]> git.sur5r.net Git - openocd/blob - src/target/cortex_m.c
armv7m: use consistent arm.cpsr member
[openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FBP remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /**
57  * Returns the type of a break point required by address location
58  */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64                 uint32_t num, uint32_t value);
65
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67         uint32_t *value, int regnum)
68 {
69         int retval;
70         uint32_t dcrdr;
71
72         /* because the DCB_DCRDR is used for the emulated dcc channel
73          * we have to save/restore the DCB_DCRDR when used */
74
75         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76         if (retval != ERROR_OK)
77                 return retval;
78
79         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81         if (retval != ERROR_OK)
82                 return retval;
83         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84         if (retval != ERROR_OK)
85                 return retval;
86
87         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89         if (retval != ERROR_OK)
90                 return retval;
91         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92         if (retval != ERROR_OK)
93                 return retval;
94
95         retval = dap_run(swjdp);
96         if (retval != ERROR_OK)
97                 return retval;
98
99         /* restore DCB_DCRDR - this needs to be in a seperate
100          * transaction otherwise the emulated DCC channel breaks */
101         if (retval == ERROR_OK)
102                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
103
104         return retval;
105 }
106
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108         uint32_t value, int regnum)
109 {
110         int retval;
111         uint32_t dcrdr;
112
113         /* because the DCB_DCRDR is used for the emulated dcc channel
114          * we have to save/restore the DCB_DCRDR when used */
115
116         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117         if (retval != ERROR_OK)
118                 return retval;
119
120         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122         if (retval != ERROR_OK)
123                 return retval;
124         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125         if (retval != ERROR_OK)
126                 return retval;
127
128         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130         if (retval != ERROR_OK)
131                 return retval;
132         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133         if (retval != ERROR_OK)
134                 return retval;
135
136         retval = dap_run(swjdp);
137         if (retval != ERROR_OK)
138                 return retval;
139
140         /* restore DCB_DCRDR - this needs to be in a seperate
141          * transaction otherwise the emulated DCC channel breaks */
142         if (retval == ERROR_OK)
143                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
144
145         return retval;
146 }
147
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149         uint32_t mask_on, uint32_t mask_off)
150 {
151         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
153
154         /* mask off status bits */
155         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156         /* create new register mask */
157         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
158
159         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
160 }
161
162 static int cortex_m3_clear_halt(struct target *target)
163 {
164         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
166         int retval;
167
168         /* clear step if any */
169         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
170
171         /* Read Debug Fault Status Register */
172         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173         if (retval != ERROR_OK)
174                 return retval;
175
176         /* Clear Debug Fault Status */
177         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178         if (retval != ERROR_OK)
179                 return retval;
180         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
181
182         return ERROR_OK;
183 }
184
185 static int cortex_m3_single_step_core(struct target *target)
186 {
187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
189         uint32_t dhcsr_save;
190         int retval;
191
192         /* backup dhcsr reg */
193         dhcsr_save = cortex_m3->dcb_dhcsr;
194
195         /* Mask interrupts before clearing halt, if done already.  This avoids
196          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197          * HALT can put the core into an unknown state.
198          */
199         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202                 if (retval != ERROR_OK)
203                         return retval;
204         }
205         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207         if (retval != ERROR_OK)
208                 return retval;
209         LOG_DEBUG(" ");
210
211         /* restore dhcsr reg */
212         cortex_m3->dcb_dhcsr = dhcsr_save;
213         cortex_m3_clear_halt(target);
214
215         return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224         struct armv7m_common *armv7m = &cortex_m3->armv7m;
225         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
226         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246                 if (retval != ERROR_OK)
247                         return retval;
248         }
249
250         /* clear any interrupt masking */
251         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253         /* Enable features controlled by ITM and DWT blocks, and catch only
254          * the vectors we were told to pay attention to.
255          *
256          * Target firmware is responsible for all fault handling policy
257          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258          * or manual updates to the NVIC SHCSR and CCR registers.
259          */
260         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* Paranoia: evidently some (early?) chips don't preserve all the
265          * debug state (including FBP, DWT, etc) across reset...
266          */
267
268         /* Enable FPB */
269         retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         cortex_m3->fpb_enabled = 1;
274
275         /* Restore FPB registers */
276         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278                 if (retval != ERROR_OK)
279                         return retval;
280         }
281
282         /* Restore DWT registers */
283         for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285                                 dwt_list[i].comp);
286                 if (retval != ERROR_OK)
287                         return retval;
288                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289                                 dwt_list[i].mask);
290                 if (retval != ERROR_OK)
291                         return retval;
292                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293                                 dwt_list[i].function);
294                 if (retval != ERROR_OK)
295                         return retval;
296         }
297         retval = dap_run(swjdp);
298         if (retval != ERROR_OK)
299                 return retval;
300
301         register_cache_invalidate(armv7m->arm.core_cache);
302
303         /* make sure we have latest dhcsr flags */
304         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
305
306         return retval;
307 }
308
309 static int cortex_m3_examine_debug_reason(struct target *target)
310 {
311         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
312
313         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314          * only check the debug reason if we don't know it already */
315
316         if ((target->debug_reason != DBG_REASON_DBGRQ)
317                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318                 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319                         target->debug_reason = DBG_REASON_BREAKPOINT;
320                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
322                 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323                         target->debug_reason = DBG_REASON_WATCHPOINT;
324                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325                         target->debug_reason = DBG_REASON_BREAKPOINT;
326                 else    /* EXTERNAL, HALTED */
327                         target->debug_reason = DBG_REASON_UNDEFINED;
328         }
329
330         return ERROR_OK;
331 }
332
333 static int cortex_m3_examine_exception_reason(struct target *target)
334 {
335         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336         struct armv7m_common *armv7m = target_to_armv7m(target);
337         struct adiv5_dap *swjdp = armv7m->arm.dap;
338         int retval;
339
340         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341         if (retval != ERROR_OK)
342                 return retval;
343         switch (armv7m->exception_number) {
344                 case 2: /* NMI */
345                         break;
346                 case 3: /* Hard Fault */
347                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348                         if (retval != ERROR_OK)
349                                 return retval;
350                         if (except_sr & 0x40000000) {
351                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352                                 if (retval != ERROR_OK)
353                                         return retval;
354                         }
355                         break;
356                 case 4: /* Memory Management */
357                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358                         if (retval != ERROR_OK)
359                                 return retval;
360                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361                         if (retval != ERROR_OK)
362                                 return retval;
363                         break;
364                 case 5: /* Bus Fault */
365                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 6: /* Usage Fault */
373                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374                         if (retval != ERROR_OK)
375                                 return retval;
376                         break;
377                 case 11:        /* SVCall */
378                         break;
379                 case 12:        /* Debug Monitor */
380                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381                         if (retval != ERROR_OK)
382                                 return retval;
383                         break;
384                 case 14:        /* PendSV */
385                         break;
386                 case 15:        /* SysTick */
387                         break;
388                 default:
389                         except_sr = 0;
390                         break;
391         }
392         retval = dap_run(swjdp);
393         if (retval == ERROR_OK)
394                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396                         armv7m_exception_string(armv7m->exception_number),
397                         shcsr, except_sr, cfsr, except_ar);
398         return retval;
399 }
400
401 static int cortex_m3_debug_entry(struct target *target)
402 {
403         int i;
404         uint32_t xPSR;
405         int retval;
406         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407         struct armv7m_common *armv7m = &cortex_m3->armv7m;
408         struct arm *arm = &armv7m->arm;
409         struct adiv5_dap *swjdp = armv7m->arm.dap;
410         struct reg *r;
411
412         LOG_DEBUG(" ");
413
414         cortex_m3_clear_halt(target);
415         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416         if (retval != ERROR_OK)
417                 return retval;
418
419         retval = armv7m->examine_debug_reason(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         /* Examine target state and mode
424          * First load register accessible through core debug port */
425         int num_regs = arm->core_cache->num_regs;
426
427         for (i = 0; i < num_regs; i++) {
428                 r = &armv7m->arm.core_cache->reg_list[i];
429                 if (!r->valid)
430                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
431         }
432
433         r = arm->cpsr;
434         xPSR = buf_get_u32(r->value, 0, 32);
435
436 #ifdef ARMV7_GDB_HACKS
437         /* FIXME this breaks on scan chains with more than one Cortex-M3.
438          * Instead, each CM3 should have its own dummy value...
439          */
440         /* copy real xpsr reg for gdb, setting thumb bit */
441         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
442         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
443         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
444         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
445 #endif
446
447         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
448         if (xPSR & 0xf00) {
449                 r->dirty = r->valid;
450                 cortex_m3_store_core_reg_u32(target, 16, xPSR & ~0xff);
451         }
452
453         /* Are we in an exception handler */
454         if (xPSR & 0x1FF) {
455                 armv7m->exception_number = (xPSR & 0x1FF);
456
457                 arm->core_mode = ARM_MODE_HANDLER;
458                 arm->map = armv7m_msp_reg_map;
459         } else {
460                 unsigned control = buf_get_u32(arm->core_cache
461                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
462
463                 /* is this thread privileged? */
464                 arm->core_mode = control & 1
465                         ? ARM_MODE_USER_THREAD
466                         : ARM_MODE_THREAD;
467
468                 /* which stack is it using? */
469                 if (control & 2)
470                         arm->map = armv7m_psp_reg_map;
471                 else
472                         arm->map = armv7m_msp_reg_map;
473
474                 armv7m->exception_number = 0;
475         }
476
477         if (armv7m->exception_number)
478                 cortex_m3_examine_exception_reason(target);
479
480         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
481                 arm_mode_name(arm->core_mode),
482                 *(uint32_t *)(arm->pc->value),
483                 target_state_name(target));
484
485         if (armv7m->post_debug_entry) {
486                 retval = armv7m->post_debug_entry(target);
487                 if (retval != ERROR_OK)
488                         return retval;
489         }
490
491         return ERROR_OK;
492 }
493
494 static int cortex_m3_poll(struct target *target)
495 {
496         int detected_failure = ERROR_OK;
497         int retval = ERROR_OK;
498         enum target_state prev_target_state = target->state;
499         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
500         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
501
502         /* Read from Debug Halting Control and Status Register */
503         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
504         if (retval != ERROR_OK) {
505                 target->state = TARGET_UNKNOWN;
506                 return retval;
507         }
508
509         /* Recover from lockup.  See ARMv7-M architecture spec,
510          * section B1.5.15 "Unrecoverable exception cases".
511          */
512         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
513                 LOG_ERROR("%s -- clearing lockup after double fault",
514                         target_name(target));
515                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
516                 target->debug_reason = DBG_REASON_DBGRQ;
517
518                 /* We have to execute the rest (the "finally" equivalent, but
519                  * still throw this exception again).
520                  */
521                 detected_failure = ERROR_FAIL;
522
523                 /* refresh status bits */
524                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
525                 if (retval != ERROR_OK)
526                         return retval;
527         }
528
529         if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
530                 /* check if still in reset */
531                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
532                 if (retval != ERROR_OK)
533                         return retval;
534
535                 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
536                         target->state = TARGET_RESET;
537                         return ERROR_OK;
538                 }
539         }
540
541         if (target->state == TARGET_RESET) {
542                 /* Cannot switch context while running so endreset is
543                  * called with target->state == TARGET_RESET
544                  */
545                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
546                         cortex_m3->dcb_dhcsr);
547                 cortex_m3_endreset_event(target);
548                 target->state = TARGET_RUNNING;
549                 prev_target_state = TARGET_RUNNING;
550         }
551
552         if (cortex_m3->dcb_dhcsr & S_HALT) {
553                 target->state = TARGET_HALTED;
554
555                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
556                         retval = cortex_m3_debug_entry(target);
557                         if (retval != ERROR_OK)
558                                 return retval;
559
560                         if (arm_semihosting(target, &retval) != 0)
561                                 return retval;
562
563                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
564                 }
565                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
566                         LOG_DEBUG(" ");
567                         retval = cortex_m3_debug_entry(target);
568                         if (retval != ERROR_OK)
569                                 return retval;
570
571                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
572                 }
573         }
574
575         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
576          * How best to model low power modes?
577          */
578
579         if (target->state == TARGET_UNKNOWN) {
580                 /* check if processor is retiring instructions */
581                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
582                         target->state = TARGET_RUNNING;
583                         retval = ERROR_OK;
584                 }
585         }
586
587         /* Did we detect a failure condition that we cleared? */
588         if (detected_failure != ERROR_OK)
589                 retval = detected_failure;
590         return retval;
591 }
592
593 static int cortex_m3_halt(struct target *target)
594 {
595         LOG_DEBUG("target->state: %s",
596                 target_state_name(target));
597
598         if (target->state == TARGET_HALTED) {
599                 LOG_DEBUG("target was already halted");
600                 return ERROR_OK;
601         }
602
603         if (target->state == TARGET_UNKNOWN)
604                 LOG_WARNING("target was in unknown state when halt was requested");
605
606         if (target->state == TARGET_RESET) {
607                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
608                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
609                         return ERROR_TARGET_FAILURE;
610                 } else {
611                         /* we came here in a reset_halt or reset_init sequence
612                          * debug entry was already prepared in cortex_m3_assert_reset()
613                          */
614                         target->debug_reason = DBG_REASON_DBGRQ;
615
616                         return ERROR_OK;
617                 }
618         }
619
620         /* Write to Debug Halting Control and Status Register */
621         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
622
623         target->debug_reason = DBG_REASON_DBGRQ;
624
625         return ERROR_OK;
626 }
627
628 static int cortex_m3_soft_reset_halt(struct target *target)
629 {
630         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
631         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
632         uint32_t dcb_dhcsr = 0;
633         int retval, timeout = 0;
634
635         /* soft_reset_halt is deprecated on cortex_m as the same functionality
636          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
637          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
638          * core, not the peripherals */
639         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
640
641         /* Enter debug state on reset; restore DEMCR in endreset_event() */
642         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
643                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
644         if (retval != ERROR_OK)
645                 return retval;
646
647         /* Request a core-only reset */
648         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
649                         AIRCR_VECTKEY | AIRCR_VECTRESET);
650         if (retval != ERROR_OK)
651                 return retval;
652         target->state = TARGET_RESET;
653
654         /* registers are now invalid */
655         register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
656
657         while (timeout < 100) {
658                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
659                 if (retval == ERROR_OK) {
660                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
661                                         &cortex_m3->nvic_dfsr);
662                         if (retval != ERROR_OK)
663                                 return retval;
664                         if ((dcb_dhcsr & S_HALT)
665                                 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
666                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
667                                         "DFSR 0x%08x",
668                                         (unsigned) dcb_dhcsr,
669                                         (unsigned) cortex_m3->nvic_dfsr);
670                                 cortex_m3_poll(target);
671                                 /* FIXME restore user's vector catch config */
672                                 return ERROR_OK;
673                         } else
674                                 LOG_DEBUG("waiting for system reset-halt, "
675                                         "DHCSR 0x%08x, %d ms",
676                                         (unsigned) dcb_dhcsr, timeout);
677                 }
678                 timeout++;
679                 alive_sleep(1);
680         }
681
682         return ERROR_OK;
683 }
684
685 void cortex_m3_enable_breakpoints(struct target *target)
686 {
687         struct breakpoint *breakpoint = target->breakpoints;
688
689         /* set any pending breakpoints */
690         while (breakpoint) {
691                 if (!breakpoint->set)
692                         cortex_m3_set_breakpoint(target, breakpoint);
693                 breakpoint = breakpoint->next;
694         }
695 }
696
697 static int cortex_m3_resume(struct target *target, int current,
698         uint32_t address, int handle_breakpoints, int debug_execution)
699 {
700         struct armv7m_common *armv7m = target_to_armv7m(target);
701         struct breakpoint *breakpoint = NULL;
702         uint32_t resume_pc;
703         struct reg *r;
704
705         if (target->state != TARGET_HALTED) {
706                 LOG_WARNING("target not halted");
707                 return ERROR_TARGET_NOT_HALTED;
708         }
709
710         if (!debug_execution) {
711                 target_free_all_working_areas(target);
712                 cortex_m3_enable_breakpoints(target);
713                 cortex_m3_enable_watchpoints(target);
714         }
715
716         if (debug_execution) {
717                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
718
719                 /* Disable interrupts */
720                 /* We disable interrupts in the PRIMASK register instead of
721                  * masking with C_MASKINTS.  This is probably the same issue
722                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
723                  * in parallel with disabled interrupts can cause local faults
724                  * to not be taken.
725                  *
726                  * REVISIT this clearly breaks non-debug execution, since the
727                  * PRIMASK register state isn't saved/restored...  workaround
728                  * by never resuming app code after debug execution.
729                  */
730                 buf_set_u32(r->value, 0, 1, 1);
731                 r->dirty = true;
732                 r->valid = true;
733
734                 /* Make sure we are in Thumb mode */
735                 r = armv7m->arm.cpsr;
736                 buf_set_u32(r->value, 24, 1, 1);
737                 r->dirty = true;
738                 r->valid = true;
739         }
740
741         /* current = 1: continue on current pc, otherwise continue at <address> */
742         r = armv7m->arm.pc;
743         if (!current) {
744                 buf_set_u32(r->value, 0, 32, address);
745                 r->dirty = true;
746                 r->valid = true;
747         }
748
749         /* if we halted last time due to a bkpt instruction
750          * then we have to manually step over it, otherwise
751          * the core will break again */
752
753         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
754                 && !debug_execution)
755                 armv7m_maybe_skip_bkpt_inst(target, NULL);
756
757         resume_pc = buf_get_u32(r->value, 0, 32);
758
759         armv7m_restore_context(target);
760
761         /* the front-end may request us not to handle breakpoints */
762         if (handle_breakpoints) {
763                 /* Single step past breakpoint at current address */
764                 breakpoint = breakpoint_find(target, resume_pc);
765                 if (breakpoint) {
766                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
767                                 breakpoint->address,
768                                 breakpoint->unique_id);
769                         cortex_m3_unset_breakpoint(target, breakpoint);
770                         cortex_m3_single_step_core(target);
771                         cortex_m3_set_breakpoint(target, breakpoint);
772                 }
773         }
774
775         /* Restart core */
776         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
777
778         target->debug_reason = DBG_REASON_NOTHALTED;
779
780         /* registers are now invalid */
781         register_cache_invalidate(armv7m->arm.core_cache);
782
783         if (!debug_execution) {
784                 target->state = TARGET_RUNNING;
785                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
786                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
787         } else {
788                 target->state = TARGET_DEBUG_RUNNING;
789                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
790                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
791         }
792
793         return ERROR_OK;
794 }
795
796 /* int irqstepcount = 0; */
797 static int cortex_m3_step(struct target *target, int current,
798         uint32_t address, int handle_breakpoints)
799 {
800         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
801         struct armv7m_common *armv7m = &cortex_m3->armv7m;
802         struct adiv5_dap *swjdp = armv7m->arm.dap;
803         struct breakpoint *breakpoint = NULL;
804         struct reg *pc = armv7m->arm.pc;
805         bool bkpt_inst_found = false;
806         int retval;
807         bool isr_timed_out = false;
808
809         if (target->state != TARGET_HALTED) {
810                 LOG_WARNING("target not halted");
811                 return ERROR_TARGET_NOT_HALTED;
812         }
813
814         /* current = 1: continue on current pc, otherwise continue at <address> */
815         if (!current)
816                 buf_set_u32(pc->value, 0, 32, address);
817
818         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
819
820         /* the front-end may request us not to handle breakpoints */
821         if (handle_breakpoints) {
822                 breakpoint = breakpoint_find(target, pc_value);
823                 if (breakpoint)
824                         cortex_m3_unset_breakpoint(target, breakpoint);
825         }
826
827         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
828
829         target->debug_reason = DBG_REASON_SINGLESTEP;
830
831         armv7m_restore_context(target);
832
833         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
834
835         /* if no bkpt instruction is found at pc then we can perform
836          * a normal step, otherwise we have to manually step over the bkpt
837          * instruction - as such simulate a step */
838         if (bkpt_inst_found == false) {
839                 /* Automatic ISR masking mode off: Just step over the next instruction */
840                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
841                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
842                 else {
843                         /* Process interrupts during stepping in a way they don't interfere
844                          * debugging.
845                          *
846                          * Principle:
847                          *
848                          * Set a temporary break point at the current pc and let the core run
849                          * with interrupts enabled. Pending interrupts get served and we run
850                          * into the breakpoint again afterwards. Then we step over the next
851                          * instruction with interrupts disabled.
852                          *
853                          * If the pending interrupts don't complete within time, we leave the
854                          * core running. This may happen if the interrupts trigger faster
855                          * than the core can process them or the handler doesn't return.
856                          *
857                          * If no more breakpoints are available we simply do a step with
858                          * interrupts enabled.
859                          *
860                          */
861
862                         /* 2012-09-29 ph
863                          *
864                          * If a break point is already set on the lower half word then a break point on
865                          * the upper half word will not break again when the core is restarted. So we
866                          * just step over the instruction with interrupts disabled.
867                          *
868                          * The documentation has no information about this, it was found by observation
869                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
870                          * suffer from this problem.
871                          *
872                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
873                          * address has it always cleared. The former is done to indicate thumb mode
874                          * to gdb.
875                          *
876                          */
877                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
878                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
879                                 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
880                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
881                                 /* Re-enable interrupts */
882                                 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
883                         }
884                         else {
885
886                                 /* Set a temporary break point */
887                                 if (breakpoint)
888                                         retval = cortex_m3_set_breakpoint(target, breakpoint);
889                                 else
890                                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
891                                 bool tmp_bp_set = (retval == ERROR_OK);
892
893                                 /* No more breakpoints left, just do a step */
894                                 if (!tmp_bp_set)
895                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
896                                 else {
897                                         /* Start the core */
898                                         LOG_DEBUG("Starting core to serve pending interrupts");
899                                         int64_t t_start = timeval_ms();
900                                         cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
901
902                                         /* Wait for pending handlers to complete or timeout */
903                                         do {
904                                                 retval = mem_ap_read_atomic_u32(swjdp,
905                                                                 DCB_DHCSR,
906                                                                 &cortex_m3->dcb_dhcsr);
907                                                 if (retval != ERROR_OK) {
908                                                         target->state = TARGET_UNKNOWN;
909                                                         return retval;
910                                                 }
911                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
912                                         } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
913
914                                         /* only remove breakpoint if we created it */
915                                         if (breakpoint)
916                                                 cortex_m3_unset_breakpoint(target, breakpoint);
917                                         else {
918                                                 /* Remove the temporary breakpoint */
919                                                 breakpoint_remove(target, pc_value);
920                                         }
921
922                                         if (isr_timed_out) {
923                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
924                                                         "leaving target running");
925                                         } else {
926                                                 /* Step over next instruction with interrupts disabled */
927                                                 cortex_m3_write_debug_halt_mask(target,
928                                                         C_HALT | C_MASKINTS,
929                                                         0);
930                                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
931                                                 /* Re-enable interrupts */
932                                                 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
933                                         }
934                                 }
935                         }
936                 }
937         }
938
939         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
940         if (retval != ERROR_OK)
941                 return retval;
942
943         /* registers are now invalid */
944         register_cache_invalidate(armv7m->arm.core_cache);
945
946         if (breakpoint)
947                 cortex_m3_set_breakpoint(target, breakpoint);
948
949         if (isr_timed_out) {
950                 /* Leave the core running. The user has to stop execution manually. */
951                 target->debug_reason = DBG_REASON_NOTHALTED;
952                 target->state = TARGET_RUNNING;
953                 return ERROR_OK;
954         }
955
956         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
957                 " nvic_icsr = 0x%" PRIx32,
958                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
959
960         retval = cortex_m3_debug_entry(target);
961         if (retval != ERROR_OK)
962                 return retval;
963         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
964
965         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
966                 " nvic_icsr = 0x%" PRIx32,
967                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
968
969         return ERROR_OK;
970 }
971
972 static int cortex_m3_assert_reset(struct target *target)
973 {
974         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
975         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
976         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
977
978         LOG_DEBUG("target->state: %s",
979                 target_state_name(target));
980
981         enum reset_types jtag_reset_config = jtag_get_reset_config();
982
983         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
984                 /* allow scripts to override the reset event */
985
986                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
987                 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
988                 target->state = TARGET_RESET;
989
990                 return ERROR_OK;
991         }
992
993         /* some cores support connecting while srst is asserted
994          * use that mode is it has been configured */
995
996         bool srst_asserted = false;
997
998         if ((jtag_reset_config & RESET_HAS_SRST) &&
999             (jtag_reset_config & RESET_SRST_NO_GATING)) {
1000                 adapter_assert_reset();
1001                 srst_asserted = true;
1002         }
1003
1004         /* Enable debug requests */
1005         int retval;
1006         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
1007         if (retval != ERROR_OK)
1008                 return retval;
1009         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
1010                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1011                 if (retval != ERROR_OK)
1012                         return retval;
1013         }
1014
1015         /* If the processor is sleeping in a WFI or WFE instruction, the
1016          * C_HALT bit must be asserted to regain control */
1017         if (cortex_m3->dcb_dhcsr & S_SLEEP) {
1018                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1019                 if (retval != ERROR_OK)
1020                         return retval;
1021         }
1022
1023         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1024         if (retval != ERROR_OK)
1025                 return retval;
1026
1027         if (!target->reset_halt) {
1028                 /* Set/Clear C_MASKINTS in a separate operation */
1029                 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
1030                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1031                                         DBGKEY | C_DEBUGEN | C_HALT);
1032                         if (retval != ERROR_OK)
1033                                 return retval;
1034                 }
1035
1036                 /* clear any debug flags before resuming */
1037                 cortex_m3_clear_halt(target);
1038
1039                 /* clear C_HALT in dhcsr reg */
1040                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1041         } else {
1042                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1043                  *
1044                  * REVISIT catching BUSERR presumably helps to defend against
1045                  * bad vector table entries.  Should this include MMERR or
1046                  * other flags too?
1047                  */
1048                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1049                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1050                 if (retval != ERROR_OK)
1051                         return retval;
1052         }
1053
1054         if (jtag_reset_config & RESET_HAS_SRST) {
1055                 /* default to asserting srst */
1056                 if (!srst_asserted)
1057                         adapter_assert_reset();
1058         } else {
1059                 /* Use a standard Cortex-M3 software reset mechanism.
1060                  * We default to using VECRESET as it is supported on all current cores.
1061                  * This has the disadvantage of not resetting the peripherals, so a
1062                  * reset-init event handler is needed to perform any peripheral resets.
1063                  */
1064                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1065                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1066                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1067                 if (retval != ERROR_OK)
1068                         return retval;
1069
1070                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1071                         ? "SYSRESETREQ" : "VECTRESET");
1072
1073                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1074                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1075                                 "handler to reset any peripherals or configure hardware srst support.");
1076                 }
1077
1078                 {
1079                         /* I do not know why this is necessary, but it
1080                          * fixes strange effects (step/resume cause NMI
1081                          * after reset) on LM3S6918 -- Michael Schwingen
1082                          */
1083                         uint32_t tmp;
1084                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1085                         if (retval != ERROR_OK)
1086                                 return retval;
1087                 }
1088         }
1089
1090         target->state = TARGET_RESET;
1091         jtag_add_sleep(50000);
1092
1093         register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
1094
1095         if (target->reset_halt) {
1096                 retval = target_halt(target);
1097                 if (retval != ERROR_OK)
1098                         return retval;
1099         }
1100
1101         return ERROR_OK;
1102 }
1103
1104 static int cortex_m3_deassert_reset(struct target *target)
1105 {
1106         LOG_DEBUG("target->state: %s",
1107                 target_state_name(target));
1108
1109         /* deassert reset lines */
1110         adapter_deassert_reset();
1111
1112         return ERROR_OK;
1113 }
1114
1115 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1116 {
1117         int retval;
1118         int fp_num = 0;
1119         uint32_t hilo;
1120         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1121         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1122
1123         if (breakpoint->set) {
1124                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1125                 return ERROR_OK;
1126         }
1127
1128         if (cortex_m3->auto_bp_type)
1129                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1130
1131         if (breakpoint->type == BKPT_HARD) {
1132                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1133                         fp_num++;
1134                 if (fp_num >= cortex_m3->fp_num_code) {
1135                         LOG_ERROR("Can not find free FPB Comparator!");
1136                         return ERROR_FAIL;
1137                 }
1138                 breakpoint->set = fp_num + 1;
1139                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1140                 comparator_list[fp_num].used = 1;
1141                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1142                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1143                         comparator_list[fp_num].fpcr_value);
1144                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1145                         fp_num,
1146                         comparator_list[fp_num].fpcr_value);
1147                 if (!cortex_m3->fpb_enabled) {
1148                         LOG_DEBUG("FPB wasn't enabled, do it now");
1149                         target_write_u32(target, FP_CTRL, 3);
1150                 }
1151         } else if (breakpoint->type == BKPT_SOFT) {
1152                 uint8_t code[4];
1153
1154                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1155                  * semihosting; don't use that.  Otherwise the BKPT
1156                  * parameter is arbitrary.
1157                  */
1158                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1159                 retval = target_read_memory(target,
1160                                 breakpoint->address & 0xFFFFFFFE,
1161                                 breakpoint->length, 1,
1162                                 breakpoint->orig_instr);
1163                 if (retval != ERROR_OK)
1164                         return retval;
1165                 retval = target_write_memory(target,
1166                                 breakpoint->address & 0xFFFFFFFE,
1167                                 breakpoint->length, 1,
1168                                 code);
1169                 if (retval != ERROR_OK)
1170                         return retval;
1171                 breakpoint->set = true;
1172         }
1173
1174         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1175                 breakpoint->unique_id,
1176                 (int)(breakpoint->type),
1177                 breakpoint->address,
1178                 breakpoint->length,
1179                 breakpoint->set);
1180
1181         return ERROR_OK;
1182 }
1183
1184 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1185 {
1186         int retval;
1187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1188         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1189
1190         if (!breakpoint->set) {
1191                 LOG_WARNING("breakpoint not set");
1192                 return ERROR_OK;
1193         }
1194
1195         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1196                 breakpoint->unique_id,
1197                 (int)(breakpoint->type),
1198                 breakpoint->address,
1199                 breakpoint->length,
1200                 breakpoint->set);
1201
1202         if (breakpoint->type == BKPT_HARD) {
1203                 int fp_num = breakpoint->set - 1;
1204                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1205                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1206                         return ERROR_OK;
1207                 }
1208                 comparator_list[fp_num].used = 0;
1209                 comparator_list[fp_num].fpcr_value = 0;
1210                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1211                         comparator_list[fp_num].fpcr_value);
1212         } else {
1213                 /* restore original instruction (kept in target endianness) */
1214                 if (breakpoint->length == 4) {
1215                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1216                                         breakpoint->orig_instr);
1217                         if (retval != ERROR_OK)
1218                                 return retval;
1219                 } else {
1220                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1221                                         breakpoint->orig_instr);
1222                         if (retval != ERROR_OK)
1223                                 return retval;
1224                 }
1225         }
1226         breakpoint->set = false;
1227
1228         return ERROR_OK;
1229 }
1230
1231 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1232 {
1233         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1234
1235         if (cortex_m3->auto_bp_type) {
1236                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1237 #ifdef ARMV7_GDB_HACKS
1238                 if (breakpoint->length != 2) {
1239                         /* XXX Hack: Replace all breakpoints with length != 2 with
1240                          * a hardware breakpoint. */
1241                         breakpoint->type = BKPT_HARD;
1242                         breakpoint->length = 2;
1243                 }
1244 #endif
1245         }
1246
1247         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1248                 if (breakpoint->type == BKPT_HARD) {
1249                         LOG_INFO("flash patch comparator requested outside code memory region");
1250                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1251                 }
1252
1253                 if (breakpoint->type == BKPT_SOFT) {
1254                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1255                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1256                 }
1257         }
1258
1259         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1260                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1261                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1262         }
1263
1264         if ((breakpoint->length != 2)) {
1265                 LOG_INFO("only breakpoints of two bytes length supported");
1266                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267         }
1268
1269         if (breakpoint->type == BKPT_HARD)
1270                 cortex_m3->fp_code_available--;
1271
1272         return cortex_m3_set_breakpoint(target, breakpoint);
1273 }
1274
1275 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1276 {
1277         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1278
1279         /* REVISIT why check? FBP can be updated with core running ... */
1280         if (target->state != TARGET_HALTED) {
1281                 LOG_WARNING("target not halted");
1282                 return ERROR_TARGET_NOT_HALTED;
1283         }
1284
1285         if (cortex_m3->auto_bp_type)
1286                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1287
1288         if (breakpoint->set)
1289                 cortex_m3_unset_breakpoint(target, breakpoint);
1290
1291         if (breakpoint->type == BKPT_HARD)
1292                 cortex_m3->fp_code_available++;
1293
1294         return ERROR_OK;
1295 }
1296
1297 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1298 {
1299         int dwt_num = 0;
1300         uint32_t mask, temp;
1301         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1302
1303         /* watchpoint params were validated earlier */
1304         mask = 0;
1305         temp = watchpoint->length;
1306         while (temp) {
1307                 temp >>= 1;
1308                 mask++;
1309         }
1310         mask--;
1311
1312         /* REVISIT Don't fully trust these "not used" records ... users
1313          * may set up breakpoints by hand, e.g. dual-address data value
1314          * watchpoint using comparator #1; comparator #0 matching cycle
1315          * count; send data trace info through ITM and TPIU; etc
1316          */
1317         struct cortex_m3_dwt_comparator *comparator;
1318
1319         for (comparator = cortex_m3->dwt_comparator_list;
1320                 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1321                 comparator++, dwt_num++)
1322                 continue;
1323         if (dwt_num >= cortex_m3->dwt_num_comp) {
1324                 LOG_ERROR("Can not find free DWT Comparator");
1325                 return ERROR_FAIL;
1326         }
1327         comparator->used = 1;
1328         watchpoint->set = dwt_num + 1;
1329
1330         comparator->comp = watchpoint->address;
1331         target_write_u32(target, comparator->dwt_comparator_address + 0,
1332                 comparator->comp);
1333
1334         comparator->mask = mask;
1335         target_write_u32(target, comparator->dwt_comparator_address + 4,
1336                 comparator->mask);
1337
1338         switch (watchpoint->rw) {
1339                 case WPT_READ:
1340                         comparator->function = 5;
1341                         break;
1342                 case WPT_WRITE:
1343                         comparator->function = 6;
1344                         break;
1345                 case WPT_ACCESS:
1346                         comparator->function = 7;
1347                         break;
1348         }
1349         target_write_u32(target, comparator->dwt_comparator_address + 8,
1350                 comparator->function);
1351
1352         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1353                 watchpoint->unique_id, dwt_num,
1354                 (unsigned) comparator->comp,
1355                 (unsigned) comparator->mask,
1356                 (unsigned) comparator->function);
1357         return ERROR_OK;
1358 }
1359
1360 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1361 {
1362         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1363         struct cortex_m3_dwt_comparator *comparator;
1364         int dwt_num;
1365
1366         if (!watchpoint->set) {
1367                 LOG_WARNING("watchpoint (wpid: %d) not set",
1368                         watchpoint->unique_id);
1369                 return ERROR_OK;
1370         }
1371
1372         dwt_num = watchpoint->set - 1;
1373
1374         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1375                 watchpoint->unique_id, dwt_num,
1376                 (unsigned) watchpoint->address);
1377
1378         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1379                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1380                 return ERROR_OK;
1381         }
1382
1383         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1384         comparator->used = 0;
1385         comparator->function = 0;
1386         target_write_u32(target, comparator->dwt_comparator_address + 8,
1387                 comparator->function);
1388
1389         watchpoint->set = false;
1390
1391         return ERROR_OK;
1392 }
1393
1394 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1395 {
1396         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1397
1398         if (cortex_m3->dwt_comp_available < 1) {
1399                 LOG_DEBUG("no comparators?");
1400                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1401         }
1402
1403         /* hardware doesn't support data value masking */
1404         if (watchpoint->mask != ~(uint32_t)0) {
1405                 LOG_DEBUG("watchpoint value masks not supported");
1406                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1407         }
1408
1409         /* hardware allows address masks of up to 32K */
1410         unsigned mask;
1411
1412         for (mask = 0; mask < 16; mask++) {
1413                 if ((1u << mask) == watchpoint->length)
1414                         break;
1415         }
1416         if (mask == 16) {
1417                 LOG_DEBUG("unsupported watchpoint length");
1418                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1419         }
1420         if (watchpoint->address & ((1 << mask) - 1)) {
1421                 LOG_DEBUG("watchpoint address is unaligned");
1422                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1423         }
1424
1425         /* Caller doesn't seem to be able to describe watching for data
1426          * values of zero; that flags "no value".
1427          *
1428          * REVISIT This DWT may well be able to watch for specific data
1429          * values.  Requires comparator #1 to set DATAVMATCH and match
1430          * the data, and another comparator (DATAVADDR0) matching addr.
1431          */
1432         if (watchpoint->value) {
1433                 LOG_DEBUG("data value watchpoint not YET supported");
1434                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1435         }
1436
1437         cortex_m3->dwt_comp_available--;
1438         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1439
1440         return ERROR_OK;
1441 }
1442
1443 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1444 {
1445         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1446
1447         /* REVISIT why check? DWT can be updated with core running ... */
1448         if (target->state != TARGET_HALTED) {
1449                 LOG_WARNING("target not halted");
1450                 return ERROR_TARGET_NOT_HALTED;
1451         }
1452
1453         if (watchpoint->set)
1454                 cortex_m3_unset_watchpoint(target, watchpoint);
1455
1456         cortex_m3->dwt_comp_available++;
1457         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1458
1459         return ERROR_OK;
1460 }
1461
1462 void cortex_m3_enable_watchpoints(struct target *target)
1463 {
1464         struct watchpoint *watchpoint = target->watchpoints;
1465
1466         /* set any pending watchpoints */
1467         while (watchpoint) {
1468                 if (!watchpoint->set)
1469                         cortex_m3_set_watchpoint(target, watchpoint);
1470                 watchpoint = watchpoint->next;
1471         }
1472 }
1473
1474 static int cortex_m3_load_core_reg_u32(struct target *target,
1475                 uint32_t num, uint32_t *value)
1476 {
1477         int retval;
1478         struct armv7m_common *armv7m = target_to_armv7m(target);
1479         struct adiv5_dap *swjdp = armv7m->arm.dap;
1480
1481         /* NOTE:  we "know" here that the register identifiers used
1482          * in the v7m header match the Cortex-M3 Debug Core Register
1483          * Selector values for R0..R15, xPSR, MSP, and PSP.
1484          */
1485         switch (num) {
1486                 case 0 ... 18:
1487                         /* read a normal core register */
1488                         retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1489
1490                         if (retval != ERROR_OK) {
1491                                 LOG_ERROR("JTAG failure %i", retval);
1492                                 return ERROR_JTAG_DEVICE_ERROR;
1493                         }
1494                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1495                         break;
1496
1497                 case ARMV7M_PRIMASK:
1498                 case ARMV7M_BASEPRI:
1499                 case ARMV7M_FAULTMASK:
1500                 case ARMV7M_CONTROL:
1501                         /* Cortex-M3 packages these four registers as bitfields
1502                          * in one Debug Core register.  So say r0 and r2 docs;
1503                          * it was removed from r1 docs, but still works.
1504                          */
1505                         cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1506
1507                         switch (num) {
1508                                 case ARMV7M_PRIMASK:
1509                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1510                                         break;
1511
1512                                 case ARMV7M_BASEPRI:
1513                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1514                                         break;
1515
1516                                 case ARMV7M_FAULTMASK:
1517                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1518                                         break;
1519
1520                                 case ARMV7M_CONTROL:
1521                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1522                                         break;
1523                         }
1524
1525                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1526                         break;
1527
1528                 default:
1529                         return ERROR_COMMAND_SYNTAX_ERROR;
1530         }
1531
1532         return ERROR_OK;
1533 }
1534
1535 static int cortex_m3_store_core_reg_u32(struct target *target,
1536                 uint32_t num, uint32_t value)
1537 {
1538         int retval;
1539         uint32_t reg;
1540         struct armv7m_common *armv7m = target_to_armv7m(target);
1541         struct adiv5_dap *swjdp = armv7m->arm.dap;
1542
1543 #ifdef ARMV7_GDB_HACKS
1544         /* If the LR register is being modified, make sure it will put us
1545          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1546          * hack to deal with the fact that gdb will sometimes "forge"
1547          * return addresses, and doesn't set the LSB correctly (i.e., when
1548          * printing expressions containing function calls, it sets LR = 0.)
1549          * Valid exception return codes have bit 0 set too.
1550          */
1551         if (num == ARMV7M_R14)
1552                 value |= 0x01;
1553 #endif
1554
1555         /* NOTE:  we "know" here that the register identifiers used
1556          * in the v7m header match the Cortex-M3 Debug Core Register
1557          * Selector values for R0..R15, xPSR, MSP, and PSP.
1558          */
1559         switch (num) {
1560                 case 0 ... 18:
1561                         retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1562                         if (retval != ERROR_OK) {
1563                                 struct reg *r;
1564
1565                                 LOG_ERROR("JTAG failure");
1566                                 r = armv7m->arm.core_cache->reg_list + num;
1567                                 r->dirty = r->valid;
1568                                 return ERROR_JTAG_DEVICE_ERROR;
1569                         }
1570                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1571                         break;
1572
1573                 case ARMV7M_PRIMASK:
1574                 case ARMV7M_BASEPRI:
1575                 case ARMV7M_FAULTMASK:
1576                 case ARMV7M_CONTROL:
1577                         /* Cortex-M3 packages these four registers as bitfields
1578                          * in one Debug Core register.  So say r0 and r2 docs;
1579                          * it was removed from r1 docs, but still works.
1580                          */
1581                         cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1582
1583                         switch (num) {
1584                                 case ARMV7M_PRIMASK:
1585                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1586                                         break;
1587
1588                                 case ARMV7M_BASEPRI:
1589                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1590                                         break;
1591
1592                                 case ARMV7M_FAULTMASK:
1593                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1594                                         break;
1595
1596                                 case ARMV7M_CONTROL:
1597                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1598                                         break;
1599                         }
1600
1601                         cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1602
1603                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1604                         break;
1605
1606                 default:
1607                         return ERROR_COMMAND_SYNTAX_ERROR;
1608         }
1609
1610         return ERROR_OK;
1611 }
1612
1613 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1614         uint32_t size, uint32_t count, uint8_t *buffer)
1615 {
1616         struct armv7m_common *armv7m = target_to_armv7m(target);
1617         struct adiv5_dap *swjdp = armv7m->arm.dap;
1618         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1619
1620         if (armv7m->arm.is_armv6m) {
1621                 /* armv6m does not handle unaligned memory access */
1622                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1623                         return ERROR_TARGET_UNALIGNED_ACCESS;
1624         }
1625
1626         /* cortex_m3 handles unaligned memory access */
1627         if (count && buffer) {
1628                 switch (size) {
1629                         case 4:
1630                                 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address, true);
1631                                 break;
1632                         case 2:
1633                                 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1634                                 break;
1635                         case 1:
1636                                 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1637                                 break;
1638                 }
1639         }
1640
1641         return retval;
1642 }
1643
1644 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1645         uint32_t size, uint32_t count, const uint8_t *buffer)
1646 {
1647         struct armv7m_common *armv7m = target_to_armv7m(target);
1648         struct adiv5_dap *swjdp = armv7m->arm.dap;
1649         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1650
1651         if (armv7m->arm.is_armv6m) {
1652                 /* armv6m does not handle unaligned memory access */
1653                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1654                         return ERROR_TARGET_UNALIGNED_ACCESS;
1655         }
1656
1657         if (count && buffer) {
1658                 switch (size) {
1659                         case 4:
1660                                 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address, true);
1661                                 break;
1662                         case 2:
1663                                 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1664                                 break;
1665                         case 1:
1666                                 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1667                                 break;
1668                 }
1669         }
1670
1671         return retval;
1672 }
1673
1674 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1675         struct target *target)
1676 {
1677         armv7m_build_reg_cache(target);
1678         return ERROR_OK;
1679 }
1680
1681 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1682  * on r/w if the core is not running, and clear on resume or reset ... or
1683  * at least, in a post_restore_context() method.
1684  */
1685
1686 struct dwt_reg_state {
1687         struct target *target;
1688         uint32_t addr;
1689         uint32_t value;         /* scratch/cache */
1690 };
1691
1692 static int cortex_m3_dwt_get_reg(struct reg *reg)
1693 {
1694         struct dwt_reg_state *state = reg->arch_info;
1695
1696         return target_read_u32(state->target, state->addr, &state->value);
1697 }
1698
1699 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1700 {
1701         struct dwt_reg_state *state = reg->arch_info;
1702
1703         return target_write_u32(state->target, state->addr,
1704                         buf_get_u32(buf, 0, reg->size));
1705 }
1706
1707 struct dwt_reg {
1708         uint32_t addr;
1709         char *name;
1710         unsigned size;
1711 };
1712
1713 static struct dwt_reg dwt_base_regs[] = {
1714         { DWT_CTRL, "dwt_ctrl", 32, },
1715         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1716          * increments while the core is asleep.
1717          */
1718         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1719         /* plus some 8 bit counters, useful for profiling with TPIU */
1720 };
1721
1722 static struct dwt_reg dwt_comp[] = {
1723 #define DWT_COMPARATOR(i) \
1724                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1725                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1726                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1727         DWT_COMPARATOR(0),
1728         DWT_COMPARATOR(1),
1729         DWT_COMPARATOR(2),
1730         DWT_COMPARATOR(3),
1731 #undef DWT_COMPARATOR
1732 };
1733
1734 static const struct reg_arch_type dwt_reg_type = {
1735         .get = cortex_m3_dwt_get_reg,
1736         .set = cortex_m3_dwt_set_reg,
1737 };
1738
1739 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1740 {
1741         struct dwt_reg_state *state;
1742
1743         state = calloc(1, sizeof *state);
1744         if (!state)
1745                 return;
1746         state->addr = d->addr;
1747         state->target = t;
1748
1749         r->name = d->name;
1750         r->size = d->size;
1751         r->value = &state->value;
1752         r->arch_info = state;
1753         r->type = &dwt_reg_type;
1754 }
1755
1756 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1757 {
1758         uint32_t dwtcr;
1759         struct reg_cache *cache;
1760         struct cortex_m3_dwt_comparator *comparator;
1761         int reg, i;
1762
1763         target_read_u32(target, DWT_CTRL, &dwtcr);
1764         if (!dwtcr) {
1765                 LOG_DEBUG("no DWT");
1766                 return;
1767         }
1768
1769         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1770         cm3->dwt_comp_available = cm3->dwt_num_comp;
1771         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1772                         sizeof(struct cortex_m3_dwt_comparator));
1773         if (!cm3->dwt_comparator_list) {
1774 fail0:
1775                 cm3->dwt_num_comp = 0;
1776                 LOG_ERROR("out of mem");
1777                 return;
1778         }
1779
1780         cache = calloc(1, sizeof *cache);
1781         if (!cache) {
1782 fail1:
1783                 free(cm3->dwt_comparator_list);
1784                 goto fail0;
1785         }
1786         cache->name = "cortex-m3 dwt registers";
1787         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1788         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1789         if (!cache->reg_list) {
1790                 free(cache);
1791                 goto fail1;
1792         }
1793
1794         for (reg = 0; reg < 2; reg++)
1795                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1796                         dwt_base_regs + reg);
1797
1798         comparator = cm3->dwt_comparator_list;
1799         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1800                 int j;
1801
1802                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1803                 for (j = 0; j < 3; j++, reg++)
1804                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1805                                 dwt_comp + 3 * i + j);
1806
1807                 /* make sure we clear any watchpoints enabled on the target */
1808                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1809         }
1810
1811         *register_get_last_cache_p(&target->reg_cache) = cache;
1812         cm3->dwt_cache = cache;
1813
1814         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1815                 dwtcr, cm3->dwt_num_comp,
1816                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1817
1818         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1819          * implement single-address data value watchpoints ... so we
1820          * won't need to check it later, when asked to set one up.
1821          */
1822 }
1823
1824 #define MVFR0 0xe000ef40
1825 #define MVFR1 0xe000ef44
1826
1827 #define MVFR0_DEFAULT_M4 0x10110021
1828 #define MVFR1_DEFAULT_M4 0x11000011
1829
1830 int cortex_m3_examine(struct target *target)
1831 {
1832         int retval;
1833         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1834         int i;
1835         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1836         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
1837         struct armv7m_common *armv7m = target_to_armv7m(target);
1838
1839         /* stlink shares the examine handler but does not support
1840          * all its calls */
1841         if (!armv7m->stlink) {
1842                 retval = ahbap_debugport_init(swjdp);
1843                 if (retval != ERROR_OK)
1844                         return retval;
1845         }
1846
1847         if (!target_was_examined(target)) {
1848                 target_set_examined(target);
1849
1850                 /* Read from Device Identification Registers */
1851                 retval = target_read_u32(target, CPUID, &cpuid);
1852                 if (retval != ERROR_OK)
1853                         return retval;
1854
1855                 /* Get CPU Type */
1856                 i = (cpuid >> 4) & 0xf;
1857
1858                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1859                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1860                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1861
1862                 /* test for floating point feature on cortex-m4 */
1863                 if (i == 4) {
1864                         target_read_u32(target, MVFR0, &mvfr0);
1865                         target_read_u32(target, MVFR1, &mvfr1);
1866
1867                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1868                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1869                                 armv7m->fp_feature = FPv4_SP;
1870                         }
1871                 } else if (i == 0) {
1872                         /* Cortex-M0 does not support unaligned memory access */
1873                         armv7m->arm.is_armv6m = true;
1874                 }
1875
1876                 if (i == 4 || i == 3) {
1877                         /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1878                         armv7m->dap.tar_autoincr_block = (1 << 12);
1879                 }
1880
1881                 /* NOTE: FPB and DWT are both optional. */
1882
1883                 /* Setup FPB */
1884                 target_read_u32(target, FP_CTRL, &fpcr);
1885                 cortex_m3->auto_bp_type = 1;
1886                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);    /* bits
1887                                                                                          *[14:12]
1888                                                                                          *and [7:4]
1889                                                                                          **/
1890                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1891                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1892                 cortex_m3->fp_comparator_list = calloc(
1893                                 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1894                                 sizeof(struct cortex_m3_fp_comparator));
1895                 cortex_m3->fpb_enabled = fpcr & 1;
1896                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1897                         cortex_m3->fp_comparator_list[i].type =
1898                                 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1899                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1900
1901                         /* make sure we clear any breakpoints enabled on the target */
1902                         target_write_u32(target, cortex_m3->fp_comparator_list[i].fpcr_address, 0);
1903                 }
1904                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1905                         fpcr,
1906                         cortex_m3->fp_num_code,
1907                         cortex_m3->fp_num_lit);
1908
1909                 /* Setup DWT */
1910                 cortex_m3_dwt_setup(cortex_m3, target);
1911
1912                 /* These hardware breakpoints only work for code in flash! */
1913                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1914                         target_name(target),
1915                         cortex_m3->fp_num_code,
1916                         cortex_m3->dwt_num_comp);
1917         }
1918
1919         return ERROR_OK;
1920 }
1921
1922 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1923 {
1924         uint16_t dcrdr;
1925         int retval;
1926
1927         mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1928         *ctrl = (uint8_t)dcrdr;
1929         *value = (uint8_t)(dcrdr >> 8);
1930
1931         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1932
1933         /* write ack back to software dcc register
1934          * signify we have read data */
1935         if (dcrdr & (1 << 0)) {
1936                 dcrdr = 0;
1937                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1938                 if (retval != ERROR_OK)
1939                         return retval;
1940         }
1941
1942         return ERROR_OK;
1943 }
1944
1945 static int cortex_m3_target_request_data(struct target *target,
1946         uint32_t size, uint8_t *buffer)
1947 {
1948         struct armv7m_common *armv7m = target_to_armv7m(target);
1949         struct adiv5_dap *swjdp = armv7m->arm.dap;
1950         uint8_t data;
1951         uint8_t ctrl;
1952         uint32_t i;
1953
1954         for (i = 0; i < (size * 4); i++) {
1955                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1956                 buffer[i] = data;
1957         }
1958
1959         return ERROR_OK;
1960 }
1961
1962 static int cortex_m3_handle_target_request(void *priv)
1963 {
1964         struct target *target = priv;
1965         if (!target_was_examined(target))
1966                 return ERROR_OK;
1967         struct armv7m_common *armv7m = target_to_armv7m(target);
1968         struct adiv5_dap *swjdp = armv7m->arm.dap;
1969
1970         if (!target->dbg_msg_enabled)
1971                 return ERROR_OK;
1972
1973         if (target->state == TARGET_RUNNING) {
1974                 uint8_t data;
1975                 uint8_t ctrl;
1976
1977                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1978
1979                 /* check if we have data */
1980                 if (ctrl & (1 << 0)) {
1981                         uint32_t request;
1982
1983                         /* we assume target is quick enough */
1984                         request = data;
1985                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1986                         request |= (data << 8);
1987                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1988                         request |= (data << 16);
1989                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1990                         request |= (data << 24);
1991                         target_request(target, request);
1992                 }
1993         }
1994
1995         return ERROR_OK;
1996 }
1997
1998 static int cortex_m3_init_arch_info(struct target *target,
1999         struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
2000 {
2001         int retval;
2002         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2003
2004         armv7m_init_arch_info(target, armv7m);
2005
2006         /* prepare JTAG information for the new target */
2007         cortex_m3->jtag_info.tap = tap;
2008         cortex_m3->jtag_info.scann_size = 4;
2009
2010         /* default reset mode is to use srst if fitted
2011          * if not it will use CORTEX_M3_RESET_VECTRESET */
2012         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2013
2014         armv7m->arm.dap = &armv7m->dap;
2015
2016         /* Leave (only) generic DAP stuff for debugport_init(); */
2017         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2018         armv7m->dap.memaccess_tck = 8;
2019
2020         /* Cortex-M3/M4 has 4096 bytes autoincrement range
2021          * but set a safe default to 1024 to support Cortex-M0
2022          * this will be changed in cortex_m3_examine if a M3/M4 is detected */
2023         armv7m->dap.tar_autoincr_block = (1 << 10);
2024
2025         /* register arch-specific functions */
2026         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2027
2028         armv7m->post_debug_entry = NULL;
2029
2030         armv7m->pre_restore_context = NULL;
2031
2032         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2033         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2034
2035         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2036
2037         retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
2038         if (retval != ERROR_OK)
2039                 return retval;
2040
2041         return ERROR_OK;
2042 }
2043
2044 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2045 {
2046         struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
2047
2048         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2049         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2050
2051         return ERROR_OK;
2052 }
2053
2054 /*--------------------------------------------------------------------------*/
2055
2056 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2057         struct cortex_m3_common *cm3)
2058 {
2059         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2060                 command_print(cmd_ctx, "target is not a Cortex-M");
2061                 return ERROR_TARGET_INVALID;
2062         }
2063         return ERROR_OK;
2064 }
2065
2066 /*
2067  * Only stuff below this line should need to verify that its target
2068  * is a Cortex-M3.  Everything else should have indirected through the
2069  * cortexm3_target structure, which is only used with CM3 targets.
2070  */
2071
2072 static const struct {
2073         char name[10];
2074         unsigned mask;
2075 } vec_ids[] = {
2076         { "hard_err",   VC_HARDERR, },
2077         { "int_err",    VC_INTERR, },
2078         { "bus_err",    VC_BUSERR, },
2079         { "state_err",  VC_STATERR, },
2080         { "chk_err",    VC_CHKERR, },
2081         { "nocp_err",   VC_NOCPERR, },
2082         { "mm_err",     VC_MMERR, },
2083         { "reset",      VC_CORERESET, },
2084 };
2085
2086 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2087 {
2088         struct target *target = get_current_target(CMD_CTX);
2089         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2090         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2091         struct adiv5_dap *swjdp = armv7m->arm.dap;
2092         uint32_t demcr = 0;
2093         int retval;
2094
2095         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2096         if (retval != ERROR_OK)
2097                 return retval;
2098
2099         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2100         if (retval != ERROR_OK)
2101                 return retval;
2102
2103         if (CMD_ARGC > 0) {
2104                 unsigned catch = 0;
2105
2106                 if (CMD_ARGC == 1) {
2107                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2108                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2109                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2110                                         | VC_MMERR | VC_CORERESET;
2111                                 goto write;
2112                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2113                                 goto write;
2114                 }
2115                 while (CMD_ARGC-- > 0) {
2116                         unsigned i;
2117                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2118                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2119                                         continue;
2120                                 catch |= vec_ids[i].mask;
2121                                 break;
2122                         }
2123                         if (i == ARRAY_SIZE(vec_ids)) {
2124                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2125                                 return ERROR_COMMAND_SYNTAX_ERROR;
2126                         }
2127                 }
2128 write:
2129                 /* For now, armv7m->demcr only stores vector catch flags. */
2130                 armv7m->demcr = catch;
2131
2132                 demcr &= ~0xffff;
2133                 demcr |= catch;
2134
2135                 /* write, but don't assume it stuck (why not??) */
2136                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2137                 if (retval != ERROR_OK)
2138                         return retval;
2139                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2140                 if (retval != ERROR_OK)
2141                         return retval;
2142
2143                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2144                  * Otherwise the vector catch hardware could fire when there's
2145                  * no debugger hooked up, causing much confusion...
2146                  */
2147         }
2148
2149         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2150                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2151                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2152         }
2153
2154         return ERROR_OK;
2155 }
2156
2157 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2158 {
2159         struct target *target = get_current_target(CMD_CTX);
2160         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2161         int retval;
2162
2163         static const Jim_Nvp nvp_maskisr_modes[] = {
2164                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2165                 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2166                 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2167                 { .name = NULL, .value = -1 },
2168         };
2169         const Jim_Nvp *n;
2170
2171
2172         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2173         if (retval != ERROR_OK)
2174                 return retval;
2175
2176         if (target->state != TARGET_HALTED) {
2177                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2178                 return ERROR_OK;
2179         }
2180
2181         if (CMD_ARGC > 0) {
2182                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2183                 if (n->name == NULL)
2184                         return ERROR_COMMAND_SYNTAX_ERROR;
2185                 cortex_m3->isrmasking_mode = n->value;
2186
2187
2188                 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2189                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2190                 else
2191                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2192         }
2193
2194         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2195         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2196
2197         return ERROR_OK;
2198 }
2199
2200 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2201 {
2202         struct target *target = get_current_target(CMD_CTX);
2203         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2204         int retval;
2205         char *reset_config;
2206
2207         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2208         if (retval != ERROR_OK)
2209                 return retval;
2210
2211         if (CMD_ARGC > 0) {
2212                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2213                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2214                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2215                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2216         }
2217
2218         switch (cortex_m3->soft_reset_config) {
2219                 case CORTEX_M3_RESET_SYSRESETREQ:
2220                         reset_config = "sysresetreq";
2221                         break;
2222
2223                 case CORTEX_M3_RESET_VECTRESET:
2224                         reset_config = "vectreset";
2225                         break;
2226
2227                 default:
2228                         reset_config = "unknown";
2229                         break;
2230         }
2231
2232         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2233
2234         return ERROR_OK;
2235 }
2236
2237 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2238         {
2239                 .name = "maskisr",
2240                 .handler = handle_cortex_m3_mask_interrupts_command,
2241                 .mode = COMMAND_EXEC,
2242                 .help = "mask cortex_m interrupts",
2243                 .usage = "['auto'|'on'|'off']",
2244         },
2245         {
2246                 .name = "vector_catch",
2247                 .handler = handle_cortex_m3_vector_catch_command,
2248                 .mode = COMMAND_EXEC,
2249                 .help = "configure hardware vectors to trigger debug entry",
2250                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2251         },
2252         {
2253                 .name = "reset_config",
2254                 .handler = handle_cortex_m3_reset_config_command,
2255                 .mode = COMMAND_ANY,
2256                 .help = "configure software reset handling",
2257                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2258         },
2259         COMMAND_REGISTRATION_DONE
2260 };
2261 static const struct command_registration cortex_m3_command_handlers[] = {
2262         {
2263                 .chain = armv7m_command_handlers,
2264         },
2265         {
2266                 .name = "cortex_m",
2267                 .mode = COMMAND_EXEC,
2268                 .help = "Cortex-M command group",
2269                 .usage = "",
2270                 .chain = cortex_m3_exec_command_handlers,
2271         },
2272         COMMAND_REGISTRATION_DONE
2273 };
2274
2275 struct target_type cortexm3_target = {
2276         .name = "cortex_m",
2277         .deprecated_name = "cortex_m3",
2278
2279         .poll = cortex_m3_poll,
2280         .arch_state = armv7m_arch_state,
2281
2282         .target_request_data = cortex_m3_target_request_data,
2283
2284         .halt = cortex_m3_halt,
2285         .resume = cortex_m3_resume,
2286         .step = cortex_m3_step,
2287
2288         .assert_reset = cortex_m3_assert_reset,
2289         .deassert_reset = cortex_m3_deassert_reset,
2290         .soft_reset_halt = cortex_m3_soft_reset_halt,
2291
2292         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2293
2294         .read_memory = cortex_m3_read_memory,
2295         .write_memory = cortex_m3_write_memory,
2296         .checksum_memory = armv7m_checksum_memory,
2297         .blank_check_memory = armv7m_blank_check_memory,
2298
2299         .run_algorithm = armv7m_run_algorithm,
2300         .start_algorithm = armv7m_start_algorithm,
2301         .wait_algorithm = armv7m_wait_algorithm,
2302
2303         .add_breakpoint = cortex_m3_add_breakpoint,
2304         .remove_breakpoint = cortex_m3_remove_breakpoint,
2305         .add_watchpoint = cortex_m3_add_watchpoint,
2306         .remove_watchpoint = cortex_m3_remove_watchpoint,
2307
2308         .commands = cortex_m3_command_handlers,
2309         .target_create = cortex_m3_target_create,
2310         .init_target = cortex_m3_init_target,
2311         .examine = cortex_m3_examine,
2312 };