]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
cortex_a: rename cortex_a8.c/h to cortex_a.c/h
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  *                                                                         *
32  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
33  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
34  *                                                                         *
35  ***************************************************************************/
36 #ifdef HAVE_CONFIG_H
37 #include "config.h"
38 #endif
39
40 #include "breakpoints.h"
41 #include "cortex_a.h"
42 #include "register.h"
43 #include "target_request.h"
44 #include "target_type.h"
45 #include "arm_opcodes.h"
46 #include <helper/time_support.h>
47
48 static int cortex_a8_poll(struct target *target);
49 static int cortex_a8_debug_entry(struct target *target);
50 static int cortex_a8_restore_context(struct target *target, bool bpwp);
51 static int cortex_a8_set_breakpoint(struct target *target,
52                 struct breakpoint *breakpoint, uint8_t matchmode);
53 static int cortex_a8_unset_breakpoint(struct target *target,
54                 struct breakpoint *breakpoint);
55 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
56                 uint32_t *value, int regnum);
57 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
58                 uint32_t value, int regnum);
59 static int cortex_a8_mmu(struct target *target, int *enabled);
60 static int cortex_a8_virt2phys(struct target *target,
61                 uint32_t virt, uint32_t *phys);
62 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
63                 int d_u_cache, int i_cache);
64 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
65                 int d_u_cache, int i_cache);
66 static int cortex_a8_get_ttb(struct target *target, uint32_t *result);
67
68
69 /*
70  * FIXME do topology discovery using the ROM; don't
71  * assume this is an OMAP3.   Also, allow for multiple ARMv7-A
72  * cores, with different AP numbering ... don't use a #define
73  * for these numbers, use per-core armv7a state.
74  */
75 #define swjdp_memoryap 0
76 #define swjdp_debugap 1
77
78 /*
79  * Cortex-A8 Basic debug access, very low level assumes state is saved
80  */
81 static int cortex_a8_init_debug_access(struct target *target)
82 {
83         struct armv7a_common *armv7a = target_to_armv7a(target);
84         struct adiv5_dap *swjdp = &armv7a->dap;
85         int retval;
86         uint32_t dummy;
87
88         LOG_DEBUG(" ");
89
90         /* Unlocking the debug registers for modification */
91         /* The debugport might be uninitialised so try twice */
92         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
93                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
94         if (retval != ERROR_OK)
95         {
96                 /* try again */
97                 retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
98                                 armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
99                 if (retval == ERROR_OK)
100                 {
101                         LOG_USER("Locking debug access failed on first, but succeeded on second try.");
102                 }
103         }
104         if (retval != ERROR_OK)
105                 return retval;
106         /* Clear Sticky Power Down status Bit in PRSR to enable access to
107            the registers in the Core Power Domain */
108         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
109                                 armv7a->debug_base + CPUDBG_PRSR, &dummy);
110         if (retval != ERROR_OK)
111                 return retval;
112
113         /* Enabling of instruction execution in debug mode is done in debug_entry code */
114
115         /* Resync breakpoint registers */
116
117         /* Since this is likely called from init or reset, update target state information*/
118         return cortex_a8_poll(target);
119 }
120
121 /* To reduce needless round-trips, pass in a pointer to the current
122  * DSCR value.  Initialize it to zero if you just need to know the
123  * value on return from this function; or DSCR_INSTR_COMP if you
124  * happen to know that no instruction is pending.
125  */
126 static int cortex_a8_exec_opcode(struct target *target,
127                 uint32_t opcode, uint32_t *dscr_p)
128 {
129         uint32_t dscr;
130         int retval;
131         struct armv7a_common *armv7a = target_to_armv7a(target);
132         struct adiv5_dap *swjdp = &armv7a->dap;
133
134         dscr = dscr_p ? *dscr_p : 0;
135
136         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
137
138         /* Wait for InstrCompl bit to be set */
139         long long then = timeval_ms();
140         while ((dscr & DSCR_INSTR_COMP) == 0)
141         {
142                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
143                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
144                 if (retval != ERROR_OK)
145                 {
146                         LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
147                         return retval;
148                 }
149                 if (timeval_ms() > then + 1000)
150                 {
151                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
152                         return ERROR_FAIL;
153                 }
154         }
155
156         retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
157                                 armv7a->debug_base + CPUDBG_ITR, opcode);
158         if (retval != ERROR_OK)
159                 return retval;
160
161         then = timeval_ms();
162         do
163         {
164                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
165                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
166                 if (retval != ERROR_OK)
167                 {
168                         LOG_ERROR("Could not read DSCR register");
169                         return retval;
170                 }
171                 if (timeval_ms() > then + 1000)
172                 {
173                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
174                         return ERROR_FAIL;
175                 }
176         }
177         while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
178
179         if (dscr_p)
180                 *dscr_p = dscr;
181
182         return retval;
183 }
184
185 /**************************************************************************
186 Read core register with very few exec_opcode, fast but needs work_area.
187 This can cause problems with MMU active.
188 **************************************************************************/
189 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
190                 uint32_t * regfile)
191 {
192         int retval = ERROR_OK;
193         struct armv7a_common *armv7a = target_to_armv7a(target);
194         struct adiv5_dap *swjdp = &armv7a->dap;
195
196         retval = cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
197         if (retval != ERROR_OK)
198                 return retval;
199         retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
200         if (retval != ERROR_OK)
201                 return retval;
202         retval = cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
203         if (retval != ERROR_OK)
204                 return retval;
205
206         retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
207                         (uint8_t *)(&regfile[1]), 4*15, address);
208
209         return retval;
210 }
211
212 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
213                 uint32_t *value, int regnum)
214 {
215         int retval = ERROR_OK;
216         uint8_t reg = regnum&0xFF;
217         uint32_t dscr = 0;
218         struct armv7a_common *armv7a = target_to_armv7a(target);
219         struct adiv5_dap *swjdp = &armv7a->dap;
220
221         if (reg > 17)
222                 return retval;
223
224         if (reg < 15)
225         {
226                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
227                 retval = cortex_a8_exec_opcode(target,
228                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
229                                 &dscr);
230                 if (retval != ERROR_OK)
231                         return retval;
232         }
233         else if (reg == 15)
234         {
235                 /* "MOV r0, r15"; then move r0 to DCCTX */
236                 retval = cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
237                 if (retval != ERROR_OK)
238                         return retval;
239                 retval = cortex_a8_exec_opcode(target,
240                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
241                                 &dscr);
242                 if (retval != ERROR_OK)
243                         return retval;
244         }
245         else
246         {
247                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
248                  * then move r0 to DCCTX
249                  */
250                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
251                 if (retval != ERROR_OK)
252                         return retval;
253                 retval = cortex_a8_exec_opcode(target,
254                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
255                                 &dscr);
256                 if (retval != ERROR_OK)
257                         return retval;
258         }
259
260         /* Wait for DTRRXfull then read DTRRTX */
261         long long then = timeval_ms();
262         while ((dscr & DSCR_DTR_TX_FULL) == 0)
263         {
264                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
265                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
266                 if (retval != ERROR_OK)
267                         return retval;
268                 if (timeval_ms() > then + 1000)
269                 {
270                         LOG_ERROR("Timeout waiting for cortex_a8_exec_opcode");
271                         return ERROR_FAIL;
272                 }
273         }
274
275         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
276                         armv7a->debug_base + CPUDBG_DTRTX, value);
277         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
278
279         return retval;
280 }
281
282 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
283                 uint32_t value, int regnum)
284 {
285         int retval = ERROR_OK;
286         uint8_t Rd = regnum&0xFF;
287         uint32_t dscr;
288         struct armv7a_common *armv7a = target_to_armv7a(target);
289         struct adiv5_dap *swjdp = &armv7a->dap;
290
291         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
292
293         /* Check that DCCRX is not full */
294         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
295                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
296         if (retval != ERROR_OK)
297                 return retval;
298         if (dscr & DSCR_DTR_RX_FULL)
299         {
300                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
301                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
302                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
303                                 &dscr);
304                 if (retval != ERROR_OK)
305                         return retval;
306         }
307
308         if (Rd > 17)
309                 return retval;
310
311         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
312         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
313         retval = mem_ap_sel_write_u32(swjdp, swjdp_debugap,
314                         armv7a->debug_base + CPUDBG_DTRRX, value);
315         if (retval != ERROR_OK)
316                 return retval;
317
318         if (Rd < 15)
319         {
320                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
321                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
322                                 &dscr);
323                 if (retval != ERROR_OK)
324                         return retval;
325         }
326         else if (Rd == 15)
327         {
328                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
329                  * then "mov r15, r0"
330                  */
331                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
332                                 &dscr);
333                 if (retval != ERROR_OK)
334                         return retval;
335                 retval = cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
336                 if (retval != ERROR_OK)
337                         return retval;
338         }
339         else
340         {
341                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
342                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
343                  */
344                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
345                                 &dscr);
346                 if (retval != ERROR_OK)
347                         return retval;
348                 retval = cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
349                                 &dscr);
350                 if (retval != ERROR_OK)
351                         return retval;
352
353                 /* "Prefetch flush" after modifying execution status in CPSR */
354                 if (Rd == 16)
355                 {
356                         retval = cortex_a8_exec_opcode(target,
357                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
358                                         &dscr);
359                         if (retval != ERROR_OK)
360                                 return retval;
361                 }
362         }
363
364         return retval;
365 }
366
367 /* Write to memory mapped registers directly with no cache or mmu handling */
368 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
369 {
370         int retval;
371         struct armv7a_common *armv7a = target_to_armv7a(target);
372         struct adiv5_dap *swjdp = &armv7a->dap;
373
374         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap, address, value);
375
376         return retval;
377 }
378
379 /*
380  * Cortex-A8 implementation of Debug Programmer's Model
381  *
382  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
383  * so there's no need to poll for it before executing an instruction.
384  *
385  * NOTE that in several of these cases the "stall" mode might be useful.
386  * It'd let us queue a few operations together... prepare/finish might
387  * be the places to enable/disable that mode.
388  */
389
390 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
391 {
392         return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
393 }
394
395 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
396 {
397         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
398         return mem_ap_sel_write_u32(&a8->armv7a_common.dap, swjdp_debugap,
399                         a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
400 }
401
402 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
403                 uint32_t *dscr_p)
404 {
405         struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
406         uint32_t dscr = DSCR_INSTR_COMP;
407         int retval;
408
409         if (dscr_p)
410                 dscr = *dscr_p;
411
412         /* Wait for DTRRXfull */
413         long long then = timeval_ms();
414         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
415                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
416                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
417                                 &dscr);
418                 if (retval != ERROR_OK)
419                         return retval;
420                 if (timeval_ms() > then + 1000)
421                 {
422                         LOG_ERROR("Timeout waiting for read dcc");
423                         return ERROR_FAIL;
424                 }
425         }
426
427         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
428                         a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
429         if (retval != ERROR_OK)
430                 return retval;
431         //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
432
433         if (dscr_p)
434                 *dscr_p = dscr;
435
436         return retval;
437 }
438
439 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
440 {
441         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
442         struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
443         uint32_t dscr;
444         int retval;
445
446         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
447         long long then = timeval_ms();
448         for (;;)
449         {
450                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
451                                 a8->armv7a_common.debug_base + CPUDBG_DSCR,
452                                 &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455                 if ((dscr & DSCR_INSTR_COMP) != 0)
456                         break;
457                 if (timeval_ms() > then + 1000)
458                 {
459                         LOG_ERROR("Timeout waiting for dpm prepare");
460                         return ERROR_FAIL;
461                 }
462         }
463
464         /* this "should never happen" ... */
465         if (dscr & DSCR_DTR_RX_FULL) {
466                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
467                 /* Clear DCCRX */
468                 retval = cortex_a8_exec_opcode(
469                                 a8->armv7a_common.armv4_5_common.target,
470                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
471                                 &dscr);
472                 if (retval != ERROR_OK)
473                         return retval;
474         }
475
476         return retval;
477 }
478
479 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
480 {
481         /* REVISIT what could be done here? */
482         return ERROR_OK;
483 }
484
485 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
486                 uint32_t opcode, uint32_t data)
487 {
488         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
489         int retval;
490         uint32_t dscr = DSCR_INSTR_COMP;
491
492         retval = cortex_a8_write_dcc(a8, data);
493         if (retval != ERROR_OK)
494                 return retval;
495
496         return cortex_a8_exec_opcode(
497                         a8->armv7a_common.armv4_5_common.target,
498                         opcode,
499                         &dscr);
500 }
501
502 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
503                 uint32_t opcode, uint32_t data)
504 {
505         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
506         uint32_t dscr = DSCR_INSTR_COMP;
507         int retval;
508
509         retval = cortex_a8_write_dcc(a8, data);
510         if (retval != ERROR_OK)
511                 return retval;
512
513         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
514         retval = cortex_a8_exec_opcode(
515                         a8->armv7a_common.armv4_5_common.target,
516                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
517                         &dscr);
518         if (retval != ERROR_OK)
519                 return retval;
520
521         /* then the opcode, taking data from R0 */
522         retval = cortex_a8_exec_opcode(
523                         a8->armv7a_common.armv4_5_common.target,
524                         opcode,
525                         &dscr);
526
527         return retval;
528 }
529
530 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
531 {
532         struct target *target = dpm->arm->target;
533         uint32_t dscr = DSCR_INSTR_COMP;
534
535         /* "Prefetch flush" after modifying execution status in CPSR */
536         return cortex_a8_exec_opcode(target,
537                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
538                         &dscr);
539 }
540
541 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
542                 uint32_t opcode, uint32_t *data)
543 {
544         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
545         int retval;
546         uint32_t dscr = DSCR_INSTR_COMP;
547
548         /* the opcode, writing data to DCC */
549         retval = cortex_a8_exec_opcode(
550                         a8->armv7a_common.armv4_5_common.target,
551                         opcode,
552                         &dscr);
553         if (retval != ERROR_OK)
554                 return retval;
555
556         return cortex_a8_read_dcc(a8, data, &dscr);
557 }
558
559
560 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
561                 uint32_t opcode, uint32_t *data)
562 {
563         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
564         uint32_t dscr = DSCR_INSTR_COMP;
565         int retval;
566
567         /* the opcode, writing data to R0 */
568         retval = cortex_a8_exec_opcode(
569                         a8->armv7a_common.armv4_5_common.target,
570                         opcode,
571                         &dscr);
572         if (retval != ERROR_OK)
573                 return retval;
574
575         /* write R0 to DCC */
576         retval = cortex_a8_exec_opcode(
577                         a8->armv7a_common.armv4_5_common.target,
578                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
579                         &dscr);
580         if (retval != ERROR_OK)
581                 return retval;
582
583         return cortex_a8_read_dcc(a8, data, &dscr);
584 }
585
586 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
587                 uint32_t addr, uint32_t control)
588 {
589         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
590         uint32_t vr = a8->armv7a_common.debug_base;
591         uint32_t cr = a8->armv7a_common.debug_base;
592         int retval;
593
594         switch (index_t) {
595         case 0 ... 15:          /* breakpoints */
596                 vr += CPUDBG_BVR_BASE;
597                 cr += CPUDBG_BCR_BASE;
598                 break;
599         case 16 ... 31:         /* watchpoints */
600                 vr += CPUDBG_WVR_BASE;
601                 cr += CPUDBG_WCR_BASE;
602                 index_t -= 16;
603                 break;
604         default:
605                 return ERROR_FAIL;
606         }
607         vr += 4 * index_t;
608         cr += 4 * index_t;
609
610         LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
611                         (unsigned) vr, (unsigned) cr);
612
613         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
614                         vr, addr);
615         if (retval != ERROR_OK)
616                 return retval;
617         retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
618                         cr, control);
619         return retval;
620 }
621
622 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
623 {
624         struct cortex_a8_common *a8 = dpm_to_a8(dpm);
625         uint32_t cr;
626
627         switch (index_t) {
628         case 0 ... 15:
629                 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
630                 break;
631         case 16 ... 31:
632                 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
633                 index_t -= 16;
634                 break;
635         default:
636                 return ERROR_FAIL;
637         }
638         cr += 4 * index_t;
639
640         LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
641
642         /* clear control register */
643         return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
644 }
645
646 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
647 {
648         struct arm_dpm *dpm = &a8->armv7a_common.dpm;
649         int retval;
650
651         dpm->arm = &a8->armv7a_common.armv4_5_common;
652         dpm->didr = didr;
653
654         dpm->prepare = cortex_a8_dpm_prepare;
655         dpm->finish = cortex_a8_dpm_finish;
656
657         dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
658         dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
659         dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
660
661         dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
662         dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
663
664         dpm->bpwp_enable = cortex_a8_bpwp_enable;
665         dpm->bpwp_disable = cortex_a8_bpwp_disable;
666
667         retval = arm_dpm_setup(dpm);
668         if (retval == ERROR_OK)
669                 retval = arm_dpm_initialize(dpm);
670
671         return retval;
672 }
673
674
675 /*
676  * Cortex-A8 Run control
677  */
678
679 static int cortex_a8_poll(struct target *target)
680 {
681         int retval = ERROR_OK;
682         uint32_t dscr;
683         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
684         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
685         struct adiv5_dap *swjdp = &armv7a->dap;
686         enum target_state prev_target_state = target->state;
687
688         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
689                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
690         if (retval != ERROR_OK)
691         {
692                 return retval;
693         }
694         cortex_a8->cpudbg_dscr = dscr;
695
696         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED))
697         {
698                 if (prev_target_state != TARGET_HALTED)
699                 {
700                         /* We have a halting debug event */
701                         LOG_DEBUG("Target halted");
702                         target->state = TARGET_HALTED;
703                         if ((prev_target_state == TARGET_RUNNING)
704                                         || (prev_target_state == TARGET_RESET))
705                         {
706                                 retval = cortex_a8_debug_entry(target);
707                                 if (retval != ERROR_OK)
708                                         return retval;
709
710                                 target_call_event_callbacks(target,
711                                                 TARGET_EVENT_HALTED);
712                         }
713                         if (prev_target_state == TARGET_DEBUG_RUNNING)
714                         {
715                                 LOG_DEBUG(" ");
716
717                                 retval = cortex_a8_debug_entry(target);
718                                 if (retval != ERROR_OK)
719                                         return retval;
720
721                                 target_call_event_callbacks(target,
722                                                 TARGET_EVENT_DEBUG_HALTED);
723                         }
724                 }
725         }
726         else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
727         {
728                 target->state = TARGET_RUNNING;
729         }
730         else
731         {
732                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
733                 target->state = TARGET_UNKNOWN;
734         }
735
736         return retval;
737 }
738
739 static int cortex_a8_halt(struct target *target)
740 {
741         int retval = ERROR_OK;
742         uint32_t dscr;
743         struct armv7a_common *armv7a = target_to_armv7a(target);
744         struct adiv5_dap *swjdp = &armv7a->dap;
745
746         /*
747          * Tell the core to be halted by writing DRCR with 0x1
748          * and then wait for the core to be halted.
749          */
750         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
751                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
752         if (retval != ERROR_OK)
753                 return retval;
754
755         /*
756          * enter halting debug mode
757          */
758         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
759                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
760         if (retval != ERROR_OK)
761                 return retval;
762
763         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
764                 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
765         if (retval != ERROR_OK)
766                 return retval;
767
768         long long then = timeval_ms();
769         for (;;)
770         {
771                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
772                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
773                 if (retval != ERROR_OK)
774                         return retval;
775                 if ((dscr & DSCR_CORE_HALTED) != 0)
776                 {
777                         break;
778                 }
779                 if (timeval_ms() > then + 1000)
780                 {
781                         LOG_ERROR("Timeout waiting for halt");
782                         return ERROR_FAIL;
783                 }
784         }
785
786         target->debug_reason = DBG_REASON_DBGRQ;
787
788         return ERROR_OK;
789 }
790
791 static int cortex_a8_resume(struct target *target, int current,
792                 uint32_t address, int handle_breakpoints, int debug_execution)
793 {
794         struct armv7a_common *armv7a = target_to_armv7a(target);
795         struct arm *armv4_5 = &armv7a->armv4_5_common;
796         struct adiv5_dap *swjdp = &armv7a->dap;
797         int retval;
798
799 //      struct breakpoint *breakpoint = NULL;
800         uint32_t resume_pc, dscr;
801
802         if (!debug_execution)
803                 target_free_all_working_areas(target);
804
805 #if 0
806         if (debug_execution)
807         {
808                 /* Disable interrupts */
809                 /* We disable interrupts in the PRIMASK register instead of
810                  * masking with C_MASKINTS,
811                  * This is probably the same issue as Cortex-M3 Errata 377493:
812                  * C_MASKINTS in parallel with disabled interrupts can cause
813                  * local faults to not be taken. */
814                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
815                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
816                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
817
818                 /* Make sure we are in Thumb mode */
819                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
820                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
821                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
822                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
823         }
824 #endif
825
826         /* current = 1: continue on current pc, otherwise continue at <address> */
827         resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
828         if (!current)
829                 resume_pc = address;
830
831         /* Make sure that the Armv7 gdb thumb fixups does not
832          * kill the return address
833          */
834         switch (armv4_5->core_state)
835         {
836         case ARM_STATE_ARM:
837                 resume_pc &= 0xFFFFFFFC;
838                 break;
839         case ARM_STATE_THUMB:
840         case ARM_STATE_THUMB_EE:
841                 /* When the return address is loaded into PC
842                  * bit 0 must be 1 to stay in Thumb state
843                  */
844                 resume_pc |= 0x1;
845                 break;
846         case ARM_STATE_JAZELLE:
847                 LOG_ERROR("How do I resume into Jazelle state??");
848                 return ERROR_FAIL;
849         }
850         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
851         buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
852         armv4_5->pc->dirty = 1;
853         armv4_5->pc->valid = 1;
854
855         retval = cortex_a8_restore_context(target, handle_breakpoints);
856         if (retval != ERROR_OK)
857                 return retval;
858
859 #if 0
860         /* the front-end may request us not to handle breakpoints */
861         if (handle_breakpoints)
862         {
863                 /* Single step past breakpoint at current address */
864                 if ((breakpoint = breakpoint_find(target, resume_pc)))
865                 {
866                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
867                         cortex_m3_unset_breakpoint(target, breakpoint);
868                         cortex_m3_single_step_core(target);
869                         cortex_m3_set_breakpoint(target, breakpoint);
870                 }
871         }
872
873 #endif
874
875         /*
876          * Restart core and wait for it to be started.  Clear ITRen and sticky
877          * exception flags: see ARMv7 ARM, C5.9.
878          *
879          * REVISIT: for single stepping, we probably want to
880          * disable IRQs by default, with optional override...
881          */
882
883         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
884                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
885         if (retval != ERROR_OK)
886                 return retval;
887
888         if ((dscr & DSCR_INSTR_COMP) == 0)
889                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
890
891         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
892                 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
893         if (retval != ERROR_OK)
894                 return retval;
895
896         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
897                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART | DRCR_CLEAR_EXCEPTIONS);
898         if (retval != ERROR_OK)
899                 return retval;
900
901         long long then = timeval_ms();
902         for (;;)
903         {
904                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
905                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
906                 if (retval != ERROR_OK)
907                         return retval;
908                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
909                         break;
910                 if (timeval_ms() > then + 1000)
911                 {
912                         LOG_ERROR("Timeout waiting for resume");
913                         return ERROR_FAIL;
914                 }
915         }
916
917         target->debug_reason = DBG_REASON_NOTHALTED;
918         target->state = TARGET_RUNNING;
919
920         /* registers are now invalid */
921         register_cache_invalidate(armv4_5->core_cache);
922
923         if (!debug_execution)
924         {
925                 target->state = TARGET_RUNNING;
926                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
927                 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
928         }
929         else
930         {
931                 target->state = TARGET_DEBUG_RUNNING;
932                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
933                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
934         }
935
936         return ERROR_OK;
937 }
938
939 static int cortex_a8_debug_entry(struct target *target)
940 {
941         int i;
942         uint32_t regfile[16], cpsr, dscr;
943         int retval = ERROR_OK;
944         struct working_area *regfile_working_area = NULL;
945         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
946         struct armv7a_common *armv7a = target_to_armv7a(target);
947         struct arm *armv4_5 = &armv7a->armv4_5_common;
948         struct adiv5_dap *swjdp = &armv7a->dap;
949         struct reg *reg;
950
951         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
952
953         /* REVISIT surely we should not re-read DSCR !! */
954         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
955                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
956         if (retval != ERROR_OK)
957                 return retval;
958
959         /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
960          * imprecise data aborts get discarded by issuing a Data
961          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
962          */
963
964         /* Enable the ITR execution once we are in debug mode */
965         dscr |= DSCR_ITR_EN;
966         retval = mem_ap_sel_write_atomic_u32(swjdp, swjdp_debugap,
967                         armv7a->debug_base + CPUDBG_DSCR, dscr);
968         if (retval != ERROR_OK)
969                 return retval;
970
971         /* Examine debug reason */
972         arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
973
974         /* save address of instruction that triggered the watchpoint? */
975         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
976                 uint32_t wfar;
977
978                 retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
979                                 armv7a->debug_base + CPUDBG_WFAR,
980                                 &wfar);
981                 if (retval != ERROR_OK)
982                         return retval;
983                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
984         }
985
986         /* REVISIT fast_reg_read is never set ... */
987
988         /* Examine target state and mode */
989         if (cortex_a8->fast_reg_read)
990                 target_alloc_working_area(target, 64, &regfile_working_area);
991
992         /* First load register acessible through core debug port*/
993         if (!regfile_working_area)
994         {
995                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
996         }
997         else
998         {
999                 retval = cortex_a8_read_regs_through_mem(target,
1000                                 regfile_working_area->address, regfile);
1001
1002                 target_free_working_area(target, regfile_working_area);
1003                 if (retval != ERROR_OK)
1004                 {
1005                         return retval;
1006                 }
1007
1008                 /* read Current PSR */
1009                 retval = cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
1010                 if (retval != ERROR_OK)
1011                         return retval;
1012
1013                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1014
1015                 arm_set_cpsr(armv4_5, cpsr);
1016
1017                 /* update cache */
1018                 for (i = 0; i <= ARM_PC; i++)
1019                 {
1020                         reg = arm_reg_current(armv4_5, i);
1021
1022                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1023                         reg->valid = 1;
1024                         reg->dirty = 0;
1025                 }
1026
1027                 /* Fixup PC Resume Address */
1028                 if (cpsr & (1 << 5))
1029                 {
1030                         // T bit set for Thumb or ThumbEE state
1031                         regfile[ARM_PC] -= 4;
1032                 }
1033                 else
1034                 {
1035                         // ARM state
1036                         regfile[ARM_PC] -= 8;
1037                 }
1038
1039                 reg = armv4_5->pc;
1040                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1041                 reg->dirty = reg->valid;
1042         }
1043
1044 #if 0
1045 /* TODO, Move this */
1046         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1047         cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1048         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1049
1050         cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1051         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1052
1053         cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1054         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1055 #endif
1056
1057         /* Are we in an exception handler */
1058 //      armv4_5->exception_number = 0;
1059         if (armv7a->post_debug_entry)
1060         {
1061                 retval = armv7a->post_debug_entry(target);
1062                 if (retval != ERROR_OK)
1063                         return retval;
1064         }
1065
1066         return retval;
1067 }
1068
1069 static int cortex_a8_post_debug_entry(struct target *target)
1070 {
1071         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1072         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1073         int retval;
1074
1075         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1076         retval = armv7a->armv4_5_common.mrc(target, 15,
1077                         0, 0,   /* op1, op2 */
1078                         1, 0,   /* CRn, CRm */
1079                         &cortex_a8->cp15_control_reg);
1080         if (retval != ERROR_OK)
1081                 return retval;
1082         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
1083
1084         if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
1085         {
1086                 uint32_t cache_type_reg;
1087
1088                 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
1089                 retval = armv7a->armv4_5_common.mrc(target, 15,
1090                                 0, 1,   /* op1, op2 */
1091                                 0, 0,   /* CRn, CRm */
1092                                 &cache_type_reg);
1093                 if (retval != ERROR_OK)
1094                         return retval;
1095                 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
1096
1097                 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
1098                 armv4_5_identify_cache(cache_type_reg,
1099                                 &armv7a->armv4_5_mmu.armv4_5_cache);
1100         }
1101
1102         armv7a->armv4_5_mmu.mmu_enabled =
1103                         (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
1104         armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
1105                         (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
1106         armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
1107                         (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
1108
1109         return ERROR_OK;
1110 }
1111
1112 static int cortex_a8_step(struct target *target, int current, uint32_t address,
1113                 int handle_breakpoints)
1114 {
1115         struct armv7a_common *armv7a = target_to_armv7a(target);
1116         struct arm *armv4_5 = &armv7a->armv4_5_common;
1117         struct breakpoint *breakpoint = NULL;
1118         struct breakpoint stepbreakpoint;
1119         struct reg *r;
1120         int retval;
1121
1122         if (target->state != TARGET_HALTED)
1123         {
1124                 LOG_WARNING("target not halted");
1125                 return ERROR_TARGET_NOT_HALTED;
1126         }
1127
1128         /* current = 1: continue on current pc, otherwise continue at <address> */
1129         r = armv4_5->pc;
1130         if (!current)
1131         {
1132                 buf_set_u32(r->value, 0, 32, address);
1133         }
1134         else
1135         {
1136                 address = buf_get_u32(r->value, 0, 32);
1137         }
1138
1139         /* The front-end may request us not to handle breakpoints.
1140          * But since Cortex-A8 uses breakpoint for single step,
1141          * we MUST handle breakpoints.
1142          */
1143         handle_breakpoints = 1;
1144         if (handle_breakpoints) {
1145                 breakpoint = breakpoint_find(target, address);
1146                 if (breakpoint)
1147                         cortex_a8_unset_breakpoint(target, breakpoint);
1148         }
1149
1150         /* Setup single step breakpoint */
1151         stepbreakpoint.address = address;
1152         stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
1153                         ? 2 : 4;
1154         stepbreakpoint.type = BKPT_HARD;
1155         stepbreakpoint.set = 0;
1156
1157         /* Break on IVA mismatch */
1158         cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
1159
1160         target->debug_reason = DBG_REASON_SINGLESTEP;
1161
1162         retval = cortex_a8_resume(target, 1, address, 0, 0);
1163         if (retval != ERROR_OK)
1164                 return retval;
1165
1166         long long then = timeval_ms();
1167         while (target->state != TARGET_HALTED)
1168         {
1169                 retval = cortex_a8_poll(target);
1170                 if (retval != ERROR_OK)
1171                         return retval;
1172                 if (timeval_ms() > then + 1000)
1173                 {
1174                         LOG_ERROR("timeout waiting for target halt");
1175                         return ERROR_FAIL;
1176                 }
1177         }
1178
1179         cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1180
1181         target->debug_reason = DBG_REASON_BREAKPOINT;
1182
1183         if (breakpoint)
1184                 cortex_a8_set_breakpoint(target, breakpoint, 0);
1185
1186         if (target->state != TARGET_HALTED)
1187                 LOG_DEBUG("target stepped");
1188
1189         return ERROR_OK;
1190 }
1191
1192 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1193 {
1194         struct armv7a_common *armv7a = target_to_armv7a(target);
1195
1196         LOG_DEBUG(" ");
1197
1198         if (armv7a->pre_restore_context)
1199                 armv7a->pre_restore_context(target);
1200
1201         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1202 }
1203
1204
1205 /*
1206  * Cortex-A8 Breakpoint and watchpoint functions
1207  */
1208
1209 /* Setup hardware Breakpoint Register Pair */
1210 static int cortex_a8_set_breakpoint(struct target *target,
1211                 struct breakpoint *breakpoint, uint8_t matchmode)
1212 {
1213         int retval;
1214         int brp_i=0;
1215         uint32_t control;
1216         uint8_t byte_addr_select = 0x0F;
1217         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1218         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1219         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1220
1221         if (breakpoint->set)
1222         {
1223                 LOG_WARNING("breakpoint already set");
1224                 return ERROR_OK;
1225         }
1226
1227         if (breakpoint->type == BKPT_HARD)
1228         {
1229                 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1230                         brp_i++ ;
1231                 if (brp_i >= cortex_a8->brp_num)
1232                 {
1233                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1234                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1235                 }
1236                 breakpoint->set = brp_i + 1;
1237                 if (breakpoint->length == 2)
1238                 {
1239                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1240                 }
1241                 control = ((matchmode & 0x7) << 20)
1242                                 | (byte_addr_select << 5)
1243                                 | (3 << 1) | 1;
1244                 brp_list[brp_i].used = 1;
1245                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1246                 brp_list[brp_i].control = control;
1247                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1248                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1249                                 brp_list[brp_i].value);
1250                 if (retval != ERROR_OK)
1251                         return retval;
1252                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1253                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1254                                 brp_list[brp_i].control);
1255                 if (retval != ERROR_OK)
1256                         return retval;
1257                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1258                                 brp_list[brp_i].control,
1259                                 brp_list[brp_i].value);
1260         }
1261         else if (breakpoint->type == BKPT_SOFT)
1262         {
1263                 uint8_t code[4];
1264                 if (breakpoint->length == 2)
1265                 {
1266                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1267                 }
1268                 else
1269                 {
1270                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1271                 }
1272                 retval = target->type->read_memory(target,
1273                                 breakpoint->address & 0xFFFFFFFE,
1274                                 breakpoint->length, 1,
1275                                 breakpoint->orig_instr);
1276                 if (retval != ERROR_OK)
1277                         return retval;
1278                 retval = target->type->write_memory(target,
1279                                 breakpoint->address & 0xFFFFFFFE,
1280                                 breakpoint->length, 1, code);
1281                 if (retval != ERROR_OK)
1282                         return retval;
1283                 breakpoint->set = 0x11; /* Any nice value but 0 */
1284         }
1285
1286         return ERROR_OK;
1287 }
1288
1289 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1290 {
1291         int retval;
1292         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1293         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1294         struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1295
1296         if (!breakpoint->set)
1297         {
1298                 LOG_WARNING("breakpoint not set");
1299                 return ERROR_OK;
1300         }
1301
1302         if (breakpoint->type == BKPT_HARD)
1303         {
1304                 int brp_i = breakpoint->set - 1;
1305                 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1306                 {
1307                         LOG_DEBUG("Invalid BRP number in breakpoint");
1308                         return ERROR_OK;
1309                 }
1310                 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1311                                 brp_list[brp_i].control, brp_list[brp_i].value);
1312                 brp_list[brp_i].used = 0;
1313                 brp_list[brp_i].value = 0;
1314                 brp_list[brp_i].control = 0;
1315                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1316                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1317                                 brp_list[brp_i].control);
1318                 if (retval != ERROR_OK)
1319                         return retval;
1320                 retval = cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1321                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1322                                 brp_list[brp_i].value);
1323                 if (retval != ERROR_OK)
1324                         return retval;
1325         }
1326         else
1327         {
1328                 /* restore original instruction (kept in target endianness) */
1329                 if (breakpoint->length == 4)
1330                 {
1331                         retval = target->type->write_memory(target,
1332                                         breakpoint->address & 0xFFFFFFFE,
1333                                         4, 1, breakpoint->orig_instr);
1334                         if (retval != ERROR_OK)
1335                                 return retval;
1336                 }
1337                 else
1338                 {
1339                         retval = target->type->write_memory(target,
1340                                         breakpoint->address & 0xFFFFFFFE,
1341                                         2, 1, breakpoint->orig_instr);
1342                         if (retval != ERROR_OK)
1343                                 return retval;
1344                 }
1345         }
1346         breakpoint->set = 0;
1347
1348         return ERROR_OK;
1349 }
1350
1351 static int cortex_a8_add_breakpoint(struct target *target,
1352                 struct breakpoint *breakpoint)
1353 {
1354         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1355
1356         if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1357         {
1358                 LOG_INFO("no hardware breakpoint available");
1359                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1360         }
1361
1362         if (breakpoint->type == BKPT_HARD)
1363                 cortex_a8->brp_num_available--;
1364
1365         return cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1366 }
1367
1368 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1369 {
1370         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1371
1372 #if 0
1373 /* It is perfectly possible to remove breakpoints while the target is running */
1374         if (target->state != TARGET_HALTED)
1375         {
1376                 LOG_WARNING("target not halted");
1377                 return ERROR_TARGET_NOT_HALTED;
1378         }
1379 #endif
1380
1381         if (breakpoint->set)
1382         {
1383                 cortex_a8_unset_breakpoint(target, breakpoint);
1384                 if (breakpoint->type == BKPT_HARD)
1385                         cortex_a8->brp_num_available++ ;
1386         }
1387
1388
1389         return ERROR_OK;
1390 }
1391
1392
1393
1394 /*
1395  * Cortex-A8 Reset functions
1396  */
1397
1398 static int cortex_a8_assert_reset(struct target *target)
1399 {
1400         struct armv7a_common *armv7a = target_to_armv7a(target);
1401
1402         LOG_DEBUG(" ");
1403
1404         /* FIXME when halt is requested, make it work somehow... */
1405
1406         /* Issue some kind of warm reset. */
1407         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1408                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1409         } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1410                 /* REVISIT handle "pulls" cases, if there's
1411                  * hardware that needs them to work.
1412                  */
1413                 jtag_add_reset(0, 1);
1414         } else {
1415                 LOG_ERROR("%s: how to reset?", target_name(target));
1416                 return ERROR_FAIL;
1417         }
1418
1419         /* registers are now invalid */
1420         register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1421
1422         target->state = TARGET_RESET;
1423
1424         return ERROR_OK;
1425 }
1426
1427 static int cortex_a8_deassert_reset(struct target *target)
1428 {
1429         int retval;
1430
1431         LOG_DEBUG(" ");
1432
1433         /* be certain SRST is off */
1434         jtag_add_reset(0, 0);
1435
1436         retval = cortex_a8_poll(target);
1437         if (retval != ERROR_OK)
1438                 return retval;
1439
1440         if (target->reset_halt) {
1441                 if (target->state != TARGET_HALTED) {
1442                         LOG_WARNING("%s: ran after reset and before halt ...",
1443                                         target_name(target));
1444                         if ((retval = target_halt(target)) != ERROR_OK)
1445                                 return retval;
1446                 }
1447         }
1448
1449         return ERROR_OK;
1450 }
1451
1452 /*
1453  * Cortex-A8 Memory access
1454  *
1455  * This is same Cortex M3 but we must also use the correct
1456  * ap number for every access.
1457  */
1458
1459 static int cortex_a8_read_phys_memory(struct target *target,
1460                 uint32_t address, uint32_t size,
1461                 uint32_t count, uint8_t *buffer)
1462 {
1463         struct armv7a_common *armv7a = target_to_armv7a(target);
1464         struct adiv5_dap *swjdp = &armv7a->dap;
1465         int retval = ERROR_INVALID_ARGUMENTS;
1466         uint8_t apsel = swjdp->apsel;
1467
1468         LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1469
1470         if (count && buffer) {
1471
1472                 if ( apsel == swjdp_memoryap ) {
1473
1474                         /* read memory through AHB-AP */
1475
1476                         switch (size) {
1477                                 case 4:
1478                                         retval = mem_ap_sel_read_buf_u32(swjdp, swjdp_memoryap,
1479                                                         buffer, 4 * count, address);
1480                                         break;
1481                                 case 2:
1482                                         retval = mem_ap_sel_read_buf_u16(swjdp, swjdp_memoryap,
1483                                                         buffer, 2 * count, address);
1484                                         break;
1485                                 case 1:
1486                                         retval = mem_ap_sel_read_buf_u8(swjdp, swjdp_memoryap,
1487                                                         buffer, count, address);
1488                                         break;
1489                         }
1490
1491                 } else {
1492
1493                         /* read memory through APB-AP */
1494
1495                         uint32_t saved_r0, saved_r1;
1496                         int nbytes = count * size;
1497                         uint32_t data;
1498                         int enabled = 0;
1499
1500                         if (target->state != TARGET_HALTED)
1501                         {
1502                                 LOG_WARNING("target not halted");
1503                                 return ERROR_TARGET_NOT_HALTED;
1504                         }
1505
1506                         retval = cortex_a8_mmu(target, &enabled);
1507                         if (retval != ERROR_OK)
1508                                 return retval;
1509
1510                         if (enabled)
1511                         {
1512                                 LOG_WARNING("Reading physical memory through APB with MMU enabled is not yet implemented");
1513                                 return ERROR_TARGET_FAILURE;
1514                         }
1515
1516                         /* save registers r0 and r1, we are going to corrupt them  */
1517                         retval = cortex_a8_dap_read_coreregister_u32(target, &saved_r0, 0);
1518                         if (retval != ERROR_OK)
1519                                 return retval;
1520
1521                         retval = cortex_a8_dap_read_coreregister_u32(target, &saved_r1, 1);
1522                         if (retval != ERROR_OK)
1523                                 return retval;
1524
1525                         retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
1526                         if (retval != ERROR_OK)
1527                                 return retval;
1528
1529                         while (nbytes > 0) {
1530
1531                                 /* execute instruction LDRB r1, [r0], 1 (0xe4d01001) */
1532                                 retval = cortex_a8_exec_opcode(target, ARMV4_5_LDRB_IP(1, 0) , NULL);
1533                                 if (retval != ERROR_OK)
1534                                                 return retval;
1535
1536                                 retval = cortex_a8_dap_read_coreregister_u32(target, &data, 1);
1537                                 if (retval != ERROR_OK)
1538                                         return retval;
1539
1540                                 *buffer++ = data;
1541                                 --nbytes;
1542
1543                         }
1544
1545                         /* restore corrupted registers r0 and r1 */
1546                         retval = cortex_a8_dap_write_coreregister_u32(target, saved_r0, 0);
1547                         if (retval != ERROR_OK)
1548                                 return retval;
1549
1550                         retval = cortex_a8_dap_write_coreregister_u32(target, saved_r1, 1);
1551                         if (retval != ERROR_OK)
1552                                 return retval;
1553
1554                 }
1555         }
1556
1557         return retval;
1558 }
1559
1560 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1561                 uint32_t size, uint32_t count, uint8_t *buffer)
1562 {
1563         int enabled = 0;
1564         uint32_t virt, phys;
1565         int retval;
1566
1567         /* cortex_a8 handles unaligned memory access */
1568
1569         LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1570         retval = cortex_a8_mmu(target, &enabled);
1571         if (retval != ERROR_OK)
1572                 return retval;
1573
1574         if(enabled)
1575         {
1576             virt = address;
1577             retval = cortex_a8_virt2phys(target, virt, &phys);
1578             if (retval != ERROR_OK)
1579                 return retval;
1580
1581             LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1582             address = phys;
1583         }
1584
1585         return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1586 }
1587
1588 static int cortex_a8_write_phys_memory(struct target *target,
1589                 uint32_t address, uint32_t size,
1590                 uint32_t count, uint8_t *buffer)
1591 {
1592         struct armv7a_common *armv7a = target_to_armv7a(target);
1593         struct adiv5_dap *swjdp = &armv7a->dap;
1594         int retval = ERROR_INVALID_ARGUMENTS;
1595         uint8_t apsel = swjdp->apsel;
1596
1597         LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1598
1599         if (count && buffer) {
1600
1601                 if ( apsel == swjdp_memoryap ) {
1602
1603                         /* write memory through AHB-AP */
1604
1605                         switch (size) {
1606                                 case 4:
1607                                         retval = mem_ap_sel_write_buf_u32(swjdp, swjdp_memoryap,
1608                                                         buffer, 4 * count, address);
1609                                         break;
1610                                 case 2:
1611                                         retval = mem_ap_sel_write_buf_u16(swjdp, swjdp_memoryap,
1612                                                         buffer, 2 * count, address);
1613                                         break;
1614                                 case 1:
1615                                         retval = mem_ap_sel_write_buf_u8(swjdp, swjdp_memoryap,
1616                                                         buffer, count, address);
1617                                         break;
1618                         }
1619
1620                 } else {
1621
1622                         /* write memory through APB-AP */
1623
1624                         uint32_t saved_r0, saved_r1;
1625                         int nbytes = count * size;
1626                         uint32_t data;
1627                         int enabled = 0;
1628
1629                         if (target->state != TARGET_HALTED)
1630                         {
1631                                 LOG_WARNING("target not halted");
1632                                 return ERROR_TARGET_NOT_HALTED;
1633                         }
1634
1635                         retval = cortex_a8_mmu(target, &enabled);
1636                         if (retval != ERROR_OK)
1637                                 return retval;
1638
1639                         if (enabled)
1640                         {
1641                                 LOG_WARNING("Writing physical memory through APB with MMU enabled is not yet implemented");
1642                                 return ERROR_TARGET_FAILURE;
1643                         }
1644
1645                         /* save registers r0 and r1, we are going to corrupt them  */
1646                         retval = cortex_a8_dap_read_coreregister_u32(target, &saved_r0, 0);
1647                         if (retval != ERROR_OK)
1648                                 return retval;
1649
1650                         retval = cortex_a8_dap_read_coreregister_u32(target, &saved_r1, 1);
1651                         if (retval != ERROR_OK)
1652                                 return retval;
1653
1654                         retval = cortex_a8_dap_write_coreregister_u32(target, address, 0);
1655                         if (retval != ERROR_OK)
1656                                 return retval;
1657
1658                         while (nbytes > 0) {
1659
1660                                 data = *buffer++;
1661
1662                                 retval = cortex_a8_dap_write_coreregister_u32(target, data, 1);
1663                                 if (retval != ERROR_OK)
1664                                         return retval;
1665
1666                                         /* execute instruction STRB r1, [r0], 1 (0xe4c01001) */
1667                                 retval = cortex_a8_exec_opcode(target, ARMV4_5_STRB_IP(1, 0) , NULL);
1668                                 if (retval != ERROR_OK)
1669                                                 return retval;
1670
1671                                 --nbytes;
1672                         }
1673
1674                         /* restore corrupted registers r0 and r1 */
1675                         retval = cortex_a8_dap_write_coreregister_u32(target, saved_r0, 0);
1676                         if (retval != ERROR_OK)
1677                                 return retval;
1678
1679                         retval = cortex_a8_dap_write_coreregister_u32(target, saved_r1, 1);
1680                         if (retval != ERROR_OK)
1681                                 return retval;
1682
1683                         /* we can return here without invalidating D/I-cache because */
1684                         /* access through APB maintains cache coherency              */
1685                         return retval;
1686                 }
1687         }
1688
1689
1690         /* REVISIT this op is generic ARMv7-A/R stuff */
1691         if (retval == ERROR_OK && target->state == TARGET_HALTED)
1692         {
1693                 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1694
1695                 retval = dpm->prepare(dpm);
1696                 if (retval != ERROR_OK)
1697                         return retval;
1698
1699                 /* The Cache handling will NOT work with MMU active, the
1700                  * wrong addresses will be invalidated!
1701                  *
1702                  * For both ICache and DCache, walk all cache lines in the
1703                  * address range. Cortex-A8 has fixed 64 byte line length.
1704                  *
1705                  * REVISIT per ARMv7, these may trigger watchpoints ...
1706                  */
1707
1708                 /* invalidate I-Cache */
1709                 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1710                 {
1711                         /* ICIMVAU - Invalidate Cache single entry
1712                          * with MVA to PoU
1713                          *      MCR p15, 0, r0, c7, c5, 1
1714                          */
1715                         for (uint32_t cacheline = address;
1716                                         cacheline < address + size * count;
1717                                         cacheline += 64) {
1718                                 retval = dpm->instr_write_data_r0(dpm,
1719                                                 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1720                                                 cacheline);
1721                                 if (retval != ERROR_OK)
1722                                         return retval;
1723                         }
1724                 }
1725
1726                 /* invalidate D-Cache */
1727                 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1728                 {
1729                         /* DCIMVAC - Invalidate data Cache line
1730                          * with MVA to PoC
1731                          *      MCR p15, 0, r0, c7, c6, 1
1732                          */
1733                         for (uint32_t cacheline = address;
1734                                         cacheline < address + size * count;
1735                                         cacheline += 64) {
1736                                 retval = dpm->instr_write_data_r0(dpm,
1737                                                 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1738                                                 cacheline);
1739                                 if (retval != ERROR_OK)
1740                                         return retval;
1741                         }
1742                 }
1743
1744                 /* (void) */ dpm->finish(dpm);
1745         }
1746
1747         return retval;
1748 }
1749
1750 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1751                 uint32_t size, uint32_t count, uint8_t *buffer)
1752 {
1753         int enabled = 0;
1754         uint32_t virt, phys;
1755         int retval;
1756
1757         LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1758         retval = cortex_a8_mmu(target, &enabled);
1759         if (retval != ERROR_OK)
1760                 return retval;
1761
1762         if(enabled)
1763         {
1764             virt = address;
1765             retval = cortex_a8_virt2phys(target, virt, &phys);
1766             if (retval != ERROR_OK)
1767                 return retval;
1768             LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1769             address = phys;
1770         }
1771
1772         return cortex_a8_write_phys_memory(target, address, size, 
1773                 count, buffer);
1774 }
1775
1776 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1777                 uint32_t count, uint8_t *buffer)
1778 {
1779         return cortex_a8_write_memory(target, address, 4, count, buffer);
1780 }
1781
1782 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1783 {
1784 #if 0
1785         u16 dcrdr;
1786
1787         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1788         *ctrl = (uint8_t)dcrdr;
1789         *value = (uint8_t)(dcrdr >> 8);
1790
1791         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1792
1793         /* write ack back to software dcc register
1794          * signify we have read data */
1795         if (dcrdr & (1 << 0))
1796         {
1797                 dcrdr = 0;
1798                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1799         }
1800 #endif
1801         return ERROR_OK;
1802 }
1803
1804
1805 static int cortex_a8_handle_target_request(void *priv)
1806 {
1807         struct target *target = priv;
1808         struct armv7a_common *armv7a = target_to_armv7a(target);
1809         struct adiv5_dap *swjdp = &armv7a->dap;
1810         int retval;
1811
1812         if (!target_was_examined(target))
1813                 return ERROR_OK;
1814         if (!target->dbg_msg_enabled)
1815                 return ERROR_OK;
1816
1817         if (target->state == TARGET_RUNNING)
1818         {
1819                 uint8_t data = 0;
1820                 uint8_t ctrl = 0;
1821
1822                 retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1823                 if (retval != ERROR_OK)
1824                         return retval;
1825
1826                 /* check if we have data */
1827                 if (ctrl & (1 << 0))
1828                 {
1829                         uint32_t request;
1830
1831                         /* we assume target is quick enough */
1832                         request = data;
1833                         retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1834                         if (retval != ERROR_OK)
1835                                 return retval;
1836                         request |= (data << 8);
1837                         retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1838                         if (retval != ERROR_OK)
1839                                 return retval;
1840                         request |= (data << 16);
1841                         retval = cortex_a8_dcc_read(swjdp, &data, &ctrl);
1842                         if (retval != ERROR_OK)
1843                                 return retval;
1844                         request |= (data << 24);
1845                         target_request(target, request);
1846                 }
1847         }
1848
1849         return ERROR_OK;
1850 }
1851
1852 /*
1853  * Cortex-A8 target information and configuration
1854  */
1855
1856 static int cortex_a8_examine_first(struct target *target)
1857 {
1858         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1859         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1860         struct adiv5_dap *swjdp = &armv7a->dap;
1861         int i;
1862         int retval = ERROR_OK;
1863         uint32_t didr, ctypr, ttypr, cpuid;
1864         uint32_t dbgbase, apid;
1865
1866         /* We do one extra read to ensure DAP is configured,
1867          * we call ahbap_debugport_init(swjdp) instead
1868          */
1869         retval = ahbap_debugport_init(swjdp);
1870         if (retval != ERROR_OK)
1871                 return retval;
1872
1873         /* Get ROM Table base */
1874         retval = dap_get_debugbase(swjdp, 1, &dbgbase, &apid);
1875         if (retval != ERROR_OK)
1876                 return retval;
1877
1878         /* Lookup 0x15 -- Processor DAP */
1879         retval = dap_lookup_cs_component(swjdp, 1, dbgbase, 0x15,
1880                                         &armv7a->debug_base);
1881         if (retval != ERROR_OK)
1882                 return retval;
1883
1884 #if 0
1885         /*
1886          * FIXME: assuming omap4430
1887          *
1888          * APB DBGBASE reads 0x80040000, but this points to an empty ROM table.
1889          * 0x80000000 is cpu0 coresight region
1890          */
1891         if (target->coreid > 3) {
1892                 LOG_ERROR("cortex_a8 supports up to 4 cores");
1893                 return ERROR_INVALID_ARGUMENTS;
1894         }
1895         armv7a->debug_base = 0x80000000 |
1896                         ((target->coreid & 0x3) << CORTEX_A8_PADDRDBG_CPU_SHIFT);
1897 #endif
1898
1899         retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1900                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1901         if (retval != ERROR_OK)
1902                 return retval;
1903
1904         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1905                         armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1906         {
1907                 LOG_DEBUG("Examine %s failed", "CPUID");
1908                 return retval;
1909         }
1910
1911         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1912                         armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1913         {
1914                 LOG_DEBUG("Examine %s failed", "CTYPR");
1915                 return retval;
1916         }
1917
1918         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1919                         armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1920         {
1921                 LOG_DEBUG("Examine %s failed", "TTYPR");
1922                 return retval;
1923         }
1924
1925         if ((retval = mem_ap_sel_read_atomic_u32(swjdp, swjdp_debugap,
1926                         armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1927         {
1928                 LOG_DEBUG("Examine %s failed", "DIDR");
1929                 return retval;
1930         }
1931
1932         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1933         LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1934         LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1935         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1936
1937         armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1938         retval = cortex_a8_dpm_setup(cortex_a8, didr);
1939         if (retval != ERROR_OK)
1940                 return retval;
1941
1942         /* Setup Breakpoint Register Pairs */
1943         cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1944         cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1945         cortex_a8->brp_num_available = cortex_a8->brp_num;
1946         cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1947 //      cortex_a8->brb_enabled = ????;
1948         for (i = 0; i < cortex_a8->brp_num; i++)
1949         {
1950                 cortex_a8->brp_list[i].used = 0;
1951                 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1952                         cortex_a8->brp_list[i].type = BRP_NORMAL;
1953                 else
1954                         cortex_a8->brp_list[i].type = BRP_CONTEXT;
1955                 cortex_a8->brp_list[i].value = 0;
1956                 cortex_a8->brp_list[i].control = 0;
1957                 cortex_a8->brp_list[i].BRPn = i;
1958         }
1959
1960         LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1961
1962         target_set_examined(target);
1963         return ERROR_OK;
1964 }
1965
1966 static int cortex_a8_examine(struct target *target)
1967 {
1968         int retval = ERROR_OK;
1969
1970         /* don't re-probe hardware after each reset */
1971         if (!target_was_examined(target))
1972                 retval = cortex_a8_examine_first(target);
1973
1974         /* Configure core debug access */
1975         if (retval == ERROR_OK)
1976                 retval = cortex_a8_init_debug_access(target);
1977
1978         return retval;
1979 }
1980
1981 /*
1982  *      Cortex-A8 target creation and initialization
1983  */
1984
1985 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1986                 struct target *target)
1987 {
1988         /* examine_first() does a bunch of this */
1989         return ERROR_OK;
1990 }
1991
1992 static int cortex_a8_init_arch_info(struct target *target,
1993                 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1994 {
1995         struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1996         struct arm *armv4_5 = &armv7a->armv4_5_common;
1997         struct adiv5_dap *dap = &armv7a->dap;
1998
1999         armv7a->armv4_5_common.dap = dap;
2000
2001         /* Setup struct cortex_a8_common */
2002         cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
2003         armv4_5->arch_info = armv7a;
2004
2005         /* prepare JTAG information for the new target */
2006         cortex_a8->jtag_info.tap = tap;
2007         cortex_a8->jtag_info.scann_size = 4;
2008
2009         /* Leave (only) generic DAP stuff for debugport_init() */
2010         dap->jtag_info = &cortex_a8->jtag_info;
2011         dap->memaccess_tck = 80;
2012
2013         /* Number of bits for tar autoincrement, impl. dep. at least 10 */
2014         dap->tar_autoincr_block = (1 << 10);
2015
2016         cortex_a8->fast_reg_read = 0;
2017
2018         /* Set default value */
2019         cortex_a8->current_address_mode = ARM_MODE_ANY;
2020
2021         /* register arch-specific functions */
2022         armv7a->examine_debug_reason = NULL;
2023
2024         armv7a->post_debug_entry = cortex_a8_post_debug_entry;
2025
2026         armv7a->pre_restore_context = NULL;
2027         armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
2028         armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
2029         armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
2030         armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
2031         armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
2032         armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
2033         armv7a->armv4_5_mmu.has_tiny_pages = 1;
2034         armv7a->armv4_5_mmu.mmu_enabled = 0;
2035
2036
2037 //      arm7_9->handle_target_request = cortex_a8_handle_target_request;
2038
2039         /* REVISIT v7a setup should be in a v7a-specific routine */
2040         arm_init_arch_info(target, armv4_5);
2041         armv7a->common_magic = ARMV7_COMMON_MAGIC;
2042
2043         target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
2044
2045         return ERROR_OK;
2046 }
2047
2048 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
2049 {
2050         struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
2051
2052         return cortex_a8_init_arch_info(target, cortex_a8, target->tap);
2053 }
2054
2055 static int cortex_a8_get_ttb(struct target *target, uint32_t *result)
2056 {
2057         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2058     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2059     uint32_t ttb = 0, retval = ERROR_OK;
2060
2061     /* current_address_mode is set inside cortex_a8_virt2phys()
2062        where we can determine if address belongs to user or kernel */
2063     if(cortex_a8->current_address_mode == ARM_MODE_SVC)
2064     {
2065         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2066         retval = armv7a->armv4_5_common.mrc(target, 15,
2067                     0, 1,   /* op1, op2 */
2068                     2, 0,   /* CRn, CRm */
2069                     &ttb);
2070                 if (retval != ERROR_OK)
2071                         return retval;
2072     }
2073     else if(cortex_a8->current_address_mode == ARM_MODE_USR)
2074     {
2075         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2076         retval = armv7a->armv4_5_common.mrc(target, 15,
2077                     0, 0,   /* op1, op2 */
2078                     2, 0,   /* CRn, CRm */
2079                     &ttb);
2080                 if (retval != ERROR_OK)
2081                         return retval;
2082     }
2083     /* we don't know whose address is: user or kernel
2084        we assume that if we are in kernel mode then
2085        address belongs to kernel else if in user mode
2086        - to user */
2087     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
2088     {
2089         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2090         retval = armv7a->armv4_5_common.mrc(target, 15,
2091                     0, 1,   /* op1, op2 */
2092                     2, 0,   /* CRn, CRm */
2093                     &ttb);
2094                 if (retval != ERROR_OK)
2095                         return retval;
2096     }
2097     else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
2098     {
2099         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
2100         retval = armv7a->armv4_5_common.mrc(target, 15,
2101                     0, 0,   /* op1, op2 */
2102                     2, 0,   /* CRn, CRm */
2103                     &ttb);
2104                 if (retval != ERROR_OK)
2105                         return retval;
2106     }
2107     /* finally we don't know whose ttb to use: user or kernel */
2108     else
2109         LOG_ERROR("Don't know how to get ttb for current mode!!!");
2110
2111     ttb &= 0xffffc000;
2112
2113     *result = ttb;
2114
2115     return ERROR_OK;
2116 }
2117
2118 static int cortex_a8_disable_mmu_caches(struct target *target, int mmu,
2119                 int d_u_cache, int i_cache)
2120 {
2121     struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2122     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2123     uint32_t cp15_control;
2124     int retval;
2125
2126     /* read cp15 control register */
2127     retval = armv7a->armv4_5_common.mrc(target, 15,
2128                     0, 0,   /* op1, op2 */
2129                     1, 0,   /* CRn, CRm */
2130                     &cp15_control);
2131     if (retval != ERROR_OK)
2132         return retval;
2133
2134
2135     if (mmu)
2136             cp15_control &= ~0x1U;
2137
2138     if (d_u_cache)
2139             cp15_control &= ~0x4U;
2140
2141     if (i_cache)
2142             cp15_control &= ~0x1000U;
2143
2144     retval = armv7a->armv4_5_common.mcr(target, 15,
2145                     0, 0,   /* op1, op2 */
2146                     1, 0,   /* CRn, CRm */
2147                     cp15_control);
2148         return retval;
2149 }
2150
2151 static int cortex_a8_enable_mmu_caches(struct target *target, int mmu,
2152                 int d_u_cache, int i_cache)
2153 {
2154     struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2155     struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2156     uint32_t cp15_control;
2157     int retval;
2158
2159     /* read cp15 control register */
2160     retval = armv7a->armv4_5_common.mrc(target, 15,
2161                     0, 0,   /* op1, op2 */
2162                     1, 0,   /* CRn, CRm */
2163                     &cp15_control);
2164     if (retval != ERROR_OK)
2165         return retval;
2166
2167     if (mmu)
2168             cp15_control |= 0x1U;
2169
2170     if (d_u_cache)
2171             cp15_control |= 0x4U;
2172
2173     if (i_cache)
2174             cp15_control |= 0x1000U;
2175
2176     retval = armv7a->armv4_5_common.mcr(target, 15,
2177                     0, 0,   /* op1, op2 */
2178                     1, 0,   /* CRn, CRm */
2179                     cp15_control);
2180         return retval;
2181 }
2182
2183
2184 static int cortex_a8_mmu(struct target *target, int *enabled)
2185 {
2186         if (target->state != TARGET_HALTED) {
2187                 LOG_ERROR("%s: target not halted", __func__);
2188                 return ERROR_TARGET_INVALID;
2189         }
2190
2191         *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
2192         return ERROR_OK;
2193 }
2194
2195 static int cortex_a8_virt2phys(struct target *target,
2196                 uint32_t virt, uint32_t *phys)
2197 {
2198         uint32_t cb;
2199         struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
2200         // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
2201         struct armv7a_common *armv7a = target_to_armv7a(target);
2202
2203     /* We assume that virtual address is separated
2204        between user and kernel in Linux style:
2205        0x00000000-0xbfffffff - User space
2206        0xc0000000-0xffffffff - Kernel space */
2207     if( virt < 0xc0000000 ) /* Linux user space */
2208         cortex_a8->current_address_mode = ARM_MODE_USR;
2209     else /* Linux kernel */
2210         cortex_a8->current_address_mode = ARM_MODE_SVC;
2211         uint32_t ret;
2212         int retval = armv4_5_mmu_translate_va(target,
2213                         &armv7a->armv4_5_mmu, virt, &cb, &ret);
2214         if (retval != ERROR_OK)
2215                 return retval;
2216     /* Reset the flag. We don't want someone else to use it by error */
2217     cortex_a8->current_address_mode = ARM_MODE_ANY;
2218
2219         *phys = ret;
2220         return ERROR_OK;
2221 }
2222
2223 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
2224 {
2225         struct target *target = get_current_target(CMD_CTX);
2226         struct armv7a_common *armv7a = target_to_armv7a(target);
2227
2228         return armv4_5_handle_cache_info_command(CMD_CTX,
2229                         &armv7a->armv4_5_mmu.armv4_5_cache);
2230 }
2231
2232
2233 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
2234 {
2235         struct target *target = get_current_target(CMD_CTX);
2236         if (!target_was_examined(target))
2237         {
2238                 LOG_ERROR("target not examined yet");
2239                 return ERROR_FAIL;
2240         }
2241
2242         return cortex_a8_init_debug_access(target);
2243 }
2244
2245 static const struct command_registration cortex_a8_exec_command_handlers[] = {
2246         {
2247                 .name = "cache_info",
2248                 .handler = cortex_a8_handle_cache_info_command,
2249                 .mode = COMMAND_EXEC,
2250                 .help = "display information about target caches",
2251         },
2252         {
2253                 .name = "dbginit",
2254                 .handler = cortex_a8_handle_dbginit_command,
2255                 .mode = COMMAND_EXEC,
2256                 .help = "Initialize core debug",
2257         },
2258         COMMAND_REGISTRATION_DONE
2259 };
2260 static const struct command_registration cortex_a8_command_handlers[] = {
2261         {
2262                 .chain = arm_command_handlers,
2263         },
2264         {
2265                 .chain = armv7a_command_handlers,
2266         },
2267         {
2268                 .name = "cortex_a8",
2269                 .mode = COMMAND_ANY,
2270                 .help = "Cortex-A8 command group",
2271                 .chain = cortex_a8_exec_command_handlers,
2272         },
2273         COMMAND_REGISTRATION_DONE
2274 };
2275
2276 struct target_type cortexa8_target = {
2277         .name = "cortex_a8",
2278
2279         .poll = cortex_a8_poll,
2280         .arch_state = armv7a_arch_state,
2281
2282         .target_request_data = NULL,
2283
2284         .halt = cortex_a8_halt,
2285         .resume = cortex_a8_resume,
2286         .step = cortex_a8_step,
2287
2288         .assert_reset = cortex_a8_assert_reset,
2289         .deassert_reset = cortex_a8_deassert_reset,
2290         .soft_reset_halt = NULL,
2291
2292         /* REVISIT allow exporting VFP3 registers ... */
2293         .get_gdb_reg_list = arm_get_gdb_reg_list,
2294
2295         .read_memory = cortex_a8_read_memory,
2296         .write_memory = cortex_a8_write_memory,
2297         .bulk_write_memory = cortex_a8_bulk_write_memory,
2298
2299         .checksum_memory = arm_checksum_memory,
2300         .blank_check_memory = arm_blank_check_memory,
2301
2302         .run_algorithm = armv4_5_run_algorithm,
2303
2304         .add_breakpoint = cortex_a8_add_breakpoint,
2305         .remove_breakpoint = cortex_a8_remove_breakpoint,
2306         .add_watchpoint = NULL,
2307         .remove_watchpoint = NULL,
2308
2309         .commands = cortex_a8_command_handlers,
2310         .target_create = cortex_a8_target_create,
2311         .init_target = cortex_a8_init_target,
2312         .examine = cortex_a8_examine,
2313
2314         .read_phys_memory = cortex_a8_read_phys_memory,
2315         .write_phys_memory = cortex_a8_write_phys_memory,
2316         .mmu = cortex_a8_mmu,
2317         .virt2phys = cortex_a8_virt2phys,
2318
2319 };