]> git.sur5r.net Git - openocd/blob - src/target/riscv/riscv.c
Add RISC-V support.
[openocd] / src / target / riscv / riscv.c
1 #include <assert.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 #ifdef HAVE_CONFIG_H
6 #include "config.h"
7 #endif
8
9 #include "target/target.h"
10 #include "target/algorithm.h"
11 #include "target/target_type.h"
12 #include "log.h"
13 #include "jtag/jtag.h"
14 #include "target/register.h"
15 #include "target/breakpoints.h"
16 #include "helper/time_support.h"
17 #include "riscv.h"
18 #include "gdb_regs.h"
19 #include "rtos/rtos.h"
20
21 /**
22  * Since almost everything can be accomplish by scanning the dbus register, all
23  * functions here assume dbus is already selected. The exception are functions
24  * called directly by OpenOCD, which can't assume anything about what's
25  * currently in IR. They should set IR to dbus explicitly.
26  */
27
28 /**
29  * Code structure
30  *
31  * At the bottom of the stack are the OpenOCD JTAG functions:
32  *              jtag_add_[id]r_scan
33  *              jtag_execute_query
34  *              jtag_add_runtest
35  *
36  * There are a few functions to just instantly shift a register and get its
37  * value:
38  *              dtmcontrol_scan
39  *              idcode_scan
40  *              dbus_scan
41  *
42  * Because doing one scan and waiting for the result is slow, most functions
43  * batch up a bunch of dbus writes and then execute them all at once. They use
44  * the scans "class" for this:
45  *              scans_new
46  *              scans_delete
47  *              scans_execute
48  *              scans_add_...
49  * Usually you new(), call a bunch of add functions, then execute() and look
50  * at the results by calling scans_get...()
51  *
52  * Optimized functions will directly use the scans class above, but slightly
53  * lazier code will use the cache functions that in turn use the scans
54  * functions:
55  *              cache_get...
56  *              cache_set...
57  *              cache_write
58  * cache_set... update a local structure, which is then synced to the target
59  * with cache_write(). Only Debug RAM words that are actually changed are sent
60  * to the target. Afterwards use cache_get... to read results.
61  */
62
63 #define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
64 #define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
65
66 #define DIM(x)          (sizeof(x)/sizeof(*x))
67
68 /* Constants for legacy SiFive hardware breakpoints. */
69 #define CSR_BPCONTROL_X                 (1<<0)
70 #define CSR_BPCONTROL_W                 (1<<1)
71 #define CSR_BPCONTROL_R                 (1<<2)
72 #define CSR_BPCONTROL_U                 (1<<3)
73 #define CSR_BPCONTROL_S                 (1<<4)
74 #define CSR_BPCONTROL_H                 (1<<5)
75 #define CSR_BPCONTROL_M                 (1<<6)
76 #define CSR_BPCONTROL_BPMATCH   (0xf<<7)
77 #define CSR_BPCONTROL_BPACTION  (0xff<<11)
78
79 #define DEBUG_ROM_START         0x800
80 #define DEBUG_ROM_RESUME        (DEBUG_ROM_START + 4)
81 #define DEBUG_ROM_EXCEPTION     (DEBUG_ROM_START + 8)
82 #define DEBUG_RAM_START         0x400
83
84 #define SETHALTNOT                              0x10c
85
86 /*** JTAG registers. ***/
87
88 #define DTMCONTROL                                      0x10
89 #define DTMCONTROL_DBUS_RESET           (1<<16)
90 #define DTMCONTROL_IDLE                         (7<<10)
91 #define DTMCONTROL_ADDRBITS                     (0xf<<4)
92 #define DTMCONTROL_VERSION                      (0xf)
93
94 #define DBUS                                            0x11
95 #define DBUS_OP_START                           0
96 #define DBUS_OP_SIZE                            2
97 typedef enum {
98         DBUS_OP_NOP = 0,
99         DBUS_OP_READ = 1,
100         DBUS_OP_WRITE = 2
101 } dbus_op_t;
102 typedef enum {
103         DBUS_STATUS_SUCCESS = 0,
104         DBUS_STATUS_FAILED = 2,
105         DBUS_STATUS_BUSY = 3
106 } dbus_status_t;
107 #define DBUS_DATA_START                         2
108 #define DBUS_DATA_SIZE                          34
109 #define DBUS_ADDRESS_START                      36
110
111 typedef enum {
112         RE_OK,
113         RE_FAIL,
114         RE_AGAIN
115 } riscv_error_t;
116
117 typedef enum slot {
118         SLOT0,
119         SLOT1,
120         SLOT_LAST,
121 } slot_t;
122
123 /*** Debug Bus registers. ***/
124
125 #define DMCONTROL                               0x10
126 #define DMCONTROL_INTERRUPT             (((uint64_t)1)<<33)
127 #define DMCONTROL_HALTNOT               (((uint64_t)1)<<32)
128 #define DMCONTROL_BUSERROR              (7<<19)
129 #define DMCONTROL_SERIAL                (3<<16)
130 #define DMCONTROL_AUTOINCREMENT (1<<15)
131 #define DMCONTROL_ACCESS                (7<<12)
132 #define DMCONTROL_HARTID                (0x3ff<<2)
133 #define DMCONTROL_NDRESET               (1<<1)
134 #define DMCONTROL_FULLRESET             1
135
136 #define DMINFO                                  0x11
137 #define DMINFO_ABUSSIZE                 (0x7fU<<25)
138 #define DMINFO_SERIALCOUNT              (0xf<<21)
139 #define DMINFO_ACCESS128                (1<<20)
140 #define DMINFO_ACCESS64                 (1<<19)
141 #define DMINFO_ACCESS32                 (1<<18)
142 #define DMINFO_ACCESS16                 (1<<17)
143 #define DMINFO_ACCESS8                  (1<<16)
144 #define DMINFO_DRAMSIZE                 (0x3f<<10)
145 #define DMINFO_AUTHENTICATED    (1<<5)
146 #define DMINFO_AUTHBUSY                 (1<<4)
147 #define DMINFO_AUTHTYPE                 (3<<2)
148 #define DMINFO_VERSION                  3
149
150 /*** Info about the core being debugged. ***/
151
152 #define DBUS_ADDRESS_UNKNOWN    0xffff
153
154 #define MAX_HWBPS                       16
155 #define DRAM_CACHE_SIZE         16
156
157 uint8_t ir_dtmcontrol[1] = {DTMCONTROL};
158 struct scan_field select_dtmcontrol = {
159         .in_value = NULL,
160         .out_value = ir_dtmcontrol
161 };
162 uint8_t ir_dbus[1] = {DBUS};
163 struct scan_field select_dbus = {
164         .in_value = NULL,
165         .out_value = ir_dbus
166 };
167 uint8_t ir_idcode[1] = {0x1};
168 struct scan_field select_idcode = {
169         .in_value = NULL,
170         .out_value = ir_idcode
171 };
172
173 struct trigger {
174         uint64_t address;
175         uint32_t length;
176         uint64_t mask;
177         uint64_t value;
178         bool read, write, execute;
179         int unique_id;
180 };
181
182 /* Wall-clock timeout for a command/access. Settable via RISC-V Target commands.*/
183 int riscv_command_timeout_sec = DEFAULT_COMMAND_TIMEOUT_SEC;
184
185 /* Wall-clock timeout after reset. Settable via RISC-V Target commands.*/
186 int riscv_reset_timeout_sec = DEFAULT_RESET_TIMEOUT_SEC;
187
188 bool riscv_prefer_sba;
189
190 /* In addition to the ones in the standard spec, we'll also expose additional
191  * CSRs in this list.
192  * The list is either NULL, or a series of ranges (inclusive), terminated with
193  * 1,0. */
194 struct {
195         uint16_t low, high;
196 } *expose_csr;
197
198 static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
199 {
200         struct scan_field field;
201         uint8_t in_value[4];
202         uint8_t out_value[4];
203
204         buf_set_u32(out_value, 0, 32, out);
205
206         jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
207
208         field.num_bits = 32;
209         field.out_value = out_value;
210         field.in_value = in_value;
211         jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
212
213         /* Always return to dbus. */
214         jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
215
216         int retval = jtag_execute_queue();
217         if (retval != ERROR_OK) {
218                 LOG_ERROR("failed jtag scan: %d", retval);
219                 return retval;
220         }
221
222         uint32_t in = buf_get_u32(field.in_value, 0, 32);
223         LOG_DEBUG("DTMCONTROL: 0x%x -> 0x%x", out, in);
224
225         return in;
226 }
227
228 static struct target_type *get_target_type(struct target *target)
229 {
230         riscv_info_t *info = (riscv_info_t *) target->arch_info;
231
232         if (!info) {
233                 LOG_ERROR("Target has not been initialized");
234                 return NULL;
235         }
236
237         switch (info->dtm_version) {
238                 case 0:
239                         return &riscv011_target;
240                 case 1:
241                         return &riscv013_target;
242                 default:
243                         LOG_ERROR("Unsupported DTM version: %d", info->dtm_version);
244                         return NULL;
245         }
246 }
247
248 static int riscv_init_target(struct command_context *cmd_ctx,
249                 struct target *target)
250 {
251         LOG_DEBUG("riscv_init_target()");
252         target->arch_info = calloc(1, sizeof(riscv_info_t));
253         if (!target->arch_info)
254                 return ERROR_FAIL;
255         riscv_info_t *info = (riscv_info_t *) target->arch_info;
256         riscv_info_init(target, info);
257         info->cmd_ctx = cmd_ctx;
258
259         select_dtmcontrol.num_bits = target->tap->ir_length;
260         select_dbus.num_bits = target->tap->ir_length;
261         select_idcode.num_bits = target->tap->ir_length;
262
263         riscv_semihosting_init(target);
264
265         return ERROR_OK;
266 }
267
268 static void riscv_deinit_target(struct target *target)
269 {
270         LOG_DEBUG("riscv_deinit_target()");
271         struct target_type *tt = get_target_type(target);
272         if (tt) {
273                 tt->deinit_target(target);
274                 riscv_info_t *info = (riscv_info_t *) target->arch_info;
275                 free(info);
276         }
277         target->arch_info = NULL;
278 }
279
280 static int oldriscv_halt(struct target *target)
281 {
282         struct target_type *tt = get_target_type(target);
283         return tt->halt(target);
284 }
285
286 static void trigger_from_breakpoint(struct trigger *trigger,
287                 const struct breakpoint *breakpoint)
288 {
289         trigger->address = breakpoint->address;
290         trigger->length = breakpoint->length;
291         trigger->mask = ~0LL;
292         trigger->read = false;
293         trigger->write = false;
294         trigger->execute = true;
295         /* unique_id is unique across both breakpoints and watchpoints. */
296         trigger->unique_id = breakpoint->unique_id;
297 }
298
299 static int maybe_add_trigger_t1(struct target *target, unsigned hartid,
300                 struct trigger *trigger, uint64_t tdata1)
301 {
302         RISCV_INFO(r);
303
304         const uint32_t bpcontrol_x = 1<<0;
305         const uint32_t bpcontrol_w = 1<<1;
306         const uint32_t bpcontrol_r = 1<<2;
307         const uint32_t bpcontrol_u = 1<<3;
308         const uint32_t bpcontrol_s = 1<<4;
309         const uint32_t bpcontrol_h = 1<<5;
310         const uint32_t bpcontrol_m = 1<<6;
311         const uint32_t bpcontrol_bpmatch = 0xf << 7;
312         const uint32_t bpcontrol_bpaction = 0xff << 11;
313
314         if (tdata1 & (bpcontrol_r | bpcontrol_w | bpcontrol_x)) {
315                 /* Trigger is already in use, presumably by user code. */
316                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
317         }
318
319         tdata1 = set_field(tdata1, bpcontrol_r, trigger->read);
320         tdata1 = set_field(tdata1, bpcontrol_w, trigger->write);
321         tdata1 = set_field(tdata1, bpcontrol_x, trigger->execute);
322         tdata1 = set_field(tdata1, bpcontrol_u,
323                         !!(r->misa[hartid] & (1 << ('U' - 'A'))));
324         tdata1 = set_field(tdata1, bpcontrol_s,
325                         !!(r->misa[hartid] & (1 << ('S' - 'A'))));
326         tdata1 = set_field(tdata1, bpcontrol_h,
327                         !!(r->misa[hartid] & (1 << ('H' - 'A'))));
328         tdata1 |= bpcontrol_m;
329         tdata1 = set_field(tdata1, bpcontrol_bpmatch, 0); /* exact match */
330         tdata1 = set_field(tdata1, bpcontrol_bpaction, 0); /* cause bp exception */
331
332         riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, tdata1);
333
334         riscv_reg_t tdata1_rb;
335         if (riscv_get_register_on_hart(target, &tdata1_rb, hartid,
336                                 GDB_REGNO_TDATA1) != ERROR_OK)
337                 return ERROR_FAIL;
338         LOG_DEBUG("tdata1=0x%" PRIx64, tdata1_rb);
339
340         if (tdata1 != tdata1_rb) {
341                 LOG_DEBUG("Trigger doesn't support what we need; After writing 0x%"
342                                 PRIx64 " to tdata1 it contains 0x%" PRIx64,
343                                 tdata1, tdata1_rb);
344                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, 0);
345                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
346         }
347
348         riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA2, trigger->address);
349
350         return ERROR_OK;
351 }
352
353 static int maybe_add_trigger_t2(struct target *target, unsigned hartid,
354                 struct trigger *trigger, uint64_t tdata1)
355 {
356         RISCV_INFO(r);
357
358         /* tselect is already set */
359         if (tdata1 & (MCONTROL_EXECUTE | MCONTROL_STORE | MCONTROL_LOAD)) {
360                 /* Trigger is already in use, presumably by user code. */
361                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
362         }
363
364         /* address/data match trigger */
365         tdata1 |= MCONTROL_DMODE(riscv_xlen(target));
366         tdata1 = set_field(tdata1, MCONTROL_ACTION,
367                         MCONTROL_ACTION_DEBUG_MODE);
368         tdata1 = set_field(tdata1, MCONTROL_MATCH, MCONTROL_MATCH_EQUAL);
369         tdata1 |= MCONTROL_M;
370         if (r->misa[hartid] & (1 << ('H' - 'A')))
371                 tdata1 |= MCONTROL_H;
372         if (r->misa[hartid] & (1 << ('S' - 'A')))
373                 tdata1 |= MCONTROL_S;
374         if (r->misa[hartid] & (1 << ('U' - 'A')))
375                 tdata1 |= MCONTROL_U;
376
377         if (trigger->execute)
378                 tdata1 |= MCONTROL_EXECUTE;
379         if (trigger->read)
380                 tdata1 |= MCONTROL_LOAD;
381         if (trigger->write)
382                 tdata1 |= MCONTROL_STORE;
383
384         riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, tdata1);
385
386         uint64_t tdata1_rb;
387         int result = riscv_get_register_on_hart(target, &tdata1_rb, hartid, GDB_REGNO_TDATA1);
388         if (result != ERROR_OK)
389                 return result;
390         LOG_DEBUG("tdata1=0x%" PRIx64, tdata1_rb);
391
392         if (tdata1 != tdata1_rb) {
393                 LOG_DEBUG("Trigger doesn't support what we need; After writing 0x%"
394                                 PRIx64 " to tdata1 it contains 0x%" PRIx64,
395                                 tdata1, tdata1_rb);
396                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, 0);
397                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
398         }
399
400         riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA2, trigger->address);
401
402         return ERROR_OK;
403 }
404
405 static int add_trigger(struct target *target, struct trigger *trigger)
406 {
407         RISCV_INFO(r);
408
409         if (riscv_enumerate_triggers(target) != ERROR_OK)
410                 return ERROR_FAIL;
411
412         /* In RTOS mode, we need to set the same trigger in the same slot on every
413          * hart, to keep up the illusion that each hart is a thread running on the
414          * same core. */
415
416         /* Otherwise, we just set the trigger on the one hart this target deals
417          * with. */
418
419         riscv_reg_t tselect[RISCV_MAX_HARTS];
420
421         int first_hart = -1;
422         for (int hartid = 0; hartid < riscv_count_harts(target); ++hartid) {
423                 if (!riscv_hart_enabled(target, hartid))
424                         continue;
425                 if (first_hart < 0)
426                         first_hart = hartid;
427                 int result = riscv_get_register_on_hart(target, &tselect[hartid],
428                                 hartid, GDB_REGNO_TSELECT);
429                 if (result != ERROR_OK)
430                         return result;
431         }
432         assert(first_hart >= 0);
433
434         unsigned int i;
435         for (i = 0; i < r->trigger_count[first_hart]; i++) {
436                 if (r->trigger_unique_id[i] != -1)
437                         continue;
438
439                 riscv_set_register_on_hart(target, first_hart, GDB_REGNO_TSELECT, i);
440
441                 uint64_t tdata1;
442                 int result = riscv_get_register_on_hart(target, &tdata1, first_hart,
443                                 GDB_REGNO_TDATA1);
444                 if (result != ERROR_OK)
445                         return result;
446                 int type = get_field(tdata1, MCONTROL_TYPE(riscv_xlen(target)));
447
448                 result = ERROR_OK;
449                 for (int hartid = first_hart; hartid < riscv_count_harts(target); ++hartid) {
450                         if (!riscv_hart_enabled(target, hartid))
451                                 continue;
452                         if (hartid > first_hart)
453                                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TSELECT, i);
454                         switch (type) {
455                                 case 1:
456                                         result = maybe_add_trigger_t1(target, hartid, trigger, tdata1);
457                                         break;
458                                 case 2:
459                                         result = maybe_add_trigger_t2(target, hartid, trigger, tdata1);
460                                         break;
461                                 default:
462                                         LOG_DEBUG("trigger %d has unknown type %d", i, type);
463                                         continue;
464                         }
465
466                         if (result != ERROR_OK)
467                                 continue;
468                 }
469
470                 if (result != ERROR_OK)
471                         continue;
472
473                 LOG_DEBUG("Using trigger %d (type %d) for bp %d", i, type,
474                                 trigger->unique_id);
475                 r->trigger_unique_id[i] = trigger->unique_id;
476                 break;
477         }
478
479         for (int hartid = first_hart; hartid < riscv_count_harts(target); ++hartid) {
480                 if (!riscv_hart_enabled(target, hartid))
481                         continue;
482                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TSELECT,
483                                 tselect[hartid]);
484         }
485
486         if (i >= r->trigger_count[first_hart]) {
487                 LOG_ERROR("Couldn't find an available hardware trigger.");
488                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
489         }
490
491         return ERROR_OK;
492 }
493
494 int riscv_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
495 {
496         if (breakpoint->type == BKPT_SOFT) {
497                 if (target_read_memory(target, breakpoint->address, breakpoint->length, 1,
498                                         breakpoint->orig_instr) != ERROR_OK) {
499                         LOG_ERROR("Failed to read original instruction at 0x%" TARGET_PRIxADDR,
500                                         breakpoint->address);
501                         return ERROR_FAIL;
502                 }
503
504                 int retval;
505                 if (breakpoint->length == 4)
506                         retval = target_write_u32(target, breakpoint->address, ebreak());
507                 else
508                         retval = target_write_u16(target, breakpoint->address, ebreak_c());
509                 if (retval != ERROR_OK) {
510                         LOG_ERROR("Failed to write %d-byte breakpoint instruction at 0x%"
511                                         TARGET_PRIxADDR, breakpoint->length, breakpoint->address);
512                         return ERROR_FAIL;
513                 }
514
515         } else if (breakpoint->type == BKPT_HARD) {
516                 struct trigger trigger;
517                 trigger_from_breakpoint(&trigger, breakpoint);
518                 int result = add_trigger(target, &trigger);
519                 if (result != ERROR_OK)
520                         return result;
521
522         } else {
523                 LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
524                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
525         }
526
527         breakpoint->set = true;
528
529         return ERROR_OK;
530 }
531
532 static int remove_trigger(struct target *target, struct trigger *trigger)
533 {
534         RISCV_INFO(r);
535
536         if (riscv_enumerate_triggers(target) != ERROR_OK)
537                 return ERROR_FAIL;
538
539         int first_hart = -1;
540         for (int hartid = 0; hartid < riscv_count_harts(target); ++hartid) {
541                 if (!riscv_hart_enabled(target, hartid))
542                         continue;
543                 if (first_hart < 0) {
544                         first_hart = hartid;
545                         break;
546                 }
547         }
548         assert(first_hart >= 0);
549
550         unsigned int i;
551         for (i = 0; i < r->trigger_count[first_hart]; i++) {
552                 if (r->trigger_unique_id[i] == trigger->unique_id)
553                         break;
554         }
555         if (i >= r->trigger_count[first_hart]) {
556                 LOG_ERROR("Couldn't find the hardware resources used by hardware "
557                                 "trigger.");
558                 return ERROR_FAIL;
559         }
560         LOG_DEBUG("Stop using resource %d for bp %d", i, trigger->unique_id);
561         for (int hartid = first_hart; hartid < riscv_count_harts(target); ++hartid) {
562                 if (!riscv_hart_enabled(target, hartid))
563                         continue;
564                 riscv_reg_t tselect;
565                 int result = riscv_get_register_on_hart(target, &tselect, hartid, GDB_REGNO_TSELECT);
566                 if (result != ERROR_OK)
567                         return result;
568                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TSELECT, i);
569                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, 0);
570                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TSELECT, tselect);
571         }
572         r->trigger_unique_id[i] = -1;
573
574         return ERROR_OK;
575 }
576
577 int riscv_remove_breakpoint(struct target *target,
578                 struct breakpoint *breakpoint)
579 {
580         if (breakpoint->type == BKPT_SOFT) {
581                 if (target_write_memory(target, breakpoint->address, breakpoint->length, 1,
582                                         breakpoint->orig_instr) != ERROR_OK) {
583                         LOG_ERROR("Failed to restore instruction for %d-byte breakpoint at "
584                                         "0x%" TARGET_PRIxADDR, breakpoint->length, breakpoint->address);
585                         return ERROR_FAIL;
586                 }
587
588         } else if (breakpoint->type == BKPT_HARD) {
589                 struct trigger trigger;
590                 trigger_from_breakpoint(&trigger, breakpoint);
591                 int result = remove_trigger(target, &trigger);
592                 if (result != ERROR_OK)
593                         return result;
594
595         } else {
596                 LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
597                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
598         }
599
600         breakpoint->set = false;
601
602         return ERROR_OK;
603 }
604
605 static void trigger_from_watchpoint(struct trigger *trigger,
606                 const struct watchpoint *watchpoint)
607 {
608         trigger->address = watchpoint->address;
609         trigger->length = watchpoint->length;
610         trigger->mask = watchpoint->mask;
611         trigger->value = watchpoint->value;
612         trigger->read = (watchpoint->rw == WPT_READ || watchpoint->rw == WPT_ACCESS);
613         trigger->write = (watchpoint->rw == WPT_WRITE || watchpoint->rw == WPT_ACCESS);
614         trigger->execute = false;
615         /* unique_id is unique across both breakpoints and watchpoints. */
616         trigger->unique_id = watchpoint->unique_id;
617 }
618
619 int riscv_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
620 {
621         struct trigger trigger;
622         trigger_from_watchpoint(&trigger, watchpoint);
623
624         int result = add_trigger(target, &trigger);
625         if (result != ERROR_OK)
626                 return result;
627         watchpoint->set = true;
628
629         return ERROR_OK;
630 }
631
632 int riscv_remove_watchpoint(struct target *target,
633                 struct watchpoint *watchpoint)
634 {
635         struct trigger trigger;
636         trigger_from_watchpoint(&trigger, watchpoint);
637
638         int result = remove_trigger(target, &trigger);
639         if (result != ERROR_OK)
640                 return result;
641         watchpoint->set = false;
642
643         return ERROR_OK;
644 }
645
646 static int oldriscv_step(struct target *target, int current, uint32_t address,
647                 int handle_breakpoints)
648 {
649         struct target_type *tt = get_target_type(target);
650         return tt->step(target, current, address, handle_breakpoints);
651 }
652
653 static int old_or_new_riscv_step(
654                 struct target *target,
655                 int current,
656                 target_addr_t address,
657                 int handle_breakpoints
658 ){
659         RISCV_INFO(r);
660         LOG_DEBUG("handle_breakpoints=%d", handle_breakpoints);
661         if (r->is_halted == NULL)
662                 return oldriscv_step(target, current, address, handle_breakpoints);
663         else
664                 return riscv_openocd_step(target, current, address, handle_breakpoints);
665 }
666
667
668 static int riscv_examine(struct target *target)
669 {
670         LOG_DEBUG("riscv_examine()");
671         if (target_was_examined(target)) {
672                 LOG_DEBUG("Target was already examined.");
673                 return ERROR_OK;
674         }
675
676         /* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
677
678         riscv_info_t *info = (riscv_info_t *) target->arch_info;
679         uint32_t dtmcontrol = dtmcontrol_scan(target, 0);
680         LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol);
681         info->dtm_version = get_field(dtmcontrol, DTMCONTROL_VERSION);
682         LOG_DEBUG("  version=0x%x", info->dtm_version);
683
684         struct target_type *tt = get_target_type(target);
685         if (tt == NULL)
686                 return ERROR_FAIL;
687
688         int result = tt->init_target(info->cmd_ctx, target);
689         if (result != ERROR_OK)
690                 return result;
691
692         return tt->examine(target);
693 }
694
695 static int oldriscv_poll(struct target *target)
696 {
697         struct target_type *tt = get_target_type(target);
698         return tt->poll(target);
699 }
700
701 static int old_or_new_riscv_poll(struct target *target)
702 {
703         RISCV_INFO(r);
704         if (r->is_halted == NULL)
705                 return oldriscv_poll(target);
706         else
707                 return riscv_openocd_poll(target);
708 }
709
710 static int old_or_new_riscv_halt(struct target *target)
711 {
712         RISCV_INFO(r);
713         if (r->is_halted == NULL)
714                 return oldriscv_halt(target);
715         else
716                 return riscv_openocd_halt(target);
717 }
718
719 static int riscv_assert_reset(struct target *target)
720 {
721         struct target_type *tt = get_target_type(target);
722         return tt->assert_reset(target);
723 }
724
725 static int riscv_deassert_reset(struct target *target)
726 {
727         LOG_DEBUG("RISCV DEASSERT RESET");
728         struct target_type *tt = get_target_type(target);
729         return tt->deassert_reset(target);
730 }
731
732
733 static int oldriscv_resume(struct target *target, int current, uint32_t address,
734                 int handle_breakpoints, int debug_execution)
735 {
736         struct target_type *tt = get_target_type(target);
737         return tt->resume(target, current, address, handle_breakpoints,
738                         debug_execution);
739 }
740
741 static int old_or_new_riscv_resume(
742                 struct target *target,
743                 int current,
744                 target_addr_t address,
745                 int handle_breakpoints,
746                 int debug_execution
747 ){
748         RISCV_INFO(r);
749         LOG_DEBUG("handle_breakpoints=%d", handle_breakpoints);
750         if (r->is_halted == NULL)
751                 return oldriscv_resume(target, current, address, handle_breakpoints, debug_execution);
752         else
753                 return riscv_openocd_resume(target, current, address, handle_breakpoints, debug_execution);
754 }
755
756 static int riscv_select_current_hart(struct target *target)
757 {
758         RISCV_INFO(r);
759         if (r->rtos_hartid != -1 && riscv_rtos_enabled(target))
760                 return riscv_set_current_hartid(target, r->rtos_hartid);
761         else
762                 return riscv_set_current_hartid(target, target->coreid);
763 }
764
765 static int riscv_read_memory(struct target *target, target_addr_t address,
766                 uint32_t size, uint32_t count, uint8_t *buffer)
767 {
768         if (riscv_select_current_hart(target) != ERROR_OK)
769                 return ERROR_FAIL;
770         struct target_type *tt = get_target_type(target);
771         return tt->read_memory(target, address, size, count, buffer);
772 }
773
774 static int riscv_write_memory(struct target *target, target_addr_t address,
775                 uint32_t size, uint32_t count, const uint8_t *buffer)
776 {
777         if (riscv_select_current_hart(target) != ERROR_OK)
778                 return ERROR_FAIL;
779         struct target_type *tt = get_target_type(target);
780         return tt->write_memory(target, address, size, count, buffer);
781 }
782
783 static int riscv_get_gdb_reg_list(struct target *target,
784                 struct reg **reg_list[], int *reg_list_size,
785                 enum target_register_class reg_class)
786 {
787         RISCV_INFO(r);
788         LOG_DEBUG("reg_class=%d", reg_class);
789         LOG_DEBUG("rtos_hartid=%d current_hartid=%d", r->rtos_hartid, r->current_hartid);
790
791         if (!target->reg_cache) {
792                 LOG_ERROR("Target not initialized. Return ERROR_FAIL.");
793                 return ERROR_FAIL;
794         }
795
796         if (riscv_select_current_hart(target) != ERROR_OK)
797                 return ERROR_FAIL;
798
799         switch (reg_class) {
800                 case REG_CLASS_GENERAL:
801                         *reg_list_size = 32;
802                         break;
803                 case REG_CLASS_ALL:
804                         *reg_list_size = GDB_REGNO_COUNT;
805                         break;
806                 default:
807                         LOG_ERROR("Unsupported reg_class: %d", reg_class);
808                         return ERROR_FAIL;
809         }
810
811         *reg_list = calloc(*reg_list_size, sizeof(struct reg *));
812         if (!*reg_list)
813                 return ERROR_FAIL;
814
815         for (int i = 0; i < *reg_list_size; i++) {
816                 assert(!target->reg_cache->reg_list[i].valid ||
817                                 target->reg_cache->reg_list[i].size > 0);
818                 (*reg_list)[i] = &target->reg_cache->reg_list[i];
819         }
820
821         return ERROR_OK;
822 }
823
824 static int riscv_arch_state(struct target *target)
825 {
826         struct target_type *tt = get_target_type(target);
827         return tt->arch_state(target);
828 }
829
830 /* Algorithm must end with a software breakpoint instruction. */
831 static int riscv_run_algorithm(struct target *target, int num_mem_params,
832                 struct mem_param *mem_params, int num_reg_params,
833                 struct reg_param *reg_params, target_addr_t entry_point,
834                 target_addr_t exit_point, int timeout_ms, void *arch_info)
835 {
836         riscv_info_t *info = (riscv_info_t *) target->arch_info;
837
838         if (num_mem_params > 0) {
839                 LOG_ERROR("Memory parameters are not supported for RISC-V algorithms.");
840                 return ERROR_FAIL;
841         }
842
843         if (target->state != TARGET_HALTED) {
844                 LOG_WARNING("target not halted");
845                 return ERROR_TARGET_NOT_HALTED;
846         }
847
848         /* Save registers */
849         struct reg *reg_pc = register_get_by_name(target->reg_cache, "pc", 1);
850         if (!reg_pc || reg_pc->type->get(reg_pc) != ERROR_OK)
851                 return ERROR_FAIL;
852         uint64_t saved_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size);
853
854         uint64_t saved_regs[32];
855         for (int i = 0; i < num_reg_params; i++) {
856                 LOG_DEBUG("save %s", reg_params[i].reg_name);
857                 struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, 0);
858                 if (!r) {
859                         LOG_ERROR("Couldn't find register named '%s'", reg_params[i].reg_name);
860                         return ERROR_FAIL;
861                 }
862
863                 if (r->size != reg_params[i].size) {
864                         LOG_ERROR("Register %s is %d bits instead of %d bits.",
865                                         reg_params[i].reg_name, r->size, reg_params[i].size);
866                         return ERROR_FAIL;
867                 }
868
869                 if (r->number > GDB_REGNO_XPR31) {
870                         LOG_ERROR("Only GPRs can be use as argument registers.");
871                         return ERROR_FAIL;
872                 }
873
874                 if (r->type->get(r) != ERROR_OK)
875                         return ERROR_FAIL;
876                 saved_regs[r->number] = buf_get_u64(r->value, 0, r->size);
877                 if (r->type->set(r, reg_params[i].value) != ERROR_OK)
878                         return ERROR_FAIL;
879         }
880
881
882         /* Disable Interrupts before attempting to run the algorithm. */
883         uint64_t current_mstatus;
884         uint8_t mstatus_bytes[8];
885
886         LOG_DEBUG("Disabling Interrupts");
887         struct reg *reg_mstatus = register_get_by_name(target->reg_cache,
888                         "mstatus", 1);
889         if (!reg_mstatus) {
890                 LOG_ERROR("Couldn't find mstatus!");
891                 return ERROR_FAIL;
892         }
893
894         reg_mstatus->type->get(reg_mstatus);
895         current_mstatus = buf_get_u64(reg_mstatus->value, 0, reg_mstatus->size);
896         uint64_t ie_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE;
897         buf_set_u64(mstatus_bytes, 0, info->xlen[0], set_field(current_mstatus,
898                                 ie_mask, 0));
899
900         reg_mstatus->type->set(reg_mstatus, mstatus_bytes);
901
902         /* Run algorithm */
903         LOG_DEBUG("resume at 0x%" TARGET_PRIxADDR, entry_point);
904         if (oldriscv_resume(target, 0, entry_point, 0, 0) != ERROR_OK)
905                 return ERROR_FAIL;
906
907         int64_t start = timeval_ms();
908         while (target->state != TARGET_HALTED) {
909                 LOG_DEBUG("poll()");
910                 int64_t now = timeval_ms();
911                 if (now - start > timeout_ms) {
912                         LOG_ERROR("Algorithm timed out after %d ms.", timeout_ms);
913                         LOG_ERROR("  now   = 0x%08x", (uint32_t) now);
914                         LOG_ERROR("  start = 0x%08x", (uint32_t) start);
915                         oldriscv_halt(target);
916                         old_or_new_riscv_poll(target);
917                         return ERROR_TARGET_TIMEOUT;
918                 }
919
920                 int result = old_or_new_riscv_poll(target);
921                 if (result != ERROR_OK)
922                         return result;
923         }
924
925         if (reg_pc->type->get(reg_pc) != ERROR_OK)
926                 return ERROR_FAIL;
927         uint64_t final_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size);
928         if (final_pc != exit_point) {
929                 LOG_ERROR("PC ended up at 0x%" PRIx64 " instead of 0x%"
930                                 TARGET_PRIxADDR, final_pc, exit_point);
931                 return ERROR_FAIL;
932         }
933
934         /* Restore Interrupts */
935         LOG_DEBUG("Restoring Interrupts");
936         buf_set_u64(mstatus_bytes, 0, info->xlen[0], current_mstatus);
937         reg_mstatus->type->set(reg_mstatus, mstatus_bytes);
938
939         /* Restore registers */
940         uint8_t buf[8];
941         buf_set_u64(buf, 0, info->xlen[0], saved_pc);
942         if (reg_pc->type->set(reg_pc, buf) != ERROR_OK)
943                 return ERROR_FAIL;
944
945         for (int i = 0; i < num_reg_params; i++) {
946                 LOG_DEBUG("restore %s", reg_params[i].reg_name);
947                 struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, 0);
948                 buf_set_u64(buf, 0, info->xlen[0], saved_regs[r->number]);
949                 if (r->type->set(r, buf) != ERROR_OK)
950                         return ERROR_FAIL;
951         }
952
953         return ERROR_OK;
954 }
955
956 /* Should run code on the target to perform CRC of
957 memory. Not yet implemented.
958 */
959
960 static int riscv_checksum_memory(struct target *target,
961                 target_addr_t address, uint32_t count,
962                 uint32_t *checksum)
963 {
964         *checksum = 0xFFFFFFFF;
965         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
966 }
967
968 /*** OpenOCD Helper Functions ***/
969
970 enum riscv_poll_hart {
971         RPH_NO_CHANGE,
972         RPH_DISCOVERED_HALTED,
973         RPH_DISCOVERED_RUNNING,
974         RPH_ERROR
975 };
976 static enum riscv_poll_hart riscv_poll_hart(struct target *target, int hartid)
977 {
978         RISCV_INFO(r);
979         if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
980                 return RPH_ERROR;
981
982         LOG_DEBUG("polling hart %d, target->state=%d", hartid, target->state);
983
984         /* If OpenOCD thinks we're running but this hart is halted then it's time
985          * to raise an event. */
986         bool halted = riscv_is_halted(target);
987         if (target->state != TARGET_HALTED && halted) {
988                 LOG_DEBUG("  triggered a halt");
989                 r->on_halt(target);
990                 return RPH_DISCOVERED_HALTED;
991         } else if (target->state != TARGET_RUNNING && !halted) {
992                 LOG_DEBUG("  triggered running");
993                 target->state = TARGET_RUNNING;
994                 return RPH_DISCOVERED_RUNNING;
995         }
996
997         return RPH_NO_CHANGE;
998 }
999
1000 /*** OpenOCD Interface ***/
1001 int riscv_openocd_poll(struct target *target)
1002 {
1003         LOG_DEBUG("polling all harts");
1004         int halted_hart = -1;
1005         if (riscv_rtos_enabled(target)) {
1006                 /* Check every hart for an event. */
1007                 for (int i = 0; i < riscv_count_harts(target); ++i) {
1008                         enum riscv_poll_hart out = riscv_poll_hart(target, i);
1009                         switch (out) {
1010                         case RPH_NO_CHANGE:
1011                         case RPH_DISCOVERED_RUNNING:
1012                                 continue;
1013                         case RPH_DISCOVERED_HALTED:
1014                                 halted_hart = i;
1015                                 break;
1016                         case RPH_ERROR:
1017                                 return ERROR_FAIL;
1018                         }
1019                 }
1020                 if (halted_hart == -1) {
1021                         LOG_DEBUG("  no harts just halted, target->state=%d", target->state);
1022                         return ERROR_OK;
1023                 }
1024                 LOG_DEBUG("  hart %d halted", halted_hart);
1025
1026                 /* If we're here then at least one hart triggered.  That means
1027                  * we want to go and halt _every_ hart in the system, as that's
1028                  * the invariant we hold here.  Some harts might have already
1029                  * halted (as we're either in single-step mode or they also
1030                  * triggered a breakpoint), so don't attempt to halt those
1031                  * harts. */
1032                 for (int i = 0; i < riscv_count_harts(target); ++i)
1033                         riscv_halt_one_hart(target, i);
1034         } else {
1035                 enum riscv_poll_hart out = riscv_poll_hart(target,
1036                                 riscv_current_hartid(target));
1037                 if (out == RPH_NO_CHANGE || out == RPH_DISCOVERED_RUNNING)
1038                         return ERROR_OK;
1039                 else if (out == RPH_ERROR)
1040                         return ERROR_FAIL;
1041
1042                 halted_hart = riscv_current_hartid(target);
1043                 LOG_DEBUG("  hart %d halted", halted_hart);
1044         }
1045
1046         target->state = TARGET_HALTED;
1047         switch (riscv_halt_reason(target, halted_hart)) {
1048         case RISCV_HALT_BREAKPOINT:
1049                 target->debug_reason = DBG_REASON_BREAKPOINT;
1050                 break;
1051         case RISCV_HALT_TRIGGER:
1052                 target->debug_reason = DBG_REASON_WATCHPOINT;
1053                 break;
1054         case RISCV_HALT_INTERRUPT:
1055                 target->debug_reason = DBG_REASON_DBGRQ;
1056                 break;
1057         case RISCV_HALT_SINGLESTEP:
1058                 target->debug_reason = DBG_REASON_SINGLESTEP;
1059                 break;
1060         case RISCV_HALT_UNKNOWN:
1061                 target->debug_reason = DBG_REASON_UNDEFINED;
1062                 break;
1063         case RISCV_HALT_ERROR:
1064                 return ERROR_FAIL;
1065         }
1066
1067         if (riscv_rtos_enabled(target)) {
1068                 target->rtos->current_threadid = halted_hart + 1;
1069                 target->rtos->current_thread = halted_hart + 1;
1070         }
1071
1072         target->state = TARGET_HALTED;
1073
1074         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1075                 int retval;
1076                 if (riscv_semihosting(target, &retval) != 0)
1077                         return retval;
1078         }
1079
1080         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1081         return ERROR_OK;
1082 }
1083
1084 int riscv_openocd_halt(struct target *target)
1085 {
1086         RISCV_INFO(r);
1087
1088         LOG_DEBUG("halting all harts");
1089
1090         int out = riscv_halt_all_harts(target);
1091         if (out != ERROR_OK) {
1092                 LOG_ERROR("Unable to halt all harts");
1093                 return out;
1094         }
1095
1096         register_cache_invalidate(target->reg_cache);
1097         if (riscv_rtos_enabled(target)) {
1098                 target->rtos->current_threadid = r->rtos_hartid + 1;
1099                 target->rtos->current_thread = r->rtos_hartid + 1;
1100         }
1101
1102         target->state = TARGET_HALTED;
1103         target->debug_reason = DBG_REASON_DBGRQ;
1104         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1105         return out;
1106 }
1107
1108 int riscv_openocd_resume(
1109                 struct target *target,
1110                 int current,
1111                 target_addr_t address,
1112                 int handle_breakpoints,
1113                 int debug_execution)
1114 {
1115         LOG_DEBUG("debug_reason=%d", target->debug_reason);
1116
1117         if (!current)
1118                 riscv_set_register(target, GDB_REGNO_PC, address);
1119
1120         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1121                 /* To be able to run off a trigger, disable all the triggers, step, and
1122                  * then resume as usual. */
1123                 struct watchpoint *watchpoint = target->watchpoints;
1124                 bool trigger_temporarily_cleared[RISCV_MAX_HWBPS] = {0};
1125
1126                 int i = 0;
1127                 int result = ERROR_OK;
1128                 while (watchpoint && result == ERROR_OK) {
1129                         LOG_DEBUG("watchpoint %d: set=%d", i, watchpoint->set);
1130                         trigger_temporarily_cleared[i] = watchpoint->set;
1131                         if (watchpoint->set)
1132                                 result = riscv_remove_watchpoint(target, watchpoint);
1133                         watchpoint = watchpoint->next;
1134                         i++;
1135                 }
1136
1137                 if (result == ERROR_OK)
1138                         result = riscv_step_rtos_hart(target);
1139
1140                 watchpoint = target->watchpoints;
1141                 i = 0;
1142                 while (watchpoint) {
1143                         LOG_DEBUG("watchpoint %d: cleared=%d", i, trigger_temporarily_cleared[i]);
1144                         if (trigger_temporarily_cleared[i]) {
1145                                 if (result == ERROR_OK)
1146                                         result = riscv_add_watchpoint(target, watchpoint);
1147                                 else
1148                                         riscv_add_watchpoint(target, watchpoint);
1149                         }
1150                         watchpoint = watchpoint->next;
1151                         i++;
1152                 }
1153
1154                 if (result != ERROR_OK)
1155                         return result;
1156         }
1157
1158         int out = riscv_resume_all_harts(target);
1159         if (out != ERROR_OK) {
1160                 LOG_ERROR("unable to resume all harts");
1161                 return out;
1162         }
1163
1164         register_cache_invalidate(target->reg_cache);
1165         target->state = TARGET_RUNNING;
1166         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1167         return out;
1168 }
1169
1170 int riscv_openocd_step(
1171                 struct target *target,
1172                 int current,
1173                 target_addr_t address,
1174                 int handle_breakpoints
1175 ) {
1176         LOG_DEBUG("stepping rtos hart");
1177
1178         if (!current)
1179                 riscv_set_register(target, GDB_REGNO_PC, address);
1180
1181         int out = riscv_step_rtos_hart(target);
1182         if (out != ERROR_OK) {
1183                 LOG_ERROR("unable to step rtos hart");
1184                 return out;
1185         }
1186
1187         register_cache_invalidate(target->reg_cache);
1188         target->state = TARGET_RUNNING;
1189         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1190         target->state = TARGET_HALTED;
1191         target->debug_reason = DBG_REASON_SINGLESTEP;
1192         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1193         return out;
1194 }
1195
1196 /* Command Handlers */
1197 COMMAND_HANDLER(riscv_set_command_timeout_sec)
1198 {
1199         if (CMD_ARGC != 1) {
1200                 LOG_ERROR("Command takes exactly 1 parameter");
1201                 return ERROR_COMMAND_SYNTAX_ERROR;
1202         }
1203         int timeout = atoi(CMD_ARGV[0]);
1204         if (timeout <= 0) {
1205                 LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
1206                 return ERROR_FAIL;
1207         }
1208
1209         riscv_command_timeout_sec = timeout;
1210
1211         return ERROR_OK;
1212 }
1213
1214 COMMAND_HANDLER(riscv_set_reset_timeout_sec)
1215 {
1216         if (CMD_ARGC != 1) {
1217                 LOG_ERROR("Command takes exactly 1 parameter");
1218                 return ERROR_COMMAND_SYNTAX_ERROR;
1219         }
1220         int timeout = atoi(CMD_ARGV[0]);
1221         if (timeout <= 0) {
1222                 LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
1223                 return ERROR_FAIL;
1224         }
1225
1226         riscv_reset_timeout_sec = timeout;
1227         return ERROR_OK;
1228 }
1229
1230 COMMAND_HANDLER(riscv_set_prefer_sba)
1231 {
1232         if (CMD_ARGC != 1) {
1233                 LOG_ERROR("Command takes exactly 1 parameter");
1234                 return ERROR_COMMAND_SYNTAX_ERROR;
1235         }
1236         COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_prefer_sba);
1237         return ERROR_OK;
1238 }
1239
1240 void parse_error(const char *string, char c, unsigned position)
1241 {
1242         char buf[position+2];
1243         for (unsigned i = 0; i < position; i++)
1244                 buf[i] = ' ';
1245         buf[position] = '^';
1246         buf[position + 1] = 0;
1247
1248         LOG_ERROR("Parse error at character %c in:", c);
1249         LOG_ERROR("%s", string);
1250         LOG_ERROR("%s", buf);
1251 }
1252
1253 COMMAND_HANDLER(riscv_set_expose_csrs)
1254 {
1255         if (CMD_ARGC != 1) {
1256                 LOG_ERROR("Command takes exactly 1 parameter");
1257                 return ERROR_COMMAND_SYNTAX_ERROR;
1258         }
1259
1260         for (unsigned pass = 0; pass < 2; pass++) {
1261                 unsigned range = 0;
1262                 unsigned low = 0;
1263                 bool parse_low = true;
1264                 unsigned high = 0;
1265                 for (unsigned i = 0; i == 0 || CMD_ARGV[0][i-1]; i++) {
1266                         char c = CMD_ARGV[0][i];
1267                         if (isspace(c)) {
1268                                 /* Ignore whitespace. */
1269                                 continue;
1270                         }
1271
1272                         if (parse_low) {
1273                                 if (isdigit(c)) {
1274                                         low *= 10;
1275                                         low += c - '0';
1276                                 } else if (c == '-') {
1277                                         parse_low = false;
1278                                 } else if (c == ',' || c == 0) {
1279                                         if (pass == 1) {
1280                                                 expose_csr[range].low = low;
1281                                                 expose_csr[range].high = low;
1282                                         }
1283                                         low = 0;
1284                                         range++;
1285                                 } else {
1286                                         parse_error(CMD_ARGV[0], c, i);
1287                                         return ERROR_COMMAND_SYNTAX_ERROR;
1288                                 }
1289
1290                         } else {
1291                                 if (isdigit(c)) {
1292                                         high *= 10;
1293                                         high += c - '0';
1294                                 } else if (c == ',' || c == 0) {
1295                                         parse_low = true;
1296                                         if (pass == 1) {
1297                                                 expose_csr[range].low = low;
1298                                                 expose_csr[range].high = high;
1299                                         }
1300                                         low = 0;
1301                                         high = 0;
1302                                         range++;
1303                                 } else {
1304                                         parse_error(CMD_ARGV[0], c, i);
1305                                         return ERROR_COMMAND_SYNTAX_ERROR;
1306                                 }
1307                         }
1308                 }
1309
1310                 if (pass == 0) {
1311                         if (expose_csr)
1312                                 free(expose_csr);
1313                         expose_csr = calloc(range + 2, sizeof(*expose_csr));
1314                 } else {
1315                         expose_csr[range].low = 1;
1316                         expose_csr[range].high = 0;
1317                 }
1318         }
1319         return ERROR_OK;
1320 }
1321
1322 COMMAND_HANDLER(riscv_authdata_read)
1323 {
1324         if (CMD_ARGC != 0) {
1325                 LOG_ERROR("Command takes no parameters");
1326                 return ERROR_COMMAND_SYNTAX_ERROR;
1327         }
1328
1329         struct target *target = get_current_target(CMD_CTX);
1330         if (!target) {
1331                 LOG_ERROR("target is NULL!");
1332                 return ERROR_FAIL;
1333         }
1334
1335         RISCV_INFO(r);
1336         if (!r) {
1337                 LOG_ERROR("riscv_info is NULL!");
1338                 return ERROR_FAIL;
1339         }
1340
1341         if (r->authdata_read) {
1342                 uint32_t value;
1343                 if (r->authdata_read(target, &value) != ERROR_OK)
1344                         return ERROR_FAIL;
1345                 command_print(CMD_CTX, "0x%" PRIx32, value);
1346                 return ERROR_OK;
1347         } else {
1348                 LOG_ERROR("authdata_read is not implemented for this target.");
1349                 return ERROR_FAIL;
1350         }
1351 }
1352
1353 COMMAND_HANDLER(riscv_authdata_write)
1354 {
1355         if (CMD_ARGC != 1) {
1356                 LOG_ERROR("Command takes exactly 1 argument");
1357                 return ERROR_COMMAND_SYNTAX_ERROR;
1358         }
1359
1360         struct target *target = get_current_target(CMD_CTX);
1361         RISCV_INFO(r);
1362
1363         uint32_t value;
1364         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], value);
1365
1366         if (r->authdata_write) {
1367                 return r->authdata_write(target, value);
1368         } else {
1369                 LOG_ERROR("authdata_write is not implemented for this target.");
1370                 return ERROR_FAIL;
1371         }
1372 }
1373
1374 COMMAND_HANDLER(riscv_dmi_read)
1375 {
1376         if (CMD_ARGC != 1) {
1377                 LOG_ERROR("Command takes 1 parameter");
1378                 return ERROR_COMMAND_SYNTAX_ERROR;
1379         }
1380
1381         struct target *target = get_current_target(CMD_CTX);
1382         if (!target) {
1383                 LOG_ERROR("target is NULL!");
1384                 return ERROR_FAIL;
1385         }
1386
1387         RISCV_INFO(r);
1388         if (!r) {
1389                 LOG_ERROR("riscv_info is NULL!");
1390                 return ERROR_FAIL;
1391         }
1392
1393         if (r->dmi_read) {
1394                 uint32_t address, value;
1395                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1396                 if (r->dmi_read(target, &value, address) != ERROR_OK)
1397                         return ERROR_FAIL;
1398                 command_print(CMD_CTX, "0x%" PRIx32, value);
1399                 return ERROR_OK;
1400         } else {
1401                 LOG_ERROR("dmi_read is not implemented for this target.");
1402                 return ERROR_FAIL;
1403         }
1404 }
1405
1406
1407 COMMAND_HANDLER(riscv_dmi_write)
1408 {
1409         if (CMD_ARGC != 2) {
1410                 LOG_ERROR("Command takes exactly 2 arguments");
1411                 return ERROR_COMMAND_SYNTAX_ERROR;
1412         }
1413
1414         struct target *target = get_current_target(CMD_CTX);
1415         RISCV_INFO(r);
1416
1417         uint32_t address, value;
1418         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1419         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1420
1421         if (r->dmi_write) {
1422                 return r->dmi_write(target, address, value);
1423         } else {
1424                 LOG_ERROR("dmi_write is not implemented for this target.");
1425                 return ERROR_FAIL;
1426         }
1427 }
1428
1429 static const struct command_registration riscv_exec_command_handlers[] = {
1430         {
1431                 .name = "set_command_timeout_sec",
1432                 .handler = riscv_set_command_timeout_sec,
1433                 .mode = COMMAND_ANY,
1434                 .usage = "riscv set_command_timeout_sec [sec]",
1435                 .help = "Set the wall-clock timeout (in seconds) for individual commands"
1436         },
1437         {
1438                 .name = "set_reset_timeout_sec",
1439                 .handler = riscv_set_reset_timeout_sec,
1440                 .mode = COMMAND_ANY,
1441                 .usage = "riscv set_reset_timeout_sec [sec]",
1442                 .help = "Set the wall-clock timeout (in seconds) after reset is deasserted"
1443         },
1444         {
1445                 .name = "set_prefer_sba",
1446                 .handler = riscv_set_prefer_sba,
1447                 .mode = COMMAND_ANY,
1448                 .usage = "riscv set_prefer_sba on|off",
1449                 .help = "When on, prefer to use System Bus Access to access memory. "
1450                         "When off, prefer to use the Program Buffer to access memory."
1451         },
1452         {
1453                 .name = "expose_csrs",
1454                 .handler = riscv_set_expose_csrs,
1455                 .mode = COMMAND_ANY,
1456                 .usage = "riscv expose_csrs n0[-m0][,n1[-m1]]...",
1457                 .help = "Configure a list of inclusive ranges for CSRs to expose in "
1458                                 "addition to the standard ones. This must be executed before "
1459                                 "`init`."
1460         },
1461         {
1462                 .name = "authdata_read",
1463                 .handler = riscv_authdata_read,
1464                 .mode = COMMAND_ANY,
1465                 .usage = "riscv authdata_read",
1466                 .help = "Return the 32-bit value read from authdata."
1467         },
1468         {
1469                 .name = "authdata_write",
1470                 .handler = riscv_authdata_write,
1471                 .mode = COMMAND_ANY,
1472                 .usage = "riscv authdata_write value",
1473                 .help = "Write the 32-bit value to authdata."
1474         },
1475         {
1476                 .name = "dmi_read",
1477                 .handler = riscv_dmi_read,
1478                 .mode = COMMAND_ANY,
1479                 .usage = "riscv dmi_read address",
1480                 .help = "Perform a 32-bit DMI read at address, returning the value."
1481         },
1482         {
1483                 .name = "dmi_write",
1484                 .handler = riscv_dmi_write,
1485                 .mode = COMMAND_ANY,
1486                 .usage = "riscv dmi_write address value",
1487                 .help = "Perform a 32-bit DMI write of value at address."
1488         },
1489         COMMAND_REGISTRATION_DONE
1490 };
1491
1492 extern __COMMAND_HANDLER(handle_common_semihosting_command);
1493 extern __COMMAND_HANDLER(handle_common_semihosting_fileio_command);
1494 extern __COMMAND_HANDLER(handle_common_semihosting_resumable_exit_command);
1495 extern __COMMAND_HANDLER(handle_common_semihosting_cmdline);
1496
1497 /*
1498  * To be noted that RISC-V targets use the same semihosting commands as
1499  * ARM targets.
1500  *
1501  * The main reason is compatibility with existing tools. For example the
1502  * Eclipse OpenOCD/SEGGER J-Link/QEMU plug-ins have several widgets to
1503  * configure semihosting, which generate commands like `arm semihosting
1504  * enable`.
1505  * A secondary reason is the fact that the protocol used is exactly the
1506  * one specified by ARM. If RISC-V will ever define its own semihosting
1507  * protocol, then a command like `riscv semihosting enable` will make
1508  * sense, but for now all semihosting commands are prefixed with `arm`.
1509  */
1510 static const struct command_registration arm_exec_command_handlers[] = {
1511         {
1512                 "semihosting",
1513                 .handler = handle_common_semihosting_command,
1514                 .mode = COMMAND_EXEC,
1515                 .usage = "['enable'|'disable']",
1516                 .help = "activate support for semihosting operations",
1517         },
1518         {
1519                 "semihosting_cmdline",
1520                 .handler = handle_common_semihosting_cmdline,
1521                 .mode = COMMAND_EXEC,
1522                 .usage = "arguments",
1523                 .help = "command line arguments to be passed to program",
1524         },
1525         {
1526                 "semihosting_fileio",
1527                 .handler = handle_common_semihosting_fileio_command,
1528                 .mode = COMMAND_EXEC,
1529                 .usage = "['enable'|'disable']",
1530                 .help = "activate support for semihosting fileio operations",
1531         },
1532         {
1533                 "semihosting_resexit",
1534                 .handler = handle_common_semihosting_resumable_exit_command,
1535                 .mode = COMMAND_EXEC,
1536                 .usage = "['enable'|'disable']",
1537                 .help = "activate support for semihosting resumable exit",
1538         },
1539         COMMAND_REGISTRATION_DONE
1540 };
1541
1542 const struct command_registration riscv_command_handlers[] = {
1543         {
1544                 .name = "riscv",
1545                 .mode = COMMAND_ANY,
1546                 .help = "RISC-V Command Group",
1547                 .usage = "",
1548                 .chain = riscv_exec_command_handlers
1549         },
1550         {
1551                 .name = "arm",
1552                 .mode = COMMAND_ANY,
1553                 .help = "ARM Command Group",
1554                 .usage = "",
1555                 .chain = arm_exec_command_handlers
1556         },
1557         COMMAND_REGISTRATION_DONE
1558 };
1559
1560 struct target_type riscv_target = {
1561         .name = "riscv",
1562
1563         .init_target = riscv_init_target,
1564         .deinit_target = riscv_deinit_target,
1565         .examine = riscv_examine,
1566
1567         /* poll current target status */
1568         .poll = old_or_new_riscv_poll,
1569
1570         .halt = old_or_new_riscv_halt,
1571         .resume = old_or_new_riscv_resume,
1572         .step = old_or_new_riscv_step,
1573
1574         .assert_reset = riscv_assert_reset,
1575         .deassert_reset = riscv_deassert_reset,
1576
1577         .read_memory = riscv_read_memory,
1578         .write_memory = riscv_write_memory,
1579
1580         .checksum_memory = riscv_checksum_memory,
1581
1582         .get_gdb_reg_list = riscv_get_gdb_reg_list,
1583
1584         .add_breakpoint = riscv_add_breakpoint,
1585         .remove_breakpoint = riscv_remove_breakpoint,
1586
1587         .add_watchpoint = riscv_add_watchpoint,
1588         .remove_watchpoint = riscv_remove_watchpoint,
1589
1590         .arch_state = riscv_arch_state,
1591
1592         .run_algorithm = riscv_run_algorithm,
1593
1594         .commands = riscv_command_handlers
1595 };
1596
1597 /*** RISC-V Interface ***/
1598
1599 void riscv_info_init(struct target *target, riscv_info_t *r)
1600 {
1601         memset(r, 0, sizeof(*r));
1602         r->dtm_version = 1;
1603         r->registers_initialized = false;
1604         r->current_hartid = target->coreid;
1605
1606         memset(r->trigger_unique_id, 0xff, sizeof(r->trigger_unique_id));
1607
1608         for (size_t h = 0; h < RISCV_MAX_HARTS; ++h) {
1609                 r->xlen[h] = -1;
1610
1611                 for (size_t e = 0; e < RISCV_MAX_REGISTERS; ++e)
1612                         r->valid_saved_registers[h][e] = false;
1613         }
1614 }
1615
1616 int riscv_halt_all_harts(struct target *target)
1617 {
1618         for (int i = 0; i < riscv_count_harts(target); ++i) {
1619                 if (!riscv_hart_enabled(target, i))
1620                         continue;
1621
1622                 riscv_halt_one_hart(target, i);
1623         }
1624
1625         return ERROR_OK;
1626 }
1627
1628 int riscv_halt_one_hart(struct target *target, int hartid)
1629 {
1630         RISCV_INFO(r);
1631         LOG_DEBUG("halting hart %d", hartid);
1632         if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
1633                 return ERROR_FAIL;
1634         if (riscv_is_halted(target)) {
1635                 LOG_DEBUG("  hart %d requested halt, but was already halted", hartid);
1636                 return ERROR_OK;
1637         }
1638
1639         return r->halt_current_hart(target);
1640 }
1641
1642 int riscv_resume_all_harts(struct target *target)
1643 {
1644         for (int i = 0; i < riscv_count_harts(target); ++i) {
1645                 if (!riscv_hart_enabled(target, i))
1646                         continue;
1647
1648                 riscv_resume_one_hart(target, i);
1649         }
1650
1651         riscv_invalidate_register_cache(target);
1652         return ERROR_OK;
1653 }
1654
1655 int riscv_resume_one_hart(struct target *target, int hartid)
1656 {
1657         RISCV_INFO(r);
1658         LOG_DEBUG("resuming hart %d", hartid);
1659         if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
1660                 return ERROR_FAIL;
1661         if (!riscv_is_halted(target)) {
1662                 LOG_DEBUG("  hart %d requested resume, but was already resumed", hartid);
1663                 return ERROR_OK;
1664         }
1665
1666         r->on_resume(target);
1667         return r->resume_current_hart(target);
1668 }
1669
1670 int riscv_step_rtos_hart(struct target *target)
1671 {
1672         RISCV_INFO(r);
1673         int hartid = r->current_hartid;
1674         if (riscv_rtos_enabled(target)) {
1675                 hartid = r->rtos_hartid;
1676                 if (hartid == -1) {
1677                         LOG_USER("GDB has asked me to step \"any\" thread, so I'm stepping hart 0.");
1678                         hartid = 0;
1679                 }
1680         }
1681         if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
1682                 return ERROR_FAIL;
1683         LOG_DEBUG("stepping hart %d", hartid);
1684
1685         if (!riscv_is_halted(target)) {
1686                 LOG_ERROR("Hart isn't halted before single step!");
1687                 return ERROR_FAIL;
1688         }
1689         riscv_invalidate_register_cache(target);
1690         r->on_step(target);
1691         if (r->step_current_hart(target) != ERROR_OK)
1692                 return ERROR_FAIL;
1693         riscv_invalidate_register_cache(target);
1694         r->on_halt(target);
1695         if (!riscv_is_halted(target)) {
1696                 LOG_ERROR("Hart was not halted after single step!");
1697                 return ERROR_FAIL;
1698         }
1699         return ERROR_OK;
1700 }
1701
1702 bool riscv_supports_extension(struct target *target, int hartid, char letter)
1703 {
1704         RISCV_INFO(r);
1705         unsigned num;
1706         if (letter >= 'a' && letter <= 'z')
1707                 num = letter - 'a';
1708         else if (letter >= 'A' && letter <= 'Z')
1709                 num = letter - 'A';
1710         else
1711                 return false;
1712         return r->misa[hartid] & (1 << num);
1713 }
1714
1715 int riscv_xlen(const struct target *target)
1716 {
1717         return riscv_xlen_of_hart(target, riscv_current_hartid(target));
1718 }
1719
1720 int riscv_xlen_of_hart(const struct target *target, int hartid)
1721 {
1722         RISCV_INFO(r);
1723         assert(r->xlen[hartid] != -1);
1724         return r->xlen[hartid];
1725 }
1726
1727 bool riscv_rtos_enabled(const struct target *target)
1728 {
1729         return target->rtos != NULL;
1730 }
1731
1732 int riscv_set_current_hartid(struct target *target, int hartid)
1733 {
1734         RISCV_INFO(r);
1735         if (!r->select_current_hart)
1736                 return ERROR_OK;
1737
1738         int previous_hartid = riscv_current_hartid(target);
1739         r->current_hartid = hartid;
1740         assert(riscv_hart_enabled(target, hartid));
1741         LOG_DEBUG("setting hartid to %d, was %d", hartid, previous_hartid);
1742         if (r->select_current_hart(target) != ERROR_OK)
1743                 return ERROR_FAIL;
1744
1745         /* This might get called during init, in which case we shouldn't be
1746          * setting up the register cache. */
1747         if (!target_was_examined(target))
1748                 return ERROR_OK;
1749
1750         /* Avoid invalidating the register cache all the time. */
1751         if (r->registers_initialized
1752                         && (!riscv_rtos_enabled(target) || (previous_hartid == hartid))
1753                         && target->reg_cache->reg_list[GDB_REGNO_ZERO].size == (unsigned)riscv_xlen(target)
1754                         && (!riscv_rtos_enabled(target) || (r->rtos_hartid != -1))) {
1755                 return ERROR_OK;
1756         } else
1757                 LOG_DEBUG("Initializing registers: xlen=%d", riscv_xlen(target));
1758
1759         riscv_invalidate_register_cache(target);
1760         return ERROR_OK;
1761 }
1762
1763 void riscv_invalidate_register_cache(struct target *target)
1764 {
1765         RISCV_INFO(r);
1766
1767         register_cache_invalidate(target->reg_cache);
1768         for (size_t i = 0; i < GDB_REGNO_COUNT; ++i) {
1769                 struct reg *reg = &target->reg_cache->reg_list[i];
1770                 reg->valid = false;
1771         }
1772
1773         r->registers_initialized = true;
1774 }
1775
1776 int riscv_current_hartid(const struct target *target)
1777 {
1778         RISCV_INFO(r);
1779         return r->current_hartid;
1780 }
1781
1782 void riscv_set_all_rtos_harts(struct target *target)
1783 {
1784         RISCV_INFO(r);
1785         r->rtos_hartid = -1;
1786 }
1787
1788 void riscv_set_rtos_hartid(struct target *target, int hartid)
1789 {
1790         LOG_DEBUG("setting RTOS hartid %d", hartid);
1791         RISCV_INFO(r);
1792         r->rtos_hartid = hartid;
1793 }
1794
1795 int riscv_count_harts(struct target *target)
1796 {
1797         if (target == NULL)
1798                 return 1;
1799         RISCV_INFO(r);
1800         if (r == NULL)
1801                 return 1;
1802         return r->hart_count;
1803 }
1804
1805 bool riscv_has_register(struct target *target, int hartid, int regid)
1806 {
1807         return 1;
1808 }
1809
1810 /**
1811  * This function is called when the debug user wants to change the value of a
1812  * register. The new value may be cached, and may not be written until the hart
1813  * is resumed. */
1814 int riscv_set_register(struct target *target, enum gdb_regno r, riscv_reg_t v)
1815 {
1816         return riscv_set_register_on_hart(target, riscv_current_hartid(target), r, v);
1817 }
1818
1819 int riscv_set_register_on_hart(struct target *target, int hartid,
1820                 enum gdb_regno regid, uint64_t value)
1821 {
1822         RISCV_INFO(r);
1823         LOG_DEBUG("[%d] %s <- %" PRIx64, hartid, gdb_regno_name(regid), value);
1824         assert(r->set_register);
1825         return r->set_register(target, hartid, regid, value);
1826 }
1827
1828 int riscv_get_register(struct target *target, riscv_reg_t *value,
1829                 enum gdb_regno r)
1830 {
1831         return riscv_get_register_on_hart(target, value,
1832                         riscv_current_hartid(target), r);
1833 }
1834
1835 int riscv_get_register_on_hart(struct target *target, riscv_reg_t *value,
1836                 int hartid, enum gdb_regno regid)
1837 {
1838         RISCV_INFO(r);
1839         int result = r->get_register(target, value, hartid, regid);
1840         LOG_DEBUG("[%d] %s: %" PRIx64, hartid, gdb_regno_name(regid), *value);
1841         return result;
1842 }
1843
1844 bool riscv_is_halted(struct target *target)
1845 {
1846         RISCV_INFO(r);
1847         assert(r->is_halted);
1848         return r->is_halted(target);
1849 }
1850
1851 enum riscv_halt_reason riscv_halt_reason(struct target *target, int hartid)
1852 {
1853         RISCV_INFO(r);
1854         if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
1855                 return RISCV_HALT_ERROR;
1856         if (!riscv_is_halted(target)) {
1857                 LOG_ERROR("Hart is not halted!");
1858                 return RISCV_HALT_UNKNOWN;
1859         }
1860         return r->halt_reason(target);
1861 }
1862
1863 size_t riscv_debug_buffer_size(struct target *target)
1864 {
1865         RISCV_INFO(r);
1866         return r->debug_buffer_size[riscv_current_hartid(target)];
1867 }
1868
1869 int riscv_write_debug_buffer(struct target *target, int index, riscv_insn_t insn)
1870 {
1871         RISCV_INFO(r);
1872         r->write_debug_buffer(target, index, insn);
1873         return ERROR_OK;
1874 }
1875
1876 riscv_insn_t riscv_read_debug_buffer(struct target *target, int index)
1877 {
1878         RISCV_INFO(r);
1879         return r->read_debug_buffer(target, index);
1880 }
1881
1882 int riscv_execute_debug_buffer(struct target *target)
1883 {
1884         RISCV_INFO(r);
1885         return r->execute_debug_buffer(target);
1886 }
1887
1888 void riscv_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d)
1889 {
1890         RISCV_INFO(r);
1891         r->fill_dmi_write_u64(target, buf, a, d);
1892 }
1893
1894 void riscv_fill_dmi_read_u64(struct target *target, char *buf, int a)
1895 {
1896         RISCV_INFO(r);
1897         r->fill_dmi_read_u64(target, buf, a);
1898 }
1899
1900 void riscv_fill_dmi_nop_u64(struct target *target, char *buf)
1901 {
1902         RISCV_INFO(r);
1903         r->fill_dmi_nop_u64(target, buf);
1904 }
1905
1906 int riscv_dmi_write_u64_bits(struct target *target)
1907 {
1908         RISCV_INFO(r);
1909         return r->dmi_write_u64_bits(target);
1910 }
1911
1912 bool riscv_hart_enabled(struct target *target, int hartid)
1913 {
1914         /* FIXME: Add a hart mask to the RTOS. */
1915         if (riscv_rtos_enabled(target))
1916                 return hartid < riscv_count_harts(target);
1917
1918         return hartid == target->coreid;
1919 }
1920
1921 /**
1922  * Count triggers, and initialize trigger_count for each hart.
1923  * trigger_count is initialized even if this function fails to discover
1924  * something.
1925  * Disable any hardware triggers that have dmode set. We can't have set them
1926  * ourselves. Maybe they're left over from some killed debug session.
1927  * */
1928 int riscv_enumerate_triggers(struct target *target)
1929 {
1930         RISCV_INFO(r);
1931
1932         if (r->triggers_enumerated)
1933                 return ERROR_OK;
1934
1935         r->triggers_enumerated = true;  /* At the very least we tried. */
1936
1937         for (int hartid = 0; hartid < riscv_count_harts(target); ++hartid) {
1938                 if (!riscv_hart_enabled(target, hartid))
1939                         continue;
1940
1941                 riscv_reg_t tselect;
1942                 int result = riscv_get_register_on_hart(target, &tselect, hartid,
1943                                 GDB_REGNO_TSELECT);
1944                 if (result != ERROR_OK)
1945                         return result;
1946
1947                 for (unsigned t = 0; t < RISCV_MAX_TRIGGERS; ++t) {
1948                         r->trigger_count[hartid] = t;
1949
1950                         riscv_set_register_on_hart(target, hartid, GDB_REGNO_TSELECT, t);
1951                         uint64_t tselect_rb;
1952                         result = riscv_get_register_on_hart(target, &tselect_rb, hartid,
1953                                         GDB_REGNO_TSELECT);
1954                         if (result != ERROR_OK)
1955                                 return result;
1956                         /* Mask off the top bit, which is used as tdrmode in old
1957                          * implementations. */
1958                         tselect_rb &= ~(1ULL << (riscv_xlen(target)-1));
1959                         if (tselect_rb != t)
1960                                 break;
1961                         uint64_t tdata1;
1962                         result = riscv_get_register_on_hart(target, &tdata1, hartid,
1963                                         GDB_REGNO_TDATA1);
1964                         if (result != ERROR_OK)
1965                                 return result;
1966
1967                         int type = get_field(tdata1, MCONTROL_TYPE(riscv_xlen(target)));
1968                         switch (type) {
1969                                 case 1:
1970                                         /* On these older cores we don't support software using
1971                                          * triggers. */
1972                                         riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, 0);
1973                                         break;
1974                                 case 2:
1975                                         if (tdata1 & MCONTROL_DMODE(riscv_xlen(target)))
1976                                                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TDATA1, 0);
1977                                         break;
1978                         }
1979                 }
1980
1981                 riscv_set_register_on_hart(target, hartid, GDB_REGNO_TSELECT, tselect);
1982
1983                 LOG_INFO("[%d] Found %d triggers", hartid, r->trigger_count[hartid]);
1984         }
1985
1986         return ERROR_OK;
1987 }
1988
1989 const char *gdb_regno_name(enum gdb_regno regno)
1990 {
1991         static char buf[32];
1992
1993         switch (regno) {
1994                 case GDB_REGNO_ZERO:
1995                         return "zero";
1996                 case GDB_REGNO_S0:
1997                         return "s0";
1998                 case GDB_REGNO_S1:
1999                         return "s1";
2000                 case GDB_REGNO_PC:
2001                         return "pc";
2002                 case GDB_REGNO_FPR0:
2003                         return "fpr0";
2004                 case GDB_REGNO_FPR31:
2005                         return "fpr31";
2006                 case GDB_REGNO_CSR0:
2007                         return "csr0";
2008                 case GDB_REGNO_TSELECT:
2009                         return "tselect";
2010                 case GDB_REGNO_TDATA1:
2011                         return "tdata1";
2012                 case GDB_REGNO_TDATA2:
2013                         return "tdata2";
2014                 case GDB_REGNO_MISA:
2015                         return "misa";
2016                 case GDB_REGNO_DPC:
2017                         return "dpc";
2018                 case GDB_REGNO_DCSR:
2019                         return "dcsr";
2020                 case GDB_REGNO_DSCRATCH:
2021                         return "dscratch";
2022                 case GDB_REGNO_MSTATUS:
2023                         return "mstatus";
2024                 case GDB_REGNO_PRIV:
2025                         return "priv";
2026                 default:
2027                         if (regno <= GDB_REGNO_XPR31)
2028                                 sprintf(buf, "x%d", regno - GDB_REGNO_ZERO);
2029                         else if (regno >= GDB_REGNO_CSR0 && regno <= GDB_REGNO_CSR4095)
2030                                 sprintf(buf, "csr%d", regno - GDB_REGNO_CSR0);
2031                         else if (regno >= GDB_REGNO_FPR0 && regno <= GDB_REGNO_FPR31)
2032                                 sprintf(buf, "f%d", regno - GDB_REGNO_FPR0);
2033                         else
2034                                 sprintf(buf, "gdb_regno_%d", regno);
2035                         return buf;
2036         }
2037 }
2038
2039 static int register_get(struct reg *reg)
2040 {
2041         struct target *target = (struct target *) reg->arch_info;
2042         uint64_t value;
2043         int result = riscv_get_register(target, &value, reg->number);
2044         if (result != ERROR_OK)
2045                 return result;
2046         buf_set_u64(reg->value, 0, reg->size, value);
2047         return ERROR_OK;
2048 }
2049
2050 static int register_set(struct reg *reg, uint8_t *buf)
2051 {
2052         struct target *target = (struct target *) reg->arch_info;
2053
2054         uint64_t value = buf_get_u64(buf, 0, reg->size);
2055
2056         LOG_DEBUG("write 0x%" PRIx64 " to %s", value, reg->name);
2057         struct reg *r = &target->reg_cache->reg_list[reg->number];
2058         r->valid = true;
2059         memcpy(r->value, buf, (r->size + 7) / 8);
2060
2061         riscv_set_register(target, reg->number, value);
2062         return ERROR_OK;
2063 }
2064
2065 static struct reg_arch_type riscv_reg_arch_type = {
2066         .get = register_get,
2067         .set = register_set
2068 };
2069
2070 struct csr_info {
2071         unsigned number;
2072         const char *name;
2073 };
2074
2075 static int cmp_csr_info(const void *p1, const void *p2)
2076 {
2077         return (int) (((struct csr_info *)p1)->number) - (int) (((struct csr_info *)p2)->number);
2078 }
2079
2080 int riscv_init_registers(struct target *target)
2081 {
2082         RISCV_INFO(info);
2083
2084         if (target->reg_cache) {
2085                 if (target->reg_cache->reg_list)
2086                         free(target->reg_cache->reg_list);
2087                 free(target->reg_cache);
2088         }
2089
2090         target->reg_cache = calloc(1, sizeof(*target->reg_cache));
2091         target->reg_cache->name = "RISC-V Registers";
2092         target->reg_cache->num_regs = GDB_REGNO_COUNT;
2093
2094         target->reg_cache->reg_list = calloc(GDB_REGNO_COUNT, sizeof(struct reg));
2095
2096         const unsigned int max_reg_name_len = 12;
2097         if (info->reg_names)
2098                 free(info->reg_names);
2099         info->reg_names = calloc(1, GDB_REGNO_COUNT * max_reg_name_len);
2100         char *reg_name = info->reg_names;
2101
2102         static struct reg_feature feature_cpu = {
2103                 .name = "org.gnu.gdb.riscv.cpu"
2104         };
2105         static struct reg_feature feature_fpu = {
2106                 .name = "org.gnu.gdb.riscv.fpu"
2107         };
2108         static struct reg_feature feature_csr = {
2109                 .name = "org.gnu.gdb.riscv.csr"
2110         };
2111         static struct reg_feature feature_virtual = {
2112                 .name = "org.gnu.gdb.riscv.virtual"
2113         };
2114
2115         static struct reg_data_type type_ieee_single = {
2116                 .type = REG_TYPE_IEEE_SINGLE,
2117                 .id = "ieee_single"
2118         };
2119         static struct reg_data_type type_ieee_double = {
2120                 .type = REG_TYPE_IEEE_DOUBLE,
2121                 .id = "ieee_double"
2122         };
2123         struct csr_info csr_info[] = {
2124 #define DECLARE_CSR(name, number) { number, #name },
2125 #include "encoding.h"
2126 #undef DECLARE_CSR
2127         };
2128         /* encoding.h does not contain the registers in sorted order. */
2129         qsort(csr_info, DIM(csr_info), sizeof(*csr_info), cmp_csr_info);
2130         unsigned csr_info_index = 0;
2131
2132         /* When gdb request register N, gdb_get_register_packet() assumes that this
2133          * is register at index N in reg_list. So if there are certain registers
2134          * that don't exist, we need to leave holes in the list (or renumber, but
2135          * it would be nice not to have yet another set of numbers to translate
2136          * between). */
2137         for (uint32_t number = 0; number < GDB_REGNO_COUNT; number++) {
2138                 struct reg *r = &target->reg_cache->reg_list[number];
2139                 r->dirty = false;
2140                 r->valid = false;
2141                 r->exist = true;
2142                 r->type = &riscv_reg_arch_type;
2143                 r->arch_info = target;
2144                 r->number = number;
2145                 r->size = riscv_xlen(target);
2146                 /* r->size is set in riscv_invalidate_register_cache, maybe because the
2147                  * target is in theory allowed to change XLEN on us. But I expect a lot
2148                  * of other things to break in that case as well. */
2149                 if (number <= GDB_REGNO_XPR31) {
2150                         r->caller_save = true;
2151                         switch (number) {
2152                                 case GDB_REGNO_ZERO:
2153                                         r->name = "zero";
2154                                         break;
2155                                 case GDB_REGNO_RA:
2156                                         r->name = "ra";
2157                                         break;
2158                                 case GDB_REGNO_SP:
2159                                         r->name = "sp";
2160                                         break;
2161                                 case GDB_REGNO_GP:
2162                                         r->name = "gp";
2163                                         break;
2164                                 case GDB_REGNO_TP:
2165                                         r->name = "tp";
2166                                         break;
2167                                 case GDB_REGNO_T0:
2168                                         r->name = "t0";
2169                                         break;
2170                                 case GDB_REGNO_T1:
2171                                         r->name = "t1";
2172                                         break;
2173                                 case GDB_REGNO_T2:
2174                                         r->name = "t2";
2175                                         break;
2176                                 case GDB_REGNO_FP:
2177                                         r->name = "fp";
2178                                         break;
2179                                 case GDB_REGNO_S1:
2180                                         r->name = "s1";
2181                                         break;
2182                                 case GDB_REGNO_A0:
2183                                         r->name = "a0";
2184                                         break;
2185                                 case GDB_REGNO_A1:
2186                                         r->name = "a1";
2187                                         break;
2188                                 case GDB_REGNO_A2:
2189                                         r->name = "a2";
2190                                         break;
2191                                 case GDB_REGNO_A3:
2192                                         r->name = "a3";
2193                                         break;
2194                                 case GDB_REGNO_A4:
2195                                         r->name = "a4";
2196                                         break;
2197                                 case GDB_REGNO_A5:
2198                                         r->name = "a5";
2199                                         break;
2200                                 case GDB_REGNO_A6:
2201                                         r->name = "a6";
2202                                         break;
2203                                 case GDB_REGNO_A7:
2204                                         r->name = "a7";
2205                                         break;
2206                                 case GDB_REGNO_S2:
2207                                         r->name = "s2";
2208                                         break;
2209                                 case GDB_REGNO_S3:
2210                                         r->name = "s3";
2211                                         break;
2212                                 case GDB_REGNO_S4:
2213                                         r->name = "s4";
2214                                         break;
2215                                 case GDB_REGNO_S5:
2216                                         r->name = "s5";
2217                                         break;
2218                                 case GDB_REGNO_S6:
2219                                         r->name = "s6";
2220                                         break;
2221                                 case GDB_REGNO_S7:
2222                                         r->name = "s7";
2223                                         break;
2224                                 case GDB_REGNO_S8:
2225                                         r->name = "s8";
2226                                         break;
2227                                 case GDB_REGNO_S9:
2228                                         r->name = "s9";
2229                                         break;
2230                                 case GDB_REGNO_S10:
2231                                         r->name = "s10";
2232                                         break;
2233                                 case GDB_REGNO_S11:
2234                                         r->name = "s11";
2235                                         break;
2236                                 case GDB_REGNO_T3:
2237                                         r->name = "t3";
2238                                         break;
2239                                 case GDB_REGNO_T4:
2240                                         r->name = "t4";
2241                                         break;
2242                                 case GDB_REGNO_T5:
2243                                         r->name = "t5";
2244                                         break;
2245                                 case GDB_REGNO_T6:
2246                                         r->name = "t6";
2247                                         break;
2248                         }
2249                         r->group = "general";
2250                         r->feature = &feature_cpu;
2251                 } else if (number == GDB_REGNO_PC) {
2252                         r->caller_save = true;
2253                         sprintf(reg_name, "pc");
2254                         r->group = "general";
2255                         r->feature = &feature_cpu;
2256                 } else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
2257                         r->caller_save = true;
2258                         if (riscv_supports_extension(target, riscv_current_hartid(target),
2259                                                 'D')) {
2260                                 r->reg_data_type = &type_ieee_double;
2261                                 r->size = 64;
2262                         } else if (riscv_supports_extension(target,
2263                                                 riscv_current_hartid(target), 'F')) {
2264                                 r->reg_data_type = &type_ieee_single;
2265                                 r->size = 32;
2266                         } else {
2267                                 r->exist = false;
2268                         }
2269                         switch (number) {
2270                                 case GDB_REGNO_FT0:
2271                                         r->name = "ft0";
2272                                         break;
2273                                 case GDB_REGNO_FT1:
2274                                         r->name = "ft1";
2275                                         break;
2276                                 case GDB_REGNO_FT2:
2277                                         r->name = "ft2";
2278                                         break;
2279                                 case GDB_REGNO_FT3:
2280                                         r->name = "ft3";
2281                                         break;
2282                                 case GDB_REGNO_FT4:
2283                                         r->name = "ft4";
2284                                         break;
2285                                 case GDB_REGNO_FT5:
2286                                         r->name = "ft5";
2287                                         break;
2288                                 case GDB_REGNO_FT6:
2289                                         r->name = "ft6";
2290                                         break;
2291                                 case GDB_REGNO_FT7:
2292                                         r->name = "ft7";
2293                                         break;
2294                                 case GDB_REGNO_FS0:
2295                                         r->name = "fs0";
2296                                         break;
2297                                 case GDB_REGNO_FS1:
2298                                         r->name = "fs1";
2299                                         break;
2300                                 case GDB_REGNO_FA0:
2301                                         r->name = "fa0";
2302                                         break;
2303                                 case GDB_REGNO_FA1:
2304                                         r->name = "fa1";
2305                                         break;
2306                                 case GDB_REGNO_FA2:
2307                                         r->name = "fa2";
2308                                         break;
2309                                 case GDB_REGNO_FA3:
2310                                         r->name = "fa3";
2311                                         break;
2312                                 case GDB_REGNO_FA4:
2313                                         r->name = "fa4";
2314                                         break;
2315                                 case GDB_REGNO_FA5:
2316                                         r->name = "fa5";
2317                                         break;
2318                                 case GDB_REGNO_FA6:
2319                                         r->name = "fa6";
2320                                         break;
2321                                 case GDB_REGNO_FA7:
2322                                         r->name = "fa7";
2323                                         break;
2324                                 case GDB_REGNO_FS2:
2325                                         r->name = "fs2";
2326                                         break;
2327                                 case GDB_REGNO_FS3:
2328                                         r->name = "fs3";
2329                                         break;
2330                                 case GDB_REGNO_FS4:
2331                                         r->name = "fs4";
2332                                         break;
2333                                 case GDB_REGNO_FS5:
2334                                         r->name = "fs5";
2335                                         break;
2336                                 case GDB_REGNO_FS6:
2337                                         r->name = "fs6";
2338                                         break;
2339                                 case GDB_REGNO_FS7:
2340                                         r->name = "fs7";
2341                                         break;
2342                                 case GDB_REGNO_FS8:
2343                                         r->name = "fs8";
2344                                         break;
2345                                 case GDB_REGNO_FS9:
2346                                         r->name = "fs9";
2347                                         break;
2348                                 case GDB_REGNO_FS10:
2349                                         r->name = "fs10";
2350                                         break;
2351                                 case GDB_REGNO_FS11:
2352                                         r->name = "fs11";
2353                                         break;
2354                                 case GDB_REGNO_FT8:
2355                                         r->name = "ft8";
2356                                         break;
2357                                 case GDB_REGNO_FT9:
2358                                         r->name = "ft9";
2359                                         break;
2360                                 case GDB_REGNO_FT10:
2361                                         r->name = "ft10";
2362                                         break;
2363                                 case GDB_REGNO_FT11:
2364                                         r->name = "ft11";
2365                                         break;
2366                         }
2367                         r->group = "float";
2368                         r->feature = &feature_fpu;
2369                 } else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
2370                         r->group = "csr";
2371                         r->feature = &feature_csr;
2372                         unsigned csr_number = number - GDB_REGNO_CSR0;
2373
2374                         while (csr_info[csr_info_index].number < csr_number &&
2375                                         csr_info_index < DIM(csr_info) - 1) {
2376                                 csr_info_index++;
2377                         }
2378                         if (csr_info[csr_info_index].number == csr_number) {
2379                                 r->name = csr_info[csr_info_index].name;
2380                         } else {
2381                                 sprintf(reg_name, "csr%d", csr_number);
2382                                 /* Assume unnamed registers don't exist, unless we have some
2383                                  * configuration that tells us otherwise. That's important
2384                                  * because eg. Eclipse crashes if a target has too many
2385                                  * registers, and apparently has no way of only showing a
2386                                  * subset of registers in any case. */
2387                                 r->exist = false;
2388                         }
2389
2390                         switch (csr_number) {
2391                                 case CSR_FFLAGS:
2392                                 case CSR_FRM:
2393                                 case CSR_FCSR:
2394                                         r->exist = riscv_supports_extension(target,
2395                                                         riscv_current_hartid(target), 'F');
2396                                         r->group = "float";
2397                                         r->feature = &feature_fpu;
2398                                         break;
2399                                 case CSR_SSTATUS:
2400                                 case CSR_STVEC:
2401                                 case CSR_SIP:
2402                                 case CSR_SIE:
2403                                 case CSR_SCOUNTEREN:
2404                                 case CSR_SSCRATCH:
2405                                 case CSR_SEPC:
2406                                 case CSR_SCAUSE:
2407                                 case CSR_STVAL:
2408                                 case CSR_SATP:
2409                                         r->exist = riscv_supports_extension(target,
2410                                                         riscv_current_hartid(target), 'S');
2411                                         break;
2412                                 case CSR_MEDELEG:
2413                                 case CSR_MIDELEG:
2414                                         /* "In systems with only M-mode, or with both M-mode and
2415                                          * U-mode but without U-mode trap support, the medeleg and
2416                                          * mideleg registers should not exist." */
2417                                         r->exist = riscv_supports_extension(target, riscv_current_hartid(target), 'S') ||
2418                                                 riscv_supports_extension(target, riscv_current_hartid(target), 'N');
2419                                         break;
2420
2421                                 case CSR_CYCLEH:
2422                                 case CSR_TIMEH:
2423                                 case CSR_INSTRETH:
2424                                 case CSR_HPMCOUNTER3H:
2425                                 case CSR_HPMCOUNTER4H:
2426                                 case CSR_HPMCOUNTER5H:
2427                                 case CSR_HPMCOUNTER6H:
2428                                 case CSR_HPMCOUNTER7H:
2429                                 case CSR_HPMCOUNTER8H:
2430                                 case CSR_HPMCOUNTER9H:
2431                                 case CSR_HPMCOUNTER10H:
2432                                 case CSR_HPMCOUNTER11H:
2433                                 case CSR_HPMCOUNTER12H:
2434                                 case CSR_HPMCOUNTER13H:
2435                                 case CSR_HPMCOUNTER14H:
2436                                 case CSR_HPMCOUNTER15H:
2437                                 case CSR_HPMCOUNTER16H:
2438                                 case CSR_HPMCOUNTER17H:
2439                                 case CSR_HPMCOUNTER18H:
2440                                 case CSR_HPMCOUNTER19H:
2441                                 case CSR_HPMCOUNTER20H:
2442                                 case CSR_HPMCOUNTER21H:
2443                                 case CSR_HPMCOUNTER22H:
2444                                 case CSR_HPMCOUNTER23H:
2445                                 case CSR_HPMCOUNTER24H:
2446                                 case CSR_HPMCOUNTER25H:
2447                                 case CSR_HPMCOUNTER26H:
2448                                 case CSR_HPMCOUNTER27H:
2449                                 case CSR_HPMCOUNTER28H:
2450                                 case CSR_HPMCOUNTER29H:
2451                                 case CSR_HPMCOUNTER30H:
2452                                 case CSR_HPMCOUNTER31H:
2453                                 case CSR_MCYCLEH:
2454                                 case CSR_MINSTRETH:
2455                                 case CSR_MHPMCOUNTER3H:
2456                                 case CSR_MHPMCOUNTER4H:
2457                                 case CSR_MHPMCOUNTER5H:
2458                                 case CSR_MHPMCOUNTER6H:
2459                                 case CSR_MHPMCOUNTER7H:
2460                                 case CSR_MHPMCOUNTER8H:
2461                                 case CSR_MHPMCOUNTER9H:
2462                                 case CSR_MHPMCOUNTER10H:
2463                                 case CSR_MHPMCOUNTER11H:
2464                                 case CSR_MHPMCOUNTER12H:
2465                                 case CSR_MHPMCOUNTER13H:
2466                                 case CSR_MHPMCOUNTER14H:
2467                                 case CSR_MHPMCOUNTER15H:
2468                                 case CSR_MHPMCOUNTER16H:
2469                                 case CSR_MHPMCOUNTER17H:
2470                                 case CSR_MHPMCOUNTER18H:
2471                                 case CSR_MHPMCOUNTER19H:
2472                                 case CSR_MHPMCOUNTER20H:
2473                                 case CSR_MHPMCOUNTER21H:
2474                                 case CSR_MHPMCOUNTER22H:
2475                                 case CSR_MHPMCOUNTER23H:
2476                                 case CSR_MHPMCOUNTER24H:
2477                                 case CSR_MHPMCOUNTER25H:
2478                                 case CSR_MHPMCOUNTER26H:
2479                                 case CSR_MHPMCOUNTER27H:
2480                                 case CSR_MHPMCOUNTER28H:
2481                                 case CSR_MHPMCOUNTER29H:
2482                                 case CSR_MHPMCOUNTER30H:
2483                                 case CSR_MHPMCOUNTER31H:
2484                                         r->exist = riscv_xlen(target) == 32;
2485                                         break;
2486                         }
2487
2488                         if (!r->exist && expose_csr) {
2489                                 for (unsigned i = 0; expose_csr[i].low <= expose_csr[i].high; i++) {
2490                                         if (csr_number >= expose_csr[i].low && csr_number <= expose_csr[i].high) {
2491                                                 LOG_INFO("Exposing additional CSR %d", csr_number);
2492                                                 r->exist = true;
2493                                                 break;
2494                                         }
2495                                 }
2496                         }
2497
2498                 } else if (number == GDB_REGNO_PRIV) {
2499                         sprintf(reg_name, "priv");
2500                         r->group = "general";
2501                         r->feature = &feature_virtual;
2502                         r->size = 8;
2503                 }
2504                 if (reg_name[0])
2505                         r->name = reg_name;
2506                 reg_name += strlen(reg_name) + 1;
2507                 assert(reg_name < info->reg_names + GDB_REGNO_COUNT * max_reg_name_len);
2508                 r->value = &info->reg_cache_values[number];
2509         }
2510
2511         return ERROR_OK;
2512 }