]> git.sur5r.net Git - openocd/blob - src/flash/nor/stm32f1x.c
stm32f1x: use async algorithm in flash programming routine
[openocd] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2011 by Andreas Fritiofson                              *
9  *   andreas.fritiofson@gmail.com                                          *
10  *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "imp.h"
31 #include <helper/binarybuffer.h>
32 #include <target/algorithm.h>
33 #include <target/armv7m.h>
34
35 /* stm32x register locations */
36
37 #define FLASH_REG_BASE_B0 0x40022000
38 #define FLASH_REG_BASE_B1 0x40022040
39
40 #define STM32_FLASH_ACR     0x00
41 #define STM32_FLASH_KEYR    0x04
42 #define STM32_FLASH_OPTKEYR 0x08
43 #define STM32_FLASH_SR      0x0C
44 #define STM32_FLASH_CR      0x10
45 #define STM32_FLASH_AR      0x14
46 #define STM32_FLASH_OBR     0x1C
47 #define STM32_FLASH_WRPR    0x20
48
49 /* TODO: Check if code using these really should be hard coded to bank 0.
50  * There are valid cases, on dual flash devices the protection of the
51  * second bank is done on the bank0 reg's. */
52 #define STM32_FLASH_ACR_B0     0x40022000
53 #define STM32_FLASH_KEYR_B0    0x40022004
54 #define STM32_FLASH_OPTKEYR_B0 0x40022008
55 #define STM32_FLASH_SR_B0      0x4002200C
56 #define STM32_FLASH_CR_B0      0x40022010
57 #define STM32_FLASH_AR_B0      0x40022014
58 #define STM32_FLASH_OBR_B0     0x4002201C
59 #define STM32_FLASH_WRPR_B0    0x40022020
60
61 /* option byte location */
62
63 #define STM32_OB_RDP            0x1FFFF800
64 #define STM32_OB_USER           0x1FFFF802
65 #define STM32_OB_DATA0          0x1FFFF804
66 #define STM32_OB_DATA1          0x1FFFF806
67 #define STM32_OB_WRP0           0x1FFFF808
68 #define STM32_OB_WRP1           0x1FFFF80A
69 #define STM32_OB_WRP2           0x1FFFF80C
70 #define STM32_OB_WRP3           0x1FFFF80E
71
72 /* FLASH_CR register bits */
73
74 #define FLASH_PG                (1 << 0)
75 #define FLASH_PER               (1 << 1)
76 #define FLASH_MER               (1 << 2)
77 #define FLASH_OPTPG             (1 << 4)
78 #define FLASH_OPTER             (1 << 5)
79 #define FLASH_STRT              (1 << 6)
80 #define FLASH_LOCK              (1 << 7)
81 #define FLASH_OPTWRE    (1 << 9)
82
83 /* FLASH_SR register bits */
84
85 #define FLASH_BSY               (1 << 0)
86 #define FLASH_PGERR             (1 << 2)
87 #define FLASH_WRPRTERR  (1 << 4)
88 #define FLASH_EOP               (1 << 5)
89
90 /* STM32_FLASH_OBR bit definitions (reading) */
91
92 #define OPT_ERROR               0
93 #define OPT_READOUT             1
94 #define OPT_RDWDGSW             2
95 #define OPT_RDRSTSTOP   3
96 #define OPT_RDRSTSTDBY  4
97 #define OPT_BFB2                5       /* dual flash bank only */
98
99 /* register unlock keys */
100
101 #define KEY1                    0x45670123
102 #define KEY2                    0xCDEF89AB
103
104 struct stm32x_options
105 {
106         uint16_t RDP;
107         uint16_t user_options;
108         uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank
112 {
113         struct stm32x_options option_bytes;
114         struct working_area *write_algorithm;
115         int ppage_size;
116         int probed;
117
118         bool has_dual_banks;
119         /* used to access dual flash bank stm32xl */
120         uint32_t register_base;
121 };
122
123 static int stm32x_mass_erase(struct flash_bank *bank);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126  */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129         struct stm32x_flash_bank *stm32x_info;
130
131         if (CMD_ARGC < 6)
132         {
133                 LOG_WARNING("incomplete flash_bank stm32x configuration");
134                 return ERROR_FLASH_BANK_INVALID;
135         }
136
137         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
138         bank->driver_priv = stm32x_info;
139
140         stm32x_info->write_algorithm = NULL;
141         stm32x_info->probed = 0;
142         stm32x_info->has_dual_banks = false;
143         stm32x_info->register_base = FLASH_REG_BASE_B0;
144
145         return ERROR_OK;
146 }
147
148 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
149 {
150         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
151         return reg + stm32x_info->register_base;
152 }
153
154 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
155 {
156         struct target *target = bank->target;
157         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
158 }
159
160 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
161 {
162         struct target *target = bank->target;
163         uint32_t status;
164         int retval = ERROR_OK;
165
166         /* wait for busy to clear */
167         for (;;)
168         {
169                 retval = stm32x_get_flash_status(bank, &status);
170                 if (retval != ERROR_OK)
171                         return retval;
172                 LOG_DEBUG("status: 0x%" PRIx32 "", status);
173                 if ((status & FLASH_BSY) == 0)
174                         break;
175                 if (timeout-- <= 0)
176                 {
177                         LOG_ERROR("timed out waiting for flash");
178                         return ERROR_FAIL;
179                 }
180                 alive_sleep(1);
181         }
182
183         if (status & FLASH_WRPRTERR)
184         {
185                 LOG_ERROR("stm32x device protected");
186                 retval = ERROR_FAIL;
187         }
188
189         if (status & FLASH_PGERR)
190         {
191                 LOG_ERROR("stm32x device programming failed");
192                 retval = ERROR_FAIL;
193         }
194
195         /* Clear but report errors */
196         if (status & (FLASH_WRPRTERR | FLASH_PGERR))
197         {
198                 /* If this operation fails, we ignore it and report the original
199                  * retval
200                  */
201                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
202                                 FLASH_WRPRTERR | FLASH_PGERR);
203         }
204         return retval;
205 }
206
207 int stm32x_check_operation_supported(struct flash_bank *bank)
208 {
209         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
210
211         /* if we have a dual flash bank device then
212          * we need to perform option byte stuff on bank0 only */
213         if (stm32x_info->register_base != FLASH_REG_BASE_B0)
214         {
215                 LOG_ERROR("Option Byte Operation's must use bank0");
216                 return ERROR_FLASH_OPERATION_FAILED;
217         }
218
219         return ERROR_OK;
220 }
221
222 static int stm32x_read_options(struct flash_bank *bank)
223 {
224         uint32_t optiondata;
225         struct stm32x_flash_bank *stm32x_info = NULL;
226         struct target *target = bank->target;
227
228         stm32x_info = bank->driver_priv;
229
230         /* read current option bytes */
231         int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
232         if (retval != ERROR_OK)
233                 return retval;
234
235         stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
236         stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
237
238         if (optiondata & (1 << OPT_READOUT))
239                 LOG_INFO("Device Security Bit Set");
240
241         /* each bit refers to a 4bank protection */
242         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
243         if (retval != ERROR_OK)
244                 return retval;
245
246         stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
247         stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
248         stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
249         stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
250
251         return ERROR_OK;
252 }
253
254 static int stm32x_erase_options(struct flash_bank *bank)
255 {
256         struct stm32x_flash_bank *stm32x_info = NULL;
257         struct target *target = bank->target;
258
259         stm32x_info = bank->driver_priv;
260
261         /* read current options */
262         stm32x_read_options(bank);
263
264         /* unlock flash registers */
265         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
266         if (retval != ERROR_OK)
267                 return retval;
268
269         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         /* unlock option flash registers */
274         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
275         if (retval != ERROR_OK)
276                 return retval;
277         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
278         if (retval != ERROR_OK)
279                 return retval;
280
281         /* erase option bytes */
282         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
283         if (retval != ERROR_OK)
284                 return retval;
285         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
286         if (retval != ERROR_OK)
287                 return retval;
288
289         retval = stm32x_wait_status_busy(bank, 10);
290         if (retval != ERROR_OK)
291                 return retval;
292
293         /* clear readout protection and complementary option bytes
294          * this will also force a device unlock if set */
295         stm32x_info->option_bytes.RDP = 0x5AA5;
296
297         return ERROR_OK;
298 }
299
300 static int stm32x_write_options(struct flash_bank *bank)
301 {
302         struct stm32x_flash_bank *stm32x_info = NULL;
303         struct target *target = bank->target;
304
305         stm32x_info = bank->driver_priv;
306
307         /* unlock flash registers */
308         int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
309         if (retval != ERROR_OK)
310                 return retval;
311         retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
312         if (retval != ERROR_OK)
313                 return retval;
314
315         /* unlock option flash registers */
316         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
317         if (retval != ERROR_OK)
318                 return retval;
319         retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
320         if (retval != ERROR_OK)
321                 return retval;
322
323         /* program option bytes */
324         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
325         if (retval != ERROR_OK)
326                 return retval;
327
328         /* write user option byte */
329         retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
330         if (retval != ERROR_OK)
331                 return retval;
332
333         retval = stm32x_wait_status_busy(bank, 10);
334         if (retval != ERROR_OK)
335                 return retval;
336
337         /* write protection byte 1 */
338         retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
339         if (retval != ERROR_OK)
340                 return retval;
341
342         retval = stm32x_wait_status_busy(bank, 10);
343         if (retval != ERROR_OK)
344                 return retval;
345
346         /* write protection byte 2 */
347         retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
348         if (retval != ERROR_OK)
349                 return retval;
350
351         retval = stm32x_wait_status_busy(bank, 10);
352         if (retval != ERROR_OK)
353                 return retval;
354
355         /* write protection byte 3 */
356         retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
357         if (retval != ERROR_OK)
358                 return retval;
359
360         retval = stm32x_wait_status_busy(bank, 10);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         /* write protection byte 4 */
365         retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
366         if (retval != ERROR_OK)
367                 return retval;
368
369         retval = stm32x_wait_status_busy(bank, 10);
370         if (retval != ERROR_OK)
371                 return retval;
372
373         /* write readout protection bit */
374         retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
375         if (retval != ERROR_OK)
376                 return retval;
377
378         retval = stm32x_wait_status_busy(bank, 10);
379         if (retval != ERROR_OK)
380                 return retval;
381
382         retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
383         if (retval != ERROR_OK)
384                 return retval;
385
386         return ERROR_OK;
387 }
388
389 static int stm32x_protect_check(struct flash_bank *bank)
390 {
391         struct target *target = bank->target;
392         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
393
394         uint32_t protection;
395         int i, s;
396         int num_bits;
397         int set;
398
399         if (target->state != TARGET_HALTED)
400         {
401                 LOG_ERROR("Target not halted");
402                 return ERROR_TARGET_NOT_HALTED;
403         }
404
405         int retval = stm32x_check_operation_supported(bank);
406         if (ERROR_OK != retval)
407                 return retval;
408
409         /* medium density - each bit refers to a 4bank protection
410          * high density - each bit refers to a 2bank protection */
411         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
412         if (retval != ERROR_OK)
413                 return retval;
414
415         /* medium density - each protection bit is for 4 * 1K pages
416          * high density - each protection bit is for 2 * 2K pages */
417         num_bits = (bank->num_sectors / stm32x_info->ppage_size);
418
419         if (stm32x_info->ppage_size == 2)
420         {
421                 /* high density flash/connectivity line protection */
422
423                 set = 1;
424
425                 if (protection & (1 << 31))
426                         set = 0;
427
428                 /* bit 31 controls sector 62 - 255 protection for high density
429                  * bit 31 controls sector 62 - 127 protection for connectivity line */
430                 for (s = 62; s < bank->num_sectors; s++)
431                 {
432                         bank->sectors[s].is_protected = set;
433                 }
434
435                 if (bank->num_sectors > 61)
436                         num_bits = 31;
437
438                 for (i = 0; i < num_bits; i++)
439                 {
440                         set = 1;
441
442                         if (protection & (1 << i))
443                                 set = 0;
444
445                         for (s = 0; s < stm32x_info->ppage_size; s++)
446                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
447                 }
448         }
449         else
450         {
451                 /* low/medium density flash protection */
452                 for (i = 0; i < num_bits; i++)
453                 {
454                         set = 1;
455
456                         if (protection & (1 << i))
457                                 set = 0;
458
459                         for (s = 0; s < stm32x_info->ppage_size; s++)
460                                 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
461                 }
462         }
463
464         return ERROR_OK;
465 }
466
467 static int stm32x_erase(struct flash_bank *bank, int first, int last)
468 {
469         struct target *target = bank->target;
470         int i;
471
472         if (bank->target->state != TARGET_HALTED)
473         {
474                 LOG_ERROR("Target not halted");
475                 return ERROR_TARGET_NOT_HALTED;
476         }
477
478         if ((first == 0) && (last == (bank->num_sectors - 1)))
479         {
480                 return stm32x_mass_erase(bank);
481         }
482
483         /* unlock flash registers */
484         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
485         if (retval != ERROR_OK)
486                 return retval;
487         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         for (i = first; i <= last; i++)
492         {
493                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
494                 if (retval != ERROR_OK)
495                         return retval;
496                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
497                                 bank->base + bank->sectors[i].offset);
498                 if (retval != ERROR_OK)
499                         return retval;
500                 retval = target_write_u32(target,
501                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
502                 if (retval != ERROR_OK)
503                         return retval;
504
505                 retval = stm32x_wait_status_busy(bank, 100);
506                 if (retval != ERROR_OK)
507                         return retval;
508
509                 bank->sectors[i].is_erased = 1;
510         }
511
512         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
513         if (retval != ERROR_OK)
514                 return retval;
515
516         return ERROR_OK;
517 }
518
519 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
520 {
521         struct stm32x_flash_bank *stm32x_info = NULL;
522         struct target *target = bank->target;
523         uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
524         int i, reg, bit;
525         int status;
526         uint32_t protection;
527
528         stm32x_info = bank->driver_priv;
529
530         if (target->state != TARGET_HALTED)
531         {
532                 LOG_ERROR("Target not halted");
533                 return ERROR_TARGET_NOT_HALTED;
534         }
535
536         int retval = stm32x_check_operation_supported(bank);
537         if (ERROR_OK != retval)
538                 return retval;
539
540         if ((first % stm32x_info->ppage_size) != 0)
541         {
542                 LOG_WARNING("aligned start protect sector to a %d sector boundary",
543                                 stm32x_info->ppage_size);
544                 first = first - (first % stm32x_info->ppage_size);
545         }
546         if (((last + 1) % stm32x_info->ppage_size) != 0)
547         {
548                 LOG_WARNING("aligned end protect sector to a %d sector boundary",
549                                 stm32x_info->ppage_size);
550                 last++;
551                 last = last - (last % stm32x_info->ppage_size);
552                 last--;
553         }
554
555         /* medium density - each bit refers to a 4bank protection
556          * high density - each bit refers to a 2bank protection */
557         retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
558         if (retval != ERROR_OK)
559                 return retval;
560
561         prot_reg[0] = (uint16_t)protection;
562         prot_reg[1] = (uint16_t)(protection >> 8);
563         prot_reg[2] = (uint16_t)(protection >> 16);
564         prot_reg[3] = (uint16_t)(protection >> 24);
565
566         if (stm32x_info->ppage_size == 2)
567         {
568                 /* high density flash */
569
570                 /* bit 7 controls sector 62 - 255 protection */
571                 if (last > 61)
572                 {
573                         if (set)
574                                 prot_reg[3] &= ~(1 << 7);
575                         else
576                                 prot_reg[3] |= (1 << 7);
577                 }
578
579                 if (first > 61)
580                         first = 62;
581                 if (last > 61)
582                         last = 61;
583
584                 for (i = first; i <= last; i++)
585                 {
586                         reg = (i / stm32x_info->ppage_size) / 8;
587                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
588
589                         if (set)
590                                 prot_reg[reg] &= ~(1 << bit);
591                         else
592                                 prot_reg[reg] |= (1 << bit);
593                 }
594         }
595         else
596         {
597                 /* medium density flash */
598                 for (i = first; i <= last; i++)
599                 {
600                         reg = (i / stm32x_info->ppage_size) / 8;
601                         bit = (i / stm32x_info->ppage_size) - (reg * 8);
602
603                         if (set)
604                                 prot_reg[reg] &= ~(1 << bit);
605                         else
606                                 prot_reg[reg] |= (1 << bit);
607                 }
608         }
609
610         if ((status = stm32x_erase_options(bank)) != ERROR_OK)
611                 return status;
612
613         stm32x_info->option_bytes.protection[0] = prot_reg[0];
614         stm32x_info->option_bytes.protection[1] = prot_reg[1];
615         stm32x_info->option_bytes.protection[2] = prot_reg[2];
616         stm32x_info->option_bytes.protection[3] = prot_reg[3];
617
618         return stm32x_write_options(bank);
619 }
620
621 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
622                 uint32_t offset, uint32_t count)
623 {
624         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
625         struct target *target = bank->target;
626         uint32_t buffer_size = 16384;
627         struct working_area *source;
628         uint32_t address = bank->base + offset;
629         struct reg_param reg_params[5];
630         struct armv7m_algorithm armv7m_info;
631         int retval = ERROR_OK;
632
633         /* see contrib/loaders/flash/stm32f1x.S for src */
634
635         static const uint8_t stm32x_flash_write_code[] = {
636                 /* #define STM32_FLASH_CR_OFFSET 0x10 */
637                 /* #define STM32_FLASH_SR_OFFSET 0x0C */
638                 /* wait_fifo: */
639                         0x16, 0x68,             /* ldr          r6, [r2, #0] */
640                         0x00, 0x2e,             /* cmp          r6, #0 */
641                         0x1a, 0xd0,             /* beq          exit */
642                         0x55, 0x68,             /* ldr          r5, [r2, #4] */
643                         0xb5, 0x42,             /* cmp          r5, r6 */
644                         0xf9, 0xd0,             /* beq          wait_fifo */
645                         0x01, 0x26,             /* movs         r6, #1 */
646                         0x06, 0x61,             /* str          r6, [r0, #STM32_FLASH_CR_OFFSET] */
647                         0x35, 0xf8, 0x02, 0x6b, /* ldrh         r6, [r5], #2 */
648                         0x24, 0xf8, 0x02, 0x6b, /* strh         r6, [r4], #2 */
649                 /* busy: */
650                         0xc6, 0x68,             /* ldr          r6, [r0, #STM32_FLASH_SR_OFFSET] */
651                         0x16, 0xf0, 0x01, 0x0f, /* tst          r6, #1 */
652                         0xfb, 0xd1,             /* bne          busy */
653                         0x16, 0xf0, 0x14, 0x0f, /* tst          r6, #0x14 */
654                         0x07, 0xd1,             /* bne          error */
655                         0x9d, 0x42,             /* cmp          r5, r3 */
656                         0x28, 0xbf,             /* it           cs */
657                         0x02, 0xf1, 0x08, 0x05, /* addcs        r5, r2, #8 */
658                         0x55, 0x60,             /* str          r5, [r2, #4] */
659                         0x01, 0x39,             /* subs         r1, r1, #1 */
660                         0x19, 0xb1,             /* cbz          r1, exit */
661                         0xe4, 0xe7,             /* b            wait_fifo */
662                 /* error: */
663                         0x00, 0x20,             /* movs         r0, #0 */
664                         0xc2, 0xf8,     0x02, 0x00, /* str      r0, [r2, #2] */
665                 /* exit: */
666                         0x30, 0x46,             /* mov          r0, r6 */
667                         0x00, 0xbe,             /* bkpt         #0 */
668         };
669
670         /* flash write code */
671         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
672                         &stm32x_info->write_algorithm) != ERROR_OK)
673         {
674                 LOG_WARNING("no working area available, can't do block memory writes");
675                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
676         };
677
678         if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
679                         sizeof(stm32x_flash_write_code),
680                         (uint8_t*)stm32x_flash_write_code)) != ERROR_OK)
681                 return retval;
682
683         /* memory buffer */
684         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
685         {
686                 buffer_size /= 2;
687                 buffer_size &= ~3UL; // Make sure it's 4 byte aligned
688                 if (buffer_size <= 256)
689                 {
690                         /* if we already allocated the writing code, but failed to get a
691                          * buffer, free the algorithm */
692                         if (stm32x_info->write_algorithm)
693                                 target_free_working_area(target, stm32x_info->write_algorithm);
694
695                         LOG_WARNING("no large enough working area available, can't do block memory writes");
696                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
697                 }
698         };
699
700         /* Set up working area. First word is write pointer, second word is read pointer,
701          * rest is fifo data area. */
702         uint32_t wp_addr = source->address;
703         uint32_t rp_addr = source->address + 4;
704         uint32_t fifo_start_addr = source->address + 8;
705         uint32_t fifo_end_addr = source->address + source->size;
706
707         uint32_t wp = fifo_start_addr;
708         uint32_t rp = fifo_start_addr;
709
710         retval = target_write_u32(target, wp_addr, wp);
711         if (retval != ERROR_OK)
712                 return retval;
713         retval = target_write_u32(target, rp_addr, rp);
714         if (retval != ERROR_OK)
715                 return retval;
716
717         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
718         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
719         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* buffer start */
720         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* buffer end */
721         init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
722
723         buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
724         buf_set_u32(reg_params[1].value, 0, 32, count);
725         buf_set_u32(reg_params[2].value, 0, 32, source->address);
726         buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
727         buf_set_u32(reg_params[4].value, 0, 32, address);
728
729         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
730         armv7m_info.core_mode = ARMV7M_MODE_ANY;
731
732         /* Start up algorithm on target and let it idle while writing the first chunk */
733         if ((retval = target_start_algorithm(target, 0, NULL, 5, reg_params,
734                         stm32x_info->write_algorithm->address,
735                         0,
736                         &armv7m_info)) != ERROR_OK)
737         {
738                 LOG_ERROR("error starting stm32x flash write algorithm");
739                 goto cleanup;
740         }
741
742         while (count > 0)
743         {
744                 retval = target_read_u32(target, rp_addr, &rp);
745                 if (retval != ERROR_OK)
746                 {
747                         LOG_ERROR("failed to get read pointer");
748                         break;
749                 }
750
751                 LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp);
752
753                 if (rp == 0)
754                 {
755                         LOG_ERROR("flash write algorithm aborted by target");
756                         retval = ERROR_FLASH_OPERATION_FAILED;
757                         break;
758                 }
759
760                 if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr)
761                 {
762                         LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp);
763                         break;
764                 }
765
766                 /* Count the number of bytes available in the fifo without
767                  * crossing the wrap around. Make sure to not fill it completely,
768                  * because that would make wp == rp and that's the empty condition. */
769                 uint32_t thisrun_bytes;
770                 if (rp > wp)
771                         thisrun_bytes = rp - wp - 2;
772                 else if (rp > fifo_start_addr)
773                         thisrun_bytes = fifo_end_addr - wp;
774                 else
775                         thisrun_bytes = fifo_end_addr - wp - 2;
776
777                 if (thisrun_bytes == 0)
778                 {
779                         /* Throttle polling a bit if transfer is (much) faster than flash
780                          * programming. The exact delay shouldn't matter as long as it's
781                          * less than buffer size / flash speed. This is very unlikely to
782                          * run when using high latency connections such as USB. */
783                         alive_sleep(10);
784                         continue;
785                 }
786
787                 /* Limit to the amount of data we actually want to write */
788                 if (thisrun_bytes > count * 2)
789                         thisrun_bytes = count * 2;
790
791                 /* Write data to fifo */
792                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
793                 if (retval != ERROR_OK)
794                         break;
795
796                 /* Update counters and wrap write pointer */
797                 buffer += thisrun_bytes;
798                 count -= thisrun_bytes / 2;
799                 wp += thisrun_bytes;
800                 if (wp >= fifo_end_addr)
801                         wp = fifo_start_addr;
802
803                 /* Store updated write pointer to target */
804                 retval = target_write_u32(target, wp_addr, wp);
805                 if (retval != ERROR_OK)
806                         break;
807         }
808
809         if (retval != ERROR_OK)
810         {
811                 /* abort flash write algorithm on target */
812                 target_write_u32(target, wp_addr, 0);
813         }
814
815         int retval2;
816         if ((retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params,
817                         0,
818                         10000,
819                         &armv7m_info)) != ERROR_OK)
820         {
821                 LOG_ERROR("error waiting for stm32x flash write algorithm");
822                 retval = retval2;
823         }
824
825         if (retval == ERROR_FLASH_OPERATION_FAILED)
826         {
827                 LOG_ERROR("flash write failed at address 0x%"PRIx32,
828                                 buf_get_u32(reg_params[4].value, 0, 32));
829
830                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR)
831                 {
832                         LOG_ERROR("flash memory not erased before writing");
833                         /* Clear but report errors */
834                         target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR);
835                 }
836
837                 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR)
838                 {
839                         LOG_ERROR("flash memory write protected");
840                         /* Clear but report errors */
841                         target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR);
842                 }
843         }
844
845 cleanup:
846         target_free_working_area(target, source);
847         target_free_working_area(target, stm32x_info->write_algorithm);
848
849         destroy_reg_param(&reg_params[0]);
850         destroy_reg_param(&reg_params[1]);
851         destroy_reg_param(&reg_params[2]);
852         destroy_reg_param(&reg_params[3]);
853         destroy_reg_param(&reg_params[4]);
854
855         return retval;
856 }
857
858 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
859                 uint32_t offset, uint32_t count)
860 {
861         struct target *target = bank->target;
862         uint32_t words_remaining = (count / 2);
863         uint32_t bytes_remaining = (count & 0x00000001);
864         uint32_t address = bank->base + offset;
865         uint32_t bytes_written = 0;
866         int retval;
867
868         if (bank->target->state != TARGET_HALTED)
869         {
870                 LOG_ERROR("Target not halted");
871                 return ERROR_TARGET_NOT_HALTED;
872         }
873
874         if (offset & 0x1)
875         {
876                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
877                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
878         }
879
880         /* unlock flash registers */
881         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
882         if (retval != ERROR_OK)
883                 return retval;
884         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
885         if (retval != ERROR_OK)
886                 return retval;
887
888         /* multiple half words (2-byte) to be programmed? */
889         if (words_remaining > 0)
890         {
891                 /* try using a block write */
892                 if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
893                 {
894                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
895                         {
896                                 /* if block write failed (no sufficient working area),
897                                  * we use normal (slow) single dword accesses */
898                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
899                         }
900                 }
901                 else
902                 {
903                         buffer += words_remaining * 2;
904                         address += words_remaining * 2;
905                         words_remaining = 0;
906                 }
907         }
908
909         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
910                 return retval;
911
912         while (words_remaining > 0)
913         {
914                 uint16_t value;
915                 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
916
917                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
918                 if (retval != ERROR_OK)
919                         return retval;
920                 retval = target_write_u16(target, address, value);
921                 if (retval != ERROR_OK)
922                         return retval;
923
924                 retval = stm32x_wait_status_busy(bank, 5);
925                 if (retval != ERROR_OK)
926                         return retval;
927
928                 bytes_written += 2;
929                 words_remaining--;
930                 address += 2;
931         }
932
933         if (bytes_remaining)
934         {
935                 uint16_t value = 0xffff;
936                 memcpy(&value, buffer + bytes_written, bytes_remaining);
937
938                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
939                 if (retval != ERROR_OK)
940                         return retval;
941                 retval = target_write_u16(target, address, value);
942                 if (retval != ERROR_OK)
943                         return retval;
944
945                 retval = stm32x_wait_status_busy(bank, 5);
946                 if (retval != ERROR_OK)
947                         return retval;
948         }
949
950         return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
951 }
952
953 static int stm32x_probe(struct flash_bank *bank)
954 {
955         struct target *target = bank->target;
956         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
957         int i;
958         uint16_t num_pages;
959         uint32_t device_id;
960         int page_size;
961         uint32_t base_address = 0x08000000;
962
963         stm32x_info->probed = 0;
964         stm32x_info->register_base = FLASH_REG_BASE_B0;
965
966         /* read stm32 device id register */
967         int retval = target_read_u32(target, 0xE0042000, &device_id);
968         if (retval != ERROR_OK)
969                 return retval;
970         LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
971
972         /* get flash size from target. */
973         retval = target_read_u16(target, 0x1FFFF7E0, &num_pages);
974         if (retval != ERROR_OK)
975         {
976                 LOG_WARNING("failed reading flash size, default to max target family");
977                 /* failed reading flash size, default to max target family */
978                 num_pages = 0xffff;
979         }
980
981         if ((device_id & 0x7ff) == 0x410)
982         {
983                 /* medium density - we have 1k pages
984                  * 4 pages for a protection area */
985                 page_size = 1024;
986                 stm32x_info->ppage_size = 4;
987
988                 /* check for early silicon */
989                 if (num_pages == 0xffff)
990                 {
991                         /* number of sectors incorrect on revA */
992                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
993                         num_pages = 128;
994                 }
995         }
996         else if ((device_id & 0x7ff) == 0x412)
997         {
998                 /* low density - we have 1k pages
999                  * 4 pages for a protection area */
1000                 page_size = 1024;
1001                 stm32x_info->ppage_size = 4;
1002
1003                 /* check for early silicon */
1004                 if (num_pages == 0xffff)
1005                 {
1006                         /* number of sectors incorrect on revA */
1007                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
1008                         num_pages = 32;
1009                 }
1010         }
1011         else if ((device_id & 0x7ff) == 0x414)
1012         {
1013                 /* high density - we have 2k pages
1014                  * 2 pages for a protection area */
1015                 page_size = 2048;
1016                 stm32x_info->ppage_size = 2;
1017
1018                 /* check for early silicon */
1019                 if (num_pages == 0xffff)
1020                 {
1021                         /* number of sectors incorrect on revZ */
1022                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
1023                         num_pages = 512;
1024                 }
1025         }
1026         else if ((device_id & 0x7ff) == 0x418)
1027         {
1028                 /* connectivity line density - we have 2k pages
1029                  * 2 pages for a protection area */
1030                 page_size = 2048;
1031                 stm32x_info->ppage_size = 2;
1032
1033                 /* check for early silicon */
1034                 if (num_pages == 0xffff)
1035                 {
1036                         /* number of sectors incorrect on revZ */
1037                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
1038                         num_pages = 256;
1039                 }
1040         }
1041         else if ((device_id & 0x7ff) == 0x420)
1042         {
1043                 /* value line density - we have 1k pages
1044                  * 4 pages for a protection area */
1045                 page_size = 1024;
1046                 stm32x_info->ppage_size = 4;
1047
1048                 /* check for early silicon */
1049                 if (num_pages == 0xffff)
1050                 {
1051                         /* number of sectors may be incorrrect on early silicon */
1052                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
1053                         num_pages = 128;
1054                 }
1055         }
1056         else if ((device_id & 0x7ff) == 0x428)
1057         {
1058                 /* value line density - we have 1k pages
1059                  * 4 pages for a protection area */
1060                 page_size = 2048;
1061                 stm32x_info->ppage_size = 4;
1062
1063                 /* check for early silicon */
1064                 if (num_pages == 0xffff)
1065                 {
1066                         /* number of sectors may be incorrrect on early silicon */
1067                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
1068                         num_pages = 128;
1069                 }
1070         }
1071
1072         else if ((device_id & 0x7ff) == 0x430)
1073         {
1074                 /* xl line density - we have 2k pages
1075                  * 2 pages for a protection area */
1076                 page_size = 2048;
1077                 stm32x_info->ppage_size = 2;
1078                 stm32x_info->has_dual_banks = true;
1079
1080                 /* check for early silicon */
1081                 if (num_pages == 0xffff)
1082                 {
1083                         /* number of sectors may be incorrrect on early silicon */
1084                         LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
1085                         num_pages = 1024;
1086                 }
1087
1088                 /* split reported size into matching bank */
1089                 if (bank->base != 0x08080000)
1090                 {
1091                         /* bank 0 will be fixed 512k */
1092                         num_pages = 512;
1093                 }
1094                 else
1095                 {
1096                         num_pages -= 512;
1097                         /* bank1 also uses a register offset */
1098                         stm32x_info->register_base = FLASH_REG_BASE_B1;
1099                         base_address = 0x08080000;
1100                 }
1101         }
1102         else
1103         {
1104                 LOG_WARNING("Cannot identify target as a STM32 family.");
1105                 return ERROR_FAIL;
1106         }
1107
1108         LOG_INFO("flash size = %dkbytes", num_pages);
1109
1110         /* calculate numbers of pages */
1111         num_pages /= (page_size / 1024);
1112
1113         if (bank->sectors)
1114         {
1115                 free(bank->sectors);
1116                 bank->sectors = NULL;
1117         }
1118
1119         bank->base = base_address;
1120         bank->size = (num_pages * page_size);
1121         bank->num_sectors = num_pages;
1122         bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
1123
1124         for (i = 0; i < num_pages; i++)
1125         {
1126                 bank->sectors[i].offset = i * page_size;
1127                 bank->sectors[i].size = page_size;
1128                 bank->sectors[i].is_erased = -1;
1129                 bank->sectors[i].is_protected = 1;
1130         }
1131
1132         stm32x_info->probed = 1;
1133
1134         return ERROR_OK;
1135 }
1136
1137 static int stm32x_auto_probe(struct flash_bank *bank)
1138 {
1139         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1140         if (stm32x_info->probed)
1141                 return ERROR_OK;
1142         return stm32x_probe(bank);
1143 }
1144
1145 #if 0
1146 COMMAND_HANDLER(stm32x_handle_part_id_command)
1147 {
1148         return ERROR_OK;
1149 }
1150 #endif
1151
1152 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1153 {
1154         struct target *target = bank->target;
1155         uint32_t device_id;
1156         int printed;
1157
1158         /* read stm32 device id register */
1159         int retval = target_read_u32(target, 0xE0042000, &device_id);
1160         if (retval != ERROR_OK)
1161                 return retval;
1162
1163         if ((device_id & 0x7ff) == 0x410)
1164         {
1165                 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1166                 buf += printed;
1167                 buf_size -= printed;
1168
1169                 switch (device_id >> 16)
1170                 {
1171                         case 0x0000:
1172                                 snprintf(buf, buf_size, "A");
1173                                 break;
1174
1175                         case 0x2000:
1176                                 snprintf(buf, buf_size, "B");
1177                                 break;
1178
1179                         case 0x2001:
1180                                 snprintf(buf, buf_size, "Z");
1181                                 break;
1182
1183                         case 0x2003:
1184                                 snprintf(buf, buf_size, "Y");
1185                                 break;
1186
1187                         default:
1188                                 snprintf(buf, buf_size, "unknown");
1189                                 break;
1190                 }
1191         }
1192         else if ((device_id & 0x7ff) == 0x412)
1193         {
1194                 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1195                 buf += printed;
1196                 buf_size -= printed;
1197
1198                 switch (device_id >> 16)
1199                 {
1200                         case 0x1000:
1201                                 snprintf(buf, buf_size, "A");
1202                                 break;
1203
1204                         default:
1205                                 snprintf(buf, buf_size, "unknown");
1206                                 break;
1207                 }
1208         }
1209         else if ((device_id & 0x7ff) == 0x414)
1210         {
1211                 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1212                 buf += printed;
1213                 buf_size -= printed;
1214
1215                 switch (device_id >> 16)
1216                 {
1217                         case 0x1000:
1218                                 snprintf(buf, buf_size, "A");
1219                                 break;
1220
1221                         case 0x1001:
1222                                 snprintf(buf, buf_size, "Z");
1223                                 break;
1224
1225                         default:
1226                                 snprintf(buf, buf_size, "unknown");
1227                                 break;
1228                 }
1229         }
1230         else if ((device_id & 0x7ff) == 0x418)
1231         {
1232                 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1233                 buf += printed;
1234                 buf_size -= printed;
1235
1236                 switch (device_id >> 16)
1237                 {
1238                         case 0x1000:
1239                                 snprintf(buf, buf_size, "A");
1240                                 break;
1241
1242                         case 0x1001:
1243                                 snprintf(buf, buf_size, "Z");
1244                                 break;
1245
1246                         default:
1247                                 snprintf(buf, buf_size, "unknown");
1248                                 break;
1249                 }
1250         }
1251         else if ((device_id & 0x7ff) == 0x420)
1252         {
1253                 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1254                 buf += printed;
1255                 buf_size -= printed;
1256
1257                 switch (device_id >> 16)
1258                 {
1259                         case 0x1000:
1260                                 snprintf(buf, buf_size, "A");
1261                                 break;
1262
1263                         case 0x1001:
1264                                 snprintf(buf, buf_size, "Z");
1265                                 break;
1266
1267                         default:
1268                                 snprintf(buf, buf_size, "unknown");
1269                                 break;
1270                 }
1271         }
1272         else if ((device_id & 0x7ff) == 0x428)
1273         {
1274                 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1275                 buf += printed;
1276                 buf_size -= printed;
1277
1278                 switch (device_id >> 16)
1279                 {
1280                         case 0x1000:
1281                                 snprintf(buf, buf_size, "A");
1282                                 break;
1283
1284                         case 0x1001:
1285                                 snprintf(buf, buf_size, "Z");
1286                                 break;
1287
1288                         default:
1289                                 snprintf(buf, buf_size, "unknown");
1290                                 break;
1291                 }
1292         }
1293         else if ((device_id & 0x7ff) == 0x430)
1294         {
1295                 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1296                 buf += printed;
1297                 buf_size -= printed;
1298
1299                 switch (device_id >> 16)
1300                 {
1301                         case 0x1000:
1302                                 snprintf(buf, buf_size, "A");
1303                                 break;
1304
1305                         default:
1306                                 snprintf(buf, buf_size, "unknown");
1307                                 break;
1308                 }
1309         }
1310         else
1311         {
1312                 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1313                 return ERROR_FAIL;
1314         }
1315
1316         return ERROR_OK;
1317 }
1318
1319 COMMAND_HANDLER(stm32x_handle_lock_command)
1320 {
1321         struct target *target = NULL;
1322         struct stm32x_flash_bank *stm32x_info = NULL;
1323
1324         if (CMD_ARGC < 1)
1325         {
1326                 command_print(CMD_CTX, "stm32x lock <bank>");
1327                 return ERROR_OK;
1328         }
1329
1330         struct flash_bank *bank;
1331         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1332         if (ERROR_OK != retval)
1333                 return retval;
1334
1335         stm32x_info = bank->driver_priv;
1336
1337         target = bank->target;
1338
1339         if (target->state != TARGET_HALTED)
1340         {
1341                 LOG_ERROR("Target not halted");
1342                 return ERROR_TARGET_NOT_HALTED;
1343         }
1344
1345         retval = stm32x_check_operation_supported(bank);
1346         if (ERROR_OK != retval)
1347                 return retval;
1348
1349         if (stm32x_erase_options(bank) != ERROR_OK)
1350         {
1351                 command_print(CMD_CTX, "stm32x failed to erase options");
1352                 return ERROR_OK;
1353         }
1354
1355         /* set readout protection */
1356         stm32x_info->option_bytes.RDP = 0;
1357
1358         if (stm32x_write_options(bank) != ERROR_OK)
1359         {
1360                 command_print(CMD_CTX, "stm32x failed to lock device");
1361                 return ERROR_OK;
1362         }
1363
1364         command_print(CMD_CTX, "stm32x locked");
1365
1366         return ERROR_OK;
1367 }
1368
1369 COMMAND_HANDLER(stm32x_handle_unlock_command)
1370 {
1371         struct target *target = NULL;
1372
1373         if (CMD_ARGC < 1)
1374         {
1375                 command_print(CMD_CTX, "stm32x unlock <bank>");
1376                 return ERROR_OK;
1377         }
1378
1379         struct flash_bank *bank;
1380         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1381         if (ERROR_OK != retval)
1382                 return retval;
1383
1384         target = bank->target;
1385
1386         if (target->state != TARGET_HALTED)
1387         {
1388                 LOG_ERROR("Target not halted");
1389                 return ERROR_TARGET_NOT_HALTED;
1390         }
1391
1392         retval = stm32x_check_operation_supported(bank);
1393         if (ERROR_OK != retval)
1394                 return retval;
1395
1396         if (stm32x_erase_options(bank) != ERROR_OK)
1397         {
1398                 command_print(CMD_CTX, "stm32x failed to unlock device");
1399                 return ERROR_OK;
1400         }
1401
1402         if (stm32x_write_options(bank) != ERROR_OK)
1403         {
1404                 command_print(CMD_CTX, "stm32x failed to lock device");
1405                 return ERROR_OK;
1406         }
1407
1408         command_print(CMD_CTX, "stm32x unlocked.\n"
1409                         "INFO: a reset or power cycle is required "
1410                         "for the new settings to take effect.");
1411
1412         return ERROR_OK;
1413 }
1414
1415 COMMAND_HANDLER(stm32x_handle_options_read_command)
1416 {
1417         uint32_t optionbyte;
1418         struct target *target = NULL;
1419         struct stm32x_flash_bank *stm32x_info = NULL;
1420
1421         if (CMD_ARGC < 1)
1422         {
1423                 command_print(CMD_CTX, "stm32x options_read <bank>");
1424                 return ERROR_OK;
1425         }
1426
1427         struct flash_bank *bank;
1428         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1429         if (ERROR_OK != retval)
1430                 return retval;
1431
1432         stm32x_info = bank->driver_priv;
1433
1434         target = bank->target;
1435
1436         if (target->state != TARGET_HALTED)
1437         {
1438                 LOG_ERROR("Target not halted");
1439                 return ERROR_TARGET_NOT_HALTED;
1440         }
1441
1442         retval = stm32x_check_operation_supported(bank);
1443         if (ERROR_OK != retval)
1444                 return retval;
1445
1446         retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1447         if (retval != ERROR_OK)
1448                 return retval;
1449         command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1450
1451         if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1))
1452                 command_print(CMD_CTX, "Option Byte Complement Error");
1453
1454         if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1))
1455                 command_print(CMD_CTX, "Readout Protection On");
1456         else
1457                 command_print(CMD_CTX, "Readout Protection Off");
1458
1459         if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1))
1460                 command_print(CMD_CTX, "Software Watchdog");
1461         else
1462                 command_print(CMD_CTX, "Hardware Watchdog");
1463
1464         if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1))
1465                 command_print(CMD_CTX, "Stop: No reset generated");
1466         else
1467                 command_print(CMD_CTX, "Stop: Reset generated");
1468
1469         if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1))
1470                 command_print(CMD_CTX, "Standby: No reset generated");
1471         else
1472                 command_print(CMD_CTX, "Standby: Reset generated");
1473
1474         if (stm32x_info->has_dual_banks)
1475         {
1476                 if (buf_get_u32((uint8_t*)&optionbyte, OPT_BFB2, 1))
1477                         command_print(CMD_CTX, "Boot: Bank 0");
1478                 else
1479                         command_print(CMD_CTX, "Boot: Bank 1");
1480         }
1481
1482         return ERROR_OK;
1483 }
1484
1485 COMMAND_HANDLER(stm32x_handle_options_write_command)
1486 {
1487         struct target *target = NULL;
1488         struct stm32x_flash_bank *stm32x_info = NULL;
1489         uint16_t optionbyte = 0xF8;
1490
1491         if (CMD_ARGC < 4)
1492         {
1493                 command_print(CMD_CTX, "stm32x options_write <bank> <SWWDG | HWWDG> "
1494                                 "<RSTSTNDBY | NORSTSTNDBY> <RSTSTOP | NORSTSTOP> <BOOT0 | BOOT1>");
1495                 return ERROR_OK;
1496         }
1497
1498         struct flash_bank *bank;
1499         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1500         if (ERROR_OK != retval)
1501                 return retval;
1502
1503         stm32x_info = bank->driver_priv;
1504
1505         target = bank->target;
1506
1507         if (target->state != TARGET_HALTED)
1508         {
1509                 LOG_ERROR("Target not halted");
1510                 return ERROR_TARGET_NOT_HALTED;
1511         }
1512
1513         retval = stm32x_check_operation_supported(bank);
1514         if (ERROR_OK != retval)
1515                 return retval;
1516
1517         /* REVISIT: ignores some options which we will display...
1518          * and doesn't insist on the specified syntax.
1519          */
1520
1521         /* OPT_RDWDGSW */
1522         if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1523         {
1524                 optionbyte |= (1 << 0);
1525         }
1526         else    /* REVISIT must be "HWWDG" then ... */
1527         {
1528                 optionbyte &= ~(1 << 0);
1529         }
1530
1531         /* OPT_RDRSTSTOP */
1532         if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1533         {
1534                 optionbyte |= (1 << 1);
1535         }
1536         else    /* REVISIT must be "RSTSTNDBY" then ... */
1537         {
1538                 optionbyte &= ~(1 << 1);
1539         }
1540
1541         /* OPT_RDRSTSTDBY */
1542         if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1543         {
1544                 optionbyte |= (1 << 2);
1545         }
1546         else    /* REVISIT must be "RSTSTOP" then ... */
1547         {
1548                 optionbyte &= ~(1 << 2);
1549         }
1550
1551         if (CMD_ARGC > 4 && stm32x_info->has_dual_banks)
1552         {
1553                 /* OPT_BFB2 */
1554                 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1555                 {
1556                         optionbyte |= (1 << 3);
1557                 }
1558                 else
1559                 {
1560                         optionbyte &= ~(1 << 3);
1561                 }
1562         }
1563
1564         if (stm32x_erase_options(bank) != ERROR_OK)
1565         {
1566                 command_print(CMD_CTX, "stm32x failed to erase options");
1567                 return ERROR_OK;
1568         }
1569
1570         stm32x_info->option_bytes.user_options = optionbyte;
1571
1572         if (stm32x_write_options(bank) != ERROR_OK)
1573         {
1574                 command_print(CMD_CTX, "stm32x failed to write options");
1575                 return ERROR_OK;
1576         }
1577
1578         command_print(CMD_CTX, "stm32x write options complete.\n"
1579                                 "INFO: a reset or power cycle is required "
1580                                 "for the new settings to take effect.");
1581
1582         return ERROR_OK;
1583 }
1584
1585 static int stm32x_mass_erase(struct flash_bank *bank)
1586 {
1587         struct target *target = bank->target;
1588
1589         if (target->state != TARGET_HALTED)
1590         {
1591                 LOG_ERROR("Target not halted");
1592                 return ERROR_TARGET_NOT_HALTED;
1593         }
1594
1595         /* unlock option flash registers */
1596         int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1597         if (retval != ERROR_OK)
1598                 return retval;
1599         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1600         if (retval != ERROR_OK)
1601                 return retval;
1602
1603         /* mass erase flash memory */
1604         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1605         if (retval != ERROR_OK)
1606                 return retval;
1607         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_STRT);
1608         if (retval != ERROR_OK)
1609                 return retval;
1610
1611         retval = stm32x_wait_status_busy(bank, 100);
1612         if (retval != ERROR_OK)
1613                 return retval;
1614
1615         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1616         if (retval != ERROR_OK)
1617                 return retval;
1618
1619         return ERROR_OK;
1620 }
1621
1622 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1623 {
1624         int i;
1625
1626         if (CMD_ARGC < 1)
1627         {
1628                 command_print(CMD_CTX, "stm32x mass_erase <bank>");
1629                 return ERROR_OK;
1630         }
1631
1632         struct flash_bank *bank;
1633         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1634         if (ERROR_OK != retval)
1635                 return retval;
1636
1637         retval = stm32x_mass_erase(bank);
1638         if (retval == ERROR_OK)
1639         {
1640                 /* set all sectors as erased */
1641                 for (i = 0; i < bank->num_sectors; i++)
1642                 {
1643                         bank->sectors[i].is_erased = 1;
1644                 }
1645
1646                 command_print(CMD_CTX, "stm32x mass erase complete");
1647         }
1648         else
1649         {
1650                 command_print(CMD_CTX, "stm32x mass erase failed");
1651         }
1652
1653         return retval;
1654 }
1655
1656 static const struct command_registration stm32x_exec_command_handlers[] = {
1657         {
1658                 .name = "lock",
1659                 .handler = stm32x_handle_lock_command,
1660                 .mode = COMMAND_EXEC,
1661                 .usage = "bank_id",
1662                 .help = "Lock entire flash device.",
1663         },
1664         {
1665                 .name = "unlock",
1666                 .handler = stm32x_handle_unlock_command,
1667                 .mode = COMMAND_EXEC,
1668                 .usage = "bank_id",
1669                 .help = "Unlock entire protected flash device.",
1670         },
1671         {
1672                 .name = "mass_erase",
1673                 .handler = stm32x_handle_mass_erase_command,
1674                 .mode = COMMAND_EXEC,
1675                 .usage = "bank_id",
1676                 .help = "Erase entire flash device.",
1677         },
1678         {
1679                 .name = "options_read",
1680                 .handler = stm32x_handle_options_read_command,
1681                 .mode = COMMAND_EXEC,
1682                 .usage = "bank_id",
1683                 .help = "Read and display device option byte.",
1684         },
1685         {
1686                 .name = "options_write",
1687                 .handler = stm32x_handle_options_write_command,
1688                 .mode = COMMAND_EXEC,
1689                 .usage = "bank_id ('SWWDG'|'HWWDG') "
1690                         "('RSTSTNDBY'|'NORSTSTNDBY') "
1691                         "('RSTSTOP'|'NORSTSTOP')",
1692                 .help = "Replace bits in device option byte.",
1693         },
1694         COMMAND_REGISTRATION_DONE
1695 };
1696
1697 static const struct command_registration stm32x_command_handlers[] = {
1698         {
1699                 .name = "stm32f1x",
1700                 .mode = COMMAND_ANY,
1701                 .help = "stm32f1x flash command group",
1702                 .chain = stm32x_exec_command_handlers,
1703         },
1704         COMMAND_REGISTRATION_DONE
1705 };
1706
1707 struct flash_driver stm32f1x_flash = {
1708         .name = "stm32f1x",
1709         .commands = stm32x_command_handlers,
1710         .flash_bank_command = stm32x_flash_bank_command,
1711         .erase = stm32x_erase,
1712         .protect = stm32x_protect,
1713         .write = stm32x_write,
1714         .read = default_flash_read,
1715         .probe = stm32x_probe,
1716         .auto_probe = stm32x_auto_probe,
1717         .erase_check = default_flash_mem_blank_check,
1718         .protect_check = stm32x_protect_check,
1719         .info = get_stm32x_info,
1720 };