]> git.sur5r.net Git - openocd/blob - src/target/mips32.c
target, flash: prepare infrastructure for multi-block blank check
[openocd] / src / target / mips32.c
1 /***************************************************************************
2  *   Copyright (C) 2008 by Spencer Oliver                                  *
3  *   spen@spen-soft.co.uk                                                  *
4  *                                                                         *
5  *   Copyright (C) 2008 by David T.L. Wong                                 *
6  *                                                                         *
7  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
8  *   oyvind.harboe@zylin.com                                               *
9  *                                                                         *
10  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
11  *   drasko.draskovic@gmail.com                                            *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
25  ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "mips32.h"
32 #include "breakpoints.h"
33 #include "algorithm.h"
34 #include "register.h"
35
36 static const char *mips_isa_strings[] = {
37         "MIPS32", "MIPS16", "", "MICRO MIPS32",
38 };
39
40 #define MIPS32_GDB_DUMMY_FP_REG 1
41
42 /*
43  * GDB registers
44  * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
45  */
46 static const struct {
47         unsigned id;
48         const char *name;
49         enum reg_type type;
50         const char *group;
51         const char *feature;
52         int flag;
53 } mips32_regs[] = {
54         {  0,  "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
55         {  1,  "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
56         {  2,  "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
57         {  3,  "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
58         {  4,  "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
59         {  5,  "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
60         {  6,  "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
61         {  7,  "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
62         {  8,  "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
63         {  9,  "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
64         { 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
65         { 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
66         { 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
67         { 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
68         { 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
69         { 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
70         { 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
71         { 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
72         { 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
73         { 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
74         { 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
75         { 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
76         { 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
77         { 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
78         { 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
79         { 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
80         { 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
81         { 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
82         { 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
83         { 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
84         { 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
85         { 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
86         { 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
87         { 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
88         { 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
89         { 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
90         { 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
91         { 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
92
93         { 38,  "f0", REG_TYPE_IEEE_SINGLE, NULL,
94                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
95         { 39,  "f1", REG_TYPE_IEEE_SINGLE, NULL,
96                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
97         { 40,  "f2", REG_TYPE_IEEE_SINGLE, NULL,
98                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
99         { 41,  "f3", REG_TYPE_IEEE_SINGLE, NULL,
100                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
101         { 42,  "f4", REG_TYPE_IEEE_SINGLE, NULL,
102                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
103         { 43,  "f5", REG_TYPE_IEEE_SINGLE, NULL,
104                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
105         { 44,  "f6", REG_TYPE_IEEE_SINGLE, NULL,
106                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
107         { 45,  "f7", REG_TYPE_IEEE_SINGLE, NULL,
108                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
109         { 46,  "f8", REG_TYPE_IEEE_SINGLE, NULL,
110                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
111         { 47,  "f9", REG_TYPE_IEEE_SINGLE, NULL,
112                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
113         { 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
114                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
115         { 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
116                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
117         { 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
118                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
119         { 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
120                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
121         { 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
122                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
123         { 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
124                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
125         { 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
126                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
127         { 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
128                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
129         { 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
130                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
131         { 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
132                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
133         { 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
134                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
135         { 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
136                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
137         { 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
138                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
139         { 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
140                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
141         { 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
142                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
143         { 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
144                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
145         { 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
146                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
147         { 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
148                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
149         { 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
150                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
151         { 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
152                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
153         { 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
154                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
155         { 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
156                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
157         { 70, "fcsr", REG_TYPE_INT, "float",
158                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
159         { 71, "fir", REG_TYPE_INT, "float",
160                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
161 };
162
163
164 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
165
166 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
167
168 static int mips32_get_core_reg(struct reg *reg)
169 {
170         int retval;
171         struct mips32_core_reg *mips32_reg = reg->arch_info;
172         struct target *target = mips32_reg->target;
173         struct mips32_common *mips32_target = target_to_mips32(target);
174
175         if (target->state != TARGET_HALTED)
176                 return ERROR_TARGET_NOT_HALTED;
177
178         retval = mips32_target->read_core_reg(target, mips32_reg->num);
179
180         return retval;
181 }
182
183 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
184 {
185         struct mips32_core_reg *mips32_reg = reg->arch_info;
186         struct target *target = mips32_reg->target;
187         uint32_t value = buf_get_u32(buf, 0, 32);
188
189         if (target->state != TARGET_HALTED)
190                 return ERROR_TARGET_NOT_HALTED;
191
192         buf_set_u32(reg->value, 0, 32, value);
193         reg->dirty = 1;
194         reg->valid = 1;
195
196         return ERROR_OK;
197 }
198
199 static int mips32_read_core_reg(struct target *target, unsigned int num)
200 {
201         uint32_t reg_value;
202
203         /* get pointers to arch-specific information */
204         struct mips32_common *mips32 = target_to_mips32(target);
205
206         if (num >= MIPS32_NUM_REGS)
207                 return ERROR_COMMAND_SYNTAX_ERROR;
208
209         reg_value = mips32->core_regs[num];
210         buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
211         mips32->core_cache->reg_list[num].valid = 1;
212         mips32->core_cache->reg_list[num].dirty = 0;
213
214         return ERROR_OK;
215 }
216
217 static int mips32_write_core_reg(struct target *target, unsigned int num)
218 {
219         uint32_t reg_value;
220
221         /* get pointers to arch-specific information */
222         struct mips32_common *mips32 = target_to_mips32(target);
223
224         if (num >= MIPS32_NUM_REGS)
225                 return ERROR_COMMAND_SYNTAX_ERROR;
226
227         reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
228         mips32->core_regs[num] = reg_value;
229         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
230         mips32->core_cache->reg_list[num].valid = 1;
231         mips32->core_cache->reg_list[num].dirty = 0;
232
233         return ERROR_OK;
234 }
235
236 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
237                 int *reg_list_size, enum target_register_class reg_class)
238 {
239         /* get pointers to arch-specific information */
240         struct mips32_common *mips32 = target_to_mips32(target);
241         unsigned int i;
242
243         /* include floating point registers */
244         *reg_list_size = MIPS32_NUM_REGS;
245         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
246
247         for (i = 0; i < MIPS32_NUM_REGS; i++)
248                 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
249
250         return ERROR_OK;
251 }
252
253 int mips32_save_context(struct target *target)
254 {
255         unsigned int i;
256
257         /* get pointers to arch-specific information */
258         struct mips32_common *mips32 = target_to_mips32(target);
259         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
260
261         /* read core registers */
262         mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
263
264         for (i = 0; i < MIPS32_NUM_REGS; i++) {
265                 if (!mips32->core_cache->reg_list[i].valid)
266                         mips32->read_core_reg(target, i);
267         }
268
269         return ERROR_OK;
270 }
271
272 int mips32_restore_context(struct target *target)
273 {
274         unsigned int i;
275
276         /* get pointers to arch-specific information */
277         struct mips32_common *mips32 = target_to_mips32(target);
278         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
279
280         for (i = 0; i < MIPS32_NUM_REGS; i++) {
281                 if (mips32->core_cache->reg_list[i].dirty)
282                         mips32->write_core_reg(target, i);
283         }
284
285         /* write core regs */
286         mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
287
288         return ERROR_OK;
289 }
290
291 int mips32_arch_state(struct target *target)
292 {
293         struct mips32_common *mips32 = target_to_mips32(target);
294
295         LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
296                 mips_isa_strings[mips32->isa_mode],
297                 debug_reason_name(target),
298                 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
299
300         return ERROR_OK;
301 }
302
303 static const struct reg_arch_type mips32_reg_type = {
304         .get = mips32_get_core_reg,
305         .set = mips32_set_core_reg,
306 };
307
308 struct reg_cache *mips32_build_reg_cache(struct target *target)
309 {
310         /* get pointers to arch-specific information */
311         struct mips32_common *mips32 = target_to_mips32(target);
312
313         int num_regs = MIPS32_NUM_REGS;
314         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
315         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
316         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
317         struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
318         struct reg_feature *feature;
319         int i;
320
321         /* Build the process context cache */
322         cache->name = "mips32 registers";
323         cache->next = NULL;
324         cache->reg_list = reg_list;
325         cache->num_regs = num_regs;
326         (*cache_p) = cache;
327         mips32->core_cache = cache;
328
329         for (i = 0; i < num_regs; i++) {
330                 arch_info[i].num = mips32_regs[i].id;
331                 arch_info[i].target = target;
332                 arch_info[i].mips32_common = mips32;
333
334                 reg_list[i].name = mips32_regs[i].name;
335                 reg_list[i].size = 32;
336
337                 if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
338                         reg_list[i].value = mips32_gdb_dummy_fp_value;
339                         reg_list[i].valid = 1;
340                         reg_list[i].arch_info = NULL;
341                         register_init_dummy(&reg_list[i]);
342                 } else {
343                         reg_list[i].value = calloc(1, 4);
344                         reg_list[i].valid = 0;
345                         reg_list[i].type = &mips32_reg_type;
346                         reg_list[i].arch_info = &arch_info[i];
347
348                         reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
349                         if (reg_list[i].reg_data_type)
350                                 reg_list[i].reg_data_type->type = mips32_regs[i].type;
351                         else
352                                 LOG_ERROR("unable to allocate reg type list");
353                 }
354
355                 reg_list[i].dirty = 0;
356
357                 reg_list[i].group = mips32_regs[i].group;
358                 reg_list[i].number = i;
359                 reg_list[i].exist = true;
360                 reg_list[i].caller_save = true; /* gdb defaults to true */
361
362                 feature = calloc(1, sizeof(struct reg_feature));
363                 if (feature) {
364                         feature->name = mips32_regs[i].feature;
365                         reg_list[i].feature = feature;
366                 } else
367                         LOG_ERROR("unable to allocate feature list");
368         }
369
370         return cache;
371 }
372
373 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
374 {
375         target->arch_info = mips32;
376         mips32->common_magic = MIPS32_COMMON_MAGIC;
377         mips32->fast_data_area = NULL;
378         mips32->isa_imp = MIPS32_ONLY;  /* default */
379
380         /* has breakpoint/watchpoint unit been scanned */
381         mips32->bp_scanned = 0;
382         mips32->data_break_list = NULL;
383
384         mips32->ejtag_info.tap = tap;
385         mips32->read_core_reg = mips32_read_core_reg;
386         mips32->write_core_reg = mips32_write_core_reg;
387         /* if unknown endianness defaults to little endian, 1 */
388         mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
389         mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
390         mips32->ejtag_info.mode = 0;                    /* Initial default value */
391         mips32->ejtag_info.isa = 0;     /* isa on debug mips32, updated by poll function */
392         mips32->ejtag_info.config_regs = 0;     /* no config register read */
393         return ERROR_OK;
394 }
395
396 /* run to exit point. return error if exit point was not reached. */
397 static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
398                 int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
399 {
400         uint32_t pc;
401         int retval;
402         /* This code relies on the target specific  resume() and  poll()->debug_entry()
403          * sequence to write register values to the processor and the read them back */
404         retval = target_resume(target, 0, entry_point, 0, 1);
405         if (retval != ERROR_OK)
406                 return retval;
407
408         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
409         /* If the target fails to halt due to the breakpoint, force a halt */
410         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
411                 retval = target_halt(target);
412                 if (retval != ERROR_OK)
413                         return retval;
414                 retval = target_wait_state(target, TARGET_HALTED, 500);
415                 if (retval != ERROR_OK)
416                         return retval;
417                 return ERROR_TARGET_TIMEOUT;
418         }
419
420         pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
421         if (exit_point && (pc != exit_point)) {
422                 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
423                 return ERROR_TARGET_TIMEOUT;
424         }
425
426         return ERROR_OK;
427 }
428
429 int mips32_run_algorithm(struct target *target, int num_mem_params,
430                 struct mem_param *mem_params, int num_reg_params,
431                 struct reg_param *reg_params, target_addr_t entry_point,
432                 target_addr_t exit_point, int timeout_ms, void *arch_info)
433 {
434         struct mips32_common *mips32 = target_to_mips32(target);
435         struct mips32_algorithm *mips32_algorithm_info = arch_info;
436         enum mips32_isa_mode isa_mode = mips32->isa_mode;
437
438         uint32_t context[MIPS32_NUM_REGS];
439         int retval = ERROR_OK;
440
441         LOG_DEBUG("Running algorithm");
442
443         /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
444          * at the exit point */
445
446         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
447                 LOG_ERROR("current target isn't a MIPS32 target");
448                 return ERROR_TARGET_INVALID;
449         }
450
451         if (target->state != TARGET_HALTED) {
452                 LOG_WARNING("target not halted");
453                 return ERROR_TARGET_NOT_HALTED;
454         }
455
456         /* refresh core register cache */
457         for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
458                 if (!mips32->core_cache->reg_list[i].valid)
459                         mips32->read_core_reg(target, i);
460                 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
461         }
462
463         for (int i = 0; i < num_mem_params; i++) {
464                 retval = target_write_buffer(target, mem_params[i].address,
465                                 mem_params[i].size, mem_params[i].value);
466                 if (retval != ERROR_OK)
467                         return retval;
468         }
469
470         for (int i = 0; i < num_reg_params; i++) {
471                 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
472
473                 if (!reg) {
474                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
475                         return ERROR_COMMAND_SYNTAX_ERROR;
476                 }
477
478                 if (reg->size != reg_params[i].size) {
479                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
480                                         reg_params[i].reg_name);
481                         return ERROR_COMMAND_SYNTAX_ERROR;
482                 }
483
484                 mips32_set_core_reg(reg, reg_params[i].value);
485         }
486
487         mips32->isa_mode = mips32_algorithm_info->isa_mode;
488
489         retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
490
491         if (retval != ERROR_OK)
492                 return retval;
493
494         for (int i = 0; i < num_mem_params; i++) {
495                 if (mem_params[i].direction != PARAM_OUT) {
496                         retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
497                                         mem_params[i].value);
498                         if (retval != ERROR_OK)
499                                 return retval;
500                 }
501         }
502
503         for (int i = 0; i < num_reg_params; i++) {
504                 if (reg_params[i].direction != PARAM_OUT) {
505                         struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
506                         if (!reg) {
507                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
508                                 return ERROR_COMMAND_SYNTAX_ERROR;
509                         }
510
511                         if (reg->size != reg_params[i].size) {
512                                 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
513                                                 reg_params[i].reg_name);
514                                 return ERROR_COMMAND_SYNTAX_ERROR;
515                         }
516
517                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
518                 }
519         }
520
521         /* restore everything we saved before */
522         for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
523                 uint32_t regvalue;
524                 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
525                 if (regvalue != context[i]) {
526                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
527                                 mips32->core_cache->reg_list[i].name, context[i]);
528                         buf_set_u32(mips32->core_cache->reg_list[i].value,
529                                         0, 32, context[i]);
530                         mips32->core_cache->reg_list[i].valid = 1;
531                         mips32->core_cache->reg_list[i].dirty = 1;
532                 }
533         }
534
535         mips32->isa_mode = isa_mode;
536
537         return ERROR_OK;
538 }
539
540 int mips32_examine(struct target *target)
541 {
542         struct mips32_common *mips32 = target_to_mips32(target);
543
544         if (!target_was_examined(target)) {
545                 target_set_examined(target);
546
547                 /* we will configure later */
548                 mips32->bp_scanned = 0;
549                 mips32->num_inst_bpoints = 0;
550                 mips32->num_data_bpoints = 0;
551                 mips32->num_inst_bpoints_avail = 0;
552                 mips32->num_data_bpoints_avail = 0;
553         }
554
555         return ERROR_OK;
556 }
557
558 static int mips32_configure_ibs(struct target *target)
559 {
560         struct mips32_common *mips32 = target_to_mips32(target);
561         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
562         int retval, i;
563         uint32_t bpinfo;
564
565         /* get number of inst breakpoints */
566         retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
567         if (retval != ERROR_OK)
568                 return retval;
569
570         mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
571         mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
572         mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
573                 sizeof(struct mips32_comparator));
574
575         for (i = 0; i < mips32->num_inst_bpoints; i++)
576                 mips32->inst_break_list[i].reg_address =
577                         ejtag_info->ejtag_iba0_addr +
578                         (ejtag_info->ejtag_iba_step_size * i);
579
580         /* clear IBIS reg */
581         retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
582         return retval;
583 }
584
585 static int mips32_configure_dbs(struct target *target)
586 {
587         struct mips32_common *mips32 = target_to_mips32(target);
588         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
589         int retval, i;
590         uint32_t bpinfo;
591
592         /* get number of data breakpoints */
593         retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
594         if (retval != ERROR_OK)
595                 return retval;
596
597         mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
598         mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
599         mips32->data_break_list = calloc(mips32->num_data_bpoints,
600                 sizeof(struct mips32_comparator));
601
602         for (i = 0; i < mips32->num_data_bpoints; i++)
603                 mips32->data_break_list[i].reg_address =
604                         ejtag_info->ejtag_dba0_addr +
605                         (ejtag_info->ejtag_dba_step_size * i);
606
607         /* clear DBIS reg */
608         retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
609         return retval;
610 }
611
612 int mips32_configure_break_unit(struct target *target)
613 {
614         /* get pointers to arch-specific information */
615         struct mips32_common *mips32 = target_to_mips32(target);
616         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
617         int retval;
618         uint32_t dcr;
619
620         if (mips32->bp_scanned)
621                 return ERROR_OK;
622
623         /* get info about breakpoint support */
624         retval = target_read_u32(target, EJTAG_DCR, &dcr);
625         if (retval != ERROR_OK)
626                 return retval;
627
628         /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
629         if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
630                 ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
631                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
632                         ejtag_info->debug_caps |= EJTAG_DCR_IB;
633                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
634                         ejtag_info->debug_caps |= EJTAG_DCR_DB;
635         } else
636                 /* keep  debug caps for later use */
637                 ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
638                                 | EJTAG_DCR_IB | EJTAG_DCR_DB);
639
640
641         if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
642                 retval = mips32_configure_ibs(target);
643                 if (retval != ERROR_OK)
644                         return retval;
645         }
646
647         if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
648                 retval = mips32_configure_dbs(target);
649                 if (retval != ERROR_OK)
650                         return retval;
651         }
652
653         /* check if target endianness settings matches debug control register */
654         if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
655                         && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
656                         (!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
657                          && (target->endianness == TARGET_BIG_ENDIAN)))
658                 LOG_WARNING("DCR endianness settings does not match target settings");
659
660         LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
661                         mips32->num_data_bpoints);
662
663         mips32->bp_scanned = 1;
664
665         return ERROR_OK;
666 }
667
668 int mips32_enable_interrupts(struct target *target, int enable)
669 {
670         int retval;
671         int update = 0;
672         uint32_t dcr;
673
674         /* read debug control register */
675         retval = target_read_u32(target, EJTAG_DCR, &dcr);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         if (enable) {
680                 if (!(dcr & EJTAG_DCR_INTE)) {
681                         /* enable interrupts */
682                         dcr |= EJTAG_DCR_INTE;
683                         update = 1;
684                 }
685         } else {
686                 if (dcr & EJTAG_DCR_INTE) {
687                         /* disable interrupts */
688                         dcr &= ~EJTAG_DCR_INTE;
689                         update = 1;
690                 }
691         }
692
693         if (update) {
694                 retval = target_write_u32(target, EJTAG_DCR, dcr);
695                 if (retval != ERROR_OK)
696                         return retval;
697         }
698
699         return ERROR_OK;
700 }
701
702 /* read config to config3 cp0 registers and log isa implementation */
703 int mips32_read_config_regs(struct target *target)
704 {
705         struct mips32_common *mips32 = target_to_mips32(target);
706         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
707
708         if (ejtag_info->config_regs == 0)
709                 for (int i = 0; i != 4; i++) {
710                         int retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
711                         if (retval != ERROR_OK) {
712                                 LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
713                                 ejtag_info->config_regs = 0;
714                                 return retval;
715                         }
716                         ejtag_info->config_regs = i + 1;
717                         if ((ejtag_info->config[i] & (1 << 31)) == 0)
718                                 break;  /* no more config registers implemented */
719                 }
720         else
721                 return ERROR_OK;        /* already succesfully read */
722
723         LOG_DEBUG("read  %"PRId32" config registers", ejtag_info->config_regs);
724
725         if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
726                 mips32->isa_imp = MIPS32_MIPS16;
727                 LOG_USER("MIPS32 with MIPS16 support implemented");
728
729         } else if (ejtag_info->config_regs >= 4) {      /* config3 implemented */
730                 unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
731                 if (isa_imp == 1) {
732                         mips32->isa_imp = MMIPS32_ONLY;
733                         LOG_USER("MICRO MIPS32 only implemented");
734
735                 } else if (isa_imp != 0) {
736                         mips32->isa_imp = MIPS32_MMIPS32;
737                         LOG_USER("MIPS32 and MICRO MIPS32 implemented");
738                 }
739         }
740
741         if (mips32->isa_imp == MIPS32_ONLY)     /* initial default value */
742                 LOG_USER("MIPS32 only implemented");
743
744         return ERROR_OK;
745 }
746 int mips32_checksum_memory(struct target *target, target_addr_t address,
747                 uint32_t count, uint32_t *checksum)
748 {
749         struct working_area *crc_algorithm;
750         struct reg_param reg_params[2];
751         struct mips32_algorithm mips32_info;
752
753         struct mips32_common *mips32 = target_to_mips32(target);
754         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
755
756         /* see contrib/loaders/checksum/mips32.s for src */
757         uint32_t isa = ejtag_info->isa ? 1 : 0;
758
759         uint32_t mips_crc_code[] = {
760                 MIPS32_ADDIU(isa, 12, 4, 0),                    /* addiu        $t4, $a0, 0 */
761                 MIPS32_ADDIU(isa, 10, 5, 0),                    /* addiu        $t2, $a1, 0 */
762                 MIPS32_ADDIU(isa, 4, 0, 0xFFFF),                /* addiu        $a0, $zero, 0xffff */
763                 MIPS32_BEQ(isa, 0, 0, 0x10 << isa),             /* beq          $zero, $zero, ncomp */
764                 MIPS32_ADDIU(isa, 11, 0, 0),                    /* addiu        $t3, $zero, 0 */
765                                                 /* nbyte: */
766                 MIPS32_LB(isa, 5, 0, 12),                       /* lb           $a1, ($t4) */
767                 MIPS32_ADDI(isa, 12, 12, 1),                    /* addi         $t4, $t4, 1 */
768                 MIPS32_SLL(isa, 5, 5, 24),                      /* sll          $a1, $a1, 24 */
769                 MIPS32_LUI(isa, 2, 0x04c1),                     /* lui          $v0, 0x04c1 */
770                 MIPS32_XOR(isa, 4, 4, 5),                       /* xor          $a0, $a0, $a1 */
771                 MIPS32_ORI(isa, 7, 2, 0x1db7),                  /* ori          $a3, $v0, 0x1db7 */
772                 MIPS32_ADDU(isa, 6, 0, 0),                      /* addu         $a2, $zero, $zero */
773                                                 /* loop */
774                 MIPS32_SLL(isa, 8, 4, 1),                       /* sll          $t0, $a0, 1 */
775                 MIPS32_ADDIU(isa, 6, 6, 1),                     /* addiu        $a2, $a2, 1 */
776                 MIPS32_SLTI(isa, 4, 4, 0),                      /* slti         $a0, $a0, 0 */
777                 MIPS32_XOR(isa, 9, 8, 7),                       /* xor          $t1, $t0, $a3 */
778                 MIPS32_MOVN(isa, 8, 9, 4),                      /* movn         $t0, $t1, $a0 */
779                 MIPS32_SLTI(isa, 3, 6, 8),                      /* slti         $v1, $a2, 8 */
780                 MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)),         /* bne          $v1, $zero, loop */
781                 MIPS32_ADDU(isa, 4, 8, 0),                      /* addu         $a0, $t0, $zero */
782                                                 /* ncomp */
783                 MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)),      /* bne          $t2, $t3, nbyte */
784                 MIPS32_ADDIU(isa, 11, 11, 1),                   /* addiu        $t3, $t3, 1 */
785                 MIPS32_SDBBP(isa),
786         };
787
788         /* make sure we have a working area */
789         if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
790                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
791
792         pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));
793
794         /* convert mips crc code into a buffer in target endianness */
795         uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
796         target_buffer_set_u32_array(target, mips_crc_code_8,
797                                         ARRAY_SIZE(mips_crc_code), mips_crc_code);
798
799         int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
800         if (retval != ERROR_OK)
801                 return retval;
802
803         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
804         mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;    /* run isa as in debug mode */
805
806         init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
807         buf_set_u32(reg_params[0].value, 0, 32, address);
808
809         init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
810         buf_set_u32(reg_params[1].value, 0, 32, count);
811
812         int timeout = 20000 * (1 + (count / (1024 * 1024)));
813
814         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
815                                       crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);
816
817         if (retval == ERROR_OK)
818                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
819
820         destroy_reg_param(&reg_params[0]);
821         destroy_reg_param(&reg_params[1]);
822
823         target_free_working_area(target, crc_algorithm);
824
825         return retval;
826 }
827
828 /** Checks whether a memory region is erased. */
829 int mips32_blank_check_memory(struct target *target,
830                 struct target_memory_check_block *blocks, int num_blocks,
831                 uint8_t erased_value)
832 {
833         struct working_area *erase_check_algorithm;
834         struct reg_param reg_params[3];
835         struct mips32_algorithm mips32_info;
836
837         struct mips32_common *mips32 = target_to_mips32(target);
838         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
839
840         if (erased_value != 0xff) {
841                 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
842                         erased_value);
843                 return ERROR_FAIL;
844         }
845         uint32_t isa = ejtag_info->isa ? 1 : 0;
846         uint32_t erase_check_code[] = {
847                                                 /* nbyte: */
848                 MIPS32_LB(isa, 8, 0, 4),                        /* lb           $t0, ($a0) */
849                 MIPS32_AND(isa, 6, 6, 8),                       /* and          $a2, $a2, $t0 */
850                 MIPS32_ADDIU(isa, 5, 5, NEG16(1)),              /* addiu        $a1, $a1, -1 */
851                 MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)),         /* bne          $a1, $zero, nbyte */
852                 MIPS32_ADDIU(isa, 4, 4, 1),                     /* addiu        $a0, $a0, 1 */
853                 MIPS32_SDBBP(isa)                               /* sdbbp */
854         };
855
856         /* make sure we have a working area */
857         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
858                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
859
860         pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));
861
862         /* convert erase check code into a buffer in target endianness */
863         uint8_t erase_check_code_8[sizeof(erase_check_code)];
864         target_buffer_set_u32_array(target, erase_check_code_8,
865                                         ARRAY_SIZE(erase_check_code), erase_check_code);
866
867         int retval = target_write_buffer(target, erase_check_algorithm->address,
868                                                 sizeof(erase_check_code), erase_check_code_8);
869         if (retval != ERROR_OK)
870                 goto cleanup;
871
872         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
873         mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;
874
875         init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
876         buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
877
878         init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
879         buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
880
881         init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
882         buf_set_u32(reg_params[2].value, 0, 32, erased_value);
883
884         retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
885                         erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);
886
887         if (retval == ERROR_OK)
888                 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
889
890         destroy_reg_param(&reg_params[0]);
891         destroy_reg_param(&reg_params[1]);
892         destroy_reg_param(&reg_params[2]);
893
894 cleanup:
895         target_free_working_area(target, erase_check_algorithm);
896
897         if (retval != ERROR_OK)
898                 return retval;
899
900         return 1;       /* only one block has been checked */
901 }
902
903 static int mips32_verify_pointer(struct command_context *cmd_ctx,
904                 struct mips32_common *mips32)
905 {
906         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
907                 command_print(cmd_ctx, "target is not an MIPS32");
908                 return ERROR_TARGET_INVALID;
909         }
910         return ERROR_OK;
911 }
912
913 /**
914  * MIPS32 targets expose command interface
915  * to manipulate CP0 registers
916  */
917 COMMAND_HANDLER(mips32_handle_cp0_command)
918 {
919         int retval;
920         struct target *target = get_current_target(CMD_CTX);
921         struct mips32_common *mips32 = target_to_mips32(target);
922         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
923
924
925         retval = mips32_verify_pointer(CMD_CTX, mips32);
926         if (retval != ERROR_OK)
927                 return retval;
928
929         if (target->state != TARGET_HALTED) {
930                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
931                 return ERROR_OK;
932         }
933
934         /* two or more argument, access a single register/select (write if third argument is given) */
935         if (CMD_ARGC < 2)
936                 return ERROR_COMMAND_SYNTAX_ERROR;
937         else {
938                 uint32_t cp0_reg, cp0_sel;
939                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
940                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
941
942                 if (CMD_ARGC == 2) {
943                         uint32_t value;
944
945                         retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
946                         if (retval != ERROR_OK) {
947                                 command_print(CMD_CTX,
948                                                 "couldn't access reg %" PRIi32,
949                                                 cp0_reg);
950                                 return ERROR_OK;
951                         }
952                         command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
953                                         cp0_reg, cp0_sel, value);
954
955                 } else if (CMD_ARGC == 3) {
956                         uint32_t value;
957                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
958                         retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
959                         if (retval != ERROR_OK) {
960                                 command_print(CMD_CTX,
961                                                 "couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
962                                                 cp0_reg,  cp0_sel);
963                                 return ERROR_OK;
964                         }
965                         command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
966                                         cp0_reg, cp0_sel, value);
967                 }
968         }
969
970         return ERROR_OK;
971 }
972
973 COMMAND_HANDLER(mips32_handle_scan_delay_command)
974 {
975         struct target *target = get_current_target(CMD_CTX);
976         struct mips32_common *mips32 = target_to_mips32(target);
977         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
978
979         if (CMD_ARGC == 1)
980                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
981         else if (CMD_ARGC > 1)
982                         return ERROR_COMMAND_SYNTAX_ERROR;
983
984         command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
985         if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
986                 ejtag_info->mode = 0;
987                 command_print(CMD_CTX, "running in legacy mode");
988         } else {
989                 ejtag_info->mode = 1;
990                 command_print(CMD_CTX, "running in fast queued mode");
991         }
992
993         return ERROR_OK;
994 }
995
996 static const struct command_registration mips32_exec_command_handlers[] = {
997         {
998                 .name = "cp0",
999                 .handler = mips32_handle_cp0_command,
1000                 .mode = COMMAND_EXEC,
1001                 .usage = "regnum select [value]",
1002                 .help = "display/modify cp0 register",
1003         },
1004                 {
1005                 .name = "scan_delay",
1006                 .handler = mips32_handle_scan_delay_command,
1007                 .mode = COMMAND_ANY,
1008                 .help = "display/set scan delay in nano seconds",
1009                 .usage = "[value]",
1010         },
1011         COMMAND_REGISTRATION_DONE
1012 };
1013
1014 const struct command_registration mips32_command_handlers[] = {
1015         {
1016                 .name = "mips32",
1017                 .mode = COMMAND_ANY,
1018                 .help = "mips32 command group",
1019                 .usage = "",
1020                 .chain = mips32_exec_command_handlers,
1021         },
1022         COMMAND_REGISTRATION_DONE
1023 };