]> git.sur5r.net Git - openocd/blob - src/jtag/zy1000/zy1000.c
zy1000: fix false positive warning about unitialized local variable
[openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include <time.h>
52 #include <helper/time_support.h>
53
54 #include <netinet/tcp.h>
55
56 #if BUILD_ECOSBOARD
57 #include "zy1000_version.h"
58
59 #include <cyg/hal/hal_io.h>             // low level i/o
60 #include <cyg/hal/hal_diag.h>
61
62 #ifdef CYGPKG_HAL_NIOS2
63 #include <cyg/hal/io.h>
64 #include <cyg/firmwareutil/firmwareutil.h>
65 #endif
66
67 #define ZYLIN_VERSION GIT_ZY1000_VERSION
68 #define ZYLIN_DATE __DATE__
69 #define ZYLIN_TIME __TIME__
70 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
71 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
72
73 #endif
74
75 static int zy1000_khz(int khz, int *jtag_speed)
76 {
77         if (khz == 0)
78         {
79                 *jtag_speed = 0;
80         }
81         else
82         {
83                 *jtag_speed = 64000/khz;
84         }
85         return ERROR_OK;
86 }
87
88 static int zy1000_speed_div(int speed, int *khz)
89 {
90         if (speed == 0)
91         {
92                 *khz = 0;
93         }
94         else
95         {
96                 *khz = 64000/speed;
97         }
98
99         return ERROR_OK;
100 }
101
102 static bool readPowerDropout(void)
103 {
104         uint32_t state;
105         // sample and clear power dropout
106         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
107         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
108         bool powerDropout;
109         powerDropout = (state & 0x80) != 0;
110         return powerDropout;
111 }
112
113
114 static bool readSRST(void)
115 {
116         uint32_t state;
117         // sample and clear SRST sensing
118         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
119         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
120         bool srstAsserted;
121         srstAsserted = (state & 0x40) != 0;
122         return srstAsserted;
123 }
124
125 static int zy1000_srst_asserted(int *srst_asserted)
126 {
127         *srst_asserted = readSRST();
128         return ERROR_OK;
129 }
130
131 static int zy1000_power_dropout(int *dropout)
132 {
133         *dropout = readPowerDropout();
134         return ERROR_OK;
135 }
136
137 void zy1000_reset(int trst, int srst)
138 {
139         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
140
141         /* flush the JTAG FIFO. Not flushing the queue before messing with
142          * reset has such interesting bugs as causing hard to reproduce
143          * RCLK bugs as RCLK will stop responding when TRST is asserted
144          */
145         waitIdle();
146
147         if (!srst)
148         {
149                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
150         }
151         else
152         {
153                 /* Danger!!! if clk != 0 when in
154                  * idle in TAP_IDLE, reset halt on str912 will fail.
155                  */
156                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
157         }
158
159         if (!trst)
160         {
161                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
162         }
163         else
164         {
165                 /* assert reset */
166                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
167         }
168
169         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
170         {
171                 /* we're now in the RESET state until trst is deasserted */
172                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
173         } else
174         {
175                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
176                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
177         }
178
179         /* wait for srst to float back up */
180         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
181                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
182         {
183                 bool first = true;
184                 long long start = 0;
185                 long total = 0;
186                 for (;;)
187                 {       
188                         // We don't want to sense our own reset, so we clear here.
189                         // There is of course a timing hole where we could loose
190                         // a "real" reset.
191                         if (!readSRST())
192                         {
193                                 if (total > 1)
194                                 {
195                                   LOG_USER("SRST took %dms to deassert", (int)total);
196                                 }
197                                 break;
198                         }
199
200                         if (first)
201                         {
202                             first = false;
203                             start = timeval_ms();
204                         }
205
206                         total = timeval_ms() - start;
207
208                         keep_alive();
209
210                         if (total > 5000)
211                         {
212                                 LOG_ERROR("SRST took too long to deassert: %dms", (int)total);
213                             break;
214                         }
215                 }
216
217         }
218 }
219
220 int zy1000_speed(int speed)
221 {
222         /* flush JTAG master FIFO before setting speed */
223         waitIdle();
224
225         if (speed == 0)
226         {
227                 /*0 means RCLK*/
228                 speed = 0;
229                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
230                 LOG_DEBUG("jtag_speed using RCLK");
231         }
232         else
233         {
234                 if (speed > 8190 || speed < 2)
235                 {
236                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
237                         return ERROR_INVALID_ARGUMENTS;
238                 }
239
240                 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
241                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
242                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
243         }
244         return ERROR_OK;
245 }
246
247 static bool savePower;
248
249
250 static void setPower(bool power)
251 {
252         savePower = power;
253         if (power)
254         {
255                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
256         } else
257         {
258                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
259         }
260 }
261
262 COMMAND_HANDLER(handle_power_command)
263 {
264         switch (CMD_ARGC)
265         {
266         case 1: {
267                 bool enable;
268                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
269                 setPower(enable);
270                 // fall through
271         }
272         case 0:
273                 LOG_INFO("Target power %s", savePower ? "on" : "off");
274                 break;
275         default:
276                 return ERROR_INVALID_ARGUMENTS;
277         }
278
279         return ERROR_OK;
280 }
281
282 #if !BUILD_ECOSBOARD
283 static char *tcp_server = "notspecified";
284 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
285 {
286         if (argc != 2)
287                 return JIM_ERR;
288
289         tcp_server = strdup(Jim_GetString(argv[1], NULL));
290
291         return JIM_OK;
292 }
293 #endif
294
295 #if BUILD_ECOSBOARD
296 /* Give TELNET a way to find out what version this is */
297 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
298 {
299         if ((argc < 1) || (argc > 3))
300                 return JIM_ERR;
301         const char *version_str = NULL;
302
303         if (argc == 1)
304         {
305                 version_str = ZYLIN_OPENOCD_VERSION;
306         } else
307         {
308                 const char *str = Jim_GetString(argv[1], NULL);
309                 const char *str2 = NULL;
310                 if (argc > 2)
311                         str2 = Jim_GetString(argv[2], NULL);
312                 if (strcmp("openocd", str) == 0)
313                 {
314                         version_str = ZYLIN_OPENOCD;
315                 }
316                 else if (strcmp("zy1000", str) == 0)
317                 {
318                         version_str = ZYLIN_VERSION;
319                 }
320                 else if (strcmp("date", str) == 0)
321                 {
322                         version_str = ZYLIN_DATE;
323                 }
324                 else if (strcmp("time", str) == 0)
325                 {
326                         version_str = ZYLIN_TIME;
327                 }
328                 else if (strcmp("pcb", str) == 0)
329                 {
330 #ifdef CYGPKG_HAL_NIOS2
331                         version_str="c";
332 #else
333                         version_str="b";
334 #endif
335                 }
336 #ifdef CYGPKG_HAL_NIOS2
337                 else if (strcmp("fpga", str) == 0)
338                 {
339
340                         /* return a list of 32 bit integers to describe the expected
341                          * and actual FPGA
342                          */
343                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
344                         uint32_t id, timestamp;
345                         HAL_READ_UINT32(SYSID_BASE, id);
346                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
347                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
348                         version_str = fpga_id;
349                         if ((argc>2) && (strcmp("time", str2) == 0))
350                         {
351                             time_t last_mod = timestamp;
352                             char * t = ctime (&last_mod) ;
353                             t[strlen(t)-1] = 0;
354                             version_str = t;
355                         }
356                 }
357 #endif
358
359                 else
360                 {
361                         return JIM_ERR;
362                 }
363         }
364
365         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
366
367         return JIM_OK;
368 }
369 #endif
370
371 #ifdef CYGPKG_HAL_NIOS2
372
373
374 struct info_forward
375 {
376         void *data;
377         struct cyg_upgrade_info *upgraded_file;
378 };
379
380 static void report_info(void *data, const char * format, va_list args)
381 {
382         char *s = alloc_vprintf(format, args);
383         LOG_USER_N("%s", s);
384         free(s);
385 }
386
387 struct cyg_upgrade_info firmware_info =
388 {
389                 (uint8_t *)0x84000000,
390                 "/ram/firmware.phi",
391                 "Firmware",
392                 0x0300000,
393                 0x1f00000 -
394                 0x0300000,
395                 "ZylinNiosFirmware\n",
396                 report_info,
397 };
398
399 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
400 {
401         if (argc != 2)
402                 return JIM_ERR;
403
404         int length;
405         const char *str = Jim_GetString(argv[1], &length);
406
407         /* */
408         int tmpFile;
409         if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
410         {
411                 return JIM_ERR;
412         }
413         bool success;
414         success = write(tmpFile, str, length) == length;
415         close(tmpFile);
416         if (!success)
417                 return JIM_ERR;
418
419         if (!cyg_firmware_upgrade(NULL, firmware_info))
420                 return JIM_ERR;
421
422         return JIM_OK;
423 }
424 #endif
425
426 static int
427 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
428                                                                    int argc,
429                 Jim_Obj * const *argv)
430 {
431         if (argc != 1)
432         {
433                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
434                 return JIM_ERR;
435         }
436
437         bool dropout = readPowerDropout();
438
439         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
440
441         return JIM_OK;
442 }
443
444
445
446 int zy1000_quit(void)
447 {
448
449         return ERROR_OK;
450 }
451
452
453
454 int interface_jtag_execute_queue(void)
455 {
456         uint32_t empty;
457
458         waitIdle();
459         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
460         /* clear JTAG error register */
461         ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
462
463         if ((empty&0x400) != 0)
464         {
465                 LOG_WARNING("RCLK timeout");
466                 /* the error is informative only as we don't want to break the firmware if there
467                  * is a false positive.
468                  */
469 //              return ERROR_FAIL;
470         }
471         return ERROR_OK;
472 }
473
474
475
476
477
478 static uint32_t getShiftValue(void)
479 {
480         uint32_t value;
481         waitIdle();
482         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
483         VERBOSE(LOG_INFO("getShiftValue %08x", value));
484         return value;
485 }
486 #if 0
487 static uint32_t getShiftValueFlip(void)
488 {
489         uint32_t value;
490         waitIdle();
491         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
492         VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
493         return value;
494 }
495 #endif
496
497 #if 0
498 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, uint32_t value)
499 {
500         VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
501         uint32_t a,b;
502         a = state;
503         b = endState;
504         ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
505         ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
506         VERBOSE(getShiftValueFlip());
507 }
508 #endif
509
510 // here we shuffle N bits out/in
511 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause, tap_state_t shiftState, tap_state_t end_state)
512 {
513         tap_state_t pause_state = shiftState;
514         for (int j = 0; j < num_bits; j += 32)
515         {
516                 int k = num_bits - j;
517                 if (k > 32)
518                 {
519                         k = 32;
520                         /* we have more to shift out */
521                 } else if (pause)
522                 {
523                         /* this was the last to shift out this time */
524                         pause_state = end_state;
525                 }
526
527                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
528                 // bits are pushed out LSB to MSB
529                 uint32_t value;
530                 value = 0;
531                 if (out_value != NULL)
532                 {
533                         for (int l = 0; l < k; l += 8)
534                         {
535                                 value|=out_value[(j + l)/8]<<l;
536                         }
537                 }
538                 /* mask away unused bits for easier debugging */
539                 if (k < 32)
540                 {
541                         value&=~(((uint32_t)0xffffffff) << k);
542                 } else
543                 {
544                         /* Shifting by >= 32 is not defined by the C standard
545                          * and will in fact shift by &0x1f bits on nios */
546                 }
547
548                 shiftValueInner(shiftState, pause_state, k, value);
549
550                 if (in_value != NULL)
551                 {
552                         // data in, LSB to MSB
553                         value = getShiftValue();
554                         // we're shifting in data to MSB, shift data to be aligned for returning the value
555                         value >>= 32-k;
556
557                         for (int l = 0; l < k; l += 8)
558                         {
559                                 in_value[(j + l)/8]=(value >> l)&0xff;
560                         }
561                 }
562         }
563 }
564
565 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
566 {
567         for (int i = 0; i < num_fields; i++)
568         {
569                 scanBits(fields[i].out_value,
570                                 fields[i].in_value,
571                                 fields[i].num_bits,
572                                 (i == num_fields-1),
573                                 shiftState,
574                                 end_state);
575         }
576 }
577
578 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
579 {
580         int scan_size = 0;
581         struct jtag_tap *tap, *nextTap;
582         tap_state_t pause_state = TAP_IRSHIFT;
583
584         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
585         {
586                 nextTap = jtag_tap_next_enabled(tap);
587                 if (nextTap==NULL)
588                 {
589                         pause_state = state;
590                 }
591                 scan_size = tap->ir_length;
592
593                 /* search the list */
594                 if (tap == active)
595                 {
596                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
597                         /* update device information */
598                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
599
600                         tap->bypass = 0;
601                 } else
602                 {
603                         /* if a device isn't listed, set it to BYPASS */
604                         assert(scan_size <= 32);
605                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
606
607                         tap->bypass = 1;
608                 }
609         }
610
611         return ERROR_OK;
612 }
613
614
615
616
617
618 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
619 {
620         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
621         return ERROR_OK;
622 }
623
624 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
625 {
626         struct jtag_tap *tap, *nextTap;
627         tap_state_t pause_state = TAP_DRSHIFT;
628         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
629         {
630                 nextTap = jtag_tap_next_enabled(tap);
631                 if (nextTap==NULL)
632                 {
633                         pause_state = state;
634                 }
635
636                 /* Find a range of fields to write to this tap */
637                 if (tap == active)
638                 {
639                         assert(!tap->bypass);
640
641                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
642                 } else
643                 {
644                         /* Shift out a 0 for disabled tap's */
645                         assert(tap->bypass);
646                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
647                 }
648         }
649         return ERROR_OK;
650 }
651
652 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
653 {
654         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
655         return ERROR_OK;
656 }
657
658 int interface_jtag_add_tlr()
659 {
660         setCurrentState(TAP_RESET);
661         return ERROR_OK;
662 }
663
664
665 int interface_jtag_add_reset(int req_trst, int req_srst)
666 {
667         zy1000_reset(req_trst, req_srst);
668         return ERROR_OK;
669 }
670
671 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
672 {
673         /* num_cycles can be 0 */
674         setCurrentState(clockstate);
675
676         /* execute num_cycles, 32 at the time. */
677         int i;
678         for (i = 0; i < num_cycles; i += 32)
679         {
680                 int num;
681                 num = 32;
682                 if (num_cycles-i < num)
683                 {
684                         num = num_cycles-i;
685                 }
686                 shiftValueInner(clockstate, clockstate, num, 0);
687         }
688
689 #if !TEST_MANUAL()
690         /* finish in end_state */
691         setCurrentState(state);
692 #else
693         tap_state_t t = TAP_IDLE;
694         /* test manual drive code on any target */
695         int tms;
696         uint8_t tms_scan = tap_get_tms_path(t, state);
697         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
698
699         for (i = 0; i < tms_count; i++)
700         {
701                 tms = (tms_scan >> i) & 1;
702                 waitIdle();
703                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
704         }
705         waitIdle();
706         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
707 #endif
708
709         return ERROR_OK;
710 }
711
712 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
713 {
714         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
715 }
716
717 int interface_jtag_add_clocks(int num_cycles)
718 {
719         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
720 }
721
722 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
723 {
724         /*wait for the fifo to be empty*/
725         waitIdle();
726
727         for (unsigned i = 0; i < num_bits; i++)
728         {
729                 int tms;
730
731                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
732                 {
733                         tms = 0;
734                 }
735                 else
736                 {
737                         tms = 1;
738                 }
739
740                 waitIdle();
741                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
742         }
743
744         waitIdle();
745         if (state != TAP_INVALID)
746         {
747                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
748         } else
749         {
750                 /* this would be normal if we are switching to SWD mode */
751         }
752         return ERROR_OK;
753 }
754
755 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
756 {
757         int state_count;
758         int tms = 0;
759
760         state_count = 0;
761
762         tap_state_t cur_state = cmd_queue_cur_state;
763
764         uint8_t seq[16];
765         memset(seq, 0, sizeof(seq));
766         assert(num_states < (int)((sizeof(seq) * 8)));
767
768         while (num_states)
769         {
770                 if (tap_state_transition(cur_state, false) == path[state_count])
771                 {
772                         tms = 0;
773                 }
774                 else if (tap_state_transition(cur_state, true) == path[state_count])
775                 {
776                         tms = 1;
777                 }
778                 else
779                 {
780                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
781                         exit(-1);
782                 }
783
784                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
785
786                 cur_state = path[state_count];
787                 state_count++;
788                 num_states--;
789         }
790
791         return interface_add_tms_seq(state_count, seq, cur_state);
792 }
793
794 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
795 {
796         /* bypass bits before and after */
797         int pre_bits = 0;
798         int post_bits = 0;
799
800         bool found = false;
801         struct jtag_tap *cur_tap, *nextTap;
802         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
803         {
804                 nextTap = jtag_tap_next_enabled(cur_tap);
805                 if (cur_tap == tap)
806                 {
807                         found = true;
808                 } else
809                 {
810                         if (found)
811                         {
812                                 post_bits++;
813                         } else
814                         {
815                                 pre_bits++;
816                         }
817                 }
818         }
819         *pre = pre_bits;
820         *post = post_bits;
821 }
822
823 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
824 {
825
826         int pre_bits;
827         int post_bits;
828         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
829
830         if (pre_bits + post_bits + 6 > 32)
831         {
832                 int i;
833                 for (i = 0; i < count; i++)
834                 {
835                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
836                         buffer += 4;
837                 }
838         } else
839         {
840                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
841                 int i;
842                 for (i = 0; i < count - 1; i++)
843                 {
844                         /* Fewer pokes means we get to use the FIFO more efficiently */
845                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
846                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
847                         buffer += 4;
848                 }
849                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
850                 shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
851         }
852 }
853
854
855
856 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
857 {
858 #if 0
859         int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
860         return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
861 #else
862         static const int bits[] = {32, 2};
863         uint32_t values[] = {0, 0};
864
865         /* FIX!!!!!! the target_write_memory() API started this nasty problem
866          * with unaligned uint32_t * pointers... */
867         const uint8_t *t = (const uint8_t *)data;
868
869
870         /* bypass bits before and after */
871         int pre_bits;
872         int post_bits;
873         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
874
875         bool found = false;
876         struct jtag_tap *cur_tap, *nextTap;
877         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
878         {
879                 nextTap = jtag_tap_next_enabled(cur_tap);
880                 if (cur_tap == tap)
881                 {
882                         found = true;
883                 } else
884                 {
885                         if (found)
886                         {
887                                 post_bits++;
888                         } else
889                         {
890                                 pre_bits++;
891                         }
892                 }
893         }
894
895         post_bits+=2;
896
897
898         while (--count > 0)
899         {
900                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
901
902                 uint32_t value;
903                 value = *t++;
904                 value |= (*t++<<8);
905                 value |= (*t++<<16);
906                 value |= (*t++<<24);
907
908                 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
909                 /* minimum 2 bits */
910                 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
911
912 #if 1
913                 /* copy & paste from arm11_dbgtap.c */
914                 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
915
916                 waitIdle();
917                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
918                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
919                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
920                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
921                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
922                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
923                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
924                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
925                 /* we don't have to wait for the queue to empty here. waitIdle();        */
926                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
927 #else
928                 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
929                 {
930                         TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
931                 };
932
933                 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
934                         arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
935 #endif
936         }
937
938         values[0] = *t++;
939         values[0] |= (*t++<<8);
940         values[0] |= (*t++<<16);
941         values[0] |= (*t++<<24);
942
943         /* This will happen on the last iteration updating the current tap state
944          * so we don't have to track it during the common code path */
945         jtag_add_dr_out(tap,
946                 2,
947                 bits,
948                 values,
949                 TAP_IDLE);
950
951         return jtag_execute_queue();
952 #endif
953 }
954
955
956 static const struct command_registration zy1000_commands[] = {
957         {
958                 .name = "power",
959                 .handler = handle_power_command,
960                 .mode = COMMAND_ANY,
961                 .help = "Turn power switch to target on/off. "
962                         "With no arguments, prints status.",
963                 .usage = "('on'|'off)",
964         },
965 #if BUILD_ECOSBOARD
966         {
967                 .name = "zy1000_version",
968                 .mode = COMMAND_ANY,
969                 .jim_handler = jim_zy1000_version,
970                 .help = "Print version info for zy1000.",
971                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
972         },
973 #else
974         {
975                 .name = "zy1000_server",
976                 .mode = COMMAND_ANY,
977                 .jim_handler = jim_zy1000_server,
978                 .help = "Tcpip address for ZY1000 server.",
979                 .usage = "address",
980         },
981 #endif
982         {
983                 .name = "powerstatus",
984                 .mode = COMMAND_ANY,
985                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
986                 .help = "Returns power status of target",
987         },
988 #ifdef CYGPKG_HAL_NIOS2
989         {
990                 .name = "updatezy1000firmware",
991                 .mode = COMMAND_ANY,
992                 .jim_handler = jim_zy1000_writefirmware,
993                 .help = "writes firmware to flash",
994                 /* .usage = "some_string", */
995         },
996 #endif
997         COMMAND_REGISTRATION_DONE
998 };
999
1000
1001 static int tcp_ip = -1;
1002
1003 /* Write large packets if we can */
1004 static size_t out_pos;
1005 static uint8_t out_buffer[16384];
1006 static size_t in_pos;
1007 static size_t in_write;
1008 static uint8_t in_buffer[16384];
1009
1010 static bool flush_writes(void)
1011 {
1012         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1013         out_pos = 0;
1014         return ok;
1015 }
1016
1017 static bool writeLong(uint32_t l)
1018 {
1019         int i;
1020         for (i = 0; i < 4; i++)
1021         {
1022                 uint8_t c = (l >> (i*8))&0xff;
1023                 out_buffer[out_pos++] = c;
1024                 if (out_pos >= sizeof(out_buffer))
1025                 {
1026                         if (!flush_writes())
1027                         {
1028                                 return false;
1029                         }
1030                 }
1031         }
1032         return true;
1033 }
1034
1035 static bool readLong(uint32_t *out_data)
1036 {
1037         if (out_pos > 0)
1038         {
1039                 if (!flush_writes())
1040                 {
1041                         return false;
1042                 }
1043         }
1044
1045         uint32_t data = 0;
1046         int i;
1047         for (i = 0; i < 4; i++)
1048         {
1049                 uint8_t c;
1050                 if (in_pos == in_write)
1051                 {
1052                         /* read more */
1053                         int t;
1054                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1055                         if (t < 1)
1056                         {
1057                                 return false;
1058                         }
1059                         in_write = (size_t) t;
1060                         in_pos = 0;
1061                 }
1062                 c = in_buffer[in_pos++];
1063
1064                 data |= (c << (i*8));
1065         }
1066         *out_data = data;
1067         return true;
1068 }
1069
1070 enum ZY1000_CMD
1071 {
1072         ZY1000_CMD_POKE = 0x0,
1073         ZY1000_CMD_PEEK = 0x8,
1074         ZY1000_CMD_SLEEP = 0x1,
1075 };
1076
1077
1078 #if !BUILD_ECOSBOARD
1079
1080 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1081 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1082
1083 /* We initialize this late since we need to know the server address
1084  * first.
1085  */
1086 static void tcpip_open(void)
1087 {
1088         if (tcp_ip >= 0)
1089                 return;
1090
1091         struct sockaddr_in echoServAddr; /* Echo server address */
1092
1093         /* Create a reliable, stream socket using TCP */
1094         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1095         {
1096                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1097                 exit(-1);
1098         }
1099
1100         /* Construct the server address structure */
1101         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1102         echoServAddr.sin_family = AF_INET; /* Internet address family */
1103         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1104         echoServAddr.sin_port = htons(7777); /* Server port */
1105
1106         /* Establish the connection to the echo server */
1107         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1108         {
1109                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1110                 exit(-1);
1111         }
1112
1113         int flag = 1;
1114         setsockopt(tcp_ip,      /* socket affected */
1115                         IPPROTO_TCP,            /* set option at TCP level */
1116                         TCP_NODELAY,            /* name of option */
1117                         (char *)&flag,          /* the cast is historical cruft */
1118                         sizeof(int));           /* length of option value */
1119
1120 }
1121
1122
1123 /* send a poke */
1124 void zy1000_tcpout(uint32_t address, uint32_t data)
1125 {
1126         tcpip_open();
1127         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1128                         !writeLong(data))
1129         {
1130                 fprintf(stderr, "Could not write to zy1000 server\n");
1131                 exit(-1);
1132         }
1133 }
1134
1135 uint32_t zy1000_tcpin(uint32_t address)
1136 {
1137         tcpip_open();
1138         uint32_t data;
1139         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1140                         !readLong(&data))
1141         {
1142                 fprintf(stderr, "Could not read from zy1000 server\n");
1143                 exit(-1);
1144         }
1145         return data;
1146 }
1147
1148 int interface_jtag_add_sleep(uint32_t us)
1149 {
1150         tcpip_open();
1151         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1152                         !writeLong(us))
1153         {
1154                 fprintf(stderr, "Could not read from zy1000 server\n");
1155                 exit(-1);
1156         }
1157         return ERROR_OK;
1158 }
1159
1160
1161 #endif
1162
1163 #if BUILD_ECOSBOARD
1164 static char tcpip_stack[2048];
1165
1166 static cyg_thread tcpip_thread_object;
1167 static cyg_handle_t tcpip_thread_handle;
1168
1169 /* Infinite loop peeking & poking */
1170 static void tcpipserver(void)
1171 {
1172         for (;;)
1173         {
1174                 uint32_t address;
1175                 if (!readLong(&address))
1176                         return;
1177                 enum ZY1000_CMD c = (address >> 24) & 0xff;
1178                 address &= 0xffffff;
1179                 switch (c)
1180                 {
1181                         case ZY1000_CMD_POKE:
1182                         {
1183                                 uint32_t data;
1184                                 if (!readLong(&data))
1185                                         return;
1186                                 address &= ~0x80000000;
1187                                 ZY1000_POKE(address + ZY1000_JTAG_BASE, data);
1188                                 break;
1189                         }
1190                         case ZY1000_CMD_PEEK:
1191                         {
1192                                 uint32_t data;
1193                                 ZY1000_PEEK(address + ZY1000_JTAG_BASE, data);
1194                                 if (!writeLong(data))
1195                                         return;
1196                                 break;
1197                         }
1198                         case ZY1000_CMD_SLEEP:
1199                         {
1200                                 uint32_t data;
1201                                 if (!readLong(&data))
1202                                         return;
1203                                 jtag_sleep(data);
1204                                 break;
1205                         }
1206                         default:
1207                                 return;
1208                 }
1209         }
1210 }
1211
1212
1213 static void tcpip_server(cyg_addrword_t data)
1214 {
1215         int so_reuseaddr_option = 1;
1216
1217         int fd;
1218         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1219         {
1220                 LOG_ERROR("error creating socket: %s", strerror(errno));
1221                 exit(-1);
1222         }
1223
1224         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1225                         sizeof(int));
1226
1227         struct sockaddr_in sin;
1228         unsigned int address_size;
1229         address_size = sizeof(sin);
1230         memset(&sin, 0, sizeof(sin));
1231         sin.sin_family = AF_INET;
1232         sin.sin_addr.s_addr = INADDR_ANY;
1233         sin.sin_port = htons(7777);
1234
1235         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1236         {
1237                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1238                 exit(-1);
1239         }
1240
1241         if (listen(fd, 1) == -1)
1242         {
1243                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1244                 exit(-1);
1245         }
1246
1247
1248         for (;;)
1249         {
1250                 tcp_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1251                 if (tcp_ip < 0)
1252                 {
1253                         continue;
1254                 }
1255
1256                 int flag = 1;
1257                 setsockopt(tcp_ip,      /* socket affected */
1258                                 IPPROTO_TCP,            /* set option at TCP level */
1259                                 TCP_NODELAY,            /* name of option */
1260                                 (char *)&flag,          /* the cast is historical cruft */
1261                                 sizeof(int));           /* length of option value */
1262
1263                 bool save_poll = jtag_poll_get_enabled();
1264
1265                 /* polling will screw up the "connection" */
1266                 jtag_poll_set_enabled(false);
1267
1268                 tcpipserver();
1269
1270                 jtag_poll_set_enabled(save_poll);
1271
1272                 close(tcp_ip);
1273
1274         }
1275         close(fd);
1276
1277 }
1278
1279 int interface_jtag_add_sleep(uint32_t us)
1280 {
1281         jtag_sleep(us);
1282         return ERROR_OK;
1283 }
1284
1285 #endif
1286
1287
1288 int zy1000_init(void)
1289 {
1290 #if BUILD_ECOSBOARD
1291         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1292 #endif
1293
1294         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1295
1296         setPower(true); // on by default
1297
1298
1299          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1300         zy1000_reset(0, 0);
1301         zy1000_speed(jtag_get_speed());
1302
1303
1304 #if BUILD_ECOSBOARD
1305         cyg_thread_create(1, tcpip_server, (cyg_addrword_t) 0, "tcip/ip server",
1306                         (void *) tcpip_stack, sizeof(tcpip_stack),
1307                         &tcpip_thread_handle, &tcpip_thread_object);
1308         cyg_thread_resume(tcpip_thread_handle);
1309 #endif
1310
1311         return ERROR_OK;
1312 }
1313
1314
1315
1316 struct jtag_interface zy1000_interface =
1317 {
1318         .name = "ZY1000",
1319         .supported = DEBUG_CAP_TMS_SEQ,
1320         .execute_queue = NULL,
1321         .speed = zy1000_speed,
1322         .commands = zy1000_commands,
1323         .init = zy1000_init,
1324         .quit = zy1000_quit,
1325         .khz = zy1000_khz,
1326         .speed_div = zy1000_speed_div,
1327         .power_dropout = zy1000_power_dropout,
1328         .srst_asserted = zy1000_srst_asserted,
1329 };
1330