]> git.sur5r.net Git - openocd/blob - src/jtag/zy1000/zy1000.c
jtag: getting the JTAG speed can fail
[openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #define ZYLIN_KHZ 60000
66 #else
67 #define ZYLIN_KHZ 64000
68 #endif
69
70 #define ZYLIN_VERSION GIT_ZY1000_VERSION
71 #define ZYLIN_DATE __DATE__
72 #define ZYLIN_TIME __TIME__
73 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
74 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
75
76 #else
77 /* Assume we're connecting to a revc w/60MHz clock. */
78 #define ZYLIN_KHZ 60000
79 #endif
80
81
82 /* The software needs to check if it's in RCLK mode or not */
83 static bool zy1000_rclk = false;
84
85 static int zy1000_khz(int khz, int *jtag_speed)
86 {
87         if (khz == 0)
88         {
89                 *jtag_speed = 0;
90         }
91         else
92         {
93                 int speed;
94                 /* Round speed up to nearest divisor.
95                  *
96                  * E.g. 16000kHz
97                  * (64000 + 15999) / 16000 = 4
98                  * (4 + 1) / 2 = 2
99                  * 2 * 2 = 4
100                  *
101                  * 64000 / 4 = 16000
102                  *
103                  * E.g. 15999
104                  * (64000 + 15998) / 15999 = 5
105                  * (5 + 1) / 2 = 3
106                  * 3 * 2 = 6
107                  *
108                  * 64000 / 6 = 10666
109                  *
110                  */
111                 speed = (ZYLIN_KHZ + (khz -1)) / khz;
112                 speed = (speed + 1 ) / 2;
113                 speed *= 2;
114                 if (speed > 8190)
115                 {
116                         /* maximum dividend */
117                         speed = 8190;
118                 }
119                 *jtag_speed = speed;
120         }
121         return ERROR_OK;
122 }
123
124 static int zy1000_speed_div(int speed, int *khz)
125 {
126         if (speed == 0)
127         {
128                 *khz = 0;
129         }
130         else
131         {
132                 *khz = ZYLIN_KHZ / speed;
133         }
134
135         return ERROR_OK;
136 }
137
138 static bool readPowerDropout(void)
139 {
140         uint32_t state;
141         // sample and clear power dropout
142         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
143         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
144         bool powerDropout;
145         powerDropout = (state & 0x80) != 0;
146         return powerDropout;
147 }
148
149
150 static bool readSRST(void)
151 {
152         uint32_t state;
153         // sample and clear SRST sensing
154         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
155         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
156         bool srstAsserted;
157         srstAsserted = (state & 0x40) != 0;
158         return srstAsserted;
159 }
160
161 static int zy1000_srst_asserted(int *srst_asserted)
162 {
163         *srst_asserted = readSRST();
164         return ERROR_OK;
165 }
166
167 static int zy1000_power_dropout(int *dropout)
168 {
169         *dropout = readPowerDropout();
170         return ERROR_OK;
171 }
172
173 void zy1000_reset(int trst, int srst)
174 {
175         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
176
177         /* flush the JTAG FIFO. Not flushing the queue before messing with
178          * reset has such interesting bugs as causing hard to reproduce
179          * RCLK bugs as RCLK will stop responding when TRST is asserted
180          */
181         waitIdle();
182
183         if (!srst)
184         {
185                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
186         }
187         else
188         {
189                 /* Danger!!! if clk != 0 when in
190                  * idle in TAP_IDLE, reset halt on str912 will fail.
191                  */
192                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
193         }
194
195         if (!trst)
196         {
197                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
198         }
199         else
200         {
201                 /* assert reset */
202                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
203         }
204
205         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
206         {
207                 /* we're now in the RESET state until trst is deasserted */
208                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
209         } else
210         {
211                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
212                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
213         }
214
215         /* wait for srst to float back up */
216         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
217                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
218         {
219                 bool first = true;
220                 long long start = 0;
221                 long total = 0;
222                 for (;;)
223                 {       
224                         // We don't want to sense our own reset, so we clear here.
225                         // There is of course a timing hole where we could loose
226                         // a "real" reset.
227                         if (!readSRST())
228                         {
229                                 if (total > 1)
230                                 {
231                                   LOG_USER("SRST took %dms to deassert", (int)total);
232                                 }
233                                 break;
234                         }
235
236                         if (first)
237                         {
238                             first = false;
239                             start = timeval_ms();
240                         }
241
242                         total = timeval_ms() - start;
243
244                         keep_alive();
245
246                         if (total > 5000)
247                         {
248                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
249                             break;
250                         }
251                 }
252
253         }
254 }
255
256 int zy1000_speed(int speed)
257 {
258         /* flush JTAG master FIFO before setting speed */
259         waitIdle();
260
261         zy1000_rclk = false;
262
263         if (speed == 0)
264         {
265                 /*0 means RCLK*/
266                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
267                 zy1000_rclk = true;
268                 LOG_DEBUG("jtag_speed using RCLK");
269         }
270         else
271         {
272                 if (speed > 8190 || speed < 2)
273                 {
274                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
275                                         ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
276                         return ERROR_INVALID_ARGUMENTS;
277                 }
278
279                 int khz;
280                 speed &= ~1;
281                 zy1000_speed_div(speed, &khz);
282                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
283                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
284                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
285         }
286         return ERROR_OK;
287 }
288
289 static bool savePower;
290
291
292 static void setPower(bool power)
293 {
294         savePower = power;
295         if (power)
296         {
297                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
298         } else
299         {
300                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
301         }
302 }
303
304 COMMAND_HANDLER(handle_power_command)
305 {
306         switch (CMD_ARGC)
307         {
308         case 1: {
309                 bool enable;
310                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
311                 setPower(enable);
312                 // fall through
313         }
314         case 0:
315                 LOG_INFO("Target power %s", savePower ? "on" : "off");
316                 break;
317         default:
318                 return ERROR_INVALID_ARGUMENTS;
319         }
320
321         return ERROR_OK;
322 }
323
324 #if !BUILD_ZY1000_MASTER
325 static char *tcp_server = "notspecified";
326 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
327 {
328         if (argc != 2)
329                 return JIM_ERR;
330
331         tcp_server = strdup(Jim_GetString(argv[1], NULL));
332
333         return JIM_OK;
334 }
335 #endif
336
337 #if BUILD_ECOSBOARD
338 /* Give TELNET a way to find out what version this is */
339 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
340 {
341         if ((argc < 1) || (argc > 3))
342                 return JIM_ERR;
343         const char *version_str = NULL;
344
345         if (argc == 1)
346         {
347                 version_str = ZYLIN_OPENOCD_VERSION;
348         } else
349         {
350                 const char *str = Jim_GetString(argv[1], NULL);
351                 const char *str2 = NULL;
352                 if (argc > 2)
353                         str2 = Jim_GetString(argv[2], NULL);
354                 if (strcmp("openocd", str) == 0)
355                 {
356                         version_str = ZYLIN_OPENOCD;
357                 }
358                 else if (strcmp("zy1000", str) == 0)
359                 {
360                         version_str = ZYLIN_VERSION;
361                 }
362                 else if (strcmp("date", str) == 0)
363                 {
364                         version_str = ZYLIN_DATE;
365                 }
366                 else if (strcmp("time", str) == 0)
367                 {
368                         version_str = ZYLIN_TIME;
369                 }
370                 else if (strcmp("pcb", str) == 0)
371                 {
372 #ifdef CYGPKG_HAL_NIOS2
373                         version_str="c";
374 #else
375                         version_str="b";
376 #endif
377                 }
378 #ifdef CYGPKG_HAL_NIOS2
379                 else if (strcmp("fpga", str) == 0)
380                 {
381
382                         /* return a list of 32 bit integers to describe the expected
383                          * and actual FPGA
384                          */
385                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
386                         uint32_t id, timestamp;
387                         HAL_READ_UINT32(SYSID_BASE, id);
388                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
389                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
390                         version_str = fpga_id;
391                         if ((argc>2) && (strcmp("time", str2) == 0))
392                         {
393                             time_t last_mod = timestamp;
394                             char * t = ctime (&last_mod) ;
395                             t[strlen(t)-1] = 0;
396                             version_str = t;
397                         }
398                 }
399 #endif
400
401                 else
402                 {
403                         return JIM_ERR;
404                 }
405         }
406
407         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
408
409         return JIM_OK;
410 }
411 #endif
412
413 #ifdef CYGPKG_HAL_NIOS2
414
415
416 struct info_forward
417 {
418         void *data;
419         struct cyg_upgrade_info *upgraded_file;
420 };
421
422 static void report_info(void *data, const char * format, va_list args)
423 {
424         char *s = alloc_vprintf(format, args);
425         LOG_USER_N("%s", s);
426         free(s);
427 }
428
429 struct cyg_upgrade_info firmware_info =
430 {
431                 (uint8_t *)0x84000000,
432                 "/ram/firmware.phi",
433                 "Firmware",
434                 0x0300000,
435                 0x1f00000 -
436                 0x0300000,
437                 "ZylinNiosFirmware\n",
438                 report_info,
439 };
440
441 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
442 {
443         if (argc != 2)
444                 return JIM_ERR;
445
446         int length;
447         const char *str = Jim_GetString(argv[1], &length);
448
449         /* */
450         int tmpFile;
451         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
452         {
453                 return JIM_ERR;
454         }
455         bool success;
456         success = write(tmpFile, str, length) == length;
457         close(tmpFile);
458         if (!success)
459                 return JIM_ERR;
460
461         if (!cyg_firmware_upgrade(NULL, firmware_info))
462                 return JIM_ERR;
463
464         return JIM_OK;
465 }
466 #endif
467
468 static int
469 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
470                                                                    int argc,
471                 Jim_Obj * const *argv)
472 {
473         if (argc != 1)
474         {
475                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
476                 return JIM_ERR;
477         }
478
479         bool dropout = readPowerDropout();
480
481         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
482
483         return JIM_OK;
484 }
485
486
487
488 int zy1000_quit(void)
489 {
490
491         return ERROR_OK;
492 }
493
494
495
496 int interface_jtag_execute_queue(void)
497 {
498         uint32_t empty;
499
500         waitIdle();
501
502         /* We must make sure to write data read back to memory location before we return
503          * from this fn
504          */
505         zy1000_flush_readqueue();
506
507         /* and handle any callbacks... */
508         zy1000_flush_callbackqueue();
509
510         if (zy1000_rclk)
511         {
512                 /* Only check for errors when using RCLK to speed up
513                  * jtag over TCP/IP
514                  */
515                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
516                 /* clear JTAG error register */
517                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
518
519                 if ((empty&0x400) != 0)
520                 {
521                         LOG_WARNING("RCLK timeout");
522                         /* the error is informative only as we don't want to break the firmware if there
523                          * is a false positive.
524                          */
525         //              return ERROR_FAIL;
526                 }
527         }
528         return ERROR_OK;
529 }
530
531
532
533
534 static void writeShiftValue(uint8_t *data, int bits);
535
536 // here we shuffle N bits out/in
537 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
538 {
539         tap_state_t pause_state = shiftState;
540         for (int j = 0; j < num_bits; j += 32)
541         {
542                 int k = num_bits - j;
543                 if (k > 32)
544                 {
545                         k = 32;
546                         /* we have more to shift out */
547                 } else if (pause_now)
548                 {
549                         /* this was the last to shift out this time */
550                         pause_state = end_state;
551                 }
552
553                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
554                 // bits are pushed out LSB to MSB
555                 uint32_t value;
556                 value = 0;
557                 if (out_value != NULL)
558                 {
559                         for (int l = 0; l < k; l += 8)
560                         {
561                                 value|=out_value[(j + l)/8]<<l;
562                         }
563                 }
564                 /* mask away unused bits for easier debugging */
565                 if (k < 32)
566                 {
567                         value&=~(((uint32_t)0xffffffff) << k);
568                 } else
569                 {
570                         /* Shifting by >= 32 is not defined by the C standard
571                          * and will in fact shift by &0x1f bits on nios */
572                 }
573
574                 shiftValueInner(shiftState, pause_state, k, value);
575
576                 if (in_value != NULL)
577                 {
578                         writeShiftValue(in_value + (j/8), k);
579                 }
580         }
581 }
582
583 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
584 {
585         for (int i = 0; i < num_fields; i++)
586         {
587                 scanBits(fields[i].out_value,
588                                 fields[i].in_value,
589                                 fields[i].num_bits,
590                                 (i == num_fields-1),
591                                 shiftState,
592                                 end_state);
593         }
594 }
595
596 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
597 {
598         int scan_size = 0;
599         struct jtag_tap *tap, *nextTap;
600         tap_state_t pause_state = TAP_IRSHIFT;
601
602         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
603         {
604                 nextTap = jtag_tap_next_enabled(tap);
605                 if (nextTap==NULL)
606                 {
607                         pause_state = state;
608                 }
609                 scan_size = tap->ir_length;
610
611                 /* search the list */
612                 if (tap == active)
613                 {
614                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
615                         /* update device information */
616                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
617
618                         tap->bypass = 0;
619                 } else
620                 {
621                         /* if a device isn't listed, set it to BYPASS */
622                         assert(scan_size <= 32);
623                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
624
625                         tap->bypass = 1;
626                 }
627         }
628
629         return ERROR_OK;
630 }
631
632
633
634
635
636 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
637 {
638         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
639         return ERROR_OK;
640 }
641
642 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
643 {
644         struct jtag_tap *tap, *nextTap;
645         tap_state_t pause_state = TAP_DRSHIFT;
646         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
647         {
648                 nextTap = jtag_tap_next_enabled(tap);
649                 if (nextTap==NULL)
650                 {
651                         pause_state = state;
652                 }
653
654                 /* Find a range of fields to write to this tap */
655                 if (tap == active)
656                 {
657                         assert(!tap->bypass);
658
659                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
660                 } else
661                 {
662                         /* Shift out a 0 for disabled tap's */
663                         assert(tap->bypass);
664                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
665                 }
666         }
667         return ERROR_OK;
668 }
669
670 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
671 {
672         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
673         return ERROR_OK;
674 }
675
676 int interface_jtag_add_tlr()
677 {
678         setCurrentState(TAP_RESET);
679         return ERROR_OK;
680 }
681
682
683 int interface_jtag_add_reset(int req_trst, int req_srst)
684 {
685         zy1000_reset(req_trst, req_srst);
686         return ERROR_OK;
687 }
688
689 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
690 {
691         /* num_cycles can be 0 */
692         setCurrentState(clockstate);
693
694         /* execute num_cycles, 32 at the time. */
695         int i;
696         for (i = 0; i < num_cycles; i += 32)
697         {
698                 int num;
699                 num = 32;
700                 if (num_cycles-i < num)
701                 {
702                         num = num_cycles-i;
703                 }
704                 shiftValueInner(clockstate, clockstate, num, 0);
705         }
706
707 #if !TEST_MANUAL()
708         /* finish in end_state */
709         setCurrentState(state);
710 #else
711         tap_state_t t = TAP_IDLE;
712         /* test manual drive code on any target */
713         int tms;
714         uint8_t tms_scan = tap_get_tms_path(t, state);
715         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
716
717         for (i = 0; i < tms_count; i++)
718         {
719                 tms = (tms_scan >> i) & 1;
720                 waitIdle();
721                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
722         }
723         waitIdle();
724         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
725 #endif
726
727         return ERROR_OK;
728 }
729
730 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
731 {
732         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
733 }
734
735 int interface_jtag_add_clocks(int num_cycles)
736 {
737         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
738 }
739
740 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
741 {
742         /*wait for the fifo to be empty*/
743         waitIdle();
744
745         for (unsigned i = 0; i < num_bits; i++)
746         {
747                 int tms;
748
749                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
750                 {
751                         tms = 0;
752                 }
753                 else
754                 {
755                         tms = 1;
756                 }
757
758                 waitIdle();
759                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
760         }
761
762         waitIdle();
763         if (state != TAP_INVALID)
764         {
765                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
766         } else
767         {
768                 /* this would be normal if we are switching to SWD mode */
769         }
770         return ERROR_OK;
771 }
772
773 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
774 {
775         int state_count;
776         int tms = 0;
777
778         state_count = 0;
779
780         tap_state_t cur_state = cmd_queue_cur_state;
781
782         uint8_t seq[16];
783         memset(seq, 0, sizeof(seq));
784         assert(num_states < (int)((sizeof(seq) * 8)));
785
786         while (num_states)
787         {
788                 if (tap_state_transition(cur_state, false) == path[state_count])
789                 {
790                         tms = 0;
791                 }
792                 else if (tap_state_transition(cur_state, true) == path[state_count])
793                 {
794                         tms = 1;
795                 }
796                 else
797                 {
798                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
799                         exit(-1);
800                 }
801
802                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
803
804                 cur_state = path[state_count];
805                 state_count++;
806                 num_states--;
807         }
808
809         return interface_add_tms_seq(state_count, seq, cur_state);
810 }
811
812 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
813 {
814         /* bypass bits before and after */
815         int pre_bits = 0;
816         int post_bits = 0;
817
818         bool found = false;
819         struct jtag_tap *cur_tap, *nextTap;
820         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
821         {
822                 nextTap = jtag_tap_next_enabled(cur_tap);
823                 if (cur_tap == tap)
824                 {
825                         found = true;
826                 } else
827                 {
828                         if (found)
829                         {
830                                 post_bits++;
831                         } else
832                         {
833                                 pre_bits++;
834                         }
835                 }
836         }
837         *pre = pre_bits;
838         *post = post_bits;
839 }
840
841 /*
842         static const int embeddedice_num_bits[] = {32, 6};
843         uint32_t values[2];
844
845         values[0] = value;
846         values[1] = (1 << 5) | reg_addr;
847
848         jtag_add_dr_out(tap,
849                         2,
850                         embeddedice_num_bits,
851                         values,
852                         TAP_IDLE);
853 */
854
855 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
856 {
857 #if 0
858         int i;
859         for (i = 0; i < count; i++)
860         {
861                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
862                 buffer += 4;
863         }
864 #else
865         int pre_bits;
866         int post_bits;
867         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
868
869         if ((pre_bits > 32) || (post_bits + 6 > 32))
870         {
871                 int i;
872                 for (i = 0; i < count; i++)
873                 {
874                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
875                         buffer += 4;
876                 }
877         } else
878         {
879                 int i;
880                 for (i = 0; i < count; i++)
881                 {
882                         /* Fewer pokes means we get to use the FIFO more efficiently */
883                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
884                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
885                         /* Danger! here we need to exit into the TAP_IDLE state to make
886                          * DCC pick up this value.
887                          */
888                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
889                         buffer += 4;
890                 }
891         }
892 #endif
893 }
894
895
896
897 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
898 {
899         /* bypass bits before and after */
900         int pre_bits;
901         int post_bits;
902         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
903         post_bits+=2;
904
905         if ((pre_bits > 32) || (post_bits > 32))
906         {
907                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
908                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
909         } else
910         {
911                 static const int bits[] = {32, 2};
912                 uint32_t values[] = {0, 0};
913
914                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
915                  * with unaligned uint32_t * pointers... */
916                 const uint8_t *t = (const uint8_t *)data;
917
918                 while (--count > 0)
919                 {
920 #if 1
921                         /* Danger! This code doesn't update cmd_queue_cur_state, so
922                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
923                          * this loop would fail!
924                          */
925                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
926
927                         uint32_t value;
928                         value = *t++;
929                         value |= (*t++<<8);
930                         value |= (*t++<<16);
931                         value |= (*t++<<24);
932
933                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
934                         /* minimum 2 bits */
935                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
936
937                         /* copy & paste from arm11_dbgtap.c */
938                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
939                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
940                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
941                          * or in the jtag registers module.
942                          */
943                         waitIdle();
944                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
945                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
946                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
947                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
948                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
949                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
950                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
951                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
952                         /* we don't have to wait for the queue to empty here */
953                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
954                         waitIdle();
955 #else
956                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
957                         {
958                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
959                         };
960
961                         values[0] = *t++;
962                         values[0] |= (*t++<<8);
963                         values[0] |= (*t++<<16);
964                         values[0] |= (*t++<<24);
965
966                         jtag_add_dr_out(tap,
967                                 2,
968                                 bits,
969                                 values,
970                                 TAP_IDLE);
971
972                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
973                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
974 #endif
975                 }
976
977                 values[0] = *t++;
978                 values[0] |= (*t++<<8);
979                 values[0] |= (*t++<<16);
980                 values[0] |= (*t++<<24);
981
982                 /* This will happen on the last iteration updating cmd_queue_cur_state
983                  * so we don't have to track it during the common code path
984                  */
985                 jtag_add_dr_out(tap,
986                         2,
987                         bits,
988                         values,
989                         TAP_IDLE);
990
991                 return jtag_execute_queue();
992         }
993 }
994
995
996 static const struct command_registration zy1000_commands[] = {
997         {
998                 .name = "power",
999                 .handler = handle_power_command,
1000                 .mode = COMMAND_ANY,
1001                 .help = "Turn power switch to target on/off. "
1002                         "With no arguments, prints status.",
1003                 .usage = "('on'|'off)",
1004         },
1005 #if BUILD_ZY1000_MASTER
1006 #if BUILD_ECOSBOARD
1007         {
1008                 .name = "zy1000_version",
1009                 .mode = COMMAND_ANY,
1010                 .jim_handler = jim_zy1000_version,
1011                 .help = "Print version info for zy1000.",
1012                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1013         },
1014 #endif
1015 #else
1016         {
1017                 .name = "zy1000_server",
1018                 .mode = COMMAND_ANY,
1019                 .jim_handler = jim_zy1000_server,
1020                 .help = "Tcpip address for ZY1000 server.",
1021                 .usage = "address",
1022         },
1023 #endif
1024         {
1025                 .name = "powerstatus",
1026                 .mode = COMMAND_ANY,
1027                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1028                 .help = "Returns power status of target",
1029         },
1030 #ifdef CYGPKG_HAL_NIOS2
1031         {
1032                 .name = "updatezy1000firmware",
1033                 .mode = COMMAND_ANY,
1034                 .jim_handler = jim_zy1000_writefirmware,
1035                 .help = "writes firmware to flash",
1036                 /* .usage = "some_string", */
1037         },
1038 #endif
1039         COMMAND_REGISTRATION_DONE
1040 };
1041
1042
1043 #if !BUILD_ZY1000_MASTER || BUILD_ECOSBOARD
1044 static int tcp_ip = -1;
1045
1046 /* Write large packets if we can */
1047 static size_t out_pos;
1048 static uint8_t out_buffer[16384];
1049 static size_t in_pos;
1050 static size_t in_write;
1051 static uint8_t in_buffer[16384];
1052
1053 static bool flush_writes(void)
1054 {
1055         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1056         out_pos = 0;
1057         return ok;
1058 }
1059
1060 static bool writeLong(uint32_t l)
1061 {
1062         int i;
1063         for (i = 0; i < 4; i++)
1064         {
1065                 uint8_t c = (l >> (i*8))&0xff;
1066                 out_buffer[out_pos++] = c;
1067                 if (out_pos >= sizeof(out_buffer))
1068                 {
1069                         if (!flush_writes())
1070                         {
1071                                 return false;
1072                         }
1073                 }
1074         }
1075         return true;
1076 }
1077
1078 static bool readLong(uint32_t *out_data)
1079 {
1080         if (out_pos > 0)
1081         {
1082                 if (!flush_writes())
1083                 {
1084                         return false;
1085                 }
1086         }
1087
1088         uint32_t data = 0;
1089         int i;
1090         for (i = 0; i < 4; i++)
1091         {
1092                 uint8_t c;
1093                 if (in_pos == in_write)
1094                 {
1095                         /* read more */
1096                         int t;
1097                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1098                         if (t < 1)
1099                         {
1100                                 return false;
1101                         }
1102                         in_write = (size_t) t;
1103                         in_pos = 0;
1104                 }
1105                 c = in_buffer[in_pos++];
1106
1107                 data |= (c << (i*8));
1108         }
1109         *out_data = data;
1110         return true;
1111 }
1112 #endif
1113
1114 enum ZY1000_CMD
1115 {
1116         ZY1000_CMD_POKE = 0x0,
1117         ZY1000_CMD_PEEK = 0x8,
1118         ZY1000_CMD_SLEEP = 0x1,
1119         ZY1000_CMD_WAITIDLE = 2
1120 };
1121
1122
1123 #if !BUILD_ZY1000_MASTER
1124
1125 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1126 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1127
1128 /* We initialize this late since we need to know the server address
1129  * first.
1130  */
1131 static void tcpip_open(void)
1132 {
1133         if (tcp_ip >= 0)
1134                 return;
1135
1136         struct sockaddr_in echoServAddr; /* Echo server address */
1137
1138         /* Create a reliable, stream socket using TCP */
1139         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1140         {
1141                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1142                 exit(-1);
1143         }
1144
1145         /* Construct the server address structure */
1146         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1147         echoServAddr.sin_family = AF_INET; /* Internet address family */
1148         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1149         echoServAddr.sin_port = htons(7777); /* Server port */
1150
1151         /* Establish the connection to the echo server */
1152         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1153         {
1154                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1155                 exit(-1);
1156         }
1157
1158         int flag = 1;
1159         setsockopt(tcp_ip,      /* socket affected */
1160                         IPPROTO_TCP,            /* set option at TCP level */
1161                         TCP_NODELAY,            /* name of option */
1162                         (char *)&flag,          /* the cast is historical cruft */
1163                         sizeof(int));           /* length of option value */
1164
1165 }
1166
1167
1168 /* send a poke */
1169 void zy1000_tcpout(uint32_t address, uint32_t data)
1170 {
1171         tcpip_open();
1172         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1173                         !writeLong(data))
1174         {
1175                 fprintf(stderr, "Could not write to zy1000 server\n");
1176                 exit(-1);
1177         }
1178 }
1179
1180 /* By sending the wait to the server, we avoid a readback
1181  * of status. Radically improves performance for this operation
1182  * with long ping times.
1183  */
1184 void waitIdle(void)
1185 {
1186         tcpip_open();
1187         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1188         {
1189                 fprintf(stderr, "Could not write to zy1000 server\n");
1190                 exit(-1);
1191         }
1192 }
1193
1194 uint32_t zy1000_tcpin(uint32_t address)
1195 {
1196         tcpip_open();
1197
1198         zy1000_flush_readqueue();
1199
1200         uint32_t data;
1201         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1202                         !readLong(&data))
1203         {
1204                 fprintf(stderr, "Could not read from zy1000 server\n");
1205                 exit(-1);
1206         }
1207         return data;
1208 }
1209
1210 int interface_jtag_add_sleep(uint32_t us)
1211 {
1212         tcpip_open();
1213         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1214                         !writeLong(us))
1215         {
1216                 fprintf(stderr, "Could not read from zy1000 server\n");
1217                 exit(-1);
1218         }
1219         return ERROR_OK;
1220 }
1221
1222 /* queue a readback */
1223 #define readqueue_size 16384
1224 static struct
1225 {
1226         uint8_t *dest;
1227         int bits;
1228 } readqueue[readqueue_size];
1229
1230 static int readqueue_pos = 0;
1231
1232 /* flush the readqueue, this means reading any data that
1233  * we're expecting and store them into the final position
1234  */
1235 void zy1000_flush_readqueue(void)
1236 {
1237         if (readqueue_pos == 0)
1238         {
1239                 /* simply debugging by allowing easy breakpoints when there
1240                  * is something to do. */
1241                 return;
1242         }
1243         int i;
1244         tcpip_open();
1245         for (i = 0; i < readqueue_pos; i++)
1246         {
1247                 uint32_t value;
1248                 if (!readLong(&value))
1249                 {
1250                         fprintf(stderr, "Could not read from zy1000 server\n");
1251                         exit(-1);
1252                 }
1253
1254                 uint8_t *in_value = readqueue[i].dest;
1255                 int k = readqueue[i].bits;
1256
1257                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1258                 value >>= 32-k;
1259
1260                 for (int l = 0; l < k; l += 8)
1261                 {
1262                         in_value[l/8]=(value >> l)&0xff;
1263                 }
1264         }
1265         readqueue_pos = 0;
1266 }
1267
1268 /* By queuing the callback's we avoid flushing the
1269 read queue until jtag_execute_queue(). This can
1270 reduce latency dramatically for cases where
1271 callbacks are used extensively.
1272 */
1273 #define callbackqueue_size 128
1274 static struct callbackentry
1275 {
1276         jtag_callback_t callback;
1277         jtag_callback_data_t data0;
1278         jtag_callback_data_t data1;
1279         jtag_callback_data_t data2;
1280         jtag_callback_data_t data3;
1281 } callbackqueue[callbackqueue_size];
1282
1283 static int callbackqueue_pos = 0;
1284
1285 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1286 {
1287         if (callbackqueue_pos >= callbackqueue_size)
1288         {
1289                 zy1000_flush_callbackqueue();
1290         }
1291
1292         callbackqueue[callbackqueue_pos].callback = callback;
1293         callbackqueue[callbackqueue_pos].data0 = data0;
1294         callbackqueue[callbackqueue_pos].data1 = data1;
1295         callbackqueue[callbackqueue_pos].data2 = data2;
1296         callbackqueue[callbackqueue_pos].data3 = data3;
1297         callbackqueue_pos++;
1298 }
1299
1300 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1301 {
1302         ((jtag_callback1_t)data1)(data0);
1303         return ERROR_OK;
1304 }
1305
1306 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1307 {
1308         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1309 }
1310
1311 void zy1000_flush_callbackqueue(void)
1312 {
1313         /* we have to flush the read queue so we have access to
1314          the data the callbacks will use 
1315         */
1316         zy1000_flush_readqueue();
1317         int i;
1318         for (i = 0; i < callbackqueue_pos; i++)
1319         {
1320                 struct callbackentry *entry = &callbackqueue[i];
1321                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1322         }
1323         callbackqueue_pos = 0;
1324 }
1325
1326 static void writeShiftValue(uint8_t *data, int bits)
1327 {
1328         waitIdle();
1329
1330         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1331         {
1332                 fprintf(stderr, "Could not read from zy1000 server\n");
1333                 exit(-1);
1334         }
1335
1336         if (readqueue_pos >= readqueue_size)
1337         {
1338                 zy1000_flush_readqueue();
1339         }
1340
1341         readqueue[readqueue_pos].dest = data;
1342         readqueue[readqueue_pos].bits = bits;
1343         readqueue_pos++;
1344 }
1345
1346 #else
1347
1348 static void writeShiftValue(uint8_t *data, int bits)
1349 {
1350         uint32_t value;
1351         waitIdle();
1352         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1353         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1354
1355         // data in, LSB to MSB
1356         // we're shifting in data to MSB, shift data to be aligned for returning the value
1357         value >>= 32 - bits;
1358
1359         for (int l = 0; l < bits; l += 8)
1360         {
1361                 data[l/8]=(value >> l)&0xff;
1362         }
1363 }
1364
1365 #endif
1366
1367 #if BUILD_ECOSBOARD
1368 static char tcpip_stack[2048];
1369 static cyg_thread tcpip_thread_object;
1370 static cyg_handle_t tcpip_thread_handle;
1371
1372 static char watchdog_stack[2048];
1373 static cyg_thread watchdog_thread_object;
1374 static cyg_handle_t watchdog_thread_handle;
1375
1376 /* Infinite loop peeking & poking */
1377 static void tcpipserver(void)
1378 {
1379         for (;;)
1380         {
1381                 uint32_t address;
1382                 if (!readLong(&address))
1383                         return;
1384                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1385                 address &= 0xffffff;
1386                 switch (c)
1387                 {
1388                         case ZY1000_CMD_POKE:
1389                         {
1390                                 uint32_t data;
1391                                 if (!readLong(&data))
1392                                         return;
1393                                 address &= ~0x80000000;
1394                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1395                                 break;
1396                         }
1397                         case ZY1000_CMD_PEEK:
1398                         {
1399                                 uint32_t data;
1400                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1401                                 if (!writeLong(data))
1402                                         return;
1403                                 break;
1404                         }
1405                         case ZY1000_CMD_SLEEP:
1406                         {
1407                                 uint32_t data;
1408                                 if (!readLong(&data))
1409                                         return;
1410                                 jtag_sleep(data);
1411                                 break;
1412                         }
1413                         case ZY1000_CMD_WAITIDLE:
1414                         {
1415                                 waitIdle();
1416                                 break;
1417                         }
1418                         default:
1419                                 return;
1420                 }
1421         }
1422 }
1423
1424
1425 static void tcpip_server(cyg_addrword_t data)
1426 {
1427         int so_reuseaddr_option = 1;
1428
1429         int fd;
1430         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1431         {
1432                 LOG_ERROR("error creating socket: %s", strerror(errno));
1433                 exit(-1);
1434         }
1435
1436         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1437                         sizeof(int));
1438
1439         struct sockaddr_in sin;
1440         unsigned int address_size;
1441         address_size = sizeof(sin);
1442         memset(&sin, 0, sizeof(sin));
1443         sin.sin_family = AF_INET;
1444         sin.sin_addr.s_addr = INADDR_ANY;
1445         sin.sin_port = htons(7777);
1446
1447         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1448         {
1449                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1450                 exit(-1);
1451         }
1452
1453         if (listen(fd, 1) == -1)
1454         {
1455                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1456                 exit(-1);
1457         }
1458
1459
1460         for (;;)
1461         {
1462                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1463                 if (tcp_ip < 0)
1464                 {
1465                         continue;
1466                 }
1467
1468                 int flag = 1;
1469                 setsockopt(tcp_ip,      /* socket affected */
1470                                 IPPROTO_TCP,            /* set option at TCP level */
1471                                 TCP_NODELAY,            /* name of option */
1472                                 (char *)&flag,          /* the cast is historical cruft */
1473                                 sizeof(int));           /* length of option value */
1474
1475                 bool save_poll = jtag_poll_get_enabled();
1476
1477                 /* polling will screw up the "connection" */
1478                 jtag_poll_set_enabled(false);
1479
1480                 tcpipserver();
1481
1482                 jtag_poll_set_enabled(save_poll);
1483
1484                 close(tcp_ip);
1485
1486         }
1487         close(fd);
1488
1489 }
1490
1491 #ifdef WATCHDOG_BASE
1492 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1493 static void watchdog_server(cyg_addrword_t data)
1494 {
1495         int so_reuseaddr_option = 1;
1496
1497         int fd;
1498         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1499         {
1500                 LOG_ERROR("error creating socket: %s", strerror(errno));
1501                 exit(-1);
1502         }
1503
1504         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1505                         sizeof(int));
1506
1507         struct sockaddr_in sin;
1508         unsigned int address_size;
1509         address_size = sizeof(sin);
1510         memset(&sin, 0, sizeof(sin));
1511         sin.sin_family = AF_INET;
1512         sin.sin_addr.s_addr = INADDR_ANY;
1513         sin.sin_port = htons(8888);
1514
1515         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1516         {
1517                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1518                 exit(-1);
1519         }
1520
1521         if (listen(fd, 1) == -1)
1522         {
1523                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1524                 exit(-1);
1525         }
1526
1527
1528         for (;;)
1529         {
1530                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1531
1532                 /* Start watchdog, must be reset every 10 seconds. */
1533                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1534
1535                 if (watchdog_ip < 0)
1536                 {
1537                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1538                         exit(-1);
1539                 }
1540
1541                 int flag = 1;
1542                 setsockopt(watchdog_ip, /* socket affected */
1543                                 IPPROTO_TCP,            /* set option at TCP level */
1544                                 TCP_NODELAY,            /* name of option */
1545                                 (char *)&flag,          /* the cast is historical cruft */
1546                                 sizeof(int));           /* length of option value */
1547
1548
1549                 char buf;
1550                 for (;;)
1551                 {
1552                         if (read(watchdog_ip, &buf, 1) == 1)
1553                         {
1554                                 /* Reset timer */
1555                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1556                                 /* Echo so we can telnet in and see that resetting works */
1557                                 write(watchdog_ip, &buf, 1);
1558                         } else
1559                         {
1560                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1561                                  * now.
1562                                  */
1563                                 return;
1564                         }
1565
1566                 }
1567
1568                 /* Never reached */
1569         }
1570 }
1571 #endif
1572
1573 #endif
1574
1575 #if BUILD_ZY1000_MASTER
1576 int interface_jtag_add_sleep(uint32_t us)
1577 {
1578         jtag_sleep(us);
1579         return ERROR_OK;
1580 }
1581 #endif
1582
1583 #if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
1584 volatile void *zy1000_jtag_master;
1585 #include <sys/mman.h>
1586 #endif
1587
1588 int zy1000_init(void)
1589 {
1590 #if BUILD_ECOSBOARD
1591         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1592 #elif BUILD_ZY1000_MASTER
1593         int fd;
1594         if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
1595         {
1596                 LOG_ERROR("No access to /dev/mem");
1597                 return ERROR_FAIL;
1598         }
1599 #ifndef REGISTERS_BASE
1600 #define REGISTERS_BASE 0x9002000
1601 #define REGISTERS_SPAN 128
1602 #endif
1603     
1604     zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
1605     
1606     if(zy1000_jtag_master == (void *) -1) 
1607     {
1608             close(fd);
1609                 LOG_ERROR("No access to /dev/mem");
1610                 return ERROR_FAIL;
1611     } 
1612 #endif
1613
1614
1615
1616         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1617
1618         setPower(true); // on by default
1619
1620
1621          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1622         zy1000_reset(0, 0);
1623         int jtag_speed_var;
1624         int retval = jtag_get_speed(&jtag_speed_var);
1625         if (retval != ERROR_OK)
1626                 return retval;
1627         zy1000_speed(jtag_speed_var);
1628
1629
1630 #if BUILD_ECOSBOARD
1631         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1632                         (void *) tcpip_stack, sizeof(tcpip_stack),
1633                         &tcpip_thread_handle, &tcpip_thread_object);
1634         cyg_thread_resume(tcpip_thread_handle);
1635 #ifdef WATCHDOG_BASE
1636         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1637                         (void *) watchdog_stack, sizeof(watchdog_stack),
1638                         &watchdog_thread_handle, &watchdog_thread_object);
1639         cyg_thread_resume(watchdog_thread_handle);
1640 #endif
1641 #endif
1642
1643         return ERROR_OK;
1644 }
1645
1646
1647
1648 struct jtag_interface zy1000_interface =
1649 {
1650         .name = "ZY1000",
1651         .supported = DEBUG_CAP_TMS_SEQ,
1652         .execute_queue = NULL,
1653         .speed = zy1000_speed,
1654         .commands = zy1000_commands,
1655         .init = zy1000_init,
1656         .quit = zy1000_quit,
1657         .khz = zy1000_khz,
1658         .speed_div = zy1000_speed_div,
1659         .power_dropout = zy1000_power_dropout,
1660         .srst_asserted = zy1000_srst_asserted,
1661 };