]> git.sur5r.net Git - openocd/blob - src/target/arm_adi_v5.c
target: arm_adi_v5: added types and subtypes based on latest coresight documentation
[openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   Copyright (C) 2013 by Andreas Fritiofson                              *
14  *   andreas.fritiofson@gmail.com                                          *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program; if not, write to the                         *
28  *   Free Software Foundation, Inc.,                                       *
29  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
30  ***************************************************************************/
31
32 /**
33  * @file
34  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35  * debugging architecture.  Compared with previous versions, this includes
36  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37  * transport, and focusses on memory mapped resources as defined by the
38  * CoreSight architecture.
39  *
40  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
41  * basic components:  a Debug Port (DP) transporting messages to and from a
42  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
43  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
44  * One uses only SWD for communication, and is called SW-DP.  The third can
45  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
46  * is used to access memory mapped resources and is called a MEM-AP.  Also a
47  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48  *
49  * This programming interface allows DAP pipelined operations through a
50  * transaction queue.  This primarily affects AP operations (such as using
51  * a MEM-AP to access memory or registers).  If the current transaction has
52  * not finished by the time the next one must begin, and the ORUNDETECT bit
53  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54  * further AP operations will fail.  There are two basic methods to avoid
55  * such overrun errors.  One involves polling for status instead of using
56  * transaction piplining.  The other involves adding delays to ensure the
57  * AP has enough time to complete one operation before starting the next
58  * one.  (For JTAG these delays are controlled by memaccess_tck.)
59  */
60
61 /*
62  * Relevant specifications from ARM include:
63  *
64  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
65  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
66  *
67  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68  * Cortex-M3(tm) TRM, ARM DDI 0337G
69  */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
81
82 /*
83         uint32_t tar_block_size(uint32_t address)
84         Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88         return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92  *                                                                         *
93  * DP and MEM-AP  register access  through APACC and DPACC                 *
94  *                                                                         *
95 ***************************************************************************/
96
97 /**
98  * Select one of the APs connected to the specified DAP.  The
99  * selection is implicitly used with future AP transactions.
100  * This is a NOP if the specified AP is already selected.
101  *
102  * @param dap The DAP
103  * @param apsel Number of the AP to (implicitly) use with further
104  *      transactions.  This normally identifies a MEM-AP.
105  */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108         uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110         if (new_ap != dap->ap_current) {
111                 dap->ap_current = new_ap;
112                 /* Switching AP invalidates cached values.
113                  * Values MUST BE UPDATED BEFORE AP ACCESS.
114                  */
115                 dap->ap_bank_value = -1;
116                 dap->ap_csw_value = -1;
117                 dap->ap_tar_value = -1;
118         }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124                 dap->apcsw[dap->ap_current >> 24];
125
126         if (csw != dap->ap_csw_value) {
127                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128                 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129                 if (retval != ERROR_OK)
130                         return retval;
131                 dap->ap_csw_value = csw;
132         }
133         return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138         if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140                 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141                 if (retval != ERROR_OK)
142                         return retval;
143                 dap->ap_tar_value = tar;
144         }
145         return ERROR_OK;
146 }
147
148 /**
149  * Queue transactions setting up transfer parameters for the
150  * currently selected MEM-AP.
151  *
152  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153  * initiate data reads or writes using memory or peripheral addresses.
154  * If the CSW is configured for it, the TAR may be automatically
155  * incremented after each transfer.
156  *
157  * @todo Rename to reflect it being specifically a MEM-AP function.
158  *
159  * @param dap The DAP connected to the MEM-AP.
160  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
161  *      matches the cached value, the register is not changed.
162  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
163  *      matches the cached address, the register is not changed.
164  *
165  * @return ERROR_OK if the transaction was properly queued, else a fault code.
166  */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169         int retval;
170         retval = dap_setup_accessport_csw(dap, csw);
171         if (retval != ERROR_OK)
172                 return retval;
173         retval = dap_setup_accessport_tar(dap, tar);
174         if (retval != ERROR_OK)
175                 return retval;
176         return ERROR_OK;
177 }
178
179 /**
180  * Asynchronous (queued) read of a word from memory or a system register.
181  *
182  * @param dap The DAP connected to the MEM-AP performing the read.
183  * @param address Address of the 32-bit word to read; it must be
184  *      readable by the currently selected MEM-AP.
185  * @param value points to where the word will be stored when the
186  *      transaction queue is flushed (assuming no errors).
187  *
188  * @return ERROR_OK for success.  Otherwise a fault code.
189  */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191                 uint32_t *value)
192 {
193         int retval;
194
195         /* Use banked addressing (REG_BDx) to avoid some link traffic
196          * (updating TAR) when reading several consecutive addresses.
197          */
198         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199                         address & 0xFFFFFFF0);
200         if (retval != ERROR_OK)
201                 return retval;
202
203         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207  * Synchronous read of a word from memory or a system register.
208  * As a side effect, this flushes any queued transactions.
209  *
210  * @param dap The DAP connected to the MEM-AP performing the read.
211  * @param address Address of the 32-bit word to read; it must be
212  *      readable by the currently selected MEM-AP.
213  * @param value points to where the result will be stored.
214  *
215  * @return ERROR_OK for success; *value holds the result.
216  * Otherwise a fault code.
217  */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219                 uint32_t *value)
220 {
221         int retval;
222
223         retval = mem_ap_read_u32(dap, address, value);
224         if (retval != ERROR_OK)
225                 return retval;
226
227         return dap_run(dap);
228 }
229
230 /**
231  * Asynchronous (queued) write of a word to memory or a system register.
232  *
233  * @param dap The DAP connected to the MEM-AP.
234  * @param address Address to be written; it must be writable by
235  *      the currently selected MEM-AP.
236  * @param value Word that will be written to the address when transaction
237  *      queue is flushed (assuming no errors).
238  *
239  * @return ERROR_OK for success.  Otherwise a fault code.
240  */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242                 uint32_t value)
243 {
244         int retval;
245
246         /* Use banked addressing (REG_BDx) to avoid some link traffic
247          * (updating TAR) when writing several consecutive addresses.
248          */
249         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250                         address & 0xFFFFFFF0);
251         if (retval != ERROR_OK)
252                 return retval;
253
254         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255                         value);
256 }
257
258 /**
259  * Synchronous write of a word to memory or a system register.
260  * As a side effect, this flushes any queued transactions.
261  *
262  * @param dap The DAP connected to the MEM-AP.
263  * @param address Address to be written; it must be writable by
264  *      the currently selected MEM-AP.
265  * @param value Word that will be written.
266  *
267  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
268  */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270                 uint32_t value)
271 {
272         int retval = mem_ap_write_u32(dap, address, value);
273
274         if (retval != ERROR_OK)
275                 return retval;
276
277         return dap_run(dap);
278 }
279
280 /**
281  * Synchronous write of a block of memory, using a specific access size.
282  *
283  * @param dap The DAP connected to the MEM-AP.
284  * @param buffer The data buffer to write. No particular alignment is assumed.
285  * @param size Which access size to use, in bytes. 1, 2 or 4.
286  * @param count The number of writes to do (in size units, not bytes).
287  * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288  * @param addrinc Whether the target address should be increased for each write or not. This
289  *  should normally be true, except when writing to e.g. a FIFO.
290  * @return ERROR_OK on success, otherwise an error code.
291  */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293                 uint32_t address, bool addrinc)
294 {
295         size_t nbytes = size * count;
296         const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297         uint32_t csw_size;
298         uint32_t addr_xor;
299         int retval;
300
301         /* TI BE-32 Quirks mode:
302          * Writes on big-endian TMS570 behave very strangely. Observed behavior:
303          *   size   write address   bytes written in order
304          *   4      TAR ^ 0         (val >> 24), (val >> 16), (val >> 8), (val)
305          *   2      TAR ^ 2         (val >> 8), (val)
306          *   1      TAR ^ 3         (val)
307          * For example, if you attempt to write a single byte to address 0, the processor
308          * will actually write a byte to address 3.
309          *
310          * To make writes of size < 4 work as expected, we xor a value with the address before
311          * setting the TAP, and we set the TAP after every transfer rather then relying on
312          * address increment. */
313
314         if (size == 4) {
315                 csw_size = CSW_32BIT;
316                 addr_xor = 0;
317         } else if (size == 2) {
318                 csw_size = CSW_16BIT;
319                 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
320         } else if (size == 1) {
321                 csw_size = CSW_8BIT;
322                 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
323         } else {
324                 return ERROR_TARGET_UNALIGNED_ACCESS;
325         }
326
327         if (dap->unaligned_access_bad && (address % size != 0))
328                 return ERROR_TARGET_UNALIGNED_ACCESS;
329
330         retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
331         if (retval != ERROR_OK)
332                 return retval;
333
334         while (nbytes > 0) {
335                 uint32_t this_size = size;
336
337                 /* Select packed transfer if possible */
338                 if (addrinc && dap->packed_transfers && nbytes >= 4
339                                 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
340                         this_size = 4;
341                         retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
342                 } else {
343                         retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
344                 }
345
346                 if (retval != ERROR_OK)
347                         break;
348
349                 /* How many source bytes each transfer will consume, and their location in the DRW,
350                  * depends on the type of transfer and alignment. See ARM document IHI0031C. */
351                 uint32_t outvalue = 0;
352                 if (dap->ti_be_32_quirks) {
353                         switch (this_size) {
354                         case 4:
355                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
356                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
357                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
358                                 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
359                                 break;
360                         case 2:
361                                 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
362                                 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
363                                 break;
364                         case 1:
365                                 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
366                                 break;
367                         }
368                 } else {
369                         switch (this_size) {
370                         case 4:
371                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
372                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
373                         case 2:
374                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
375                         case 1:
376                                 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
377                         }
378                 }
379
380                 nbytes -= this_size;
381
382                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
383                 if (retval != ERROR_OK)
384                         break;
385
386                 /* Rewrite TAR if it wrapped or we're xoring addresses */
387                 if (addrinc && (addr_xor || (address % dap->tar_autoincr_block < size && nbytes > 0))) {
388                         retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
389                         if (retval != ERROR_OK)
390                                 break;
391                 }
392         }
393
394         /* REVISIT: Might want to have a queued version of this function that does not run. */
395         if (retval == ERROR_OK)
396                 retval = dap_run(dap);
397
398         if (retval != ERROR_OK) {
399                 uint32_t tar;
400                 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
401                                 && dap_run(dap) == ERROR_OK)
402                         LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
403                 else
404                         LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
405         }
406
407         return retval;
408 }
409
410 /**
411  * Synchronous read of a block of memory, using a specific access size.
412  *
413  * @param dap The DAP connected to the MEM-AP.
414  * @param buffer The data buffer to receive the data. No particular alignment is assumed.
415  * @param size Which access size to use, in bytes. 1, 2 or 4.
416  * @param count The number of reads to do (in size units, not bytes).
417  * @param address Address to be read; it must be readable by the currently selected MEM-AP.
418  * @param addrinc Whether the target address should be increased after each read or not. This
419  *  should normally be true, except when reading from e.g. a FIFO.
420  * @return ERROR_OK on success, otherwise an error code.
421  */
422 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
423                 uint32_t adr, bool addrinc)
424 {
425         size_t nbytes = size * count;
426         const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
427         uint32_t csw_size;
428         uint32_t address = adr;
429         int retval;
430
431         /* TI BE-32 Quirks mode:
432          * Reads on big-endian TMS570 behave strangely differently than writes.
433          * They read from the physical address requested, but with DRW byte-reversed.
434          * For example, a byte read from address 0 will place the result in the high bytes of DRW.
435          * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
436          * so avoid them. */
437
438         if (size == 4)
439                 csw_size = CSW_32BIT;
440         else if (size == 2)
441                 csw_size = CSW_16BIT;
442         else if (size == 1)
443                 csw_size = CSW_8BIT;
444         else
445                 return ERROR_TARGET_UNALIGNED_ACCESS;
446
447         if (dap->unaligned_access_bad && (adr % size != 0))
448                 return ERROR_TARGET_UNALIGNED_ACCESS;
449
450         /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
451          * over-allocation if packed transfers are going to be used, but determining the real need at
452          * this point would be messy. */
453         uint32_t *read_buf = malloc(count * sizeof(uint32_t));
454         uint32_t *read_ptr = read_buf;
455         if (read_buf == NULL) {
456                 LOG_ERROR("Failed to allocate read buffer");
457                 return ERROR_FAIL;
458         }
459
460         retval = dap_setup_accessport_tar(dap, address);
461         if (retval != ERROR_OK) {
462                 free(read_buf);
463                 return retval;
464         }
465
466         /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
467          * useful bytes it contains, and their location in the word, depends on the type of transfer
468          * and alignment. */
469         while (nbytes > 0) {
470                 uint32_t this_size = size;
471
472                 /* Select packed transfer if possible */
473                 if (addrinc && dap->packed_transfers && nbytes >= 4
474                                 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
475                         this_size = 4;
476                         retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
477                 } else {
478                         retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
479                 }
480                 if (retval != ERROR_OK)
481                         break;
482
483                 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
484                 if (retval != ERROR_OK)
485                         break;
486
487                 nbytes -= this_size;
488                 address += this_size;
489
490                 /* Rewrite TAR if it wrapped */
491                 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
492                         retval = dap_setup_accessport_tar(dap, address);
493                         if (retval != ERROR_OK)
494                                 break;
495                 }
496         }
497
498         if (retval == ERROR_OK)
499                 retval = dap_run(dap);
500
501         /* Restore state */
502         address = adr;
503         nbytes = size * count;
504         read_ptr = read_buf;
505
506         /* If something failed, read TAR to find out how much data was successfully read, so we can
507          * at least give the caller what we have. */
508         if (retval != ERROR_OK) {
509                 uint32_t tar;
510                 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
511                                 && dap_run(dap) == ERROR_OK) {
512                         LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
513                         if (nbytes > tar - address)
514                                 nbytes = tar - address;
515                 } else {
516                         LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
517                         nbytes = 0;
518                 }
519         }
520
521         /* Replay loop to populate caller's buffer from the correct word and byte lane */
522         while (nbytes > 0) {
523                 uint32_t this_size = size;
524
525                 if (addrinc && dap->packed_transfers && nbytes >= 4
526                                 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
527                         this_size = 4;
528                 }
529
530                 if (dap->ti_be_32_quirks) {
531                         switch (this_size) {
532                         case 4:
533                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
534                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
535                         case 2:
536                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
537                         case 1:
538                                 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
539                         }
540                 } else {
541                         switch (this_size) {
542                         case 4:
543                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
544                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
545                         case 2:
546                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
547                         case 1:
548                                 *buffer++ = *read_ptr >> 8 * (address++ & 3);
549                         }
550                 }
551
552                 read_ptr++;
553                 nbytes -= this_size;
554         }
555
556         free(read_buf);
557         return retval;
558 }
559
560 /*--------------------------------------------------------------------*/
561 /*          Wrapping function with selection of AP                    */
562 /*--------------------------------------------------------------------*/
563 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
564                 uint32_t address, uint32_t *value)
565 {
566         dap_ap_select(swjdp, ap);
567         return mem_ap_read_u32(swjdp, address, value);
568 }
569
570 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
571                 uint32_t address, uint32_t value)
572 {
573         dap_ap_select(swjdp, ap);
574         return mem_ap_write_u32(swjdp, address, value);
575 }
576
577 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
578                 uint32_t address, uint32_t *value)
579 {
580         dap_ap_select(swjdp, ap);
581         return mem_ap_read_atomic_u32(swjdp, address, value);
582 }
583
584 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
585                 uint32_t address, uint32_t value)
586 {
587         dap_ap_select(swjdp, ap);
588         return mem_ap_write_atomic_u32(swjdp, address, value);
589 }
590
591 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
592                 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
593 {
594         dap_ap_select(swjdp, ap);
595         return mem_ap_read(swjdp, buffer, size, count, address, true);
596 }
597
598 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
599                 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
600 {
601         dap_ap_select(swjdp, ap);
602         return mem_ap_write(swjdp, buffer, size, count, address, true);
603 }
604
605 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
606                 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
607 {
608         dap_ap_select(swjdp, ap);
609         return mem_ap_read(swjdp, buffer, size, count, address, false);
610 }
611
612 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
613                 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
614 {
615         dap_ap_select(swjdp, ap);
616         return mem_ap_write(swjdp, buffer, size, count, address, false);
617 }
618
619 /*--------------------------------------------------------------------------*/
620
621
622 #define DAP_POWER_DOMAIN_TIMEOUT (10)
623
624 /* FIXME don't import ... just initialize as
625  * part of DAP transport setup
626 */
627 extern const struct dap_ops jtag_dp_ops;
628
629 /*--------------------------------------------------------------------------*/
630
631 /**
632  * Initialize a DAP.  This sets up the power domains, prepares the DP
633  * for further use, and arranges to use AP #0 for all AP operations
634  * until dap_ap-select() changes that policy.
635  *
636  * @param dap The DAP being initialized.
637  *
638  * @todo Rename this.  We also need an initialization scheme which account
639  * for SWD transports not just JTAG; that will need to address differences
640  * in layering.  (JTAG is useful without any debug target; but not SWD.)
641  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
642  */
643 int ahbap_debugport_init(struct adiv5_dap *dap)
644 {
645         int retval;
646
647         LOG_DEBUG(" ");
648
649         /* JTAG-DP or SWJ-DP, in JTAG mode
650          * ... for SWD mode this is patched as part
651          * of link switchover
652          */
653         if (!dap->ops)
654                 dap->ops = &jtag_dp_ops;
655
656         /* Default MEM-AP setup.
657          *
658          * REVISIT AP #0 may be an inappropriate default for this.
659          * Should we probe, or take a hint from the caller?
660          * Presumably we can ignore the possibility of multiple APs.
661          */
662         dap->ap_current = !0;
663         dap_ap_select(dap, 0);
664
665         /* DP initialization */
666
667         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
668         if (retval != ERROR_OK)
669                 return retval;
670
671         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
672         if (retval != ERROR_OK)
673                 return retval;
674
675         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
680         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
681         if (retval != ERROR_OK)
682                 return retval;
683
684         /* Check that we have debug power domains activated */
685         LOG_DEBUG("DAP: wait CDBGPWRUPACK");
686         retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
687                                       CDBGPWRUPACK, CDBGPWRUPACK,
688                                       DAP_POWER_DOMAIN_TIMEOUT);
689         if (retval != ERROR_OK)
690                 return retval;
691
692         LOG_DEBUG("DAP: wait CSYSPWRUPACK");
693         retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
694                                       CSYSPWRUPACK, CSYSPWRUPACK,
695                                       DAP_POWER_DOMAIN_TIMEOUT);
696         if (retval != ERROR_OK)
697                 return retval;
698
699         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
700         if (retval != ERROR_OK)
701                 return retval;
702         /* With debug power on we can activate OVERRUN checking */
703         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
704         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
705         if (retval != ERROR_OK)
706                 return retval;
707         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
708         if (retval != ERROR_OK)
709                 return retval;
710
711         /* check that we support packed transfers */
712         uint32_t csw, cfg;
713
714         retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
715         if (retval != ERROR_OK)
716                 return retval;
717
718         retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
719         if (retval != ERROR_OK)
720                 return retval;
721
722         retval = dap_queue_ap_read(dap, AP_REG_CFG, &cfg);
723         if (retval != ERROR_OK)
724                 return retval;
725
726         retval = dap_run(dap);
727         if (retval != ERROR_OK)
728                 return retval;
729
730         if (csw & CSW_ADDRINC_PACKED)
731                 dap->packed_transfers = true;
732         else
733                 dap->packed_transfers = false;
734
735         /* Packed transfers on TI BE-32 processors do not work correctly in
736          * many cases. */
737         if (dap->ti_be_32_quirks)
738                 dap->packed_transfers = false;
739
740         LOG_DEBUG("MEM_AP Packed Transfers: %s",
741                         dap->packed_transfers ? "enabled" : "disabled");
742
743         /* The ARM ADI spec leaves implementation-defined whether unaligned
744          * memory accesses work, only work partially, or cause a sticky error.
745          * On TI BE-32 processors, reads seem to return garbage in some bytes
746          * and unaligned writes seem to cause a sticky error.
747          * TODO: it would be nice to have a way to detect whether unaligned
748          * operations are supported on other processors. */
749         dap->unaligned_access_bad = dap->ti_be_32_quirks;
750
751         LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
752                         !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
753
754         return ERROR_OK;
755 }
756
757 /* CID interpretation -- see ARM IHI 0029B section 3
758  * and ARM IHI 0031A table 13-3.
759  */
760 static const char *class_description[16] = {
761         "Reserved", "ROM table", "Reserved", "Reserved",
762         "Reserved", "Reserved", "Reserved", "Reserved",
763         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
764         "Reserved", "OptimoDE DESS",
765         "Generic IP component", "PrimeCell or System component"
766 };
767
768 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
769 {
770         return cid3 == 0xb1 && cid2 == 0x05
771                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
772 }
773
774 /*
775  * This function checks the ID for each access port to find the requested Access Port type
776  */
777 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
778 {
779         int ap;
780
781         /* Maximum AP number is 255 since the SELECT register is 8 bits */
782         for (ap = 0; ap <= 255; ap++) {
783
784                 /* read the IDR register of the Access Port */
785                 uint32_t id_val = 0;
786                 dap_ap_select(dap, ap);
787
788                 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
789                 if (retval != ERROR_OK)
790                         return retval;
791
792                 retval = dap_run(dap);
793
794                 /* IDR bits:
795                  * 31-28 : Revision
796                  * 27-24 : JEDEC bank (0x4 for ARM)
797                  * 23-17 : JEDEC code (0x3B for ARM)
798                  * 16    : Mem-AP
799                  * 15-8  : Reserved
800                  *  7-0  : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
801                  */
802
803                 /* Reading register for a non-existant AP should not cause an error,
804                  * but just to be sure, try to continue searching if an error does happen.
805                  */
806                 if ((retval == ERROR_OK) &&                  /* Register read success */
807                         ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
808                         ((id_val & 0xFF) == type_to_find)) {     /* type matches*/
809
810                         LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
811                                                 (type_to_find == AP_TYPE_AHB_AP)  ? "AHB-AP"  :
812                                                 (type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
813                                                 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
814                                                 ap, id_val);
815
816                         *ap_num_out = ap;
817                         return ERROR_OK;
818                 }
819         }
820
821         LOG_DEBUG("No %s found",
822                                 (type_to_find == AP_TYPE_AHB_AP)  ? "AHB-AP"  :
823                                 (type_to_find == AP_TYPE_APB_AP)  ? "APB-AP"  :
824                                 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
825         return ERROR_FAIL;
826 }
827
828 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
829                         uint32_t *out_dbgbase, uint32_t *out_apid)
830 {
831         uint32_t ap_old;
832         int retval;
833         uint32_t dbgbase, apid;
834
835         /* AP address is in bits 31:24 of DP_SELECT */
836         if (ap >= 256)
837                 return ERROR_COMMAND_SYNTAX_ERROR;
838
839         ap_old = dap->ap_current;
840         dap_ap_select(dap, ap);
841
842         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
843         if (retval != ERROR_OK)
844                 return retval;
845         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
846         if (retval != ERROR_OK)
847                 return retval;
848         retval = dap_run(dap);
849         if (retval != ERROR_OK)
850                 return retval;
851
852         /* Excavate the device ID code */
853         struct jtag_tap *tap = dap->jtag_info->tap;
854         while (tap != NULL) {
855                 if (tap->hasidcode)
856                         break;
857                 tap = tap->next_tap;
858         }
859         if (tap == NULL || !tap->hasidcode)
860                 return ERROR_OK;
861
862         dap_ap_select(dap, ap_old);
863
864         /* The asignment happens only here to prevent modification of these
865          * values before they are certain. */
866         *out_dbgbase = dbgbase;
867         *out_apid = apid;
868
869         return ERROR_OK;
870 }
871
872 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
873                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
874 {
875         uint32_t ap_old;
876         uint32_t romentry, entry_offset = 0, component_base, devtype;
877         int retval = ERROR_FAIL;
878
879         if (ap >= 256)
880                 return ERROR_COMMAND_SYNTAX_ERROR;
881
882         ap_old = dap->ap_current;
883         dap_ap_select(dap, ap);
884
885         do {
886                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
887                                                 entry_offset, &romentry);
888                 if (retval != ERROR_OK)
889                         return retval;
890
891                 component_base = (dbgbase & 0xFFFFF000)
892                         + (romentry & 0xFFFFF000);
893
894                 if (romentry & 0x1) {
895                         retval = mem_ap_read_atomic_u32(dap,
896                                         (component_base & 0xfffff000) | 0xfcc,
897                                         &devtype);
898                         if (retval != ERROR_OK)
899                                 return retval;
900                         if ((devtype & 0xff) == type) {
901                                 *addr = component_base;
902                                 retval = ERROR_OK;
903                                 break;
904                         }
905                 }
906                 entry_offset += 4;
907         } while (romentry > 0);
908
909         dap_ap_select(dap, ap_old);
910
911         return retval;
912 }
913
914 static int dap_rom_display(struct command_context *cmd_ctx,
915                                 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
916 {
917         int retval;
918         uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
919         uint16_t entry_offset;
920         char tabs[7] = "";
921
922         if (depth > 16) {
923                 command_print(cmd_ctx, "\tTables too deep");
924                 return ERROR_FAIL;
925         }
926
927         if (depth)
928                 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
929
930         /* bit 16 of apid indicates a memory access port */
931         if (dbgbase & 0x02)
932                 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
933         else
934                 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
935
936         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
937         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
938         if (retval != ERROR_OK)
939                 return retval;
940         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
941         if (retval != ERROR_OK)
942                 return retval;
943         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
944         if (retval != ERROR_OK)
945                 return retval;
946         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
947         if (retval != ERROR_OK)
948                 return retval;
949         retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
950         if (retval != ERROR_OK)
951                 return retval;
952         retval = dap_run(dap);
953         if (retval != ERROR_OK)
954                 return retval;
955
956         if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
957                 command_print(cmd_ctx, "\t%sCID3 0x%02x"
958                                 ", CID2 0x%02x"
959                                 ", CID1 0x%02x"
960                                 ", CID0 0x%02x",
961                                 tabs,
962                                 (unsigned)cid3, (unsigned)cid2,
963                                 (unsigned)cid1, (unsigned)cid0);
964         if (memtype & 0x01)
965                 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
966         else
967                 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
968
969         /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
970         for (entry_offset = 0; ; entry_offset += 4) {
971                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
972                 if (retval != ERROR_OK)
973                         return retval;
974                 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
975                                 tabs, entry_offset, romentry);
976                 if (romentry & 0x01) {
977                         uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
978                         uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
979                         uint32_t component_base;
980                         unsigned part_num;
981                         char *type, *full;
982
983                         component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
984
985                         /* IDs are in last 4K section */
986                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
987                         if (retval != ERROR_OK) {
988                                 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
989                                               ", the corresponding core might be turned off", tabs, component_base);
990                                 continue;
991                         }
992                         c_pid0 &= 0xff;
993                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
994                         if (retval != ERROR_OK)
995                                 return retval;
996                         c_pid1 &= 0xff;
997                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
998                         if (retval != ERROR_OK)
999                                 return retval;
1000                         c_pid2 &= 0xff;
1001                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1002                         if (retval != ERROR_OK)
1003                                 return retval;
1004                         c_pid3 &= 0xff;
1005                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1006                         if (retval != ERROR_OK)
1007                                 return retval;
1008                         c_pid4 &= 0xff;
1009
1010                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1011                         if (retval != ERROR_OK)
1012                                 return retval;
1013                         c_cid0 &= 0xff;
1014                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1015                         if (retval != ERROR_OK)
1016                                 return retval;
1017                         c_cid1 &= 0xff;
1018                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1019                         if (retval != ERROR_OK)
1020                                 return retval;
1021                         c_cid2 &= 0xff;
1022                         retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1023                         if (retval != ERROR_OK)
1024                                 return retval;
1025                         c_cid3 &= 0xff;
1026
1027                         command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1028                                       "start address 0x%" PRIx32, component_base,
1029                                       /* component may take multiple 4K pages */
1030                                       (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1031                         command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s",
1032                                         (uint8_t)((c_cid1 >> 4) & 0xf),
1033                                         /* See ARM IHI 0029B Table 3-3 */
1034                                         class_description[(c_cid1 >> 4) & 0xf]);
1035
1036                         /* CoreSight component? */
1037                         if (((c_cid1 >> 4) & 0x0f) == 9) {
1038                                 uint32_t devtype;
1039                                 unsigned minor;
1040                                 char *major = "Reserved", *subtype = "Reserved";
1041
1042                                 retval = mem_ap_read_atomic_u32(dap,
1043                                                 (component_base & 0xfffff000) | 0xfcc,
1044                                                 &devtype);
1045                                 if (retval != ERROR_OK)
1046                                         return retval;
1047                                 minor = (devtype >> 4) & 0x0f;
1048                                 switch (devtype & 0x0f) {
1049                                 case 0:
1050                                         major = "Miscellaneous";
1051                                         switch (minor) {
1052                                         case 0:
1053                                                 subtype = "other";
1054                                                 break;
1055                                         case 4:
1056                                                 subtype = "Validation component";
1057                                                 break;
1058                                         }
1059                                         break;
1060                                 case 1:
1061                                         major = "Trace Sink";
1062                                         switch (minor) {
1063                                         case 0:
1064                                                 subtype = "other";
1065                                                 break;
1066                                         case 1:
1067                                                 subtype = "Port";
1068                                                 break;
1069                                         case 2:
1070                                                 subtype = "Buffer";
1071                                                 break;
1072                                         case 3:
1073                                                 subtype = "Router";
1074                                                 break;
1075                                         }
1076                                         break;
1077                                 case 2:
1078                                         major = "Trace Link";
1079                                         switch (minor) {
1080                                         case 0:
1081                                                 subtype = "other";
1082                                                 break;
1083                                         case 1:
1084                                                 subtype = "Funnel, router";
1085                                                 break;
1086                                         case 2:
1087                                                 subtype = "Filter";
1088                                                 break;
1089                                         case 3:
1090                                                 subtype = "FIFO, buffer";
1091                                                 break;
1092                                         }
1093                                         break;
1094                                 case 3:
1095                                         major = "Trace Source";
1096                                         switch (minor) {
1097                                         case 0:
1098                                                 subtype = "other";
1099                                                 break;
1100                                         case 1:
1101                                                 subtype = "Processor";
1102                                                 break;
1103                                         case 2:
1104                                                 subtype = "DSP";
1105                                                 break;
1106                                         case 3:
1107                                                 subtype = "Engine/Coprocessor";
1108                                                 break;
1109                                         case 4:
1110                                                 subtype = "Bus";
1111                                                 break;
1112                                         case 6:
1113                                                 subtype = "Software";
1114                                                 break;
1115                                         }
1116                                         break;
1117                                 case 4:
1118                                         major = "Debug Control";
1119                                         switch (minor) {
1120                                         case 0:
1121                                                 subtype = "other";
1122                                                 break;
1123                                         case 1:
1124                                                 subtype = "Trigger Matrix";
1125                                                 break;
1126                                         case 2:
1127                                                 subtype = "Debug Auth";
1128                                                 break;
1129                                         case 3:
1130                                                 subtype = "Power Requestor";
1131                                                 break;
1132                                         }
1133                                         break;
1134                                 case 5:
1135                                         major = "Debug Logic";
1136                                         switch (minor) {
1137                                         case 0:
1138                                                 subtype = "other";
1139                                                 break;
1140                                         case 1:
1141                                                 subtype = "Processor";
1142                                                 break;
1143                                         case 2:
1144                                                 subtype = "DSP";
1145                                                 break;
1146                                         case 3:
1147                                                 subtype = "Engine/Coprocessor";
1148                                                 break;
1149                                         case 4:
1150                                                 subtype = "Bus";
1151                                                 break;
1152                                         case 5:
1153                                                 subtype = "Memory";
1154                                                 break;
1155                                         }
1156                                         break;
1157                                 case 6:
1158                                         major = "Perfomance Monitor";
1159                                         switch (minor) {
1160                                         case 0:
1161                                                 subtype = "other";
1162                                                 break;
1163                                         case 1:
1164                                                 subtype = "Processor";
1165                                                 break;
1166                                         case 2:
1167                                                 subtype = "DSP";
1168                                                 break;
1169                                         case 3:
1170                                                 subtype = "Engine/Coprocessor";
1171                                                 break;
1172                                         case 4:
1173                                                 subtype = "Bus";
1174                                                 break;
1175                                         case 5:
1176                                                 subtype = "Memory";
1177                                                 break;
1178                                         }
1179                                         break;
1180                                 }
1181                                 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1182                                                 (uint8_t)(devtype & 0xff),
1183                                                 major, subtype);
1184                                 /* REVISIT also show 0xfc8 DevId */
1185                         }
1186
1187                         if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1188                                 command_print(cmd_ctx,
1189                                                 "\t\tCID3 0%02x"
1190                                                 ", CID2 0%02x"
1191                                                 ", CID1 0%02x"
1192                                                 ", CID0 0%02x",
1193                                                 (int)c_cid3,
1194                                                 (int)c_cid2,
1195                                                 (int)c_cid1,
1196                                                 (int)c_cid0);
1197                         command_print(cmd_ctx,
1198                                 "\t\tPeripheral ID[4..0] = hex "
1199                                 "%02x %02x %02x %02x %02x",
1200                                 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1201                                 (int)c_pid1, (int)c_pid0);
1202
1203                         /* Part number interpretations are from Cortex
1204                          * core specs, the CoreSight components TRM
1205                          * (ARM DDI 0314H), CoreSight System Design
1206                          * Guide (ARM DGI 0012D) and ETM specs; also
1207                          * from chip observation (e.g. TI SDTI).
1208                          */
1209                         part_num = (c_pid0 & 0xff);
1210                         part_num |= (c_pid1 & 0x0f) << 8;
1211                         switch (part_num) {
1212                         case 0x000:
1213                                 type = "Cortex-M3 NVIC";
1214                                 full = "(Interrupt Controller)";
1215                                 break;
1216                         case 0x001:
1217                                 type = "Cortex-M3 ITM";
1218                                 full = "(Instrumentation Trace Module)";
1219                                 break;
1220                         case 0x002:
1221                                 type = "Cortex-M3 DWT";
1222                                 full = "(Data Watchpoint and Trace)";
1223                                 break;
1224                         case 0x003:
1225                                 type = "Cortex-M3 FBP";
1226                                 full = "(Flash Patch and Breakpoint)";
1227                                 break;
1228                         case 0x00c:
1229                                 type = "Cortex-M4 SCS";
1230                                 full = "(System Control Space)";
1231                                 break;
1232                         case 0x00d:
1233                                 type = "CoreSight ETM11";
1234                                 full = "(Embedded Trace)";
1235                                 break;
1236                         /* case 0x113: what? */
1237                         case 0x120:             /* from OMAP3 memmap */
1238                                 type = "TI SDTI";
1239                                 full = "(System Debug Trace Interface)";
1240                                 break;
1241                         case 0x343:             /* from OMAP3 memmap */
1242                                 type = "TI DAPCTL";
1243                                 full = "";
1244                                 break;
1245                         case 0x906:
1246                                 type = "Coresight CTI";
1247                                 full = "(Cross Trigger)";
1248                                 break;
1249                         case 0x907:
1250                                 type = "Coresight ETB";
1251                                 full = "(Trace Buffer)";
1252                                 break;
1253                         case 0x908:
1254                                 type = "Coresight CSTF";
1255                                 full = "(Trace Funnel)";
1256                                 break;
1257                         case 0x910:
1258                                 type = "CoreSight ETM9";
1259                                 full = "(Embedded Trace)";
1260                                 break;
1261                         case 0x912:
1262                                 type = "Coresight TPIU";
1263                                 full = "(Trace Port Interface Unit)";
1264                                 break;
1265                         case 0x913:
1266                                 type = "Coresight ITM";
1267                                 full = "(Instrumentation Trace Macrocell)";
1268                                 break;
1269                         case 0x917:
1270                                 type = "Coresight HTM";
1271                                 full = "(AHB Trace Macrocell)";
1272                                 break;
1273                         case 0x920:
1274                                 type = "CoreSight ETM11";
1275                                 full = "(Embedded Trace)";
1276                                 break;
1277                         case 0x921:
1278                                 type = "Cortex-A8 ETM";
1279                                 full = "(Embedded Trace)";
1280                                 break;
1281                         case 0x922:
1282                                 type = "Cortex-A8 CTI";
1283                                 full = "(Cross Trigger)";
1284                                 break;
1285                         case 0x923:
1286                                 type = "Cortex-M3 TPIU";
1287                                 full = "(Trace Port Interface Unit)";
1288                                 break;
1289                         case 0x924:
1290                                 type = "Cortex-M3 ETM";
1291                                 full = "(Embedded Trace)";
1292                                 break;
1293                         case 0x925:
1294                                 type = "Cortex-M4 ETM";
1295                                 full = "(Embedded Trace)";
1296                                 break;
1297                         case 0x930:
1298                                 type = "Cortex-R4 ETM";
1299                                 full = "(Embedded Trace)";
1300                                 break;
1301                         case 0x950:
1302                                 type = "CoreSight Component";
1303                                 full = "(unidentified Cortex-A9 component)";
1304                                 break;
1305                         case 0x962:
1306                                 type = "CoreSight STM";
1307                                 full = "(System Trace Macrocell)";
1308                                 break;
1309                         case 0x9a0:
1310                                 type = "CoreSight PMU";
1311                                 full = "(Performance Monitoring Unit)";
1312                                 break;
1313                         case 0x9a1:
1314                                 type = "Cortex-M4 TPUI";
1315                                 full = "(Trace Port Interface Unit)";
1316                                 break;
1317                         case 0xc08:
1318                                 type = "Cortex-A8 Debug";
1319                                 full = "(Debug Unit)";
1320                                 break;
1321                         case 0xc09:
1322                                 type = "Cortex-A9 Debug";
1323                                 full = "(Debug Unit)";
1324                                 break;
1325                         default:
1326                                 type = "-*- unrecognized -*-";
1327                                 full = "";
1328                                 break;
1329                         }
1330                         command_print(cmd_ctx, "\t\tPart is %s %s",
1331                                         type, full);
1332
1333                         /* ROM Table? */
1334                         if (((c_cid1 >> 4) & 0x0f) == 1) {
1335                                 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1336                                 if (retval != ERROR_OK)
1337                                         return retval;
1338                         }
1339                 } else {
1340                         if (romentry)
1341                                 command_print(cmd_ctx, "\t\tComponent not present");
1342                         else
1343                                 break;
1344                 }
1345         }
1346         command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1347         return ERROR_OK;
1348 }
1349
1350 static int dap_info_command(struct command_context *cmd_ctx,
1351                 struct adiv5_dap *dap, int ap)
1352 {
1353         int retval;
1354         uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1355         int romtable_present = 0;
1356         uint8_t mem_ap;
1357         uint32_t ap_old;
1358
1359         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1360         if (retval != ERROR_OK)
1361                 return retval;
1362
1363         ap_old = dap->ap_current;
1364         dap_ap_select(dap, ap);
1365
1366         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1367         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1368         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1369         if (apid) {
1370                 switch (apid&0x0F) {
1371                         case 0:
1372                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1373                                 break;
1374                         case 1:
1375                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1376                                 break;
1377                         case 2:
1378                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1379                                 break;
1380                         default:
1381                                 command_print(cmd_ctx, "\tUnknown AP type");
1382                                 break;
1383                 }
1384
1385                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1386                  * not a ROM table ... or have no such components at all.
1387                  */
1388                 if (mem_ap)
1389                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1390         } else
1391                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1392
1393         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1394         if (romtable_present) {
1395                 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1396         } else
1397                 command_print(cmd_ctx, "\tNo ROM table present");
1398         dap_ap_select(dap, ap_old);
1399
1400         return ERROR_OK;
1401 }
1402
1403 COMMAND_HANDLER(handle_dap_info_command)
1404 {
1405         struct target *target = get_current_target(CMD_CTX);
1406         struct arm *arm = target_to_arm(target);
1407         struct adiv5_dap *dap = arm->dap;
1408         uint32_t apsel;
1409
1410         switch (CMD_ARGC) {
1411         case 0:
1412                 apsel = dap->apsel;
1413                 break;
1414         case 1:
1415                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1416                 break;
1417         default:
1418                 return ERROR_COMMAND_SYNTAX_ERROR;
1419         }
1420
1421         return dap_info_command(CMD_CTX, dap, apsel);
1422 }
1423
1424 COMMAND_HANDLER(dap_baseaddr_command)
1425 {
1426         struct target *target = get_current_target(CMD_CTX);
1427         struct arm *arm = target_to_arm(target);
1428         struct adiv5_dap *dap = arm->dap;
1429
1430         uint32_t apsel, baseaddr;
1431         int retval;
1432
1433         switch (CMD_ARGC) {
1434         case 0:
1435                 apsel = dap->apsel;
1436                 break;
1437         case 1:
1438                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1439                 /* AP address is in bits 31:24 of DP_SELECT */
1440                 if (apsel >= 256)
1441                         return ERROR_COMMAND_SYNTAX_ERROR;
1442                 break;
1443         default:
1444                 return ERROR_COMMAND_SYNTAX_ERROR;
1445         }
1446
1447         dap_ap_select(dap, apsel);
1448
1449         /* NOTE:  assumes we're talking to a MEM-AP, which
1450          * has a base address.  There are other kinds of AP,
1451          * though they're not common for now.  This should
1452          * use the ID register to verify it's a MEM-AP.
1453          */
1454         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1455         if (retval != ERROR_OK)
1456                 return retval;
1457         retval = dap_run(dap);
1458         if (retval != ERROR_OK)
1459                 return retval;
1460
1461         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1462
1463         return retval;
1464 }
1465
1466 COMMAND_HANDLER(dap_memaccess_command)
1467 {
1468         struct target *target = get_current_target(CMD_CTX);
1469         struct arm *arm = target_to_arm(target);
1470         struct adiv5_dap *dap = arm->dap;
1471
1472         uint32_t memaccess_tck;
1473
1474         switch (CMD_ARGC) {
1475         case 0:
1476                 memaccess_tck = dap->memaccess_tck;
1477                 break;
1478         case 1:
1479                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1480                 break;
1481         default:
1482                 return ERROR_COMMAND_SYNTAX_ERROR;
1483         }
1484         dap->memaccess_tck = memaccess_tck;
1485
1486         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1487                         dap->memaccess_tck);
1488
1489         return ERROR_OK;
1490 }
1491
1492 COMMAND_HANDLER(dap_apsel_command)
1493 {
1494         struct target *target = get_current_target(CMD_CTX);
1495         struct arm *arm = target_to_arm(target);
1496         struct adiv5_dap *dap = arm->dap;
1497
1498         uint32_t apsel, apid;
1499         int retval;
1500
1501         switch (CMD_ARGC) {
1502         case 0:
1503                 apsel = 0;
1504                 break;
1505         case 1:
1506                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1507                 /* AP address is in bits 31:24 of DP_SELECT */
1508                 if (apsel >= 256)
1509                         return ERROR_COMMAND_SYNTAX_ERROR;
1510                 break;
1511         default:
1512                 return ERROR_COMMAND_SYNTAX_ERROR;
1513         }
1514
1515         dap->apsel = apsel;
1516         dap_ap_select(dap, apsel);
1517
1518         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1519         if (retval != ERROR_OK)
1520                 return retval;
1521         retval = dap_run(dap);
1522         if (retval != ERROR_OK)
1523                 return retval;
1524
1525         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1526                         apsel, apid);
1527
1528         return retval;
1529 }
1530
1531 COMMAND_HANDLER(dap_apcsw_command)
1532 {
1533         struct target *target = get_current_target(CMD_CTX);
1534         struct arm *arm = target_to_arm(target);
1535         struct adiv5_dap *dap = arm->dap;
1536
1537         uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1538
1539         switch (CMD_ARGC) {
1540         case 0:
1541                 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1542                         (dap->apsel), apcsw);
1543                 break;
1544         case 1:
1545                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1546                 /* AP address is in bits 31:24 of DP_SELECT */
1547                 if (sprot > 1)
1548                         return ERROR_COMMAND_SYNTAX_ERROR;
1549                 if (sprot)
1550                         apcsw |= CSW_SPROT;
1551                 else
1552                         apcsw &= ~CSW_SPROT;
1553                 break;
1554         default:
1555                 return ERROR_COMMAND_SYNTAX_ERROR;
1556         }
1557         dap->apcsw[dap->apsel] = apcsw;
1558
1559         return 0;
1560 }
1561
1562
1563
1564 COMMAND_HANDLER(dap_apid_command)
1565 {
1566         struct target *target = get_current_target(CMD_CTX);
1567         struct arm *arm = target_to_arm(target);
1568         struct adiv5_dap *dap = arm->dap;
1569
1570         uint32_t apsel, apid;
1571         int retval;
1572
1573         switch (CMD_ARGC) {
1574         case 0:
1575                 apsel = dap->apsel;
1576                 break;
1577         case 1:
1578                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1579                 /* AP address is in bits 31:24 of DP_SELECT */
1580                 if (apsel >= 256)
1581                         return ERROR_COMMAND_SYNTAX_ERROR;
1582                 break;
1583         default:
1584                 return ERROR_COMMAND_SYNTAX_ERROR;
1585         }
1586
1587         dap_ap_select(dap, apsel);
1588
1589         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1590         if (retval != ERROR_OK)
1591                 return retval;
1592         retval = dap_run(dap);
1593         if (retval != ERROR_OK)
1594                 return retval;
1595
1596         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1597
1598         return retval;
1599 }
1600
1601 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1602 {
1603         struct target *target = get_current_target(CMD_CTX);
1604         struct arm *arm = target_to_arm(target);
1605         struct adiv5_dap *dap = arm->dap;
1606
1607         uint32_t enable = dap->ti_be_32_quirks;
1608
1609         switch (CMD_ARGC) {
1610         case 0:
1611                 break;
1612         case 1:
1613                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1614                 if (enable > 1)
1615                         return ERROR_COMMAND_SYNTAX_ERROR;
1616                 break;
1617         default:
1618                 return ERROR_COMMAND_SYNTAX_ERROR;
1619         }
1620         dap->ti_be_32_quirks = enable;
1621         command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1622                 enable ? "enabled" : "disabled");
1623
1624         return 0;
1625 }
1626
1627 static const struct command_registration dap_commands[] = {
1628         {
1629                 .name = "info",
1630                 .handler = handle_dap_info_command,
1631                 .mode = COMMAND_EXEC,
1632                 .help = "display ROM table for MEM-AP "
1633                         "(default currently selected AP)",
1634                 .usage = "[ap_num]",
1635         },
1636         {
1637                 .name = "apsel",
1638                 .handler = dap_apsel_command,
1639                 .mode = COMMAND_EXEC,
1640                 .help = "Set the currently selected AP (default 0) "
1641                         "and display the result",
1642                 .usage = "[ap_num]",
1643         },
1644         {
1645                 .name = "apcsw",
1646                 .handler = dap_apcsw_command,
1647                 .mode = COMMAND_EXEC,
1648                 .help = "Set csw access bit ",
1649                 .usage = "[sprot]",
1650         },
1651
1652         {
1653                 .name = "apid",
1654                 .handler = dap_apid_command,
1655                 .mode = COMMAND_EXEC,
1656                 .help = "return ID register from AP "
1657                         "(default currently selected AP)",
1658                 .usage = "[ap_num]",
1659         },
1660         {
1661                 .name = "baseaddr",
1662                 .handler = dap_baseaddr_command,
1663                 .mode = COMMAND_EXEC,
1664                 .help = "return debug base address from MEM-AP "
1665                         "(default currently selected AP)",
1666                 .usage = "[ap_num]",
1667         },
1668         {
1669                 .name = "memaccess",
1670                 .handler = dap_memaccess_command,
1671                 .mode = COMMAND_EXEC,
1672                 .help = "set/get number of extra tck for MEM-AP memory "
1673                         "bus access [0-255]",
1674                 .usage = "[cycles]",
1675         },
1676         {
1677                 .name = "ti_be_32_quirks",
1678                 .handler = dap_ti_be_32_quirks_command,
1679                 .mode = COMMAND_CONFIG,
1680                 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1681                 .usage = "[enable]",
1682         },
1683         COMMAND_REGISTRATION_DONE
1684 };
1685
1686 const struct command_registration dap_command_handlers[] = {
1687         {
1688                 .name = "dap",
1689                 .mode = COMMAND_EXEC,
1690                 .help = "DAP command group",
1691                 .usage = "",
1692                 .chain = dap_commands,
1693         },
1694         COMMAND_REGISTRATION_DONE
1695 };