]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
target/arm_dpm: uniform names of exported functions
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "transport/transport.h"
58 #include <helper/time_support.h>
59
60 #define foreach_smp_target(pos, head) \
61         for (pos = head; (pos != NULL); pos = pos->next)
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67         struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69         struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71         struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73         struct breakpoint *breakpoint);
74 static int cortex_a_dap_read_coreregister_u32(struct target *target,
75         uint32_t *value, int regnum);
76 static int cortex_a_dap_write_coreregister_u32(struct target *target,
77         uint32_t value, int regnum);
78 static int cortex_a_mmu(struct target *target, int *enabled);
79 static int cortex_a_mmu_modify(struct target *target, int enable);
80 static int cortex_a_virt2phys(struct target *target,
81         target_addr_t virt, target_addr_t *phys);
82 static int cortex_a_read_cpu_memory(struct target *target,
83         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
84
85
86 /*  restore cp15_control_reg at resume */
87 static int cortex_a_restore_cp15_control_reg(struct target *target)
88 {
89         int retval = ERROR_OK;
90         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
91         struct armv7a_common *armv7a = target_to_armv7a(target);
92
93         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
94                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
95                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
96                 retval = armv7a->arm.mcr(target, 15,
97                                 0, 0,   /* op1, op2 */
98                                 1, 0,   /* CRn, CRm */
99                                 cortex_a->cp15_control_reg);
100         }
101         return retval;
102 }
103
104 /*
105  * Set up ARM core for memory access.
106  * If !phys_access, switch to SVC mode and make sure MMU is on
107  * If phys_access, switch off mmu
108  */
109 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
110 {
111         struct armv7a_common *armv7a = target_to_armv7a(target);
112         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
113         int mmu_enabled = 0;
114
115         if (phys_access == 0) {
116                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
117                 cortex_a_mmu(target, &mmu_enabled);
118                 if (mmu_enabled)
119                         cortex_a_mmu_modify(target, 1);
120                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
121                         /* overwrite DACR to all-manager */
122                         armv7a->arm.mcr(target, 15,
123                                         0, 0, 3, 0,
124                                         0xFFFFFFFF);
125                 }
126         } else {
127                 cortex_a_mmu(target, &mmu_enabled);
128                 if (mmu_enabled)
129                         cortex_a_mmu_modify(target, 0);
130         }
131         return ERROR_OK;
132 }
133
134 /*
135  * Restore ARM core after memory access.
136  * If !phys_access, switch to previous mode
137  * If phys_access, restore MMU setting
138  */
139 static int cortex_a_post_memaccess(struct target *target, int phys_access)
140 {
141         struct armv7a_common *armv7a = target_to_armv7a(target);
142         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
143
144         if (phys_access == 0) {
145                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
146                         /* restore */
147                         armv7a->arm.mcr(target, 15,
148                                         0, 0, 3, 0,
149                                         cortex_a->cp15_dacr_reg);
150                 }
151                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
152         } else {
153                 int mmu_enabled = 0;
154                 cortex_a_mmu(target, &mmu_enabled);
155                 if (mmu_enabled)
156                         cortex_a_mmu_modify(target, 1);
157         }
158         return ERROR_OK;
159 }
160
161
162 /*  modify cp15_control_reg in order to enable or disable mmu for :
163  *  - virt2phys address conversion
164  *  - read or write memory in phys or virt address */
165 static int cortex_a_mmu_modify(struct target *target, int enable)
166 {
167         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
168         struct armv7a_common *armv7a = target_to_armv7a(target);
169         int retval = ERROR_OK;
170         int need_write = 0;
171
172         if (enable) {
173                 /*  if mmu enabled at target stop and mmu not enable */
174                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
175                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
176                         return ERROR_FAIL;
177                 }
178                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
179                         cortex_a->cp15_control_reg_curr |= 0x1U;
180                         need_write = 1;
181                 }
182         } else {
183                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
184                         cortex_a->cp15_control_reg_curr &= ~0x1U;
185                         need_write = 1;
186                 }
187         }
188
189         if (need_write) {
190                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
191                         enable ? "enable mmu" : "disable mmu",
192                         cortex_a->cp15_control_reg_curr);
193
194                 retval = armv7a->arm.mcr(target, 15,
195                                 0, 0,   /* op1, op2 */
196                                 1, 0,   /* CRn, CRm */
197                                 cortex_a->cp15_control_reg_curr);
198         }
199         return retval;
200 }
201
202 /*
203  * Cortex-A Basic debug access, very low level assumes state is saved
204  */
205 static int cortex_a_init_debug_access(struct target *target)
206 {
207         struct armv7a_common *armv7a = target_to_armv7a(target);
208         int retval;
209
210         /* lock memory-mapped access to debug registers to prevent
211          * software interference */
212         retval = mem_ap_write_u32(armv7a->debug_ap,
213                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
214         if (retval != ERROR_OK)
215                 return retval;
216
217         /* Disable cacheline fills and force cache write-through in debug state */
218         retval = mem_ap_write_u32(armv7a->debug_ap,
219                         armv7a->debug_base + CPUDBG_DSCCR, 0);
220         if (retval != ERROR_OK)
221                 return retval;
222
223         /* Disable TLB lookup and refill/eviction in debug state */
224         retval = mem_ap_write_u32(armv7a->debug_ap,
225                         armv7a->debug_base + CPUDBG_DSMCR, 0);
226         if (retval != ERROR_OK)
227                 return retval;
228
229         retval = dap_run(armv7a->debug_ap->dap);
230         if (retval != ERROR_OK)
231                 return retval;
232
233         /* Enabling of instruction execution in debug mode is done in debug_entry code */
234
235         /* Resync breakpoint registers */
236
237         /* Since this is likely called from init or reset, update target state information*/
238         return cortex_a_poll(target);
239 }
240
241 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
242 {
243         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
244          * Writes final value of DSCR into *dscr. Pass force to force always
245          * reading DSCR at least once. */
246         struct armv7a_common *armv7a = target_to_armv7a(target);
247         int64_t then = timeval_ms();
248         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
249                 force = false;
250                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
251                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
252                 if (retval != ERROR_OK) {
253                         LOG_ERROR("Could not read DSCR register");
254                         return retval;
255                 }
256                 if (timeval_ms() > then + 1000) {
257                         LOG_ERROR("Timeout waiting for InstrCompl=1");
258                         return ERROR_FAIL;
259                 }
260         }
261         return ERROR_OK;
262 }
263
264 /* To reduce needless round-trips, pass in a pointer to the current
265  * DSCR value.  Initialize it to zero if you just need to know the
266  * value on return from this function; or DSCR_INSTR_COMP if you
267  * happen to know that no instruction is pending.
268  */
269 static int cortex_a_exec_opcode(struct target *target,
270         uint32_t opcode, uint32_t *dscr_p)
271 {
272         uint32_t dscr;
273         int retval;
274         struct armv7a_common *armv7a = target_to_armv7a(target);
275
276         dscr = dscr_p ? *dscr_p : 0;
277
278         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
279
280         /* Wait for InstrCompl bit to be set */
281         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
282         if (retval != ERROR_OK)
283                 return retval;
284
285         retval = mem_ap_write_u32(armv7a->debug_ap,
286                         armv7a->debug_base + CPUDBG_ITR, opcode);
287         if (retval != ERROR_OK)
288                 return retval;
289
290         int64_t then = timeval_ms();
291         do {
292                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
293                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
294                 if (retval != ERROR_OK) {
295                         LOG_ERROR("Could not read DSCR register");
296                         return retval;
297                 }
298                 if (timeval_ms() > then + 1000) {
299                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
300                         return ERROR_FAIL;
301                 }
302         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
303
304         if (dscr_p)
305                 *dscr_p = dscr;
306
307         return retval;
308 }
309
310 static int cortex_a_dap_read_coreregister_u32(struct target *target,
311         uint32_t *value, int regnum)
312 {
313         int retval = ERROR_OK;
314         uint8_t reg = regnum&0xFF;
315         uint32_t dscr = 0;
316         struct armv7a_common *armv7a = target_to_armv7a(target);
317
318         if (reg > 17)
319                 return retval;
320
321         if (reg < 15) {
322                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
323                 retval = cortex_a_exec_opcode(target,
324                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
325                                 &dscr);
326                 if (retval != ERROR_OK)
327                         return retval;
328         } else if (reg == 15) {
329                 /* "MOV r0, r15"; then move r0 to DCCTX */
330                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
331                 if (retval != ERROR_OK)
332                         return retval;
333                 retval = cortex_a_exec_opcode(target,
334                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
335                                 &dscr);
336                 if (retval != ERROR_OK)
337                         return retval;
338         } else {
339                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
340                  * then move r0 to DCCTX
341                  */
342                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
343                 if (retval != ERROR_OK)
344                         return retval;
345                 retval = cortex_a_exec_opcode(target,
346                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
347                                 &dscr);
348                 if (retval != ERROR_OK)
349                         return retval;
350         }
351
352         /* Wait for DTRRXfull then read DTRRTX */
353         int64_t then = timeval_ms();
354         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
355                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
356                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
357                 if (retval != ERROR_OK)
358                         return retval;
359                 if (timeval_ms() > then + 1000) {
360                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
361                         return ERROR_FAIL;
362                 }
363         }
364
365         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
366                         armv7a->debug_base + CPUDBG_DTRTX, value);
367         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
368
369         return retval;
370 }
371
372 __attribute__((unused))
373 static int cortex_a_dap_write_coreregister_u32(struct target *target,
374         uint32_t value, int regnum)
375 {
376         int retval = ERROR_OK;
377         uint8_t Rd = regnum&0xFF;
378         uint32_t dscr;
379         struct armv7a_common *armv7a = target_to_armv7a(target);
380
381         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
382
383         /* Check that DCCRX is not full */
384         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
385                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
386         if (retval != ERROR_OK)
387                 return retval;
388         if (dscr & DSCR_DTR_RX_FULL) {
389                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
390                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
391                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
392                                 &dscr);
393                 if (retval != ERROR_OK)
394                         return retval;
395         }
396
397         if (Rd > 17)
398                 return retval;
399
400         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
401         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
402         retval = mem_ap_write_u32(armv7a->debug_ap,
403                         armv7a->debug_base + CPUDBG_DTRRX, value);
404         if (retval != ERROR_OK)
405                 return retval;
406
407         if (Rd < 15) {
408                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
409                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
410                                 &dscr);
411
412                 if (retval != ERROR_OK)
413                         return retval;
414         } else if (Rd == 15) {
415                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
416                  * then "mov r15, r0"
417                  */
418                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
419                                 &dscr);
420                 if (retval != ERROR_OK)
421                         return retval;
422                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
423                 if (retval != ERROR_OK)
424                         return retval;
425         } else {
426                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
427                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
428                  */
429                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
430                                 &dscr);
431                 if (retval != ERROR_OK)
432                         return retval;
433                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
434                                 &dscr);
435                 if (retval != ERROR_OK)
436                         return retval;
437
438                 /* "Prefetch flush" after modifying execution status in CPSR */
439                 if (Rd == 16) {
440                         retval = cortex_a_exec_opcode(target,
441                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
442                                         &dscr);
443                         if (retval != ERROR_OK)
444                                 return retval;
445                 }
446         }
447
448         return retval;
449 }
450
451 /* Write to memory mapped registers directly with no cache or mmu handling */
452 static int cortex_a_dap_write_memap_register_u32(struct target *target,
453         uint32_t address,
454         uint32_t value)
455 {
456         int retval;
457         struct armv7a_common *armv7a = target_to_armv7a(target);
458
459         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
460
461         return retval;
462 }
463
464 /*
465  * Cortex-A implementation of Debug Programmer's Model
466  *
467  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
468  * so there's no need to poll for it before executing an instruction.
469  *
470  * NOTE that in several of these cases the "stall" mode might be useful.
471  * It'd let us queue a few operations together... prepare/finish might
472  * be the places to enable/disable that mode.
473  */
474
475 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
476 {
477         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
478 }
479
480 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
481 {
482         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
483         return mem_ap_write_u32(a->armv7a_common.debug_ap,
484                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
485 }
486
487 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
488         uint32_t *dscr_p)
489 {
490         uint32_t dscr = DSCR_INSTR_COMP;
491         int retval;
492
493         if (dscr_p)
494                 dscr = *dscr_p;
495
496         /* Wait for DTRRXfull */
497         int64_t then = timeval_ms();
498         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
499                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
500                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
501                                 &dscr);
502                 if (retval != ERROR_OK)
503                         return retval;
504                 if (timeval_ms() > then + 1000) {
505                         LOG_ERROR("Timeout waiting for read dcc");
506                         return ERROR_FAIL;
507                 }
508         }
509
510         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
511                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
512         if (retval != ERROR_OK)
513                 return retval;
514         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
515
516         if (dscr_p)
517                 *dscr_p = dscr;
518
519         return retval;
520 }
521
522 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
523 {
524         struct cortex_a_common *a = dpm_to_a(dpm);
525         uint32_t dscr;
526         int retval;
527
528         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
529         int64_t then = timeval_ms();
530         for (;; ) {
531                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
532                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
533                                 &dscr);
534                 if (retval != ERROR_OK)
535                         return retval;
536                 if ((dscr & DSCR_INSTR_COMP) != 0)
537                         break;
538                 if (timeval_ms() > then + 1000) {
539                         LOG_ERROR("Timeout waiting for dpm prepare");
540                         return ERROR_FAIL;
541                 }
542         }
543
544         /* this "should never happen" ... */
545         if (dscr & DSCR_DTR_RX_FULL) {
546                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
547                 /* Clear DCCRX */
548                 retval = cortex_a_exec_opcode(
549                                 a->armv7a_common.arm.target,
550                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
551                                 &dscr);
552                 if (retval != ERROR_OK)
553                         return retval;
554         }
555
556         return retval;
557 }
558
559 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
560 {
561         /* REVISIT what could be done here? */
562         return ERROR_OK;
563 }
564
565 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
566         uint32_t opcode, uint32_t data)
567 {
568         struct cortex_a_common *a = dpm_to_a(dpm);
569         int retval;
570         uint32_t dscr = DSCR_INSTR_COMP;
571
572         retval = cortex_a_write_dcc(a, data);
573         if (retval != ERROR_OK)
574                 return retval;
575
576         return cortex_a_exec_opcode(
577                         a->armv7a_common.arm.target,
578                         opcode,
579                         &dscr);
580 }
581
582 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
583         uint32_t opcode, uint32_t data)
584 {
585         struct cortex_a_common *a = dpm_to_a(dpm);
586         uint32_t dscr = DSCR_INSTR_COMP;
587         int retval;
588
589         retval = cortex_a_write_dcc(a, data);
590         if (retval != ERROR_OK)
591                 return retval;
592
593         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
594         retval = cortex_a_exec_opcode(
595                         a->armv7a_common.arm.target,
596                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
597                         &dscr);
598         if (retval != ERROR_OK)
599                 return retval;
600
601         /* then the opcode, taking data from R0 */
602         retval = cortex_a_exec_opcode(
603                         a->armv7a_common.arm.target,
604                         opcode,
605                         &dscr);
606
607         return retval;
608 }
609
610 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
611 {
612         struct target *target = dpm->arm->target;
613         uint32_t dscr = DSCR_INSTR_COMP;
614
615         /* "Prefetch flush" after modifying execution status in CPSR */
616         return cortex_a_exec_opcode(target,
617                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
618                         &dscr);
619 }
620
621 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
622         uint32_t opcode, uint32_t *data)
623 {
624         struct cortex_a_common *a = dpm_to_a(dpm);
625         int retval;
626         uint32_t dscr = DSCR_INSTR_COMP;
627
628         /* the opcode, writing data to DCC */
629         retval = cortex_a_exec_opcode(
630                         a->armv7a_common.arm.target,
631                         opcode,
632                         &dscr);
633         if (retval != ERROR_OK)
634                 return retval;
635
636         return cortex_a_read_dcc(a, data, &dscr);
637 }
638
639
640 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
641         uint32_t opcode, uint32_t *data)
642 {
643         struct cortex_a_common *a = dpm_to_a(dpm);
644         uint32_t dscr = DSCR_INSTR_COMP;
645         int retval;
646
647         /* the opcode, writing data to R0 */
648         retval = cortex_a_exec_opcode(
649                         a->armv7a_common.arm.target,
650                         opcode,
651                         &dscr);
652         if (retval != ERROR_OK)
653                 return retval;
654
655         /* write R0 to DCC */
656         retval = cortex_a_exec_opcode(
657                         a->armv7a_common.arm.target,
658                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
659                         &dscr);
660         if (retval != ERROR_OK)
661                 return retval;
662
663         return cortex_a_read_dcc(a, data, &dscr);
664 }
665
666 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
667         uint32_t addr, uint32_t control)
668 {
669         struct cortex_a_common *a = dpm_to_a(dpm);
670         uint32_t vr = a->armv7a_common.debug_base;
671         uint32_t cr = a->armv7a_common.debug_base;
672         int retval;
673
674         switch (index_t) {
675                 case 0 ... 15:  /* breakpoints */
676                         vr += CPUDBG_BVR_BASE;
677                         cr += CPUDBG_BCR_BASE;
678                         break;
679                 case 16 ... 31: /* watchpoints */
680                         vr += CPUDBG_WVR_BASE;
681                         cr += CPUDBG_WCR_BASE;
682                         index_t -= 16;
683                         break;
684                 default:
685                         return ERROR_FAIL;
686         }
687         vr += 4 * index_t;
688         cr += 4 * index_t;
689
690         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
691                 (unsigned) vr, (unsigned) cr);
692
693         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
694                         vr, addr);
695         if (retval != ERROR_OK)
696                 return retval;
697         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
698                         cr, control);
699         return retval;
700 }
701
702 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
703 {
704         struct cortex_a_common *a = dpm_to_a(dpm);
705         uint32_t cr;
706
707         switch (index_t) {
708                 case 0 ... 15:
709                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
710                         break;
711                 case 16 ... 31:
712                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
713                         index_t -= 16;
714                         break;
715                 default:
716                         return ERROR_FAIL;
717         }
718         cr += 4 * index_t;
719
720         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
721
722         /* clear control register */
723         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
724 }
725
726 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
727 {
728         struct arm_dpm *dpm = &a->armv7a_common.dpm;
729         int retval;
730
731         dpm->arm = &a->armv7a_common.arm;
732         dpm->didr = didr;
733
734         dpm->prepare = cortex_a_dpm_prepare;
735         dpm->finish = cortex_a_dpm_finish;
736
737         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
738         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
739         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
740
741         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
742         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
743
744         dpm->bpwp_enable = cortex_a_bpwp_enable;
745         dpm->bpwp_disable = cortex_a_bpwp_disable;
746
747         retval = arm_dpm_setup(dpm);
748         if (retval == ERROR_OK)
749                 retval = arm_dpm_initialize(dpm);
750
751         return retval;
752 }
753 static struct target *get_cortex_a(struct target *target, int32_t coreid)
754 {
755         struct target_list *head;
756         struct target *curr;
757
758         head = target->head;
759         while (head != (struct target_list *)NULL) {
760                 curr = head->target;
761                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
762                         return curr;
763                 head = head->next;
764         }
765         return target;
766 }
767 static int cortex_a_halt(struct target *target);
768
769 static int cortex_a_halt_smp(struct target *target)
770 {
771         int retval = 0;
772         struct target_list *head;
773         struct target *curr;
774         head = target->head;
775         while (head != (struct target_list *)NULL) {
776                 curr = head->target;
777                 if ((curr != target) && (curr->state != TARGET_HALTED)
778                         && target_was_examined(curr))
779                         retval += cortex_a_halt(curr);
780                 head = head->next;
781         }
782         return retval;
783 }
784
785 static int update_halt_gdb(struct target *target)
786 {
787         struct target *gdb_target = NULL;
788         struct target_list *head;
789         struct target *curr;
790         int retval = 0;
791
792         if (target->gdb_service && target->gdb_service->core[0] == -1) {
793                 target->gdb_service->target = target;
794                 target->gdb_service->core[0] = target->coreid;
795                 retval += cortex_a_halt_smp(target);
796         }
797
798         if (target->gdb_service)
799                 gdb_target = target->gdb_service->target;
800
801         foreach_smp_target(head, target->head) {
802                 curr = head->target;
803                 /* skip calling context */
804                 if (curr == target)
805                         continue;
806                 if (!target_was_examined(curr))
807                         continue;
808                 /* skip targets that were already halted */
809                 if (curr->state == TARGET_HALTED)
810                         continue;
811                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
812                 if (curr == gdb_target)
813                         continue;
814
815                 /* avoid recursion in cortex_a_poll() */
816                 curr->smp = 0;
817                 cortex_a_poll(curr);
818                 curr->smp = 1;
819         }
820
821         /* after all targets were updated, poll the gdb serving target */
822         if (gdb_target != NULL && gdb_target != target)
823                 cortex_a_poll(gdb_target);
824         return retval;
825 }
826
827 /*
828  * Cortex-A Run control
829  */
830
831 static int cortex_a_poll(struct target *target)
832 {
833         int retval = ERROR_OK;
834         uint32_t dscr;
835         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
836         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
837         enum target_state prev_target_state = target->state;
838         /*  toggle to another core is done by gdb as follow */
839         /*  maint packet J core_id */
840         /*  continue */
841         /*  the next polling trigger an halt event sent to gdb */
842         if ((target->state == TARGET_HALTED) && (target->smp) &&
843                 (target->gdb_service) &&
844                 (target->gdb_service->target == NULL)) {
845                 target->gdb_service->target =
846                         get_cortex_a(target, target->gdb_service->core[1]);
847                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
848                 return retval;
849         }
850         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
851                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
852         if (retval != ERROR_OK)
853                 return retval;
854         cortex_a->cpudbg_dscr = dscr;
855
856         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
857                 if (prev_target_state != TARGET_HALTED) {
858                         /* We have a halting debug event */
859                         LOG_DEBUG("Target halted");
860                         target->state = TARGET_HALTED;
861                         if ((prev_target_state == TARGET_RUNNING)
862                                 || (prev_target_state == TARGET_UNKNOWN)
863                                 || (prev_target_state == TARGET_RESET)) {
864                                 retval = cortex_a_debug_entry(target);
865                                 if (retval != ERROR_OK)
866                                         return retval;
867                                 if (target->smp) {
868                                         retval = update_halt_gdb(target);
869                                         if (retval != ERROR_OK)
870                                                 return retval;
871                                 }
872
873                                 if (arm_semihosting(target, &retval) != 0)
874                                         return retval;
875
876                                 target_call_event_callbacks(target,
877                                         TARGET_EVENT_HALTED);
878                         }
879                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
880                                 LOG_DEBUG(" ");
881
882                                 retval = cortex_a_debug_entry(target);
883                                 if (retval != ERROR_OK)
884                                         return retval;
885                                 if (target->smp) {
886                                         retval = update_halt_gdb(target);
887                                         if (retval != ERROR_OK)
888                                                 return retval;
889                                 }
890
891                                 target_call_event_callbacks(target,
892                                         TARGET_EVENT_DEBUG_HALTED);
893                         }
894                 }
895         } else
896                 target->state = TARGET_RUNNING;
897
898         return retval;
899 }
900
901 static int cortex_a_halt(struct target *target)
902 {
903         int retval = ERROR_OK;
904         uint32_t dscr;
905         struct armv7a_common *armv7a = target_to_armv7a(target);
906
907         /*
908          * Tell the core to be halted by writing DRCR with 0x1
909          * and then wait for the core to be halted.
910          */
911         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
912                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
913         if (retval != ERROR_OK)
914                 return retval;
915
916         /*
917          * enter halting debug mode
918          */
919         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
920                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
921         if (retval != ERROR_OK)
922                 return retval;
923
924         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
925                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
926         if (retval != ERROR_OK)
927                 return retval;
928
929         int64_t then = timeval_ms();
930         for (;; ) {
931                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
932                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
933                 if (retval != ERROR_OK)
934                         return retval;
935                 if ((dscr & DSCR_CORE_HALTED) != 0)
936                         break;
937                 if (timeval_ms() > then + 1000) {
938                         LOG_ERROR("Timeout waiting for halt");
939                         return ERROR_FAIL;
940                 }
941         }
942
943         target->debug_reason = DBG_REASON_DBGRQ;
944
945         return ERROR_OK;
946 }
947
948 static int cortex_a_internal_restore(struct target *target, int current,
949         target_addr_t *address, int handle_breakpoints, int debug_execution)
950 {
951         struct armv7a_common *armv7a = target_to_armv7a(target);
952         struct arm *arm = &armv7a->arm;
953         int retval;
954         uint32_t resume_pc;
955
956         if (!debug_execution)
957                 target_free_all_working_areas(target);
958
959 #if 0
960         if (debug_execution) {
961                 /* Disable interrupts */
962                 /* We disable interrupts in the PRIMASK register instead of
963                  * masking with C_MASKINTS,
964                  * This is probably the same issue as Cortex-M3 Errata 377493:
965                  * C_MASKINTS in parallel with disabled interrupts can cause
966                  * local faults to not be taken. */
967                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
968                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
969                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
970
971                 /* Make sure we are in Thumb mode */
972                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
973                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
974                         32) | (1 << 24));
975                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
976                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
977         }
978 #endif
979
980         /* current = 1: continue on current pc, otherwise continue at <address> */
981         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
982         if (!current)
983                 resume_pc = *address;
984         else
985                 *address = resume_pc;
986
987         /* Make sure that the Armv7 gdb thumb fixups does not
988          * kill the return address
989          */
990         switch (arm->core_state) {
991                 case ARM_STATE_ARM:
992                         resume_pc &= 0xFFFFFFFC;
993                         break;
994                 case ARM_STATE_THUMB:
995                 case ARM_STATE_THUMB_EE:
996                         /* When the return address is loaded into PC
997                          * bit 0 must be 1 to stay in Thumb state
998                          */
999                         resume_pc |= 0x1;
1000                         break;
1001                 case ARM_STATE_JAZELLE:
1002                         LOG_ERROR("How do I resume into Jazelle state??");
1003                         return ERROR_FAIL;
1004                 case ARM_STATE_AARCH64:
1005                         LOG_ERROR("Shoudn't be in AARCH64 state");
1006                         return ERROR_FAIL;
1007         }
1008         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1009         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1010         arm->pc->dirty = 1;
1011         arm->pc->valid = 1;
1012
1013         /* restore dpm_mode at system halt */
1014         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1015         /* called it now before restoring context because it uses cpu
1016          * register r0 for restoring cp15 control register */
1017         retval = cortex_a_restore_cp15_control_reg(target);
1018         if (retval != ERROR_OK)
1019                 return retval;
1020         retval = cortex_a_restore_context(target, handle_breakpoints);
1021         if (retval != ERROR_OK)
1022                 return retval;
1023         target->debug_reason = DBG_REASON_NOTHALTED;
1024         target->state = TARGET_RUNNING;
1025
1026         /* registers are now invalid */
1027         register_cache_invalidate(arm->core_cache);
1028
1029 #if 0
1030         /* the front-end may request us not to handle breakpoints */
1031         if (handle_breakpoints) {
1032                 /* Single step past breakpoint at current address */
1033                 breakpoint = breakpoint_find(target, resume_pc);
1034                 if (breakpoint) {
1035                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1036                         cortex_m3_unset_breakpoint(target, breakpoint);
1037                         cortex_m3_single_step_core(target);
1038                         cortex_m3_set_breakpoint(target, breakpoint);
1039                 }
1040         }
1041
1042 #endif
1043         return retval;
1044 }
1045
1046 static int cortex_a_internal_restart(struct target *target)
1047 {
1048         struct armv7a_common *armv7a = target_to_armv7a(target);
1049         struct arm *arm = &armv7a->arm;
1050         int retval;
1051         uint32_t dscr;
1052         /*
1053          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1054          * * exception flags: see ARMv7 ARM, C5.9.
1055          *
1056          * REVISIT: for single stepping, we probably want to
1057          * disable IRQs by default, with optional override...
1058          */
1059
1060         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1061                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1062         if (retval != ERROR_OK)
1063                 return retval;
1064
1065         if ((dscr & DSCR_INSTR_COMP) == 0)
1066                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1067
1068         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1069                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1070         if (retval != ERROR_OK)
1071                 return retval;
1072
1073         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1074                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1075                         DRCR_CLEAR_EXCEPTIONS);
1076         if (retval != ERROR_OK)
1077                 return retval;
1078
1079         int64_t then = timeval_ms();
1080         for (;; ) {
1081                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1082                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1083                 if (retval != ERROR_OK)
1084                         return retval;
1085                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1086                         break;
1087                 if (timeval_ms() > then + 1000) {
1088                         LOG_ERROR("Timeout waiting for resume");
1089                         return ERROR_FAIL;
1090                 }
1091         }
1092
1093         target->debug_reason = DBG_REASON_NOTHALTED;
1094         target->state = TARGET_RUNNING;
1095
1096         /* registers are now invalid */
1097         register_cache_invalidate(arm->core_cache);
1098
1099         return ERROR_OK;
1100 }
1101
1102 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1103 {
1104         int retval = 0;
1105         struct target_list *head;
1106         struct target *curr;
1107         target_addr_t address;
1108         head = target->head;
1109         while (head != (struct target_list *)NULL) {
1110                 curr = head->target;
1111                 if ((curr != target) && (curr->state != TARGET_RUNNING)
1112                         && target_was_examined(curr)) {
1113                         /*  resume current address , not in step mode */
1114                         retval += cortex_a_internal_restore(curr, 1, &address,
1115                                         handle_breakpoints, 0);
1116                         retval += cortex_a_internal_restart(curr);
1117                 }
1118                 head = head->next;
1119
1120         }
1121         return retval;
1122 }
1123
1124 static int cortex_a_resume(struct target *target, int current,
1125         target_addr_t address, int handle_breakpoints, int debug_execution)
1126 {
1127         int retval = 0;
1128         /* dummy resume for smp toggle in order to reduce gdb impact  */
1129         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1130                 /*   simulate a start and halt of target */
1131                 target->gdb_service->target = NULL;
1132                 target->gdb_service->core[0] = target->gdb_service->core[1];
1133                 /*  fake resume at next poll we play the  target core[1], see poll*/
1134                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1135                 return 0;
1136         }
1137         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1138         if (target->smp) {
1139                 target->gdb_service->core[0] = -1;
1140                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1141                 if (retval != ERROR_OK)
1142                         return retval;
1143         }
1144         cortex_a_internal_restart(target);
1145
1146         if (!debug_execution) {
1147                 target->state = TARGET_RUNNING;
1148                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1149                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1150         } else {
1151                 target->state = TARGET_DEBUG_RUNNING;
1152                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1153                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1154         }
1155
1156         return ERROR_OK;
1157 }
1158
1159 static int cortex_a_debug_entry(struct target *target)
1160 {
1161         uint32_t spsr, dscr;
1162         int retval = ERROR_OK;
1163         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1164         struct armv7a_common *armv7a = target_to_armv7a(target);
1165         struct arm *arm = &armv7a->arm;
1166         struct reg *reg;
1167
1168         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1169
1170         /* REVISIT surely we should not re-read DSCR !! */
1171         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1172                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1173         if (retval != ERROR_OK)
1174                 return retval;
1175
1176         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1177          * imprecise data aborts get discarded by issuing a Data
1178          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1179          */
1180
1181         /* Enable the ITR execution once we are in debug mode */
1182         dscr |= DSCR_ITR_EN;
1183         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1184                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1185         if (retval != ERROR_OK)
1186                 return retval;
1187
1188         /* Examine debug reason */
1189         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1190
1191         /* save address of instruction that triggered the watchpoint? */
1192         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1193                 uint32_t wfar;
1194
1195                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1196                                 armv7a->debug_base + CPUDBG_WFAR,
1197                                 &wfar);
1198                 if (retval != ERROR_OK)
1199                         return retval;
1200                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1201         }
1202
1203         /* First load register accessible through core debug port */
1204         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1205         if (retval != ERROR_OK)
1206                 return retval;
1207
1208         if (arm->spsr) {
1209                 /* read Saved PSR */
1210                 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1211                 /*  store current spsr */
1212                 if (retval != ERROR_OK)
1213                         return retval;
1214
1215                 reg = arm->spsr;
1216                 buf_set_u32(reg->value, 0, 32, spsr);
1217                 reg->valid = 1;
1218                 reg->dirty = 0;
1219         }
1220
1221 #if 0
1222 /* TODO, Move this */
1223         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1224         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1225         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1226
1227         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1228         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1229
1230         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1231         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1232 #endif
1233
1234         /* Are we in an exception handler */
1235 /*      armv4_5->exception_number = 0; */
1236         if (armv7a->post_debug_entry) {
1237                 retval = armv7a->post_debug_entry(target);
1238                 if (retval != ERROR_OK)
1239                         return retval;
1240         }
1241
1242         return retval;
1243 }
1244
1245 static int cortex_a_post_debug_entry(struct target *target)
1246 {
1247         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1248         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1249         int retval;
1250
1251         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1252         retval = armv7a->arm.mrc(target, 15,
1253                         0, 0,   /* op1, op2 */
1254                         1, 0,   /* CRn, CRm */
1255                         &cortex_a->cp15_control_reg);
1256         if (retval != ERROR_OK)
1257                 return retval;
1258         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1259         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1260
1261         if (!armv7a->is_armv7r)
1262                 armv7a_read_ttbcr(target);
1263
1264         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1265                 armv7a_identify_cache(target);
1266
1267         if (armv7a->is_armv7r) {
1268                 armv7a->armv7a_mmu.mmu_enabled = 0;
1269         } else {
1270                 armv7a->armv7a_mmu.mmu_enabled =
1271                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1272         }
1273         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1274                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1275         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1276                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1277         cortex_a->curr_mode = armv7a->arm.core_mode;
1278
1279         /* switch to SVC mode to read DACR */
1280         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1281         armv7a->arm.mrc(target, 15,
1282                         0, 0, 3, 0,
1283                         &cortex_a->cp15_dacr_reg);
1284
1285         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1286                         cortex_a->cp15_dacr_reg);
1287
1288         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1289         return ERROR_OK;
1290 }
1291
1292 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1293 {
1294         struct armv7a_common *armv7a = target_to_armv7a(target);
1295         uint32_t dscr;
1296
1297         /* Read DSCR */
1298         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1299                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1300         if (ERROR_OK != retval)
1301                 return retval;
1302
1303         /* clear bitfield */
1304         dscr &= ~bit_mask;
1305         /* put new value */
1306         dscr |= value & bit_mask;
1307
1308         /* write new DSCR */
1309         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1310                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1311         return retval;
1312 }
1313
1314 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1315         int handle_breakpoints)
1316 {
1317         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1318         struct armv7a_common *armv7a = target_to_armv7a(target);
1319         struct arm *arm = &armv7a->arm;
1320         struct breakpoint *breakpoint = NULL;
1321         struct breakpoint stepbreakpoint;
1322         struct reg *r;
1323         int retval;
1324
1325         if (target->state != TARGET_HALTED) {
1326                 LOG_WARNING("target not halted");
1327                 return ERROR_TARGET_NOT_HALTED;
1328         }
1329
1330         /* current = 1: continue on current pc, otherwise continue at <address> */
1331         r = arm->pc;
1332         if (!current)
1333                 buf_set_u32(r->value, 0, 32, address);
1334         else
1335                 address = buf_get_u32(r->value, 0, 32);
1336
1337         /* The front-end may request us not to handle breakpoints.
1338          * But since Cortex-A uses breakpoint for single step,
1339          * we MUST handle breakpoints.
1340          */
1341         handle_breakpoints = 1;
1342         if (handle_breakpoints) {
1343                 breakpoint = breakpoint_find(target, address);
1344                 if (breakpoint)
1345                         cortex_a_unset_breakpoint(target, breakpoint);
1346         }
1347
1348         /* Setup single step breakpoint */
1349         stepbreakpoint.address = address;
1350         stepbreakpoint.asid = 0;
1351         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1352                 ? 2 : 4;
1353         stepbreakpoint.type = BKPT_HARD;
1354         stepbreakpoint.set = 0;
1355
1356         /* Disable interrupts during single step if requested */
1357         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1358                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1359                 if (ERROR_OK != retval)
1360                         return retval;
1361         }
1362
1363         /* Break on IVA mismatch */
1364         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1365
1366         target->debug_reason = DBG_REASON_SINGLESTEP;
1367
1368         retval = cortex_a_resume(target, 1, address, 0, 0);
1369         if (retval != ERROR_OK)
1370                 return retval;
1371
1372         int64_t then = timeval_ms();
1373         while (target->state != TARGET_HALTED) {
1374                 retval = cortex_a_poll(target);
1375                 if (retval != ERROR_OK)
1376                         return retval;
1377                 if (timeval_ms() > then + 1000) {
1378                         LOG_ERROR("timeout waiting for target halt");
1379                         return ERROR_FAIL;
1380                 }
1381         }
1382
1383         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1384
1385         /* Re-enable interrupts if they were disabled */
1386         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1387                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1388                 if (ERROR_OK != retval)
1389                         return retval;
1390         }
1391
1392
1393         target->debug_reason = DBG_REASON_BREAKPOINT;
1394
1395         if (breakpoint)
1396                 cortex_a_set_breakpoint(target, breakpoint, 0);
1397
1398         if (target->state != TARGET_HALTED)
1399                 LOG_DEBUG("target stepped");
1400
1401         return ERROR_OK;
1402 }
1403
1404 static int cortex_a_restore_context(struct target *target, bool bpwp)
1405 {
1406         struct armv7a_common *armv7a = target_to_armv7a(target);
1407
1408         LOG_DEBUG(" ");
1409
1410         if (armv7a->pre_restore_context)
1411                 armv7a->pre_restore_context(target);
1412
1413         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1414 }
1415
1416 /*
1417  * Cortex-A Breakpoint and watchpoint functions
1418  */
1419
1420 /* Setup hardware Breakpoint Register Pair */
1421 static int cortex_a_set_breakpoint(struct target *target,
1422         struct breakpoint *breakpoint, uint8_t matchmode)
1423 {
1424         int retval;
1425         int brp_i = 0;
1426         uint32_t control;
1427         uint8_t byte_addr_select = 0x0F;
1428         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1429         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1430         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1431
1432         if (breakpoint->set) {
1433                 LOG_WARNING("breakpoint already set");
1434                 return ERROR_OK;
1435         }
1436
1437         if (breakpoint->type == BKPT_HARD) {
1438                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1439                         brp_i++;
1440                 if (brp_i >= cortex_a->brp_num) {
1441                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1442                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1443                 }
1444                 breakpoint->set = brp_i + 1;
1445                 if (breakpoint->length == 2)
1446                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1447                 control = ((matchmode & 0x7) << 20)
1448                         | (byte_addr_select << 5)
1449                         | (3 << 1) | 1;
1450                 brp_list[brp_i].used = 1;
1451                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1452                 brp_list[brp_i].control = control;
1453                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1454                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1455                                 brp_list[brp_i].value);
1456                 if (retval != ERROR_OK)
1457                         return retval;
1458                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1459                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1460                                 brp_list[brp_i].control);
1461                 if (retval != ERROR_OK)
1462                         return retval;
1463                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1464                         brp_list[brp_i].control,
1465                         brp_list[brp_i].value);
1466         } else if (breakpoint->type == BKPT_SOFT) {
1467                 uint8_t code[4];
1468                 /* length == 2: Thumb breakpoint */
1469                 if (breakpoint->length == 2)
1470                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1471                 else
1472                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1473                  * a regular Thumb BKPT instruction but we replace a
1474                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1475                  * length
1476                  */
1477                 if (breakpoint->length == 3) {
1478                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1479                         breakpoint->length = 4;
1480                 } else
1481                         /* length == 4, normal ARM breakpoint */
1482                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1483
1484                 retval = target_read_memory(target,
1485                                 breakpoint->address & 0xFFFFFFFE,
1486                                 breakpoint->length, 1,
1487                                 breakpoint->orig_instr);
1488                 if (retval != ERROR_OK)
1489                         return retval;
1490
1491                 /* make sure data cache is cleaned & invalidated down to PoC */
1492                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1493                         armv7a_cache_flush_virt(target, breakpoint->address,
1494                                                 breakpoint->length);
1495                 }
1496
1497                 retval = target_write_memory(target,
1498                                 breakpoint->address & 0xFFFFFFFE,
1499                                 breakpoint->length, 1, code);
1500                 if (retval != ERROR_OK)
1501                         return retval;
1502
1503                 /* update i-cache at breakpoint location */
1504                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1505                                         breakpoint->length);
1506                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1507                                                  breakpoint->length);
1508
1509                 breakpoint->set = 0x11; /* Any nice value but 0 */
1510         }
1511
1512         return ERROR_OK;
1513 }
1514
1515 static int cortex_a_set_context_breakpoint(struct target *target,
1516         struct breakpoint *breakpoint, uint8_t matchmode)
1517 {
1518         int retval = ERROR_FAIL;
1519         int brp_i = 0;
1520         uint32_t control;
1521         uint8_t byte_addr_select = 0x0F;
1522         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1523         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1524         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1525
1526         if (breakpoint->set) {
1527                 LOG_WARNING("breakpoint already set");
1528                 return retval;
1529         }
1530         /*check available context BRPs*/
1531         while ((brp_list[brp_i].used ||
1532                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1533                 brp_i++;
1534
1535         if (brp_i >= cortex_a->brp_num) {
1536                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1537                 return ERROR_FAIL;
1538         }
1539
1540         breakpoint->set = brp_i + 1;
1541         control = ((matchmode & 0x7) << 20)
1542                 | (byte_addr_select << 5)
1543                 | (3 << 1) | 1;
1544         brp_list[brp_i].used = 1;
1545         brp_list[brp_i].value = (breakpoint->asid);
1546         brp_list[brp_i].control = control;
1547         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1548                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1549                         brp_list[brp_i].value);
1550         if (retval != ERROR_OK)
1551                 return retval;
1552         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1553                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1554                         brp_list[brp_i].control);
1555         if (retval != ERROR_OK)
1556                 return retval;
1557         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1558                 brp_list[brp_i].control,
1559                 brp_list[brp_i].value);
1560         return ERROR_OK;
1561
1562 }
1563
1564 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1565 {
1566         int retval = ERROR_FAIL;
1567         int brp_1 = 0;  /* holds the contextID pair */
1568         int brp_2 = 0;  /* holds the IVA pair */
1569         uint32_t control_CTX, control_IVA;
1570         uint8_t CTX_byte_addr_select = 0x0F;
1571         uint8_t IVA_byte_addr_select = 0x0F;
1572         uint8_t CTX_machmode = 0x03;
1573         uint8_t IVA_machmode = 0x01;
1574         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1575         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1576         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1577
1578         if (breakpoint->set) {
1579                 LOG_WARNING("breakpoint already set");
1580                 return retval;
1581         }
1582         /*check available context BRPs*/
1583         while ((brp_list[brp_1].used ||
1584                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1585                 brp_1++;
1586
1587         printf("brp(CTX) found num: %d\n", brp_1);
1588         if (brp_1 >= cortex_a->brp_num) {
1589                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1590                 return ERROR_FAIL;
1591         }
1592
1593         while ((brp_list[brp_2].used ||
1594                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1595                 brp_2++;
1596
1597         printf("brp(IVA) found num: %d\n", brp_2);
1598         if (brp_2 >= cortex_a->brp_num) {
1599                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1600                 return ERROR_FAIL;
1601         }
1602
1603         breakpoint->set = brp_1 + 1;
1604         breakpoint->linked_BRP = brp_2;
1605         control_CTX = ((CTX_machmode & 0x7) << 20)
1606                 | (brp_2 << 16)
1607                 | (0 << 14)
1608                 | (CTX_byte_addr_select << 5)
1609                 | (3 << 1) | 1;
1610         brp_list[brp_1].used = 1;
1611         brp_list[brp_1].value = (breakpoint->asid);
1612         brp_list[brp_1].control = control_CTX;
1613         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1614                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1615                         brp_list[brp_1].value);
1616         if (retval != ERROR_OK)
1617                 return retval;
1618         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1619                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1620                         brp_list[brp_1].control);
1621         if (retval != ERROR_OK)
1622                 return retval;
1623
1624         control_IVA = ((IVA_machmode & 0x7) << 20)
1625                 | (brp_1 << 16)
1626                 | (IVA_byte_addr_select << 5)
1627                 | (3 << 1) | 1;
1628         brp_list[brp_2].used = 1;
1629         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1630         brp_list[brp_2].control = control_IVA;
1631         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1632                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1633                         brp_list[brp_2].value);
1634         if (retval != ERROR_OK)
1635                 return retval;
1636         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1637                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1638                         brp_list[brp_2].control);
1639         if (retval != ERROR_OK)
1640                 return retval;
1641
1642         return ERROR_OK;
1643 }
1644
1645 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1646 {
1647         int retval;
1648         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1649         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1650         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1651
1652         if (!breakpoint->set) {
1653                 LOG_WARNING("breakpoint not set");
1654                 return ERROR_OK;
1655         }
1656
1657         if (breakpoint->type == BKPT_HARD) {
1658                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1659                         int brp_i = breakpoint->set - 1;
1660                         int brp_j = breakpoint->linked_BRP;
1661                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1662                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1663                                 return ERROR_OK;
1664                         }
1665                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1666                                 brp_list[brp_i].control, brp_list[brp_i].value);
1667                         brp_list[brp_i].used = 0;
1668                         brp_list[brp_i].value = 0;
1669                         brp_list[brp_i].control = 0;
1670                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1671                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1672                                         brp_list[brp_i].control);
1673                         if (retval != ERROR_OK)
1674                                 return retval;
1675                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1676                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1677                                         brp_list[brp_i].value);
1678                         if (retval != ERROR_OK)
1679                                 return retval;
1680                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1681                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1682                                 return ERROR_OK;
1683                         }
1684                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1685                                 brp_list[brp_j].control, brp_list[brp_j].value);
1686                         brp_list[brp_j].used = 0;
1687                         brp_list[brp_j].value = 0;
1688                         brp_list[brp_j].control = 0;
1689                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1690                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1691                                         brp_list[brp_j].control);
1692                         if (retval != ERROR_OK)
1693                                 return retval;
1694                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1695                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1696                                         brp_list[brp_j].value);
1697                         if (retval != ERROR_OK)
1698                                 return retval;
1699                         breakpoint->linked_BRP = 0;
1700                         breakpoint->set = 0;
1701                         return ERROR_OK;
1702
1703                 } else {
1704                         int brp_i = breakpoint->set - 1;
1705                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1706                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1707                                 return ERROR_OK;
1708                         }
1709                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1710                                 brp_list[brp_i].control, brp_list[brp_i].value);
1711                         brp_list[brp_i].used = 0;
1712                         brp_list[brp_i].value = 0;
1713                         brp_list[brp_i].control = 0;
1714                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1715                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1716                                         brp_list[brp_i].control);
1717                         if (retval != ERROR_OK)
1718                                 return retval;
1719                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1720                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1721                                         brp_list[brp_i].value);
1722                         if (retval != ERROR_OK)
1723                                 return retval;
1724                         breakpoint->set = 0;
1725                         return ERROR_OK;
1726                 }
1727         } else {
1728
1729                 /* make sure data cache is cleaned & invalidated down to PoC */
1730                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1731                         armv7a_cache_flush_virt(target, breakpoint->address,
1732                                                 breakpoint->length);
1733                 }
1734
1735                 /* restore original instruction (kept in target endianness) */
1736                 if (breakpoint->length == 4) {
1737                         retval = target_write_memory(target,
1738                                         breakpoint->address & 0xFFFFFFFE,
1739                                         4, 1, breakpoint->orig_instr);
1740                         if (retval != ERROR_OK)
1741                                 return retval;
1742                 } else {
1743                         retval = target_write_memory(target,
1744                                         breakpoint->address & 0xFFFFFFFE,
1745                                         2, 1, breakpoint->orig_instr);
1746                         if (retval != ERROR_OK)
1747                                 return retval;
1748                 }
1749
1750                 /* update i-cache at breakpoint location */
1751                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1752                                                  breakpoint->length);
1753                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1754                                                  breakpoint->length);
1755         }
1756         breakpoint->set = 0;
1757
1758         return ERROR_OK;
1759 }
1760
1761 static int cortex_a_add_breakpoint(struct target *target,
1762         struct breakpoint *breakpoint)
1763 {
1764         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1765
1766         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1767                 LOG_INFO("no hardware breakpoint available");
1768                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1769         }
1770
1771         if (breakpoint->type == BKPT_HARD)
1772                 cortex_a->brp_num_available--;
1773
1774         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1775 }
1776
1777 static int cortex_a_add_context_breakpoint(struct target *target,
1778         struct breakpoint *breakpoint)
1779 {
1780         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1781
1782         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1783                 LOG_INFO("no hardware breakpoint available");
1784                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1785         }
1786
1787         if (breakpoint->type == BKPT_HARD)
1788                 cortex_a->brp_num_available--;
1789
1790         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1791 }
1792
1793 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1794         struct breakpoint *breakpoint)
1795 {
1796         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1797
1798         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1799                 LOG_INFO("no hardware breakpoint available");
1800                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1801         }
1802
1803         if (breakpoint->type == BKPT_HARD)
1804                 cortex_a->brp_num_available--;
1805
1806         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1807 }
1808
1809
1810 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1811 {
1812         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1813
1814 #if 0
1815 /* It is perfectly possible to remove breakpoints while the target is running */
1816         if (target->state != TARGET_HALTED) {
1817                 LOG_WARNING("target not halted");
1818                 return ERROR_TARGET_NOT_HALTED;
1819         }
1820 #endif
1821
1822         if (breakpoint->set) {
1823                 cortex_a_unset_breakpoint(target, breakpoint);
1824                 if (breakpoint->type == BKPT_HARD)
1825                         cortex_a->brp_num_available++;
1826         }
1827
1828
1829         return ERROR_OK;
1830 }
1831
1832 /*
1833  * Cortex-A Reset functions
1834  */
1835
1836 static int cortex_a_assert_reset(struct target *target)
1837 {
1838         struct armv7a_common *armv7a = target_to_armv7a(target);
1839
1840         LOG_DEBUG(" ");
1841
1842         /* FIXME when halt is requested, make it work somehow... */
1843
1844         /* This function can be called in "target not examined" state */
1845
1846         /* Issue some kind of warm reset. */
1847         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1848                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1849         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1850                 /* REVISIT handle "pulls" cases, if there's
1851                  * hardware that needs them to work.
1852                  */
1853
1854                 /*
1855                  * FIXME: fix reset when transport is SWD. This is a temporary
1856                  * work-around for release v0.10 that is not intended to stay!
1857                  */
1858                 if (transport_is_swd() ||
1859                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1860                         jtag_add_reset(0, 1);
1861
1862         } else {
1863                 LOG_ERROR("%s: how to reset?", target_name(target));
1864                 return ERROR_FAIL;
1865         }
1866
1867         /* registers are now invalid */
1868         if (target_was_examined(target))
1869                 register_cache_invalidate(armv7a->arm.core_cache);
1870
1871         target->state = TARGET_RESET;
1872
1873         return ERROR_OK;
1874 }
1875
1876 static int cortex_a_deassert_reset(struct target *target)
1877 {
1878         int retval;
1879
1880         LOG_DEBUG(" ");
1881
1882         /* be certain SRST is off */
1883         jtag_add_reset(0, 0);
1884
1885         if (target_was_examined(target)) {
1886                 retval = cortex_a_poll(target);
1887                 if (retval != ERROR_OK)
1888                         return retval;
1889         }
1890
1891         if (target->reset_halt) {
1892                 if (target->state != TARGET_HALTED) {
1893                         LOG_WARNING("%s: ran after reset and before halt ...",
1894                                 target_name(target));
1895                         if (target_was_examined(target)) {
1896                                 retval = target_halt(target);
1897                                 if (retval != ERROR_OK)
1898                                         return retval;
1899                         } else
1900                                 target->state = TARGET_UNKNOWN;
1901                 }
1902         }
1903
1904         return ERROR_OK;
1905 }
1906
1907 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1908 {
1909         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1910          * New desired mode must be in mode. Current value of DSCR must be in
1911          * *dscr, which is updated with new value.
1912          *
1913          * This function elides actually sending the mode-change over the debug
1914          * interface if the mode is already set as desired.
1915          */
1916         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1917         if (new_dscr != *dscr) {
1918                 struct armv7a_common *armv7a = target_to_armv7a(target);
1919                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1920                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1921                 if (retval == ERROR_OK)
1922                         *dscr = new_dscr;
1923                 return retval;
1924         } else {
1925                 return ERROR_OK;
1926         }
1927 }
1928
1929 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1930         uint32_t value, uint32_t *dscr)
1931 {
1932         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1933         struct armv7a_common *armv7a = target_to_armv7a(target);
1934         int64_t then = timeval_ms();
1935         int retval;
1936
1937         while ((*dscr & mask) != value) {
1938                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1939                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1940                 if (retval != ERROR_OK)
1941                         return retval;
1942                 if (timeval_ms() > then + 1000) {
1943                         LOG_ERROR("timeout waiting for DSCR bit change");
1944                         return ERROR_FAIL;
1945                 }
1946         }
1947         return ERROR_OK;
1948 }
1949
1950 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1951         uint32_t *data, uint32_t *dscr)
1952 {
1953         int retval;
1954         struct armv7a_common *armv7a = target_to_armv7a(target);
1955
1956         /* Move from coprocessor to R0. */
1957         retval = cortex_a_exec_opcode(target, opcode, dscr);
1958         if (retval != ERROR_OK)
1959                 return retval;
1960
1961         /* Move from R0 to DTRTX. */
1962         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1963         if (retval != ERROR_OK)
1964                 return retval;
1965
1966         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1967          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1968          * must also check TXfull_l). Most of the time this will be free
1969          * because TXfull_l will be set immediately and cached in dscr. */
1970         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1971                         DSCR_DTRTX_FULL_LATCHED, dscr);
1972         if (retval != ERROR_OK)
1973                 return retval;
1974
1975         /* Read the value transferred to DTRTX. */
1976         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1977                         armv7a->debug_base + CPUDBG_DTRTX, data);
1978         if (retval != ERROR_OK)
1979                 return retval;
1980
1981         return ERROR_OK;
1982 }
1983
1984 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1985         uint32_t *dfsr, uint32_t *dscr)
1986 {
1987         int retval;
1988
1989         if (dfar) {
1990                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1991                 if (retval != ERROR_OK)
1992                         return retval;
1993         }
1994
1995         if (dfsr) {
1996                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1997                 if (retval != ERROR_OK)
1998                         return retval;
1999         }
2000
2001         return ERROR_OK;
2002 }
2003
2004 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2005         uint32_t data, uint32_t *dscr)
2006 {
2007         int retval;
2008         struct armv7a_common *armv7a = target_to_armv7a(target);
2009
2010         /* Write the value into DTRRX. */
2011         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2012                         armv7a->debug_base + CPUDBG_DTRRX, data);
2013         if (retval != ERROR_OK)
2014                 return retval;
2015
2016         /* Move from DTRRX to R0. */
2017         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2018         if (retval != ERROR_OK)
2019                 return retval;
2020
2021         /* Move from R0 to coprocessor. */
2022         retval = cortex_a_exec_opcode(target, opcode, dscr);
2023         if (retval != ERROR_OK)
2024                 return retval;
2025
2026         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2027          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2028          * check RXfull_l). Most of the time this will be free because RXfull_l
2029          * will be cleared immediately and cached in dscr. */
2030         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2031         if (retval != ERROR_OK)
2032                 return retval;
2033
2034         return ERROR_OK;
2035 }
2036
2037 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2038         uint32_t dfsr, uint32_t *dscr)
2039 {
2040         int retval;
2041
2042         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2043         if (retval != ERROR_OK)
2044                 return retval;
2045
2046         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2047         if (retval != ERROR_OK)
2048                 return retval;
2049
2050         return ERROR_OK;
2051 }
2052
2053 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2054 {
2055         uint32_t status, upper4;
2056
2057         if (dfsr & (1 << 9)) {
2058                 /* LPAE format. */
2059                 status = dfsr & 0x3f;
2060                 upper4 = status >> 2;
2061                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2062                         return ERROR_TARGET_TRANSLATION_FAULT;
2063                 else if (status == 33)
2064                         return ERROR_TARGET_UNALIGNED_ACCESS;
2065                 else
2066                         return ERROR_TARGET_DATA_ABORT;
2067         } else {
2068                 /* Normal format. */
2069                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2070                 if (status == 1)
2071                         return ERROR_TARGET_UNALIGNED_ACCESS;
2072                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2073                                 status == 9 || status == 11 || status == 13 || status == 15)
2074                         return ERROR_TARGET_TRANSLATION_FAULT;
2075                 else
2076                         return ERROR_TARGET_DATA_ABORT;
2077         }
2078 }
2079
2080 static int cortex_a_write_cpu_memory_slow(struct target *target,
2081         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2082 {
2083         /* Writes count objects of size size from *buffer. Old value of DSCR must
2084          * be in *dscr; updated to new value. This is slow because it works for
2085          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2086          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2087          * preferred.
2088          * Preconditions:
2089          * - Address is in R0.
2090          * - R0 is marked dirty.
2091          */
2092         struct armv7a_common *armv7a = target_to_armv7a(target);
2093         struct arm *arm = &armv7a->arm;
2094         int retval;
2095
2096         /* Mark register R1 as dirty, to use for transferring data. */
2097         arm_reg_current(arm, 1)->dirty = true;
2098
2099         /* Switch to non-blocking mode if not already in that mode. */
2100         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2101         if (retval != ERROR_OK)
2102                 return retval;
2103
2104         /* Go through the objects. */
2105         while (count) {
2106                 /* Write the value to store into DTRRX. */
2107                 uint32_t data, opcode;
2108                 if (size == 1)
2109                         data = *buffer;
2110                 else if (size == 2)
2111                         data = target_buffer_get_u16(target, buffer);
2112                 else
2113                         data = target_buffer_get_u32(target, buffer);
2114                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2115                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2116                 if (retval != ERROR_OK)
2117                         return retval;
2118
2119                 /* Transfer the value from DTRRX to R1. */
2120                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2121                 if (retval != ERROR_OK)
2122                         return retval;
2123
2124                 /* Write the value transferred to R1 into memory. */
2125                 if (size == 1)
2126                         opcode = ARMV4_5_STRB_IP(1, 0);
2127                 else if (size == 2)
2128                         opcode = ARMV4_5_STRH_IP(1, 0);
2129                 else
2130                         opcode = ARMV4_5_STRW_IP(1, 0);
2131                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2132                 if (retval != ERROR_OK)
2133                         return retval;
2134
2135                 /* Check for faults and return early. */
2136                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2137                         return ERROR_OK; /* A data fault is not considered a system failure. */
2138
2139                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2140                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2141                  * must also check RXfull_l). Most of the time this will be free
2142                  * because RXfull_l will be cleared immediately and cached in dscr. */
2143                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2144                 if (retval != ERROR_OK)
2145                         return retval;
2146
2147                 /* Advance. */
2148                 buffer += size;
2149                 --count;
2150         }
2151
2152         return ERROR_OK;
2153 }
2154
2155 static int cortex_a_write_cpu_memory_fast(struct target *target,
2156         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2157 {
2158         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2159          * in *dscr; updated to new value. This is fast but only works for
2160          * word-sized objects at aligned addresses.
2161          * Preconditions:
2162          * - Address is in R0 and must be a multiple of 4.
2163          * - R0 is marked dirty.
2164          */
2165         struct armv7a_common *armv7a = target_to_armv7a(target);
2166         int retval;
2167
2168         /* Switch to fast mode if not already in that mode. */
2169         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2170         if (retval != ERROR_OK)
2171                 return retval;
2172
2173         /* Latch STC instruction. */
2174         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2175                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2176         if (retval != ERROR_OK)
2177                 return retval;
2178
2179         /* Transfer all the data and issue all the instructions. */
2180         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2181                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2182 }
2183
2184 static int cortex_a_write_cpu_memory(struct target *target,
2185         uint32_t address, uint32_t size,
2186         uint32_t count, const uint8_t *buffer)
2187 {
2188         /* Write memory through the CPU. */
2189         int retval, final_retval;
2190         struct armv7a_common *armv7a = target_to_armv7a(target);
2191         struct arm *arm = &armv7a->arm;
2192         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2193
2194         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2195                           address, size, count);
2196         if (target->state != TARGET_HALTED) {
2197                 LOG_WARNING("target not halted");
2198                 return ERROR_TARGET_NOT_HALTED;
2199         }
2200
2201         if (!count)
2202                 return ERROR_OK;
2203
2204         /* Clear any abort. */
2205         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2206                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2207         if (retval != ERROR_OK)
2208                 return retval;
2209
2210         /* Read DSCR. */
2211         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2212                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2213         if (retval != ERROR_OK)
2214                 return retval;
2215
2216         /* Switch to non-blocking mode if not already in that mode. */
2217         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2218         if (retval != ERROR_OK)
2219                 goto out;
2220
2221         /* Mark R0 as dirty. */
2222         arm_reg_current(arm, 0)->dirty = true;
2223
2224         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2225         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2226         if (retval != ERROR_OK)
2227                 goto out;
2228
2229         /* Get the memory address into R0. */
2230         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2231                         armv7a->debug_base + CPUDBG_DTRRX, address);
2232         if (retval != ERROR_OK)
2233                 goto out;
2234         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2235         if (retval != ERROR_OK)
2236                 goto out;
2237
2238         if (size == 4 && (address % 4) == 0) {
2239                 /* We are doing a word-aligned transfer, so use fast mode. */
2240                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2241         } else {
2242                 /* Use slow path. */
2243                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2244         }
2245
2246 out:
2247         final_retval = retval;
2248
2249         /* Switch to non-blocking mode if not already in that mode. */
2250         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2251         if (final_retval == ERROR_OK)
2252                 final_retval = retval;
2253
2254         /* Wait for last issued instruction to complete. */
2255         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2256         if (final_retval == ERROR_OK)
2257                 final_retval = retval;
2258
2259         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2260          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2261          * check RXfull_l). Most of the time this will be free because RXfull_l
2262          * will be cleared immediately and cached in dscr. However, don't do this
2263          * if there is fault, because then the instruction might not have completed
2264          * successfully. */
2265         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2266                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2267                 if (retval != ERROR_OK)
2268                         return retval;
2269         }
2270
2271         /* If there were any sticky abort flags, clear them. */
2272         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2273                 fault_dscr = dscr;
2274                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2275                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2276                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2277         } else {
2278                 fault_dscr = 0;
2279         }
2280
2281         /* Handle synchronous data faults. */
2282         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2283                 if (final_retval == ERROR_OK) {
2284                         /* Final return value will reflect cause of fault. */
2285                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2286                         if (retval == ERROR_OK) {
2287                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2288                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2289                         } else
2290                                 final_retval = retval;
2291                 }
2292                 /* Fault destroyed DFAR/DFSR; restore them. */
2293                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2294                 if (retval != ERROR_OK)
2295                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2296         }
2297
2298         /* Handle asynchronous data faults. */
2299         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2300                 if (final_retval == ERROR_OK)
2301                         /* No other error has been recorded so far, so keep this one. */
2302                         final_retval = ERROR_TARGET_DATA_ABORT;
2303         }
2304
2305         /* If the DCC is nonempty, clear it. */
2306         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2307                 uint32_t dummy;
2308                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2309                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2310                 if (final_retval == ERROR_OK)
2311                         final_retval = retval;
2312         }
2313         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2314                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2315                 if (final_retval == ERROR_OK)
2316                         final_retval = retval;
2317         }
2318
2319         /* Done. */
2320         return final_retval;
2321 }
2322
2323 static int cortex_a_read_cpu_memory_slow(struct target *target,
2324         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2325 {
2326         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2327          * in *dscr; updated to new value. This is slow because it works for
2328          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2329          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2330          * preferred.
2331          * Preconditions:
2332          * - Address is in R0.
2333          * - R0 is marked dirty.
2334          */
2335         struct armv7a_common *armv7a = target_to_armv7a(target);
2336         struct arm *arm = &armv7a->arm;
2337         int retval;
2338
2339         /* Mark register R1 as dirty, to use for transferring data. */
2340         arm_reg_current(arm, 1)->dirty = true;
2341
2342         /* Switch to non-blocking mode if not already in that mode. */
2343         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2344         if (retval != ERROR_OK)
2345                 return retval;
2346
2347         /* Go through the objects. */
2348         while (count) {
2349                 /* Issue a load of the appropriate size to R1. */
2350                 uint32_t opcode, data;
2351                 if (size == 1)
2352                         opcode = ARMV4_5_LDRB_IP(1, 0);
2353                 else if (size == 2)
2354                         opcode = ARMV4_5_LDRH_IP(1, 0);
2355                 else
2356                         opcode = ARMV4_5_LDRW_IP(1, 0);
2357                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2358                 if (retval != ERROR_OK)
2359                         return retval;
2360
2361                 /* Issue a write of R1 to DTRTX. */
2362                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2363                 if (retval != ERROR_OK)
2364                         return retval;
2365
2366                 /* Check for faults and return early. */
2367                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2368                         return ERROR_OK; /* A data fault is not considered a system failure. */
2369
2370                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2371                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2372                  * must also check TXfull_l). Most of the time this will be free
2373                  * because TXfull_l will be set immediately and cached in dscr. */
2374                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2375                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2376                 if (retval != ERROR_OK)
2377                         return retval;
2378
2379                 /* Read the value transferred to DTRTX into the buffer. */
2380                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2381                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2382                 if (retval != ERROR_OK)
2383                         return retval;
2384                 if (size == 1)
2385                         *buffer = (uint8_t) data;
2386                 else if (size == 2)
2387                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2388                 else
2389                         target_buffer_set_u32(target, buffer, data);
2390
2391                 /* Advance. */
2392                 buffer += size;
2393                 --count;
2394         }
2395
2396         return ERROR_OK;
2397 }
2398
2399 static int cortex_a_read_cpu_memory_fast(struct target *target,
2400         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2401 {
2402         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2403          * *dscr; updated to new value. This is fast but only works for word-sized
2404          * objects at aligned addresses.
2405          * Preconditions:
2406          * - Address is in R0 and must be a multiple of 4.
2407          * - R0 is marked dirty.
2408          */
2409         struct armv7a_common *armv7a = target_to_armv7a(target);
2410         uint32_t u32;
2411         int retval;
2412
2413         /* Switch to non-blocking mode if not already in that mode. */
2414         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2415         if (retval != ERROR_OK)
2416                 return retval;
2417
2418         /* Issue the LDC instruction via a write to ITR. */
2419         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2420         if (retval != ERROR_OK)
2421                 return retval;
2422
2423         count--;
2424
2425         if (count > 0) {
2426                 /* Switch to fast mode if not already in that mode. */
2427                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2428                 if (retval != ERROR_OK)
2429                         return retval;
2430
2431                 /* Latch LDC instruction. */
2432                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2433                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2434                 if (retval != ERROR_OK)
2435                         return retval;
2436
2437                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2438                  * mode rules, this blocks until the instruction finishes executing and
2439                  * then reissues the read instruction to read the next word from
2440                  * memory. The last read of DTRTX in this call reads the second-to-last
2441                  * word from memory and issues the read instruction for the last word.
2442                  */
2443                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2444                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2445                 if (retval != ERROR_OK)
2446                         return retval;
2447
2448                 /* Advance. */
2449                 buffer += count * 4;
2450         }
2451
2452         /* Wait for last issued instruction to complete. */
2453         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2454         if (retval != ERROR_OK)
2455                 return retval;
2456
2457         /* Switch to non-blocking mode if not already in that mode. */
2458         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2459         if (retval != ERROR_OK)
2460                 return retval;
2461
2462         /* Check for faults and return early. */
2463         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2464                 return ERROR_OK; /* A data fault is not considered a system failure. */
2465
2466         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2467          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2468          * check TXfull_l). Most of the time this will be free because TXfull_l
2469          * will be set immediately and cached in dscr. */
2470         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2471                         DSCR_DTRTX_FULL_LATCHED, dscr);
2472         if (retval != ERROR_OK)
2473                 return retval;
2474
2475         /* Read the value transferred to DTRTX into the buffer. This is the last
2476          * word. */
2477         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2478                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2479         if (retval != ERROR_OK)
2480                 return retval;
2481         target_buffer_set_u32(target, buffer, u32);
2482
2483         return ERROR_OK;
2484 }
2485
2486 static int cortex_a_read_cpu_memory(struct target *target,
2487         uint32_t address, uint32_t size,
2488         uint32_t count, uint8_t *buffer)
2489 {
2490         /* Read memory through the CPU. */
2491         int retval, final_retval;
2492         struct armv7a_common *armv7a = target_to_armv7a(target);
2493         struct arm *arm = &armv7a->arm;
2494         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2495
2496         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2497                           address, size, count);
2498         if (target->state != TARGET_HALTED) {
2499                 LOG_WARNING("target not halted");
2500                 return ERROR_TARGET_NOT_HALTED;
2501         }
2502
2503         if (!count)
2504                 return ERROR_OK;
2505
2506         /* Clear any abort. */
2507         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2508                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2509         if (retval != ERROR_OK)
2510                 return retval;
2511
2512         /* Read DSCR */
2513         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2514                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2515         if (retval != ERROR_OK)
2516                 return retval;
2517
2518         /* Switch to non-blocking mode if not already in that mode. */
2519         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2520         if (retval != ERROR_OK)
2521                 goto out;
2522
2523         /* Mark R0 as dirty. */
2524         arm_reg_current(arm, 0)->dirty = true;
2525
2526         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2527         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2528         if (retval != ERROR_OK)
2529                 goto out;
2530
2531         /* Get the memory address into R0. */
2532         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2533                         armv7a->debug_base + CPUDBG_DTRRX, address);
2534         if (retval != ERROR_OK)
2535                 goto out;
2536         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2537         if (retval != ERROR_OK)
2538                 goto out;
2539
2540         if (size == 4 && (address % 4) == 0) {
2541                 /* We are doing a word-aligned transfer, so use fast mode. */
2542                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2543         } else {
2544                 /* Use slow path. */
2545                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2546         }
2547
2548 out:
2549         final_retval = retval;
2550
2551         /* Switch to non-blocking mode if not already in that mode. */
2552         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2553         if (final_retval == ERROR_OK)
2554                 final_retval = retval;
2555
2556         /* Wait for last issued instruction to complete. */
2557         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2558         if (final_retval == ERROR_OK)
2559                 final_retval = retval;
2560
2561         /* If there were any sticky abort flags, clear them. */
2562         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2563                 fault_dscr = dscr;
2564                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2565                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2566                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2567         } else {
2568                 fault_dscr = 0;
2569         }
2570
2571         /* Handle synchronous data faults. */
2572         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2573                 if (final_retval == ERROR_OK) {
2574                         /* Final return value will reflect cause of fault. */
2575                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2576                         if (retval == ERROR_OK) {
2577                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2578                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2579                         } else
2580                                 final_retval = retval;
2581                 }
2582                 /* Fault destroyed DFAR/DFSR; restore them. */
2583                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2584                 if (retval != ERROR_OK)
2585                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2586         }
2587
2588         /* Handle asynchronous data faults. */
2589         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2590                 if (final_retval == ERROR_OK)
2591                         /* No other error has been recorded so far, so keep this one. */
2592                         final_retval = ERROR_TARGET_DATA_ABORT;
2593         }
2594
2595         /* If the DCC is nonempty, clear it. */
2596         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2597                 uint32_t dummy;
2598                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2599                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2600                 if (final_retval == ERROR_OK)
2601                         final_retval = retval;
2602         }
2603         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2604                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2605                 if (final_retval == ERROR_OK)
2606                         final_retval = retval;
2607         }
2608
2609         /* Done. */
2610         return final_retval;
2611 }
2612
2613
2614 /*
2615  * Cortex-A Memory access
2616  *
2617  * This is same Cortex-M3 but we must also use the correct
2618  * ap number for every access.
2619  */
2620
2621 static int cortex_a_read_phys_memory(struct target *target,
2622         target_addr_t address, uint32_t size,
2623         uint32_t count, uint8_t *buffer)
2624 {
2625         int retval;
2626
2627         if (!count || !buffer)
2628                 return ERROR_COMMAND_SYNTAX_ERROR;
2629
2630         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2631                 address, size, count);
2632
2633         /* read memory through the CPU */
2634         cortex_a_prep_memaccess(target, 1);
2635         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2636         cortex_a_post_memaccess(target, 1);
2637
2638         return retval;
2639 }
2640
2641 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2642         uint32_t size, uint32_t count, uint8_t *buffer)
2643 {
2644         int retval;
2645
2646         /* cortex_a handles unaligned memory access */
2647         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2648                 address, size, count);
2649
2650         cortex_a_prep_memaccess(target, 0);
2651         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2652         cortex_a_post_memaccess(target, 0);
2653
2654         return retval;
2655 }
2656
2657 static int cortex_a_write_phys_memory(struct target *target,
2658         target_addr_t address, uint32_t size,
2659         uint32_t count, const uint8_t *buffer)
2660 {
2661         int retval;
2662
2663         if (!count || !buffer)
2664                 return ERROR_COMMAND_SYNTAX_ERROR;
2665
2666         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2667                 address, size, count);
2668
2669         /* write memory through the CPU */
2670         cortex_a_prep_memaccess(target, 1);
2671         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2672         cortex_a_post_memaccess(target, 1);
2673
2674         return retval;
2675 }
2676
2677 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2678         uint32_t size, uint32_t count, const uint8_t *buffer)
2679 {
2680         int retval;
2681
2682         /* cortex_a handles unaligned memory access */
2683         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2684                 address, size, count);
2685
2686         /* memory writes bypass the caches, must flush before writing */
2687         armv7a_cache_auto_flush_on_write(target, address, size * count);
2688
2689         cortex_a_prep_memaccess(target, 0);
2690         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2691         cortex_a_post_memaccess(target, 0);
2692         return retval;
2693 }
2694
2695 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2696                                 uint32_t count, uint8_t *buffer)
2697 {
2698         uint32_t size;
2699
2700         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2701          * will have something to do with the size we leave to it. */
2702         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2703                 if (address & size) {
2704                         int retval = target_read_memory(target, address, size, 1, buffer);
2705                         if (retval != ERROR_OK)
2706                                 return retval;
2707                         address += size;
2708                         count -= size;
2709                         buffer += size;
2710                 }
2711         }
2712
2713         /* Read the data with as large access size as possible. */
2714         for (; size > 0; size /= 2) {
2715                 uint32_t aligned = count - count % size;
2716                 if (aligned > 0) {
2717                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2718                         if (retval != ERROR_OK)
2719                                 return retval;
2720                         address += aligned;
2721                         count -= aligned;
2722                         buffer += aligned;
2723                 }
2724         }
2725
2726         return ERROR_OK;
2727 }
2728
2729 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2730                                  uint32_t count, const uint8_t *buffer)
2731 {
2732         uint32_t size;
2733
2734         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2735          * will have something to do with the size we leave to it. */
2736         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2737                 if (address & size) {
2738                         int retval = target_write_memory(target, address, size, 1, buffer);
2739                         if (retval != ERROR_OK)
2740                                 return retval;
2741                         address += size;
2742                         count -= size;
2743                         buffer += size;
2744                 }
2745         }
2746
2747         /* Write the data with as large access size as possible. */
2748         for (; size > 0; size /= 2) {
2749                 uint32_t aligned = count - count % size;
2750                 if (aligned > 0) {
2751                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2752                         if (retval != ERROR_OK)
2753                                 return retval;
2754                         address += aligned;
2755                         count -= aligned;
2756                         buffer += aligned;
2757                 }
2758         }
2759
2760         return ERROR_OK;
2761 }
2762
2763 static int cortex_a_handle_target_request(void *priv)
2764 {
2765         struct target *target = priv;
2766         struct armv7a_common *armv7a = target_to_armv7a(target);
2767         int retval;
2768
2769         if (!target_was_examined(target))
2770                 return ERROR_OK;
2771         if (!target->dbg_msg_enabled)
2772                 return ERROR_OK;
2773
2774         if (target->state == TARGET_RUNNING) {
2775                 uint32_t request;
2776                 uint32_t dscr;
2777                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2778                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2779
2780                 /* check if we have data */
2781                 int64_t then = timeval_ms();
2782                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2783                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2784                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2785                         if (retval == ERROR_OK) {
2786                                 target_request(target, request);
2787                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2788                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2789                         }
2790                         if (timeval_ms() > then + 1000) {
2791                                 LOG_ERROR("Timeout waiting for dtr tx full");
2792                                 return ERROR_FAIL;
2793                         }
2794                 }
2795         }
2796
2797         return ERROR_OK;
2798 }
2799
2800 /*
2801  * Cortex-A target information and configuration
2802  */
2803
2804 static int cortex_a_examine_first(struct target *target)
2805 {
2806         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2807         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2808         struct adiv5_dap *swjdp = armv7a->arm.dap;
2809
2810         int i;
2811         int retval = ERROR_OK;
2812         uint32_t didr, cpuid, dbg_osreg;
2813
2814         /* Search for the APB-AP - it is needed for access to debug registers */
2815         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2816         if (retval != ERROR_OK) {
2817                 LOG_ERROR("Could not find APB-AP for debug access");
2818                 return retval;
2819         }
2820
2821         retval = mem_ap_init(armv7a->debug_ap);
2822         if (retval != ERROR_OK) {
2823                 LOG_ERROR("Could not initialize the APB-AP");
2824                 return retval;
2825         }
2826
2827         armv7a->debug_ap->memaccess_tck = 80;
2828
2829         if (!target->dbgbase_set) {
2830                 uint32_t dbgbase;
2831                 /* Get ROM Table base */
2832                 uint32_t apid;
2833                 int32_t coreidx = target->coreid;
2834                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2835                           target->cmd_name);
2836                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2837                 if (retval != ERROR_OK)
2838                         return retval;
2839                 /* Lookup 0x15 -- Processor DAP */
2840                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2841                                 &armv7a->debug_base, &coreidx);
2842                 if (retval != ERROR_OK) {
2843                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2844                                   target->cmd_name);
2845                         return retval;
2846                 }
2847                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2848                           target->coreid, armv7a->debug_base);
2849         } else
2850                 armv7a->debug_base = target->dbgbase;
2851
2852         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2853                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2854         if (retval != ERROR_OK) {
2855                 LOG_DEBUG("Examine %s failed", "DIDR");
2856                 return retval;
2857         }
2858
2859         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2860                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2861         if (retval != ERROR_OK) {
2862                 LOG_DEBUG("Examine %s failed", "CPUID");
2863                 return retval;
2864         }
2865
2866         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2867         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2868
2869         cortex_a->didr = didr;
2870         cortex_a->cpuid = cpuid;
2871
2872         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2873                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2874         if (retval != ERROR_OK)
2875                 return retval;
2876         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2877
2878         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2879                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2880                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2881                 return ERROR_TARGET_INIT_FAILED;
2882         }
2883
2884         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2885                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2886
2887         /* Read DBGOSLSR and check if OSLK is implemented */
2888         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2889                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2890         if (retval != ERROR_OK)
2891                 return retval;
2892         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2893
2894         /* check if OS Lock is implemented */
2895         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2896                 /* check if OS Lock is set */
2897                 if (dbg_osreg & OSLSR_OSLK) {
2898                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2899
2900                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2901                                                         armv7a->debug_base + CPUDBG_OSLAR,
2902                                                         0);
2903                         if (retval == ERROR_OK)
2904                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2905                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2906
2907                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2908                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2909                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2910                                                 target->coreid);
2911                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2912                                 return ERROR_TARGET_INIT_FAILED;
2913                         }
2914                 }
2915         }
2916
2917         armv7a->arm.core_type = ARM_MODE_MON;
2918
2919         /* Avoid recreating the registers cache */
2920         if (!target_was_examined(target)) {
2921                 retval = cortex_a_dpm_setup(cortex_a, didr);
2922                 if (retval != ERROR_OK)
2923                         return retval;
2924         }
2925
2926         /* Setup Breakpoint Register Pairs */
2927         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2928         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2929         cortex_a->brp_num_available = cortex_a->brp_num;
2930         free(cortex_a->brp_list);
2931         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2932 /*      cortex_a->brb_enabled = ????; */
2933         for (i = 0; i < cortex_a->brp_num; i++) {
2934                 cortex_a->brp_list[i].used = 0;
2935                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2936                         cortex_a->brp_list[i].type = BRP_NORMAL;
2937                 else
2938                         cortex_a->brp_list[i].type = BRP_CONTEXT;
2939                 cortex_a->brp_list[i].value = 0;
2940                 cortex_a->brp_list[i].control = 0;
2941                 cortex_a->brp_list[i].BRPn = i;
2942         }
2943
2944         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2945
2946         /* select debug_ap as default */
2947         swjdp->apsel = armv7a->debug_ap->ap_num;
2948
2949         target_set_examined(target);
2950         return ERROR_OK;
2951 }
2952
2953 static int cortex_a_examine(struct target *target)
2954 {
2955         int retval = ERROR_OK;
2956
2957         /* Reestablish communication after target reset */
2958         retval = cortex_a_examine_first(target);
2959
2960         /* Configure core debug access */
2961         if (retval == ERROR_OK)
2962                 retval = cortex_a_init_debug_access(target);
2963
2964         return retval;
2965 }
2966
2967 /*
2968  *      Cortex-A target creation and initialization
2969  */
2970
2971 static int cortex_a_init_target(struct command_context *cmd_ctx,
2972         struct target *target)
2973 {
2974         /* examine_first() does a bunch of this */
2975         arm_semihosting_init(target);
2976         return ERROR_OK;
2977 }
2978
2979 static int cortex_a_init_arch_info(struct target *target,
2980         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2981 {
2982         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2983
2984         /* Setup struct cortex_a_common */
2985         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2986         armv7a->arm.dap = dap;
2987
2988         /* register arch-specific functions */
2989         armv7a->examine_debug_reason = NULL;
2990
2991         armv7a->post_debug_entry = cortex_a_post_debug_entry;
2992
2993         armv7a->pre_restore_context = NULL;
2994
2995         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2996
2997
2998 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
2999
3000         /* REVISIT v7a setup should be in a v7a-specific routine */
3001         armv7a_init_arch_info(target, armv7a);
3002         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3003
3004         return ERROR_OK;
3005 }
3006
3007 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3008 {
3009         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3010         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3011         struct adiv5_private_config *pc;
3012
3013         if (target->private_config == NULL)
3014                 return ERROR_FAIL;
3015
3016         pc = (struct adiv5_private_config *)target->private_config;
3017
3018         cortex_a->armv7a_common.is_armv7r = false;
3019
3020         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3021
3022         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3023 }
3024
3025 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3026 {
3027         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3028         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3029         struct adiv5_private_config *pc;
3030
3031         pc = (struct adiv5_private_config *)target->private_config;
3032         if (adiv5_verify_config(pc) != ERROR_OK)
3033                 return ERROR_FAIL;
3034
3035         cortex_a->armv7a_common.is_armv7r = true;
3036
3037         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3038 }
3039
3040 static void cortex_a_deinit_target(struct target *target)
3041 {
3042         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3043         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3044
3045         free(cortex_a->brp_list);
3046         free(dpm->dbp);
3047         free(dpm->dwp);
3048         free(target->private_config);
3049         free(cortex_a);
3050 }
3051
3052 static int cortex_a_mmu(struct target *target, int *enabled)
3053 {
3054         struct armv7a_common *armv7a = target_to_armv7a(target);
3055
3056         if (target->state != TARGET_HALTED) {
3057                 LOG_ERROR("%s: target not halted", __func__);
3058                 return ERROR_TARGET_INVALID;
3059         }
3060
3061         if (armv7a->is_armv7r)
3062                 *enabled = 0;
3063         else
3064                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3065
3066         return ERROR_OK;
3067 }
3068
3069 static int cortex_a_virt2phys(struct target *target,
3070         target_addr_t virt, target_addr_t *phys)
3071 {
3072         int retval;
3073         int mmu_enabled = 0;
3074
3075         /*
3076          * If the MMU was not enabled at debug entry, there is no
3077          * way of knowing if there was ever a valid configuration
3078          * for it and thus it's not safe to enable it. In this case,
3079          * just return the virtual address as physical.
3080          */
3081         cortex_a_mmu(target, &mmu_enabled);
3082         if (!mmu_enabled) {
3083                 *phys = virt;
3084                 return ERROR_OK;
3085         }
3086
3087         /* mmu must be enable in order to get a correct translation */
3088         retval = cortex_a_mmu_modify(target, 1);
3089         if (retval != ERROR_OK)
3090                 return retval;
3091         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3092                                                     (uint32_t *)phys, 1);
3093 }
3094
3095 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3096 {
3097         struct target *target = get_current_target(CMD_CTX);
3098         struct armv7a_common *armv7a = target_to_armv7a(target);
3099
3100         return armv7a_handle_cache_info_command(CMD_CTX,
3101                         &armv7a->armv7a_mmu.armv7a_cache);
3102 }
3103
3104
3105 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3106 {
3107         struct target *target = get_current_target(CMD_CTX);
3108         if (!target_was_examined(target)) {
3109                 LOG_ERROR("target not examined yet");
3110                 return ERROR_FAIL;
3111         }
3112
3113         return cortex_a_init_debug_access(target);
3114 }
3115 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3116 {
3117         struct target *target = get_current_target(CMD_CTX);
3118         /* check target is an smp target */
3119         struct target_list *head;
3120         struct target *curr;
3121         head = target->head;
3122         target->smp = 0;
3123         if (head != (struct target_list *)NULL) {
3124                 while (head != (struct target_list *)NULL) {
3125                         curr = head->target;
3126                         curr->smp = 0;
3127                         head = head->next;
3128                 }
3129                 /*  fixes the target display to the debugger */
3130                 target->gdb_service->target = target;
3131         }
3132         return ERROR_OK;
3133 }
3134
3135 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3136 {
3137         struct target *target = get_current_target(CMD_CTX);
3138         struct target_list *head;
3139         struct target *curr;
3140         head = target->head;
3141         if (head != (struct target_list *)NULL) {
3142                 target->smp = 1;
3143                 while (head != (struct target_list *)NULL) {
3144                         curr = head->target;
3145                         curr->smp = 1;
3146                         head = head->next;
3147                 }
3148         }
3149         return ERROR_OK;
3150 }
3151
3152 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3153 {
3154         struct target *target = get_current_target(CMD_CTX);
3155         int retval = ERROR_OK;
3156         struct target_list *head;
3157         head = target->head;
3158         if (head != (struct target_list *)NULL) {
3159                 if (CMD_ARGC == 1) {
3160                         int coreid = 0;
3161                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3162                         if (ERROR_OK != retval)
3163                                 return retval;
3164                         target->gdb_service->core[1] = coreid;
3165
3166                 }
3167                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3168                         , target->gdb_service->core[1]);
3169         }
3170         return ERROR_OK;
3171 }
3172
3173 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3174 {
3175         struct target *target = get_current_target(CMD_CTX);
3176         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3177
3178         static const Jim_Nvp nvp_maskisr_modes[] = {
3179                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3180                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3181                 { .name = NULL, .value = -1 },
3182         };
3183         const Jim_Nvp *n;
3184
3185         if (CMD_ARGC > 0) {
3186                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3187                 if (n->name == NULL) {
3188                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3189                         return ERROR_COMMAND_SYNTAX_ERROR;
3190                 }
3191
3192                 cortex_a->isrmasking_mode = n->value;
3193         }
3194
3195         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3196         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3197
3198         return ERROR_OK;
3199 }
3200
3201 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3202 {
3203         struct target *target = get_current_target(CMD_CTX);
3204         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3205
3206         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3207                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3208                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3209                 { .name = NULL, .value = -1 },
3210         };
3211         const Jim_Nvp *n;
3212
3213         if (CMD_ARGC > 0) {
3214                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3215                 if (n->name == NULL)
3216                         return ERROR_COMMAND_SYNTAX_ERROR;
3217                 cortex_a->dacrfixup_mode = n->value;
3218
3219         }
3220
3221         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3222         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3223
3224         return ERROR_OK;
3225 }
3226
3227 static const struct command_registration cortex_a_exec_command_handlers[] = {
3228         {
3229                 .name = "cache_info",
3230                 .handler = cortex_a_handle_cache_info_command,
3231                 .mode = COMMAND_EXEC,
3232                 .help = "display information about target caches",
3233                 .usage = "",
3234         },
3235         {
3236                 .name = "dbginit",
3237                 .handler = cortex_a_handle_dbginit_command,
3238                 .mode = COMMAND_EXEC,
3239                 .help = "Initialize core debug",
3240                 .usage = "",
3241         },
3242         {   .name = "smp_off",
3243             .handler = cortex_a_handle_smp_off_command,
3244             .mode = COMMAND_EXEC,
3245             .help = "Stop smp handling",
3246             .usage = "",},
3247         {
3248                 .name = "smp_on",
3249                 .handler = cortex_a_handle_smp_on_command,
3250                 .mode = COMMAND_EXEC,
3251                 .help = "Restart smp handling",
3252                 .usage = "",
3253         },
3254         {
3255                 .name = "smp_gdb",
3256                 .handler = cortex_a_handle_smp_gdb_command,
3257                 .mode = COMMAND_EXEC,
3258                 .help = "display/fix current core played to gdb",
3259                 .usage = "",
3260         },
3261         {
3262                 .name = "maskisr",
3263                 .handler = handle_cortex_a_mask_interrupts_command,
3264                 .mode = COMMAND_ANY,
3265                 .help = "mask cortex_a interrupts",
3266                 .usage = "['on'|'off']",
3267         },
3268         {
3269                 .name = "dacrfixup",
3270                 .handler = handle_cortex_a_dacrfixup_command,
3271                 .mode = COMMAND_ANY,
3272                 .help = "set domain access control (DACR) to all-manager "
3273                         "on memory access",
3274                 .usage = "['on'|'off']",
3275         },
3276
3277         COMMAND_REGISTRATION_DONE
3278 };
3279 static const struct command_registration cortex_a_command_handlers[] = {
3280         {
3281                 .chain = arm_command_handlers,
3282         },
3283         {
3284                 .chain = armv7a_command_handlers,
3285         },
3286         {
3287                 .name = "cortex_a",
3288                 .mode = COMMAND_ANY,
3289                 .help = "Cortex-A command group",
3290                 .usage = "",
3291                 .chain = cortex_a_exec_command_handlers,
3292         },
3293         COMMAND_REGISTRATION_DONE
3294 };
3295
3296 struct target_type cortexa_target = {
3297         .name = "cortex_a",
3298         .deprecated_name = "cortex_a8",
3299
3300         .poll = cortex_a_poll,
3301         .arch_state = armv7a_arch_state,
3302
3303         .halt = cortex_a_halt,
3304         .resume = cortex_a_resume,
3305         .step = cortex_a_step,
3306
3307         .assert_reset = cortex_a_assert_reset,
3308         .deassert_reset = cortex_a_deassert_reset,
3309
3310         /* REVISIT allow exporting VFP3 registers ... */
3311         .get_gdb_reg_list = arm_get_gdb_reg_list,
3312
3313         .read_memory = cortex_a_read_memory,
3314         .write_memory = cortex_a_write_memory,
3315
3316         .read_buffer = cortex_a_read_buffer,
3317         .write_buffer = cortex_a_write_buffer,
3318
3319         .checksum_memory = arm_checksum_memory,
3320         .blank_check_memory = arm_blank_check_memory,
3321
3322         .run_algorithm = armv4_5_run_algorithm,
3323
3324         .add_breakpoint = cortex_a_add_breakpoint,
3325         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3326         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3327         .remove_breakpoint = cortex_a_remove_breakpoint,
3328         .add_watchpoint = NULL,
3329         .remove_watchpoint = NULL,
3330
3331         .commands = cortex_a_command_handlers,
3332         .target_create = cortex_a_target_create,
3333         .target_jim_configure = adiv5_jim_configure,
3334         .init_target = cortex_a_init_target,
3335         .examine = cortex_a_examine,
3336         .deinit_target = cortex_a_deinit_target,
3337
3338         .read_phys_memory = cortex_a_read_phys_memory,
3339         .write_phys_memory = cortex_a_write_phys_memory,
3340         .mmu = cortex_a_mmu,
3341         .virt2phys = cortex_a_virt2phys,
3342 };
3343
3344 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3345         {
3346                 .name = "dbginit",
3347                 .handler = cortex_a_handle_dbginit_command,
3348                 .mode = COMMAND_EXEC,
3349                 .help = "Initialize core debug",
3350                 .usage = "",
3351         },
3352         {
3353                 .name = "maskisr",
3354                 .handler = handle_cortex_a_mask_interrupts_command,
3355                 .mode = COMMAND_EXEC,
3356                 .help = "mask cortex_r4 interrupts",
3357                 .usage = "['on'|'off']",
3358         },
3359
3360         COMMAND_REGISTRATION_DONE
3361 };
3362 static const struct command_registration cortex_r4_command_handlers[] = {
3363         {
3364                 .chain = arm_command_handlers,
3365         },
3366         {
3367                 .name = "cortex_r4",
3368                 .mode = COMMAND_ANY,
3369                 .help = "Cortex-R4 command group",
3370                 .usage = "",
3371                 .chain = cortex_r4_exec_command_handlers,
3372         },
3373         COMMAND_REGISTRATION_DONE
3374 };
3375
3376 struct target_type cortexr4_target = {
3377         .name = "cortex_r4",
3378
3379         .poll = cortex_a_poll,
3380         .arch_state = armv7a_arch_state,
3381
3382         .halt = cortex_a_halt,
3383         .resume = cortex_a_resume,
3384         .step = cortex_a_step,
3385
3386         .assert_reset = cortex_a_assert_reset,
3387         .deassert_reset = cortex_a_deassert_reset,
3388
3389         /* REVISIT allow exporting VFP3 registers ... */
3390         .get_gdb_reg_list = arm_get_gdb_reg_list,
3391
3392         .read_memory = cortex_a_read_phys_memory,
3393         .write_memory = cortex_a_write_phys_memory,
3394
3395         .checksum_memory = arm_checksum_memory,
3396         .blank_check_memory = arm_blank_check_memory,
3397
3398         .run_algorithm = armv4_5_run_algorithm,
3399
3400         .add_breakpoint = cortex_a_add_breakpoint,
3401         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3402         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3403         .remove_breakpoint = cortex_a_remove_breakpoint,
3404         .add_watchpoint = NULL,
3405         .remove_watchpoint = NULL,
3406
3407         .commands = cortex_r4_command_handlers,
3408         .target_create = cortex_r4_target_create,
3409         .target_jim_configure = adiv5_jim_configure,
3410         .init_target = cortex_a_init_target,
3411         .examine = cortex_a_examine,
3412         .deinit_target = cortex_a_deinit_target,
3413 };