]> git.sur5r.net Git - openocd/blob - src/target/armv8.c
aarch64: fix debug entry from EL0
[openocd] / src / target / armv8.c
1 /***************************************************************************
2  *   Copyright (C) 2015 by David Ung                                       *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  ***************************************************************************/
18
19 #ifdef HAVE_CONFIG_H
20 #include "config.h"
21 #endif
22
23 #include <helper/replacements.h>
24
25 #include "armv8.h"
26 #include "arm_disassembler.h"
27
28 #include "register.h"
29 #include <helper/binarybuffer.h>
30 #include <helper/command.h>
31
32 #include <stdlib.h>
33 #include <string.h>
34 #include <unistd.h>
35
36 #include "armv8_opcodes.h"
37 #include "target.h"
38 #include "target_type.h"
39
40 static const char * const armv8_state_strings[] = {
41         "AArch32", "Thumb", "Jazelle", "ThumbEE", "AArch64",
42 };
43
44 static const struct {
45         const char *name;
46         unsigned psr;
47 } armv8_mode_data[] = {
48         {
49                 .name = "USR",
50                 .psr = ARM_MODE_USR,
51         },
52         {
53                 .name = "FIQ",
54                 .psr = ARM_MODE_FIQ,
55         },
56         {
57                 .name = "IRQ",
58                 .psr = ARM_MODE_IRQ,
59         },
60         {
61                 .name = "SVC",
62                 .psr = ARM_MODE_SVC,
63         },
64         {
65                 .name = "MON",
66                 .psr = ARM_MODE_MON,
67         },
68         {
69                 .name = "ABT",
70                 .psr = ARM_MODE_ABT,
71         },
72         {
73                 .name = "EL0T",
74                 .psr = ARMV8_64_EL0T,
75         },
76         {
77                 .name = "EL1T",
78                 .psr = ARMV8_64_EL1T,
79         },
80         {
81                 .name = "EL1H",
82                 .psr = ARMV8_64_EL1H,
83         },
84         {
85                 .name = "EL2T",
86                 .psr = ARMV8_64_EL2T,
87         },
88         {
89                 .name = "EL2H",
90                 .psr = ARMV8_64_EL2H,
91         },
92         {
93                 .name = "EL3T",
94                 .psr = ARMV8_64_EL3T,
95         },
96         {
97                 .name = "EL3H",
98                 .psr = ARMV8_64_EL3H,
99         },
100 };
101
102 /** Map PSR mode bits to the name of an ARM processor operating mode. */
103 const char *armv8_mode_name(unsigned psr_mode)
104 {
105         for (unsigned i = 0; i < ARRAY_SIZE(armv8_mode_data); i++) {
106                 if (armv8_mode_data[i].psr == psr_mode)
107                         return armv8_mode_data[i].name;
108         }
109         LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
110         return "UNRECOGNIZED";
111 }
112
113 static int armv8_read_reg(struct armv8_common *armv8, int regnum, uint64_t *regval)
114 {
115         struct arm_dpm *dpm = &armv8->dpm;
116         int retval;
117         uint32_t value;
118         uint64_t value_64;
119
120         switch (regnum) {
121         case 0 ... 30:
122                 retval = dpm->instr_read_data_dcc_64(dpm,
123                                 ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, regnum), &value_64);
124                 break;
125         case ARMV8_SP:
126                 retval = dpm->instr_read_data_r0_64(dpm,
127                                 ARMV8_MOVFSP_64(0), &value_64);
128                 break;
129         case ARMV8_PC:
130                 retval = dpm->instr_read_data_r0_64(dpm,
131                                 ARMV8_MRS_DLR(0), &value_64);
132                 break;
133         case ARMV8_xPSR:
134                 retval = dpm->instr_read_data_r0(dpm,
135                                 ARMV8_MRS_DSPSR(0), &value);
136                 value_64 = value;
137                 break;
138         case ARMV8_FPSR:
139                 retval = dpm->instr_read_data_r0(dpm,
140                                 ARMV8_MRS_FPSR(0), &value);
141                 value_64 = value;
142                 break;
143         case ARMV8_FPCR:
144                 retval = dpm->instr_read_data_r0(dpm,
145                                 ARMV8_MRS_FPCR(0), &value);
146                 value_64 = value;
147                 break;
148         case ARMV8_ELR_EL1:
149                 retval = dpm->instr_read_data_r0_64(dpm,
150                                 ARMV8_MRS(SYSTEM_ELR_EL1, 0), &value_64);
151                 break;
152         case ARMV8_ELR_EL2:
153                 retval = dpm->instr_read_data_r0_64(dpm,
154                                 ARMV8_MRS(SYSTEM_ELR_EL2, 0), &value_64);
155                 break;
156         case ARMV8_ELR_EL3:
157                 retval = dpm->instr_read_data_r0_64(dpm,
158                                 ARMV8_MRS(SYSTEM_ELR_EL3, 0), &value_64);
159                 break;
160         case ARMV8_ESR_EL1:
161                 retval = dpm->instr_read_data_r0(dpm,
162                                 ARMV8_MRS(SYSTEM_ESR_EL1, 0), &value);
163                 value_64 = value;
164                 break;
165         case ARMV8_ESR_EL2:
166                 retval = dpm->instr_read_data_r0(dpm,
167                                 ARMV8_MRS(SYSTEM_ESR_EL2, 0), &value);
168                 value_64 = value;
169                 break;
170         case ARMV8_ESR_EL3:
171                 retval = dpm->instr_read_data_r0(dpm,
172                                 ARMV8_MRS(SYSTEM_ESR_EL3, 0), &value);
173                 value_64 = value;
174                 break;
175         case ARMV8_SPSR_EL1:
176                 retval = dpm->instr_read_data_r0(dpm,
177                                 ARMV8_MRS(SYSTEM_SPSR_EL1, 0), &value);
178                 value_64 = value;
179                 break;
180         case ARMV8_SPSR_EL2:
181                 retval = dpm->instr_read_data_r0(dpm,
182                                 ARMV8_MRS(SYSTEM_SPSR_EL2, 0), &value);
183                 value_64 = value;
184                 break;
185         case ARMV8_SPSR_EL3:
186                 retval = dpm->instr_read_data_r0(dpm,
187                                 ARMV8_MRS(SYSTEM_SPSR_EL3, 0), &value);
188                 value_64 = value;
189                 break;
190         default:
191                 retval = ERROR_FAIL;
192                 break;
193         }
194
195         if (retval == ERROR_OK && regval != NULL)
196                 *regval = value_64;
197         else
198                 retval = ERROR_FAIL;
199
200         return retval;
201 }
202
203 static int armv8_read_reg_simdfp_aarch64(struct armv8_common *armv8, int regnum, uint64_t *lvalue, uint64_t *hvalue)
204 {
205         int retval = ERROR_FAIL;
206         struct arm_dpm *dpm = &armv8->dpm;
207
208         switch (regnum) {
209         case ARMV8_V0 ... ARMV8_V31:
210                 retval = dpm->instr_read_data_r0_64(dpm,
211                                 ARMV8_MOV_GPR_VFP(0, (regnum - ARMV8_V0), 1), hvalue);
212                 if (retval != ERROR_OK)
213                         return retval;
214                 retval = dpm->instr_read_data_r0_64(dpm,
215                                 ARMV8_MOV_GPR_VFP(0, (regnum - ARMV8_V0), 0), lvalue);
216                 break;
217
218         default:
219                 retval = ERROR_FAIL;
220                 break;
221         }
222
223         return retval;
224 }
225
226 static int armv8_write_reg(struct armv8_common *armv8, int regnum, uint64_t value_64)
227 {
228         struct arm_dpm *dpm = &armv8->dpm;
229         int retval;
230         uint32_t value;
231
232         switch (regnum) {
233         case 0 ... 30:
234                 retval = dpm->instr_write_data_dcc_64(dpm,
235                         ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, regnum),
236                         value_64);
237                 break;
238         case ARMV8_SP:
239                 retval = dpm->instr_write_data_r0_64(dpm,
240                         ARMV8_MOVTSP_64(0),
241                         value_64);
242                 break;
243         case ARMV8_PC:
244                 retval = dpm->instr_write_data_r0_64(dpm,
245                         ARMV8_MSR_DLR(0),
246                         value_64);
247                 break;
248         case ARMV8_xPSR:
249                 value = value_64;
250                 retval = dpm->instr_write_data_r0(dpm,
251                         ARMV8_MSR_DSPSR(0),
252                         value);
253                 break;
254         case ARMV8_FPSR:
255                 value = value_64;
256                 retval = dpm->instr_write_data_r0(dpm,
257                         ARMV8_MSR_FPSR(0),
258                         value);
259                 break;
260         case ARMV8_FPCR:
261                 value = value_64;
262                 retval = dpm->instr_write_data_r0(dpm,
263                         ARMV8_MSR_FPCR(0),
264                         value);
265                 break;
266         /* registers clobbered by taking exception in debug state */
267         case ARMV8_ELR_EL1:
268                 retval = dpm->instr_write_data_r0_64(dpm,
269                                 ARMV8_MSR_GP(SYSTEM_ELR_EL1, 0), value_64);
270                 break;
271         case ARMV8_ELR_EL2:
272                 retval = dpm->instr_write_data_r0_64(dpm,
273                                 ARMV8_MSR_GP(SYSTEM_ELR_EL2, 0), value_64);
274                 break;
275         case ARMV8_ELR_EL3:
276                 retval = dpm->instr_write_data_r0_64(dpm,
277                                 ARMV8_MSR_GP(SYSTEM_ELR_EL3, 0), value_64);
278                 break;
279         case ARMV8_ESR_EL1:
280                 value = value_64;
281                 retval = dpm->instr_write_data_r0(dpm,
282                                 ARMV8_MSR_GP(SYSTEM_ESR_EL1, 0), value);
283                 break;
284         case ARMV8_ESR_EL2:
285                 value = value_64;
286                 retval = dpm->instr_write_data_r0(dpm,
287                                 ARMV8_MSR_GP(SYSTEM_ESR_EL2, 0), value);
288                 break;
289         case ARMV8_ESR_EL3:
290                 value = value_64;
291                 retval = dpm->instr_write_data_r0(dpm,
292                                 ARMV8_MSR_GP(SYSTEM_ESR_EL3, 0), value);
293                 break;
294         case ARMV8_SPSR_EL1:
295                 value = value_64;
296                 retval = dpm->instr_write_data_r0(dpm,
297                                 ARMV8_MSR_GP(SYSTEM_SPSR_EL1, 0), value);
298                 break;
299         case ARMV8_SPSR_EL2:
300                 value = value_64;
301                 retval = dpm->instr_write_data_r0(dpm,
302                                 ARMV8_MSR_GP(SYSTEM_SPSR_EL2, 0), value);
303                 break;
304         case ARMV8_SPSR_EL3:
305                 value = value_64;
306                 retval = dpm->instr_write_data_r0(dpm,
307                                 ARMV8_MSR_GP(SYSTEM_SPSR_EL3, 0), value);
308                 break;
309         default:
310                 retval = ERROR_FAIL;
311                 break;
312         }
313
314         return retval;
315 }
316
317 static int armv8_write_reg_simdfp_aarch64(struct armv8_common *armv8, int regnum, uint64_t lvalue, uint64_t hvalue)
318 {
319         int retval = ERROR_FAIL;
320         struct arm_dpm *dpm = &armv8->dpm;
321
322         switch (regnum) {
323         case ARMV8_V0 ... ARMV8_V31:
324                 retval = dpm->instr_write_data_r0_64(dpm,
325                                 ARMV8_MOV_VFP_GPR((regnum - ARMV8_V0), 0, 1), hvalue);
326                 if (retval != ERROR_OK)
327                         return retval;
328                 retval = dpm->instr_write_data_r0_64(dpm,
329                                 ARMV8_MOV_VFP_GPR((regnum - ARMV8_V0), 0, 0), lvalue);
330                 break;
331
332         default:
333                 retval = ERROR_FAIL;
334                 break;
335         }
336
337         return retval;
338 }
339
340 static int armv8_read_reg32(struct armv8_common *armv8, int regnum, uint64_t *regval)
341 {
342         struct arm_dpm *dpm = &armv8->dpm;
343         uint32_t value = 0;
344         int retval;
345
346         switch (regnum) {
347         case ARMV8_R0 ... ARMV8_R14:
348                 /* return via DCC:  "MCR p14, 0, Rnum, c0, c5, 0" */
349                 retval = dpm->instr_read_data_dcc(dpm,
350                         ARMV4_5_MCR(14, 0, regnum, 0, 5, 0),
351                         &value);
352                 break;
353         case ARMV8_SP:
354                 retval = dpm->instr_read_data_dcc(dpm,
355                         ARMV4_5_MCR(14, 0, 13, 0, 5, 0),
356                         &value);
357                 break;
358         case ARMV8_PC:
359                 retval = dpm->instr_read_data_r0(dpm,
360                         ARMV8_MRC_DLR(0),
361                         &value);
362                 break;
363         case ARMV8_xPSR:
364                 retval = dpm->instr_read_data_r0(dpm,
365                         ARMV8_MRC_DSPSR(0),
366                         &value);
367                 break;
368         case ARMV8_ELR_EL1: /* mapped to LR_svc */
369                 retval = dpm->instr_read_data_dcc(dpm,
370                                 ARMV4_5_MCR(14, 0, 14, 0, 5, 0),
371                                 &value);
372                 break;
373         case ARMV8_ELR_EL2: /* mapped to ELR_hyp */
374                 retval = dpm->instr_read_data_r0(dpm,
375                                 ARMV8_MRS_T1(0, 14, 0, 1),
376                                 &value);
377                 break;
378         case ARMV8_ELR_EL3: /* mapped to LR_mon */
379                 retval = dpm->instr_read_data_dcc(dpm,
380                                 ARMV4_5_MCR(14, 0, 14, 0, 5, 0),
381                                 &value);
382                 break;
383         case ARMV8_ESR_EL1: /* mapped to DFSR */
384                 retval = dpm->instr_read_data_r0(dpm,
385                                 ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
386                                 &value);
387                 break;
388         case ARMV8_ESR_EL2: /* mapped to HSR */
389                 retval = dpm->instr_read_data_r0(dpm,
390                                 ARMV4_5_MRC(15, 4, 0, 5, 2, 0),
391                                 &value);
392                 break;
393         case ARMV8_ESR_EL3: /* FIXME: no equivalent in aarch32? */
394                 retval = ERROR_FAIL;
395                 break;
396         case ARMV8_SPSR_EL1: /* mapped to SPSR_svc */
397                 retval = dpm->instr_read_data_r0(dpm,
398                                 ARMV8_MRS_xPSR_T1(1, 0),
399                                 &value);
400                 break;
401         case ARMV8_SPSR_EL2: /* mapped to SPSR_hyp */
402                 retval = dpm->instr_read_data_r0(dpm,
403                                 ARMV8_MRS_xPSR_T1(1, 0),
404                                 &value);
405                 break;
406         case ARMV8_SPSR_EL3: /* mapped to SPSR_mon */
407                 retval = dpm->instr_read_data_r0(dpm,
408                                 ARMV8_MRS_xPSR_T1(1, 0),
409                                 &value);
410                 break;
411         case ARMV8_FPSR:
412                 /* "VMRS r0, FPSCR"; then return via DCC */
413                 retval = dpm->instr_read_data_r0(dpm,
414                         ARMV4_5_VMRS(0), &value);
415                 break;
416         default:
417                 retval = ERROR_FAIL;
418                 break;
419         }
420
421         if (retval == ERROR_OK && regval != NULL)
422                 *regval = value;
423
424         return retval;
425 }
426
427 static int armv8_read_reg_simdfp_aarch32(struct armv8_common *armv8, int regnum, uint64_t *lvalue, uint64_t *hvalue)
428 {
429         int retval = ERROR_FAIL;
430         struct arm_dpm *dpm = &armv8->dpm;
431         struct reg *reg_r1 = dpm->arm->core_cache->reg_list + ARMV8_R1;
432         uint32_t value_r0 = 0, value_r1 = 0;
433         unsigned num = (regnum - ARMV8_V0) << 1;
434
435         switch (regnum) {
436         case ARMV8_V0 ... ARMV8_V15:
437                 /* we are going to write R1, mark it dirty */
438                 reg_r1->dirty = true;
439                 /* move from double word register to r0:r1: "vmov r0, r1, vm"
440                  * then read r0 via dcc
441                  */
442                 retval = dpm->instr_read_data_r0(dpm,
443                                 ARMV4_5_VMOV(1, 1, 0, (num >> 4), (num & 0xf)),
444                                 &value_r0);
445                 /* read r1 via dcc */
446                 retval = dpm->instr_read_data_dcc(dpm,
447                                 ARMV4_5_MCR(14, 0, 1, 0, 5, 0),
448                                 &value_r1);
449                 if (retval == ERROR_OK) {
450                         *lvalue = value_r1;
451                         *lvalue = ((*lvalue) << 32) | value_r0;
452                 } else
453                         return retval;
454
455                 num++;
456                 /* repeat above steps for high 64 bits of V register */
457                 retval = dpm->instr_read_data_r0(dpm,
458                                 ARMV4_5_VMOV(1, 1, 0, (num >> 4), (num & 0xf)),
459                                 &value_r0);
460                 retval = dpm->instr_read_data_dcc(dpm,
461                                 ARMV4_5_MCR(14, 0, 1, 0, 5, 0),
462                                 &value_r1);
463                 if (retval == ERROR_OK) {
464                         *hvalue = value_r1;
465                         *hvalue = ((*hvalue) << 32) | value_r0;
466                 } else
467                         return retval;
468                 break;
469         default:
470                 retval = ERROR_FAIL;
471                 break;
472         }
473
474         return retval;
475 }
476
477 static int armv8_write_reg32(struct armv8_common *armv8, int regnum, uint64_t value)
478 {
479         struct arm_dpm *dpm = &armv8->dpm;
480         int retval;
481
482         switch (regnum) {
483         case ARMV8_R0 ... ARMV8_R14:
484                 /* load register from DCC:  "MRC p14, 0, Rnum, c0, c5, 0" */
485                 retval = dpm->instr_write_data_dcc(dpm,
486                                 ARMV4_5_MRC(14, 0, regnum, 0, 5, 0), value);
487                 break;
488         case ARMV8_SP:
489                 retval = dpm->instr_write_data_dcc(dpm,
490                                 ARMV4_5_MRC(14, 0, 13, 0, 5, 0), value);
491                         break;
492         case ARMV8_PC:/* PC
493                  * read r0 from DCC; then "MOV pc, r0" */
494                 retval = dpm->instr_write_data_r0(dpm,
495                                 ARMV8_MCR_DLR(0), value);
496                 break;
497         case ARMV8_xPSR: /* CPSR */
498                 /* read r0 from DCC, then "MCR r0, DSPSR" */
499                 retval = dpm->instr_write_data_r0(dpm,
500                                 ARMV8_MCR_DSPSR(0), value);
501                 break;
502         case ARMV8_ELR_EL1: /* mapped to LR_svc */
503                 retval = dpm->instr_write_data_dcc(dpm,
504                                 ARMV4_5_MRC(14, 0, 14, 0, 5, 0),
505                                 value);
506                 break;
507         case ARMV8_ELR_EL2: /* mapped to ELR_hyp */
508                 retval = dpm->instr_write_data_r0(dpm,
509                                 ARMV8_MSR_GP_T1(0, 14, 0, 1),
510                                 value);
511                 break;
512         case ARMV8_ELR_EL3: /* mapped to LR_mon */
513                 retval = dpm->instr_write_data_dcc(dpm,
514                                 ARMV4_5_MRC(14, 0, 14, 0, 5, 0),
515                                 value);
516                 break;
517         case ARMV8_ESR_EL1: /* mapped to DFSR */
518                 retval = dpm->instr_write_data_r0(dpm,
519                                 ARMV4_5_MCR(15, 0, 0, 5, 0, 0),
520                                 value);
521                 break;
522         case ARMV8_ESR_EL2: /* mapped to HSR */
523                 retval = dpm->instr_write_data_r0(dpm,
524                                 ARMV4_5_MCR(15, 4, 0, 5, 2, 0),
525                                 value);
526                 break;
527         case ARMV8_ESR_EL3: /* FIXME: no equivalent in aarch32? */
528                 retval = ERROR_FAIL;
529                 break;
530         case ARMV8_SPSR_EL1: /* mapped to SPSR_svc */
531                 retval = dpm->instr_write_data_r0(dpm,
532                                 ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
533                                 value);
534                 break;
535         case ARMV8_SPSR_EL2: /* mapped to SPSR_hyp */
536                 retval = dpm->instr_write_data_r0(dpm,
537                                 ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
538                                 value);
539                 break;
540         case ARMV8_SPSR_EL3: /* mapped to SPSR_mon */
541                 retval = dpm->instr_write_data_r0(dpm,
542                                 ARMV8_MSR_GP_xPSR_T1(1, 0, 15),
543                                 value);
544                 break;
545         case ARMV8_FPSR:
546                 /* move to r0 from DCC, then "VMSR FPSCR, r0" */
547                 retval = dpm->instr_write_data_r0(dpm,
548                         ARMV4_5_VMSR(0), value);
549                 break;
550         default:
551                 retval = ERROR_FAIL;
552                 break;
553         }
554
555         return retval;
556
557 }
558
559 static int armv8_write_reg_simdfp_aarch32(struct armv8_common *armv8, int regnum, uint64_t lvalue, uint64_t hvalue)
560 {
561         int retval = ERROR_FAIL;
562         struct arm_dpm *dpm = &armv8->dpm;
563         struct reg *reg_r1 = dpm->arm->core_cache->reg_list + ARMV8_R1;
564         uint32_t value_r0 = 0, value_r1 = 0;
565         unsigned num = (regnum - ARMV8_V0) << 1;
566
567         switch (regnum) {
568         case ARMV8_V0 ... ARMV8_V15:
569                 /* we are going to write R1, mark it dirty */
570                 reg_r1->dirty = true;
571                 value_r1 = lvalue >> 32;
572                 value_r0 = lvalue & 0xFFFFFFFF;
573                 /* write value_r1 to r1 via dcc */
574                 retval = dpm->instr_write_data_dcc(dpm,
575                         ARMV4_5_MRC(14, 0, 1, 0, 5, 0),
576                         value_r1);
577                 /* write value_r0 to r0 via dcc then,
578                  * move to double word register from r0:r1: "vmov vm, r0, r1"
579                  */
580                 retval = dpm->instr_write_data_r0(dpm,
581                         ARMV4_5_VMOV(0, 1, 0, (num >> 4), (num & 0xf)),
582                         value_r0);
583
584                 num++;
585                 /* repeat above steps for high 64 bits of V register */
586                 value_r1 = hvalue >> 32;
587                 value_r0 = hvalue & 0xFFFFFFFF;
588                 retval = dpm->instr_write_data_dcc(dpm,
589                         ARMV4_5_MRC(14, 0, 1, 0, 5, 0),
590                         value_r1);
591                 retval = dpm->instr_write_data_r0(dpm,
592                         ARMV4_5_VMOV(0, 1, 0, (num >> 4), (num & 0xf)),
593                         value_r0);
594                 break;
595         default:
596                 retval = ERROR_FAIL;
597                 break;
598         }
599
600         return retval;
601 }
602
603 void armv8_select_reg_access(struct armv8_common *armv8, bool is_aarch64)
604 {
605         if (is_aarch64) {
606                 armv8->read_reg_u64 = armv8_read_reg;
607                 armv8->write_reg_u64 = armv8_write_reg;
608                 armv8->read_reg_u128 = armv8_read_reg_simdfp_aarch64;
609                 armv8->write_reg_u128 = armv8_write_reg_simdfp_aarch64;
610
611         } else {
612                 armv8->read_reg_u64 = armv8_read_reg32;
613                 armv8->write_reg_u64 = armv8_write_reg32;
614                 armv8->read_reg_u128 = armv8_read_reg_simdfp_aarch32;
615                 armv8->write_reg_u128 = armv8_write_reg_simdfp_aarch32;
616         }
617 }
618
619 /*  retrieve core id cluster id  */
620 int armv8_read_mpidr(struct armv8_common *armv8)
621 {
622         int retval = ERROR_FAIL;
623         struct arm *arm = &armv8->arm;
624         struct arm_dpm *dpm = armv8->arm.dpm;
625         uint32_t mpidr;
626
627         retval = dpm->prepare(dpm);
628         if (retval != ERROR_OK)
629                 goto done;
630
631         /* check if we're in an unprivileged mode */
632         if (armv8_curel_from_core_mode(arm->core_mode) < SYSTEM_CUREL_EL1) {
633                 retval = armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
634                 if (retval != ERROR_OK)
635                         return retval;
636         }
637
638         retval = dpm->instr_read_data_r0(dpm, armv8_opcode(armv8, READ_REG_MPIDR), &mpidr);
639         if (retval != ERROR_OK)
640                 goto done;
641         if (mpidr & 1<<31) {
642                 armv8->multi_processor_system = (mpidr >> 30) & 1;
643                 armv8->cluster_id = (mpidr >> 8) & 0xf;
644                 armv8->cpu_id = mpidr & 0x3;
645                 LOG_INFO("%s cluster %x core %x %s", target_name(armv8->arm.target),
646                         armv8->cluster_id,
647                         armv8->cpu_id,
648                         armv8->multi_processor_system == 0 ? "multi core" : "single core");
649         } else
650                 LOG_ERROR("mpidr not in multiprocessor format");
651
652 done:
653         armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
654         dpm->finish(dpm);
655         return retval;
656 }
657
658 /**
659  * Configures host-side ARM records to reflect the specified CPSR.
660  * Later, code can use arm_reg_current() to map register numbers
661  * according to how they are exposed by this mode.
662  */
663 void armv8_set_cpsr(struct arm *arm, uint32_t cpsr)
664 {
665         uint32_t mode = cpsr & 0x1F;
666
667         /* NOTE:  this may be called very early, before the register
668          * cache is set up.  We can't defend against many errors, in
669          * particular against CPSRs that aren't valid *here* ...
670          */
671         if (arm->cpsr) {
672                 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
673                 arm->cpsr->valid = 1;
674                 arm->cpsr->dirty = 0;
675         }
676
677         /* Older ARMs won't have the J bit */
678         enum arm_state state = 0xFF;
679
680         if ((cpsr & 0x10) != 0) {
681                 /* Aarch32 state */
682                 if (cpsr & (1 << 5)) {  /* T */
683                         if (cpsr & (1 << 24)) { /* J */
684                                 LOG_WARNING("ThumbEE -- incomplete support");
685                                 state = ARM_STATE_THUMB_EE;
686                         } else
687                                 state = ARM_STATE_THUMB;
688                 } else {
689                         if (cpsr & (1 << 24)) { /* J */
690                                 LOG_ERROR("Jazelle state handling is BROKEN!");
691                                 state = ARM_STATE_JAZELLE;
692                         } else
693                                 state = ARM_STATE_ARM;
694                 }
695         } else {
696                 /* Aarch64 state */
697                 state = ARM_STATE_AARCH64;
698         }
699
700         arm->core_state = state;
701         arm->core_mode = mode;
702
703         LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
704                 armv8_mode_name(arm->core_mode),
705                 armv8_state_strings[arm->core_state]);
706 }
707
708 static void armv8_show_fault_registers32(struct armv8_common *armv8)
709 {
710         uint32_t dfsr, ifsr, dfar, ifar;
711         struct arm_dpm *dpm = armv8->arm.dpm;
712         int retval;
713
714         retval = dpm->prepare(dpm);
715         if (retval != ERROR_OK)
716                 return;
717
718         /* ARMV4_5_MRC(cpnum, op1, r0, CRn, CRm, op2) */
719
720         /* c5/c0 - {data, instruction} fault status registers */
721         retval = dpm->instr_read_data_r0(dpm,
722                         ARMV4_5_MRC(15, 0, 0, 5, 0, 0),
723                         &dfsr);
724         if (retval != ERROR_OK)
725                 goto done;
726
727         retval = dpm->instr_read_data_r0(dpm,
728                         ARMV4_5_MRC(15, 0, 0, 5, 0, 1),
729                         &ifsr);
730         if (retval != ERROR_OK)
731                 goto done;
732
733         /* c6/c0 - {data, instruction} fault address registers */
734         retval = dpm->instr_read_data_r0(dpm,
735                         ARMV4_5_MRC(15, 0, 0, 6, 0, 0),
736                         &dfar);
737         if (retval != ERROR_OK)
738                 goto done;
739
740         retval = dpm->instr_read_data_r0(dpm,
741                         ARMV4_5_MRC(15, 0, 0, 6, 0, 2),
742                         &ifar);
743         if (retval != ERROR_OK)
744                 goto done;
745
746         LOG_USER("Data fault registers        DFSR: %8.8" PRIx32
747                 ", DFAR: %8.8" PRIx32, dfsr, dfar);
748         LOG_USER("Instruction fault registers IFSR: %8.8" PRIx32
749                 ", IFAR: %8.8" PRIx32, ifsr, ifar);
750
751 done:
752         /* (void) */ dpm->finish(dpm);
753 }
754
755 static __attribute__((unused)) void armv8_show_fault_registers(struct target *target)
756 {
757         struct armv8_common *armv8 = target_to_armv8(target);
758
759         if (armv8->arm.core_state != ARM_STATE_AARCH64)
760                 armv8_show_fault_registers32(armv8);
761 }
762
763 static uint8_t armv8_pa_size(uint32_t ps)
764 {
765         uint8_t ret = 0;
766         switch (ps) {
767                 case 0:
768                         ret = 32;
769                         break;
770                 case 1:
771                         ret = 36;
772                         break;
773                 case 2:
774                         ret = 40;
775                         break;
776                 case 3:
777                         ret = 42;
778                         break;
779                 case 4:
780                         ret = 44;
781                         break;
782                 case 5:
783                         ret = 48;
784                         break;
785                 default:
786                         LOG_INFO("Unknow physicall address size");
787                         break;
788         }
789         return ret;
790 }
791
792 static __attribute__((unused)) int armv8_read_ttbcr32(struct target *target)
793 {
794         struct armv8_common *armv8 = target_to_armv8(target);
795         struct arm_dpm *dpm = armv8->arm.dpm;
796         uint32_t ttbcr, ttbcr_n;
797         int retval = dpm->prepare(dpm);
798         if (retval != ERROR_OK)
799                 goto done;
800         /*  MRC p15,0,<Rt>,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/
801         retval = dpm->instr_read_data_r0(dpm,
802                         ARMV4_5_MRC(15, 0, 0, 2, 0, 2),
803                         &ttbcr);
804         if (retval != ERROR_OK)
805                 goto done;
806
807         LOG_DEBUG("ttbcr %" PRIx32, ttbcr);
808
809         ttbcr_n = ttbcr & 0x7;
810         armv8->armv8_mmu.ttbcr = ttbcr;
811
812         /*
813          * ARM Architecture Reference Manual (ARMv7-A and ARMv7-Redition),
814          * document # ARM DDI 0406C
815          */
816         armv8->armv8_mmu.ttbr_range[0]  = 0xffffffff >> ttbcr_n;
817         armv8->armv8_mmu.ttbr_range[1] = 0xffffffff;
818         armv8->armv8_mmu.ttbr_mask[0] = 0xffffffff << (14 - ttbcr_n);
819         armv8->armv8_mmu.ttbr_mask[1] = 0xffffffff << 14;
820
821         LOG_DEBUG("ttbr1 %s, ttbr0_mask %" PRIx32 " ttbr1_mask %" PRIx32,
822                   (ttbcr_n != 0) ? "used" : "not used",
823                   armv8->armv8_mmu.ttbr_mask[0],
824                   armv8->armv8_mmu.ttbr_mask[1]);
825
826 done:
827         dpm->finish(dpm);
828         return retval;
829 }
830
831 static __attribute__((unused)) int armv8_read_ttbcr(struct target *target)
832 {
833         struct armv8_common *armv8 = target_to_armv8(target);
834         struct arm_dpm *dpm = armv8->arm.dpm;
835         struct arm *arm = &armv8->arm;
836         uint32_t ttbcr;
837         uint64_t ttbcr_64;
838
839         int retval = dpm->prepare(dpm);
840         if (retval != ERROR_OK)
841                 goto done;
842
843         /* claaer ttrr1_used and ttbr0_mask */
844         memset(&armv8->armv8_mmu.ttbr1_used, 0, sizeof(armv8->armv8_mmu.ttbr1_used));
845         memset(&armv8->armv8_mmu.ttbr0_mask, 0, sizeof(armv8->armv8_mmu.ttbr0_mask));
846
847         switch (armv8_curel_from_core_mode(arm->core_mode)) {
848         case SYSTEM_CUREL_EL3:
849                 retval = dpm->instr_read_data_r0(dpm,
850                                 ARMV8_MRS(SYSTEM_TCR_EL3, 0),
851                                 &ttbcr);
852                 retval += dpm->instr_read_data_r0_64(dpm,
853                                 ARMV8_MRS(SYSTEM_TTBR0_EL3, 0),
854                                 &armv8->ttbr_base);
855                 if (retval != ERROR_OK)
856                         goto done;
857                 armv8->va_size = 64 - (ttbcr & 0x3F);
858                 armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
859                 armv8->page_size = (ttbcr >> 14) & 3;
860                 break;
861         case SYSTEM_CUREL_EL2:
862                 retval = dpm->instr_read_data_r0(dpm,
863                                 ARMV8_MRS(SYSTEM_TCR_EL2, 0),
864                                 &ttbcr);
865                 retval += dpm->instr_read_data_r0_64(dpm,
866                                 ARMV8_MRS(SYSTEM_TTBR0_EL2, 0),
867                                 &armv8->ttbr_base);
868                 if (retval != ERROR_OK)
869                         goto done;
870                 armv8->va_size = 64 - (ttbcr & 0x3F);
871                 armv8->pa_size = armv8_pa_size((ttbcr >> 16) & 7);
872                 armv8->page_size = (ttbcr >> 14) & 3;
873                 break;
874         case SYSTEM_CUREL_EL0:
875                 armv8_dpm_modeswitch(dpm, ARMV8_64_EL1H);
876                 /* fall through */
877         case SYSTEM_CUREL_EL1:
878                 retval = dpm->instr_read_data_r0_64(dpm,
879                                 ARMV8_MRS(SYSTEM_TCR_EL1, 0),
880                                 &ttbcr_64);
881                 armv8->va_size = 64 - (ttbcr_64 & 0x3F);
882                 armv8->pa_size = armv8_pa_size((ttbcr_64 >> 32) & 7);
883                 armv8->page_size = (ttbcr_64 >> 14) & 3;
884                 armv8->armv8_mmu.ttbr1_used = (((ttbcr_64 >> 16) & 0x3F) != 0) ? 1 : 0;
885                 armv8->armv8_mmu.ttbr0_mask  = 0x0000FFFFFFFFFFFF;
886                 retval += dpm->instr_read_data_r0_64(dpm,
887                                 ARMV8_MRS(SYSTEM_TTBR0_EL1 | (armv8->armv8_mmu.ttbr1_used), 0),
888                                 &armv8->ttbr_base);
889                 if (retval != ERROR_OK)
890                         goto done;
891                 break;
892         default:
893                 LOG_ERROR("unknow core state");
894                 retval = ERROR_FAIL;
895                 break;
896         }
897         if (retval != ERROR_OK)
898                 goto done;
899
900         if (armv8->armv8_mmu.ttbr1_used == 1)
901                 LOG_INFO("TTBR0 access above %" PRIx64, (uint64_t)(armv8->armv8_mmu.ttbr0_mask));
902
903 done:
904         armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
905         dpm->finish(dpm);
906         return retval;
907 }
908
909 /*  method adapted to cortex A : reused arm v4 v5 method*/
910 int armv8_mmu_translate_va(struct target *target,  target_addr_t va, target_addr_t *val)
911 {
912         return ERROR_OK;
913 }
914
915 /*  V8 method VA TO PA  */
916 int armv8_mmu_translate_va_pa(struct target *target, target_addr_t va,
917         target_addr_t *val, int meminfo)
918 {
919         struct armv8_common *armv8 = target_to_armv8(target);
920         struct arm *arm = target_to_arm(target);
921         struct arm_dpm *dpm = &armv8->dpm;
922         enum arm_mode target_mode = ARM_MODE_ANY;
923         uint32_t retval;
924         uint32_t instr = 0;
925         uint64_t par;
926
927         static const char * const shared_name[] = {
928                         "Non-", "UNDEFINED ", "Outer ", "Inner "
929         };
930
931         static const char * const secure_name[] = {
932                         "Secure", "Not Secure"
933         };
934
935         retval = dpm->prepare(dpm);
936         if (retval != ERROR_OK)
937                 return retval;
938
939         switch (armv8_curel_from_core_mode(arm->core_mode)) {
940         case SYSTEM_CUREL_EL0:
941                 instr = ARMV8_SYS(SYSTEM_ATS12E0R, 0);
942                 /* can only execute instruction at EL2 */
943                 target_mode = ARMV8_64_EL2H;
944                 break;
945         case SYSTEM_CUREL_EL1:
946                 instr = ARMV8_SYS(SYSTEM_ATS12E1R, 0);
947                 /* can only execute instruction at EL2 */
948                 target_mode = ARMV8_64_EL2H;
949                 break;
950         case SYSTEM_CUREL_EL2:
951                 instr = ARMV8_SYS(SYSTEM_ATS1E2R, 0);
952                 break;
953         case SYSTEM_CUREL_EL3:
954                 instr = ARMV8_SYS(SYSTEM_ATS1E3R, 0);
955                 break;
956
957         default:
958                 break;
959         };
960
961         if (target_mode != ARM_MODE_ANY)
962                 armv8_dpm_modeswitch(dpm, target_mode);
963
964         /* write VA to R0 and execute translation instruction */
965         retval = dpm->instr_write_data_r0_64(dpm, instr, (uint64_t)va);
966         /* read result from PAR_EL1 */
967         if (retval == ERROR_OK)
968                 retval = dpm->instr_read_data_r0_64(dpm, ARMV8_MRS(SYSTEM_PAR_EL1, 0), &par);
969
970         /* switch back to saved PE mode */
971         if (target_mode != ARM_MODE_ANY)
972                 armv8_dpm_modeswitch(dpm, ARM_MODE_ANY);
973
974         dpm->finish(dpm);
975
976         if (retval != ERROR_OK)
977                 return retval;
978
979         if (par & 1) {
980                 LOG_ERROR("Address translation failed at stage %i, FST=%x, PTW=%i",
981                                 ((int)(par >> 9) & 1)+1, (int)(par >> 1) & 0x3f, (int)(par >> 8) & 1);
982
983                 *val = 0;
984                 retval = ERROR_FAIL;
985         } else {
986                 *val = (par & 0xFFFFFFFFF000UL) | (va & 0xFFF);
987                 if (meminfo) {
988                         int SH = (par >> 7) & 3;
989                         int NS = (par >> 9) & 1;
990                         int ATTR = (par >> 56) & 0xFF;
991
992                         char *memtype = (ATTR & 0xF0) == 0 ? "Device Memory" : "Normal Memory";
993
994                         LOG_USER("%sshareable, %s",
995                                         shared_name[SH], secure_name[NS]);
996                         LOG_USER("%s", memtype);
997                 }
998         }
999
1000         return retval;
1001 }
1002
1003 int armv8_handle_cache_info_command(struct command_context *cmd_ctx,
1004         struct armv8_cache_common *armv8_cache)
1005 {
1006         if (armv8_cache->info == -1) {
1007                 command_print(cmd_ctx, "cache not yet identified");
1008                 return ERROR_OK;
1009         }
1010
1011         if (armv8_cache->display_cache_info)
1012                 armv8_cache->display_cache_info(cmd_ctx, armv8_cache);
1013         return ERROR_OK;
1014 }
1015
1016 int armv8_init_arch_info(struct target *target, struct armv8_common *armv8)
1017 {
1018         struct arm *arm = &armv8->arm;
1019         arm->arch_info = armv8;
1020         target->arch_info = &armv8->arm;
1021         /*  target is useful in all function arm v4 5 compatible */
1022         armv8->arm.target = target;
1023         armv8->arm.common_magic = ARM_COMMON_MAGIC;
1024         armv8->common_magic = ARMV8_COMMON_MAGIC;
1025
1026         armv8->armv8_mmu.armv8_cache.l2_cache = NULL;
1027         armv8->armv8_mmu.armv8_cache.info = -1;
1028         armv8->armv8_mmu.armv8_cache.flush_all_data_cache = NULL;
1029         armv8->armv8_mmu.armv8_cache.display_cache_info = NULL;
1030         return ERROR_OK;
1031 }
1032
1033 int armv8_aarch64_state(struct target *target)
1034 {
1035         struct arm *arm = target_to_arm(target);
1036
1037         if (arm->common_magic != ARM_COMMON_MAGIC) {
1038                 LOG_ERROR("BUG: called for a non-ARM target");
1039                 return ERROR_FAIL;
1040         }
1041
1042         LOG_USER("target halted in %s state due to %s, current mode: %s\n"
1043                 "cpsr: 0x%8.8" PRIx32 " pc: 0x%" PRIx64 "%s",
1044                 armv8_state_strings[arm->core_state],
1045                 debug_reason_name(target),
1046                 armv8_mode_name(arm->core_mode),
1047                 buf_get_u32(arm->cpsr->value, 0, 32),
1048                 buf_get_u64(arm->pc->value, 0, 64),
1049                 arm->is_semihosting ? ", semihosting" : "");
1050
1051         return ERROR_OK;
1052 }
1053
1054 int armv8_arch_state(struct target *target)
1055 {
1056         static const char * const state[] = {
1057                 "disabled", "enabled"
1058         };
1059
1060         struct armv8_common *armv8 = target_to_armv8(target);
1061         struct arm *arm = &armv8->arm;
1062
1063         if (armv8->common_magic != ARMV8_COMMON_MAGIC) {
1064                 LOG_ERROR("BUG: called for a non-Armv8 target");
1065                 return ERROR_COMMAND_SYNTAX_ERROR;
1066         }
1067
1068         if (arm->core_state == ARM_STATE_AARCH64)
1069                 armv8_aarch64_state(target);
1070         else
1071                 arm_arch_state(target);
1072
1073         LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
1074                 state[armv8->armv8_mmu.mmu_enabled],
1075                 state[armv8->armv8_mmu.armv8_cache.d_u_cache_enabled],
1076                 state[armv8->armv8_mmu.armv8_cache.i_cache_enabled]);
1077
1078         if (arm->core_mode == ARM_MODE_ABT)
1079                 armv8_show_fault_registers(target);
1080
1081         if (target->debug_reason == DBG_REASON_WATCHPOINT)
1082                 LOG_USER("Watchpoint triggered at PC %#08x",
1083                         (unsigned) armv8->dpm.wp_pc);
1084
1085         return ERROR_OK;
1086 }
1087
1088 static struct reg_data_type aarch64_vector_base_types[] = {
1089         {REG_TYPE_IEEE_DOUBLE, "ieee_double", 0, {NULL} },
1090         {REG_TYPE_UINT64, "uint64", 0, {NULL} },
1091         {REG_TYPE_INT64, "int64", 0, {NULL} },
1092         {REG_TYPE_IEEE_SINGLE, "ieee_single", 0, {NULL} },
1093         {REG_TYPE_UINT32, "uint32", 0, {NULL} },
1094         {REG_TYPE_INT32, "int32", 0, {NULL} },
1095         {REG_TYPE_UINT16, "uint16", 0, {NULL} },
1096         {REG_TYPE_INT16, "int16", 0, {NULL} },
1097         {REG_TYPE_UINT8, "uint8", 0, {NULL} },
1098         {REG_TYPE_INT8, "int8", 0, {NULL} },
1099         {REG_TYPE_UINT128, "uint128", 0, {NULL} },
1100         {REG_TYPE_INT128, "int128", 0, {NULL} }
1101 };
1102
1103 static struct reg_data_type_vector aarch64_vector_types[] = {
1104         {aarch64_vector_base_types + 0, 2},
1105         {aarch64_vector_base_types + 1, 2},
1106         {aarch64_vector_base_types + 2, 2},
1107         {aarch64_vector_base_types + 3, 4},
1108         {aarch64_vector_base_types + 4, 4},
1109         {aarch64_vector_base_types + 5, 4},
1110         {aarch64_vector_base_types + 6, 8},
1111         {aarch64_vector_base_types + 7, 8},
1112         {aarch64_vector_base_types + 8, 16},
1113         {aarch64_vector_base_types + 9, 16},
1114         {aarch64_vector_base_types + 10, 01},
1115         {aarch64_vector_base_types + 11, 01},
1116 };
1117
1118 static struct reg_data_type aarch64_fpu_vector[] = {
1119         {REG_TYPE_ARCH_DEFINED, "v2d",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 0} },
1120         {REG_TYPE_ARCH_DEFINED, "v2u",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 1} },
1121         {REG_TYPE_ARCH_DEFINED, "v2i",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 2} },
1122         {REG_TYPE_ARCH_DEFINED, "v4f",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 3} },
1123         {REG_TYPE_ARCH_DEFINED, "v4u",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 4} },
1124         {REG_TYPE_ARCH_DEFINED, "v4i",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 5} },
1125         {REG_TYPE_ARCH_DEFINED, "v8u",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 6} },
1126         {REG_TYPE_ARCH_DEFINED, "v8i",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 7} },
1127         {REG_TYPE_ARCH_DEFINED, "v16u", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 8} },
1128         {REG_TYPE_ARCH_DEFINED, "v16i", REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 9} },
1129         {REG_TYPE_ARCH_DEFINED, "v1u",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 10} },
1130         {REG_TYPE_ARCH_DEFINED, "v1i",  REG_TYPE_CLASS_VECTOR, {aarch64_vector_types + 11} },
1131 };
1132
1133 static struct reg_data_type_union_field aarch64_union_fields_vnd[] = {
1134         {"f", aarch64_fpu_vector + 0, aarch64_union_fields_vnd + 1},
1135         {"u", aarch64_fpu_vector + 1, aarch64_union_fields_vnd + 2},
1136         {"s", aarch64_fpu_vector + 2, NULL},
1137 };
1138
1139 static struct reg_data_type_union_field aarch64_union_fields_vns[] = {
1140         {"f", aarch64_fpu_vector + 3, aarch64_union_fields_vns + 1},
1141         {"u", aarch64_fpu_vector + 4, aarch64_union_fields_vns + 2},
1142         {"s", aarch64_fpu_vector + 5, NULL},
1143 };
1144
1145 static struct reg_data_type_union_field aarch64_union_fields_vnh[] = {
1146         {"u", aarch64_fpu_vector + 6, aarch64_union_fields_vnh + 1},
1147         {"s", aarch64_fpu_vector + 7, NULL},
1148 };
1149
1150 static struct reg_data_type_union_field aarch64_union_fields_vnb[] = {
1151         {"u", aarch64_fpu_vector + 8, aarch64_union_fields_vnb + 1},
1152         {"s", aarch64_fpu_vector + 9, NULL},
1153 };
1154
1155 static struct reg_data_type_union_field aarch64_union_fields_vnq[] = {
1156         {"u", aarch64_fpu_vector + 10, aarch64_union_fields_vnq + 1},
1157         {"s", aarch64_fpu_vector + 11, NULL},
1158 };
1159
1160 static struct reg_data_type_union aarch64_union_types[] = {
1161         {aarch64_union_fields_vnd},
1162         {aarch64_union_fields_vns},
1163         {aarch64_union_fields_vnh},
1164         {aarch64_union_fields_vnb},
1165         {aarch64_union_fields_vnq},
1166 };
1167
1168 static struct reg_data_type aarch64_fpu_union[] = {
1169         {REG_TYPE_ARCH_DEFINED, "vnd", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 0} },
1170         {REG_TYPE_ARCH_DEFINED, "vns", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 1} },
1171         {REG_TYPE_ARCH_DEFINED, "vnh", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 2} },
1172         {REG_TYPE_ARCH_DEFINED, "vnb", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 3} },
1173         {REG_TYPE_ARCH_DEFINED, "vnq", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64_union_types + 4} },
1174 };
1175
1176 static struct reg_data_type_union_field aarch64v_union_fields[] = {
1177         {"d", aarch64_fpu_union + 0, aarch64v_union_fields + 1},
1178         {"s", aarch64_fpu_union + 1, aarch64v_union_fields + 2},
1179         {"h", aarch64_fpu_union + 2, aarch64v_union_fields + 3},
1180         {"b", aarch64_fpu_union + 3, aarch64v_union_fields + 4},
1181         {"q", aarch64_fpu_union + 4, NULL},
1182 };
1183
1184 static struct reg_data_type_union aarch64v_union[] = {
1185         {aarch64v_union_fields}
1186 };
1187
1188 static struct reg_data_type aarch64v[] = {
1189         {REG_TYPE_ARCH_DEFINED, "aarch64v", REG_TYPE_CLASS_UNION, {.reg_type_union = aarch64v_union} },
1190 };
1191
1192 static const struct {
1193         unsigned id;
1194         const char *name;
1195         unsigned bits;
1196         enum arm_mode mode;
1197         enum reg_type type;
1198         const char *group;
1199         const char *feature;
1200         struct reg_data_type *data_type;
1201 } armv8_regs[] = {
1202         { ARMV8_R0,  "x0",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1203         { ARMV8_R1,  "x1",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1204         { ARMV8_R2,  "x2",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1205         { ARMV8_R3,  "x3",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1206         { ARMV8_R4,  "x4",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1207         { ARMV8_R5,  "x5",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1208         { ARMV8_R6,  "x6",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1209         { ARMV8_R7,  "x7",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1210         { ARMV8_R8,  "x8",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1211         { ARMV8_R9,  "x9",  64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1212         { ARMV8_R10, "x10", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1213         { ARMV8_R11, "x11", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1214         { ARMV8_R12, "x12", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1215         { ARMV8_R13, "x13", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1216         { ARMV8_R14, "x14", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1217         { ARMV8_R15, "x15", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1218         { ARMV8_R16, "x16", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1219         { ARMV8_R17, "x17", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1220         { ARMV8_R18, "x18", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1221         { ARMV8_R19, "x19", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1222         { ARMV8_R20, "x20", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1223         { ARMV8_R21, "x21", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1224         { ARMV8_R22, "x22", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1225         { ARMV8_R23, "x23", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1226         { ARMV8_R24, "x24", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1227         { ARMV8_R25, "x25", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1228         { ARMV8_R26, "x26", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1229         { ARMV8_R27, "x27", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1230         { ARMV8_R28, "x28", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1231         { ARMV8_R29, "x29", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1232         { ARMV8_R30, "x30", 64, ARM_MODE_ANY, REG_TYPE_UINT64, "general", "org.gnu.gdb.aarch64.core", NULL},
1233
1234         { ARMV8_SP, "sp", 64, ARM_MODE_ANY, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.aarch64.core", NULL},
1235         { ARMV8_PC, "pc", 64, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.aarch64.core", NULL},
1236
1237         { ARMV8_xPSR, "CPSR", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.aarch64.core", NULL},
1238
1239         { ARMV8_V0,  "v0",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1240         { ARMV8_V1,  "v1",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1241         { ARMV8_V2,  "v2",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1242         { ARMV8_V3,  "v3",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1243         { ARMV8_V4,  "v4",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1244         { ARMV8_V5,  "v5",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1245         { ARMV8_V6,  "v6",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1246         { ARMV8_V7,  "v7",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1247         { ARMV8_V8,  "v8",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1248         { ARMV8_V9,  "v9",  128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1249         { ARMV8_V10, "v10", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1250         { ARMV8_V11, "v11", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1251         { ARMV8_V12, "v12", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1252         { ARMV8_V13, "v13", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1253         { ARMV8_V14, "v14", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1254         { ARMV8_V15, "v15", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1255         { ARMV8_V16, "v16", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1256         { ARMV8_V17, "v17", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1257         { ARMV8_V18, "v18", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1258         { ARMV8_V19, "v19", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1259         { ARMV8_V20, "v20", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1260         { ARMV8_V21, "v21", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1261         { ARMV8_V22, "v22", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1262         { ARMV8_V23, "v23", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1263         { ARMV8_V24, "v24", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1264         { ARMV8_V25, "v25", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1265         { ARMV8_V26, "v26", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1266         { ARMV8_V27, "v27", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1267         { ARMV8_V28, "v28", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1268         { ARMV8_V29, "v29", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1269         { ARMV8_V30, "v30", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1270         { ARMV8_V31, "v31", 128, ARM_MODE_ANY, REG_TYPE_ARCH_DEFINED, "simdfp", "org.gnu.gdb.aarch64.fpu", aarch64v},
1271         { ARMV8_FPSR, "fpsr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "simdfp", "org.gnu.gdb.aarch64.fpu", NULL},
1272         { ARMV8_FPCR, "fpcr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "simdfp", "org.gnu.gdb.aarch64.fpu", NULL},
1273
1274         { ARMV8_ELR_EL1, "ELR_EL1", 64, ARMV8_64_EL1H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
1275                                                                                                                 NULL},
1276         { ARMV8_ESR_EL1, "ESR_EL1", 32, ARMV8_64_EL1H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1277                                                                                                                 NULL},
1278         { ARMV8_SPSR_EL1, "SPSR_EL1", 32, ARMV8_64_EL1H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1279                                                                                                                 NULL},
1280
1281         { ARMV8_ELR_EL2, "ELR_EL2", 64, ARMV8_64_EL2H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
1282                                                                                                                 NULL},
1283         { ARMV8_ESR_EL2, "ESR_EL2", 32, ARMV8_64_EL2H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1284                                                                                                                 NULL},
1285         { ARMV8_SPSR_EL2, "SPSR_EL2", 32, ARMV8_64_EL2H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1286                                                                                                                 NULL},
1287
1288         { ARMV8_ELR_EL3, "ELR_EL3", 64, ARMV8_64_EL3H, REG_TYPE_CODE_PTR, "banked", "net.sourceforge.openocd.banked",
1289                                                                                                                 NULL},
1290         { ARMV8_ESR_EL3, "ESR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1291                                                                                                                 NULL},
1292         { ARMV8_SPSR_EL3, "SPSR_EL3", 32, ARMV8_64_EL3H, REG_TYPE_UINT32, "banked", "net.sourceforge.openocd.banked",
1293                                                                                                                 NULL},
1294 };
1295
1296 static const struct {
1297         unsigned id;
1298         unsigned mapping;
1299         const char *name;
1300         unsigned bits;
1301         enum arm_mode mode;
1302         enum reg_type type;
1303         const char *group;
1304         const char *feature;
1305 } armv8_regs32[] = {
1306         { ARMV8_R0, 0,  "r0",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1307         { ARMV8_R1, 0,  "r1",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1308         { ARMV8_R2, 0,  "r2",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1309         { ARMV8_R3, 0,  "r3",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1310         { ARMV8_R4, 0,  "r4",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1311         { ARMV8_R5, 0,  "r5",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1312         { ARMV8_R6, 0,  "r6",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1313         { ARMV8_R7, 0,  "r7",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1314         { ARMV8_R8, 0,  "r8",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1315         { ARMV8_R9, 0,  "r9",  32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1316         { ARMV8_R10, 0, "r10", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1317         { ARMV8_R11, 0, "r11", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1318         { ARMV8_R12, 0, "r12", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1319         { ARMV8_R13, 0, "sp", 32, ARM_MODE_ANY, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.core" },
1320         { ARMV8_R14, 0, "lr",  32, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.core" },
1321         { ARMV8_PC, 0, "pc",   32, ARM_MODE_ANY, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.core" },
1322         { ARMV8_xPSR, 0, "cpsr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "general", "org.gnu.gdb.arm.core" },
1323         { ARMV8_V0, 0, "d0",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1324         { ARMV8_V0, 8, "d1",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1325         { ARMV8_V1, 0, "d2",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1326         { ARMV8_V1, 8, "d3",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1327         { ARMV8_V2, 0, "d4",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1328         { ARMV8_V2, 8, "d5",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1329         { ARMV8_V3, 0, "d6",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1330         { ARMV8_V3, 8, "d7",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1331         { ARMV8_V4, 0, "d8",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1332         { ARMV8_V4, 8, "d9",  64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1333         { ARMV8_V5, 0, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1334         { ARMV8_V5, 8, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1335         { ARMV8_V6, 0, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1336         { ARMV8_V6, 8, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1337         { ARMV8_V7, 0, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1338         { ARMV8_V7, 8, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1339         { ARMV8_V8, 0, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1340         { ARMV8_V8, 8, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1341         { ARMV8_V9, 0, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1342         { ARMV8_V9, 8, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1343         { ARMV8_V10, 0, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1344         { ARMV8_V10, 8, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1345         { ARMV8_V11, 0, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1346         { ARMV8_V11, 8, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1347         { ARMV8_V12, 0, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1348         { ARMV8_V12, 8, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1349         { ARMV8_V13, 0, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1350         { ARMV8_V13, 8, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1351         { ARMV8_V14, 0, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1352         { ARMV8_V14, 8, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1353         { ARMV8_V15, 0, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1354         { ARMV8_V15, 8, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
1355         { ARMV8_FPSR, 0, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_UINT32, "float", "org.gnu.gdb.arm.vfp"},
1356 };
1357
1358 #define ARMV8_NUM_REGS ARRAY_SIZE(armv8_regs)
1359 #define ARMV8_NUM_REGS32 ARRAY_SIZE(armv8_regs32)
1360
1361 static int armv8_get_core_reg(struct reg *reg)
1362 {
1363         struct arm_reg *armv8_reg = reg->arch_info;
1364         struct target *target = armv8_reg->target;
1365         struct arm *arm = target_to_arm(target);
1366
1367         if (target->state != TARGET_HALTED)
1368                 return ERROR_TARGET_NOT_HALTED;
1369
1370         return arm->read_core_reg(target, reg, armv8_reg->num, arm->core_mode);
1371 }
1372
1373 static int armv8_set_core_reg(struct reg *reg, uint8_t *buf)
1374 {
1375         struct arm_reg *armv8_reg = reg->arch_info;
1376         struct target *target = armv8_reg->target;
1377         struct arm *arm = target_to_arm(target);
1378         uint64_t value = buf_get_u64(buf, 0, reg->size);
1379
1380         if (target->state != TARGET_HALTED)
1381                 return ERROR_TARGET_NOT_HALTED;
1382
1383         if (reg->size <= 64) {
1384                 if (reg == arm->cpsr)
1385                         armv8_set_cpsr(arm, (uint32_t)value);
1386                 else {
1387                         buf_set_u64(reg->value, 0, reg->size, value);
1388                         reg->valid = 1;
1389                 }
1390         } else if (reg->size <= 128) {
1391                 uint64_t hvalue = buf_get_u64(buf + 8, 0, reg->size - 64);
1392
1393                 buf_set_u64(reg->value, 0, 64, value);
1394                 buf_set_u64(reg->value + 8, 0, reg->size - 64, hvalue);
1395                 reg->valid = 1;
1396         }
1397
1398         reg->dirty = 1;
1399
1400         return ERROR_OK;
1401 }
1402
1403 static const struct reg_arch_type armv8_reg_type = {
1404         .get = armv8_get_core_reg,
1405         .set = armv8_set_core_reg,
1406 };
1407
1408 static int armv8_get_core_reg32(struct reg *reg)
1409 {
1410         struct arm_reg *armv8_reg = reg->arch_info;
1411         struct target *target = armv8_reg->target;
1412         struct arm *arm = target_to_arm(target);
1413         struct reg_cache *cache = arm->core_cache;
1414         struct reg *reg64;
1415         int retval;
1416
1417         /* get the corresponding Aarch64 register */
1418         reg64 = cache->reg_list + armv8_reg->num;
1419         if (reg64->valid) {
1420                 reg->valid = true;
1421                 return ERROR_OK;
1422         }
1423
1424         retval = arm->read_core_reg(target, reg64, armv8_reg->num, arm->core_mode);
1425         if (retval == ERROR_OK)
1426                 reg->valid = reg64->valid;
1427
1428         return retval;
1429 }
1430
1431 static int armv8_set_core_reg32(struct reg *reg, uint8_t *buf)
1432 {
1433         struct arm_reg *armv8_reg = reg->arch_info;
1434         struct target *target = armv8_reg->target;
1435         struct arm *arm = target_to_arm(target);
1436         struct reg_cache *cache = arm->core_cache;
1437         struct reg *reg64 = cache->reg_list + armv8_reg->num;
1438         uint32_t value = buf_get_u32(buf, 0, 32);
1439
1440         if (reg64 == arm->cpsr) {
1441                 armv8_set_cpsr(arm, value);
1442         } else {
1443                 if (reg->size <= 32)
1444                         buf_set_u32(reg->value, 0, 32, value);
1445                 else if (reg->size <= 64) {
1446                         uint64_t value64 = buf_get_u64(buf, 0, 64);
1447                         buf_set_u64(reg->value, 0, 64, value64);
1448                 }
1449                 reg->valid = 1;
1450                 reg64->valid = 1;
1451         }
1452
1453         reg64->dirty = 1;
1454
1455         return ERROR_OK;
1456 }
1457
1458 static const struct reg_arch_type armv8_reg32_type = {
1459         .get = armv8_get_core_reg32,
1460         .set = armv8_set_core_reg32,
1461 };
1462
1463 /** Builds cache of architecturally defined registers.  */
1464 struct reg_cache *armv8_build_reg_cache(struct target *target)
1465 {
1466         struct armv8_common *armv8 = target_to_armv8(target);
1467         struct arm *arm = &armv8->arm;
1468         int num_regs = ARMV8_NUM_REGS;
1469         int num_regs32 = ARMV8_NUM_REGS32;
1470         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
1471         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
1472         struct reg_cache *cache32 = malloc(sizeof(struct reg_cache));
1473         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
1474         struct reg *reg_list32 = calloc(num_regs32, sizeof(struct reg));
1475         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
1476         struct reg_feature *feature;
1477         int i;
1478
1479         /* Build the process context cache */
1480         cache->name = "Aarch64 registers";
1481         cache->next = cache32;
1482         cache->reg_list = reg_list;
1483         cache->num_regs = num_regs;
1484
1485         for (i = 0; i < num_regs; i++) {
1486                 arch_info[i].num = armv8_regs[i].id;
1487                 arch_info[i].mode = armv8_regs[i].mode;
1488                 arch_info[i].target = target;
1489                 arch_info[i].arm = arm;
1490
1491                 reg_list[i].name = armv8_regs[i].name;
1492                 reg_list[i].size = armv8_regs[i].bits;
1493                 reg_list[i].value = &arch_info[i].value[0];
1494                 reg_list[i].type = &armv8_reg_type;
1495                 reg_list[i].arch_info = &arch_info[i];
1496
1497                 reg_list[i].group = armv8_regs[i].group;
1498                 reg_list[i].number = i;
1499                 reg_list[i].exist = true;
1500                 reg_list[i].caller_save = true; /* gdb defaults to true */
1501
1502                 feature = calloc(1, sizeof(struct reg_feature));
1503                 if (feature) {
1504                         feature->name = armv8_regs[i].feature;
1505                         reg_list[i].feature = feature;
1506                 } else
1507                         LOG_ERROR("unable to allocate feature list");
1508
1509                 if (armv8_regs[i].data_type == NULL) {
1510                         reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
1511                         if (reg_list[i].reg_data_type)
1512                                 reg_list[i].reg_data_type->type = armv8_regs[i].type;
1513                         else
1514                                 LOG_ERROR("unable to allocate reg type list");
1515                 } else
1516                         reg_list[i].reg_data_type =     armv8_regs[i].data_type;
1517
1518         }
1519
1520         arm->cpsr = reg_list + ARMV8_xPSR;
1521         arm->pc = reg_list + ARMV8_PC;
1522         arm->core_cache = cache;
1523
1524         /* shadow cache for ARM mode registers */
1525         cache32->name = "Aarch32 registers";
1526         cache32->next = NULL;
1527         cache32->reg_list = reg_list32;
1528         cache32->num_regs = num_regs32;
1529
1530         for (i = 0; i < num_regs32; i++) {
1531                 reg_list32[i].name = armv8_regs32[i].name;
1532                 reg_list32[i].size = armv8_regs32[i].bits;
1533                 reg_list32[i].value = &arch_info[armv8_regs32[i].id].value[armv8_regs32[i].mapping];
1534                 reg_list32[i].type = &armv8_reg32_type;
1535                 reg_list32[i].arch_info = &arch_info[armv8_regs32[i].id];
1536                 reg_list32[i].group = armv8_regs32[i].group;
1537                 reg_list32[i].number = i;
1538                 reg_list32[i].exist = true;
1539                 reg_list32[i].caller_save = true;
1540
1541                 feature = calloc(1, sizeof(struct reg_feature));
1542                 if (feature) {
1543                         feature->name = armv8_regs32[i].feature;
1544                         reg_list32[i].feature = feature;
1545                 } else
1546                         LOG_ERROR("unable to allocate feature list");
1547
1548                 reg_list32[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
1549                 if (reg_list32[i].reg_data_type)
1550                         reg_list32[i].reg_data_type->type = armv8_regs32[i].type;
1551                 else
1552                         LOG_ERROR("unable to allocate reg type list");
1553         }
1554
1555         (*cache_p) = cache;
1556         return cache;
1557 }
1558
1559 struct reg *armv8_reg_current(struct arm *arm, unsigned regnum)
1560 {
1561         struct reg *r;
1562
1563         if (regnum > (ARMV8_LAST_REG - 1))
1564                 return NULL;
1565
1566         r = arm->core_cache->reg_list + regnum;
1567         return r;
1568 }
1569
1570 const struct command_registration armv8_command_handlers[] = {
1571         {
1572                 .chain = dap_command_handlers,
1573         },
1574         COMMAND_REGISTRATION_DONE
1575 };
1576
1577
1578 int armv8_get_gdb_reg_list(struct target *target,
1579         struct reg **reg_list[], int *reg_list_size,
1580         enum target_register_class reg_class)
1581 {
1582         struct arm *arm = target_to_arm(target);
1583         int i;
1584
1585         if (arm->core_state == ARM_STATE_AARCH64) {
1586
1587                 LOG_DEBUG("Creating Aarch64 register list for target %s", target_name(target));
1588
1589                 switch (reg_class) {
1590                 case REG_CLASS_GENERAL:
1591                         *reg_list_size = ARMV8_V0;
1592                         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1593
1594                         for (i = 0; i < *reg_list_size; i++)
1595                                         (*reg_list)[i] = armv8_reg_current(arm, i);
1596                         return ERROR_OK;
1597
1598                 case REG_CLASS_ALL:
1599                         *reg_list_size = ARMV8_LAST_REG;
1600                         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1601
1602                         for (i = 0; i < *reg_list_size; i++)
1603                                         (*reg_list)[i] = armv8_reg_current(arm, i);
1604
1605                         return ERROR_OK;
1606
1607                 default:
1608                         LOG_ERROR("not a valid register class type in query.");
1609                         return ERROR_FAIL;
1610                 }
1611         } else {
1612                 struct reg_cache *cache32 = arm->core_cache->next;
1613
1614                 LOG_DEBUG("Creating Aarch32 register list for target %s", target_name(target));
1615
1616                 switch (reg_class) {
1617                 case REG_CLASS_GENERAL:
1618                         *reg_list_size = ARMV8_R14 + 3;
1619                         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1620
1621                         for (i = 0; i < *reg_list_size; i++)
1622                                 (*reg_list)[i] = cache32->reg_list + i;
1623
1624                         return ERROR_OK;
1625                 case REG_CLASS_ALL:
1626                         *reg_list_size = cache32->num_regs;
1627                         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1628
1629                         for (i = 0; i < *reg_list_size; i++)
1630                                 (*reg_list)[i] = cache32->reg_list + i;
1631
1632                         return ERROR_OK;
1633                 default:
1634                         LOG_ERROR("not a valid register class type in query.");
1635                         return ERROR_FAIL;
1636                 }
1637         }
1638 }
1639
1640 int armv8_set_dbgreg_bits(struct armv8_common *armv8, unsigned int reg, unsigned long mask, unsigned long value)
1641 {
1642         uint32_t tmp;
1643
1644         /* Read register */
1645         int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
1646                         armv8->debug_base + reg, &tmp);
1647         if (ERROR_OK != retval)
1648                 return retval;
1649
1650         /* clear bitfield */
1651         tmp &= ~mask;
1652         /* put new value */
1653         tmp |= value & mask;
1654
1655         /* write new value */
1656         retval = mem_ap_write_atomic_u32(armv8->debug_ap,
1657                         armv8->debug_base + reg, tmp);
1658         return retval;
1659 }