / flash speed. This is very unlikely to
752                          * run when using high latency connections such as USB. */
753                         alive_sleep(10);
754                         continue;
755                 }
756
757                 /* Limit to the amount of data we actually want to write */
758                 if (thisrun_bytes > count * 2)
759                         thisrun_bytes = count * 2;
760
761                 /* Write data to fifo */
762                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
763                 if (retval != ERROR_OK)
764                         break;
765
766                 /* Update counters and wrap write pointer */
767                 buffer += thisrun_bytes;
768                 count -= thisrun_bytes / 2;
769                 wp += thisrun_bytes;
770                 if (wp >= fifo_end_addr)
771                         wp = fifo_start_addr;
772
773                 /* Store updated write pointer to target */
774                 retval = target_write_u32(target, wp_addr, wp);
775                 if (retval != ERROR_OK)
776                         break;
777         }
778
779         if (retval != ERROR_OK) {
780                 /* abort flash write algorithm on target */
781                 target_write_u32(target, wp_addr, 0);
782         }
783
784         int retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params,
785                         0, 10000, &armv7m_info);
786         if (retval2 != ERROR_OK) {
787                 LOG_ERROR("error waiting for stm32x flash write algorithm");
788                 retval = retval2;
789         }
790
791         if (retval == ERROR_FLASH_OPERATION_FAILED) {
792                 LOG_ERROR("flash write failed at address 0x%"PRIx32,
793                                 buf_get_u32(reg_params[4].value, 0, 32));
794
795                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
796                         LOG_ERROR("flash memory not erased before writing");
797                         /* Clear but report errors */
798                         target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR);
799                 }
800
801                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
802                         LOG_ERROR("flash memory write protected");
803                         /* Clear but report errors */
804                         target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR);
805                 }
806         }
807
808 cleanup:
809         target_free_working_area(target, source);
810         target_free_working_area(target, stm32x_info->write_algorithm);
811
812         destroy_reg_param(&reg_params[0]);
813         destroy_reg_param(&reg_params[1]);
814         destroy_reg_param(&reg_params[2]);
815         destroy_reg_param(&reg_params[3]);
816         destroy_reg_param(&reg_params[4]);
817
818         return retval;
819 }
820
821 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
822                 uint32_t offset, uint32_t count)
823 {
824         struct target *target = bank->target;
825         uint32_t words_remaining = (count / 2);
826         uint32_t bytes_remaining = (count & 0x00000001);
827         uint32_t address = bank->base + offset;
828         uint32_t bytes_written = 0;
829         int retval;
830
831         if (bank->target->state != TARGET_HALTED) {
832                 LOG_ERROR("Target not halted");
833                 return ERROR_TARGET_NOT_HALTED;
834         }
835
836         if (offset & 0x1) {
837                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
838                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
839         }
840
841         /* unlock flash registers */
842         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
843         if (retval != ERROR_OK)
844                 return retval;
845         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
846         if (retval != ERROR_OK)
847                 return retval;
848
849         /* multiple half words (2-byte) to be programmed? */
850         if (words_remaining > 0) {
851                 /* try using a block write */
852                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
853                 if (retval != ERROR_OK) {
854                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
855                                 /* if block write failed (no sufficient working area),
856                                  * we use normal (slow) single dword accesses */
857                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
858                         }
859                 } else {
860                         buffer += words_remaining * 2;
861                         address += words_remaining * 2;
862                         words_remaining = 0;
863                 }
864         }
865
866         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
867                 return retval;
868
869         while (words_remaining > 0) {
870                 uint16_t value;
871                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
872
873                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
874                 if (retval != ERROR_OK)
875                         return retval;
876                 retval = target_write_u16(target, address, value);
877                 if (retval != ERROR_OK)
878                         return retval;
879
880                 retval = stm32x_wait_status_busy(bank, 5);
881                 if (retval != ERROR_OK)
882                         return retval;
883
884                 bytes_written += 2;
885                 words_remaining--;
886                 address += 2;
887         }
888
889         if (bytes_remaining) {
890                 uint16_t value = 0xffff;
891                 memcpy(&value, buffer + bytes_written, bytes_remaining);
892
893                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
894                 if (retval != ERROR_OK)
895                         return retval;
896                 retval = target_write_u16(target, address, value);
897                 if (retval != ERROR_OK)
898                         return retval;
899
900                 retval = stm32x_wait_status_busy(bank, 5);
901                 if (retval != ERROR_OK)
902                         return retval;
903         }
904
905         return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
906 }
907
908 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
909 {
910         /* This check the device CPUID core register to detect
911          * the M0 from the M3 devices. */
912
913         struct target *target = bank->target;
914         uint32_t cpuid, device_id_register = 0;
915
916         /* Get the CPUID from the ARM Core
917          * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
918         int retval = target_read_u32(target, 0xE000ED00, &cpuid);
919         if (retval != ERROR_OK)
920                 return retval;
921
922         if (((cpuid >> 4) & 0xFFF) == 0xC20) {
923                 /* 0xC20 is M0 devices */
924                 device_id_register = 0x40015800;
925         } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
926                 /* 0xC23 is M3 devices */
927                 device_id_register = 0xE0042000;
928         } else {
929                 LOG_ERROR("Cannot identify target as a stm32x");
930                 return ERROR_FAIL;
931         }
932
933         /* read stm32 device id register */
934         retval = target_read_u32(target, device_id_register, device_id);
935         if (retval != ERROR_OK)
936                 return retval;
937
938         return retval;
939 }
940
941 static int stm32x_probe(struct flash_bank *bank)
942 {
943         struct target *target = bank->target;
944         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
945         int i;
946         uint16_t flash_size_in_kb;
947         uint32_t device_id;
948         int page_size;
949         uint32_t base_address = 0x08000000;
950
951
952         stm32x_info->probed = 0;
953         stm32x_info->register_base = FLASH_REG_BASE_B0;
954
955         /* read stm32 device id register */
956         int retval = stm32x_get_device_id(bank, &device_id);
957         if (retval != ERROR_OK)
958                 return retval;
959
960         LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
961
962         /* get flash size from target. */
963         retval = target_read_u16(target, 0x1FFFF7E0, &flash_size_in_kb);
964         if (retval != ERROR_OK) {
965                 LOG_WARNING("failed reading flash size, default to max target family");
966                 /* failed reading flash size, default to max target family */
967                 flash_size_in_kb = 0xffff;
968         }
969
970         if ((device_id & 0xfff) == 0x410) {
971                 /* medium density - we have 1k pages
972                  * 4 pages for a protection area */
973                 page_size = 1024;
974                 stm32x_info->ppage_size = 4;
975
976                 /* check for early silicon */
977                 if (flash_size_in_kb == 0xffff) {
978                         /* number of sectors incorrect on revA */
979                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
980                         flash_size_in_kb = 128;
981                 }
982         } else if ((device_id & 0xfff) == 0x412) {
983                 /* low density - we have 1k pages
984                  * 4 pages for a protection area */
985                 page_size = 1024;
986                 stm32x_info->ppage_size = 4;
987
988                 /* check for early silicon */
989                 if (flash_size_in_kb == 0xffff) {
990                         /* number of sectors incorrect on revA */
991                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
992                         flash_size_in_kb = 32;
993                 }
994         } else if ((device_id & 0xfff) == 0x414) {
995                 /* high density - we have 2k pages
996                  * 2 pages for a protection area */
997                 page_size = 2048;
998                 stm32x_info->ppage_size = 2;
999
1000                 /* check for early silicon */
1001                 if (flash_size_in_kb == 0xffff) {
1002                         /* number of sectors incorrect on revZ */
1003                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
1004                         flash_size_in_kb = 512;
1005                 }
1006         } else if ((device_id & 0xfff) == 0x418) {
1007                 /* connectivity line density - we have 2k pages
1008                  * 2 pages for a protection area */
1009                 page_size = 2048;
1010                 stm32x_info->ppage_size = 2;
1011
1012                 /* check for early silicon */
1013                 if (flash_size_in_kb == 0xffff) {
1014                         /* number of sectors incorrect on revZ */
1015                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
1016                         flash_size_in_kb = 256;
1017                 }
1018         } else if ((device_id & 0xfff) == 0x420) {
1019                 /* value line density - we have 1k pages
1020                  * 4 pages for a protection area */
1021                 page_size = 1024;
1022                 stm32x_info->ppage_size = 4;
1023
1024                 /* check for early silicon */
1025                 if (flash_size_in_kb == 0xffff) {
1026                         /* number of sectors may be incorrrect on early silicon */
1027                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
1028                         flash_size_in_kb = 128;
1029                 }
1030         } else if ((device_id & 0xfff) == 0x428) {
1031                 /* value line High density - we have 2k pages
1032                  * 4 pages for a protection area */
1033                 page_size = 2048;
1034                 stm32x_info->ppage_size = 4;
1035
1036                 /* check for early silicon */
1037                 if (flash_size_in_kb == 0xffff) {
1038                         /* number of sectors may be incorrrect on early silicon */
1039                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
1040                         flash_size_in_kb = 128;
1041                 }
1042         } else if ((device_id & 0xfff) == 0x430) {
1043                 /* xl line density - we have 2k pages
1044                  * 2 pages for a protection area */
1045                 page_size = 2048;
1046                 stm32x_info->ppage_size = 2;
1047                 stm32x_info->has_dual_banks = true;
1048
1049                 /* check for early silicon */
1050                 if (flash_size_in_kb == 0xffff) {
1051                         /* number of sectors may be incorrrect on early silicon */
1052                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
1053                         flash_size_in_kb = 1024;
1054                 }
1055
1056                 /* split reported size into matching bank */
1057                 if (bank->base != 0x08080000) {
1058                         /* bank 0 will be fixed 512k */
1059                         flash_size_in_kb = 512;
1060                 } else {
1061                         flash_size_in_kb -= 512;
1062                         /* bank1 also uses a register offset */
1063                         stm32x_info->register_base = FLASH_REG_BASE_B1;
1064                         base_address = 0x08080000;
1065                 }
1066         } else if ((device_id & 0xfff) == 0x440) {
1067                 /* stm32f0x - we have 1k pages
1068                  * 4 pages for a protection area */
1069                 page_size = 1024;
1070                 stm32x_info->ppage_size = 4;
1071
1072                 /* check for early silicon */
1073                 if (flash_size_in_kb == 0xffff) {
1074                         /* number of sectors incorrect on revZ */
1075                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 64k flash");
1076                         flash_size_in_kb = 64;
1077                 }
1078         } else {
1079                 LOG_WARNING("Cannot identify target as a STM32 family.");
1080                 return ERROR_FAIL;
1081         }
1082
1083         LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
1084
1085         /* did we assign flash size? */
1086         assert(flash_size_in_kb != 0xffff);
1087
1088         /* calculate numbers of pages */
1089         int num_pages = flash_size_in_kb * 1024 / page_size;
1090
1091         /* check that calculation result makes sense */
1092         assert(num_pages > 0);
1093
1094         if (bank->sectors) {
1095                 free(bank->sectors);
1096                 bank->sectors = NULL;
1097         }
1098
1099         bank->base = base_address;
1100         bank->size = (num_pages * page_size);
1101         bank->num_sectors = num_pages;
1102         bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1103
1104         for (i = 0; i < num_pages; i++) {
1105                 bank->sectors[i].offset = i * page_size;
1106                 bank->sectors[i].size = page_size;
1107                 bank->sectors[i].is_erased = -1;
1108                 bank->sectors[i].is_protected = 1;
1109         }
1110
1111         stm32x_info->probed = 1;
1112
1113         return ERROR_OK;
1114 }
1115
1116 static int stm32x_auto_probe(struct flash_bank *bank)
1117 {
1118         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1119         if (stm32x_info->probed)
1120                 return ERROR_OK;
1121         return stm32x_probe(bank);
1122 }
1123
1124 #if 0
1125 COMMAND_HANDLER(stm32x_handle_part_id_command)
1126 {
1127         return ERROR_OK;
1128 }
1129 #endif
1130
1131 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1132 {
1133         uint32_t device_id;
1134         int printed;
1135
1136                 /* read stm32 device id register */
1137         int retval = stm32x_get_device_id(bank, &device_id);
1138         if (retval != ERROR_OK)
1139                 return retval;
1140
1141         if ((device_id & 0xfff) == 0x410) {
1142                 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1143                 buf += printed;
1144                 buf_size -= printed;
1145
1146                 switch (device_id >> 16) {
1147                         case 0x0000:
1148                                 snprintf(buf, buf_size, "A");
1149                                 break;
1150
1151                         case 0x2000:
1152                                 snprintf(buf, buf_size, "B");
1153                                 break;
1154
1155                         case 0x2001:
1156                                 snprintf(buf, buf_size, "Z");
1157                                 break;
1158
1159                         case 0x2003:
1160                                 snprintf(buf, buf_size, "Y");
1161                                 break;
1162
1163                         default:
1164                                 snprintf(buf, buf_size, "unknown");
1165                                 break;
1166                 }
1167         } else if ((device_id & 0xfff) == 0x412) {
1168                 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1169                 buf += printed;
1170                 buf_size -= printed;
1171
1172                 switch (device_id >> 16) {
1173                         case 0x1000:
1174                                 snprintf(buf, buf_size, "A");
1175                                 break;
1176
1177                         default:
1178                                 snprintf(buf, buf_size, "unknown");
1179                                 break;
1180                 }
1181         } else if ((device_id & 0xfff) == 0x414) {
1182                 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1183                 buf += printed;
1184                 buf_size -= printed;
1185
1186                 switch (device_id >> 16) {
1187                         case 0x1000:
1188                                 snprintf(buf, buf_size, "A");
1189                                 break;
1190
1191                         case 0x1001:
1192                                 snprintf(buf, buf_size, "Z");
1193                                 break;
1194
1195                         default:
1196                                 snprintf(buf, buf_size, "unknown");
1197                                 break;
1198                 }
1199         } else if ((device_id & 0xfff) == 0x418) {
1200                 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1201                 buf += printed;
1202                 buf_size -= printed;
1203
1204                 switch (device_id >> 16) {
1205                         case 0x1000:
1206                                 snprintf(buf, buf_size, "A");
1207                                 break;
1208
1209                         case 0x1001:
1210                                 snprintf(buf, buf_size, "Z");
1211                                 break;
1212
1213                         default:
1214                                 snprintf(buf, buf_size, "unknown");
1215                                 break;
1216                 }
1217         } else if ((device_id & 0xfff) == 0x420) {
1218                 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1219                 buf += printed;
1220                 buf_size -= printed;
1221
1222                 switch (device_id >> 16) {
1223                         case 0x1000:
1224                                 snprintf(buf, buf_size, "A");
1225                                 break;
1226
1227                         case 0x1001:
1228                                 snprintf(buf, buf_size, "Z");
1229                                 break;
1230
1231                         default:
1232                                 snprintf(buf, buf_size, "unknown");
1233                                 break;
1234                 }
1235         } else if ((device_id & 0xfff) == 0x428) {
1236                 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1237                 buf += printed;
1238                 buf_size -= printed;
1239
1240                 switch (device_id >> 16) {
1241                         case 0x1000:
1242                                 snprintf(buf, buf_size, "A");
1243                                 break;
1244
1245                         case 0x1001:
1246                                 snprintf(buf, buf_size, "Z");
1247                                 break;
1248
1249                         default:
1250                                 snprintf(buf, buf_size, "unknown");
1251                                 break;
1252                 }
1253         } else if ((device_id & 0xfff) == 0x430) {
1254                 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1255                 buf += printed;
1256                 buf_size -= printed;
1257
1258                 switch (device_id >> 16) {
1259                         case 0x1000:
1260                                 snprintf(buf, buf_size, "A");
1261                                 break;
1262
1263                         default:
1264                                 snprintf(buf, buf_size, "unknown");
1265                                 break;
1266                 }
1267         } else if ((device_id & 0xfff) == 0x440) {
1268                 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1269                 buf += printed;
1270                 buf_size -= printed;
1271
1272                 switch (device_id >> 16) {
1273                         case 0x1000:
1274                                 snprintf(buf, buf_size, "A");
1275                                 break;
1276
1277                         default:
1278                                 snprintf(buf, buf_size, "unknown");
1279                                 break;
1280                 }
1281         } else {
1282                 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1283                 return ERROR_FAIL;
1284         }
1285
1286         return ERROR_OK;
1287 }
1288
1289 COMMAND_HANDLER(stm32x_handle_lock_command)
1290 {
1291         struct target *target = NULL;
1292         struct stm32x_flash_bank *stm32x_info = NULL;
1293
1294         if (CMD_ARGC < 1)
1295                 return ERROR_COMMAND_SYNTAX_ERROR;
1296
1297         struct flash_bank *bank;
1298         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1299         if (ERROR_OK != retval)
1300                 return retval;
1301
1302         stm32x_info = bank->driver_priv;
1303
1304         target = bank->target;
1305
1306         if (target->state != TARGET_HALTED) {
1307                 LOG_ERROR("Target not halted");
1308                 return ERROR_TARGET_NOT_HALTED;
1309         }
1310
1311         retval = stm32x_check_operation_supported(bank);
1312         if (ERROR_OK != retval)
1313                 return retval;
1314
1315         if (stm32x_erase_options(bank) != ERROR_OK) {
1316                 command_print(CMD_CTX, "stm32x failed to erase options");
1317                 return ERROR_OK;
1318         }
1319
1320         /* set readout protection */
1321         stm32x_info->option_bytes.RDP = 0;
1322
1323         if (stm32x_write_options(bank) != ERROR_OK) {
1324                 command_print(CMD_CTX, "stm32x failed to lock device");
1325                 return ERROR_OK;
1326         }
1327
1328         command_print(CMD_CTX, "stm32x locked");
1329
1330         return ERROR_OK;
1331 }
1332
1333 COMMAND_HANDLER(stm32x_handle_unlock_command)
1334 {
1335         struct target *target = NULL;
1336
1337         if (CMD_ARGC < 1)
1338                 return ERROR_COMMAND_SYNTAX_ERROR;
1339
1340         struct flash_bank *bank;
1341         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1342         if (ERROR_OK != retval)
1343                 return retval;
1344
1345         target = bank->target;
1346
1347         if (target->state != TARGET_HALTED) {
1348                 LOG_ERROR("Target not halted");
1349                 return ERROR_TARGET_NOT_HALTED;
1350         }
1351
1352         retval = stm32x_check_operation_supported(bank);
1353         if (ERROR_OK != retval)
1354                 return retval;
1355
1356         if (stm32x_erase_options(bank) != ERROR_OK) {
1357                 command_print(CMD_CTX, "stm32x failed to unlock device");
1358                 return ERROR_OK;
1359         }
1360
1361         if (stm32x_write_options(bank) != ERROR_OK) {
1362                 command_print(CMD_CTX, "stm32x failed to lock device");
1363                 return ERROR_OK;
1364         }
1365
1366         command_print(CMD_CTX, "stm32x unlocked.\n"
1367                         "INFO: a reset or power cycle is required "
1368                         "for the new settings to take effect.");
1369
1370         return ERROR_OK;
1371 }
1372
1373 COMMAND_HANDLER(stm32x_handle_options_read_command)
1374 {
1375         uint32_t optionbyte;
1376         struct target *target = NULL;
1377         struct stm32x_flash_bank *stm32x_info = NULL;
1378
1379         if (CMD_ARGC < 1)
1380                 return ERROR_COMMAND_SYNTAX_ERROR;
1381
1382         struct flash_bank *bank;
1383         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1384         if (ERROR_OK != retval)
1385                 return retval;
1386
1387         stm32x_info = bank->driver_priv;
1388
1389         target = bank->target;
1390
1391         if (target->state != TARGET_HALTED) {
1392                 LOG_ERROR("Target not halted");
1393                 return ERROR_TARGET_NOT_HALTED;
1394         }
1395
1396         retval = stm32x_check_operation_supported(bank);
1397         if (ERROR_OK != retval)
1398                 return retval;
1399
1400         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1401         if (retval != ERROR_OK)
1402                 return retval;
1403         command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1404
1405         if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1406                 command_print(CMD_CTX, "Option Byte Complement Error");
1407
1408         if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1409                 command_print(CMD_CTX, "Readout Protection On");
1410         else
1411                 command_print(CMD_CTX, "Readout Protection Off");
1412
1413         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1414                 command_print(CMD_CTX, "Software Watchdog");
1415         else
1416                 command_print(CMD_CTX, "Hardware Watchdog");
1417
1418         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1419                 command_print(CMD_CTX, "Stop: No reset generated");
1420         else
1421                 command_print(CMD_CTX, "Stop: Reset generated");
1422
1423         if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1424                 command_print(CMD_CTX, "Standby: No reset generated");
1425         else
1426                 command_print(CMD_CTX, "Standby: Reset generated");
1427
1428         if (stm32x_info->has_dual_banks) {
1429                 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1430                         command_print(CMD_CTX, "Boot: Bank 0");
1431                 else
1432                         command_print(CMD_CTX, "Boot: Bank 1");
1433         }
1434
1435         return ERROR_OK;
1436 }
1437
1438 COMMAND_HANDLER(stm32x_handle_options_write_command)
1439 {
1440         struct target *target = NULL;
1441         struct stm32x_flash_bank *stm32x_info = NULL;
1442         uint16_t optionbyte = 0xF8;
1443
1444         if (CMD_ARGC < 4)
1445                 return ERROR_COMMAND_SYNTAX_ERROR;
1446
1447         struct flash_bank *bank;
1448         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1449         if (ERROR_OK != retval)
1450                 return retval;
1451
1452         stm32x_info = bank->driver_priv;
1453
1454         target = bank->target;
1455
1456         if (target->state != TARGET_HALTED) {
1457                 LOG_ERROR("Target not halted");
1458                 return ERROR_TARGET_NOT_HALTED;
1459         }
1460
1461         retval = stm32x_check_operation_supported(bank);
1462         if (ERROR_OK != retval)
1463                 return retval;
1464
1465         /* REVISIT: ignores some options which we will display...
1466          * and doesn't insist on the specified syntax.
1467          */
1468
1469         /* OPT_RDWDGSW */
1470         if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1471                 optionbyte |= (1 << 0);
1472         else    /* REVISIT must be "HWWDG" then ... */
1473                 optionbyte &= ~(1 << 0);
1474
1475         /* OPT_RDRSTSTOP */
1476         if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1477                 optionbyte |= (1 << 1);
1478         else    /* REVISIT must be "RSTSTNDBY" then ... */
1479                 optionbyte &= ~(1 << 1);
1480
1481         /* OPT_RDRSTSTDBY */
1482         if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1483                 optionbyte |= (1 << 2);
1484         else    /* REVISIT must be "RSTSTOP" then ... */
1485                 optionbyte &= ~(1 << 2);
1486
1487         if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1488                 /* OPT_BFB2 */
1489                 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1490                         optionbyte |= (1 << 3);
1491                 else
1492                         optionbyte &= ~(1 << 3);
1493         }
1494
1495         if (stm32x_erase_options(bank) != ERROR_OK) {
1496                 command_print(CMD_CTX, "stm32x failed to erase options");
1497                 return ERROR_OK;
1498         }
1499
1500         stm32x_info->option_bytes.user_options = optionbyte;
1501
1502         if (stm32x_write_options(bank) != ERROR_OK) {
1503                 command_print(CMD_CTX, "stm32x failed to write options");
1504                 return ERROR_OK;
1505         }
1506
1507         command_print(CMD_CTX, "stm32x write options complete.\n"
1508                                 "INFO: a reset or power cycle is required "
1509                                 "for the new settings to take effect.");
1510
1511         return ERROR_OK;
1512 }
1513
1514 static int stm32x_mass_erase(struct flash_bank *bank)
1515 {
1516         struct target *target = bank->target;
1517
1518         if (target->state != TARGET_HALTED) {
1519                 LOG_ERROR("Target not halted");
1520                 return ERROR_TARGET_NOT_HALTED;
1521         }
1522
1523         /* unlock option flash registers */
1524         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1525         if (retval != ERROR_OK)
1526                 return retval;
1527         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1528         if (retval != ERROR_OK)
1529                 return retval;
1530
1531         /* mass erase flash memory */
1532         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1533         if (retval != ERROR_OK)
1534                 return retval;
1535         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1536                         FLASH_MER | FLASH_STRT);
1537         if (retval != ERROR_OK)
1538                 return retval;
1539
1540         retval = stm32x_wait_status_busy(bank, 100);
1541         if (retval != ERROR_OK)
1542                 return retval;
1543
1544         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1545         if (retval != ERROR_OK)
1546                 return retval;
1547
1548         return ERROR_OK;
1549 }
1550
1551 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1552 {
1553         int i;
1554
1555         if (CMD_ARGC < 1)
1556                 return ERROR_COMMAND_SYNTAX_ERROR;
1557
1558         struct flash_bank *bank;
1559         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1560         if (ERROR_OK != retval)
1561                 return retval;
1562
1563         retval = stm32x_mass_erase(bank);
1564         if (retval == ERROR_OK) {
1565                 /* set all sectors as erased */
1566                 for (i = 0; i < bank->num_sectors; i++)
1567                         bank->sectors[i].is_erased = 1;
1568
1569                 command_print(CMD_CTX, "stm32x mass erase complete");
1570         } else
1571                 command_print(CMD_CTX, "stm32x mass erase failed");
1572
1573         return retval;
1574 }
1575
1576 static const struct command_registration stm32x_exec_command_handlers[] = {
1577         {
1578                 .name = "lock",
1579                 .handler = stm32x_handle_lock_command,
1580                 .mode = COMMAND_EXEC,
1581                 .usage = "bank_id",
1582                 .help = "Lock entire flash device.",
1583         },
1584         {
1585                 .name = "unlock",
1586                 .handler = stm32x_handle_unlock_command,
1587                 .mode = COMMAND_EXEC,
1588                 .usage = "bank_id",
1589                 .help = "Unlock entire protected flash device.",
1590         },
1591         {
1592                 .name = "mass_erase",
1593                 .handler = stm32x_handle_mass_erase_command,
1594                 .mode = COMMAND_EXEC,
1595                 .usage = "bank_id",
1596                 .help = "Erase entire flash device.",
1597         },
1598         {
1599                 .name = "options_read",
1600                 .handler = stm32x_handle_options_read_command,
1601                 .mode = COMMAND_EXEC,
1602                 .usage = "bank_id",
1603                 .help = "Read and display device option byte.",
1604         },
1605         {
1606                 .name = "options_write",
1607                 .handler = stm32x_handle_options_write_command,
1608                 .mode = COMMAND_EXEC,
1609                 .usage = "bank_id ('SWWDG'|'HWWDG') "
1610                         "('RSTSTNDBY'|'NORSTSTNDBY') "
1611                         "('RSTSTOP'|'NORSTSTOP')",
1612                 .help = "Replace bits in device option byte.",
1613         },
1614         COMMAND_REGISTRATION_DONE
1615 };
1616
1617 static const struct command_registration stm32x_command_handlers[] = {
1618         {
1619                 .name = "stm32f1x",
1620                 .mode = COMMAND_ANY,
1621                 .help = "stm32f1x flash command group",
1622                 .usage = "",
1623                 .chain = stm32x_exec_command_handlers,
1624         },
1625         COMMAND_REGISTRATION_DONE
1626 };
1627
1628 struct flash_driver stm32f1x_flash = {
1629         .name = "stm32f1x",
1630         .commands = stm32x_command_handlers,
1631         .flash_bank_command = stm32x_flash_bank_command,
1632         .erase = stm32x_erase,
1633         .protect = stm32x_protect,
1634         .write = stm32x_write,
1635         .read = default_flash_read,
1636         .probe = stm32x_probe,
1637         .auto_probe = stm32x_auto_probe,
1638         .erase_check = default_flash_mem_blank_check,
1639         .protect_check = stm32x_protect_check,
1640         .info = get_stm32x_info,
1641 };