]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
target: cortex_a: add deinit_target handler to free memory
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  *                                                                         *
41  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
42  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
43  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
44  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
45  *                                                                         *
46  ***************************************************************************/
47
48 #ifdef HAVE_CONFIG_H
49 #include "config.h"
50 #endif
51
52 #include "breakpoints.h"
53 #include "cortex_a.h"
54 #include "register.h"
55 #include "target_request.h"
56 #include "target_type.h"
57 #include "arm_opcodes.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64         struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68         struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72         uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74         uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_virt2phys(struct target *target,
77         uint32_t virt, uint32_t *phys);
78 static int cortex_a_read_apb_ab_memory(struct target *target,
79         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
80
81
82 /*  restore cp15_control_reg at resume */
83 static int cortex_a_restore_cp15_control_reg(struct target *target)
84 {
85         int retval = ERROR_OK;
86         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
87         struct armv7a_common *armv7a = target_to_armv7a(target);
88
89         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
90                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
91                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
92                 retval = armv7a->arm.mcr(target, 15,
93                                 0, 0,   /* op1, op2 */
94                                 1, 0,   /* CRn, CRm */
95                                 cortex_a->cp15_control_reg);
96         }
97         return retval;
98 }
99
100 /*  check address before cortex_a_apb read write access with mmu on
101  *  remove apb predictible data abort */
102 static int cortex_a_check_address(struct target *target, uint32_t address)
103 {
104         struct armv7a_common *armv7a = target_to_armv7a(target);
105         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
106         uint32_t os_border = armv7a->armv7a_mmu.os_border;
107         if ((address < os_border) &&
108                 (armv7a->arm.core_mode == ARM_MODE_SVC)) {
109                 LOG_ERROR("%" PRIx32 " access in userspace and target in supervisor", address);
110                 return ERROR_FAIL;
111         }
112         if ((address >= os_border) &&
113                 (cortex_a->curr_mode != ARM_MODE_SVC)) {
114                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
115                 cortex_a->curr_mode = ARM_MODE_SVC;
116                 LOG_INFO("%" PRIx32 " access in kernel space and target not in supervisor",
117                         address);
118                 return ERROR_OK;
119         }
120         if ((address < os_border) &&
121                 (cortex_a->curr_mode == ARM_MODE_SVC)) {
122                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
123                 cortex_a->curr_mode = ARM_MODE_ANY;
124         }
125         return ERROR_OK;
126 }
127 /*  modify cp15_control_reg in order to enable or disable mmu for :
128  *  - virt2phys address conversion
129  *  - read or write memory in phys or virt address */
130 static int cortex_a_mmu_modify(struct target *target, int enable)
131 {
132         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
133         struct armv7a_common *armv7a = target_to_armv7a(target);
134         int retval = ERROR_OK;
135         if (enable) {
136                 /*  if mmu enabled at target stop and mmu not enable */
137                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
138                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
139                         return ERROR_FAIL;
140                 }
141                 if (!(cortex_a->cp15_control_reg_curr & 0x1U)) {
142                         cortex_a->cp15_control_reg_curr |= 0x1U;
143                         retval = armv7a->arm.mcr(target, 15,
144                                         0, 0,   /* op1, op2 */
145                                         1, 0,   /* CRn, CRm */
146                                         cortex_a->cp15_control_reg_curr);
147                 }
148         } else {
149                 if ((cortex_a->cp15_control_reg_curr & 0x1U)) {
150                         if (cortex_a->cp15_control_reg_curr & 0x4U) {
151                                 /* data cache is active */
152                                 cortex_a->cp15_control_reg_curr &= ~0x4U;
153                                 /* flush data cache armv7 function to be called */
154                                 if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache)
155                                         armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache(target);
156                         }
157                         cortex_a->cp15_control_reg_curr &= ~0x1U;
158                         retval = armv7a->arm.mcr(target, 15,
159                                         0, 0,   /* op1, op2 */
160                                         1, 0,   /* CRn, CRm */
161                                         cortex_a->cp15_control_reg_curr);
162                 }
163         }
164         return retval;
165 }
166
167 /*
168  * Cortex-A Basic debug access, very low level assumes state is saved
169  */
170 static int cortex_a8_init_debug_access(struct target *target)
171 {
172         struct armv7a_common *armv7a = target_to_armv7a(target);
173         struct adiv5_dap *swjdp = armv7a->arm.dap;
174         int retval;
175
176         LOG_DEBUG(" ");
177
178         /* Unlocking the debug registers for modification
179          * The debugport might be uninitialised so try twice */
180         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
181                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
182         if (retval != ERROR_OK) {
183                 /* try again */
184                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
185                                 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
186                 if (retval == ERROR_OK)
187                         LOG_USER(
188                                 "Locking debug access failed on first, but succeeded on second try.");
189         }
190
191         return retval;
192 }
193
194 /*
195  * Cortex-A Basic debug access, very low level assumes state is saved
196  */
197 static int cortex_a_init_debug_access(struct target *target)
198 {
199         struct armv7a_common *armv7a = target_to_armv7a(target);
200         struct adiv5_dap *swjdp = armv7a->arm.dap;
201         int retval;
202         uint32_t dbg_osreg;
203         uint32_t cortex_part_num;
204         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
205
206         LOG_DEBUG(" ");
207         cortex_part_num = (cortex_a->cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >>
208                 CORTEX_A_MIDR_PARTNUM_SHIFT;
209
210         switch (cortex_part_num) {
211         case CORTEX_A7_PARTNUM:
212         case CORTEX_A15_PARTNUM:
213                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
214                                                     armv7a->debug_base + CPUDBG_OSLSR,
215                                                     &dbg_osreg);
216                 if (retval != ERROR_OK)
217                         return retval;
218
219                 LOG_DEBUG("DBGOSLSR  0x%" PRIx32, dbg_osreg);
220
221                 if (dbg_osreg & CPUDBG_OSLAR_LK_MASK)
222                         /* Unlocking the DEBUG OS registers for modification */
223                         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
224                                                              armv7a->debug_base + CPUDBG_OSLAR,
225                                                              0);
226                 break;
227
228         case CORTEX_A5_PARTNUM:
229         case CORTEX_A8_PARTNUM:
230         case CORTEX_A9_PARTNUM:
231         default:
232                 retval = cortex_a8_init_debug_access(target);
233         }
234
235         if (retval != ERROR_OK)
236                 return retval;
237         /* Clear Sticky Power Down status Bit in PRSR to enable access to
238            the registers in the Core Power Domain */
239         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
240                         armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
241         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
242
243         if (retval != ERROR_OK)
244                 return retval;
245
246         /* Enabling of instruction execution in debug mode is done in debug_entry code */
247
248         /* Resync breakpoint registers */
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return cortex_a_poll(target);
252 }
253
254 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
255 {
256         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
257          * Writes final value of DSCR into *dscr. Pass force to force always
258          * reading DSCR at least once. */
259         struct armv7a_common *armv7a = target_to_armv7a(target);
260         struct adiv5_dap *swjdp = armv7a->arm.dap;
261         long long then = timeval_ms();
262         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
263                 force = false;
264                 int retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
265                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
266                 if (retval != ERROR_OK) {
267                         LOG_ERROR("Could not read DSCR register");
268                         return retval;
269                 }
270                 if (timeval_ms() > then + 1000) {
271                         LOG_ERROR("Timeout waiting for InstrCompl=1");
272                         return ERROR_FAIL;
273                 }
274         }
275         return ERROR_OK;
276 }
277
278 /* To reduce needless round-trips, pass in a pointer to the current
279  * DSCR value.  Initialize it to zero if you just need to know the
280  * value on return from this function; or DSCR_INSTR_COMP if you
281  * happen to know that no instruction is pending.
282  */
283 static int cortex_a_exec_opcode(struct target *target,
284         uint32_t opcode, uint32_t *dscr_p)
285 {
286         uint32_t dscr;
287         int retval;
288         struct armv7a_common *armv7a = target_to_armv7a(target);
289         struct adiv5_dap *swjdp = armv7a->arm.dap;
290
291         dscr = dscr_p ? *dscr_p : 0;
292
293         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
294
295         /* Wait for InstrCompl bit to be set */
296         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
297         if (retval != ERROR_OK)
298                 return retval;
299
300         retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
301                         armv7a->debug_base + CPUDBG_ITR, opcode);
302         if (retval != ERROR_OK)
303                 return retval;
304
305         long long then = timeval_ms();
306         do {
307                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
308                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
309                 if (retval != ERROR_OK) {
310                         LOG_ERROR("Could not read DSCR register");
311                         return retval;
312                 }
313                 if (timeval_ms() > then + 1000) {
314                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
315                         return ERROR_FAIL;
316                 }
317         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
318
319         if (dscr_p)
320                 *dscr_p = dscr;
321
322         return retval;
323 }
324
325 /**************************************************************************
326 Read core register with very few exec_opcode, fast but needs work_area.
327 This can cause problems with MMU active.
328 **************************************************************************/
329 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
330         uint32_t *regfile)
331 {
332         int retval = ERROR_OK;
333         struct armv7a_common *armv7a = target_to_armv7a(target);
334         struct adiv5_dap *swjdp = armv7a->arm.dap;
335
336         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
337         if (retval != ERROR_OK)
338                 return retval;
339         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
340         if (retval != ERROR_OK)
341                 return retval;
342         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
343         if (retval != ERROR_OK)
344                 return retval;
345
346         retval = mem_ap_sel_read_buf(swjdp, armv7a->memory_ap,
347                         (uint8_t *)(&regfile[1]), 4, 15, address);
348
349         return retval;
350 }
351
352 static int cortex_a_dap_read_coreregister_u32(struct target *target,
353         uint32_t *value, int regnum)
354 {
355         int retval = ERROR_OK;
356         uint8_t reg = regnum&0xFF;
357         uint32_t dscr = 0;
358         struct armv7a_common *armv7a = target_to_armv7a(target);
359         struct adiv5_dap *swjdp = armv7a->arm.dap;
360
361         if (reg > 17)
362                 return retval;
363
364         if (reg < 15) {
365                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
366                 retval = cortex_a_exec_opcode(target,
367                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
368                                 &dscr);
369                 if (retval != ERROR_OK)
370                         return retval;
371         } else if (reg == 15) {
372                 /* "MOV r0, r15"; then move r0 to DCCTX */
373                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
374                 if (retval != ERROR_OK)
375                         return retval;
376                 retval = cortex_a_exec_opcode(target,
377                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
378                                 &dscr);
379                 if (retval != ERROR_OK)
380                         return retval;
381         } else {
382                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
383                  * then move r0 to DCCTX
384                  */
385                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
386                 if (retval != ERROR_OK)
387                         return retval;
388                 retval = cortex_a_exec_opcode(target,
389                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
390                                 &dscr);
391                 if (retval != ERROR_OK)
392                         return retval;
393         }
394
395         /* Wait for DTRRXfull then read DTRRTX */
396         long long then = timeval_ms();
397         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
398                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
399                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
400                 if (retval != ERROR_OK)
401                         return retval;
402                 if (timeval_ms() > then + 1000) {
403                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
404                         return ERROR_FAIL;
405                 }
406         }
407
408         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
409                         armv7a->debug_base + CPUDBG_DTRTX, value);
410         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
411
412         return retval;
413 }
414
415 static int cortex_a_dap_write_coreregister_u32(struct target *target,
416         uint32_t value, int regnum)
417 {
418         int retval = ERROR_OK;
419         uint8_t Rd = regnum&0xFF;
420         uint32_t dscr;
421         struct armv7a_common *armv7a = target_to_armv7a(target);
422         struct adiv5_dap *swjdp = armv7a->arm.dap;
423
424         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
425
426         /* Check that DCCRX is not full */
427         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
428                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
429         if (retval != ERROR_OK)
430                 return retval;
431         if (dscr & DSCR_DTR_RX_FULL) {
432                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
433                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
434                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
435                                 &dscr);
436                 if (retval != ERROR_OK)
437                         return retval;
438         }
439
440         if (Rd > 17)
441                 return retval;
442
443         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
444         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
445         retval = mem_ap_sel_write_u32(swjdp, armv7a->debug_ap,
446                         armv7a->debug_base + CPUDBG_DTRRX, value);
447         if (retval != ERROR_OK)
448                 return retval;
449
450         if (Rd < 15) {
451                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
452                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
453                                 &dscr);
454
455                 if (retval != ERROR_OK)
456                         return retval;
457         } else if (Rd == 15) {
458                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
459                  * then "mov r15, r0"
460                  */
461                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
462                                 &dscr);
463                 if (retval != ERROR_OK)
464                         return retval;
465                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
466                 if (retval != ERROR_OK)
467                         return retval;
468         } else {
469                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
470                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
471                  */
472                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
473                                 &dscr);
474                 if (retval != ERROR_OK)
475                         return retval;
476                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
477                                 &dscr);
478                 if (retval != ERROR_OK)
479                         return retval;
480
481                 /* "Prefetch flush" after modifying execution status in CPSR */
482                 if (Rd == 16) {
483                         retval = cortex_a_exec_opcode(target,
484                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
485                                         &dscr);
486                         if (retval != ERROR_OK)
487                                 return retval;
488                 }
489         }
490
491         return retval;
492 }
493
494 /* Write to memory mapped registers directly with no cache or mmu handling */
495 static int cortex_a_dap_write_memap_register_u32(struct target *target,
496         uint32_t address,
497         uint32_t value)
498 {
499         int retval;
500         struct armv7a_common *armv7a = target_to_armv7a(target);
501         struct adiv5_dap *swjdp = armv7a->arm.dap;
502
503         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap, address, value);
504
505         return retval;
506 }
507
508 /*
509  * Cortex-A implementation of Debug Programmer's Model
510  *
511  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
512  * so there's no need to poll for it before executing an instruction.
513  *
514  * NOTE that in several of these cases the "stall" mode might be useful.
515  * It'd let us queue a few operations together... prepare/finish might
516  * be the places to enable/disable that mode.
517  */
518
519 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
520 {
521         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
522 }
523
524 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
525 {
526         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
527         return mem_ap_sel_write_u32(a->armv7a_common.arm.dap,
528                 a->armv7a_common.debug_ap, a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
529 }
530
531 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
532         uint32_t *dscr_p)
533 {
534         struct adiv5_dap *swjdp = a->armv7a_common.arm.dap;
535         uint32_t dscr = DSCR_INSTR_COMP;
536         int retval;
537
538         if (dscr_p)
539                 dscr = *dscr_p;
540
541         /* Wait for DTRRXfull */
542         long long then = timeval_ms();
543         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
544                 retval = mem_ap_sel_read_atomic_u32(swjdp, a->armv7a_common.debug_ap,
545                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
546                                 &dscr);
547                 if (retval != ERROR_OK)
548                         return retval;
549                 if (timeval_ms() > then + 1000) {
550                         LOG_ERROR("Timeout waiting for read dcc");
551                         return ERROR_FAIL;
552                 }
553         }
554
555         retval = mem_ap_sel_read_atomic_u32(swjdp, a->armv7a_common.debug_ap,
556                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
557         if (retval != ERROR_OK)
558                 return retval;
559         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
560
561         if (dscr_p)
562                 *dscr_p = dscr;
563
564         return retval;
565 }
566
567 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
568 {
569         struct cortex_a_common *a = dpm_to_a(dpm);
570         struct adiv5_dap *swjdp = a->armv7a_common.arm.dap;
571         uint32_t dscr;
572         int retval;
573
574         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
575         long long then = timeval_ms();
576         for (;; ) {
577                 retval = mem_ap_sel_read_atomic_u32(swjdp, a->armv7a_common.debug_ap,
578                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
579                                 &dscr);
580                 if (retval != ERROR_OK)
581                         return retval;
582                 if ((dscr & DSCR_INSTR_COMP) != 0)
583                         break;
584                 if (timeval_ms() > then + 1000) {
585                         LOG_ERROR("Timeout waiting for dpm prepare");
586                         return ERROR_FAIL;
587                 }
588         }
589
590         /* this "should never happen" ... */
591         if (dscr & DSCR_DTR_RX_FULL) {
592                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
593                 /* Clear DCCRX */
594                 retval = cortex_a_exec_opcode(
595                                 a->armv7a_common.arm.target,
596                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
597                                 &dscr);
598                 if (retval != ERROR_OK)
599                         return retval;
600         }
601
602         return retval;
603 }
604
605 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
606 {
607         /* REVISIT what could be done here? */
608         return ERROR_OK;
609 }
610
611 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
612         uint32_t opcode, uint32_t data)
613 {
614         struct cortex_a_common *a = dpm_to_a(dpm);
615         int retval;
616         uint32_t dscr = DSCR_INSTR_COMP;
617
618         retval = cortex_a_write_dcc(a, data);
619         if (retval != ERROR_OK)
620                 return retval;
621
622         return cortex_a_exec_opcode(
623                         a->armv7a_common.arm.target,
624                         opcode,
625                         &dscr);
626 }
627
628 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
629         uint32_t opcode, uint32_t data)
630 {
631         struct cortex_a_common *a = dpm_to_a(dpm);
632         uint32_t dscr = DSCR_INSTR_COMP;
633         int retval;
634
635         retval = cortex_a_write_dcc(a, data);
636         if (retval != ERROR_OK)
637                 return retval;
638
639         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
640         retval = cortex_a_exec_opcode(
641                         a->armv7a_common.arm.target,
642                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
643                         &dscr);
644         if (retval != ERROR_OK)
645                 return retval;
646
647         /* then the opcode, taking data from R0 */
648         retval = cortex_a_exec_opcode(
649                         a->armv7a_common.arm.target,
650                         opcode,
651                         &dscr);
652
653         return retval;
654 }
655
656 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
657 {
658         struct target *target = dpm->arm->target;
659         uint32_t dscr = DSCR_INSTR_COMP;
660
661         /* "Prefetch flush" after modifying execution status in CPSR */
662         return cortex_a_exec_opcode(target,
663                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
664                         &dscr);
665 }
666
667 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
668         uint32_t opcode, uint32_t *data)
669 {
670         struct cortex_a_common *a = dpm_to_a(dpm);
671         int retval;
672         uint32_t dscr = DSCR_INSTR_COMP;
673
674         /* the opcode, writing data to DCC */
675         retval = cortex_a_exec_opcode(
676                         a->armv7a_common.arm.target,
677                         opcode,
678                         &dscr);
679         if (retval != ERROR_OK)
680                 return retval;
681
682         return cortex_a_read_dcc(a, data, &dscr);
683 }
684
685
686 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
687         uint32_t opcode, uint32_t *data)
688 {
689         struct cortex_a_common *a = dpm_to_a(dpm);
690         uint32_t dscr = DSCR_INSTR_COMP;
691         int retval;
692
693         /* the opcode, writing data to R0 */
694         retval = cortex_a_exec_opcode(
695                         a->armv7a_common.arm.target,
696                         opcode,
697                         &dscr);
698         if (retval != ERROR_OK)
699                 return retval;
700
701         /* write R0 to DCC */
702         retval = cortex_a_exec_opcode(
703                         a->armv7a_common.arm.target,
704                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
705                         &dscr);
706         if (retval != ERROR_OK)
707                 return retval;
708
709         return cortex_a_read_dcc(a, data, &dscr);
710 }
711
712 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
713         uint32_t addr, uint32_t control)
714 {
715         struct cortex_a_common *a = dpm_to_a(dpm);
716         uint32_t vr = a->armv7a_common.debug_base;
717         uint32_t cr = a->armv7a_common.debug_base;
718         int retval;
719
720         switch (index_t) {
721                 case 0 ... 15:  /* breakpoints */
722                         vr += CPUDBG_BVR_BASE;
723                         cr += CPUDBG_BCR_BASE;
724                         break;
725                 case 16 ... 31: /* watchpoints */
726                         vr += CPUDBG_WVR_BASE;
727                         cr += CPUDBG_WCR_BASE;
728                         index_t -= 16;
729                         break;
730                 default:
731                         return ERROR_FAIL;
732         }
733         vr += 4 * index_t;
734         cr += 4 * index_t;
735
736         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
737                 (unsigned) vr, (unsigned) cr);
738
739         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
740                         vr, addr);
741         if (retval != ERROR_OK)
742                 return retval;
743         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
744                         cr, control);
745         return retval;
746 }
747
748 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
749 {
750         struct cortex_a_common *a = dpm_to_a(dpm);
751         uint32_t cr;
752
753         switch (index_t) {
754                 case 0 ... 15:
755                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
756                         break;
757                 case 16 ... 31:
758                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
759                         index_t -= 16;
760                         break;
761                 default:
762                         return ERROR_FAIL;
763         }
764         cr += 4 * index_t;
765
766         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
767
768         /* clear control register */
769         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
770 }
771
772 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
773 {
774         struct arm_dpm *dpm = &a->armv7a_common.dpm;
775         int retval;
776
777         dpm->arm = &a->armv7a_common.arm;
778         dpm->didr = didr;
779
780         dpm->prepare = cortex_a_dpm_prepare;
781         dpm->finish = cortex_a_dpm_finish;
782
783         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
784         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
785         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
786
787         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
788         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
789
790         dpm->bpwp_enable = cortex_a_bpwp_enable;
791         dpm->bpwp_disable = cortex_a_bpwp_disable;
792
793         retval = arm_dpm_setup(dpm);
794         if (retval == ERROR_OK)
795                 retval = arm_dpm_initialize(dpm);
796
797         return retval;
798 }
799 static struct target *get_cortex_a(struct target *target, int32_t coreid)
800 {
801         struct target_list *head;
802         struct target *curr;
803
804         head = target->head;
805         while (head != (struct target_list *)NULL) {
806                 curr = head->target;
807                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
808                         return curr;
809                 head = head->next;
810         }
811         return target;
812 }
813 static int cortex_a_halt(struct target *target);
814
815 static int cortex_a_halt_smp(struct target *target)
816 {
817         int retval = 0;
818         struct target_list *head;
819         struct target *curr;
820         head = target->head;
821         while (head != (struct target_list *)NULL) {
822                 curr = head->target;
823                 if ((curr != target) && (curr->state != TARGET_HALTED))
824                         retval += cortex_a_halt(curr);
825                 head = head->next;
826         }
827         return retval;
828 }
829
830 static int update_halt_gdb(struct target *target)
831 {
832         int retval = 0;
833         if (target->gdb_service && target->gdb_service->core[0] == -1) {
834                 target->gdb_service->target = target;
835                 target->gdb_service->core[0] = target->coreid;
836                 retval += cortex_a_halt_smp(target);
837         }
838         return retval;
839 }
840
841 /*
842  * Cortex-A Run control
843  */
844
845 static int cortex_a_poll(struct target *target)
846 {
847         int retval = ERROR_OK;
848         uint32_t dscr;
849         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
850         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
851         struct adiv5_dap *swjdp = armv7a->arm.dap;
852         enum target_state prev_target_state = target->state;
853         /*  toggle to another core is done by gdb as follow */
854         /*  maint packet J core_id */
855         /*  continue */
856         /*  the next polling trigger an halt event sent to gdb */
857         if ((target->state == TARGET_HALTED) && (target->smp) &&
858                 (target->gdb_service) &&
859                 (target->gdb_service->target == NULL)) {
860                 target->gdb_service->target =
861                         get_cortex_a(target, target->gdb_service->core[1]);
862                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
863                 return retval;
864         }
865         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
866                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
867         if (retval != ERROR_OK)
868                 return retval;
869         cortex_a->cpudbg_dscr = dscr;
870
871         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
872                 if (prev_target_state != TARGET_HALTED) {
873                         /* We have a halting debug event */
874                         LOG_DEBUG("Target halted");
875                         target->state = TARGET_HALTED;
876                         if ((prev_target_state == TARGET_RUNNING)
877                                 || (prev_target_state == TARGET_UNKNOWN)
878                                 || (prev_target_state == TARGET_RESET)) {
879                                 retval = cortex_a_debug_entry(target);
880                                 if (retval != ERROR_OK)
881                                         return retval;
882                                 if (target->smp) {
883                                         retval = update_halt_gdb(target);
884                                         if (retval != ERROR_OK)
885                                                 return retval;
886                                 }
887                                 target_call_event_callbacks(target,
888                                         TARGET_EVENT_HALTED);
889                         }
890                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
891                                 LOG_DEBUG(" ");
892
893                                 retval = cortex_a_debug_entry(target);
894                                 if (retval != ERROR_OK)
895                                         return retval;
896                                 if (target->smp) {
897                                         retval = update_halt_gdb(target);
898                                         if (retval != ERROR_OK)
899                                                 return retval;
900                                 }
901
902                                 target_call_event_callbacks(target,
903                                         TARGET_EVENT_DEBUG_HALTED);
904                         }
905                 }
906         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
907                 target->state = TARGET_RUNNING;
908         else {
909                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
910                 target->state = TARGET_UNKNOWN;
911         }
912
913         return retval;
914 }
915
916 static int cortex_a_halt(struct target *target)
917 {
918         int retval = ERROR_OK;
919         uint32_t dscr;
920         struct armv7a_common *armv7a = target_to_armv7a(target);
921         struct adiv5_dap *swjdp = armv7a->arm.dap;
922
923         /*
924          * Tell the core to be halted by writing DRCR with 0x1
925          * and then wait for the core to be halted.
926          */
927         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
928                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
929         if (retval != ERROR_OK)
930                 return retval;
931
932         /*
933          * enter halting debug mode
934          */
935         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
936                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
937         if (retval != ERROR_OK)
938                 return retval;
939
940         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
941                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
942         if (retval != ERROR_OK)
943                 return retval;
944
945         long long then = timeval_ms();
946         for (;; ) {
947                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
948                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
949                 if (retval != ERROR_OK)
950                         return retval;
951                 if ((dscr & DSCR_CORE_HALTED) != 0)
952                         break;
953                 if (timeval_ms() > then + 1000) {
954                         LOG_ERROR("Timeout waiting for halt");
955                         return ERROR_FAIL;
956                 }
957         }
958
959         target->debug_reason = DBG_REASON_DBGRQ;
960
961         return ERROR_OK;
962 }
963
964 static int cortex_a_internal_restore(struct target *target, int current,
965         uint32_t *address, int handle_breakpoints, int debug_execution)
966 {
967         struct armv7a_common *armv7a = target_to_armv7a(target);
968         struct arm *arm = &armv7a->arm;
969         int retval;
970         uint32_t resume_pc;
971
972         if (!debug_execution)
973                 target_free_all_working_areas(target);
974
975 #if 0
976         if (debug_execution) {
977                 /* Disable interrupts */
978                 /* We disable interrupts in the PRIMASK register instead of
979                  * masking with C_MASKINTS,
980                  * This is probably the same issue as Cortex-M3 Errata 377493:
981                  * C_MASKINTS in parallel with disabled interrupts can cause
982                  * local faults to not be taken. */
983                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
984                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
985                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
986
987                 /* Make sure we are in Thumb mode */
988                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
989                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
990                         32) | (1 << 24));
991                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
992                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
993         }
994 #endif
995
996         /* current = 1: continue on current pc, otherwise continue at <address> */
997         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
998         if (!current)
999                 resume_pc = *address;
1000         else
1001                 *address = resume_pc;
1002
1003         /* Make sure that the Armv7 gdb thumb fixups does not
1004          * kill the return address
1005          */
1006         switch (arm->core_state) {
1007                 case ARM_STATE_ARM:
1008                         resume_pc &= 0xFFFFFFFC;
1009                         break;
1010                 case ARM_STATE_THUMB:
1011                 case ARM_STATE_THUMB_EE:
1012                         /* When the return address is loaded into PC
1013                          * bit 0 must be 1 to stay in Thumb state
1014                          */
1015                         resume_pc |= 0x1;
1016                         break;
1017                 case ARM_STATE_JAZELLE:
1018                         LOG_ERROR("How do I resume into Jazelle state??");
1019                         return ERROR_FAIL;
1020         }
1021         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1022         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1023         arm->pc->dirty = 1;
1024         arm->pc->valid = 1;
1025         /* restore dpm_mode at system halt */
1026         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1027         /* called it now before restoring context because it uses cpu
1028          * register r0 for restoring cp15 control register */
1029         retval = cortex_a_restore_cp15_control_reg(target);
1030         if (retval != ERROR_OK)
1031                 return retval;
1032         retval = cortex_a_restore_context(target, handle_breakpoints);
1033         if (retval != ERROR_OK)
1034                 return retval;
1035         target->debug_reason = DBG_REASON_NOTHALTED;
1036         target->state = TARGET_RUNNING;
1037
1038         /* registers are now invalid */
1039         register_cache_invalidate(arm->core_cache);
1040
1041 #if 0
1042         /* the front-end may request us not to handle breakpoints */
1043         if (handle_breakpoints) {
1044                 /* Single step past breakpoint at current address */
1045                 breakpoint = breakpoint_find(target, resume_pc);
1046                 if (breakpoint) {
1047                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1048                         cortex_m3_unset_breakpoint(target, breakpoint);
1049                         cortex_m3_single_step_core(target);
1050                         cortex_m3_set_breakpoint(target, breakpoint);
1051                 }
1052         }
1053
1054 #endif
1055         return retval;
1056 }
1057
1058 static int cortex_a_internal_restart(struct target *target)
1059 {
1060         struct armv7a_common *armv7a = target_to_armv7a(target);
1061         struct arm *arm = &armv7a->arm;
1062         struct adiv5_dap *swjdp = arm->dap;
1063         int retval;
1064         uint32_t dscr;
1065         /*
1066          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1067          * * exception flags: see ARMv7 ARM, C5.9.
1068          *
1069          * REVISIT: for single stepping, we probably want to
1070          * disable IRQs by default, with optional override...
1071          */
1072
1073         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1074                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1075         if (retval != ERROR_OK)
1076                 return retval;
1077
1078         if ((dscr & DSCR_INSTR_COMP) == 0)
1079                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1080
1081         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1082                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1083         if (retval != ERROR_OK)
1084                 return retval;
1085
1086         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1087                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1088                         DRCR_CLEAR_EXCEPTIONS);
1089         if (retval != ERROR_OK)
1090                 return retval;
1091
1092         long long then = timeval_ms();
1093         for (;; ) {
1094                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1095                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1096                 if (retval != ERROR_OK)
1097                         return retval;
1098                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1099                         break;
1100                 if (timeval_ms() > then + 1000) {
1101                         LOG_ERROR("Timeout waiting for resume");
1102                         return ERROR_FAIL;
1103                 }
1104         }
1105
1106         target->debug_reason = DBG_REASON_NOTHALTED;
1107         target->state = TARGET_RUNNING;
1108
1109         /* registers are now invalid */
1110         register_cache_invalidate(arm->core_cache);
1111
1112         return ERROR_OK;
1113 }
1114
1115 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1116 {
1117         int retval = 0;
1118         struct target_list *head;
1119         struct target *curr;
1120         uint32_t address;
1121         head = target->head;
1122         while (head != (struct target_list *)NULL) {
1123                 curr = head->target;
1124                 if ((curr != target) && (curr->state != TARGET_RUNNING)) {
1125                         /*  resume current address , not in step mode */
1126                         retval += cortex_a_internal_restore(curr, 1, &address,
1127                                         handle_breakpoints, 0);
1128                         retval += cortex_a_internal_restart(curr);
1129                 }
1130                 head = head->next;
1131
1132         }
1133         return retval;
1134 }
1135
1136 static int cortex_a_resume(struct target *target, int current,
1137         uint32_t address, int handle_breakpoints, int debug_execution)
1138 {
1139         int retval = 0;
1140         /* dummy resume for smp toggle in order to reduce gdb impact  */
1141         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1142                 /*   simulate a start and halt of target */
1143                 target->gdb_service->target = NULL;
1144                 target->gdb_service->core[0] = target->gdb_service->core[1];
1145                 /*  fake resume at next poll we play the  target core[1], see poll*/
1146                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1147                 return 0;
1148         }
1149         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1150         if (target->smp) {
1151                 target->gdb_service->core[0] = -1;
1152                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1153                 if (retval != ERROR_OK)
1154                         return retval;
1155         }
1156         cortex_a_internal_restart(target);
1157
1158         if (!debug_execution) {
1159                 target->state = TARGET_RUNNING;
1160                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1161                 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1162         } else {
1163                 target->state = TARGET_DEBUG_RUNNING;
1164                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1165                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1166         }
1167
1168         return ERROR_OK;
1169 }
1170
1171 static int cortex_a_debug_entry(struct target *target)
1172 {
1173         int i;
1174         uint32_t regfile[16], cpsr, dscr;
1175         int retval = ERROR_OK;
1176         struct working_area *regfile_working_area = NULL;
1177         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1178         struct armv7a_common *armv7a = target_to_armv7a(target);
1179         struct arm *arm = &armv7a->arm;
1180         struct adiv5_dap *swjdp = armv7a->arm.dap;
1181         struct reg *reg;
1182
1183         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1184
1185         /* REVISIT surely we should not re-read DSCR !! */
1186         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1187                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1188         if (retval != ERROR_OK)
1189                 return retval;
1190
1191         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1192          * imprecise data aborts get discarded by issuing a Data
1193          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1194          */
1195
1196         /* Enable the ITR execution once we are in debug mode */
1197         dscr |= DSCR_ITR_EN;
1198         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1199                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1200         if (retval != ERROR_OK)
1201                 return retval;
1202
1203         /* Examine debug reason */
1204         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1205
1206         /* save address of instruction that triggered the watchpoint? */
1207         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1208                 uint32_t wfar;
1209
1210                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1211                                 armv7a->debug_base + CPUDBG_WFAR,
1212                                 &wfar);
1213                 if (retval != ERROR_OK)
1214                         return retval;
1215                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1216         }
1217
1218         /* REVISIT fast_reg_read is never set ... */
1219
1220         /* Examine target state and mode */
1221         if (cortex_a->fast_reg_read)
1222                 target_alloc_working_area(target, 64, &regfile_working_area);
1223
1224         /* First load register acessible through core debug port*/
1225         if (!regfile_working_area)
1226                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1227         else {
1228                 retval = cortex_a_read_regs_through_mem(target,
1229                                 regfile_working_area->address, regfile);
1230
1231                 target_free_working_area(target, regfile_working_area);
1232                 if (retval != ERROR_OK)
1233                         return retval;
1234
1235                 /* read Current PSR */
1236                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1237                 /*  store current cpsr */
1238                 if (retval != ERROR_OK)
1239                         return retval;
1240
1241                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1242
1243                 arm_set_cpsr(arm, cpsr);
1244
1245                 /* update cache */
1246                 for (i = 0; i <= ARM_PC; i++) {
1247                         reg = arm_reg_current(arm, i);
1248
1249                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1250                         reg->valid = 1;
1251                         reg->dirty = 0;
1252                 }
1253
1254                 /* Fixup PC Resume Address */
1255                 if (cpsr & (1 << 5)) {
1256                         /* T bit set for Thumb or ThumbEE state */
1257                         regfile[ARM_PC] -= 4;
1258                 } else {
1259                         /* ARM state */
1260                         regfile[ARM_PC] -= 8;
1261                 }
1262
1263                 reg = arm->pc;
1264                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1265                 reg->dirty = reg->valid;
1266         }
1267
1268 #if 0
1269 /* TODO, Move this */
1270         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1271         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1272         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1273
1274         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1275         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1276
1277         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1278         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1279 #endif
1280
1281         /* Are we in an exception handler */
1282 /*      armv4_5->exception_number = 0; */
1283         if (armv7a->post_debug_entry) {
1284                 retval = armv7a->post_debug_entry(target);
1285                 if (retval != ERROR_OK)
1286                         return retval;
1287         }
1288
1289         return retval;
1290 }
1291
1292 static int cortex_a_post_debug_entry(struct target *target)
1293 {
1294         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1295         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1296         int retval;
1297
1298         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1299         retval = armv7a->arm.mrc(target, 15,
1300                         0, 0,   /* op1, op2 */
1301                         1, 0,   /* CRn, CRm */
1302                         &cortex_a->cp15_control_reg);
1303         if (retval != ERROR_OK)
1304                 return retval;
1305         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1306         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1307
1308         if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1)
1309                 armv7a_identify_cache(target);
1310
1311         if (armv7a->is_armv7r) {
1312                 armv7a->armv7a_mmu.mmu_enabled = 0;
1313         } else {
1314                 armv7a->armv7a_mmu.mmu_enabled =
1315                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1316         }
1317         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1318                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1319         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1320                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1321         cortex_a->curr_mode = armv7a->arm.core_mode;
1322
1323         return ERROR_OK;
1324 }
1325
1326 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1327 {
1328         struct armv7a_common *armv7a = target_to_armv7a(target);
1329         struct adiv5_dap *swjdp = armv7a->arm.dap;
1330         uint32_t dscr;
1331
1332         /* Read DSCR */
1333         int retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1334                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1335         if (ERROR_OK != retval)
1336                 return retval;
1337
1338         /* clear bitfield */
1339         dscr &= ~bit_mask;
1340         /* put new value */
1341         dscr |= value & bit_mask;
1342
1343         /* write new DSCR */
1344         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1345                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1346         return retval;
1347 }
1348
1349 static int cortex_a_step(struct target *target, int current, uint32_t address,
1350         int handle_breakpoints)
1351 {
1352         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1353         struct armv7a_common *armv7a = target_to_armv7a(target);
1354         struct arm *arm = &armv7a->arm;
1355         struct breakpoint *breakpoint = NULL;
1356         struct breakpoint stepbreakpoint;
1357         struct reg *r;
1358         int retval;
1359
1360         if (target->state != TARGET_HALTED) {
1361                 LOG_WARNING("target not halted");
1362                 return ERROR_TARGET_NOT_HALTED;
1363         }
1364
1365         /* current = 1: continue on current pc, otherwise continue at <address> */
1366         r = arm->pc;
1367         if (!current)
1368                 buf_set_u32(r->value, 0, 32, address);
1369         else
1370                 address = buf_get_u32(r->value, 0, 32);
1371
1372         /* The front-end may request us not to handle breakpoints.
1373          * But since Cortex-A uses breakpoint for single step,
1374          * we MUST handle breakpoints.
1375          */
1376         handle_breakpoints = 1;
1377         if (handle_breakpoints) {
1378                 breakpoint = breakpoint_find(target, address);
1379                 if (breakpoint)
1380                         cortex_a_unset_breakpoint(target, breakpoint);
1381         }
1382
1383         /* Setup single step breakpoint */
1384         stepbreakpoint.address = address;
1385         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1386                 ? 2 : 4;
1387         stepbreakpoint.type = BKPT_HARD;
1388         stepbreakpoint.set = 0;
1389
1390         /* Disable interrupts during single step if requested */
1391         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1392                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1393                 if (ERROR_OK != retval)
1394                         return retval;
1395         }
1396
1397         /* Break on IVA mismatch */
1398         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1399
1400         target->debug_reason = DBG_REASON_SINGLESTEP;
1401
1402         retval = cortex_a_resume(target, 1, address, 0, 0);
1403         if (retval != ERROR_OK)
1404                 return retval;
1405
1406         long long then = timeval_ms();
1407         while (target->state != TARGET_HALTED) {
1408                 retval = cortex_a_poll(target);
1409                 if (retval != ERROR_OK)
1410                         return retval;
1411                 if (timeval_ms() > then + 1000) {
1412                         LOG_ERROR("timeout waiting for target halt");
1413                         return ERROR_FAIL;
1414                 }
1415         }
1416
1417         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1418
1419         /* Re-enable interrupts if they were disabled */
1420         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1421                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1422                 if (ERROR_OK != retval)
1423                         return retval;
1424         }
1425
1426
1427         target->debug_reason = DBG_REASON_BREAKPOINT;
1428
1429         if (breakpoint)
1430                 cortex_a_set_breakpoint(target, breakpoint, 0);
1431
1432         if (target->state != TARGET_HALTED)
1433                 LOG_DEBUG("target stepped");
1434
1435         return ERROR_OK;
1436 }
1437
1438 static int cortex_a_restore_context(struct target *target, bool bpwp)
1439 {
1440         struct armv7a_common *armv7a = target_to_armv7a(target);
1441
1442         LOG_DEBUG(" ");
1443
1444         if (armv7a->pre_restore_context)
1445                 armv7a->pre_restore_context(target);
1446
1447         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1448 }
1449
1450 /*
1451  * Cortex-A Breakpoint and watchpoint functions
1452  */
1453
1454 /* Setup hardware Breakpoint Register Pair */
1455 static int cortex_a_set_breakpoint(struct target *target,
1456         struct breakpoint *breakpoint, uint8_t matchmode)
1457 {
1458         int retval;
1459         int brp_i = 0;
1460         uint32_t control;
1461         uint8_t byte_addr_select = 0x0F;
1462         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1463         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1464         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1465
1466         if (breakpoint->set) {
1467                 LOG_WARNING("breakpoint already set");
1468                 return ERROR_OK;
1469         }
1470
1471         if (breakpoint->type == BKPT_HARD) {
1472                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1473                         brp_i++;
1474                 if (brp_i >= cortex_a->brp_num) {
1475                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1476                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1477                 }
1478                 breakpoint->set = brp_i + 1;
1479                 if (breakpoint->length == 2)
1480                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1481                 control = ((matchmode & 0x7) << 20)
1482                         | (byte_addr_select << 5)
1483                         | (3 << 1) | 1;
1484                 brp_list[brp_i].used = 1;
1485                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1486                 brp_list[brp_i].control = control;
1487                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1488                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1489                                 brp_list[brp_i].value);
1490                 if (retval != ERROR_OK)
1491                         return retval;
1492                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1493                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1494                                 brp_list[brp_i].control);
1495                 if (retval != ERROR_OK)
1496                         return retval;
1497                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1498                         brp_list[brp_i].control,
1499                         brp_list[brp_i].value);
1500         } else if (breakpoint->type == BKPT_SOFT) {
1501                 uint8_t code[4];
1502                 if (breakpoint->length == 2)
1503                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1504                 else
1505                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1506                 retval = target_read_memory(target,
1507                                 breakpoint->address & 0xFFFFFFFE,
1508                                 breakpoint->length, 1,
1509                                 breakpoint->orig_instr);
1510                 if (retval != ERROR_OK)
1511                         return retval;
1512                 retval = target_write_memory(target,
1513                                 breakpoint->address & 0xFFFFFFFE,
1514                                 breakpoint->length, 1, code);
1515                 if (retval != ERROR_OK)
1516                         return retval;
1517                 breakpoint->set = 0x11; /* Any nice value but 0 */
1518         }
1519
1520         return ERROR_OK;
1521 }
1522
1523 static int cortex_a_set_context_breakpoint(struct target *target,
1524         struct breakpoint *breakpoint, uint8_t matchmode)
1525 {
1526         int retval = ERROR_FAIL;
1527         int brp_i = 0;
1528         uint32_t control;
1529         uint8_t byte_addr_select = 0x0F;
1530         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1531         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1532         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1533
1534         if (breakpoint->set) {
1535                 LOG_WARNING("breakpoint already set");
1536                 return retval;
1537         }
1538         /*check available context BRPs*/
1539         while ((brp_list[brp_i].used ||
1540                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1541                 brp_i++;
1542
1543         if (brp_i >= cortex_a->brp_num) {
1544                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1545                 return ERROR_FAIL;
1546         }
1547
1548         breakpoint->set = brp_i + 1;
1549         control = ((matchmode & 0x7) << 20)
1550                 | (byte_addr_select << 5)
1551                 | (3 << 1) | 1;
1552         brp_list[brp_i].used = 1;
1553         brp_list[brp_i].value = (breakpoint->asid);
1554         brp_list[brp_i].control = control;
1555         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1556                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1557                         brp_list[brp_i].value);
1558         if (retval != ERROR_OK)
1559                 return retval;
1560         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1561                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1562                         brp_list[brp_i].control);
1563         if (retval != ERROR_OK)
1564                 return retval;
1565         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1566                 brp_list[brp_i].control,
1567                 brp_list[brp_i].value);
1568         return ERROR_OK;
1569
1570 }
1571
1572 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1573 {
1574         int retval = ERROR_FAIL;
1575         int brp_1 = 0;  /* holds the contextID pair */
1576         int brp_2 = 0;  /* holds the IVA pair */
1577         uint32_t control_CTX, control_IVA;
1578         uint8_t CTX_byte_addr_select = 0x0F;
1579         uint8_t IVA_byte_addr_select = 0x0F;
1580         uint8_t CTX_machmode = 0x03;
1581         uint8_t IVA_machmode = 0x01;
1582         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1583         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1584         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1585
1586         if (breakpoint->set) {
1587                 LOG_WARNING("breakpoint already set");
1588                 return retval;
1589         }
1590         /*check available context BRPs*/
1591         while ((brp_list[brp_1].used ||
1592                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1593                 brp_1++;
1594
1595         printf("brp(CTX) found num: %d\n", brp_1);
1596         if (brp_1 >= cortex_a->brp_num) {
1597                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1598                 return ERROR_FAIL;
1599         }
1600
1601         while ((brp_list[brp_2].used ||
1602                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1603                 brp_2++;
1604
1605         printf("brp(IVA) found num: %d\n", brp_2);
1606         if (brp_2 >= cortex_a->brp_num) {
1607                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1608                 return ERROR_FAIL;
1609         }
1610
1611         breakpoint->set = brp_1 + 1;
1612         breakpoint->linked_BRP = brp_2;
1613         control_CTX = ((CTX_machmode & 0x7) << 20)
1614                 | (brp_2 << 16)
1615                 | (0 << 14)
1616                 | (CTX_byte_addr_select << 5)
1617                 | (3 << 1) | 1;
1618         brp_list[brp_1].used = 1;
1619         brp_list[brp_1].value = (breakpoint->asid);
1620         brp_list[brp_1].control = control_CTX;
1621         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1622                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1623                         brp_list[brp_1].value);
1624         if (retval != ERROR_OK)
1625                 return retval;
1626         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1627                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1628                         brp_list[brp_1].control);
1629         if (retval != ERROR_OK)
1630                 return retval;
1631
1632         control_IVA = ((IVA_machmode & 0x7) << 20)
1633                 | (brp_1 << 16)
1634                 | (IVA_byte_addr_select << 5)
1635                 | (3 << 1) | 1;
1636         brp_list[brp_2].used = 1;
1637         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1638         brp_list[brp_2].control = control_IVA;
1639         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1640                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1641                         brp_list[brp_2].value);
1642         if (retval != ERROR_OK)
1643                 return retval;
1644         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1645                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1646                         brp_list[brp_2].control);
1647         if (retval != ERROR_OK)
1648                 return retval;
1649
1650         return ERROR_OK;
1651 }
1652
1653 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1654 {
1655         int retval;
1656         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1657         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1658         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1659
1660         if (!breakpoint->set) {
1661                 LOG_WARNING("breakpoint not set");
1662                 return ERROR_OK;
1663         }
1664
1665         if (breakpoint->type == BKPT_HARD) {
1666                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1667                         int brp_i = breakpoint->set - 1;
1668                         int brp_j = breakpoint->linked_BRP;
1669                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1670                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1671                                 return ERROR_OK;
1672                         }
1673                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1674                                 brp_list[brp_i].control, brp_list[brp_i].value);
1675                         brp_list[brp_i].used = 0;
1676                         brp_list[brp_i].value = 0;
1677                         brp_list[brp_i].control = 0;
1678                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1679                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1680                                         brp_list[brp_i].control);
1681                         if (retval != ERROR_OK)
1682                                 return retval;
1683                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1684                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1685                                         brp_list[brp_i].value);
1686                         if (retval != ERROR_OK)
1687                                 return retval;
1688                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1689                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1690                                 return ERROR_OK;
1691                         }
1692                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1693                                 brp_list[brp_j].control, brp_list[brp_j].value);
1694                         brp_list[brp_j].used = 0;
1695                         brp_list[brp_j].value = 0;
1696                         brp_list[brp_j].control = 0;
1697                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1698                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1699                                         brp_list[brp_j].control);
1700                         if (retval != ERROR_OK)
1701                                 return retval;
1702                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1703                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1704                                         brp_list[brp_j].value);
1705                         if (retval != ERROR_OK)
1706                                 return retval;
1707                         breakpoint->linked_BRP = 0;
1708                         breakpoint->set = 0;
1709                         return ERROR_OK;
1710
1711                 } else {
1712                         int brp_i = breakpoint->set - 1;
1713                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1714                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1715                                 return ERROR_OK;
1716                         }
1717                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1718                                 brp_list[brp_i].control, brp_list[brp_i].value);
1719                         brp_list[brp_i].used = 0;
1720                         brp_list[brp_i].value = 0;
1721                         brp_list[brp_i].control = 0;
1722                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1723                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1724                                         brp_list[brp_i].control);
1725                         if (retval != ERROR_OK)
1726                                 return retval;
1727                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1728                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1729                                         brp_list[brp_i].value);
1730                         if (retval != ERROR_OK)
1731                                 return retval;
1732                         breakpoint->set = 0;
1733                         return ERROR_OK;
1734                 }
1735         } else {
1736                 /* restore original instruction (kept in target endianness) */
1737                 if (breakpoint->length == 4) {
1738                         retval = target_write_memory(target,
1739                                         breakpoint->address & 0xFFFFFFFE,
1740                                         4, 1, breakpoint->orig_instr);
1741                         if (retval != ERROR_OK)
1742                                 return retval;
1743                 } else {
1744                         retval = target_write_memory(target,
1745                                         breakpoint->address & 0xFFFFFFFE,
1746                                         2, 1, breakpoint->orig_instr);
1747                         if (retval != ERROR_OK)
1748                                 return retval;
1749                 }
1750         }
1751         breakpoint->set = 0;
1752
1753         return ERROR_OK;
1754 }
1755
1756 static int cortex_a_add_breakpoint(struct target *target,
1757         struct breakpoint *breakpoint)
1758 {
1759         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1760
1761         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1762                 LOG_INFO("no hardware breakpoint available");
1763                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1764         }
1765
1766         if (breakpoint->type == BKPT_HARD)
1767                 cortex_a->brp_num_available--;
1768
1769         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1770 }
1771
1772 static int cortex_a_add_context_breakpoint(struct target *target,
1773         struct breakpoint *breakpoint)
1774 {
1775         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1776
1777         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1778                 LOG_INFO("no hardware breakpoint available");
1779                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1780         }
1781
1782         if (breakpoint->type == BKPT_HARD)
1783                 cortex_a->brp_num_available--;
1784
1785         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1786 }
1787
1788 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1789         struct breakpoint *breakpoint)
1790 {
1791         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1792
1793         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1794                 LOG_INFO("no hardware breakpoint available");
1795                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1796         }
1797
1798         if (breakpoint->type == BKPT_HARD)
1799                 cortex_a->brp_num_available--;
1800
1801         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1802 }
1803
1804
1805 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1806 {
1807         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1808
1809 #if 0
1810 /* It is perfectly possible to remove breakpoints while the target is running */
1811         if (target->state != TARGET_HALTED) {
1812                 LOG_WARNING("target not halted");
1813                 return ERROR_TARGET_NOT_HALTED;
1814         }
1815 #endif
1816
1817         if (breakpoint->set) {
1818                 cortex_a_unset_breakpoint(target, breakpoint);
1819                 if (breakpoint->type == BKPT_HARD)
1820                         cortex_a->brp_num_available++;
1821         }
1822
1823
1824         return ERROR_OK;
1825 }
1826
1827 /*
1828  * Cortex-A Reset functions
1829  */
1830
1831 static int cortex_a_assert_reset(struct target *target)
1832 {
1833         struct armv7a_common *armv7a = target_to_armv7a(target);
1834
1835         LOG_DEBUG(" ");
1836
1837         /* FIXME when halt is requested, make it work somehow... */
1838
1839         /* Issue some kind of warm reset. */
1840         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1841                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1842         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1843                 /* REVISIT handle "pulls" cases, if there's
1844                  * hardware that needs them to work.
1845                  */
1846                 jtag_add_reset(0, 1);
1847         } else {
1848                 LOG_ERROR("%s: how to reset?", target_name(target));
1849                 return ERROR_FAIL;
1850         }
1851
1852         /* registers are now invalid */
1853         register_cache_invalidate(armv7a->arm.core_cache);
1854
1855         target->state = TARGET_RESET;
1856
1857         return ERROR_OK;
1858 }
1859
1860 static int cortex_a_deassert_reset(struct target *target)
1861 {
1862         int retval;
1863
1864         LOG_DEBUG(" ");
1865
1866         /* be certain SRST is off */
1867         jtag_add_reset(0, 0);
1868
1869         retval = cortex_a_poll(target);
1870         if (retval != ERROR_OK)
1871                 return retval;
1872
1873         if (target->reset_halt) {
1874                 if (target->state != TARGET_HALTED) {
1875                         LOG_WARNING("%s: ran after reset and before halt ...",
1876                                 target_name(target));
1877                         retval = target_halt(target);
1878                         if (retval != ERROR_OK)
1879                                 return retval;
1880                 }
1881         }
1882
1883         return ERROR_OK;
1884 }
1885
1886 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1887 {
1888         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1889          * New desired mode must be in mode. Current value of DSCR must be in
1890          * *dscr, which is updated with new value.
1891          *
1892          * This function elides actually sending the mode-change over the debug
1893          * interface if the mode is already set as desired.
1894          */
1895         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1896         if (new_dscr != *dscr) {
1897                 struct armv7a_common *armv7a = target_to_armv7a(target);
1898                 int retval = mem_ap_sel_write_atomic_u32(armv7a->arm.dap,
1899                                 armv7a->debug_ap, armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1900                 if (retval == ERROR_OK)
1901                         *dscr = new_dscr;
1902                 return retval;
1903         } else {
1904                 return ERROR_OK;
1905         }
1906 }
1907
1908 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1909         uint32_t value, uint32_t *dscr)
1910 {
1911         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1912         struct armv7a_common *armv7a = target_to_armv7a(target);
1913         struct adiv5_dap *swjdp = armv7a->arm.dap;
1914         long long then = timeval_ms();
1915         int retval;
1916
1917         while ((*dscr & mask) != value) {
1918                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1919                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1920                 if (retval != ERROR_OK)
1921                         return retval;
1922                 if (timeval_ms() > then + 1000) {
1923                         LOG_ERROR("timeout waiting for DSCR bit change");
1924                         return ERROR_FAIL;
1925                 }
1926         }
1927         return ERROR_OK;
1928 }
1929
1930 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1931         uint32_t *data, uint32_t *dscr)
1932 {
1933         int retval;
1934         struct armv7a_common *armv7a = target_to_armv7a(target);
1935         struct adiv5_dap *swjdp = armv7a->arm.dap;
1936
1937         /* Move from coprocessor to R0. */
1938         retval = cortex_a_exec_opcode(target, opcode, dscr);
1939         if (retval != ERROR_OK)
1940                 return retval;
1941
1942         /* Move from R0 to DTRTX. */
1943         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1944         if (retval != ERROR_OK)
1945                 return retval;
1946
1947         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1948          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1949          * must also check TXfull_l). Most of the time this will be free
1950          * because TXfull_l will be set immediately and cached in dscr. */
1951         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1952                         DSCR_DTRTX_FULL_LATCHED, dscr);
1953         if (retval != ERROR_OK)
1954                 return retval;
1955
1956         /* Read the value transferred to DTRTX. */
1957         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
1958                         armv7a->debug_base + CPUDBG_DTRTX, data);
1959         if (retval != ERROR_OK)
1960                 return retval;
1961
1962         return ERROR_OK;
1963 }
1964
1965 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1966         uint32_t *dfsr, uint32_t *dscr)
1967 {
1968         int retval;
1969
1970         if (dfar) {
1971                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1972                 if (retval != ERROR_OK)
1973                         return retval;
1974         }
1975
1976         if (dfsr) {
1977                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1978                 if (retval != ERROR_OK)
1979                         return retval;
1980         }
1981
1982         return ERROR_OK;
1983 }
1984
1985 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
1986         uint32_t data, uint32_t *dscr)
1987 {
1988         int retval;
1989         struct armv7a_common *armv7a = target_to_armv7a(target);
1990         struct adiv5_dap *swjdp = armv7a->arm.dap;
1991
1992         /* Write the value into DTRRX. */
1993         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
1994                         armv7a->debug_base + CPUDBG_DTRRX, data);
1995         if (retval != ERROR_OK)
1996                 return retval;
1997
1998         /* Move from DTRRX to R0. */
1999         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2000         if (retval != ERROR_OK)
2001                 return retval;
2002
2003         /* Move from R0 to coprocessor. */
2004         retval = cortex_a_exec_opcode(target, opcode, dscr);
2005         if (retval != ERROR_OK)
2006                 return retval;
2007
2008         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2009          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2010          * check RXfull_l). Most of the time this will be free because RXfull_l
2011          * will be cleared immediately and cached in dscr. */
2012         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2013         if (retval != ERROR_OK)
2014                 return retval;
2015
2016         return ERROR_OK;
2017 }
2018
2019 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2020         uint32_t dfsr, uint32_t *dscr)
2021 {
2022         int retval;
2023
2024         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2025         if (retval != ERROR_OK)
2026                 return retval;
2027
2028         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2029         if (retval != ERROR_OK)
2030                 return retval;
2031
2032         return ERROR_OK;
2033 }
2034
2035 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2036 {
2037         uint32_t status, upper4;
2038
2039         if (dfsr & (1 << 9)) {
2040                 /* LPAE format. */
2041                 status = dfsr & 0x3f;
2042                 upper4 = status >> 2;
2043                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2044                         return ERROR_TARGET_TRANSLATION_FAULT;
2045                 else if (status == 33)
2046                         return ERROR_TARGET_UNALIGNED_ACCESS;
2047                 else
2048                         return ERROR_TARGET_DATA_ABORT;
2049         } else {
2050                 /* Normal format. */
2051                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2052                 if (status == 1)
2053                         return ERROR_TARGET_UNALIGNED_ACCESS;
2054                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2055                                 status == 9 || status == 11 || status == 13 || status == 15)
2056                         return ERROR_TARGET_TRANSLATION_FAULT;
2057                 else
2058                         return ERROR_TARGET_DATA_ABORT;
2059         }
2060 }
2061
2062 static int cortex_a_write_apb_ab_memory_slow(struct target *target,
2063         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2064 {
2065         /* Writes count objects of size size from *buffer. Old value of DSCR must
2066          * be in *dscr; updated to new value. This is slow because it works for
2067          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2068          * the address is aligned, cortex_a_write_apb_ab_memory_fast should be
2069          * preferred.
2070          * Preconditions:
2071          * - Address is in R0.
2072          * - R0 is marked dirty.
2073          */
2074         struct armv7a_common *armv7a = target_to_armv7a(target);
2075         struct adiv5_dap *swjdp = armv7a->arm.dap;
2076         struct arm *arm = &armv7a->arm;
2077         int retval;
2078
2079         /* Mark register R1 as dirty, to use for transferring data. */
2080         arm_reg_current(arm, 1)->dirty = true;
2081
2082         /* Switch to non-blocking mode if not already in that mode. */
2083         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2084         if (retval != ERROR_OK)
2085                 return retval;
2086
2087         /* Go through the objects. */
2088         while (count) {
2089                 /* Write the value to store into DTRRX. */
2090                 uint32_t data, opcode;
2091                 if (size == 1)
2092                         data = *buffer;
2093                 else if (size == 2)
2094                         data = target_buffer_get_u16(target, buffer);
2095                 else
2096                         data = target_buffer_get_u32(target, buffer);
2097                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2098                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2099                 if (retval != ERROR_OK)
2100                         return retval;
2101
2102                 /* Transfer the value from DTRRX to R1. */
2103                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2104                 if (retval != ERROR_OK)
2105                         return retval;
2106
2107                 /* Write the value transferred to R1 into memory. */
2108                 if (size == 1)
2109                         opcode = ARMV4_5_STRB_IP(1, 0);
2110                 else if (size == 2)
2111                         opcode = ARMV4_5_STRH_IP(1, 0);
2112                 else
2113                         opcode = ARMV4_5_STRW_IP(1, 0);
2114                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2115                 if (retval != ERROR_OK)
2116                         return retval;
2117
2118                 /* Check for faults and return early. */
2119                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2120                         return ERROR_OK; /* A data fault is not considered a system failure. */
2121
2122                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2123                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2124                  * must also check RXfull_l). Most of the time this will be free
2125                  * because RXfull_l will be cleared immediately and cached in dscr. */
2126                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2127                 if (retval != ERROR_OK)
2128                         return retval;
2129
2130                 /* Advance. */
2131                 buffer += size;
2132                 --count;
2133         }
2134
2135         return ERROR_OK;
2136 }
2137
2138 static int cortex_a_write_apb_ab_memory_fast(struct target *target,
2139         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2140 {
2141         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2142          * in *dscr; updated to new value. This is fast but only works for
2143          * word-sized objects at aligned addresses.
2144          * Preconditions:
2145          * - Address is in R0 and must be a multiple of 4.
2146          * - R0 is marked dirty.
2147          */
2148         struct armv7a_common *armv7a = target_to_armv7a(target);
2149         struct adiv5_dap *swjdp = armv7a->arm.dap;
2150         int retval;
2151
2152         /* Switch to fast mode if not already in that mode. */
2153         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2154         if (retval != ERROR_OK)
2155                 return retval;
2156
2157         /* Latch STC instruction. */
2158         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2159                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2160         if (retval != ERROR_OK)
2161                 return retval;
2162
2163         /* Transfer all the data and issue all the instructions. */
2164         return mem_ap_sel_write_buf_noincr(swjdp, armv7a->debug_ap, buffer,
2165                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2166 }
2167
2168 static int cortex_a_write_apb_ab_memory(struct target *target,
2169         uint32_t address, uint32_t size,
2170         uint32_t count, const uint8_t *buffer)
2171 {
2172         /* Write memory through APB-AP. */
2173         int retval, final_retval;
2174         struct armv7a_common *armv7a = target_to_armv7a(target);
2175         struct adiv5_dap *swjdp = armv7a->arm.dap;
2176         struct arm *arm = &armv7a->arm;
2177         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2178
2179         LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2180                           address, size, count);
2181         if (target->state != TARGET_HALTED) {
2182                 LOG_WARNING("target not halted");
2183                 return ERROR_TARGET_NOT_HALTED;
2184         }
2185
2186         if (!count)
2187                 return ERROR_OK;
2188
2189         /* Clear any abort. */
2190         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2191                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2192         if (retval != ERROR_OK)
2193                 return retval;
2194
2195         /* Read DSCR. */
2196         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2197                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2198         if (retval != ERROR_OK)
2199                 return retval;
2200
2201         /* Switch to non-blocking mode if not already in that mode. */
2202         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2203         if (retval != ERROR_OK)
2204                 goto out;
2205
2206         /* Mark R0 as dirty. */
2207         arm_reg_current(arm, 0)->dirty = true;
2208
2209         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2210         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2211         if (retval != ERROR_OK)
2212                 goto out;
2213
2214         /* Get the memory address into R0. */
2215         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2216                         armv7a->debug_base + CPUDBG_DTRRX, address);
2217         if (retval != ERROR_OK)
2218                 goto out;
2219         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2220         if (retval != ERROR_OK)
2221                 goto out;
2222
2223         if (size == 4 && (address % 4) == 0) {
2224                 /* We are doing a word-aligned transfer, so use fast mode. */
2225                 retval = cortex_a_write_apb_ab_memory_fast(target, count, buffer, &dscr);
2226         } else {
2227                 /* Use slow path. */
2228                 retval = cortex_a_write_apb_ab_memory_slow(target, size, count, buffer, &dscr);
2229         }
2230
2231 out:
2232         final_retval = retval;
2233
2234         /* Switch to non-blocking mode if not already in that mode. */
2235         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2236         if (final_retval == ERROR_OK)
2237                 final_retval = retval;
2238
2239         /* Wait for last issued instruction to complete. */
2240         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2241         if (final_retval == ERROR_OK)
2242                 final_retval = retval;
2243
2244         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2245          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2246          * check RXfull_l). Most of the time this will be free because RXfull_l
2247          * will be cleared immediately and cached in dscr. However, don’t do this
2248          * if there is fault, because then the instruction might not have completed
2249          * successfully. */
2250         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2251                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2252                 if (retval != ERROR_OK)
2253                         return retval;
2254         }
2255
2256         /* If there were any sticky abort flags, clear them. */
2257         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2258                 fault_dscr = dscr;
2259                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2260                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2261                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2262         } else {
2263                 fault_dscr = 0;
2264         }
2265
2266         /* Handle synchronous data faults. */
2267         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2268                 if (final_retval == ERROR_OK) {
2269                         /* Final return value will reflect cause of fault. */
2270                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2271                         if (retval == ERROR_OK) {
2272                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2273                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2274                         } else
2275                                 final_retval = retval;
2276                 }
2277                 /* Fault destroyed DFAR/DFSR; restore them. */
2278                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2279                 if (retval != ERROR_OK)
2280                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2281         }
2282
2283         /* Handle asynchronous data faults. */
2284         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2285                 if (final_retval == ERROR_OK)
2286                         /* No other error has been recorded so far, so keep this one. */
2287                         final_retval = ERROR_TARGET_DATA_ABORT;
2288         }
2289
2290         /* If the DCC is nonempty, clear it. */
2291         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2292                 uint32_t dummy;
2293                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2294                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2295                 if (final_retval == ERROR_OK)
2296                         final_retval = retval;
2297         }
2298         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2299                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2300                 if (final_retval == ERROR_OK)
2301                         final_retval = retval;
2302         }
2303
2304         /* Done. */
2305         return final_retval;
2306 }
2307
2308 static int cortex_a_read_apb_ab_memory_slow(struct target *target,
2309         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2310 {
2311         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2312          * in *dscr; updated to new value. This is slow because it works for
2313          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2314          * the address is aligned, cortex_a_read_apb_ab_memory_fast should be
2315          * preferred.
2316          * Preconditions:
2317          * - Address is in R0.
2318          * - R0 is marked dirty.
2319          */
2320         struct armv7a_common *armv7a = target_to_armv7a(target);
2321         struct adiv5_dap *swjdp = armv7a->arm.dap;
2322         struct arm *arm = &armv7a->arm;
2323         int retval;
2324
2325         /* Mark register R1 as dirty, to use for transferring data. */
2326         arm_reg_current(arm, 1)->dirty = true;
2327
2328         /* Switch to non-blocking mode if not already in that mode. */
2329         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2330         if (retval != ERROR_OK)
2331                 return retval;
2332
2333         /* Go through the objects. */
2334         while (count) {
2335                 /* Issue a load of the appropriate size to R1. */
2336                 uint32_t opcode, data;
2337                 if (size == 1)
2338                         opcode = ARMV4_5_LDRB_IP(1, 0);
2339                 else if (size == 2)
2340                         opcode = ARMV4_5_LDRH_IP(1, 0);
2341                 else
2342                         opcode = ARMV4_5_LDRW_IP(1, 0);
2343                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2344                 if (retval != ERROR_OK)
2345                         return retval;
2346
2347                 /* Issue a write of R1 to DTRTX. */
2348                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2349                 if (retval != ERROR_OK)
2350                         return retval;
2351
2352                 /* Check for faults and return early. */
2353                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2354                         return ERROR_OK; /* A data fault is not considered a system failure. */
2355
2356                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2357                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2358                  * must also check TXfull_l). Most of the time this will be free
2359                  * because TXfull_l will be set immediately and cached in dscr. */
2360                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2361                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2362                 if (retval != ERROR_OK)
2363                         return retval;
2364
2365                 /* Read the value transferred to DTRTX into the buffer. */
2366                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2367                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2368                 if (retval != ERROR_OK)
2369                         return retval;
2370                 if (size == 1)
2371                         *buffer = (uint8_t) data;
2372                 else if (size == 2)
2373                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2374                 else
2375                         target_buffer_set_u32(target, buffer, data);
2376
2377                 /* Advance. */
2378                 buffer += size;
2379                 --count;
2380         }
2381
2382         return ERROR_OK;
2383 }
2384
2385 static int cortex_a_read_apb_ab_memory_fast(struct target *target,
2386         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2387 {
2388         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2389          * *dscr; updated to new value. This is fast but only works for word-sized
2390          * objects at aligned addresses.
2391          * Preconditions:
2392          * - Address is in R0 and must be a multiple of 4.
2393          * - R0 is marked dirty.
2394          */
2395         struct armv7a_common *armv7a = target_to_armv7a(target);
2396         struct adiv5_dap *swjdp = armv7a->arm.dap;
2397         uint32_t new_dscr, u32;
2398         int retval;
2399
2400         /* Switch to non-blocking mode if not already in that mode. */
2401         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2402         if (retval != ERROR_OK)
2403                 return retval;
2404
2405         if (count > 1) {
2406                 /* Consecutively issue the LDC instruction via a write to ITR and
2407                  * change to fast mode, in a single bulk copy since DSCR == ITR + 4.
2408                  * The instruction is issued into the core before the mode switch. */
2409                 uint8_t command[8];
2410                 target_buffer_set_u32(target, command, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2411                 new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | DSCR_EXT_DCC_FAST_MODE;
2412                 target_buffer_set_u32(target, command + 4, new_dscr);
2413                 retval = mem_ap_sel_write_buf(swjdp, armv7a->debug_ap, command, 4, 2,
2414                                 armv7a->debug_base + CPUDBG_ITR);
2415                 if (retval != ERROR_OK)
2416                         return retval;
2417                 *dscr = new_dscr;
2418
2419                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2420                  * mode rules, this blocks until the instruction finishes executing and
2421                  * then reissues the read instruction to read the next word from
2422                  * memory. The last read of DTRTX in this call reads the second-to-last
2423                  * word from memory and issues the read instruction for the last word.
2424                  */
2425                 retval = mem_ap_sel_read_buf_noincr(swjdp, armv7a->debug_ap, buffer,
2426                                 4, count - 1, armv7a->debug_base + CPUDBG_DTRTX);
2427                 if (retval != ERROR_OK)
2428                         return retval;
2429
2430                 /* Advance. */
2431                 buffer += (count - 1) * 4;
2432         } else {
2433                 /* Issue the LDC instruction via a write to ITR. */
2434                 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2435                 if (retval != ERROR_OK)
2436                         return retval;
2437         }
2438
2439         /* Switch to non-blocking mode if not already in that mode. */
2440         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2441         if (retval != ERROR_OK)
2442                 return retval;
2443
2444         /* Wait for last issued instruction to complete. */
2445         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2446         if (retval != ERROR_OK)
2447                 return retval;
2448
2449         /* Check for faults and return early. */
2450         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2451                 return ERROR_OK; /* A data fault is not considered a system failure. */
2452
2453         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2454          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2455          * check TXfull_l). Most of the time this will be free because TXfull_l
2456          * will be set immediately and cached in dscr. */
2457         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2458                         DSCR_DTRTX_FULL_LATCHED, dscr);
2459         if (retval != ERROR_OK)
2460                 return retval;
2461
2462         /* Read the value transferred to DTRTX into the buffer. This is the last
2463          * word. */
2464         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2465                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2466         if (retval != ERROR_OK)
2467                 return retval;
2468         target_buffer_set_u32(target, buffer, u32);
2469
2470         return ERROR_OK;
2471 }
2472
2473 static int cortex_a_read_apb_ab_memory(struct target *target,
2474         uint32_t address, uint32_t size,
2475         uint32_t count, uint8_t *buffer)
2476 {
2477         /* Read memory through APB-AP. */
2478         int retval, final_retval;
2479         struct armv7a_common *armv7a = target_to_armv7a(target);
2480         struct adiv5_dap *swjdp = armv7a->arm.dap;
2481         struct arm *arm = &armv7a->arm;
2482         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2483
2484         LOG_DEBUG("Reading APB-AP memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2485                           address, size, count);
2486         if (target->state != TARGET_HALTED) {
2487                 LOG_WARNING("target not halted");
2488                 return ERROR_TARGET_NOT_HALTED;
2489         }
2490
2491         if (!count)
2492                 return ERROR_OK;
2493
2494         /* Clear any abort. */
2495         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2496                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2497         if (retval != ERROR_OK)
2498                 return retval;
2499
2500         /* Read DSCR */
2501         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2502                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2503         if (retval != ERROR_OK)
2504                 return retval;
2505
2506         /* Switch to non-blocking mode if not already in that mode. */
2507         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2508         if (retval != ERROR_OK)
2509                 goto out;
2510
2511         /* Mark R0 as dirty. */
2512         arm_reg_current(arm, 0)->dirty = true;
2513
2514         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2515         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2516         if (retval != ERROR_OK)
2517                 goto out;
2518
2519         /* Get the memory address into R0. */
2520         retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2521                         armv7a->debug_base + CPUDBG_DTRRX, address);
2522         if (retval != ERROR_OK)
2523                 goto out;
2524         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2525         if (retval != ERROR_OK)
2526                 goto out;
2527
2528         if (size == 4 && (address % 4) == 0) {
2529                 /* We are doing a word-aligned transfer, so use fast mode. */
2530                 retval = cortex_a_read_apb_ab_memory_fast(target, count, buffer, &dscr);
2531         } else {
2532                 /* Use slow path. */
2533                 retval = cortex_a_read_apb_ab_memory_slow(target, size, count, buffer, &dscr);
2534         }
2535
2536 out:
2537         final_retval = retval;
2538
2539         /* Switch to non-blocking mode if not already in that mode. */
2540         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2541         if (final_retval == ERROR_OK)
2542                 final_retval = retval;
2543
2544         /* Wait for last issued instruction to complete. */
2545         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2546         if (final_retval == ERROR_OK)
2547                 final_retval = retval;
2548
2549         /* If there were any sticky abort flags, clear them. */
2550         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2551                 fault_dscr = dscr;
2552                 mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2553                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2554                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2555         } else {
2556                 fault_dscr = 0;
2557         }
2558
2559         /* Handle synchronous data faults. */
2560         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2561                 if (final_retval == ERROR_OK) {
2562                         /* Final return value will reflect cause of fault. */
2563                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2564                         if (retval == ERROR_OK) {
2565                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2566                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2567                         } else
2568                                 final_retval = retval;
2569                 }
2570                 /* Fault destroyed DFAR/DFSR; restore them. */
2571                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2572                 if (retval != ERROR_OK)
2573                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2574         }
2575
2576         /* Handle asynchronous data faults. */
2577         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2578                 if (final_retval == ERROR_OK)
2579                         /* No other error has been recorded so far, so keep this one. */
2580                         final_retval = ERROR_TARGET_DATA_ABORT;
2581         }
2582
2583         /* If the DCC is nonempty, clear it. */
2584         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2585                 uint32_t dummy;
2586                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2587                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2588                 if (final_retval == ERROR_OK)
2589                         final_retval = retval;
2590         }
2591         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2592                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2593                 if (final_retval == ERROR_OK)
2594                         final_retval = retval;
2595         }
2596
2597         /* Done. */
2598         return final_retval;
2599 }
2600
2601
2602 /*
2603  * Cortex-A Memory access
2604  *
2605  * This is same Cortex M3 but we must also use the correct
2606  * ap number for every access.
2607  */
2608
2609 static int cortex_a_read_phys_memory(struct target *target,
2610         uint32_t address, uint32_t size,
2611         uint32_t count, uint8_t *buffer)
2612 {
2613         struct armv7a_common *armv7a = target_to_armv7a(target);
2614         struct adiv5_dap *swjdp = armv7a->arm.dap;
2615         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2616         uint8_t apsel = swjdp->apsel;
2617         LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2618                 address, size, count);
2619
2620         if (count && buffer) {
2621
2622                 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2623
2624                         /* read memory through AHB-AP */
2625                         retval = mem_ap_sel_read_buf(swjdp, armv7a->memory_ap, buffer, size, count, address);
2626                 } else {
2627
2628                         /* read memory through APB-AP */
2629                         if (!armv7a->is_armv7r) {
2630                                 /*  disable mmu */
2631                                 retval = cortex_a_mmu_modify(target, 0);
2632                                 if (retval != ERROR_OK)
2633                                         return retval;
2634                         }
2635                         retval = cortex_a_read_apb_ab_memory(target, address, size, count, buffer);
2636                 }
2637         }
2638         return retval;
2639 }
2640
2641 static int cortex_a_read_memory(struct target *target, uint32_t address,
2642         uint32_t size, uint32_t count, uint8_t *buffer)
2643 {
2644         int mmu_enabled = 0;
2645         uint32_t virt, phys;
2646         int retval;
2647         struct armv7a_common *armv7a = target_to_armv7a(target);
2648         struct adiv5_dap *swjdp = armv7a->arm.dap;
2649         uint8_t apsel = swjdp->apsel;
2650
2651         /* cortex_a handles unaligned memory access */
2652         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2653                 size, count);
2654
2655         /* determine if MMU was enabled on target stop */
2656         if (!armv7a->is_armv7r) {
2657                 retval = cortex_a_mmu(target, &mmu_enabled);
2658                 if (retval != ERROR_OK)
2659                         return retval;
2660         }
2661
2662         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2663                 if (mmu_enabled) {
2664                         virt = address;
2665                         retval = cortex_a_virt2phys(target, virt, &phys);
2666                         if (retval != ERROR_OK)
2667                                 return retval;
2668
2669                         LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2670                                   virt, phys);
2671                         address = phys;
2672                 }
2673                 retval = cortex_a_read_phys_memory(target, address, size,
2674                             count, buffer);
2675         } else {
2676                 if (mmu_enabled) {
2677                         retval = cortex_a_check_address(target, address);
2678                         if (retval != ERROR_OK)
2679                                 return retval;
2680                         /* enable MMU as we could have disabled it for phys access */
2681                         retval = cortex_a_mmu_modify(target, 1);
2682                         if (retval != ERROR_OK)
2683                                 return retval;
2684                 }
2685                 retval = cortex_a_read_apb_ab_memory(target, address, size, count, buffer);
2686         }
2687         return retval;
2688 }
2689
2690 static int cortex_a_write_phys_memory(struct target *target,
2691         uint32_t address, uint32_t size,
2692         uint32_t count, const uint8_t *buffer)
2693 {
2694         struct armv7a_common *armv7a = target_to_armv7a(target);
2695         struct adiv5_dap *swjdp = armv7a->arm.dap;
2696         int retval = ERROR_COMMAND_SYNTAX_ERROR;
2697         uint8_t apsel = swjdp->apsel;
2698
2699         LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2700                 size, count);
2701
2702         if (count && buffer) {
2703
2704                 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2705
2706                         /* write memory through AHB-AP */
2707                         retval = mem_ap_sel_write_buf(swjdp, armv7a->memory_ap, buffer, size, count, address);
2708                 } else {
2709
2710                         /* write memory through APB-AP */
2711                         if (!armv7a->is_armv7r) {
2712                                 retval = cortex_a_mmu_modify(target, 0);
2713                                 if (retval != ERROR_OK)
2714                                         return retval;
2715                         }
2716                         return cortex_a_write_apb_ab_memory(target, address, size, count, buffer);
2717                 }
2718         }
2719
2720
2721         /* REVISIT this op is generic ARMv7-A/R stuff */
2722         if (retval == ERROR_OK && target->state == TARGET_HALTED) {
2723                 struct arm_dpm *dpm = armv7a->arm.dpm;
2724
2725                 retval = dpm->prepare(dpm);
2726                 if (retval != ERROR_OK)
2727                         return retval;
2728
2729                 /* The Cache handling will NOT work with MMU active, the
2730                  * wrong addresses will be invalidated!
2731                  *
2732                  * For both ICache and DCache, walk all cache lines in the
2733                  * address range. Cortex-A has fixed 64 byte line length.
2734                  *
2735                  * REVISIT per ARMv7, these may trigger watchpoints ...
2736                  */
2737
2738                 /* invalidate I-Cache */
2739                 if (armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled) {
2740                         /* ICIMVAU - Invalidate Cache single entry
2741                          * with MVA to PoU
2742                          *      MCR p15, 0, r0, c7, c5, 1
2743                          */
2744                         for (uint32_t cacheline = 0;
2745                                 cacheline < size * count;
2746                                 cacheline += 64) {
2747                                 retval = dpm->instr_write_data_r0(dpm,
2748                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
2749                                                 address + cacheline);
2750                                 if (retval != ERROR_OK)
2751                                         return retval;
2752                         }
2753                 }
2754
2755                 /* invalidate D-Cache */
2756                 if (armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) {
2757                         /* DCIMVAC - Invalidate data Cache line
2758                          * with MVA to PoC
2759                          *      MCR p15, 0, r0, c7, c6, 1
2760                          */
2761                         for (uint32_t cacheline = 0;
2762                                 cacheline < size * count;
2763                                 cacheline += 64) {
2764                                 retval = dpm->instr_write_data_r0(dpm,
2765                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
2766                                                 address + cacheline);
2767                                 if (retval != ERROR_OK)
2768                                         return retval;
2769                         }
2770                 }
2771
2772                 /* (void) */ dpm->finish(dpm);
2773         }
2774
2775         return retval;
2776 }
2777
2778 static int cortex_a_write_memory(struct target *target, uint32_t address,
2779         uint32_t size, uint32_t count, const uint8_t *buffer)
2780 {
2781         int mmu_enabled = 0;
2782         uint32_t virt, phys;
2783         int retval;
2784         struct armv7a_common *armv7a = target_to_armv7a(target);
2785         struct adiv5_dap *swjdp = armv7a->arm.dap;
2786         uint8_t apsel = swjdp->apsel;
2787
2788         /* cortex_a handles unaligned memory access */
2789         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2790                 size, count);
2791
2792         /* determine if MMU was enabled on target stop */
2793         if (!armv7a->is_armv7r) {
2794                 retval = cortex_a_mmu(target, &mmu_enabled);
2795                 if (retval != ERROR_OK)
2796                         return retval;
2797         }
2798
2799         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
2800                 LOG_DEBUG("Writing memory to address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address, size,
2801                         count);
2802                 if (mmu_enabled) {
2803                         virt = address;
2804                         retval = cortex_a_virt2phys(target, virt, &phys);
2805                         if (retval != ERROR_OK)
2806                                 return retval;
2807
2808                         LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2809                                   virt,
2810                                   phys);
2811                         address = phys;
2812                 }
2813                 retval = cortex_a_write_phys_memory(target, address, size,
2814                                 count, buffer);
2815         } else {
2816                 if (mmu_enabled) {
2817                         retval = cortex_a_check_address(target, address);
2818                         if (retval != ERROR_OK)
2819                                 return retval;
2820                         /* enable MMU as we could have disabled it for phys access */
2821                         retval = cortex_a_mmu_modify(target, 1);
2822                         if (retval != ERROR_OK)
2823                                 return retval;
2824                 }
2825                 retval = cortex_a_write_apb_ab_memory(target, address, size, count, buffer);
2826         }
2827         return retval;
2828 }
2829
2830 static int cortex_a_handle_target_request(void *priv)
2831 {
2832         struct target *target = priv;
2833         struct armv7a_common *armv7a = target_to_armv7a(target);
2834         struct adiv5_dap *swjdp = armv7a->arm.dap;
2835         int retval;
2836
2837         if (!target_was_examined(target))
2838                 return ERROR_OK;
2839         if (!target->dbg_msg_enabled)
2840                 return ERROR_OK;
2841
2842         if (target->state == TARGET_RUNNING) {
2843                 uint32_t request;
2844                 uint32_t dscr;
2845                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2846                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2847
2848                 /* check if we have data */
2849                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2850                         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2851                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2852                         if (retval == ERROR_OK) {
2853                                 target_request(target, request);
2854                                 retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2855                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2856                         }
2857                 }
2858         }
2859
2860         return ERROR_OK;
2861 }
2862
2863 /*
2864  * Cortex-A target information and configuration
2865  */
2866
2867 static int cortex_a_examine_first(struct target *target)
2868 {
2869         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2870         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2871         struct adiv5_dap *swjdp = armv7a->arm.dap;
2872         int i;
2873         int retval = ERROR_OK;
2874         uint32_t didr, ctypr, ttypr, cpuid, dbg_osreg;
2875
2876         /* We do one extra read to ensure DAP is configured,
2877          * we call ahbap_debugport_init(swjdp) instead
2878          */
2879         retval = ahbap_debugport_init(swjdp);
2880         if (retval != ERROR_OK)
2881                 return retval;
2882
2883         /* Search for the APB-AB - it is needed for access to debug registers */
2884         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2885         if (retval != ERROR_OK) {
2886                 LOG_ERROR("Could not find APB-AP for debug access");
2887                 return retval;
2888         }
2889         /* Search for the AHB-AB */
2890         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2891         if (retval != ERROR_OK) {
2892                 /* AHB-AP not found - use APB-AP */
2893                 LOG_DEBUG("Could not find AHB-AP - using APB-AP for memory access");
2894                 armv7a->memory_ap_available = false;
2895         } else {
2896                 armv7a->memory_ap_available = true;
2897         }
2898
2899
2900         if (!target->dbgbase_set) {
2901                 uint32_t dbgbase;
2902                 /* Get ROM Table base */
2903                 uint32_t apid;
2904                 int32_t coreidx = target->coreid;
2905                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2906                           target->cmd_name);
2907                 retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
2908                 if (retval != ERROR_OK)
2909                         return retval;
2910                 /* Lookup 0x15 -- Processor DAP */
2911                 retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
2912                                 &armv7a->debug_base, &coreidx);
2913                 if (retval != ERROR_OK) {
2914                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2915                                   target->cmd_name);
2916                         return retval;
2917                 }
2918                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2919                           coreidx, armv7a->debug_base);
2920         } else
2921                 armv7a->debug_base = target->dbgbase;
2922
2923         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2924                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2925         if (retval != ERROR_OK)
2926                 return retval;
2927
2928         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2929                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2930         if (retval != ERROR_OK) {
2931                 LOG_DEBUG("Examine %s failed", "CPUID");
2932                 return retval;
2933         }
2934
2935         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2936                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr);
2937         if (retval != ERROR_OK) {
2938                 LOG_DEBUG("Examine %s failed", "CTYPR");
2939                 return retval;
2940         }
2941
2942         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2943                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr);
2944         if (retval != ERROR_OK) {
2945                 LOG_DEBUG("Examine %s failed", "TTYPR");
2946                 return retval;
2947         }
2948
2949         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2950                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2951         if (retval != ERROR_OK) {
2952                 LOG_DEBUG("Examine %s failed", "DIDR");
2953                 return retval;
2954         }
2955
2956         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2957         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
2958         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
2959         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2960
2961         cortex_a->cpuid = cpuid;
2962         cortex_a->ctypr = ctypr;
2963         cortex_a->ttypr = ttypr;
2964         cortex_a->didr = didr;
2965
2966         /* Unlocking the debug registers */
2967         if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
2968                 CORTEX_A15_PARTNUM) {
2969
2970                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2971                                                      armv7a->debug_base + CPUDBG_OSLAR,
2972                                                      0);
2973
2974                 if (retval != ERROR_OK)
2975                         return retval;
2976
2977         }
2978         /* Unlocking the debug registers */
2979         if ((cpuid & CORTEX_A_MIDR_PARTNUM_MASK) >> CORTEX_A_MIDR_PARTNUM_SHIFT ==
2980                 CORTEX_A7_PARTNUM) {
2981
2982                 retval = mem_ap_sel_write_atomic_u32(swjdp, armv7a->debug_ap,
2983                                                      armv7a->debug_base + CPUDBG_OSLAR,
2984                                                      0);
2985
2986                 if (retval != ERROR_OK)
2987                         return retval;
2988
2989         }
2990         retval = mem_ap_sel_read_atomic_u32(swjdp, armv7a->debug_ap,
2991                                             armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2992
2993         if (retval != ERROR_OK)
2994                 return retval;
2995
2996         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2997
2998         armv7a->arm.core_type = ARM_MODE_MON;
2999
3000         /* Avoid recreating the registers cache */
3001         if (!target_was_examined(target)) {
3002                 retval = cortex_a_dpm_setup(cortex_a, didr);
3003                 if (retval != ERROR_OK)
3004                         return retval;
3005         }
3006
3007         /* Setup Breakpoint Register Pairs */
3008         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3009         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3010         cortex_a->brp_num_available = cortex_a->brp_num;
3011         free(cortex_a->brp_list);
3012         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3013 /*      cortex_a->brb_enabled = ????; */
3014         for (i = 0; i < cortex_a->brp_num; i++) {
3015                 cortex_a->brp_list[i].used = 0;
3016                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3017                         cortex_a->brp_list[i].type = BRP_NORMAL;
3018                 else
3019                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3020                 cortex_a->brp_list[i].value = 0;
3021                 cortex_a->brp_list[i].control = 0;
3022                 cortex_a->brp_list[i].BRPn = i;
3023         }
3024
3025         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3026
3027         target_set_examined(target);
3028         return ERROR_OK;
3029 }
3030
3031 static int cortex_a_examine(struct target *target)
3032 {
3033         int retval = ERROR_OK;
3034
3035         /* Reestablish communication after target reset */
3036         retval = cortex_a_examine_first(target);
3037
3038         /* Configure core debug access */
3039         if (retval == ERROR_OK)
3040                 retval = cortex_a_init_debug_access(target);
3041
3042         return retval;
3043 }
3044
3045 /*
3046  *      Cortex-A target creation and initialization
3047  */
3048
3049 static int cortex_a_init_target(struct command_context *cmd_ctx,
3050         struct target *target)
3051 {
3052         /* examine_first() does a bunch of this */
3053         return ERROR_OK;
3054 }
3055
3056 static int cortex_a_init_arch_info(struct target *target,
3057         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3058 {
3059         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3060         struct adiv5_dap *dap = &armv7a->dap;
3061
3062         armv7a->arm.dap = dap;
3063
3064         /* Setup struct cortex_a_common */
3065         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3066         /*  tap has no dap initialized */
3067         if (!tap->dap) {
3068                 armv7a->arm.dap = dap;
3069                 /* Setup struct cortex_a_common */
3070
3071                 /* prepare JTAG information for the new target */
3072                 cortex_a->jtag_info.tap = tap;
3073                 cortex_a->jtag_info.scann_size = 4;
3074
3075                 /* Leave (only) generic DAP stuff for debugport_init() */
3076                 dap->jtag_info = &cortex_a->jtag_info;
3077
3078                 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
3079                 dap->tar_autoincr_block = (1 << 10);
3080                 dap->memaccess_tck = 80;
3081                 tap->dap = dap;
3082         } else
3083                 armv7a->arm.dap = tap->dap;
3084
3085         cortex_a->fast_reg_read = 0;
3086
3087         /* register arch-specific functions */
3088         armv7a->examine_debug_reason = NULL;
3089
3090         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3091
3092         armv7a->pre_restore_context = NULL;
3093
3094         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3095
3096
3097 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3098
3099         /* REVISIT v7a setup should be in a v7a-specific routine */
3100         armv7a_init_arch_info(target, armv7a);
3101         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3102
3103         return ERROR_OK;
3104 }
3105
3106 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3107 {
3108         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3109
3110         cortex_a->armv7a_common.is_armv7r = false;
3111
3112         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3113 }
3114
3115 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3116 {
3117         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3118
3119         cortex_a->armv7a_common.is_armv7r = true;
3120
3121         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3122 }
3123
3124 static void cortex_a_deinit_target(struct target *target)
3125 {
3126         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3127         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3128
3129         free(cortex_a->brp_list);
3130         free(dpm->dbp);
3131         free(dpm->dwp);
3132         free(cortex_a);
3133 }
3134
3135 static int cortex_a_mmu(struct target *target, int *enabled)
3136 {
3137         if (target->state != TARGET_HALTED) {
3138                 LOG_ERROR("%s: target not halted", __func__);
3139                 return ERROR_TARGET_INVALID;
3140         }
3141
3142         *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3143         return ERROR_OK;
3144 }
3145
3146 static int cortex_a_virt2phys(struct target *target,
3147         uint32_t virt, uint32_t *phys)
3148 {
3149         int retval = ERROR_FAIL;
3150         struct armv7a_common *armv7a = target_to_armv7a(target);
3151         struct adiv5_dap *swjdp = armv7a->arm.dap;
3152         uint8_t apsel = swjdp->apsel;
3153         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap)) {
3154                 uint32_t ret;
3155                 retval = armv7a_mmu_translate_va(target,
3156                                 virt, &ret);
3157                 if (retval != ERROR_OK)
3158                         goto done;
3159                 *phys = ret;
3160         } else {/*  use this method if armv7a->memory_ap not selected
3161                  *  mmu must be enable in order to get a correct translation */
3162                 retval = cortex_a_mmu_modify(target, 1);
3163                 if (retval != ERROR_OK)
3164                         goto done;
3165                 retval = armv7a_mmu_translate_va_pa(target, virt,  phys, 1);
3166         }
3167 done:
3168         return retval;
3169 }
3170
3171 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3172 {
3173         struct target *target = get_current_target(CMD_CTX);
3174         struct armv7a_common *armv7a = target_to_armv7a(target);
3175
3176         return armv7a_handle_cache_info_command(CMD_CTX,
3177                         &armv7a->armv7a_mmu.armv7a_cache);
3178 }
3179
3180
3181 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3182 {
3183         struct target *target = get_current_target(CMD_CTX);
3184         if (!target_was_examined(target)) {
3185                 LOG_ERROR("target not examined yet");
3186                 return ERROR_FAIL;
3187         }
3188
3189         return cortex_a_init_debug_access(target);
3190 }
3191 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3192 {
3193         struct target *target = get_current_target(CMD_CTX);
3194         /* check target is an smp target */
3195         struct target_list *head;
3196         struct target *curr;
3197         head = target->head;
3198         target->smp = 0;
3199         if (head != (struct target_list *)NULL) {
3200                 while (head != (struct target_list *)NULL) {
3201                         curr = head->target;
3202                         curr->smp = 0;
3203                         head = head->next;
3204                 }
3205                 /*  fixes the target display to the debugger */
3206                 target->gdb_service->target = target;
3207         }
3208         return ERROR_OK;
3209 }
3210
3211 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3212 {
3213         struct target *target = get_current_target(CMD_CTX);
3214         struct target_list *head;
3215         struct target *curr;
3216         head = target->head;
3217         if (head != (struct target_list *)NULL) {
3218                 target->smp = 1;
3219                 while (head != (struct target_list *)NULL) {
3220                         curr = head->target;
3221                         curr->smp = 1;
3222                         head = head->next;
3223                 }
3224         }
3225         return ERROR_OK;
3226 }
3227
3228 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3229 {
3230         struct target *target = get_current_target(CMD_CTX);
3231         int retval = ERROR_OK;
3232         struct target_list *head;
3233         head = target->head;
3234         if (head != (struct target_list *)NULL) {
3235                 if (CMD_ARGC == 1) {
3236                         int coreid = 0;
3237                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3238                         if (ERROR_OK != retval)
3239                                 return retval;
3240                         target->gdb_service->core[1] = coreid;
3241
3242                 }
3243                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3244                         , target->gdb_service->core[1]);
3245         }
3246         return ERROR_OK;
3247 }
3248
3249 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3250 {
3251         struct target *target = get_current_target(CMD_CTX);
3252         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3253
3254         static const Jim_Nvp nvp_maskisr_modes[] = {
3255                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3256                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3257                 { .name = NULL, .value = -1 },
3258         };
3259         const Jim_Nvp *n;
3260
3261         if (target->state != TARGET_HALTED) {
3262                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
3263                 return ERROR_OK;
3264         }
3265
3266         if (CMD_ARGC > 0) {
3267                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3268                 if (n->name == NULL)
3269                         return ERROR_COMMAND_SYNTAX_ERROR;
3270                 cortex_a->isrmasking_mode = n->value;
3271
3272         }
3273
3274         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3275         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3276
3277         return ERROR_OK;
3278 }
3279
3280 static const struct command_registration cortex_a_exec_command_handlers[] = {
3281         {
3282                 .name = "cache_info",
3283                 .handler = cortex_a_handle_cache_info_command,
3284                 .mode = COMMAND_EXEC,
3285                 .help = "display information about target caches",
3286                 .usage = "",
3287         },
3288         {
3289                 .name = "dbginit",
3290                 .handler = cortex_a_handle_dbginit_command,
3291                 .mode = COMMAND_EXEC,
3292                 .help = "Initialize core debug",
3293                 .usage = "",
3294         },
3295         {   .name = "smp_off",
3296             .handler = cortex_a_handle_smp_off_command,
3297             .mode = COMMAND_EXEC,
3298             .help = "Stop smp handling",
3299             .usage = "",},
3300         {
3301                 .name = "smp_on",
3302                 .handler = cortex_a_handle_smp_on_command,
3303                 .mode = COMMAND_EXEC,
3304                 .help = "Restart smp handling",
3305                 .usage = "",
3306         },
3307         {
3308                 .name = "smp_gdb",
3309                 .handler = cortex_a_handle_smp_gdb_command,
3310                 .mode = COMMAND_EXEC,
3311                 .help = "display/fix current core played to gdb",
3312                 .usage = "",
3313         },
3314         {
3315                 .name = "maskisr",
3316                 .handler = handle_cortex_a_mask_interrupts_command,
3317                 .mode = COMMAND_EXEC,
3318                 .help = "mask cortex_a interrupts",
3319                 .usage = "['on'|'off']",
3320         },
3321
3322
3323         COMMAND_REGISTRATION_DONE
3324 };
3325 static const struct command_registration cortex_a_command_handlers[] = {
3326         {
3327                 .chain = arm_command_handlers,
3328         },
3329         {
3330                 .chain = armv7a_command_handlers,
3331         },
3332         {
3333                 .name = "cortex_a",
3334                 .mode = COMMAND_ANY,
3335                 .help = "Cortex-A command group",
3336                 .usage = "",
3337                 .chain = cortex_a_exec_command_handlers,
3338         },
3339         COMMAND_REGISTRATION_DONE
3340 };
3341
3342 struct target_type cortexa_target = {
3343         .name = "cortex_a",
3344         .deprecated_name = "cortex_a8",
3345
3346         .poll = cortex_a_poll,
3347         .arch_state = armv7a_arch_state,
3348
3349         .halt = cortex_a_halt,
3350         .resume = cortex_a_resume,
3351         .step = cortex_a_step,
3352
3353         .assert_reset = cortex_a_assert_reset,
3354         .deassert_reset = cortex_a_deassert_reset,
3355
3356         /* REVISIT allow exporting VFP3 registers ... */
3357         .get_gdb_reg_list = arm_get_gdb_reg_list,
3358
3359         .read_memory = cortex_a_read_memory,
3360         .write_memory = cortex_a_write_memory,
3361
3362         .checksum_memory = arm_checksum_memory,
3363         .blank_check_memory = arm_blank_check_memory,
3364
3365         .run_algorithm = armv4_5_run_algorithm,
3366
3367         .add_breakpoint = cortex_a_add_breakpoint,
3368         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3369         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3370         .remove_breakpoint = cortex_a_remove_breakpoint,
3371         .add_watchpoint = NULL,
3372         .remove_watchpoint = NULL,
3373
3374         .commands = cortex_a_command_handlers,
3375         .target_create = cortex_a_target_create,
3376         .init_target = cortex_a_init_target,
3377         .examine = cortex_a_examine,
3378         .deinit_target = cortex_a_deinit_target,
3379
3380         .read_phys_memory = cortex_a_read_phys_memory,
3381         .write_phys_memory = cortex_a_write_phys_memory,
3382         .mmu = cortex_a_mmu,
3383         .virt2phys = cortex_a_virt2phys,
3384 };
3385
3386 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3387         {
3388                 .name = "cache_info",
3389                 .handler = cortex_a_handle_cache_info_command,
3390                 .mode = COMMAND_EXEC,
3391                 .help = "display information about target caches",
3392                 .usage = "",
3393         },
3394         {
3395                 .name = "dbginit",
3396                 .handler = cortex_a_handle_dbginit_command,
3397                 .mode = COMMAND_EXEC,
3398                 .help = "Initialize core debug",
3399                 .usage = "",
3400         },
3401         {
3402                 .name = "maskisr",
3403                 .handler = handle_cortex_a_mask_interrupts_command,
3404                 .mode = COMMAND_EXEC,
3405                 .help = "mask cortex_r4 interrupts",
3406                 .usage = "['on'|'off']",
3407         },
3408
3409         COMMAND_REGISTRATION_DONE
3410 };
3411 static const struct command_registration cortex_r4_command_handlers[] = {
3412         {
3413                 .chain = arm_command_handlers,
3414         },
3415         {
3416                 .chain = armv7a_command_handlers,
3417         },
3418         {
3419                 .name = "cortex_r4",
3420                 .mode = COMMAND_ANY,
3421                 .help = "Cortex-R4 command group",
3422                 .usage = "",
3423                 .chain = cortex_r4_exec_command_handlers,
3424         },
3425         COMMAND_REGISTRATION_DONE
3426 };
3427
3428 struct target_type cortexr4_target = {
3429         .name = "cortex_r4",
3430
3431         .poll = cortex_a_poll,
3432         .arch_state = armv7a_arch_state,
3433
3434         .halt = cortex_a_halt,
3435         .resume = cortex_a_resume,
3436         .step = cortex_a_step,
3437
3438         .assert_reset = cortex_a_assert_reset,
3439         .deassert_reset = cortex_a_deassert_reset,
3440
3441         /* REVISIT allow exporting VFP3 registers ... */
3442         .get_gdb_reg_list = arm_get_gdb_reg_list,
3443
3444         .read_memory = cortex_a_read_memory,
3445         .write_memory = cortex_a_write_memory,
3446
3447         .checksum_memory = arm_checksum_memory,
3448         .blank_check_memory = arm_blank_check_memory,
3449
3450         .run_algorithm = armv4_5_run_algorithm,
3451
3452         .add_breakpoint = cortex_a_add_breakpoint,
3453         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3454         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3455         .remove_breakpoint = cortex_a_remove_breakpoint,
3456         .add_watchpoint = NULL,
3457         .remove_watchpoint = NULL,
3458
3459         .commands = cortex_r4_command_handlers,
3460         .target_create = cortex_r4_target_create,
3461         .init_target = cortex_a_init_target,
3462         .examine = cortex_a_examine,
3463         .deinit_target = cortex_a_deinit_target,
3464 };