]> git.sur5r.net Git - openocd/blob - src/target/cortex_m.c
target/cortex_m: restore C_MASKINTS after reset
[openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
23  *                                                                         *
24  *                                                                         *
25  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
26  *                                                                         *
27  ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56                 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortexm_dap_read_coreregister_u32(struct target *target,
60         uint32_t *value, int regnum)
61 {
62         struct armv7m_common *armv7m = target_to_armv7m(target);
63         int retval;
64         uint32_t dcrdr;
65
66         /* because the DCB_DCRDR is used for the emulated dcc channel
67          * we have to save/restore the DCB_DCRDR when used */
68         if (target->dbg_msg_enabled) {
69                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70                 if (retval != ERROR_OK)
71                         return retval;
72         }
73
74         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79         if (retval != ERROR_OK)
80                 return retval;
81
82         if (target->dbg_msg_enabled) {
83                 /* restore DCB_DCRDR - this needs to be in a separate
84                  * transaction otherwise the emulated DCC channel breaks */
85                 if (retval == ERROR_OK)
86                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87         }
88
89         return retval;
90 }
91
92 static int cortexm_dap_write_coreregister_u32(struct target *target,
93         uint32_t value, int regnum)
94 {
95         struct armv7m_common *armv7m = target_to_armv7m(target);
96         int retval;
97         uint32_t dcrdr;
98
99         /* because the DCB_DCRDR is used for the emulated dcc channel
100          * we have to save/restore the DCB_DCRDR when used */
101         if (target->dbg_msg_enabled) {
102                 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103                 if (retval != ERROR_OK)
104                         return retval;
105         }
106
107         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108         if (retval != ERROR_OK)
109                 return retval;
110
111         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
112         if (retval != ERROR_OK)
113                 return retval;
114
115         if (target->dbg_msg_enabled) {
116                 /* restore DCB_DCRDR - this needs to be in a seperate
117                  * transaction otherwise the emulated DCC channel breaks */
118                 if (retval == ERROR_OK)
119                         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120         }
121
122         return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126         uint32_t mask_on, uint32_t mask_off)
127 {
128         struct cortex_m_common *cortex_m = target_to_cm(target);
129         struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131         /* mask off status bits */
132         cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
133         /* create new register mask */
134         cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136         return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_clear_halt(struct target *target)
140 {
141         struct cortex_m_common *cortex_m = target_to_cm(target);
142         struct armv7m_common *armv7m = &cortex_m->armv7m;
143         int retval;
144
145         /* clear step if any */
146         cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
147
148         /* Read Debug Fault Status Register */
149         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
150         if (retval != ERROR_OK)
151                 return retval;
152
153         /* Clear Debug Fault Status */
154         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
155         if (retval != ERROR_OK)
156                 return retval;
157         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
158
159         return ERROR_OK;
160 }
161
162 static int cortex_m_single_step_core(struct target *target)
163 {
164         struct cortex_m_common *cortex_m = target_to_cm(target);
165         struct armv7m_common *armv7m = &cortex_m->armv7m;
166         int retval;
167
168         /* Mask interrupts before clearing halt, if not done already.  This avoids
169          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
170          * HALT can put the core into an unknown state.
171          */
172         if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
173                 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
174                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
175                 if (retval != ERROR_OK)
176                         return retval;
177         }
178         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
180         if (retval != ERROR_OK)
181                 return retval;
182         LOG_DEBUG(" ");
183
184         /* restore dhcsr reg */
185         cortex_m_clear_halt(target);
186
187         return ERROR_OK;
188 }
189
190 static int cortex_m_enable_fpb(struct target *target)
191 {
192         int retval = target_write_u32(target, FP_CTRL, 3);
193         if (retval != ERROR_OK)
194                 return retval;
195
196         /* check the fpb is actually enabled */
197         uint32_t fpctrl;
198         retval = target_read_u32(target, FP_CTRL, &fpctrl);
199         if (retval != ERROR_OK)
200                 return retval;
201
202         if (fpctrl & 1)
203                 return ERROR_OK;
204
205         return ERROR_FAIL;
206 }
207
208 static int cortex_m_endreset_event(struct target *target)
209 {
210         int i;
211         int retval;
212         uint32_t dcb_demcr;
213         struct cortex_m_common *cortex_m = target_to_cm(target);
214         struct armv7m_common *armv7m = &cortex_m->armv7m;
215         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
216         struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
217         struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
218
219         /* REVISIT The four debug monitor bits are currently ignored... */
220         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
221         if (retval != ERROR_OK)
222                 return retval;
223         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
224
225         /* this register is used for emulated dcc channel */
226         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
227         if (retval != ERROR_OK)
228                 return retval;
229
230         /* Enable debug requests */
231         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
232         if (retval != ERROR_OK)
233                 return retval;
234         if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
235                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
236                 if (retval != ERROR_OK)
237                         return retval;
238         }
239
240         /* Restore proper interrupt masking setting. */
241         if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
242                 cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
243         else
244                 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
245
246         /* Enable features controlled by ITM and DWT blocks, and catch only
247          * the vectors we were told to pay attention to.
248          *
249          * Target firmware is responsible for all fault handling policy
250          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
251          * or manual updates to the NVIC SHCSR and CCR registers.
252          */
253         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
254         if (retval != ERROR_OK)
255                 return retval;
256
257         /* Paranoia: evidently some (early?) chips don't preserve all the
258          * debug state (including FBP, DWT, etc) across reset...
259          */
260
261         /* Enable FPB */
262         retval = cortex_m_enable_fpb(target);
263         if (retval != ERROR_OK) {
264                 LOG_ERROR("Failed to enable the FPB");
265                 return retval;
266         }
267
268         cortex_m->fpb_enabled = 1;
269
270         /* Restore FPB registers */
271         for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
272                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
273                 if (retval != ERROR_OK)
274                         return retval;
275         }
276
277         /* Restore DWT registers */
278         for (i = 0; i < cortex_m->dwt_num_comp; i++) {
279                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
280                                 dwt_list[i].comp);
281                 if (retval != ERROR_OK)
282                         return retval;
283                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
284                                 dwt_list[i].mask);
285                 if (retval != ERROR_OK)
286                         return retval;
287                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
288                                 dwt_list[i].function);
289                 if (retval != ERROR_OK)
290                         return retval;
291         }
292         retval = dap_run(swjdp);
293         if (retval != ERROR_OK)
294                 return retval;
295
296         register_cache_invalidate(armv7m->arm.core_cache);
297
298         /* make sure we have latest dhcsr flags */
299         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
300
301         return retval;
302 }
303
304 static int cortex_m_examine_debug_reason(struct target *target)
305 {
306         struct cortex_m_common *cortex_m = target_to_cm(target);
307
308         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
309          * only check the debug reason if we don't know it already */
310
311         if ((target->debug_reason != DBG_REASON_DBGRQ)
312                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
313                 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
314                         target->debug_reason = DBG_REASON_BREAKPOINT;
315                         if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
316                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
317                 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318                         target->debug_reason = DBG_REASON_WATCHPOINT;
319                 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
320                         target->debug_reason = DBG_REASON_BREAKPOINT;
321                 else    /* EXTERNAL, HALTED */
322                         target->debug_reason = DBG_REASON_UNDEFINED;
323         }
324
325         return ERROR_OK;
326 }
327
328 static int cortex_m_examine_exception_reason(struct target *target)
329 {
330         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
331         struct armv7m_common *armv7m = target_to_armv7m(target);
332         struct adiv5_dap *swjdp = armv7m->arm.dap;
333         int retval;
334
335         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
336         if (retval != ERROR_OK)
337                 return retval;
338         switch (armv7m->exception_number) {
339                 case 2: /* NMI */
340                         break;
341                 case 3: /* Hard Fault */
342                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
343                         if (retval != ERROR_OK)
344                                 return retval;
345                         if (except_sr & 0x40000000) {
346                                 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
347                                 if (retval != ERROR_OK)
348                                         return retval;
349                         }
350                         break;
351                 case 4: /* Memory Management */
352                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
353                         if (retval != ERROR_OK)
354                                 return retval;
355                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
356                         if (retval != ERROR_OK)
357                                 return retval;
358                         break;
359                 case 5: /* Bus Fault */
360                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
361                         if (retval != ERROR_OK)
362                                 return retval;
363                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
364                         if (retval != ERROR_OK)
365                                 return retval;
366                         break;
367                 case 6: /* Usage Fault */
368                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 11:        /* SVCall */
373                         break;
374                 case 12:        /* Debug Monitor */
375                         retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
376                         if (retval != ERROR_OK)
377                                 return retval;
378                         break;
379                 case 14:        /* PendSV */
380                         break;
381                 case 15:        /* SysTick */
382                         break;
383                 default:
384                         except_sr = 0;
385                         break;
386         }
387         retval = dap_run(swjdp);
388         if (retval == ERROR_OK)
389                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
390                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
391                         armv7m_exception_string(armv7m->exception_number),
392                         shcsr, except_sr, cfsr, except_ar);
393         return retval;
394 }
395
396 static int cortex_m_debug_entry(struct target *target)
397 {
398         int i;
399         uint32_t xPSR;
400         int retval;
401         struct cortex_m_common *cortex_m = target_to_cm(target);
402         struct armv7m_common *armv7m = &cortex_m->armv7m;
403         struct arm *arm = &armv7m->arm;
404         struct reg *r;
405
406         LOG_DEBUG(" ");
407
408         cortex_m_clear_halt(target);
409         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
410         if (retval != ERROR_OK)
411                 return retval;
412
413         retval = armv7m->examine_debug_reason(target);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         /* Examine target state and mode
418          * First load register accessible through core debug port */
419         int num_regs = arm->core_cache->num_regs;
420
421         for (i = 0; i < num_regs; i++) {
422                 r = &armv7m->arm.core_cache->reg_list[i];
423                 if (!r->valid)
424                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
425         }
426
427         r = arm->cpsr;
428         xPSR = buf_get_u32(r->value, 0, 32);
429
430         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
431         if (xPSR & 0xf00) {
432                 r->dirty = r->valid;
433                 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
434         }
435
436         /* Are we in an exception handler */
437         if (xPSR & 0x1FF) {
438                 armv7m->exception_number = (xPSR & 0x1FF);
439
440                 arm->core_mode = ARM_MODE_HANDLER;
441                 arm->map = armv7m_msp_reg_map;
442         } else {
443                 unsigned control = buf_get_u32(arm->core_cache
444                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
445
446                 /* is this thread privileged? */
447                 arm->core_mode = control & 1
448                         ? ARM_MODE_USER_THREAD
449                         : ARM_MODE_THREAD;
450
451                 /* which stack is it using? */
452                 if (control & 2)
453                         arm->map = armv7m_psp_reg_map;
454                 else
455                         arm->map = armv7m_msp_reg_map;
456
457                 armv7m->exception_number = 0;
458         }
459
460         if (armv7m->exception_number)
461                 cortex_m_examine_exception_reason(target);
462
463         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
464                 arm_mode_name(arm->core_mode),
465                 buf_get_u32(arm->pc->value, 0, 32),
466                 target_state_name(target));
467
468         if (armv7m->post_debug_entry) {
469                 retval = armv7m->post_debug_entry(target);
470                 if (retval != ERROR_OK)
471                         return retval;
472         }
473
474         return ERROR_OK;
475 }
476
477 static int cortex_m_poll(struct target *target)
478 {
479         int detected_failure = ERROR_OK;
480         int retval = ERROR_OK;
481         enum target_state prev_target_state = target->state;
482         struct cortex_m_common *cortex_m = target_to_cm(target);
483         struct armv7m_common *armv7m = &cortex_m->armv7m;
484
485         /* Read from Debug Halting Control and Status Register */
486         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
487         if (retval != ERROR_OK) {
488                 target->state = TARGET_UNKNOWN;
489                 return retval;
490         }
491
492         /* Recover from lockup.  See ARMv7-M architecture spec,
493          * section B1.5.15 "Unrecoverable exception cases".
494          */
495         if (cortex_m->dcb_dhcsr & S_LOCKUP) {
496                 LOG_ERROR("%s -- clearing lockup after double fault",
497                         target_name(target));
498                 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
499                 target->debug_reason = DBG_REASON_DBGRQ;
500
501                 /* We have to execute the rest (the "finally" equivalent, but
502                  * still throw this exception again).
503                  */
504                 detected_failure = ERROR_FAIL;
505
506                 /* refresh status bits */
507                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
508                 if (retval != ERROR_OK)
509                         return retval;
510         }
511
512         if (cortex_m->dcb_dhcsr & S_RESET_ST) {
513                 target->state = TARGET_RESET;
514                 return ERROR_OK;
515         }
516
517         if (target->state == TARGET_RESET) {
518                 /* Cannot switch context while running so endreset is
519                  * called with target->state == TARGET_RESET
520                  */
521                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
522                         cortex_m->dcb_dhcsr);
523                 retval = cortex_m_endreset_event(target);
524                 if (retval != ERROR_OK) {
525                         target->state = TARGET_UNKNOWN;
526                         return retval;
527                 }
528                 target->state = TARGET_RUNNING;
529                 prev_target_state = TARGET_RUNNING;
530         }
531
532         if (cortex_m->dcb_dhcsr & S_HALT) {
533                 target->state = TARGET_HALTED;
534
535                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
536                         retval = cortex_m_debug_entry(target);
537                         if (retval != ERROR_OK)
538                                 return retval;
539
540                         if (arm_semihosting(target, &retval) != 0)
541                                 return retval;
542
543                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
544                 }
545                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
546                         LOG_DEBUG(" ");
547                         retval = cortex_m_debug_entry(target);
548                         if (retval != ERROR_OK)
549                                 return retval;
550
551                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
552                 }
553         }
554
555         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
556          * How best to model low power modes?
557          */
558
559         if (target->state == TARGET_UNKNOWN) {
560                 /* check if processor is retiring instructions */
561                 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
562                         target->state = TARGET_RUNNING;
563                         retval = ERROR_OK;
564                 }
565         }
566
567         /* Did we detect a failure condition that we cleared? */
568         if (detected_failure != ERROR_OK)
569                 retval = detected_failure;
570         return retval;
571 }
572
573 static int cortex_m_halt(struct target *target)
574 {
575         LOG_DEBUG("target->state: %s",
576                 target_state_name(target));
577
578         if (target->state == TARGET_HALTED) {
579                 LOG_DEBUG("target was already halted");
580                 return ERROR_OK;
581         }
582
583         if (target->state == TARGET_UNKNOWN)
584                 LOG_WARNING("target was in unknown state when halt was requested");
585
586         if (target->state == TARGET_RESET) {
587                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
588                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
589                         return ERROR_TARGET_FAILURE;
590                 } else {
591                         /* we came here in a reset_halt or reset_init sequence
592                          * debug entry was already prepared in cortex_m3_assert_reset()
593                          */
594                         target->debug_reason = DBG_REASON_DBGRQ;
595
596                         return ERROR_OK;
597                 }
598         }
599
600         /* Write to Debug Halting Control and Status Register */
601         cortex_m_write_debug_halt_mask(target, C_HALT, 0);
602
603         target->debug_reason = DBG_REASON_DBGRQ;
604
605         return ERROR_OK;
606 }
607
608 static int cortex_m_soft_reset_halt(struct target *target)
609 {
610         struct cortex_m_common *cortex_m = target_to_cm(target);
611         struct armv7m_common *armv7m = &cortex_m->armv7m;
612         uint32_t dcb_dhcsr = 0;
613         int retval, timeout = 0;
614
615         /* soft_reset_halt is deprecated on cortex_m as the same functionality
616          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
617          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
618          * core, not the peripherals */
619         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
620
621         /* Enter debug state on reset; restore DEMCR in endreset_event() */
622         retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
623                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
624         if (retval != ERROR_OK)
625                 return retval;
626
627         /* Request a core-only reset */
628         retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
629                         AIRCR_VECTKEY | AIRCR_VECTRESET);
630         if (retval != ERROR_OK)
631                 return retval;
632         target->state = TARGET_RESET;
633
634         /* registers are now invalid */
635         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
636
637         while (timeout < 100) {
638                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
639                 if (retval == ERROR_OK) {
640                         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
641                                         &cortex_m->nvic_dfsr);
642                         if (retval != ERROR_OK)
643                                 return retval;
644                         if ((dcb_dhcsr & S_HALT)
645                                 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
646                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
647                                         "DFSR 0x%08x",
648                                         (unsigned) dcb_dhcsr,
649                                         (unsigned) cortex_m->nvic_dfsr);
650                                 cortex_m_poll(target);
651                                 /* FIXME restore user's vector catch config */
652                                 return ERROR_OK;
653                         } else
654                                 LOG_DEBUG("waiting for system reset-halt, "
655                                         "DHCSR 0x%08x, %d ms",
656                                         (unsigned) dcb_dhcsr, timeout);
657                 }
658                 timeout++;
659                 alive_sleep(1);
660         }
661
662         return ERROR_OK;
663 }
664
665 void cortex_m_enable_breakpoints(struct target *target)
666 {
667         struct breakpoint *breakpoint = target->breakpoints;
668
669         /* set any pending breakpoints */
670         while (breakpoint) {
671                 if (!breakpoint->set)
672                         cortex_m_set_breakpoint(target, breakpoint);
673                 breakpoint = breakpoint->next;
674         }
675 }
676
677 static int cortex_m_resume(struct target *target, int current,
678         target_addr_t address, int handle_breakpoints, int debug_execution)
679 {
680         struct armv7m_common *armv7m = target_to_armv7m(target);
681         struct breakpoint *breakpoint = NULL;
682         uint32_t resume_pc;
683         struct reg *r;
684
685         if (target->state != TARGET_HALTED) {
686                 LOG_WARNING("target not halted");
687                 return ERROR_TARGET_NOT_HALTED;
688         }
689
690         if (!debug_execution) {
691                 target_free_all_working_areas(target);
692                 cortex_m_enable_breakpoints(target);
693                 cortex_m_enable_watchpoints(target);
694         }
695
696         if (debug_execution) {
697                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
698
699                 /* Disable interrupts */
700                 /* We disable interrupts in the PRIMASK register instead of
701                  * masking with C_MASKINTS.  This is probably the same issue
702                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
703                  * in parallel with disabled interrupts can cause local faults
704                  * to not be taken.
705                  *
706                  * REVISIT this clearly breaks non-debug execution, since the
707                  * PRIMASK register state isn't saved/restored...  workaround
708                  * by never resuming app code after debug execution.
709                  */
710                 buf_set_u32(r->value, 0, 1, 1);
711                 r->dirty = true;
712                 r->valid = true;
713
714                 /* Make sure we are in Thumb mode */
715                 r = armv7m->arm.cpsr;
716                 buf_set_u32(r->value, 24, 1, 1);
717                 r->dirty = true;
718                 r->valid = true;
719         }
720
721         /* current = 1: continue on current pc, otherwise continue at <address> */
722         r = armv7m->arm.pc;
723         if (!current) {
724                 buf_set_u32(r->value, 0, 32, address);
725                 r->dirty = true;
726                 r->valid = true;
727         }
728
729         /* if we halted last time due to a bkpt instruction
730          * then we have to manually step over it, otherwise
731          * the core will break again */
732
733         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
734                 && !debug_execution)
735                 armv7m_maybe_skip_bkpt_inst(target, NULL);
736
737         resume_pc = buf_get_u32(r->value, 0, 32);
738
739         armv7m_restore_context(target);
740
741         /* the front-end may request us not to handle breakpoints */
742         if (handle_breakpoints) {
743                 /* Single step past breakpoint at current address */
744                 breakpoint = breakpoint_find(target, resume_pc);
745                 if (breakpoint) {
746                         LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
747                                 breakpoint->address,
748                                 breakpoint->unique_id);
749                         cortex_m_unset_breakpoint(target, breakpoint);
750                         cortex_m_single_step_core(target);
751                         cortex_m_set_breakpoint(target, breakpoint);
752                 }
753         }
754
755         /* Restart core */
756         cortex_m_write_debug_halt_mask(target, 0, C_HALT);
757
758         target->debug_reason = DBG_REASON_NOTHALTED;
759
760         /* registers are now invalid */
761         register_cache_invalidate(armv7m->arm.core_cache);
762
763         if (!debug_execution) {
764                 target->state = TARGET_RUNNING;
765                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
766                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
767         } else {
768                 target->state = TARGET_DEBUG_RUNNING;
769                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
770                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
771         }
772
773         return ERROR_OK;
774 }
775
776 /* int irqstepcount = 0; */
777 static int cortex_m_step(struct target *target, int current,
778         target_addr_t address, int handle_breakpoints)
779 {
780         struct cortex_m_common *cortex_m = target_to_cm(target);
781         struct armv7m_common *armv7m = &cortex_m->armv7m;
782         struct breakpoint *breakpoint = NULL;
783         struct reg *pc = armv7m->arm.pc;
784         bool bkpt_inst_found = false;
785         int retval;
786         bool isr_timed_out = false;
787
788         if (target->state != TARGET_HALTED) {
789                 LOG_WARNING("target not halted");
790                 return ERROR_TARGET_NOT_HALTED;
791         }
792
793         /* current = 1: continue on current pc, otherwise continue at <address> */
794         if (!current)
795                 buf_set_u32(pc->value, 0, 32, address);
796
797         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
798
799         /* the front-end may request us not to handle breakpoints */
800         if (handle_breakpoints) {
801                 breakpoint = breakpoint_find(target, pc_value);
802                 if (breakpoint)
803                         cortex_m_unset_breakpoint(target, breakpoint);
804         }
805
806         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
807
808         target->debug_reason = DBG_REASON_SINGLESTEP;
809
810         armv7m_restore_context(target);
811
812         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
813
814         /* if no bkpt instruction is found at pc then we can perform
815          * a normal step, otherwise we have to manually step over the bkpt
816          * instruction - as such simulate a step */
817         if (bkpt_inst_found == false) {
818                 /* Automatic ISR masking mode off: Just step over the next instruction */
819                 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
820                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
821                 else {
822                         /* Process interrupts during stepping in a way they don't interfere
823                          * debugging.
824                          *
825                          * Principle:
826                          *
827                          * Set a temporary break point at the current pc and let the core run
828                          * with interrupts enabled. Pending interrupts get served and we run
829                          * into the breakpoint again afterwards. Then we step over the next
830                          * instruction with interrupts disabled.
831                          *
832                          * If the pending interrupts don't complete within time, we leave the
833                          * core running. This may happen if the interrupts trigger faster
834                          * than the core can process them or the handler doesn't return.
835                          *
836                          * If no more breakpoints are available we simply do a step with
837                          * interrupts enabled.
838                          *
839                          */
840
841                         /* 2012-09-29 ph
842                          *
843                          * If a break point is already set on the lower half word then a break point on
844                          * the upper half word will not break again when the core is restarted. So we
845                          * just step over the instruction with interrupts disabled.
846                          *
847                          * The documentation has no information about this, it was found by observation
848                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
849                          * suffer from this problem.
850                          *
851                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
852                          * address has it always cleared. The former is done to indicate thumb mode
853                          * to gdb.
854                          *
855                          */
856                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
857                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
858                                 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
859                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
860                                 /* Re-enable interrupts */
861                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
862                         }
863                         else {
864
865                                 /* Set a temporary break point */
866                                 if (breakpoint)
867                                         retval = cortex_m_set_breakpoint(target, breakpoint);
868                                 else
869                                         retval = breakpoint_add(target, pc_value, 2, BKPT_HARD);
870                                 bool tmp_bp_set = (retval == ERROR_OK);
871
872                                 /* No more breakpoints left, just do a step */
873                                 if (!tmp_bp_set)
874                                         cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
875                                 else {
876                                         /* Start the core */
877                                         LOG_DEBUG("Starting core to serve pending interrupts");
878                                         int64_t t_start = timeval_ms();
879                                         cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
880
881                                         /* Wait for pending handlers to complete or timeout */
882                                         do {
883                                                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
884                                                                 DCB_DHCSR,
885                                                                 &cortex_m->dcb_dhcsr);
886                                                 if (retval != ERROR_OK) {
887                                                         target->state = TARGET_UNKNOWN;
888                                                         return retval;
889                                                 }
890                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
891                                         } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
892
893                                         /* only remove breakpoint if we created it */
894                                         if (breakpoint)
895                                                 cortex_m_unset_breakpoint(target, breakpoint);
896                                         else {
897                                                 /* Remove the temporary breakpoint */
898                                                 breakpoint_remove(target, pc_value);
899                                         }
900
901                                         if (isr_timed_out) {
902                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
903                                                         "leaving target running");
904                                         } else {
905                                                 /* Step over next instruction with interrupts disabled */
906                                                 cortex_m_write_debug_halt_mask(target,
907                                                         C_HALT | C_MASKINTS,
908                                                         0);
909                                                 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
910                                                 /* Re-enable interrupts */
911                                                 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
912                                         }
913                                 }
914                         }
915                 }
916         }
917
918         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
919         if (retval != ERROR_OK)
920                 return retval;
921
922         /* registers are now invalid */
923         register_cache_invalidate(armv7m->arm.core_cache);
924
925         if (breakpoint)
926                 cortex_m_set_breakpoint(target, breakpoint);
927
928         if (isr_timed_out) {
929                 /* Leave the core running. The user has to stop execution manually. */
930                 target->debug_reason = DBG_REASON_NOTHALTED;
931                 target->state = TARGET_RUNNING;
932                 return ERROR_OK;
933         }
934
935         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
936                 " nvic_icsr = 0x%" PRIx32,
937                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
938
939         retval = cortex_m_debug_entry(target);
940         if (retval != ERROR_OK)
941                 return retval;
942         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
943
944         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
945                 " nvic_icsr = 0x%" PRIx32,
946                 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
947
948         return ERROR_OK;
949 }
950
951 static int cortex_m_assert_reset(struct target *target)
952 {
953         struct cortex_m_common *cortex_m = target_to_cm(target);
954         struct armv7m_common *armv7m = &cortex_m->armv7m;
955         enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
956
957         LOG_DEBUG("target->state: %s",
958                 target_state_name(target));
959
960         enum reset_types jtag_reset_config = jtag_get_reset_config();
961
962         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
963                 /* allow scripts to override the reset event */
964
965                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
966                 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
967                 target->state = TARGET_RESET;
968
969                 return ERROR_OK;
970         }
971
972         /* some cores support connecting while srst is asserted
973          * use that mode is it has been configured */
974
975         bool srst_asserted = false;
976
977         if (!target_was_examined(target)) {
978                 if (jtag_reset_config & RESET_HAS_SRST) {
979                         adapter_assert_reset();
980                         if (target->reset_halt)
981                                 LOG_ERROR("Target not examined, will not halt after reset!");
982                         return ERROR_OK;
983                 } else {
984                         LOG_ERROR("Target not examined, reset NOT asserted!");
985                         return ERROR_FAIL;
986                 }
987         }
988
989         if ((jtag_reset_config & RESET_HAS_SRST) &&
990             (jtag_reset_config & RESET_SRST_NO_GATING)) {
991                 adapter_assert_reset();
992                 srst_asserted = true;
993         }
994
995         /* Enable debug requests */
996         int retval;
997         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
998         /* Store important errors instead of failing and proceed to reset assert */
999
1000         if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1001                 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1002
1003         /* If the processor is sleeping in a WFI or WFE instruction, the
1004          * C_HALT bit must be asserted to regain control */
1005         if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1006                 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1007
1008         mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1009         /* Ignore less important errors */
1010
1011         if (!target->reset_halt) {
1012                 /* Set/Clear C_MASKINTS in a separate operation */
1013                 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1014                         cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1015
1016                 /* clear any debug flags before resuming */
1017                 cortex_m_clear_halt(target);
1018
1019                 /* clear C_HALT in dhcsr reg */
1020                 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1021         } else {
1022                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1023                  *
1024                  * REVISIT catching BUSERR presumably helps to defend against
1025                  * bad vector table entries.  Should this include MMERR or
1026                  * other flags too?
1027                  */
1028                 int retval2;
1029                 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1030                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1031                 if (retval != ERROR_OK || retval2 != ERROR_OK)
1032                         LOG_INFO("AP write error, reset will not halt");
1033         }
1034
1035         if (jtag_reset_config & RESET_HAS_SRST) {
1036                 /* default to asserting srst */
1037                 if (!srst_asserted)
1038                         adapter_assert_reset();
1039
1040                 /* srst is asserted, ignore AP access errors */
1041                 retval = ERROR_OK;
1042         } else {
1043                 /* Use a standard Cortex-M3 software reset mechanism.
1044                  * We default to using VECRESET as it is supported on all current cores.
1045                  * This has the disadvantage of not resetting the peripherals, so a
1046                  * reset-init event handler is needed to perform any peripheral resets.
1047                  */
1048                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1049                         ? "SYSRESETREQ" : "VECTRESET");
1050
1051                 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1052                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1053                                 "handler to reset any peripherals or configure hardware srst support.");
1054                 }
1055
1056                 int retval3;
1057                 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1058                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1059                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1060                 if (retval3 != ERROR_OK)
1061                         LOG_DEBUG("Ignoring AP write error right after reset");
1062
1063                 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1064                 if (retval3 != ERROR_OK)
1065                         LOG_ERROR("DP initialisation failed");
1066
1067                 else {
1068                         /* I do not know why this is necessary, but it
1069                          * fixes strange effects (step/resume cause NMI
1070                          * after reset) on LM3S6918 -- Michael Schwingen
1071                          */
1072                         uint32_t tmp;
1073                         mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1074                 }
1075         }
1076
1077         target->state = TARGET_RESET;
1078         jtag_add_sleep(50000);
1079
1080         register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1081
1082         /* now return stored error code if any */
1083         if (retval != ERROR_OK)
1084                 return retval;
1085
1086         if (target->reset_halt) {
1087                 retval = target_halt(target);
1088                 if (retval != ERROR_OK)
1089                         return retval;
1090         }
1091
1092         return ERROR_OK;
1093 }
1094
1095 static int cortex_m_deassert_reset(struct target *target)
1096 {
1097         struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1098
1099         LOG_DEBUG("target->state: %s",
1100                 target_state_name(target));
1101
1102         /* deassert reset lines */
1103         adapter_deassert_reset();
1104
1105         enum reset_types jtag_reset_config = jtag_get_reset_config();
1106
1107         if ((jtag_reset_config & RESET_HAS_SRST) &&
1108             !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1109                 target_was_examined(target)) {
1110                 int retval = dap_dp_init(armv7m->debug_ap->dap);
1111                 if (retval != ERROR_OK) {
1112                         LOG_ERROR("DP initialisation failed");
1113                         return retval;
1114                 }
1115         }
1116
1117         return ERROR_OK;
1118 }
1119
1120 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1121 {
1122         int retval;
1123         int fp_num = 0;
1124         struct cortex_m_common *cortex_m = target_to_cm(target);
1125         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1126
1127         if (breakpoint->set) {
1128                 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1129                 return ERROR_OK;
1130         }
1131
1132         if (breakpoint->type == BKPT_HARD) {
1133                 uint32_t fpcr_value;
1134                 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1135                         fp_num++;
1136                 if (fp_num >= cortex_m->fp_num_code) {
1137                         LOG_ERROR("Can not find free FPB Comparator!");
1138                         return ERROR_FAIL;
1139                 }
1140                 breakpoint->set = fp_num + 1;
1141                 fpcr_value = breakpoint->address | 1;
1142                 if (cortex_m->fp_rev == 0) {
1143                         if (breakpoint->address > 0x1FFFFFFF) {
1144                                 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1145                                 return ERROR_FAIL;
1146                         }
1147                         uint32_t hilo;
1148                         hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1149                         fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1150                 } else if (cortex_m->fp_rev > 1) {
1151                         LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1152                         return ERROR_FAIL;
1153                 }
1154                 comparator_list[fp_num].used = 1;
1155                 comparator_list[fp_num].fpcr_value = fpcr_value;
1156                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1157                         comparator_list[fp_num].fpcr_value);
1158                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1159                         fp_num,
1160                         comparator_list[fp_num].fpcr_value);
1161                 if (!cortex_m->fpb_enabled) {
1162                         LOG_DEBUG("FPB wasn't enabled, do it now");
1163                         retval = cortex_m_enable_fpb(target);
1164                         if (retval != ERROR_OK) {
1165                                 LOG_ERROR("Failed to enable the FPB");
1166                                 return retval;
1167                         }
1168
1169                         cortex_m->fpb_enabled = 1;
1170                 }
1171         } else if (breakpoint->type == BKPT_SOFT) {
1172                 uint8_t code[4];
1173
1174                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1175                  * semihosting; don't use that.  Otherwise the BKPT
1176                  * parameter is arbitrary.
1177                  */
1178                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1179                 retval = target_read_memory(target,
1180                                 breakpoint->address & 0xFFFFFFFE,
1181                                 breakpoint->length, 1,
1182                                 breakpoint->orig_instr);
1183                 if (retval != ERROR_OK)
1184                         return retval;
1185                 retval = target_write_memory(target,
1186                                 breakpoint->address & 0xFFFFFFFE,
1187                                 breakpoint->length, 1,
1188                                 code);
1189                 if (retval != ERROR_OK)
1190                         return retval;
1191                 breakpoint->set = true;
1192         }
1193
1194         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1195                 breakpoint->unique_id,
1196                 (int)(breakpoint->type),
1197                 breakpoint->address,
1198                 breakpoint->length,
1199                 breakpoint->set);
1200
1201         return ERROR_OK;
1202 }
1203
1204 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1205 {
1206         int retval;
1207         struct cortex_m_common *cortex_m = target_to_cm(target);
1208         struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1209
1210         if (!breakpoint->set) {
1211                 LOG_WARNING("breakpoint not set");
1212                 return ERROR_OK;
1213         }
1214
1215         LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1216                 breakpoint->unique_id,
1217                 (int)(breakpoint->type),
1218                 breakpoint->address,
1219                 breakpoint->length,
1220                 breakpoint->set);
1221
1222         if (breakpoint->type == BKPT_HARD) {
1223                 int fp_num = breakpoint->set - 1;
1224                 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1225                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1226                         return ERROR_OK;
1227                 }
1228                 comparator_list[fp_num].used = 0;
1229                 comparator_list[fp_num].fpcr_value = 0;
1230                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1231                         comparator_list[fp_num].fpcr_value);
1232         } else {
1233                 /* restore original instruction (kept in target endianness) */
1234                 if (breakpoint->length == 4) {
1235                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1236                                         breakpoint->orig_instr);
1237                         if (retval != ERROR_OK)
1238                                 return retval;
1239                 } else {
1240                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1241                                         breakpoint->orig_instr);
1242                         if (retval != ERROR_OK)
1243                                 return retval;
1244                 }
1245         }
1246         breakpoint->set = false;
1247
1248         return ERROR_OK;
1249 }
1250
1251 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1252 {
1253         struct cortex_m_common *cortex_m = target_to_cm(target);
1254
1255         if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1256                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1257                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1258         }
1259
1260         if (breakpoint->length == 3) {
1261                 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1262                 breakpoint->length = 2;
1263         }
1264
1265         if ((breakpoint->length != 2)) {
1266                 LOG_INFO("only breakpoints of two bytes length supported");
1267                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1268         }
1269
1270         if (breakpoint->type == BKPT_HARD)
1271                 cortex_m->fp_code_available--;
1272
1273         return cortex_m_set_breakpoint(target, breakpoint);
1274 }
1275
1276 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1277 {
1278         struct cortex_m_common *cortex_m = target_to_cm(target);
1279
1280         /* REVISIT why check? FBP can be updated with core running ... */
1281         if (target->state != TARGET_HALTED) {
1282                 LOG_WARNING("target not halted");
1283                 return ERROR_TARGET_NOT_HALTED;
1284         }
1285
1286         if (breakpoint->set)
1287                 cortex_m_unset_breakpoint(target, breakpoint);
1288
1289         if (breakpoint->type == BKPT_HARD)
1290                 cortex_m->fp_code_available++;
1291
1292         return ERROR_OK;
1293 }
1294
1295 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1296 {
1297         int dwt_num = 0;
1298         uint32_t mask, temp;
1299         struct cortex_m_common *cortex_m = target_to_cm(target);
1300
1301         /* watchpoint params were validated earlier */
1302         mask = 0;
1303         temp = watchpoint->length;
1304         while (temp) {
1305                 temp >>= 1;
1306                 mask++;
1307         }
1308         mask--;
1309
1310         /* REVISIT Don't fully trust these "not used" records ... users
1311          * may set up breakpoints by hand, e.g. dual-address data value
1312          * watchpoint using comparator #1; comparator #0 matching cycle
1313          * count; send data trace info through ITM and TPIU; etc
1314          */
1315         struct cortex_m_dwt_comparator *comparator;
1316
1317         for (comparator = cortex_m->dwt_comparator_list;
1318                 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1319                 comparator++, dwt_num++)
1320                 continue;
1321         if (dwt_num >= cortex_m->dwt_num_comp) {
1322                 LOG_ERROR("Can not find free DWT Comparator");
1323                 return ERROR_FAIL;
1324         }
1325         comparator->used = 1;
1326         watchpoint->set = dwt_num + 1;
1327
1328         comparator->comp = watchpoint->address;
1329         target_write_u32(target, comparator->dwt_comparator_address + 0,
1330                 comparator->comp);
1331
1332         comparator->mask = mask;
1333         target_write_u32(target, comparator->dwt_comparator_address + 4,
1334                 comparator->mask);
1335
1336         switch (watchpoint->rw) {
1337                 case WPT_READ:
1338                         comparator->function = 5;
1339                         break;
1340                 case WPT_WRITE:
1341                         comparator->function = 6;
1342                         break;
1343                 case WPT_ACCESS:
1344                         comparator->function = 7;
1345                         break;
1346         }
1347         target_write_u32(target, comparator->dwt_comparator_address + 8,
1348                 comparator->function);
1349
1350         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1351                 watchpoint->unique_id, dwt_num,
1352                 (unsigned) comparator->comp,
1353                 (unsigned) comparator->mask,
1354                 (unsigned) comparator->function);
1355         return ERROR_OK;
1356 }
1357
1358 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1359 {
1360         struct cortex_m_common *cortex_m = target_to_cm(target);
1361         struct cortex_m_dwt_comparator *comparator;
1362         int dwt_num;
1363
1364         if (!watchpoint->set) {
1365                 LOG_WARNING("watchpoint (wpid: %d) not set",
1366                         watchpoint->unique_id);
1367                 return ERROR_OK;
1368         }
1369
1370         dwt_num = watchpoint->set - 1;
1371
1372         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1373                 watchpoint->unique_id, dwt_num,
1374                 (unsigned) watchpoint->address);
1375
1376         if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1377                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1378                 return ERROR_OK;
1379         }
1380
1381         comparator = cortex_m->dwt_comparator_list + dwt_num;
1382         comparator->used = 0;
1383         comparator->function = 0;
1384         target_write_u32(target, comparator->dwt_comparator_address + 8,
1385                 comparator->function);
1386
1387         watchpoint->set = false;
1388
1389         return ERROR_OK;
1390 }
1391
1392 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1393 {
1394         struct cortex_m_common *cortex_m = target_to_cm(target);
1395
1396         if (cortex_m->dwt_comp_available < 1) {
1397                 LOG_DEBUG("no comparators?");
1398                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1399         }
1400
1401         /* hardware doesn't support data value masking */
1402         if (watchpoint->mask != ~(uint32_t)0) {
1403                 LOG_DEBUG("watchpoint value masks not supported");
1404                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1405         }
1406
1407         /* hardware allows address masks of up to 32K */
1408         unsigned mask;
1409
1410         for (mask = 0; mask < 16; mask++) {
1411                 if ((1u << mask) == watchpoint->length)
1412                         break;
1413         }
1414         if (mask == 16) {
1415                 LOG_DEBUG("unsupported watchpoint length");
1416                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1417         }
1418         if (watchpoint->address & ((1 << mask) - 1)) {
1419                 LOG_DEBUG("watchpoint address is unaligned");
1420                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1421         }
1422
1423         /* Caller doesn't seem to be able to describe watching for data
1424          * values of zero; that flags "no value".
1425          *
1426          * REVISIT This DWT may well be able to watch for specific data
1427          * values.  Requires comparator #1 to set DATAVMATCH and match
1428          * the data, and another comparator (DATAVADDR0) matching addr.
1429          */
1430         if (watchpoint->value) {
1431                 LOG_DEBUG("data value watchpoint not YET supported");
1432                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1433         }
1434
1435         cortex_m->dwt_comp_available--;
1436         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1437
1438         return ERROR_OK;
1439 }
1440
1441 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1442 {
1443         struct cortex_m_common *cortex_m = target_to_cm(target);
1444
1445         /* REVISIT why check? DWT can be updated with core running ... */
1446         if (target->state != TARGET_HALTED) {
1447                 LOG_WARNING("target not halted");
1448                 return ERROR_TARGET_NOT_HALTED;
1449         }
1450
1451         if (watchpoint->set)
1452                 cortex_m_unset_watchpoint(target, watchpoint);
1453
1454         cortex_m->dwt_comp_available++;
1455         LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1456
1457         return ERROR_OK;
1458 }
1459
1460 void cortex_m_enable_watchpoints(struct target *target)
1461 {
1462         struct watchpoint *watchpoint = target->watchpoints;
1463
1464         /* set any pending watchpoints */
1465         while (watchpoint) {
1466                 if (!watchpoint->set)
1467                         cortex_m_set_watchpoint(target, watchpoint);
1468                 watchpoint = watchpoint->next;
1469         }
1470 }
1471
1472 static int cortex_m_load_core_reg_u32(struct target *target,
1473                 uint32_t num, uint32_t *value)
1474 {
1475         int retval;
1476
1477         /* NOTE:  we "know" here that the register identifiers used
1478          * in the v7m header match the Cortex-M3 Debug Core Register
1479          * Selector values for R0..R15, xPSR, MSP, and PSP.
1480          */
1481         switch (num) {
1482                 case 0 ... 18:
1483                         /* read a normal core register */
1484                         retval = cortexm_dap_read_coreregister_u32(target, value, num);
1485
1486                         if (retval != ERROR_OK) {
1487                                 LOG_ERROR("JTAG failure %i", retval);
1488                                 return ERROR_JTAG_DEVICE_ERROR;
1489                         }
1490                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1491                         break;
1492
1493                 case ARMV7M_FPSCR:
1494                         /* Floating-point Status and Registers */
1495                         retval = target_write_u32(target, DCB_DCRSR, 0x21);
1496                         if (retval != ERROR_OK)
1497                                 return retval;
1498                         retval = target_read_u32(target, DCB_DCRDR, value);
1499                         if (retval != ERROR_OK)
1500                                 return retval;
1501                         LOG_DEBUG("load from FPSCR  value 0x%" PRIx32, *value);
1502                         break;
1503
1504                 case ARMV7M_S0 ... ARMV7M_S31:
1505                         /* Floating-point Status and Registers */
1506                         retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1507                         if (retval != ERROR_OK)
1508                                 return retval;
1509                         retval = target_read_u32(target, DCB_DCRDR, value);
1510                         if (retval != ERROR_OK)
1511                                 return retval;
1512                         LOG_DEBUG("load from FPU reg S%d  value 0x%" PRIx32,
1513                                   (int)(num - ARMV7M_S0), *value);
1514                         break;
1515
1516                 case ARMV7M_PRIMASK:
1517                 case ARMV7M_BASEPRI:
1518                 case ARMV7M_FAULTMASK:
1519                 case ARMV7M_CONTROL:
1520                         /* Cortex-M3 packages these four registers as bitfields
1521                          * in one Debug Core register.  So say r0 and r2 docs;
1522                          * it was removed from r1 docs, but still works.
1523                          */
1524                         cortexm_dap_read_coreregister_u32(target, value, 20);
1525
1526                         switch (num) {
1527                                 case ARMV7M_PRIMASK:
1528                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1529                                         break;
1530
1531                                 case ARMV7M_BASEPRI:
1532                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1533                                         break;
1534
1535                                 case ARMV7M_FAULTMASK:
1536                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1537                                         break;
1538
1539                                 case ARMV7M_CONTROL:
1540                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1541                                         break;
1542                         }
1543
1544                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1545                         break;
1546
1547                 default:
1548                         return ERROR_COMMAND_SYNTAX_ERROR;
1549         }
1550
1551         return ERROR_OK;
1552 }
1553
1554 static int cortex_m_store_core_reg_u32(struct target *target,
1555                 uint32_t num, uint32_t value)
1556 {
1557         int retval;
1558         uint32_t reg;
1559         struct armv7m_common *armv7m = target_to_armv7m(target);
1560
1561         /* NOTE:  we "know" here that the register identifiers used
1562          * in the v7m header match the Cortex-M3 Debug Core Register
1563          * Selector values for R0..R15, xPSR, MSP, and PSP.
1564          */
1565         switch (num) {
1566                 case 0 ... 18:
1567                         retval = cortexm_dap_write_coreregister_u32(target, value, num);
1568                         if (retval != ERROR_OK) {
1569                                 struct reg *r;
1570
1571                                 LOG_ERROR("JTAG failure");
1572                                 r = armv7m->arm.core_cache->reg_list + num;
1573                                 r->dirty = r->valid;
1574                                 return ERROR_JTAG_DEVICE_ERROR;
1575                         }
1576                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1577                         break;
1578
1579                 case ARMV7M_FPSCR:
1580                         /* Floating-point Status and Registers */
1581                         retval = target_write_u32(target, DCB_DCRDR, value);
1582                         if (retval != ERROR_OK)
1583                                 return retval;
1584                         retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1585                         if (retval != ERROR_OK)
1586                                 return retval;
1587                         LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1588                         break;
1589
1590                 case ARMV7M_S0 ... ARMV7M_S31:
1591                         /* Floating-point Status and Registers */
1592                         retval = target_write_u32(target, DCB_DCRDR, value);
1593                         if (retval != ERROR_OK)
1594                                 return retval;
1595                         retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1596                         if (retval != ERROR_OK)
1597                                 return retval;
1598                         LOG_DEBUG("write FPU reg S%d  value 0x%" PRIx32,
1599                                   (int)(num - ARMV7M_S0), value);
1600                         break;
1601
1602                 case ARMV7M_PRIMASK:
1603                 case ARMV7M_BASEPRI:
1604                 case ARMV7M_FAULTMASK:
1605                 case ARMV7M_CONTROL:
1606                         /* Cortex-M3 packages these four registers as bitfields
1607                          * in one Debug Core register.  So say r0 and r2 docs;
1608                          * it was removed from r1 docs, but still works.
1609                          */
1610                         cortexm_dap_read_coreregister_u32(target, &reg, 20);
1611
1612                         switch (num) {
1613                                 case ARMV7M_PRIMASK:
1614                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1615                                         break;
1616
1617                                 case ARMV7M_BASEPRI:
1618                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1619                                         break;
1620
1621                                 case ARMV7M_FAULTMASK:
1622                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1623                                         break;
1624
1625                                 case ARMV7M_CONTROL:
1626                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1627                                         break;
1628                         }
1629
1630                         cortexm_dap_write_coreregister_u32(target, reg, 20);
1631
1632                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1633                         break;
1634
1635                 default:
1636                         return ERROR_COMMAND_SYNTAX_ERROR;
1637         }
1638
1639         return ERROR_OK;
1640 }
1641
1642 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1643         uint32_t size, uint32_t count, uint8_t *buffer)
1644 {
1645         struct armv7m_common *armv7m = target_to_armv7m(target);
1646
1647         if (armv7m->arm.is_armv6m) {
1648                 /* armv6m does not handle unaligned memory access */
1649                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1650                         return ERROR_TARGET_UNALIGNED_ACCESS;
1651         }
1652
1653         return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1654 }
1655
1656 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1657         uint32_t size, uint32_t count, const uint8_t *buffer)
1658 {
1659         struct armv7m_common *armv7m = target_to_armv7m(target);
1660
1661         if (armv7m->arm.is_armv6m) {
1662                 /* armv6m does not handle unaligned memory access */
1663                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1664                         return ERROR_TARGET_UNALIGNED_ACCESS;
1665         }
1666
1667         return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1668 }
1669
1670 static int cortex_m_init_target(struct command_context *cmd_ctx,
1671         struct target *target)
1672 {
1673         armv7m_build_reg_cache(target);
1674         arm_semihosting_init(target);
1675         return ERROR_OK;
1676 }
1677
1678 void cortex_m_deinit_target(struct target *target)
1679 {
1680         struct cortex_m_common *cortex_m = target_to_cm(target);
1681
1682         free(cortex_m->fp_comparator_list);
1683
1684         cortex_m_dwt_free(target);
1685         armv7m_free_reg_cache(target);
1686
1687         free(target->private_config);
1688         free(cortex_m);
1689 }
1690
1691 int cortex_m_profiling(struct target *target, uint32_t *samples,
1692                               uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1693 {
1694         struct timeval timeout, now;
1695         struct armv7m_common *armv7m = target_to_armv7m(target);
1696         uint32_t reg_value;
1697         bool use_pcsr = false;
1698         int retval = ERROR_OK;
1699         struct reg *reg;
1700
1701         gettimeofday(&timeout, NULL);
1702         timeval_add_time(&timeout, seconds, 0);
1703
1704         retval = target_read_u32(target, DWT_PCSR, &reg_value);
1705         if (retval != ERROR_OK) {
1706                 LOG_ERROR("Error while reading PCSR");
1707                 return retval;
1708         }
1709
1710         if (reg_value != 0) {
1711                 use_pcsr = true;
1712                 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1713         } else {
1714                 LOG_INFO("Starting profiling. Halting and resuming the"
1715                          " target as often as we can...");
1716                 reg = register_get_by_name(target->reg_cache, "pc", 1);
1717         }
1718
1719         /* Make sure the target is running */
1720         target_poll(target);
1721         if (target->state == TARGET_HALTED)
1722                 retval = target_resume(target, 1, 0, 0, 0);
1723
1724         if (retval != ERROR_OK) {
1725                 LOG_ERROR("Error while resuming target");
1726                 return retval;
1727         }
1728
1729         uint32_t sample_count = 0;
1730
1731         for (;;) {
1732                 if (use_pcsr) {
1733                         if (armv7m && armv7m->debug_ap) {
1734                                 uint32_t read_count = max_num_samples - sample_count;
1735                                 if (read_count > 1024)
1736                                         read_count = 1024;
1737
1738                                 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1739                                                         (void *)&samples[sample_count],
1740                                                         4, read_count, DWT_PCSR);
1741                                 sample_count += read_count;
1742                         } else {
1743                                 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1744                         }
1745                 } else {
1746                         target_poll(target);
1747                         if (target->state == TARGET_HALTED) {
1748                                 reg_value = buf_get_u32(reg->value, 0, 32);
1749                                 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1750                                 retval = target_resume(target, 1, 0, 0, 0);
1751                                 samples[sample_count++] = reg_value;
1752                                 target_poll(target);
1753                                 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1754                         } else if (target->state == TARGET_RUNNING) {
1755                                 /* We want to quickly sample the PC. */
1756                                 retval = target_halt(target);
1757                         } else {
1758                                 LOG_INFO("Target not halted or running");
1759                                 retval = ERROR_OK;
1760                                 break;
1761                         }
1762                 }
1763
1764                 if (retval != ERROR_OK) {
1765                         LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1766                         return retval;
1767                 }
1768
1769
1770                 gettimeofday(&now, NULL);
1771                 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1772                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1773                         break;
1774                 }
1775         }
1776
1777         *num_samples = sample_count;
1778         return retval;
1779 }
1780
1781
1782 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1783  * on r/w if the core is not running, and clear on resume or reset ... or
1784  * at least, in a post_restore_context() method.
1785  */
1786
1787 struct dwt_reg_state {
1788         struct target *target;
1789         uint32_t addr;
1790         uint8_t value[4];               /* scratch/cache */
1791 };
1792
1793 static int cortex_m_dwt_get_reg(struct reg *reg)
1794 {
1795         struct dwt_reg_state *state = reg->arch_info;
1796
1797         uint32_t tmp;
1798         int retval = target_read_u32(state->target, state->addr, &tmp);
1799         if (retval != ERROR_OK)
1800                 return retval;
1801
1802         buf_set_u32(state->value, 0, 32, tmp);
1803         return ERROR_OK;
1804 }
1805
1806 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1807 {
1808         struct dwt_reg_state *state = reg->arch_info;
1809
1810         return target_write_u32(state->target, state->addr,
1811                         buf_get_u32(buf, 0, reg->size));
1812 }
1813
1814 struct dwt_reg {
1815         uint32_t addr;
1816         const char *name;
1817         unsigned size;
1818 };
1819
1820 static const struct dwt_reg dwt_base_regs[] = {
1821         { DWT_CTRL, "dwt_ctrl", 32, },
1822         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1823          * increments while the core is asleep.
1824          */
1825         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1826         /* plus some 8 bit counters, useful for profiling with TPIU */
1827 };
1828
1829 static const struct dwt_reg dwt_comp[] = {
1830 #define DWT_COMPARATOR(i) \
1831                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1832                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1833                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1834         DWT_COMPARATOR(0),
1835         DWT_COMPARATOR(1),
1836         DWT_COMPARATOR(2),
1837         DWT_COMPARATOR(3),
1838         DWT_COMPARATOR(4),
1839         DWT_COMPARATOR(5),
1840         DWT_COMPARATOR(6),
1841         DWT_COMPARATOR(7),
1842         DWT_COMPARATOR(8),
1843         DWT_COMPARATOR(9),
1844         DWT_COMPARATOR(10),
1845         DWT_COMPARATOR(11),
1846         DWT_COMPARATOR(12),
1847         DWT_COMPARATOR(13),
1848         DWT_COMPARATOR(14),
1849         DWT_COMPARATOR(15),
1850 #undef DWT_COMPARATOR
1851 };
1852
1853 static const struct reg_arch_type dwt_reg_type = {
1854         .get = cortex_m_dwt_get_reg,
1855         .set = cortex_m_dwt_set_reg,
1856 };
1857
1858 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1859 {
1860         struct dwt_reg_state *state;
1861
1862         state = calloc(1, sizeof *state);
1863         if (!state)
1864                 return;
1865         state->addr = d->addr;
1866         state->target = t;
1867
1868         r->name = d->name;
1869         r->size = d->size;
1870         r->value = state->value;
1871         r->arch_info = state;
1872         r->type = &dwt_reg_type;
1873 }
1874
1875 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1876 {
1877         uint32_t dwtcr;
1878         struct reg_cache *cache;
1879         struct cortex_m_dwt_comparator *comparator;
1880         int reg, i;
1881
1882         target_read_u32(target, DWT_CTRL, &dwtcr);
1883         LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1884         if (!dwtcr) {
1885                 LOG_DEBUG("no DWT");
1886                 return;
1887         }
1888
1889         cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1890         cm->dwt_comp_available = cm->dwt_num_comp;
1891         cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1892                         sizeof(struct cortex_m_dwt_comparator));
1893         if (!cm->dwt_comparator_list) {
1894 fail0:
1895                 cm->dwt_num_comp = 0;
1896                 LOG_ERROR("out of mem");
1897                 return;
1898         }
1899
1900         cache = calloc(1, sizeof *cache);
1901         if (!cache) {
1902 fail1:
1903                 free(cm->dwt_comparator_list);
1904                 goto fail0;
1905         }
1906         cache->name = "Cortex-M DWT registers";
1907         cache->num_regs = 2 + cm->dwt_num_comp * 3;
1908         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1909         if (!cache->reg_list) {
1910                 free(cache);
1911                 goto fail1;
1912         }
1913
1914         for (reg = 0; reg < 2; reg++)
1915                 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1916                         dwt_base_regs + reg);
1917
1918         comparator = cm->dwt_comparator_list;
1919         for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1920                 int j;
1921
1922                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1923                 for (j = 0; j < 3; j++, reg++)
1924                         cortex_m_dwt_addreg(target, cache->reg_list + reg,
1925                                 dwt_comp + 3 * i + j);
1926
1927                 /* make sure we clear any watchpoints enabled on the target */
1928                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1929         }
1930
1931         *register_get_last_cache_p(&target->reg_cache) = cache;
1932         cm->dwt_cache = cache;
1933
1934         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1935                 dwtcr, cm->dwt_num_comp,
1936                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1937
1938         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1939          * implement single-address data value watchpoints ... so we
1940          * won't need to check it later, when asked to set one up.
1941          */
1942 }
1943
1944 static void cortex_m_dwt_free(struct target *target)
1945 {
1946         struct cortex_m_common *cm = target_to_cm(target);
1947         struct reg_cache *cache = cm->dwt_cache;
1948
1949         free(cm->dwt_comparator_list);
1950         cm->dwt_comparator_list = NULL;
1951         cm->dwt_num_comp = 0;
1952
1953         if (cache) {
1954                 register_unlink_cache(&target->reg_cache, cache);
1955
1956                 if (cache->reg_list) {
1957                         for (size_t i = 0; i < cache->num_regs; i++)
1958                                 free(cache->reg_list[i].arch_info);
1959                         free(cache->reg_list);
1960                 }
1961                 free(cache);
1962         }
1963         cm->dwt_cache = NULL;
1964 }
1965
1966 #define MVFR0 0xe000ef40
1967 #define MVFR1 0xe000ef44
1968
1969 #define MVFR0_DEFAULT_M4 0x10110021
1970 #define MVFR1_DEFAULT_M4 0x11000011
1971
1972 #define MVFR0_DEFAULT_M7_SP 0x10110021
1973 #define MVFR0_DEFAULT_M7_DP 0x10110221
1974 #define MVFR1_DEFAULT_M7_SP 0x11000011
1975 #define MVFR1_DEFAULT_M7_DP 0x12000011
1976
1977 int cortex_m_examine(struct target *target)
1978 {
1979         int retval;
1980         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1981         int i;
1982         struct cortex_m_common *cortex_m = target_to_cm(target);
1983         struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1984         struct armv7m_common *armv7m = target_to_armv7m(target);
1985
1986         /* stlink shares the examine handler but does not support
1987          * all its calls */
1988         if (!armv7m->stlink) {
1989                 if (cortex_m->apsel < 0) {
1990                         /* Search for the MEM-AP */
1991                         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
1992                         if (retval != ERROR_OK) {
1993                                 LOG_ERROR("Could not find MEM-AP to control the core");
1994                                 return retval;
1995                         }
1996                 } else {
1997                         armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
1998                 }
1999
2000                 /* Leave (only) generic DAP stuff for debugport_init(); */
2001                 armv7m->debug_ap->memaccess_tck = 8;
2002
2003                 retval = mem_ap_init(armv7m->debug_ap);
2004                 if (retval != ERROR_OK)
2005                         return retval;
2006         }
2007
2008         if (!target_was_examined(target)) {
2009                 target_set_examined(target);
2010
2011                 /* Read from Device Identification Registers */
2012                 retval = target_read_u32(target, CPUID, &cpuid);
2013                 if (retval != ERROR_OK)
2014                         return retval;
2015
2016                 /* Get CPU Type */
2017                 i = (cpuid >> 4) & 0xf;
2018
2019                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2020                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2021                 if (i == 7) {
2022                         uint8_t rev, patch;
2023                         rev = (cpuid >> 20) & 0xf;
2024                         patch = (cpuid >> 0) & 0xf;
2025                         if ((rev == 0) && (patch < 2))
2026                                 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2027                 }
2028                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2029
2030                 if (i == 4) {
2031                         target_read_u32(target, MVFR0, &mvfr0);
2032                         target_read_u32(target, MVFR1, &mvfr1);
2033
2034                         /* test for floating point feature on Cortex-M4 */
2035                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2036                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2037                                 armv7m->fp_feature = FPv4_SP;
2038                         }
2039                 } else if (i == 7) {
2040                         target_read_u32(target, MVFR0, &mvfr0);
2041                         target_read_u32(target, MVFR1, &mvfr1);
2042
2043                         /* test for floating point features on Cortex-M7 */
2044                         if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2045                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2046                                 armv7m->fp_feature = FPv5_SP;
2047                         } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2048                                 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2049                                 armv7m->fp_feature = FPv5_DP;
2050                         }
2051                 } else if (i == 0) {
2052                         /* Cortex-M0 does not support unaligned memory access */
2053                         armv7m->arm.is_armv6m = true;
2054                 }
2055
2056                 if (armv7m->fp_feature == FP_NONE &&
2057                     armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2058                         /* free unavailable FPU registers */
2059                         size_t idx;
2060
2061                         for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2062                              idx < armv7m->arm.core_cache->num_regs;
2063                              idx++) {
2064                                 free(armv7m->arm.core_cache->reg_list[idx].value);
2065                                 free(armv7m->arm.core_cache->reg_list[idx].feature);
2066                                 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2067                         }
2068                         armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2069                 }
2070
2071                 if (!armv7m->stlink) {
2072                         if (i == 3 || i == 4)
2073                                 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2074                                  * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2075                                 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2076                         else if (i == 7)
2077                                 /* Cortex-M7 has only 1024 bytes autoincrement range */
2078                                 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2079                 }
2080
2081                 /* Configure trace modules */
2082                 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2083                 if (retval != ERROR_OK)
2084                         return retval;
2085
2086                 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2087                         armv7m_trace_tpiu_config(target);
2088                         armv7m_trace_itm_config(target);
2089                 }
2090
2091                 /* NOTE: FPB and DWT are both optional. */
2092
2093                 /* Setup FPB */
2094                 target_read_u32(target, FP_CTRL, &fpcr);
2095                 /* bits [14:12] and [7:4] */
2096                 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2097                 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2098                 cortex_m->fp_code_available = cortex_m->fp_num_code;
2099                 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2100                    Revision is zero base, fp_rev == 1 means Rev.2 ! */
2101                 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2102                 free(cortex_m->fp_comparator_list);
2103                 cortex_m->fp_comparator_list = calloc(
2104                                 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2105                                 sizeof(struct cortex_m_fp_comparator));
2106                 cortex_m->fpb_enabled = fpcr & 1;
2107                 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2108                         cortex_m->fp_comparator_list[i].type =
2109                                 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2110                         cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2111
2112                         /* make sure we clear any breakpoints enabled on the target */
2113                         target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2114                 }
2115                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2116                         fpcr,
2117                         cortex_m->fp_num_code,
2118                         cortex_m->fp_num_lit);
2119
2120                 /* Setup DWT */
2121                 cortex_m_dwt_free(target);
2122                 cortex_m_dwt_setup(cortex_m, target);
2123
2124                 /* These hardware breakpoints only work for code in flash! */
2125                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2126                         target_name(target),
2127                         cortex_m->fp_num_code,
2128                         cortex_m->dwt_num_comp);
2129         }
2130
2131         return ERROR_OK;
2132 }
2133
2134 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2135 {
2136         struct armv7m_common *armv7m = target_to_armv7m(target);
2137         uint16_t dcrdr;
2138         uint8_t buf[2];
2139         int retval;
2140
2141         retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2142         if (retval != ERROR_OK)
2143                 return retval;
2144
2145         dcrdr = target_buffer_get_u16(target, buf);
2146         *ctrl = (uint8_t)dcrdr;
2147         *value = (uint8_t)(dcrdr >> 8);
2148
2149         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2150
2151         /* write ack back to software dcc register
2152          * signify we have read data */
2153         if (dcrdr & (1 << 0)) {
2154                 target_buffer_set_u16(target, buf, 0);
2155                 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2156                 if (retval != ERROR_OK)
2157                         return retval;
2158         }
2159
2160         return ERROR_OK;
2161 }
2162
2163 static int cortex_m_target_request_data(struct target *target,
2164         uint32_t size, uint8_t *buffer)
2165 {
2166         uint8_t data;
2167         uint8_t ctrl;
2168         uint32_t i;
2169
2170         for (i = 0; i < (size * 4); i++) {
2171                 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2172                 if (retval != ERROR_OK)
2173                         return retval;
2174                 buffer[i] = data;
2175         }
2176
2177         return ERROR_OK;
2178 }
2179
2180 static int cortex_m_handle_target_request(void *priv)
2181 {
2182         struct target *target = priv;
2183         if (!target_was_examined(target))
2184                 return ERROR_OK;
2185
2186         if (!target->dbg_msg_enabled)
2187                 return ERROR_OK;
2188
2189         if (target->state == TARGET_RUNNING) {
2190                 uint8_t data;
2191                 uint8_t ctrl;
2192                 int retval;
2193
2194                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2195                 if (retval != ERROR_OK)
2196                         return retval;
2197
2198                 /* check if we have data */
2199                 if (ctrl & (1 << 0)) {
2200                         uint32_t request;
2201
2202                         /* we assume target is quick enough */
2203                         request = data;
2204                         for (int i = 1; i <= 3; i++) {
2205                                 retval = cortex_m_dcc_read(target, &data, &ctrl);
2206                                 if (retval != ERROR_OK)
2207                                         return retval;
2208                                 request |= ((uint32_t)data << (i * 8));
2209                         }
2210                         target_request(target, request);
2211                 }
2212         }
2213
2214         return ERROR_OK;
2215 }
2216
2217 static int cortex_m_init_arch_info(struct target *target,
2218         struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2219 {
2220         struct armv7m_common *armv7m = &cortex_m->armv7m;
2221
2222         armv7m_init_arch_info(target, armv7m);
2223
2224         /* default reset mode is to use srst if fitted
2225          * if not it will use CORTEX_M3_RESET_VECTRESET */
2226         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2227
2228         armv7m->arm.dap = dap;
2229
2230         /* register arch-specific functions */
2231         armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2232
2233         armv7m->post_debug_entry = NULL;
2234
2235         armv7m->pre_restore_context = NULL;
2236
2237         armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2238         armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2239
2240         target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2241
2242         return ERROR_OK;
2243 }
2244
2245 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2246 {
2247         struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2248         cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2249         struct adiv5_private_config *pc;
2250
2251         pc = (struct adiv5_private_config *)target->private_config;
2252         if (adiv5_verify_config(pc) != ERROR_OK)
2253                 return ERROR_FAIL;
2254
2255         cortex_m->apsel = pc->ap_num;
2256
2257         cortex_m_init_arch_info(target, cortex_m, pc->dap);
2258
2259         return ERROR_OK;
2260 }
2261
2262 /*--------------------------------------------------------------------------*/
2263
2264 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2265         struct cortex_m_common *cm)
2266 {
2267         if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2268                 command_print(cmd_ctx, "target is not a Cortex-M");
2269                 return ERROR_TARGET_INVALID;
2270         }
2271         return ERROR_OK;
2272 }
2273
2274 /*
2275  * Only stuff below this line should need to verify that its target
2276  * is a Cortex-M3.  Everything else should have indirected through the
2277  * cortexm3_target structure, which is only used with CM3 targets.
2278  */
2279
2280 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2281 {
2282         struct target *target = get_current_target(CMD_CTX);
2283         struct cortex_m_common *cortex_m = target_to_cm(target);
2284         struct armv7m_common *armv7m = &cortex_m->armv7m;
2285         uint32_t demcr = 0;
2286         int retval;
2287
2288         static const struct {
2289                 char name[10];
2290                 unsigned mask;
2291         } vec_ids[] = {
2292                 { "hard_err",   VC_HARDERR, },
2293                 { "int_err",    VC_INTERR, },
2294                 { "bus_err",    VC_BUSERR, },
2295                 { "state_err",  VC_STATERR, },
2296                 { "chk_err",    VC_CHKERR, },
2297                 { "nocp_err",   VC_NOCPERR, },
2298                 { "mm_err",     VC_MMERR, },
2299                 { "reset",      VC_CORERESET, },
2300         };
2301
2302         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2303         if (retval != ERROR_OK)
2304                 return retval;
2305
2306         retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2307         if (retval != ERROR_OK)
2308                 return retval;
2309
2310         if (CMD_ARGC > 0) {
2311                 unsigned catch = 0;
2312
2313                 if (CMD_ARGC == 1) {
2314                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2315                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2316                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2317                                         | VC_MMERR | VC_CORERESET;
2318                                 goto write;
2319                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2320                                 goto write;
2321                 }
2322                 while (CMD_ARGC-- > 0) {
2323                         unsigned i;
2324                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2325                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2326                                         continue;
2327                                 catch |= vec_ids[i].mask;
2328                                 break;
2329                         }
2330                         if (i == ARRAY_SIZE(vec_ids)) {
2331                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2332                                 return ERROR_COMMAND_SYNTAX_ERROR;
2333                         }
2334                 }
2335 write:
2336                 /* For now, armv7m->demcr only stores vector catch flags. */
2337                 armv7m->demcr = catch;
2338
2339                 demcr &= ~0xffff;
2340                 demcr |= catch;
2341
2342                 /* write, but don't assume it stuck (why not??) */
2343                 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2344                 if (retval != ERROR_OK)
2345                         return retval;
2346                 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2347                 if (retval != ERROR_OK)
2348                         return retval;
2349
2350                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2351                  * Otherwise the vector catch hardware could fire when there's
2352                  * no debugger hooked up, causing much confusion...
2353                  */
2354         }
2355
2356         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2357                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2358                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2359         }
2360
2361         return ERROR_OK;
2362 }
2363
2364 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2365 {
2366         struct target *target = get_current_target(CMD_CTX);
2367         struct cortex_m_common *cortex_m = target_to_cm(target);
2368         int retval;
2369
2370         static const Jim_Nvp nvp_maskisr_modes[] = {
2371                 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2372                 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2373                 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2374                 { .name = NULL, .value = -1 },
2375         };
2376         const Jim_Nvp *n;
2377
2378
2379         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2380         if (retval != ERROR_OK)
2381                 return retval;
2382
2383         if (target->state != TARGET_HALTED) {
2384                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2385                 return ERROR_OK;
2386         }
2387
2388         if (CMD_ARGC > 0) {
2389                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2390                 if (n->name == NULL)
2391                         return ERROR_COMMAND_SYNTAX_ERROR;
2392                 cortex_m->isrmasking_mode = n->value;
2393
2394
2395                 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2396                         cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2397                 else
2398                         cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2399         }
2400
2401         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2402         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2403
2404         return ERROR_OK;
2405 }
2406
2407 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2408 {
2409         struct target *target = get_current_target(CMD_CTX);
2410         struct cortex_m_common *cortex_m = target_to_cm(target);
2411         int retval;
2412         char *reset_config;
2413
2414         retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2415         if (retval != ERROR_OK)
2416                 return retval;
2417
2418         if (CMD_ARGC > 0) {
2419                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2420                         cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2421                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2422                         cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2423         }
2424
2425         switch (cortex_m->soft_reset_config) {
2426                 case CORTEX_M_RESET_SYSRESETREQ:
2427                         reset_config = "sysresetreq";
2428                         break;
2429
2430                 case CORTEX_M_RESET_VECTRESET:
2431                         reset_config = "vectreset";
2432                         break;
2433
2434                 default:
2435                         reset_config = "unknown";
2436                         break;
2437         }
2438
2439         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2440
2441         return ERROR_OK;
2442 }
2443
2444 static const struct command_registration cortex_m_exec_command_handlers[] = {
2445         {
2446                 .name = "maskisr",
2447                 .handler = handle_cortex_m_mask_interrupts_command,
2448                 .mode = COMMAND_EXEC,
2449                 .help = "mask cortex_m interrupts",
2450                 .usage = "['auto'|'on'|'off']",
2451         },
2452         {
2453                 .name = "vector_catch",
2454                 .handler = handle_cortex_m_vector_catch_command,
2455                 .mode = COMMAND_EXEC,
2456                 .help = "configure hardware vectors to trigger debug entry",
2457                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2458         },
2459         {
2460                 .name = "reset_config",
2461                 .handler = handle_cortex_m_reset_config_command,
2462                 .mode = COMMAND_ANY,
2463                 .help = "configure software reset handling",
2464                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2465         },
2466         COMMAND_REGISTRATION_DONE
2467 };
2468 static const struct command_registration cortex_m_command_handlers[] = {
2469         {
2470                 .chain = armv7m_command_handlers,
2471         },
2472         {
2473                 .chain = armv7m_trace_command_handlers,
2474         },
2475         {
2476                 .name = "cortex_m",
2477                 .mode = COMMAND_EXEC,
2478                 .help = "Cortex-M command group",
2479                 .usage = "",
2480                 .chain = cortex_m_exec_command_handlers,
2481         },
2482         COMMAND_REGISTRATION_DONE
2483 };
2484
2485 struct target_type cortexm_target = {
2486         .name = "cortex_m",
2487         .deprecated_name = "cortex_m3",
2488
2489         .poll = cortex_m_poll,
2490         .arch_state = armv7m_arch_state,
2491
2492         .target_request_data = cortex_m_target_request_data,
2493
2494         .halt = cortex_m_halt,
2495         .resume = cortex_m_resume,
2496         .step = cortex_m_step,
2497
2498         .assert_reset = cortex_m_assert_reset,
2499         .deassert_reset = cortex_m_deassert_reset,
2500         .soft_reset_halt = cortex_m_soft_reset_halt,
2501
2502         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2503
2504         .read_memory = cortex_m_read_memory,
2505         .write_memory = cortex_m_write_memory,
2506         .checksum_memory = armv7m_checksum_memory,
2507         .blank_check_memory = armv7m_blank_check_memory,
2508
2509         .run_algorithm = armv7m_run_algorithm,
2510         .start_algorithm = armv7m_start_algorithm,
2511         .wait_algorithm = armv7m_wait_algorithm,
2512
2513         .add_breakpoint = cortex_m_add_breakpoint,
2514         .remove_breakpoint = cortex_m_remove_breakpoint,
2515         .add_watchpoint = cortex_m_add_watchpoint,
2516         .remove_watchpoint = cortex_m_remove_watchpoint,
2517
2518         .commands = cortex_m_command_handlers,
2519         .target_create = cortex_m_target_create,
2520         .target_jim_configure = adiv5_jim_configure,
2521         .init_target = cortex_m_init_target,
2522         .examine = cortex_m_examine,
2523         .deinit_target = cortex_m_deinit_target,
2524
2525         .profiling = cortex_m_profiling,
2526 };