]> git.sur5r.net Git - openocd/blob - src/jtag/zy1000/zy1000.c
zy1000: fix bug in ir scan handling
[openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <pthread.h>
49
50 #include <target/embeddedice.h>
51 #include <jtag/minidriver.h>
52 #include <jtag/interface.h>
53 #include <time.h>
54 #include <helper/time_support.h>
55
56 #include <netinet/tcp.h>
57
58 #if BUILD_ECOSBOARD
59 #include "zy1000_version.h"
60
61 #include <cyg/hal/hal_io.h>             // low level i/o
62 #include <cyg/hal/hal_diag.h>
63
64 #ifdef CYGPKG_HAL_NIOS2
65 #include <cyg/hal/io.h>
66 #include <cyg/firmwareutil/firmwareutil.h>
67 #define ZYLIN_KHZ 60000
68 #else
69 #define ZYLIN_KHZ 64000
70 #endif
71
72 #define ZYLIN_VERSION GIT_ZY1000_VERSION
73 #define ZYLIN_DATE __DATE__
74 #define ZYLIN_TIME __TIME__
75 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
76 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
77
78 #else
79 /* Assume we're connecting to a revc w/60MHz clock. */
80 #define ZYLIN_KHZ 60000
81 #endif
82
83
84 /* The software needs to check if it's in RCLK mode or not */
85 static bool zy1000_rclk = false;
86
87 static int zy1000_khz(int khz, int *jtag_speed)
88 {
89         if (khz == 0)
90         {
91                 *jtag_speed = 0;
92         }
93         else
94         {
95                 int speed;
96                 /* Round speed up to nearest divisor.
97                  *
98                  * E.g. 16000kHz
99                  * (64000 + 15999) / 16000 = 4
100                  * (4 + 1) / 2 = 2
101                  * 2 * 2 = 4
102                  *
103                  * 64000 / 4 = 16000
104                  *
105                  * E.g. 15999
106                  * (64000 + 15998) / 15999 = 5
107                  * (5 + 1) / 2 = 3
108                  * 3 * 2 = 6
109                  *
110                  * 64000 / 6 = 10666
111                  *
112                  */
113                 speed = (ZYLIN_KHZ + (khz -1)) / khz;
114                 speed = (speed + 1 ) / 2;
115                 speed *= 2;
116                 if (speed > 8190)
117                 {
118                         /* maximum dividend */
119                         speed = 8190;
120                 }
121                 *jtag_speed = speed;
122         }
123         return ERROR_OK;
124 }
125
126 static int zy1000_speed_div(int speed, int *khz)
127 {
128         if (speed == 0)
129         {
130                 *khz = 0;
131         }
132         else
133         {
134                 *khz = ZYLIN_KHZ / speed;
135         }
136
137         return ERROR_OK;
138 }
139
140 static bool readPowerDropout(void)
141 {
142         uint32_t state;
143         // sample and clear power dropout
144         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
145         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
146         bool powerDropout;
147         powerDropout = (state & 0x80) != 0;
148         return powerDropout;
149 }
150
151
152 static bool readSRST(void)
153 {
154         uint32_t state;
155         // sample and clear SRST sensing
156         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
157         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
158         bool srstAsserted;
159         srstAsserted = (state & 0x40) != 0;
160         return srstAsserted;
161 }
162
163 static int zy1000_srst_asserted(int *srst_asserted)
164 {
165         *srst_asserted = readSRST();
166         return ERROR_OK;
167 }
168
169 static int zy1000_power_dropout(int *dropout)
170 {
171         *dropout = readPowerDropout();
172         return ERROR_OK;
173 }
174
175 /* Wait for SRST to assert or deassert */
176 static void waitSRST(bool asserted)
177 {
178         bool first = true;
179         long long start = 0;
180         long total = 0;
181         const char *mode = asserted ? "assert" : "deassert";
182
183         for (;;)
184         {
185                 bool srstAsserted = readSRST();
186                 if ( (asserted && srstAsserted) || (!asserted && !srstAsserted) )
187                 {
188                         if (total > 1)
189                         {
190                                 LOG_USER("SRST took %dms to %s", (int)total, mode);
191                         }
192                         break;
193                 }
194
195                 if (first)
196                 {
197                         first = false;
198                         start = timeval_ms();
199                 }
200
201                 total = timeval_ms() - start;
202
203                 keep_alive();
204
205                 if (total > 5000)
206                 {
207                         LOG_ERROR("SRST took too long to %s: %dms", mode, (int)total);
208                         break;
209                 }
210         }
211 }
212
213
214 void zy1000_reset(int trst, int srst)
215 {
216         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
217
218         /* flush the JTAG FIFO. Not flushing the queue before messing with
219          * reset has such interesting bugs as causing hard to reproduce
220          * RCLK bugs as RCLK will stop responding when TRST is asserted
221          */
222         waitIdle();
223
224         if (!srst)
225         {
226                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
227         }
228         else
229         {
230                 /* Danger!!! if clk != 0 when in
231                  * idle in TAP_IDLE, reset halt on str912 will fail.
232                  */
233                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
234
235                 waitSRST(true);
236         }
237
238         if (!trst)
239         {
240                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
241         }
242         else
243         {
244                 /* assert reset */
245                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
246         }
247
248         if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
249         {
250                 /* we're now in the RESET state until trst is deasserted */
251                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
252         } else
253         {
254                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
255                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
256         }
257
258         /* wait for srst to float back up */
259         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
260                 (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
261         {
262                 waitSRST(false);
263         }
264 }
265
266 int zy1000_speed(int speed)
267 {
268         /* flush JTAG master FIFO before setting speed */
269         waitIdle();
270
271         zy1000_rclk = false;
272
273         if (speed == 0)
274         {
275                 /*0 means RCLK*/
276                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
277                 zy1000_rclk = true;
278                 LOG_DEBUG("jtag_speed using RCLK");
279         }
280         else
281         {
282                 if (speed > 8190 || speed < 2)
283                 {
284                         LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
285                                         ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
286                         return ERROR_INVALID_ARGUMENTS;
287                 }
288
289                 int khz;
290                 speed &= ~1;
291                 zy1000_speed_div(speed, &khz);
292                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
293                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
294                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
295         }
296         return ERROR_OK;
297 }
298
299 static bool savePower;
300
301
302 static void setPower(bool power)
303 {
304         savePower = power;
305         if (power)
306         {
307                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
308         } else
309         {
310                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
311         }
312 }
313
314 COMMAND_HANDLER(handle_power_command)
315 {
316         switch (CMD_ARGC)
317         {
318         case 1: {
319                 bool enable;
320                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
321                 setPower(enable);
322                 // fall through
323         }
324         case 0:
325                 LOG_INFO("Target power %s", savePower ? "on" : "off");
326                 break;
327         default:
328                 return ERROR_INVALID_ARGUMENTS;
329         }
330
331         return ERROR_OK;
332 }
333
334 #if !BUILD_ZY1000_MASTER
335 static char *tcp_server = "notspecified";
336 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
337 {
338         if (argc != 2)
339                 return JIM_ERR;
340
341         tcp_server = strdup(Jim_GetString(argv[1], NULL));
342
343         return JIM_OK;
344 }
345 #endif
346
347 #if BUILD_ECOSBOARD
348 /* Give TELNET a way to find out what version this is */
349 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
350 {
351         if ((argc < 1) || (argc > 3))
352                 return JIM_ERR;
353         const char *version_str = NULL;
354
355         if (argc == 1)
356         {
357                 version_str = ZYLIN_OPENOCD_VERSION;
358         } else
359         {
360                 const char *str = Jim_GetString(argv[1], NULL);
361                 const char *str2 = NULL;
362                 if (argc > 2)
363                         str2 = Jim_GetString(argv[2], NULL);
364                 if (strcmp("openocd", str) == 0)
365                 {
366                         version_str = ZYLIN_OPENOCD;
367                 }
368                 else if (strcmp("zy1000", str) == 0)
369                 {
370                         version_str = ZYLIN_VERSION;
371                 }
372                 else if (strcmp("date", str) == 0)
373                 {
374                         version_str = ZYLIN_DATE;
375                 }
376                 else if (strcmp("time", str) == 0)
377                 {
378                         version_str = ZYLIN_TIME;
379                 }
380                 else if (strcmp("pcb", str) == 0)
381                 {
382 #ifdef CYGPKG_HAL_NIOS2
383                         version_str="c";
384 #else
385                         version_str="b";
386 #endif
387                 }
388 #ifdef CYGPKG_HAL_NIOS2
389                 else if (strcmp("fpga", str) == 0)
390                 {
391
392                         /* return a list of 32 bit integers to describe the expected
393                          * and actual FPGA
394                          */
395                         static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
396                         uint32_t id, timestamp;
397                         HAL_READ_UINT32(SYSID_BASE, id);
398                         HAL_READ_UINT32(SYSID_BASE+4, timestamp);
399                         sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
400                         version_str = fpga_id;
401                         if ((argc>2) && (strcmp("time", str2) == 0))
402                         {
403                             time_t last_mod = timestamp;
404                             char * t = ctime (&last_mod) ;
405                             t[strlen(t)-1] = 0;
406                             version_str = t;
407                         }
408                 }
409 #endif
410
411                 else
412                 {
413                         return JIM_ERR;
414                 }
415         }
416
417         Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
418
419         return JIM_OK;
420 }
421 #endif
422
423 #ifdef CYGPKG_HAL_NIOS2
424
425
426 struct info_forward
427 {
428         void *data;
429         struct cyg_upgrade_info *upgraded_file;
430 };
431
432 static void report_info(void *data, const char * format, va_list args)
433 {
434         char *s = alloc_vprintf(format, args);
435         LOG_USER_N("%s", s);
436         free(s);
437 }
438
439 struct cyg_upgrade_info firmware_info =
440 {
441                 (uint8_t *)0x84000000,
442                 "/ram/firmware.phi",
443                 "Firmware",
444                 0x0300000,
445                 0x1f00000 -
446                 0x0300000,
447                 "ZylinNiosFirmware\n",
448                 report_info,
449 };
450
451 // File written to /ram/firmware.phi before arriving at this fn
452 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
453 {
454         if (argc != 1)
455                 return JIM_ERR;
456
457         if (!cyg_firmware_upgrade(NULL, firmware_info))
458                 return JIM_ERR;
459
460         return JIM_OK;
461 }
462 #endif
463
464 static int
465 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
466                                                                    int argc,
467                 Jim_Obj * const *argv)
468 {
469         if (argc != 1)
470         {
471                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
472                 return JIM_ERR;
473         }
474
475         bool dropout = readPowerDropout();
476
477         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
478
479         return JIM_OK;
480 }
481
482
483
484 int zy1000_quit(void)
485 {
486
487         return ERROR_OK;
488 }
489
490
491
492 int interface_jtag_execute_queue(void)
493 {
494         uint32_t empty;
495
496         waitIdle();
497
498         /* We must make sure to write data read back to memory location before we return
499          * from this fn
500          */
501         zy1000_flush_readqueue();
502
503         /* and handle any callbacks... */
504         zy1000_flush_callbackqueue();
505
506         if (zy1000_rclk)
507         {
508                 /* Only check for errors when using RCLK to speed up
509                  * jtag over TCP/IP
510                  */
511                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
512                 /* clear JTAG error register */
513                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
514
515                 if ((empty&0x400) != 0)
516                 {
517                         LOG_WARNING("RCLK timeout");
518                         /* the error is informative only as we don't want to break the firmware if there
519                          * is a false positive.
520                          */
521         //              return ERROR_FAIL;
522                 }
523         }
524         return ERROR_OK;
525 }
526
527
528
529
530 static void writeShiftValue(uint8_t *data, int bits);
531
532 // here we shuffle N bits out/in
533 static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
534 {
535         tap_state_t pause_state = shiftState;
536         for (int j = 0; j < num_bits; j += 32)
537         {
538                 int k = num_bits - j;
539                 if (k > 32)
540                 {
541                         k = 32;
542                         /* we have more to shift out */
543                 } else if (pause_now)
544                 {
545                         /* this was the last to shift out this time */
546                         pause_state = end_state;
547                 }
548
549                 // we have (num_bits + 7)/8 bytes of bits to toggle out.
550                 // bits are pushed out LSB to MSB
551                 uint32_t value;
552                 value = 0;
553                 if (out_value != NULL)
554                 {
555                         for (int l = 0; l < k; l += 8)
556                         {
557                                 value|=out_value[(j + l)/8]<<l;
558                         }
559                 }
560                 /* mask away unused bits for easier debugging */
561                 if (k < 32)
562                 {
563                         value&=~(((uint32_t)0xffffffff) << k);
564                 } else
565                 {
566                         /* Shifting by >= 32 is not defined by the C standard
567                          * and will in fact shift by &0x1f bits on nios */
568                 }
569
570                 shiftValueInner(shiftState, pause_state, k, value);
571
572                 if (in_value != NULL)
573                 {
574                         writeShiftValue(in_value + (j/8), k);
575                 }
576         }
577 }
578
579 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
580 {
581         for (int i = 0; i < num_fields; i++)
582         {
583                 scanBits(fields[i].out_value,
584                                 fields[i].in_value,
585                                 fields[i].num_bits,
586                                 (i == num_fields-1),
587                                 shiftState,
588                                 end_state);
589         }
590 }
591
592 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
593 {
594         int scan_size = 0;
595         struct jtag_tap *tap, *nextTap;
596         tap_state_t pause_state = TAP_IRSHIFT;
597
598         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
599         {
600                 nextTap = jtag_tap_next_enabled(tap);
601                 if (nextTap==NULL)
602                 {
603                         pause_state = state;
604                 }
605                 scan_size = tap->ir_length;
606
607                 /* search the list */
608                 if (tap == active)
609                 {
610                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
611                         /* update device information */
612                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
613
614                         tap->bypass = 0;
615                 } else
616                 {
617                         /* if a device isn't listed, set it to BYPASS */
618                         assert(scan_size <= 32);
619                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
620
621                         /* Optimization code will check what the cur_instr is set to, so
622                          * we must set it to bypass value.
623                          */
624                         buf_set_ones(tap->cur_instr, tap->ir_length);
625
626                         tap->bypass = 1;
627                 }
628         }
629
630         return ERROR_OK;
631 }
632
633
634
635
636
637 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
638 {
639         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
640         return ERROR_OK;
641 }
642
643 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
644 {
645         struct jtag_tap *tap, *nextTap;
646         tap_state_t pause_state = TAP_DRSHIFT;
647         for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
648         {
649                 nextTap = jtag_tap_next_enabled(tap);
650                 if (nextTap==NULL)
651                 {
652                         pause_state = state;
653                 }
654
655                 /* Find a range of fields to write to this tap */
656                 if (tap == active)
657                 {
658                         assert(!tap->bypass);
659
660                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
661                 } else
662                 {
663                         /* Shift out a 0 for disabled tap's */
664                         assert(tap->bypass);
665                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
666                 }
667         }
668         return ERROR_OK;
669 }
670
671 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
672 {
673         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
674         return ERROR_OK;
675 }
676
677 int interface_jtag_add_tlr()
678 {
679         setCurrentState(TAP_RESET);
680         return ERROR_OK;
681 }
682
683
684 int interface_jtag_add_reset(int req_trst, int req_srst)
685 {
686         zy1000_reset(req_trst, req_srst);
687         return ERROR_OK;
688 }
689
690 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
691 {
692         /* num_cycles can be 0 */
693         setCurrentState(clockstate);
694
695         /* execute num_cycles, 32 at the time. */
696         int i;
697         for (i = 0; i < num_cycles; i += 32)
698         {
699                 int num;
700                 num = 32;
701                 if (num_cycles-i < num)
702                 {
703                         num = num_cycles-i;
704                 }
705                 shiftValueInner(clockstate, clockstate, num, 0);
706         }
707
708 #if !TEST_MANUAL()
709         /* finish in end_state */
710         setCurrentState(state);
711 #else
712         tap_state_t t = TAP_IDLE;
713         /* test manual drive code on any target */
714         int tms;
715         uint8_t tms_scan = tap_get_tms_path(t, state);
716         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
717
718         for (i = 0; i < tms_count; i++)
719         {
720                 tms = (tms_scan >> i) & 1;
721                 waitIdle();
722                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
723         }
724         waitIdle();
725         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
726 #endif
727
728         return ERROR_OK;
729 }
730
731 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
732 {
733         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
734 }
735
736 int interface_jtag_add_clocks(int num_cycles)
737 {
738         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
739 }
740
741 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
742 {
743         /*wait for the fifo to be empty*/
744         waitIdle();
745
746         for (unsigned i = 0; i < num_bits; i++)
747         {
748                 int tms;
749
750                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
751                 {
752                         tms = 0;
753                 }
754                 else
755                 {
756                         tms = 1;
757                 }
758
759                 waitIdle();
760                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
761         }
762
763         waitIdle();
764         if (state != TAP_INVALID)
765         {
766                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
767         } else
768         {
769                 /* this would be normal if we are switching to SWD mode */
770         }
771         return ERROR_OK;
772 }
773
774 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
775 {
776         int state_count;
777         int tms = 0;
778
779         state_count = 0;
780
781         tap_state_t cur_state = cmd_queue_cur_state;
782
783         uint8_t seq[16];
784         memset(seq, 0, sizeof(seq));
785         assert(num_states < (int)((sizeof(seq) * 8)));
786
787         while (num_states)
788         {
789                 if (tap_state_transition(cur_state, false) == path[state_count])
790                 {
791                         tms = 0;
792                 }
793                 else if (tap_state_transition(cur_state, true) == path[state_count])
794                 {
795                         tms = 1;
796                 }
797                 else
798                 {
799                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
800                         exit(-1);
801                 }
802
803                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
804
805                 cur_state = path[state_count];
806                 state_count++;
807                 num_states--;
808         }
809
810         return interface_add_tms_seq(state_count, seq, cur_state);
811 }
812
813 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
814 {
815         /* bypass bits before and after */
816         int pre_bits = 0;
817         int post_bits = 0;
818
819         bool found = false;
820         struct jtag_tap *cur_tap, *nextTap;
821         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
822         {
823                 nextTap = jtag_tap_next_enabled(cur_tap);
824                 if (cur_tap == tap)
825                 {
826                         found = true;
827                 } else
828                 {
829                         if (found)
830                         {
831                                 post_bits++;
832                         } else
833                         {
834                                 pre_bits++;
835                         }
836                 }
837         }
838         *pre = pre_bits;
839         *post = post_bits;
840 }
841
842 /*
843         static const int embeddedice_num_bits[] = {32, 6};
844         uint32_t values[2];
845
846         values[0] = value;
847         values[1] = (1 << 5) | reg_addr;
848
849         jtag_add_dr_out(tap,
850                         2,
851                         embeddedice_num_bits,
852                         values,
853                         TAP_IDLE);
854 */
855
856 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
857 {
858 #if 0
859         int i;
860         for (i = 0; i < count; i++)
861         {
862                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
863                 buffer += 4;
864         }
865 #else
866         int pre_bits;
867         int post_bits;
868         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
869
870         if ((pre_bits > 32) || (post_bits + 6 > 32))
871         {
872                 int i;
873                 for (i = 0; i < count; i++)
874                 {
875                         embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
876                         buffer += 4;
877                 }
878         } else
879         {
880                 int i;
881                 for (i = 0; i < count; i++)
882                 {
883                         /* Fewer pokes means we get to use the FIFO more efficiently */
884                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
885                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
886                         /* Danger! here we need to exit into the TAP_IDLE state to make
887                          * DCC pick up this value.
888                          */
889                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
890                         buffer += 4;
891                 }
892         }
893 #endif
894 }
895
896
897
898 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
899 {
900         /* bypass bits before and after */
901         int pre_bits;
902         int post_bits;
903         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
904         post_bits+=2;
905
906         if ((pre_bits > 32) || (post_bits > 32))
907         {
908                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, uint32_t *, size_t);
909                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
910         } else
911         {
912                 static const int bits[] = {32, 2};
913                 uint32_t values[] = {0, 0};
914
915                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
916                  * with unaligned uint32_t * pointers... */
917                 const uint8_t *t = (const uint8_t *)data;
918
919                 while (--count > 0)
920                 {
921 #if 1
922                         /* Danger! This code doesn't update cmd_queue_cur_state, so
923                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
924                          * this loop would fail!
925                          */
926                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
927
928                         uint32_t value;
929                         value = *t++;
930                         value |= (*t++<<8);
931                         value |= (*t++<<16);
932                         value |= (*t++<<24);
933
934                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
935                         /* minimum 2 bits */
936                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
937
938                         /* copy & paste from arm11_dbgtap.c */
939                         //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
940                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
941                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
942                          * or in the jtag registers module.
943                          */
944                         waitIdle();
945                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
946                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
947                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
948                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
949                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
950                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
951                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
952                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
953                         /* we don't have to wait for the queue to empty here */
954                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
955                         waitIdle();
956 #else
957                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
958                         {
959                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
960                         };
961
962                         values[0] = *t++;
963                         values[0] |= (*t++<<8);
964                         values[0] |= (*t++<<16);
965                         values[0] |= (*t++<<24);
966
967                         jtag_add_dr_out(tap,
968                                 2,
969                                 bits,
970                                 values,
971                                 TAP_IDLE);
972
973                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
974                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
975 #endif
976                 }
977
978                 values[0] = *t++;
979                 values[0] |= (*t++<<8);
980                 values[0] |= (*t++<<16);
981                 values[0] |= (*t++<<24);
982
983                 /* This will happen on the last iteration updating cmd_queue_cur_state
984                  * so we don't have to track it during the common code path
985                  */
986                 jtag_add_dr_out(tap,
987                         2,
988                         bits,
989                         values,
990                         TAP_IDLE);
991
992                 return jtag_execute_queue();
993         }
994 }
995
996
997 static const struct command_registration zy1000_commands[] = {
998         {
999                 .name = "power",
1000                 .handler = handle_power_command,
1001                 .mode = COMMAND_ANY,
1002                 .help = "Turn power switch to target on/off. "
1003                         "With no arguments, prints status.",
1004                 .usage = "('on'|'off)",
1005         },
1006 #if BUILD_ZY1000_MASTER
1007 #if BUILD_ECOSBOARD
1008         {
1009                 .name = "zy1000_version",
1010                 .mode = COMMAND_ANY,
1011                 .jim_handler = jim_zy1000_version,
1012                 .help = "Print version info for zy1000.",
1013                 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
1014         },
1015 #endif
1016 #else
1017         {
1018                 .name = "zy1000_server",
1019                 .mode = COMMAND_ANY,
1020                 .jim_handler = jim_zy1000_server,
1021                 .help = "Tcpip address for ZY1000 server.",
1022                 .usage = "address",
1023         },
1024 #endif
1025         {
1026                 .name = "powerstatus",
1027                 .mode = COMMAND_ANY,
1028                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
1029                 .help = "Returns power status of target",
1030         },
1031 #ifdef CYGPKG_HAL_NIOS2
1032         {
1033                 .name = "updatezy1000firmware",
1034                 .mode = COMMAND_ANY,
1035                 .jim_handler = jim_zy1000_writefirmware,
1036                 .help = "writes firmware to flash",
1037                 /* .usage = "some_string", */
1038         },
1039 #endif
1040         COMMAND_REGISTRATION_DONE
1041 };
1042
1043
1044 #if !BUILD_ZY1000_MASTER
1045
1046 static int tcp_ip = -1;
1047
1048 /* Write large packets if we can */
1049 static size_t out_pos;
1050 static uint8_t out_buffer[16384];
1051 static size_t in_pos;
1052 static size_t in_write;
1053 static uint8_t in_buffer[16384];
1054
1055 static bool flush_writes(void)
1056 {
1057         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
1058         out_pos = 0;
1059         return ok;
1060 }
1061
1062 static bool writeLong(uint32_t l)
1063 {
1064         int i;
1065         for (i = 0; i < 4; i++)
1066         {
1067                 uint8_t c = (l >> (i*8))&0xff;
1068                 out_buffer[out_pos++] = c;
1069                 if (out_pos >= sizeof(out_buffer))
1070                 {
1071                         if (!flush_writes())
1072                         {
1073                                 return false;
1074                         }
1075                 }
1076         }
1077         return true;
1078 }
1079
1080 static bool readLong(uint32_t *out_data)
1081 {
1082         uint32_t data = 0;
1083         int i;
1084         for (i = 0; i < 4; i++)
1085         {
1086                 uint8_t c;
1087                 if (in_pos == in_write)
1088                 {
1089                         /* If we have some data that we can send, send them before
1090                          * we wait for more data
1091                          */
1092                         if (out_pos > 0)
1093                         {
1094                                 if (!flush_writes())
1095                                 {
1096                                         return false;
1097                                 }
1098                         }
1099
1100                         /* read more */
1101                         int t;
1102                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
1103                         if (t < 1)
1104                         {
1105                                 return false;
1106                         }
1107                         in_write = (size_t) t;
1108                         in_pos = 0;
1109                 }
1110                 c = in_buffer[in_pos++];
1111
1112                 data |= (c << (i*8));
1113         }
1114         *out_data = data;
1115         return true;
1116 }
1117
1118 enum ZY1000_CMD
1119 {
1120         ZY1000_CMD_POKE = 0x0,
1121         ZY1000_CMD_PEEK = 0x8,
1122         ZY1000_CMD_SLEEP = 0x1,
1123         ZY1000_CMD_WAITIDLE = 2
1124 };
1125
1126 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
1127 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
1128
1129 /* We initialize this late since we need to know the server address
1130  * first.
1131  */
1132 static void tcpip_open(void)
1133 {
1134         if (tcp_ip >= 0)
1135                 return;
1136
1137         struct sockaddr_in echoServAddr; /* Echo server address */
1138
1139         /* Create a reliable, stream socket using TCP */
1140         if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
1141         {
1142                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1143                 exit(-1);
1144         }
1145
1146         /* Construct the server address structure */
1147         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
1148         echoServAddr.sin_family = AF_INET; /* Internet address family */
1149         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
1150         echoServAddr.sin_port = htons(7777); /* Server port */
1151
1152         /* Establish the connection to the echo server */
1153         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
1154         {
1155                 fprintf(stderr, "Failed to connect to zy1000 server\n");
1156                 exit(-1);
1157         }
1158
1159         int flag = 1;
1160         setsockopt(tcp_ip,      /* socket affected */
1161                         IPPROTO_TCP,            /* set option at TCP level */
1162                         TCP_NODELAY,            /* name of option */
1163                         (char *)&flag,          /* the cast is historical cruft */
1164                         sizeof(int));           /* length of option value */
1165
1166 }
1167
1168
1169 /* send a poke */
1170 void zy1000_tcpout(uint32_t address, uint32_t data)
1171 {
1172         tcpip_open();
1173         if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
1174                         !writeLong(data))
1175         {
1176                 fprintf(stderr, "Could not write to zy1000 server\n");
1177                 exit(-1);
1178         }
1179 }
1180
1181 /* By sending the wait to the server, we avoid a readback
1182  * of status. Radically improves performance for this operation
1183  * with long ping times.
1184  */
1185 void waitIdle(void)
1186 {
1187         tcpip_open();
1188         if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
1189         {
1190                 fprintf(stderr, "Could not write to zy1000 server\n");
1191                 exit(-1);
1192         }
1193 }
1194
1195 uint32_t zy1000_tcpin(uint32_t address)
1196 {
1197         tcpip_open();
1198
1199         zy1000_flush_readqueue();
1200
1201         uint32_t data;
1202         if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
1203                         !readLong(&data))
1204         {
1205                 fprintf(stderr, "Could not read from zy1000 server\n");
1206                 exit(-1);
1207         }
1208         return data;
1209 }
1210
1211 int interface_jtag_add_sleep(uint32_t us)
1212 {
1213         tcpip_open();
1214         if (!writeLong((ZY1000_CMD_SLEEP << 24))||
1215                         !writeLong(us))
1216         {
1217                 fprintf(stderr, "Could not read from zy1000 server\n");
1218                 exit(-1);
1219         }
1220         return ERROR_OK;
1221 }
1222
1223 /* queue a readback */
1224 #define readqueue_size 16384
1225 static struct
1226 {
1227         uint8_t *dest;
1228         int bits;
1229 } readqueue[readqueue_size];
1230
1231 static int readqueue_pos = 0;
1232
1233 /* flush the readqueue, this means reading any data that
1234  * we're expecting and store them into the final position
1235  */
1236 void zy1000_flush_readqueue(void)
1237 {
1238         if (readqueue_pos == 0)
1239         {
1240                 /* simply debugging by allowing easy breakpoints when there
1241                  * is something to do. */
1242                 return;
1243         }
1244         int i;
1245         tcpip_open();
1246         for (i = 0; i < readqueue_pos; i++)
1247         {
1248                 uint32_t value;
1249                 if (!readLong(&value))
1250                 {
1251                         fprintf(stderr, "Could not read from zy1000 server\n");
1252                         exit(-1);
1253                 }
1254
1255                 uint8_t *in_value = readqueue[i].dest;
1256                 int k = readqueue[i].bits;
1257
1258                 // we're shifting in data to MSB, shift data to be aligned for returning the value
1259                 value >>= 32-k;
1260
1261                 for (int l = 0; l < k; l += 8)
1262                 {
1263                         in_value[l/8]=(value >> l)&0xff;
1264                 }
1265         }
1266         readqueue_pos = 0;
1267 }
1268
1269 /* By queuing the callback's we avoid flushing the
1270 read queue until jtag_execute_queue(). This can
1271 reduce latency dramatically for cases where
1272 callbacks are used extensively.
1273 */
1274 #define callbackqueue_size 128
1275 static struct callbackentry
1276 {
1277         jtag_callback_t callback;
1278         jtag_callback_data_t data0;
1279         jtag_callback_data_t data1;
1280         jtag_callback_data_t data2;
1281         jtag_callback_data_t data3;
1282 } callbackqueue[callbackqueue_size];
1283
1284 static int callbackqueue_pos = 0;
1285
1286 void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1287 {
1288         if (callbackqueue_pos >= callbackqueue_size)
1289         {
1290                 zy1000_flush_callbackqueue();
1291         }
1292
1293         callbackqueue[callbackqueue_pos].callback = callback;
1294         callbackqueue[callbackqueue_pos].data0 = data0;
1295         callbackqueue[callbackqueue_pos].data1 = data1;
1296         callbackqueue[callbackqueue_pos].data2 = data2;
1297         callbackqueue[callbackqueue_pos].data3 = data3;
1298         callbackqueue_pos++;
1299 }
1300
1301 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
1302 {
1303         ((jtag_callback1_t)data1)(data0);
1304         return ERROR_OK;
1305 }
1306
1307 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1308 {
1309         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
1310 }
1311
1312 void zy1000_flush_callbackqueue(void)
1313 {
1314         /* we have to flush the read queue so we have access to
1315          the data the callbacks will use 
1316         */
1317         zy1000_flush_readqueue();
1318         int i;
1319         for (i = 0; i < callbackqueue_pos; i++)
1320         {
1321                 struct callbackentry *entry = &callbackqueue[i];
1322                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
1323         }
1324         callbackqueue_pos = 0;
1325 }
1326
1327 static void writeShiftValue(uint8_t *data, int bits)
1328 {
1329         waitIdle();
1330
1331         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
1332         {
1333                 fprintf(stderr, "Could not read from zy1000 server\n");
1334                 exit(-1);
1335         }
1336
1337         if (readqueue_pos >= readqueue_size)
1338         {
1339                 zy1000_flush_readqueue();
1340         }
1341
1342         readqueue[readqueue_pos].dest = data;
1343         readqueue[readqueue_pos].bits = bits;
1344         readqueue_pos++;
1345 }
1346
1347 #else
1348
1349 static void writeShiftValue(uint8_t *data, int bits)
1350 {
1351         uint32_t value;
1352         waitIdle();
1353         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1354         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1355
1356         // data in, LSB to MSB
1357         // we're shifting in data to MSB, shift data to be aligned for returning the value
1358         value >>= 32 - bits;
1359
1360         for (int l = 0; l < bits; l += 8)
1361         {
1362                 data[l/8]=(value >> l)&0xff;
1363         }
1364 }
1365
1366 #endif
1367
1368 #if BUILD_ZY1000_MASTER
1369
1370 #if BUILD_ECOSBOARD
1371 static char watchdog_stack[2048];
1372 static cyg_thread watchdog_thread_object;
1373 static cyg_handle_t watchdog_thread_handle;
1374 #endif
1375
1376 #ifdef WATCHDOG_BASE
1377 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1378 static void watchdog_server(cyg_addrword_t data)
1379 {
1380         int so_reuseaddr_option = 1;
1381
1382         int fd;
1383         if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
1384         {
1385                 LOG_ERROR("error creating socket: %s", strerror(errno));
1386                 exit(-1);
1387         }
1388
1389         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
1390                         sizeof(int));
1391
1392         struct sockaddr_in sin;
1393         unsigned int address_size;
1394         address_size = sizeof(sin);
1395         memset(&sin, 0, sizeof(sin));
1396         sin.sin_family = AF_INET;
1397         sin.sin_addr.s_addr = INADDR_ANY;
1398         sin.sin_port = htons(8888);
1399
1400         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
1401         {
1402                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1403                 exit(-1);
1404         }
1405
1406         if (listen(fd, 1) == -1)
1407         {
1408                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1409                 exit(-1);
1410         }
1411
1412
1413         for (;;)
1414         {
1415                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1416
1417                 /* Start watchdog, must be reset every 10 seconds. */
1418                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1419
1420                 if (watchdog_ip < 0)
1421                 {
1422                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1423                         exit(-1);
1424                 }
1425
1426                 int flag = 1;
1427                 setsockopt(watchdog_ip, /* socket affected */
1428                                 IPPROTO_TCP,            /* set option at TCP level */
1429                                 TCP_NODELAY,            /* name of option */
1430                                 (char *)&flag,          /* the cast is historical cruft */
1431                                 sizeof(int));           /* length of option value */
1432
1433
1434                 char buf;
1435                 for (;;)
1436                 {
1437                         if (read(watchdog_ip, &buf, 1) == 1)
1438                         {
1439                                 /* Reset timer */
1440                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1441                                 /* Echo so we can telnet in and see that resetting works */
1442                                 write(watchdog_ip, &buf, 1);
1443                         } else
1444                         {
1445                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1446                                  * now.
1447                                  */
1448                                 return;
1449                         }
1450
1451                 }
1452
1453                 /* Never reached */
1454         }
1455 }
1456 #endif
1457
1458 #endif
1459
1460 #if BUILD_ZY1000_MASTER
1461 int interface_jtag_add_sleep(uint32_t us)
1462 {
1463         jtag_sleep(us);
1464         return ERROR_OK;
1465 }
1466 #endif
1467
1468 #if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
1469 volatile void *zy1000_jtag_master;
1470 #include <sys/mman.h>
1471 #endif
1472
1473 int zy1000_init(void)
1474 {
1475 #if BUILD_ECOSBOARD
1476         LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
1477 #elif BUILD_ZY1000_MASTER
1478         int fd;
1479         if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
1480         {
1481                 LOG_ERROR("No access to /dev/mem");
1482                 return ERROR_FAIL;
1483         }
1484 #ifndef REGISTERS_BASE
1485 #define REGISTERS_BASE 0x9002000
1486 #define REGISTERS_SPAN 128
1487 #endif
1488     
1489     zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
1490     
1491     if(zy1000_jtag_master == (void *) -1) 
1492     {
1493             close(fd);
1494                 LOG_ERROR("No access to /dev/mem");
1495                 return ERROR_FAIL;
1496     } 
1497 #endif
1498
1499
1500
1501         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
1502
1503         setPower(true); // on by default
1504
1505
1506          /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1507         zy1000_reset(0, 0);
1508         int jtag_speed_var;
1509         int retval = jtag_get_speed(&jtag_speed_var);
1510         if (retval != ERROR_OK)
1511                 return retval;
1512         zy1000_speed(jtag_speed_var);
1513
1514 #if BUILD_ZY1000_MASTER
1515 #if BUILD_ECOSBOARD
1516 #ifdef WATCHDOG_BASE
1517         cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
1518                         (void *) watchdog_stack, sizeof(watchdog_stack),
1519                         &watchdog_thread_handle, &watchdog_thread_object);
1520         cyg_thread_resume(watchdog_thread_handle);
1521 #endif
1522 #endif
1523 #endif
1524
1525         return ERROR_OK;
1526 }
1527
1528
1529
1530 struct jtag_interface zy1000_interface =
1531 {
1532         .name = "ZY1000",
1533         .supported = DEBUG_CAP_TMS_SEQ,
1534         .execute_queue = NULL,
1535         .speed = zy1000_speed,
1536         .commands = zy1000_commands,
1537         .init = zy1000_init,
1538         .quit = zy1000_quit,
1539         .khz = zy1000_khz,
1540         .speed_div = zy1000_speed_div,
1541         .power_dropout = zy1000_power_dropout,
1542         .srst_asserted = zy1000_srst_asserted,
1543 };