]> git.sur5r.net Git - openocd/blob - src/target/arm7_9_common.c
target: Add 64-bit target address support
[openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
28  ***************************************************************************/
29
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "embeddedice.h"
36 #include "target_request.h"
37 #include "etm.h"
38 #include <helper/time_support.h>
39 #include "arm_simulator.h"
40 #include "arm_semihosting.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "armv4_5.h"
44
45 /**
46  * @file
47  * Hold common code supporting the ARM7 and ARM9 core generations.
48  *
49  * While the ARM core implementations evolved substantially during these
50  * two generations, they look quite similar from the JTAG perspective.
51  * Both have similar debug facilities, based on the same two scan chains
52  * providing access to the core and to an EmbeddedICE module.  Both can
53  * support similar ETM and ETB modules, for tracing.  And both expose
54  * what could be viewed as "ARM Classic", with multiple processor modes,
55  * shadowed registers, and support for the Thumb instruction set.
56  *
57  * Processor differences include things like presence or absence of MMU
58  * and cache, pipeline sizes, use of a modified Harvard Architecure
59  * (with separate instruction and data busses from the CPU), support
60  * for cpu clock gating during idle, and more.
61  */
62
63 static int arm7_9_debug_entry(struct target *target);
64
65 /**
66  * Clear watchpoints for an ARM7/9 target.
67  *
68  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69  * @return JTAG error status after executing queue
70  */
71 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
72 {
73         LOG_DEBUG("-");
74         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
75         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
76         arm7_9->sw_breakpoint_count = 0;
77         arm7_9->sw_breakpoints_added = 0;
78         arm7_9->wp0_used = 0;
79         arm7_9->wp1_used = arm7_9->wp1_used_default;
80         arm7_9->wp_available = arm7_9->wp_available_max;
81
82         return jtag_execute_queue();
83 }
84
85 /**
86  * Assign a watchpoint to one of the two available hardware comparators in an
87  * ARM7 or ARM9 target.
88  *
89  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
91  */
92 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
93 {
94         if (!arm7_9->wp0_used) {
95                 arm7_9->wp0_used = 1;
96                 breakpoint->set = 1;
97                 arm7_9->wp_available--;
98         } else if (!arm7_9->wp1_used) {
99                 arm7_9->wp1_used = 1;
100                 breakpoint->set = 2;
101                 arm7_9->wp_available--;
102         } else
103                 LOG_ERROR("BUG: no hardware comparator available");
104
105         LOG_DEBUG("BPID: %" PRId32 " (0x%08" TARGET_PRIxADDR ") using hw wp: %d",
106                         breakpoint->unique_id,
107                         breakpoint->address,
108                         breakpoint->set);
109 }
110
111 /**
112  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
113  *
114  * @param arm7_9 Pointer to common struct for ARM7/9 targets
115  * @return Error codes if there is a problem finding a watchpoint or the result
116  * of executing the JTAG queue
117  */
118 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
119 {
120         if (arm7_9->sw_breakpoints_added)
121                 return ERROR_OK;
122         if (arm7_9->wp_available < 1) {
123                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
124                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
125         }
126         arm7_9->wp_available--;
127
128         /* pick a breakpoint unit */
129         if (!arm7_9->wp0_used) {
130                 arm7_9->sw_breakpoints_added = 1;
131                 arm7_9->wp0_used = 3;
132         } else if (!arm7_9->wp1_used) {
133                 arm7_9->sw_breakpoints_added = 2;
134                 arm7_9->wp1_used = 3;
135         } else {
136                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137                 return ERROR_FAIL;
138         }
139
140         if (arm7_9->sw_breakpoints_added == 1) {
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
146         } else if (arm7_9->sw_breakpoints_added == 2) {
147                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
148                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
152         } else {
153                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154                 return ERROR_FAIL;
155         }
156         LOG_DEBUG("SW BP using hw wp: %d",
157                 arm7_9->sw_breakpoints_added);
158
159         return jtag_execute_queue();
160 }
161
162 /**
163  * Setup the common pieces for an ARM7/9 target after reset or on startup.
164  *
165  * @param target Pointer to an ARM7/9 target to setup
166  * @return Result of clearing the watchpoints on the target
167  */
168 static int arm7_9_setup(struct target *target)
169 {
170         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
171
172         return arm7_9_clear_watchpoints(arm7_9);
173 }
174
175 /**
176  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
177  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
178  * might have erased the values in Embedded ICE.
179  *
180  * @param target Pointer to the target device to set the breakpoints on
181  * @param breakpoint Pointer to the breakpoint to be set
182  * @return For hardware breakpoints, this is the result of executing the JTAG
183  * queue.  For software breakpoints, this will be the status of the
184  * required memory reads and writes
185  */
186 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
187 {
188         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
189         int retval = ERROR_OK;
190
191         LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" TARGET_PRIxADDR ", Type: %d",
192                 breakpoint->unique_id,
193                 breakpoint->address,
194                 breakpoint->type);
195
196         if (target->state != TARGET_HALTED) {
197                 LOG_WARNING("target not halted");
198                 return ERROR_TARGET_NOT_HALTED;
199         }
200
201         if (breakpoint->type == BKPT_HARD) {
202                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
203                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
204
205                 /* reassign a hw breakpoint */
206                 if (breakpoint->set == 0)
207                         arm7_9_assign_wp(arm7_9, breakpoint);
208
209                 if (breakpoint->set == 1) {
210                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
211                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
212                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
213                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
214                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
215                 } else if (breakpoint->set == 2) {
216                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
217                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
218                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
219                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
220                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
221                 } else {
222                         LOG_ERROR("BUG: no hardware comparator available");
223                         return ERROR_OK;
224                 }
225
226                 retval = jtag_execute_queue();
227         } else if (breakpoint->type == BKPT_SOFT) {
228                 /* did we already set this breakpoint? */
229                 if (breakpoint->set)
230                         return ERROR_OK;
231
232                 if (breakpoint->length == 4) {
233                         uint32_t verify = 0xffffffff;
234                         /* keep the original instruction in target endianness */
235                         retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
236                         if (retval != ERROR_OK)
237                                 return retval;
238                         /* write the breakpoint instruction in target
239                          * endianness (arm7_9->arm_bkpt is host endian) */
240                         retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
241                         if (retval != ERROR_OK)
242                                 return retval;
243
244                         retval = target_read_u32(target, breakpoint->address, &verify);
245                         if (retval != ERROR_OK)
246                                 return retval;
247                         if (verify != arm7_9->arm_bkpt) {
248                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" TARGET_PRIxADDR
249                                                 " - check that memory is read/writable", breakpoint->address);
250                                 return ERROR_OK;
251                         }
252                 } else {
253                         uint16_t verify = 0xffff;
254                         /* keep the original instruction in target endianness */
255                         retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
256                         if (retval != ERROR_OK)
257                                 return retval;
258                         /* write the breakpoint instruction in target
259                          * endianness (arm7_9->thumb_bkpt is host endian) */
260                         retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
261                         if (retval != ERROR_OK)
262                                 return retval;
263
264                         retval = target_read_u16(target, breakpoint->address, &verify);
265                         if (retval != ERROR_OK)
266                                 return retval;
267                         if (verify != arm7_9->thumb_bkpt) {
268                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" TARGET_PRIxADDR
269                                                 " - check that memory is read/writable", breakpoint->address);
270                                 return ERROR_OK;
271                         }
272                 }
273
274                 retval = arm7_9_set_software_breakpoints(arm7_9);
275                 if (retval != ERROR_OK)
276                         return retval;
277
278                 arm7_9->sw_breakpoint_count++;
279
280                 breakpoint->set = 1;
281         }
282
283         return retval;
284 }
285
286 /**
287  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
288  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
289  * will be updated.  Otherwise, the software breakpoint will be restored to its
290  * original instruction if it hasn't already been modified.
291  *
292  * @param target Pointer to ARM7/9 target to unset the breakpoint from
293  * @param breakpoint Pointer to breakpoint to be unset
294  * @return For hardware breakpoints, this is the result of executing the JTAG
295  * queue.  For software breakpoints, this will be the status of the
296  * required memory reads and writes
297  */
298 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
299 {
300         int retval = ERROR_OK;
301         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
302
303         LOG_DEBUG("BPID: %" PRId32 ", Address: 0x%08" TARGET_PRIxADDR,
304                 breakpoint->unique_id,
305                 breakpoint->address);
306
307         if (!breakpoint->set) {
308                 LOG_WARNING("breakpoint not set");
309                 return ERROR_OK;
310         }
311
312         if (breakpoint->type == BKPT_HARD) {
313                 LOG_DEBUG("BPID: %" PRId32 " Releasing hw wp: %d",
314                         breakpoint->unique_id,
315                         breakpoint->set);
316                 if (breakpoint->set == 1) {
317                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
318                         arm7_9->wp0_used = 0;
319                         arm7_9->wp_available++;
320                 } else if (breakpoint->set == 2) {
321                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
322                         arm7_9->wp1_used = 0;
323                         arm7_9->wp_available++;
324                 }
325                 retval = jtag_execute_queue();
326                 breakpoint->set = 0;
327         } else {
328                 /* restore original instruction (kept in target endianness) */
329                 if (breakpoint->length == 4) {
330                         uint32_t current_instr;
331                         /* check that user program as not modified breakpoint instruction */
332                         retval = target_read_memory(target,
333                                         breakpoint->address, 4, 1, (uint8_t *)&current_instr);
334                         if (retval != ERROR_OK)
335                                 return retval;
336                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
337                         if (current_instr == arm7_9->arm_bkpt) {
338                                 retval = target_write_memory(target,
339                                                 breakpoint->address, 4, 1, breakpoint->orig_instr);
340                                 if (retval != ERROR_OK)
341                                         return retval;
342                         }
343
344                 } else {
345                         uint16_t current_instr;
346                         /* check that user program as not modified breakpoint instruction */
347                         retval = target_read_memory(target,
348                                         breakpoint->address, 2, 1, (uint8_t *)&current_instr);
349                         if (retval != ERROR_OK)
350                                 return retval;
351                         current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
352                         if (current_instr == arm7_9->thumb_bkpt) {
353                                 retval = target_write_memory(target,
354                                                 breakpoint->address, 2, 1, breakpoint->orig_instr);
355                                 if (retval != ERROR_OK)
356                                         return retval;
357                         }
358                 }
359
360                 if (--arm7_9->sw_breakpoint_count == 0) {
361                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used
362                          *to implement it */
363                         if (arm7_9->sw_breakpoints_added == 1)
364                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
365                                                 EICE_W0_CONTROL_VALUE], 0);
366                         else if (arm7_9->sw_breakpoints_added == 2)
367                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
368                                                 EICE_W1_CONTROL_VALUE], 0);
369                 }
370
371                 breakpoint->set = 0;
372         }
373
374         return retval;
375 }
376
377 /**
378  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
379  * dangling breakpoints and that the desired breakpoint can be added.
380  *
381  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
382  * @param breakpoint Pointer to the breakpoint to be added
383  * @return An error status if there is a problem adding the breakpoint or the
384  * result of setting the breakpoint
385  */
386 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
387 {
388         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
389
390         if (arm7_9->breakpoint_count == 0) {
391                 /* make sure we don't have any dangling breakpoints. This is vital upon
392                  * GDB connect/disconnect
393                  */
394                 arm7_9_clear_watchpoints(arm7_9);
395         }
396
397         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
398                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
399                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
400         }
401
402         if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
403                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
404                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
405         }
406
407         if (breakpoint->type == BKPT_HARD)
408                 arm7_9_assign_wp(arm7_9, breakpoint);
409
410         arm7_9->breakpoint_count++;
411
412         return arm7_9_set_breakpoint(target, breakpoint);
413 }
414
415 /**
416  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
417  * dangling breakpoints and updates available watchpoints if it is a hardware
418  * breakpoint.
419  *
420  * @param target Pointer to the target to have a breakpoint removed
421  * @param breakpoint Pointer to the breakpoint to be removed
422  * @return Error status if there was a problem unsetting the breakpoint or the
423  * watchpoints could not be cleared
424  */
425 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427         int retval = ERROR_OK;
428         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
429
430         retval = arm7_9_unset_breakpoint(target, breakpoint);
431         if (retval != ERROR_OK)
432                 return retval;
433
434         if (breakpoint->type == BKPT_HARD)
435                 arm7_9->wp_available++;
436
437         arm7_9->breakpoint_count--;
438         if (arm7_9->breakpoint_count == 0) {
439                 /* make sure we don't have any dangling breakpoints */
440                 retval = arm7_9_clear_watchpoints(arm7_9);
441                 if (retval != ERROR_OK)
442                         return retval;
443         }
444
445         return ERROR_OK;
446 }
447
448 /**
449  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
450  * considered a bug to call this function when there are no available watchpoint
451  * units.
452  *
453  * @param target Pointer to an ARM7/9 target to set a watchpoint on
454  * @param watchpoint Pointer to the watchpoint to be set
455  * @return Error status if watchpoint set fails or the result of executing the
456  * JTAG queue
457  */
458 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
459 {
460         int retval = ERROR_OK;
461         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
462         int rw_mask = 1;
463         uint32_t mask;
464
465         mask = watchpoint->length - 1;
466
467         if (target->state != TARGET_HALTED) {
468                 LOG_WARNING("target not halted");
469                 return ERROR_TARGET_NOT_HALTED;
470         }
471
472         if (watchpoint->rw == WPT_ACCESS)
473                 rw_mask = 0;
474         else
475                 rw_mask = 1;
476
477         if (!arm7_9->wp0_used) {
478                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
479                         watchpoint->address);
480                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
481                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
482                         watchpoint->mask);
483                 if (watchpoint->mask != 0xffffffffu)
484                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
485                                 watchpoint->value);
486                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
487                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
488                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
489                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
490
491                 retval = jtag_execute_queue();
492                 if (retval != ERROR_OK)
493                         return retval;
494                 watchpoint->set = 1;
495                 arm7_9->wp0_used = 2;
496         } else if (!arm7_9->wp1_used) {
497                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
498                         watchpoint->address);
499                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
500                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
501                         watchpoint->mask);
502                 if (watchpoint->mask != 0xffffffffu)
503                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
504                                 watchpoint->value);
505                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
506                         0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
507                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
508                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
509
510                 retval = jtag_execute_queue();
511                 if (retval != ERROR_OK)
512                         return retval;
513                 watchpoint->set = 2;
514                 arm7_9->wp1_used = 2;
515         } else {
516                 LOG_ERROR("BUG: no hardware comparator available");
517                 return ERROR_OK;
518         }
519
520         return ERROR_OK;
521 }
522
523 /**
524  * Unset an existing watchpoint and clear the used watchpoint unit.
525  *
526  * @param target Pointer to the target to have the watchpoint removed
527  * @param watchpoint Pointer to the watchpoint to be removed
528  * @return Error status while trying to unset the watchpoint or the result of
529  *         executing the JTAG queue
530  */
531 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
532 {
533         int retval = ERROR_OK;
534         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
535
536         if (target->state != TARGET_HALTED) {
537                 LOG_WARNING("target not halted");
538                 return ERROR_TARGET_NOT_HALTED;
539         }
540
541         if (!watchpoint->set) {
542                 LOG_WARNING("breakpoint not set");
543                 return ERROR_OK;
544         }
545
546         if (watchpoint->set == 1) {
547                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
548                 retval = jtag_execute_queue();
549                 if (retval != ERROR_OK)
550                         return retval;
551                 arm7_9->wp0_used = 0;
552         } else if (watchpoint->set == 2) {
553                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
554                 retval = jtag_execute_queue();
555                 if (retval != ERROR_OK)
556                         return retval;
557                 arm7_9->wp1_used = 0;
558         }
559         watchpoint->set = 0;
560
561         return ERROR_OK;
562 }
563
564 /**
565  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
566  * available, an error response is returned.
567  *
568  * @param target Pointer to the ARM7/9 target to add a watchpoint to
569  * @param watchpoint Pointer to the watchpoint to be added
570  * @return Error status while trying to add the watchpoint
571  */
572 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
573 {
574         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
575
576         if (arm7_9->wp_available < 1)
577                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
578
579         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
580                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
581
582         arm7_9->wp_available--;
583
584         return ERROR_OK;
585 }
586
587 /**
588  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
589  * the used watchpoint unit will be reopened.
590  *
591  * @param target Pointer to the target to remove a watchpoint from
592  * @param watchpoint Pointer to the watchpoint to be removed
593  * @return Result of trying to unset the watchpoint
594  */
595 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
596 {
597         int retval = ERROR_OK;
598         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
599
600         if (watchpoint->set) {
601                 retval = arm7_9_unset_watchpoint(target, watchpoint);
602                 if (retval != ERROR_OK)
603                         return retval;
604         }
605
606         arm7_9->wp_available++;
607
608         return ERROR_OK;
609 }
610
611 /**
612  * Restarts the target by sending a RESTART instruction and moving the JTAG
613  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
614  * asserted by the processor.
615  *
616  * @param target Pointer to target to issue commands to
617  * @return Error status if there is a timeout or a problem while executing the
618  * JTAG queue
619  */
620 int arm7_9_execute_sys_speed(struct target *target)
621 {
622         int retval;
623         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
624         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
625         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
626
627         /* set RESTART instruction */
628         if (arm7_9->need_bypass_before_restart) {
629                 arm7_9->need_bypass_before_restart = 0;
630                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
631                 if (retval != ERROR_OK)
632                         return retval;
633         }
634         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
635         if (retval != ERROR_OK)
636                 return retval;
637
638         int64_t then = timeval_ms();
639         bool timeout;
640         while (!(timeout = ((timeval_ms()-then) > 1000))) {
641                 /* read debug status register */
642                 embeddedice_read_reg(dbg_stat);
643                 retval = jtag_execute_queue();
644                 if (retval != ERROR_OK)
645                         return retval;
646                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
647                                 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
648                         break;
649                 if (debug_level >= 3)
650                         alive_sleep(100);
651                 else
652                         keep_alive();
653         }
654         if (timeout) {
655                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
656                         buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
657                 return ERROR_TARGET_TIMEOUT;
658         }
659
660         return ERROR_OK;
661 }
662
663 /**
664  * Restarts the target by sending a RESTART instruction and moving the JTAG
665  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
666  * waiting until they are.
667  *
668  * @param target Pointer to the target to issue commands to
669  * @return Always ERROR_OK
670  */
671 static int arm7_9_execute_fast_sys_speed(struct target *target)
672 {
673         static int set;
674         static uint8_t check_value[4], check_mask[4];
675
676         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
677         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
678         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
679         int retval;
680
681         /* set RESTART instruction */
682         if (arm7_9->need_bypass_before_restart) {
683                 arm7_9->need_bypass_before_restart = 0;
684                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
685                 if (retval != ERROR_OK)
686                         return retval;
687         }
688         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
689         if (retval != ERROR_OK)
690                 return retval;
691
692         if (!set) {
693                 /* check for DBGACK and SYSCOMP set (others don't care) */
694
695                 /* NB! These are constants that must be available until after next jtag_execute() and
696                  * we evaluate the values upon first execution in lieu of setting up these constants
697                  * during early setup.
698                  * */
699                 buf_set_u32(check_value, 0, 32, 0x9);
700                 buf_set_u32(check_mask, 0, 32, 0x9);
701                 set = 1;
702         }
703
704         /* read debug status register */
705         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
706
707         return ERROR_OK;
708 }
709
710 /**
711  * Get some data from the ARM7/9 target.
712  *
713  * @param target Pointer to the ARM7/9 target to read data from
714  * @param size The number of 32bit words to be read
715  * @param buffer Pointer to the buffer that will hold the data
716  * @return The result of receiving data from the Embedded ICE unit
717  */
718 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
719 {
720         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
721         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
722         uint32_t *data;
723         int retval = ERROR_OK;
724         uint32_t i;
725
726         data = malloc(size * (sizeof(uint32_t)));
727
728         retval = embeddedice_receive(jtag_info, data, size);
729
730         /* return the 32-bit ints in the 8-bit array */
731         for (i = 0; i < size; i++)
732                 h_u32_to_le(buffer + (i * 4), data[i]);
733
734         free(data);
735
736         return retval;
737 }
738
739 /**
740  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
741  * target is running and the DCC control register has the W bit high, this will
742  * execute the request on the target.
743  *
744  * @param priv Void pointer expected to be a struct target pointer
745  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
746  * from the Embedded ICE unit
747  */
748 static int arm7_9_handle_target_request(void *priv)
749 {
750         int retval = ERROR_OK;
751         struct target *target = priv;
752         if (!target_was_examined(target))
753                 return ERROR_OK;
754         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
755         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
756         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
757
758         if (!target->dbg_msg_enabled)
759                 return ERROR_OK;
760
761         if (target->state == TARGET_RUNNING) {
762                 /* read DCC control register */
763                 embeddedice_read_reg(dcc_control);
764                 retval = jtag_execute_queue();
765                 if (retval != ERROR_OK)
766                         return retval;
767
768                 /* check W bit */
769                 if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
770                         uint32_t request;
771
772                         retval = embeddedice_receive(jtag_info, &request, 1);
773                         if (retval != ERROR_OK)
774                                 return retval;
775                         retval = target_request(target, request);
776                         if (retval != ERROR_OK)
777                                 return retval;
778                 }
779         }
780
781         return ERROR_OK;
782 }
783
784 /**
785  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
786  * is manipulated to the right halted state based on its current state.  This is
787  * what happens:
788  *
789  * <table>
790  *   <tr><th > State</th><th > Action</th></tr>
791  *   <tr><td > TARGET_RUNNING | TARGET_RESET</td>
792  *     <td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
793  *   <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
794  *   <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
795  *   <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
796  * </table>
797  *
798  * If the target does not end up in the halted state, a warning is produced.  If
799  * DBGACK is cleared, then the target is expected to either be running or
800  * running in debug.
801  *
802  * @param target Pointer to the ARM7/9 target to poll
803  * @return ERROR_OK or an error status if a command fails
804  */
805 int arm7_9_poll(struct target *target)
806 {
807         int retval;
808         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
809         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
810
811         /* read debug status register */
812         embeddedice_read_reg(dbg_stat);
813         retval = jtag_execute_queue();
814         if (retval != ERROR_OK)
815                 return retval;
816
817         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
818                 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
819                 if (target->state == TARGET_UNKNOWN) {
820                         /* Starting OpenOCD with target in debug-halt */
821                         target->state = TARGET_RUNNING;
822                         LOG_DEBUG("DBGACK already set during server startup.");
823                 }
824                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
825                         target->state = TARGET_HALTED;
826
827                         retval = arm7_9_debug_entry(target);
828                         if (retval != ERROR_OK)
829                                 return retval;
830
831                         if (arm_semihosting(target, &retval) != 0)
832                                 return retval;
833
834                         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835                         if (retval != ERROR_OK)
836                                 return retval;
837                 }
838                 if (target->state == TARGET_DEBUG_RUNNING) {
839                         target->state = TARGET_HALTED;
840                         retval = arm7_9_debug_entry(target);
841                         if (retval != ERROR_OK)
842                                 return retval;
843
844                         retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
845                         if (retval != ERROR_OK)
846                                 return retval;
847                 }
848                 if (target->state != TARGET_HALTED)
849                         LOG_WARNING(
850                                 "DBGACK set, but the target did not end up in the halted state %d",
851                                 target->state);
852         } else {
853                 if (target->state != TARGET_DEBUG_RUNNING)
854                         target->state = TARGET_RUNNING;
855         }
856
857         return ERROR_OK;
858 }
859
860 /**
861  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
862  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
863  * affected) completely stop the JTAG clock while the core is held in reset
864  * (SRST).  It isn't possible to program the halt condition once reset is
865  * asserted, hence a hook that allows the target to set up its reset-halt
866  * condition is setup prior to asserting reset.
867  *
868  * @param target Pointer to an ARM7/9 target to assert reset on
869  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
870  */
871 int arm7_9_assert_reset(struct target *target)
872 {
873         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
874         enum reset_types jtag_reset_config = jtag_get_reset_config();
875         bool use_event = false;
876
877         /* TODO: apply hw reset signal in not examined state */
878         if (!(target_was_examined(target))) {
879                 LOG_WARNING("Reset is not asserted because the target is not examined.");
880                 LOG_WARNING("Use a reset button or power cycle the target.");
881                 return ERROR_TARGET_NOT_EXAMINED;
882         }
883
884         LOG_DEBUG("target->state: %s", target_state_name(target));
885
886         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
887                 use_event = true;
888         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
889                 LOG_ERROR("%s: how to reset?", target_name(target));
890                 return ERROR_FAIL;
891         }
892
893         /* At this point trst has been asserted/deasserted once. We would
894          * like to program EmbeddedICE while SRST is asserted, instead of
895          * depending on SRST to leave that module alone.  However, many CPUs
896          * gate the JTAG clock while SRST is asserted; or JTAG may need
897          * clock stability guarantees (adaptive clocking might help).
898          *
899          * So we assume JTAG access during SRST is off the menu unless it's
900          * been specifically enabled.
901          */
902         bool srst_asserted = false;
903
904         if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
905                         && (jtag_reset_config & RESET_SRST_NO_GATING)) {
906                 jtag_add_reset(0, 1);
907                 srst_asserted = true;
908         }
909
910         if (target->reset_halt) {
911                 /*
912                  * For targets that don't support communication while SRST is
913                  * asserted, we need to set up the reset vector catch first.
914                  *
915                  * When we use TRST+SRST and that's equivalent to a power-up
916                  * reset, these settings may well be reset anyway; so setting
917                  * them here won't matter.
918                  */
919                 if (arm7_9->has_vector_catch) {
920                         /* program vector catch register to catch reset */
921                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
922
923                         /* extra runtest added as issues were found with
924                          * certain ARM9 cores (maybe more) - AT91SAM9260
925                          * and STR9
926                          */
927                         jtag_add_runtest(1, TAP_IDLE);
928                 } else {
929                         /* program watchpoint unit to match on reset vector
930                          * address
931                          */
932                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
933                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
934                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
935                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
936                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
937                 }
938         }
939
940         if (use_event)
941                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
942         else {
943                 /* If we use SRST ... we'd like to issue just SRST, but the
944                  * board or chip may be set up so we have to assert TRST as
945                  * well.  On some chips that combination is equivalent to a
946                  * power-up reset, and generally clobbers EICE state.
947                  */
948                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
949                         jtag_add_reset(1, 1);
950                 else if (!srst_asserted)
951                         jtag_add_reset(0, 1);
952                 jtag_add_sleep(50000);
953         }
954
955         target->state = TARGET_RESET;
956         register_cache_invalidate(arm7_9->arm.core_cache);
957
958         /* REVISIT why isn't standard debug entry logic sufficient?? */
959         if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
960                 /* debug entry was prepared above */
961                 target->debug_reason = DBG_REASON_DBGRQ;
962         }
963
964         return ERROR_OK;
965 }
966
967 /**
968  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
969  * and the target is being reset into a halt, a warning will be triggered
970  * because it is not possible to reset into a halted mode in this case.  The
971  * target is halted using the target's functions.
972  *
973  * @param target Pointer to the target to have the reset deasserted
974  * @return ERROR_OK or an error from polling or halting the target
975  */
976 int arm7_9_deassert_reset(struct target *target)
977 {
978         int retval = ERROR_OK;
979         LOG_DEBUG("target->state: %s", target_state_name(target));
980
981         /* deassert reset lines */
982         jtag_add_reset(0, 0);
983
984         /* In case polling is disabled, we need to examine the
985          * target and poll here for this target to work correctly.
986          *
987          * Otherwise, e.g. halt will fail afterwards with bogus
988          * error messages as halt will believe that reset is
989          * still in effect.
990          */
991         retval = target_examine_one(target);
992         if (retval != ERROR_OK)
993                 return retval;
994
995         retval = target_poll(target);
996         if (retval != ERROR_OK)
997                 return retval;
998
999         enum reset_types jtag_reset_config = jtag_get_reset_config();
1000         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
1001                 LOG_WARNING(
1002                         "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1003                 retval = target_halt(target);
1004                 if (retval != ERROR_OK)
1005                         return retval;
1006         }
1007         return retval;
1008 }
1009
1010 /**
1011  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1012  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1013  * vector catch was used, it is restored.  Otherwise, the control value is
1014  * restored and the watchpoint unit is restored if it was in use.
1015  *
1016  * @param target Pointer to the ARM7/9 target to have halt cleared
1017  * @return Always ERROR_OK
1018  */
1019 static int arm7_9_clear_halt(struct target *target)
1020 {
1021         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1022         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1023
1024         /* we used DBGRQ only if we didn't come out of reset */
1025         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1026                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1027                  */
1028                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1029                 embeddedice_store_reg(dbg_ctrl);
1030         } else {
1031                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1032                         /* if we came out of reset, and vector catch is supported, we used
1033                          * vector catch to enter debug state
1034                          * restore the register in that case
1035                          */
1036                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1037                 } else {
1038                         /* restore registers if watchpoint unit 0 was in use
1039                          */
1040                         if (arm7_9->wp0_used) {
1041                                 if (arm7_9->debug_entry_from_reset)
1042                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1043                                                         EICE_W0_ADDR_VALUE]);
1044                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1045                                                 EICE_W0_ADDR_MASK]);
1046                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1047                                                 EICE_W0_DATA_MASK]);
1048                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1049                                                 EICE_W0_CONTROL_MASK]);
1050                         }
1051                         /* control value always has to be restored, as it was either disabled,
1052                          * or enabled with possibly different bits
1053                          */
1054                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1055                 }
1056         }
1057
1058         return ERROR_OK;
1059 }
1060
1061 /**
1062  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1063  * and then there is a wait until the processor shows the halt.  This wait can
1064  * timeout and results in an error being returned.  The software reset involves
1065  * clearing the halt, updating the debug control register, changing to ARM mode,
1066  * reset of the program counter, and reset of all of the registers.
1067  *
1068  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1069  * @return Error status if any of the commands fail, otherwise ERROR_OK
1070  */
1071 int arm7_9_soft_reset_halt(struct target *target)
1072 {
1073         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1074         struct arm *arm = &arm7_9->arm;
1075         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1076         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1077         int i;
1078         int retval;
1079
1080         /* FIX!!! replace some of this code with tcl commands
1081          *
1082          * halt # the halt command is synchronous
1083          * armv4_5 core_state arm
1084          *
1085          */
1086
1087         retval = target_halt(target);
1088         if (retval != ERROR_OK)
1089                 return retval;
1090
1091         long long then = timeval_ms();
1092         int timeout;
1093         while (!(timeout = ((timeval_ms()-then) > 1000))) {
1094                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1095                         break;
1096                 embeddedice_read_reg(dbg_stat);
1097                 retval = jtag_execute_queue();
1098                 if (retval != ERROR_OK)
1099                         return retval;
1100                 if (debug_level >= 3)
1101                         alive_sleep(100);
1102                 else
1103                         keep_alive();
1104         }
1105         if (timeout) {
1106                 LOG_ERROR("Failed to halt CPU after 1 sec");
1107                 return ERROR_TARGET_TIMEOUT;
1108         }
1109         target->state = TARGET_HALTED;
1110
1111         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1112          * ensure that DBGRQ is cleared
1113          */
1114         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1115         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1116         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1117         embeddedice_store_reg(dbg_ctrl);
1118
1119         retval = arm7_9_clear_halt(target);
1120         if (retval != ERROR_OK)
1121                 return retval;
1122
1123         /* if the target is in Thumb state, change to ARM state */
1124         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1125                 uint32_t r0_thumb, pc_thumb;
1126                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1127                 /* Entered debug from Thumb mode */
1128                 arm->core_state = ARM_STATE_THUMB;
1129                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1130         }
1131
1132         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1133
1134         /* all register content is now invalid */
1135         register_cache_invalidate(arm->core_cache);
1136
1137         /* SVC, ARM state, IRQ and FIQ disabled */
1138         uint32_t cpsr;
1139
1140         cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1141         cpsr &= ~0xff;
1142         cpsr |= 0xd3;
1143         arm_set_cpsr(arm, cpsr);
1144         arm->cpsr->dirty = 1;
1145
1146         /* start fetching from 0x0 */
1147         buf_set_u32(arm->pc->value, 0, 32, 0x0);
1148         arm->pc->dirty = 1;
1149         arm->pc->valid = 1;
1150
1151         /* reset registers */
1152         for (i = 0; i <= 14; i++) {
1153                 struct reg *r = arm_reg_current(arm, i);
1154
1155                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1156                 r->dirty = 1;
1157                 r->valid = 1;
1158         }
1159
1160         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1161         if (retval != ERROR_OK)
1162                 return retval;
1163
1164         return ERROR_OK;
1165 }
1166
1167 /**
1168  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1169  * line or by programming a watchpoint to trigger on any address.  It is
1170  * considered a bug to call this function while the target is in the
1171  * TARGET_RESET state.
1172  *
1173  * @param target Pointer to the ARM7/9 target to be halted
1174  * @return Always ERROR_OK
1175  */
1176 int arm7_9_halt(struct target *target)
1177 {
1178         if (target->state == TARGET_RESET) {
1179                 LOG_ERROR(
1180                         "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1181                 return ERROR_OK;
1182         }
1183
1184         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1185         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1186
1187         LOG_DEBUG("target->state: %s",
1188                 target_state_name(target));
1189
1190         if (target->state == TARGET_HALTED) {
1191                 LOG_DEBUG("target was already halted");
1192                 return ERROR_OK;
1193         }
1194
1195         if (target->state == TARGET_UNKNOWN)
1196                 LOG_WARNING("target was in unknown state when halt was requested");
1197
1198         if (arm7_9->use_dbgrq) {
1199                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1200                  */
1201                 if (arm7_9->set_special_dbgrq)
1202                         arm7_9->set_special_dbgrq(target);
1203                 else {
1204                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1205                         embeddedice_store_reg(dbg_ctrl);
1206                 }
1207         } else {
1208                 /* program watchpoint unit to match on any address
1209                  */
1210                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1211                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1212                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1213                         EICE_W_CTRL_ENABLE);
1214                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1215                         ~EICE_W_CTRL_nOPC & 0xff);
1216         }
1217
1218         target->debug_reason = DBG_REASON_DBGRQ;
1219
1220         return ERROR_OK;
1221 }
1222
1223 /**
1224  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1225  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1226  * examined.  Once done, the target is verified to be halted and the processor
1227  * is forced into ARM mode.  The core registers are saved for the current core
1228  * mode and the program counter (register 15) is updated as needed.  The core
1229  * registers and CPSR and SPSR are saved for restoration later.
1230  *
1231  * @param target Pointer to target that is entering debug mode
1232  * @return Error code if anything fails, otherwise ERROR_OK
1233  */
1234 static int arm7_9_debug_entry(struct target *target)
1235 {
1236         int i;
1237         uint32_t context[16];
1238         uint32_t *context_p[16];
1239         uint32_t r0_thumb, pc_thumb;
1240         uint32_t cpsr, cpsr_mask = 0;
1241         int retval;
1242         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1243         struct arm *arm = &arm7_9->arm;
1244         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1245         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1246
1247 #ifdef _DEBUG_ARM7_9_
1248         LOG_DEBUG("-");
1249 #endif
1250
1251         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1252          * ensure that DBGRQ is cleared
1253          */
1254         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1255         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1256         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1257         embeddedice_store_reg(dbg_ctrl);
1258
1259         retval = arm7_9_clear_halt(target);
1260         if (retval != ERROR_OK)
1261                 return retval;
1262
1263         retval = jtag_execute_queue();
1264         if (retval != ERROR_OK)
1265                 return retval;
1266
1267         retval = arm7_9->examine_debug_reason(target);
1268         if (retval != ERROR_OK)
1269                 return retval;
1270
1271         if (target->state != TARGET_HALTED) {
1272                 LOG_WARNING("target not halted");
1273                 return ERROR_TARGET_NOT_HALTED;
1274         }
1275
1276         /* if the target is in Thumb state, change to ARM state */
1277         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1278                 LOG_DEBUG("target entered debug from Thumb state");
1279                 /* Entered debug from Thumb mode */
1280                 arm->core_state = ARM_STATE_THUMB;
1281                 cpsr_mask = 1 << 5;
1282                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1283                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1284                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1285         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1286                 /* \todo Get some vaguely correct handling of Jazelle, if
1287                  * anyone ever uses it and full info becomes available.
1288                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1289                  * B.7.3 for the reverse.  That'd be the bare minimum...
1290                  */
1291                 LOG_DEBUG("target entered debug from Jazelle state");
1292                 arm->core_state = ARM_STATE_JAZELLE;
1293                 cpsr_mask = 1 << 24;
1294                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1295         } else {
1296                 LOG_DEBUG("target entered debug from ARM state");
1297                 /* Entered debug from ARM mode */
1298                 arm->core_state = ARM_STATE_ARM;
1299         }
1300
1301         for (i = 0; i < 16; i++)
1302                 context_p[i] = &context[i];
1303         /* save core registers (r0 - r15 of current core mode) */
1304         arm7_9->read_core_regs(target, 0xffff, context_p);
1305
1306         arm7_9->read_xpsr(target, &cpsr, 0);
1307
1308         retval = jtag_execute_queue();
1309         if (retval != ERROR_OK)
1310                 return retval;
1311
1312         /* Sync our CPSR copy with J or T bits EICE reported, but
1313          * which we then erased by putting the core into ARM mode.
1314          */
1315         arm_set_cpsr(arm, cpsr | cpsr_mask);
1316
1317         if (!is_arm_mode(arm->core_mode)) {
1318                 target->state = TARGET_UNKNOWN;
1319                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1320                 return ERROR_TARGET_FAILURE;
1321         }
1322
1323         LOG_DEBUG("target entered debug state in %s mode",
1324                 arm_mode_name(arm->core_mode));
1325
1326         if (arm->core_state == ARM_STATE_THUMB) {
1327                 LOG_DEBUG("thumb state, applying fixups");
1328                 context[0] = r0_thumb;
1329                 context[15] = pc_thumb;
1330         } else if (arm->core_state == ARM_STATE_ARM) {
1331                 /* adjust value stored by STM */
1332                 context[15] -= 3 * 4;
1333         }
1334
1335         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1336                 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1337         else
1338                 context[15] -= arm7_9->dbgreq_adjust_pc *
1339                         ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1340
1341         for (i = 0; i <= 15; i++) {
1342                 struct reg *r = arm_reg_current(arm, i);
1343
1344                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1345
1346                 buf_set_u32(r->value, 0, 32, context[i]);
1347                 /* r0 and r15 (pc) have to be restored later */
1348                 r->dirty = (i == 0) || (i == 15);
1349                 r->valid = 1;
1350         }
1351
1352         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1353
1354         /* exceptions other than USR & SYS have a saved program status register */
1355         if (arm->spsr) {
1356                 uint32_t spsr;
1357                 arm7_9->read_xpsr(target, &spsr, 1);
1358                 retval = jtag_execute_queue();
1359                 if (retval != ERROR_OK)
1360                         return retval;
1361                 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1362                 arm->spsr->dirty = 0;
1363                 arm->spsr->valid = 1;
1364         }
1365
1366         retval = jtag_execute_queue();
1367         if (retval != ERROR_OK)
1368                 return retval;
1369
1370         if (arm7_9->post_debug_entry) {
1371                 retval = arm7_9->post_debug_entry(target);
1372                 if (retval != ERROR_OK)
1373                         return retval;
1374         }
1375
1376         return ERROR_OK;
1377 }
1378
1379 /**
1380  * Validate the full context for an ARM7/9 target in all processor modes.  If
1381  * there are any invalid registers for the target, they will all be read.  This
1382  * includes the PSR.
1383  *
1384  * @param target Pointer to the ARM7/9 target to capture the full context from
1385  * @return Error if the target is not halted, has an invalid core mode, or if
1386  *         the JTAG queue fails to execute
1387  */
1388 static int arm7_9_full_context(struct target *target)
1389 {
1390         int i;
1391         int retval;
1392         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1393         struct arm *arm = &arm7_9->arm;
1394
1395         LOG_DEBUG("-");
1396
1397         if (target->state != TARGET_HALTED) {
1398                 LOG_WARNING("target not halted");
1399                 return ERROR_TARGET_NOT_HALTED;
1400         }
1401
1402         if (!is_arm_mode(arm->core_mode)) {
1403                 LOG_ERROR("not a valid arm core mode - communication failure?");
1404                 return ERROR_FAIL;
1405         }
1406
1407         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1408          * SYS shares registers with User, so we don't touch SYS
1409          */
1410         for (i = 0; i < 6; i++) {
1411                 uint32_t mask = 0;
1412                 uint32_t *reg_p[16];
1413                 int j;
1414                 int valid = 1;
1415
1416                 /* check if there are invalid registers in the current mode
1417                  */
1418                 for (j = 0; j <= 16; j++) {
1419                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1420                                 valid = 0;
1421                 }
1422
1423                 if (!valid) {
1424                         uint32_t tmp_cpsr;
1425
1426                         /* change processor mode (and mask T bit) */
1427                         tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1428                                 & 0xe0;
1429                         tmp_cpsr |= armv4_5_number_to_mode(i);
1430                         tmp_cpsr &= ~0x20;
1431                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1432
1433                         for (j = 0; j < 15; j++) {
1434                                 if (ARMV4_5_CORE_REG_MODE(arm->core_cache,
1435                                                 armv4_5_number_to_mode(i), j).valid == 0) {
1436                                         reg_p[j] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1437                                                         arm->core_cache,
1438                                                         armv4_5_number_to_mode(i),
1439                                                         j).value;
1440                                         mask |= 1 << j;
1441                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1442                                                 armv4_5_number_to_mode(i),
1443                                                 j).valid = 1;
1444                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1445                                                 armv4_5_number_to_mode(i),
1446                                                 j).dirty = 0;
1447                                 }
1448                         }
1449
1450                         /* if only the PSR is invalid, mask is all zeroes */
1451                         if (mask)
1452                                 arm7_9->read_core_regs(target, mask, reg_p);
1453
1454                         /* check if the PSR has to be read */
1455                         if (ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1456                                         16).valid == 0) {
1457                                 arm7_9->read_xpsr(target,
1458                                         (uint32_t *)ARMV4_5_CORE_REG_MODE(arm->core_cache,
1459                                                 armv4_5_number_to_mode(i), 16).value, 1);
1460                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1461                                         16).valid = 1;
1462                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1463                                         16).dirty = 0;
1464                         }
1465                 }
1466         }
1467
1468         /* restore processor mode (mask T bit) */
1469         arm7_9->write_xpsr_im8(target,
1470                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1471
1472         retval = jtag_execute_queue();
1473         if (retval != ERROR_OK)
1474                 return retval;
1475         return ERROR_OK;
1476 }
1477
1478 /**
1479  * Restore the processor context on an ARM7/9 target.  The full processor
1480  * context is analyzed to see if any of the registers are dirty on this end, but
1481  * have a valid new value.  If this is the case, the processor is changed to the
1482  * appropriate mode and the new register values are written out to the
1483  * processor.  If there happens to be a dirty register with an invalid value, an
1484  * error will be logged.
1485  *
1486  * @param target Pointer to the ARM7/9 target to have its context restored
1487  * @return Error status if the target is not halted or the core mode in the
1488  * armv4_5 struct is invalid.
1489  */
1490 static int arm7_9_restore_context(struct target *target)
1491 {
1492         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1493         struct arm *arm = &arm7_9->arm;
1494         struct reg *reg;
1495         enum arm_mode current_mode = arm->core_mode;
1496         int i, j;
1497         int dirty;
1498         int mode_change;
1499
1500         LOG_DEBUG("-");
1501
1502         if (target->state != TARGET_HALTED) {
1503                 LOG_WARNING("target not halted");
1504                 return ERROR_TARGET_NOT_HALTED;
1505         }
1506
1507         if (arm7_9->pre_restore_context)
1508                 arm7_9->pre_restore_context(target);
1509
1510         if (!is_arm_mode(arm->core_mode)) {
1511                 LOG_ERROR("not a valid arm core mode - communication failure?");
1512                 return ERROR_FAIL;
1513         }
1514
1515         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1516          * SYS shares registers with User, so we don't touch SYS
1517          */
1518         for (i = 0; i < 6; i++) {
1519                 LOG_DEBUG("examining %s mode",
1520                         arm_mode_name(arm->core_mode));
1521                 dirty = 0;
1522                 mode_change = 0;
1523                 /* check if there are dirty registers in the current mode
1524                 */
1525                 for (j = 0; j <= 16; j++) {
1526                         reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1527                         if (reg->dirty == 1) {
1528                                 if (reg->valid == 1) {
1529                                         dirty = 1;
1530                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1531                                         struct arm_reg *reg_arch_info;
1532                                         reg_arch_info = reg->arch_info;
1533                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1534                                                         && (reg_arch_info->mode != current_mode)
1535                                                         && !((reg_arch_info->mode == ARM_MODE_USR)
1536                                                         && (arm->core_mode == ARM_MODE_SYS))
1537                                                         && !((reg_arch_info->mode == ARM_MODE_SYS)
1538                                                         && (arm->core_mode == ARM_MODE_USR))) {
1539                                                 mode_change = 1;
1540                                                 LOG_DEBUG("require mode change");
1541                                         }
1542                                 } else
1543                                         LOG_ERROR("BUG: dirty register '%s', but no valid data",
1544                                                 reg->name);
1545                         }
1546                 }
1547
1548                 if (dirty) {
1549                         uint32_t mask = 0x0;
1550                         int num_regs = 0;
1551                         uint32_t regs[16];
1552
1553                         if (mode_change) {
1554                                 uint32_t tmp_cpsr;
1555
1556                                 /* change processor mode (mask T bit) */
1557                                 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1558                                                 0, 8) & 0xe0;
1559                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1560                                 tmp_cpsr &= ~0x20;
1561                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1562                                 current_mode = armv4_5_number_to_mode(i);
1563                         }
1564
1565                         for (j = 0; j <= 14; j++) {
1566                                 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1567                                                 armv4_5_number_to_mode(i),
1568                                                 j);
1569
1570                                 if (reg->dirty == 1) {
1571                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1572                                         mask |= 1 << j;
1573                                         num_regs++;
1574                                         reg->dirty = 0;
1575                                         reg->valid = 1;
1576                                         LOG_DEBUG("writing register %i mode %s "
1577                                                 "with value 0x%8.8" PRIx32, j,
1578                                                 arm_mode_name(arm->core_mode),
1579                                                 regs[j]);
1580                                 }
1581                         }
1582
1583                         if (mask)
1584                                 arm7_9->write_core_regs(target, mask, regs);
1585
1586                         reg =
1587                                 &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1588                                                 i), 16);
1589                         struct arm_reg *reg_arch_info;
1590                         reg_arch_info = reg->arch_info;
1591                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1592                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1593                                         i,
1594                                         buf_get_u32(reg->value, 0, 32));
1595                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1596                         }
1597                 }
1598         }
1599
1600         if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1601                 /* restore processor mode (mask T bit) */
1602                 uint32_t tmp_cpsr;
1603
1604                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1605                 tmp_cpsr |= armv4_5_number_to_mode(i);
1606                 tmp_cpsr &= ~0x20;
1607                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1608                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1609
1610         } else if (arm->cpsr->dirty) {
1611                 /* CPSR has been changed, full restore necessary (mask T bit) */
1612                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1613                         buf_get_u32(arm->cpsr->value, 0, 32));
1614                 arm7_9->write_xpsr(target,
1615                         buf_get_u32(arm->cpsr->value, 0, 32)
1616                         & ~0x20, 0);
1617                 arm->cpsr->dirty = 0;
1618                 arm->cpsr->valid = 1;
1619         }
1620
1621         /* restore PC */
1622         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1623                 buf_get_u32(arm->pc->value, 0, 32));
1624         arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1625         arm->pc->dirty = 0;
1626
1627         return ERROR_OK;
1628 }
1629
1630 /**
1631  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1632  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1633  * restart.
1634  *
1635  * @param target Pointer to the ARM7/9 target to be restarted
1636  * @return Result of executing the JTAG queue
1637  */
1638 static int arm7_9_restart_core(struct target *target)
1639 {
1640         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1641         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1642         int retval;
1643
1644         /* set RESTART instruction */
1645         if (arm7_9->need_bypass_before_restart) {
1646                 arm7_9->need_bypass_before_restart = 0;
1647
1648                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
1649                 if (retval != ERROR_OK)
1650                         return retval;
1651         }
1652         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
1653         if (retval != ERROR_OK)
1654                 return retval;
1655
1656         jtag_add_runtest(1, TAP_IDLE);
1657         return jtag_execute_queue();
1658 }
1659
1660 /**
1661  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1662  * iterated through and are set on the target if they aren't already set.
1663  *
1664  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1665  */
1666 static void arm7_9_enable_watchpoints(struct target *target)
1667 {
1668         struct watchpoint *watchpoint = target->watchpoints;
1669
1670         while (watchpoint) {
1671                 if (watchpoint->set == 0)
1672                         arm7_9_set_watchpoint(target, watchpoint);
1673                 watchpoint = watchpoint->next;
1674         }
1675 }
1676
1677 /**
1678  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1679  * iterated through and are set on the target.
1680  *
1681  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1682  */
1683 static void arm7_9_enable_breakpoints(struct target *target)
1684 {
1685         struct breakpoint *breakpoint = target->breakpoints;
1686
1687         /* set any pending breakpoints */
1688         while (breakpoint) {
1689                 arm7_9_set_breakpoint(target, breakpoint);
1690                 breakpoint = breakpoint->next;
1691         }
1692 }
1693
1694 int arm7_9_resume(struct target *target,
1695         int current,
1696         target_addr_t address,
1697         int handle_breakpoints,
1698         int debug_execution)
1699 {
1700         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1701         struct arm *arm = &arm7_9->arm;
1702         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1703         int err, retval = ERROR_OK;
1704
1705         LOG_DEBUG("-");
1706
1707         if (target->state != TARGET_HALTED) {
1708                 LOG_WARNING("target not halted");
1709                 return ERROR_TARGET_NOT_HALTED;
1710         }
1711
1712         if (!debug_execution)
1713                 target_free_all_working_areas(target);
1714
1715         /* current = 1: continue on current pc, otherwise continue at <address> */
1716         if (!current)
1717                 buf_set_u32(arm->pc->value, 0, 32, address);
1718
1719         uint32_t current_pc;
1720         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1721
1722         /* the front-end may request us not to handle breakpoints */
1723         if (handle_breakpoints) {
1724                 struct breakpoint *breakpoint;
1725                 breakpoint = breakpoint_find(target,
1726                                 buf_get_u32(arm->pc->value, 0, 32));
1727                 if (breakpoint != NULL) {
1728                         LOG_DEBUG("unset breakpoint at 0x%8.8" TARGET_PRIxADDR " (id: %" PRId32,
1729                                 breakpoint->address,
1730                                 breakpoint->unique_id);
1731                         retval = arm7_9_unset_breakpoint(target, breakpoint);
1732                         if (retval != ERROR_OK)
1733                                 return retval;
1734
1735                         /* calculate PC of next instruction */
1736                         uint32_t next_pc;
1737                         retval = arm_simulate_step(target, &next_pc);
1738                         if (retval != ERROR_OK) {
1739                                 uint32_t current_opcode;
1740                                 target_read_u32(target, current_pc, &current_opcode);
1741                                 LOG_ERROR(
1742                                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1743                                         current_opcode);
1744                                 return retval;
1745                         }
1746
1747                         LOG_DEBUG("enable single-step");
1748                         arm7_9->enable_single_step(target, next_pc);
1749
1750                         target->debug_reason = DBG_REASON_SINGLESTEP;
1751
1752                         retval = arm7_9_restore_context(target);
1753                         if (retval != ERROR_OK)
1754                                 return retval;
1755
1756                         if (arm->core_state == ARM_STATE_ARM)
1757                                 arm7_9->branch_resume(target);
1758                         else if (arm->core_state == ARM_STATE_THUMB)
1759                                 arm7_9->branch_resume_thumb(target);
1760                         else {
1761                                 LOG_ERROR("unhandled core state");
1762                                 return ERROR_FAIL;
1763                         }
1764
1765                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1766                         embeddedice_write_reg(dbg_ctrl,
1767                                 buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1768                         err = arm7_9_execute_sys_speed(target);
1769
1770                         LOG_DEBUG("disable single-step");
1771                         arm7_9->disable_single_step(target);
1772
1773                         if (err != ERROR_OK) {
1774                                 retval = arm7_9_set_breakpoint(target, breakpoint);
1775                                 if (retval != ERROR_OK)
1776                                         return retval;
1777                                 target->state = TARGET_UNKNOWN;
1778                                 return err;
1779                         }
1780
1781                         retval = arm7_9_debug_entry(target);
1782                         if (retval != ERROR_OK)
1783                                 return retval;
1784                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1785                                 buf_get_u32(arm->pc->value, 0, 32));
1786
1787                         LOG_DEBUG("set breakpoint at 0x%8.8" TARGET_PRIxADDR "", breakpoint->address);
1788                         retval = arm7_9_set_breakpoint(target, breakpoint);
1789                         if (retval != ERROR_OK)
1790                                 return retval;
1791                 }
1792         }
1793
1794         /* enable any pending breakpoints and watchpoints */
1795         arm7_9_enable_breakpoints(target);
1796         arm7_9_enable_watchpoints(target);
1797
1798         retval = arm7_9_restore_context(target);
1799         if (retval != ERROR_OK)
1800                 return retval;
1801
1802         if (arm->core_state == ARM_STATE_ARM)
1803                 arm7_9->branch_resume(target);
1804         else if (arm->core_state == ARM_STATE_THUMB)
1805                 arm7_9->branch_resume_thumb(target);
1806         else {
1807                 LOG_ERROR("unhandled core state");
1808                 return ERROR_FAIL;
1809         }
1810
1811         /* deassert DBGACK and INTDIS */
1812         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1813         /* INTDIS only when we really resume, not during debug execution */
1814         if (!debug_execution)
1815                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1816         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1817
1818         retval = arm7_9_restart_core(target);
1819         if (retval != ERROR_OK)
1820                 return retval;
1821
1822         target->debug_reason = DBG_REASON_NOTHALTED;
1823
1824         if (!debug_execution) {
1825                 /* registers are now invalid */
1826                 register_cache_invalidate(arm->core_cache);
1827                 target->state = TARGET_RUNNING;
1828                 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1829                 if (retval != ERROR_OK)
1830                         return retval;
1831         } else {
1832                 target->state = TARGET_DEBUG_RUNNING;
1833                 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1834                 if (retval != ERROR_OK)
1835                         return retval;
1836         }
1837
1838         LOG_DEBUG("target resumed");
1839
1840         return ERROR_OK;
1841 }
1842
1843 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1844 {
1845         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1846         struct arm *arm = &arm7_9->arm;
1847         uint32_t current_pc;
1848         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1849
1850         if (next_pc != current_pc) {
1851                 /* setup an inverse breakpoint on the current PC
1852                 * - comparator 1 matches the current address
1853                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1854                 * - comparator 0 matches any address, as long as rangein is low */
1855                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1856                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1857                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1858                         EICE_W_CTRL_ENABLE);
1859                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1860                         ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1861                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1862                         current_pc);
1863                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1864                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1865                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1866                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1867                         ~EICE_W_CTRL_nOPC & 0xff);
1868         } else {
1869                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1870                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1871                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1872                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1873                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1874                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1875                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1876                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1877                         EICE_W_CTRL_ENABLE);
1878                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1879                         ~EICE_W_CTRL_nOPC & 0xff);
1880         }
1881 }
1882
1883 void arm7_9_disable_eice_step(struct target *target)
1884 {
1885         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1886
1887         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1888         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1889         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1890         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1891         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1892         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1893         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1894         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1895         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1896 }
1897
1898 int arm7_9_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1899 {
1900         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1901         struct arm *arm = &arm7_9->arm;
1902         struct breakpoint *breakpoint = NULL;
1903         int err, retval;
1904
1905         if (target->state != TARGET_HALTED) {
1906                 LOG_WARNING("target not halted");
1907                 return ERROR_TARGET_NOT_HALTED;
1908         }
1909
1910         /* current = 1: continue on current pc, otherwise continue at <address> */
1911         if (!current)
1912                 buf_set_u32(arm->pc->value, 0, 32, address);
1913
1914         uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1915
1916         /* the front-end may request us not to handle breakpoints */
1917         if (handle_breakpoints)
1918                 breakpoint = breakpoint_find(target, current_pc);
1919         if (breakpoint != NULL) {
1920                 retval = arm7_9_unset_breakpoint(target, breakpoint);
1921                 if (retval != ERROR_OK)
1922                         return retval;
1923         }
1924
1925         target->debug_reason = DBG_REASON_SINGLESTEP;
1926
1927         /* calculate PC of next instruction */
1928         uint32_t next_pc;
1929         retval = arm_simulate_step(target, &next_pc);
1930         if (retval != ERROR_OK) {
1931                 uint32_t current_opcode;
1932                 target_read_u32(target, current_pc, &current_opcode);
1933                 LOG_ERROR(
1934                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1935                         current_opcode);
1936                 return retval;
1937         }
1938
1939         retval = arm7_9_restore_context(target);
1940         if (retval != ERROR_OK)
1941                 return retval;
1942
1943         arm7_9->enable_single_step(target, next_pc);
1944
1945         if (arm->core_state == ARM_STATE_ARM)
1946                 arm7_9->branch_resume(target);
1947         else if (arm->core_state == ARM_STATE_THUMB)
1948                 arm7_9->branch_resume_thumb(target);
1949         else {
1950                 LOG_ERROR("unhandled core state");
1951                 return ERROR_FAIL;
1952         }
1953
1954         retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1955         if (retval != ERROR_OK)
1956                 return retval;
1957
1958         err = arm7_9_execute_sys_speed(target);
1959         arm7_9->disable_single_step(target);
1960
1961         /* registers are now invalid */
1962         register_cache_invalidate(arm->core_cache);
1963
1964         if (err != ERROR_OK)
1965                 target->state = TARGET_UNKNOWN;
1966         else {
1967                 retval = arm7_9_debug_entry(target);
1968                 if (retval != ERROR_OK)
1969                         return retval;
1970                 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1971                 if (retval != ERROR_OK)
1972                         return retval;
1973                 LOG_DEBUG("target stepped");
1974         }
1975
1976         if (breakpoint) {
1977                 retval = arm7_9_set_breakpoint(target, breakpoint);
1978                 if (retval != ERROR_OK)
1979                         return retval;
1980         }
1981
1982         return err;
1983 }
1984
1985 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
1986         int num, enum arm_mode mode)
1987 {
1988         uint32_t *reg_p[16];
1989         int retval;
1990         struct arm_reg *areg = r->arch_info;
1991         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1992         struct arm *arm = &arm7_9->arm;
1993
1994         if (!is_arm_mode(arm->core_mode))
1995                 return ERROR_FAIL;
1996         if ((num < 0) || (num > 16))
1997                 return ERROR_COMMAND_SYNTAX_ERROR;
1998
1999         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2000                         && (areg->mode != ARM_MODE_ANY)) {
2001                 uint32_t tmp_cpsr;
2002
2003                 /* change processor mode (mask T bit) */
2004                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2005                 tmp_cpsr |= mode;
2006                 tmp_cpsr &= ~0x20;
2007                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2008         }
2009
2010         uint32_t value = 0;
2011         if ((num >= 0) && (num <= 15)) {
2012                 /* read a normal core register */
2013                 reg_p[num] = &value;
2014
2015                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2016         } else {
2017                 /* read a program status register
2018                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2019                  */
2020                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2021         }
2022
2023         retval = jtag_execute_queue();
2024         if (retval != ERROR_OK)
2025                 return retval;
2026
2027         r->valid = 1;
2028         r->dirty = 0;
2029         buf_set_u32(r->value, 0, 32, value);
2030
2031         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2032                         && (areg->mode != ARM_MODE_ANY)) {
2033                 /* restore processor mode (mask T bit) */
2034                 arm7_9->write_xpsr_im8(target,
2035                         buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2036         }
2037
2038         return ERROR_OK;
2039 }
2040
2041 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2042         int num, enum arm_mode mode, uint8_t *value)
2043 {
2044         uint32_t reg[16];
2045         struct arm_reg *areg = r->arch_info;
2046         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2047         struct arm *arm = &arm7_9->arm;
2048
2049         if (!is_arm_mode(arm->core_mode))
2050                 return ERROR_FAIL;
2051         if ((num < 0) || (num > 16))
2052                 return ERROR_COMMAND_SYNTAX_ERROR;
2053
2054         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2055                         && (areg->mode != ARM_MODE_ANY)) {
2056                 uint32_t tmp_cpsr;
2057
2058                 /* change processor mode (mask T bit) */
2059                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2060                 tmp_cpsr |= mode;
2061                 tmp_cpsr &= ~0x20;
2062                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2063         }
2064
2065         if ((num >= 0) && (num <= 15)) {
2066                 /* write a normal core register */
2067                 reg[num] = buf_get_u32(value, 0, 32);
2068
2069                 arm7_9->write_core_regs(target, 1 << num, reg);
2070         } else {
2071                 /* write a program status register
2072                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2073                 */
2074                 int spsr = (areg->mode != ARM_MODE_ANY);
2075
2076                 uint32_t t = buf_get_u32(value, 0, 32);
2077                 /* if we're writing the CPSR, mask the T bit */
2078                 if (!spsr)
2079                         t &= ~0x20;
2080
2081                 arm7_9->write_xpsr(target, t, spsr);
2082         }
2083
2084         r->valid = 1;
2085         r->dirty = 0;
2086
2087         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2088                         && (areg->mode != ARM_MODE_ANY)) {
2089                 /* restore processor mode (mask T bit) */
2090                 arm7_9->write_xpsr_im8(target,
2091                                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2092         }
2093
2094         return jtag_execute_queue();
2095 }
2096
2097 int arm7_9_read_memory(struct target *target,
2098         target_addr_t address,
2099         uint32_t size,
2100         uint32_t count,
2101         uint8_t *buffer)
2102 {
2103         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2104         struct arm *arm = &arm7_9->arm;
2105         uint32_t reg[16];
2106         uint32_t num_accesses = 0;
2107         int thisrun_accesses;
2108         int i;
2109         uint32_t cpsr;
2110         int retval;
2111         int last_reg = 0;
2112
2113         LOG_DEBUG("address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2114                 address, size, count);
2115
2116         if (target->state != TARGET_HALTED) {
2117                 LOG_WARNING("target not halted");
2118                 return ERROR_TARGET_NOT_HALTED;
2119         }
2120
2121         /* sanitize arguments */
2122         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2123                 return ERROR_COMMAND_SYNTAX_ERROR;
2124
2125         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2126                 return ERROR_TARGET_UNALIGNED_ACCESS;
2127
2128         /* load the base register with the address of the first word */
2129         reg[0] = address;
2130         arm7_9->write_core_regs(target, 0x1, reg);
2131
2132         int j = 0;
2133
2134         switch (size) {
2135                 case 4:
2136                         while (num_accesses < count) {
2137                                 uint32_t reg_list;
2138                                 thisrun_accesses =
2139                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2140                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2141
2142                                 if (last_reg <= thisrun_accesses)
2143                                         last_reg = thisrun_accesses;
2144
2145                                 arm7_9->load_word_regs(target, reg_list);
2146
2147                                 /* fast memory reads are only safe when the target is running
2148                                  * from a sufficiently high clock (32 kHz is usually too slow)
2149                                  */
2150                                 if (arm7_9->fast_memory_access)
2151                                         retval = arm7_9_execute_fast_sys_speed(target);
2152                                 else
2153                                         retval = arm7_9_execute_sys_speed(target);
2154                                 if (retval != ERROR_OK)
2155                                         return retval;
2156
2157                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2158
2159                                 /* advance buffer, count number of accesses */
2160                                 buffer += thisrun_accesses * 4;
2161                                 num_accesses += thisrun_accesses;
2162
2163                                 if ((j++%1024) == 0)
2164                                         keep_alive();
2165                         }
2166                         break;
2167                 case 2:
2168                         while (num_accesses < count) {
2169                                 uint32_t reg_list;
2170                                 thisrun_accesses =
2171                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2172                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2173
2174                                 for (i = 1; i <= thisrun_accesses; i++) {
2175                                         if (i > last_reg)
2176                                             last_reg = i;
2177                                         arm7_9->load_hword_reg(target, i);
2178                                         /* fast memory reads are only safe when the target is running
2179                                          * from a sufficiently high clock (32 kHz is usually too slow)
2180                                          */
2181                                         if (arm7_9->fast_memory_access)
2182                                                 retval = arm7_9_execute_fast_sys_speed(target);
2183                                         else
2184                                                 retval = arm7_9_execute_sys_speed(target);
2185                                         if (retval != ERROR_OK)
2186                                                 return retval;
2187
2188                                 }
2189
2190                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2191
2192                                 /* advance buffer, count number of accesses */
2193                                 buffer += thisrun_accesses * 2;
2194                                 num_accesses += thisrun_accesses;
2195
2196                                 if ((j++%1024) == 0)
2197                                         keep_alive();
2198                         }
2199                         break;
2200                 case 1:
2201                         while (num_accesses < count) {
2202                                 uint32_t reg_list;
2203                                 thisrun_accesses =
2204                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2205                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2206
2207                                 for (i = 1; i <= thisrun_accesses; i++) {
2208                                         if (i > last_reg)
2209                                                 last_reg = i;
2210                                         arm7_9->load_byte_reg(target, i);
2211                                         /* fast memory reads are only safe when the target is running
2212                                          * from a sufficiently high clock (32 kHz is usually too slow)
2213                                          */
2214                                         if (arm7_9->fast_memory_access)
2215                                                 retval = arm7_9_execute_fast_sys_speed(target);
2216                                         else
2217                                                 retval = arm7_9_execute_sys_speed(target);
2218                                         if (retval != ERROR_OK)
2219                                                 return retval;
2220                                 }
2221
2222                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2223
2224                                 /* advance buffer, count number of accesses */
2225                                 buffer += thisrun_accesses * 1;
2226                                 num_accesses += thisrun_accesses;
2227
2228                                 if ((j++%1024) == 0)
2229                                         keep_alive();
2230                         }
2231                         break;
2232         }
2233
2234         if (!is_arm_mode(arm->core_mode))
2235                 return ERROR_FAIL;
2236
2237         for (i = 0; i <= last_reg; i++) {
2238                 struct reg *r = arm_reg_current(arm, i);
2239                 r->dirty = r->valid;
2240         }
2241
2242         arm7_9->read_xpsr(target, &cpsr, 0);
2243         retval = jtag_execute_queue();
2244         if (retval != ERROR_OK) {
2245                 LOG_ERROR("JTAG error while reading cpsr");
2246                 return ERROR_TARGET_DATA_ABORT;
2247         }
2248
2249         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2250                 LOG_WARNING(
2251                         "memory read caused data abort "
2252                         "(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2253                         address,
2254                         size,
2255                         count);
2256
2257                 arm7_9->write_xpsr_im8(target,
2258                         buf_get_u32(arm->cpsr->value, 0, 8)
2259                         & ~0x20, 0, 0);
2260
2261                 return ERROR_TARGET_DATA_ABORT;
2262         }
2263
2264         return ERROR_OK;
2265 }
2266
2267 int arm7_9_write_memory(struct target *target,
2268         target_addr_t address,
2269         uint32_t size,
2270         uint32_t count,
2271         const uint8_t *buffer)
2272 {
2273         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2274         struct arm *arm = &arm7_9->arm;
2275         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2276
2277         uint32_t reg[16];
2278         uint32_t num_accesses = 0;
2279         int thisrun_accesses;
2280         int i;
2281         uint32_t cpsr;
2282         int retval;
2283         int last_reg = 0;
2284
2285 #ifdef _DEBUG_ARM7_9_
2286         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2287 #endif
2288
2289         if (target->state != TARGET_HALTED) {
2290                 LOG_WARNING("target not halted");
2291                 return ERROR_TARGET_NOT_HALTED;
2292         }
2293
2294         /* sanitize arguments */
2295         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2296                 return ERROR_COMMAND_SYNTAX_ERROR;
2297
2298         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2299                 return ERROR_TARGET_UNALIGNED_ACCESS;
2300
2301         /* load the base register with the address of the first word */
2302         reg[0] = address;
2303         arm7_9->write_core_regs(target, 0x1, reg);
2304
2305         /* Clear DBGACK, to make sure memory fetches work as expected */
2306         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2307         embeddedice_store_reg(dbg_ctrl);
2308
2309         switch (size) {
2310                 case 4:
2311                         while (num_accesses < count) {
2312                                 uint32_t reg_list;
2313                                 thisrun_accesses =
2314                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2315                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2316
2317                                 for (i = 1; i <= thisrun_accesses; i++) {
2318                                         if (i > last_reg)
2319                                                 last_reg = i;
2320                                         reg[i] = target_buffer_get_u32(target, buffer);
2321                                         buffer += 4;
2322                                 }
2323
2324                                 arm7_9->write_core_regs(target, reg_list, reg);
2325
2326                                 arm7_9->store_word_regs(target, reg_list);
2327
2328                                 /* fast memory writes are only safe when the target is running
2329                                  * from a sufficiently high clock (32 kHz is usually too slow)
2330                                  */
2331                                 if (arm7_9->fast_memory_access)
2332                                         retval = arm7_9_execute_fast_sys_speed(target);
2333                                 else {
2334                                         retval = arm7_9_execute_sys_speed(target);
2335
2336                                         /*
2337                                          * if memory writes are made when the clock is running slow
2338                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2339                                          * processor operations after a "reset halt" or "reset init",
2340                                          * need to immediately stroke the keep alive or will end up with
2341                                          * gdb "keep alive not sent error message" problem.
2342                                          */
2343
2344                                         keep_alive();
2345                                 }
2346
2347                                 if (retval != ERROR_OK)
2348                                         return retval;
2349
2350                                 num_accesses += thisrun_accesses;
2351                         }
2352                         break;
2353                 case 2:
2354                         while (num_accesses < count) {
2355                                 uint32_t reg_list;
2356                                 thisrun_accesses =
2357                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2358                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2359
2360                                 for (i = 1; i <= thisrun_accesses; i++) {
2361                                         if (i > last_reg)
2362                                                 last_reg = i;
2363                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2364                                         buffer += 2;
2365                                 }
2366
2367                                 arm7_9->write_core_regs(target, reg_list, reg);
2368
2369                                 for (i = 1; i <= thisrun_accesses; i++) {
2370                                         arm7_9->store_hword_reg(target, i);
2371
2372                                         /* fast memory writes are only safe when the target is running
2373                                          * from a sufficiently high clock (32 kHz is usually too slow)
2374                                          */
2375                                         if (arm7_9->fast_memory_access)
2376                                                 retval = arm7_9_execute_fast_sys_speed(target);
2377                                         else {
2378                                                 retval = arm7_9_execute_sys_speed(target);
2379
2380                                                 /*
2381                                                  * if memory writes are made when the clock is running slow
2382                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2383                                                  * processor operations after a "reset halt" or "reset init",
2384                                                  * need to immediately stroke the keep alive or will end up with
2385                                                  * gdb "keep alive not sent error message" problem.
2386                                                  */
2387
2388                                                 keep_alive();
2389                                         }
2390
2391                                         if (retval != ERROR_OK)
2392                                                 return retval;
2393                                 }
2394
2395                                 num_accesses += thisrun_accesses;
2396                         }
2397                         break;
2398                 case 1:
2399                         while (num_accesses < count) {
2400                                 uint32_t reg_list;
2401                                 thisrun_accesses =
2402                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2403                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2404
2405                                 for (i = 1; i <= thisrun_accesses; i++) {
2406                                         if (i > last_reg)
2407                                                 last_reg = i;
2408                                         reg[i] = *buffer++ & 0xff;
2409                                 }
2410
2411                                 arm7_9->write_core_regs(target, reg_list, reg);
2412
2413                                 for (i = 1; i <= thisrun_accesses; i++) {
2414                                         arm7_9->store_byte_reg(target, i);
2415                                         /* fast memory writes are only safe when the target is running
2416                                          * from a sufficiently high clock (32 kHz is usually too slow)
2417                                          */
2418                                         if (arm7_9->fast_memory_access)
2419                                                 retval = arm7_9_execute_fast_sys_speed(target);
2420                                         else {
2421                                                 retval = arm7_9_execute_sys_speed(target);
2422
2423                                                 /*
2424                                                  * if memory writes are made when the clock is running slow
2425                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2426                                                  * processor operations after a "reset halt" or "reset init",
2427                                                  * need to immediately stroke the keep alive or will end up with
2428                                                  * gdb "keep alive not sent error message" problem.
2429                                                  */
2430
2431                                                 keep_alive();
2432                                         }
2433
2434                                         if (retval != ERROR_OK)
2435                                                 return retval;
2436
2437                                 }
2438
2439                                 num_accesses += thisrun_accesses;
2440                         }
2441                         break;
2442         }
2443
2444         /* Re-Set DBGACK */
2445         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2446         embeddedice_store_reg(dbg_ctrl);
2447
2448         if (!is_arm_mode(arm->core_mode))
2449                 return ERROR_FAIL;
2450
2451         for (i = 0; i <= last_reg; i++) {
2452                 struct reg *r = arm_reg_current(arm, i);
2453                 r->dirty = r->valid;
2454         }
2455
2456         arm7_9->read_xpsr(target, &cpsr, 0);
2457         retval = jtag_execute_queue();
2458         if (retval != ERROR_OK) {
2459                 LOG_ERROR("JTAG error while reading cpsr");
2460                 return ERROR_TARGET_DATA_ABORT;
2461         }
2462
2463         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2464                 LOG_WARNING(
2465                         "memory write caused data abort "
2466                         "(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2467                         address,
2468                         size,
2469                         count);
2470
2471                 arm7_9->write_xpsr_im8(target,
2472                         buf_get_u32(arm->cpsr->value, 0, 8)
2473                         & ~0x20, 0, 0);
2474
2475                 return ERROR_TARGET_DATA_ABORT;
2476         }
2477
2478         return ERROR_OK;
2479 }
2480
2481 int arm7_9_write_memory_opt(struct target *target,
2482         target_addr_t address,
2483         uint32_t size,
2484         uint32_t count,
2485         const uint8_t *buffer)
2486 {
2487         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2488         int retval;
2489
2490         if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
2491                 /* Attempt to do a bulk write */
2492                 retval = arm7_9->bulk_write_memory(target, address, count, buffer);
2493
2494                 if (retval == ERROR_OK)
2495                         return ERROR_OK;
2496         }
2497
2498         return arm7_9->write_memory(target, address, size, count, buffer);
2499 }
2500
2501 int arm7_9_write_memory_no_opt(struct target *target,
2502         uint32_t address,
2503         uint32_t size,
2504         uint32_t count,
2505         const uint8_t *buffer)
2506 {
2507         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2508
2509         return arm7_9->write_memory(target, address, size, count, buffer);
2510 }
2511
2512 static int dcc_count;
2513 static const uint8_t *dcc_buffer;
2514
2515 static int arm7_9_dcc_completion(struct target *target,
2516         uint32_t exit_point,
2517         int timeout_ms,
2518         void *arch_info)
2519 {
2520         int retval = ERROR_OK;
2521         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2522
2523         retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2524         if (retval != ERROR_OK)
2525                 return retval;
2526
2527         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2528         int count = dcc_count;
2529         const uint8_t *buffer = dcc_buffer;
2530         if (count > 2) {
2531                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2532                  * core function repeated. */
2533                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2534                         fast_target_buffer_get_u32(buffer, little));
2535                 buffer += 4;
2536
2537                 struct embeddedice_reg *ice_reg =
2538                         arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2539                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2540                 struct jtag_tap *tap;
2541                 tap = ice_reg->jtag_info->tap;
2542
2543                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2544                 buffer += (count-2)*4;
2545
2546                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2547                         fast_target_buffer_get_u32(buffer, little));
2548         } else {
2549                 int i;
2550                 for (i = 0; i < count; i++) {
2551                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2552                                 fast_target_buffer_get_u32(buffer, little));
2553                         buffer += 4;
2554                 }
2555         }
2556
2557         retval = target_halt(target);
2558         if (retval != ERROR_OK)
2559                 return retval;
2560         return target_wait_state(target, TARGET_HALTED, 500);
2561 }
2562
2563 static const uint32_t dcc_code[] = {
2564         /* r0 == input, points to memory buffer
2565          * r1 == scratch
2566          */
2567
2568         /* spin until DCC control (c0) reports data arrived */
2569         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2570         0xe3110001,     /*    tst r1, #1              */
2571         0x0afffffc,     /*    bne w                   */
2572
2573         /* read word from DCC (c1), write to memory */
2574         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2575         0xe4801004,     /*    str r1, [r0], #4        */
2576
2577         /* repeat */
2578         0xeafffff9      /*    b   w                   */
2579 };
2580
2581 int arm7_9_bulk_write_memory(struct target *target,
2582         target_addr_t address,
2583         uint32_t count,
2584         const uint8_t *buffer)
2585 {
2586         int retval;
2587         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2588
2589         if (address % 4 != 0)
2590                 return ERROR_TARGET_UNALIGNED_ACCESS;
2591
2592         if (!arm7_9->dcc_downloads)
2593                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2594
2595         /* regrab previously allocated working_area, or allocate a new one */
2596         if (!arm7_9->dcc_working_area) {
2597                 uint8_t dcc_code_buf[6 * 4];
2598
2599                 /* make sure we have a working area */
2600                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2601                         LOG_INFO("no working area available, falling back to memory writes");
2602                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2603                 }
2604
2605                 /* copy target instructions to target endianness */
2606                 target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
2607
2608                 /* write DCC code to working area, using the non-optimized
2609                  * memory write to avoid ending up here again */
2610                 retval = arm7_9_write_memory_no_opt(target,
2611                                 arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2612                 if (retval != ERROR_OK)
2613                         return retval;
2614         }
2615
2616         struct arm_algorithm arm_algo;
2617         struct reg_param reg_params[1];
2618
2619         arm_algo.common_magic = ARM_COMMON_MAGIC;
2620         arm_algo.core_mode = ARM_MODE_SVC;
2621         arm_algo.core_state = ARM_STATE_ARM;
2622
2623         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2624
2625         buf_set_u32(reg_params[0].value, 0, 32, address);
2626
2627         dcc_count = count;
2628         dcc_buffer = buffer;
2629         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2630                         arm7_9->dcc_working_area->address,
2631                         arm7_9->dcc_working_area->address + 6*4,
2632                         20*1000, &arm_algo, arm7_9_dcc_completion);
2633
2634         if (retval == ERROR_OK) {
2635                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2636                 if (endaddress != (address + count*4)) {
2637                         LOG_ERROR(
2638                                 "DCC write failed, expected end address 0x%08" TARGET_PRIxADDR " got 0x%0" PRIx32 "",
2639                                 (address + count*4),
2640                                 endaddress);
2641                         retval = ERROR_FAIL;
2642                 }
2643         }
2644
2645         destroy_reg_param(&reg_params[0]);
2646
2647         return retval;
2648 }
2649
2650 /**
2651  * Perform per-target setup that requires JTAG access.
2652  */
2653 int arm7_9_examine(struct target *target)
2654 {
2655         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2656         int retval;
2657
2658         if (!target_was_examined(target)) {
2659                 struct reg_cache *t, **cache_p;
2660
2661                 t = embeddedice_build_reg_cache(target, arm7_9);
2662                 if (t == NULL)
2663                         return ERROR_FAIL;
2664
2665                 cache_p = register_get_last_cache_p(&target->reg_cache);
2666                 (*cache_p) = t;
2667                 arm7_9->eice_cache = (*cache_p);
2668
2669                 if (arm7_9->arm.etm)
2670                         (*cache_p)->next = etm_build_reg_cache(target,
2671                                         &arm7_9->jtag_info,
2672                                         arm7_9->arm.etm);
2673
2674                 target_set_examined(target);
2675         }
2676
2677         retval = embeddedice_setup(target);
2678         if (retval == ERROR_OK)
2679                 retval = arm7_9_setup(target);
2680         if (retval == ERROR_OK && arm7_9->arm.etm)
2681                 retval = etm_setup(target);
2682         return retval;
2683 }
2684
2685
2686 int arm7_9_check_reset(struct target *target)
2687 {
2688         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2689
2690         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2691                 LOG_WARNING(
2692                         "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2693
2694         if (get_target_reset_nag() && (target->working_area_size == 0))
2695                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2696
2697         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2698                 LOG_WARNING(
2699                         "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2700
2701         return ERROR_OK;
2702 }
2703
2704 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2705                 jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2706                 jtag_callback_data_t i_flip)
2707 {
2708         uint8_t *in = (uint8_t *)pu8_in;
2709         int size = (int)i_size;
2710         int be = (int)i_be;
2711         int flip = (int)i_flip;
2712         uint32_t readback;
2713
2714         switch (size) {
2715         case 4:
2716                 readback = le_to_h_u32(in);
2717                 if (flip)
2718                         readback = flip_u32(readback, 32);
2719                 if (be)
2720                         h_u32_to_be(in, readback);
2721                 else
2722                         h_u32_to_le(in, readback);
2723                 break;
2724         case 2:
2725                 readback = le_to_h_u16(in);
2726                 if (flip)
2727                         readback = flip_u32(readback, 16);
2728                 if (be)
2729                         h_u16_to_be(in, readback & 0xffff);
2730                 else
2731                         h_u16_to_le(in, readback & 0xffff);
2732                 break;
2733         case 1:
2734                 readback = *in;
2735                 if (flip)
2736                         readback = flip_u32(readback, 8);
2737                 *in = readback & 0xff;
2738                 break;
2739         }
2740
2741         return ERROR_OK;
2742 }
2743
2744 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2745 {
2746         struct target *target = get_current_target(CMD_CTX);
2747         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2748
2749         if (!is_arm7_9(arm7_9)) {
2750                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2751                 return ERROR_TARGET_INVALID;
2752         }
2753
2754         if (CMD_ARGC > 0)
2755                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2756
2757         command_print(CMD_CTX,
2758                 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2759                 (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2760
2761         return ERROR_OK;
2762 }
2763
2764 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2765 {
2766         struct target *target = get_current_target(CMD_CTX);
2767         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2768
2769         if (!is_arm7_9(arm7_9)) {
2770                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2771                 return ERROR_TARGET_INVALID;
2772         }
2773
2774         if (CMD_ARGC > 0)
2775                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2776
2777         command_print(CMD_CTX,
2778                 "fast memory access is %s",
2779                 (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2780
2781         return ERROR_OK;
2782 }
2783
2784 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2785 {
2786         struct target *target = get_current_target(CMD_CTX);
2787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2788
2789         if (!is_arm7_9(arm7_9)) {
2790                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2791                 return ERROR_TARGET_INVALID;
2792         }
2793
2794         if (CMD_ARGC > 0)
2795                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2796
2797         command_print(CMD_CTX,
2798                 "dcc downloads are %s",
2799                 (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2800
2801         return ERROR_OK;
2802 }
2803
2804 static int arm7_9_setup_semihosting(struct target *target, int enable)
2805 {
2806         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2807
2808         if (!is_arm7_9(arm7_9)) {
2809                 LOG_USER("current target isn't an ARM7/ARM9 target");
2810                 return ERROR_TARGET_INVALID;
2811         }
2812
2813         if (arm7_9->has_vector_catch) {
2814                 struct reg *vector_catch = &arm7_9->eice_cache
2815                         ->reg_list[EICE_VEC_CATCH];
2816
2817                 if (!vector_catch->valid)
2818                         embeddedice_read_reg(vector_catch);
2819                 buf_set_u32(vector_catch->value, 2, 1, enable);
2820                 embeddedice_store_reg(vector_catch);
2821         } else {
2822                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2823                 if (enable)
2824                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2825                 else
2826                         breakpoint_remove(target, 8);
2827         }
2828
2829         return ERROR_OK;
2830 }
2831
2832 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2833 {
2834         int retval = ERROR_OK;
2835         struct arm *arm = &arm7_9->arm;
2836
2837         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2838
2839         retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2840         if (retval != ERROR_OK)
2841                 return retval;
2842
2843         /* caller must have allocated via calloc(), so everything's zeroed */
2844
2845         arm7_9->wp_available_max = 2;
2846
2847         arm7_9->fast_memory_access = false;
2848         arm7_9->dcc_downloads = false;
2849
2850         arm->arch_info = arm7_9;
2851         arm->core_type = ARM_MODE_ANY;
2852         arm->read_core_reg = arm7_9_read_core_reg;
2853         arm->write_core_reg = arm7_9_write_core_reg;
2854         arm->full_context = arm7_9_full_context;
2855         arm->setup_semihosting = arm7_9_setup_semihosting;
2856
2857         retval = arm_init_arch_info(target, arm);
2858         if (retval != ERROR_OK)
2859                 return retval;
2860
2861         return target_register_timer_callback(arm7_9_handle_target_request,
2862                 1, 1, target);
2863 }
2864
2865 static const struct command_registration arm7_9_any_command_handlers[] = {
2866         {
2867                 "dbgrq",
2868                 .handler = handle_arm7_9_dbgrq_command,
2869                 .mode = COMMAND_ANY,
2870                 .usage = "['enable'|'disable']",
2871                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2872                         "for target halt requests",
2873         },
2874         {
2875                 "fast_memory_access",
2876                 .handler = handle_arm7_9_fast_memory_access_command,
2877                 .mode = COMMAND_ANY,
2878                 .usage = "['enable'|'disable']",
2879                 .help = "use fast memory accesses instead of slower "
2880                         "but potentially safer accesses",
2881         },
2882         {
2883                 "dcc_downloads",
2884                 .handler = handle_arm7_9_dcc_downloads_command,
2885                 .mode = COMMAND_ANY,
2886                 .usage = "['enable'|'disable']",
2887                 .help = "use DCC downloads for larger memory writes",
2888         },
2889         COMMAND_REGISTRATION_DONE
2890 };
2891 const struct command_registration arm7_9_command_handlers[] = {
2892         {
2893                 .chain = arm_command_handlers,
2894         },
2895         {
2896                 .chain = etm_command_handlers,
2897         },
2898         {
2899                 .name = "arm7_9",
2900                 .mode = COMMAND_ANY,
2901                 .help = "arm7/9 specific commands",
2902                 .usage = "",
2903                 .chain = arm7_9_any_command_handlers,
2904         },
2905         COMMAND_REGISTRATION_DONE
2906 };