]> git.sur5r.net Git - openocd/blob - src/target/target.c
target/mem_ap: generic mem-ap target
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112
113 static struct target_type *target_types[] = {
114         &arm7tdmi_target,
115         &arm9tdmi_target,
116         &arm920t_target,
117         &arm720t_target,
118         &arm966e_target,
119         &arm946e_target,
120         &arm926ejs_target,
121         &fa526_target,
122         &feroceon_target,
123         &dragonite_target,
124         &xscale_target,
125         &cortexm_target,
126         &cortexa_target,
127         &cortexr4_target,
128         &arm11_target,
129         &ls1_sap_target,
130         &mips_m4k_target,
131         &avr_target,
132         &dsp563xx_target,
133         &dsp5680xx_target,
134         &testee_target,
135         &avr32_ap7k_target,
136         &hla_target,
137         &nds32_v2_target,
138         &nds32_v3_target,
139         &nds32_v3m_target,
140         &or1k_target,
141         &quark_x10xx_target,
142         &quark_d20xx_target,
143         &stm8_target,
144         &riscv_target,
145 #if BUILD_TARGET64
146         &aarch64_target,
147 #endif
148         &mem_ap_target,
149         NULL,
150 };
151
152 struct target *all_targets;
153 static struct target_event_callback *target_event_callbacks;
154 static struct target_timer_callback *target_timer_callbacks;
155 LIST_HEAD(target_reset_callback_list);
156 LIST_HEAD(target_trace_callback_list);
157 static const int polling_interval = 100;
158
159 static const Jim_Nvp nvp_assert[] = {
160         { .name = "assert", NVP_ASSERT },
161         { .name = "deassert", NVP_DEASSERT },
162         { .name = "T", NVP_ASSERT },
163         { .name = "F", NVP_DEASSERT },
164         { .name = "t", NVP_ASSERT },
165         { .name = "f", NVP_DEASSERT },
166         { .name = NULL, .value = -1 }
167 };
168
169 static const Jim_Nvp nvp_error_target[] = {
170         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
171         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
172         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
173         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
174         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
175         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
176         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
177         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
178         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
179         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
180         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
181         { .value = -1, .name = NULL }
182 };
183
184 static const char *target_strerror_safe(int err)
185 {
186         const Jim_Nvp *n;
187
188         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
189         if (n->name == NULL)
190                 return "unknown";
191         else
192                 return n->name;
193 }
194
195 static const Jim_Nvp nvp_target_event[] = {
196
197         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
198         { .value = TARGET_EVENT_HALTED, .name = "halted" },
199         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
200         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
201         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
202
203         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
204         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
205
206         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
207         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
208         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
209         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
210         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
211         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
212         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
213         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
214
215         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
216         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
217
218         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
219         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
220
221         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
222         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
223
224         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
225         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
226
227         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
228         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
229
230         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
231
232         { .name = NULL, .value = -1 }
233 };
234
235 static const Jim_Nvp nvp_target_state[] = {
236         { .name = "unknown", .value = TARGET_UNKNOWN },
237         { .name = "running", .value = TARGET_RUNNING },
238         { .name = "halted",  .value = TARGET_HALTED },
239         { .name = "reset",   .value = TARGET_RESET },
240         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
241         { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_target_debug_reason[] = {
245         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
246         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
247         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
248         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
249         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
250         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
251         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
252         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
253         { .name = NULL, .value = -1 },
254 };
255
256 static const Jim_Nvp nvp_target_endian[] = {
257         { .name = "big",    .value = TARGET_BIG_ENDIAN },
258         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
259         { .name = "be",     .value = TARGET_BIG_ENDIAN },
260         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
261         { .name = NULL,     .value = -1 },
262 };
263
264 static const Jim_Nvp nvp_reset_modes[] = {
265         { .name = "unknown", .value = RESET_UNKNOWN },
266         { .name = "run"    , .value = RESET_RUN },
267         { .name = "halt"   , .value = RESET_HALT },
268         { .name = "init"   , .value = RESET_INIT },
269         { .name = NULL     , .value = -1 },
270 };
271
272 const char *debug_reason_name(struct target *t)
273 {
274         const char *cp;
275
276         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
277                         t->debug_reason)->name;
278         if (!cp) {
279                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
280                 cp = "(*BUG*unknown*BUG*)";
281         }
282         return cp;
283 }
284
285 const char *target_state_name(struct target *t)
286 {
287         const char *cp;
288         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
289         if (!cp) {
290                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
291                 cp = "(*BUG*unknown*BUG*)";
292         }
293
294         if (!target_was_examined(t) && t->defer_examine)
295                 cp = "examine deferred";
296
297         return cp;
298 }
299
300 const char *target_event_name(enum target_event event)
301 {
302         const char *cp;
303         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
304         if (!cp) {
305                 LOG_ERROR("Invalid target event: %d", (int)(event));
306                 cp = "(*BUG*unknown*BUG*)";
307         }
308         return cp;
309 }
310
311 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
312 {
313         const char *cp;
314         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
315         if (!cp) {
316                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
317                 cp = "(*BUG*unknown*BUG*)";
318         }
319         return cp;
320 }
321
322 /* determine the number of the new target */
323 static int new_target_number(void)
324 {
325         struct target *t;
326         int x;
327
328         /* number is 0 based */
329         x = -1;
330         t = all_targets;
331         while (t) {
332                 if (x < t->target_number)
333                         x = t->target_number;
334                 t = t->next;
335         }
336         return x + 1;
337 }
338
339 /* read a uint64_t from a buffer in target memory endianness */
340 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
341 {
342         if (target->endianness == TARGET_LITTLE_ENDIAN)
343                 return le_to_h_u64(buffer);
344         else
345                 return be_to_h_u64(buffer);
346 }
347
348 /* read a uint32_t from a buffer in target memory endianness */
349 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
350 {
351         if (target->endianness == TARGET_LITTLE_ENDIAN)
352                 return le_to_h_u32(buffer);
353         else
354                 return be_to_h_u32(buffer);
355 }
356
357 /* read a uint24_t from a buffer in target memory endianness */
358 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
359 {
360         if (target->endianness == TARGET_LITTLE_ENDIAN)
361                 return le_to_h_u24(buffer);
362         else
363                 return be_to_h_u24(buffer);
364 }
365
366 /* read a uint16_t from a buffer in target memory endianness */
367 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
368 {
369         if (target->endianness == TARGET_LITTLE_ENDIAN)
370                 return le_to_h_u16(buffer);
371         else
372                 return be_to_h_u16(buffer);
373 }
374
375 /* read a uint8_t from a buffer in target memory endianness */
376 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
377 {
378         return *buffer & 0x0ff;
379 }
380
381 /* write a uint64_t to a buffer in target memory endianness */
382 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
383 {
384         if (target->endianness == TARGET_LITTLE_ENDIAN)
385                 h_u64_to_le(buffer, value);
386         else
387                 h_u64_to_be(buffer, value);
388 }
389
390 /* write a uint32_t to a buffer in target memory endianness */
391 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
392 {
393         if (target->endianness == TARGET_LITTLE_ENDIAN)
394                 h_u32_to_le(buffer, value);
395         else
396                 h_u32_to_be(buffer, value);
397 }
398
399 /* write a uint24_t to a buffer in target memory endianness */
400 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402         if (target->endianness == TARGET_LITTLE_ENDIAN)
403                 h_u24_to_le(buffer, value);
404         else
405                 h_u24_to_be(buffer, value);
406 }
407
408 /* write a uint16_t to a buffer in target memory endianness */
409 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
410 {
411         if (target->endianness == TARGET_LITTLE_ENDIAN)
412                 h_u16_to_le(buffer, value);
413         else
414                 h_u16_to_be(buffer, value);
415 }
416
417 /* write a uint8_t to a buffer in target memory endianness */
418 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
419 {
420         *buffer = value;
421 }
422
423 /* write a uint64_t array to a buffer in target memory endianness */
424 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
429 }
430
431 /* write a uint32_t array to a buffer in target memory endianness */
432 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
433 {
434         uint32_t i;
435         for (i = 0; i < count; i++)
436                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
437 }
438
439 /* write a uint16_t array to a buffer in target memory endianness */
440 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
441 {
442         uint32_t i;
443         for (i = 0; i < count; i++)
444                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
445 }
446
447 /* write a uint64_t array to a buffer in target memory endianness */
448 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
449 {
450         uint32_t i;
451         for (i = 0; i < count; i++)
452                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
453 }
454
455 /* write a uint32_t array to a buffer in target memory endianness */
456 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
457 {
458         uint32_t i;
459         for (i = 0; i < count; i++)
460                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
461 }
462
463 /* write a uint16_t array to a buffer in target memory endianness */
464 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
465 {
466         uint32_t i;
467         for (i = 0; i < count; i++)
468                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
469 }
470
471 /* return a pointer to a configured target; id is name or number */
472 struct target *get_target(const char *id)
473 {
474         struct target *target;
475
476         /* try as tcltarget name */
477         for (target = all_targets; target; target = target->next) {
478                 if (target_name(target) == NULL)
479                         continue;
480                 if (strcmp(id, target_name(target)) == 0)
481                         return target;
482         }
483
484         /* It's OK to remove this fallback sometime after August 2010 or so */
485
486         /* no match, try as number */
487         unsigned num;
488         if (parse_uint(id, &num) != ERROR_OK)
489                 return NULL;
490
491         for (target = all_targets; target; target = target->next) {
492                 if (target->target_number == (int)num) {
493                         LOG_WARNING("use '%s' as target identifier, not '%u'",
494                                         target_name(target), num);
495                         return target;
496                 }
497         }
498
499         return NULL;
500 }
501
502 /* returns a pointer to the n-th configured target */
503 struct target *get_target_by_num(int num)
504 {
505         struct target *target = all_targets;
506
507         while (target) {
508                 if (target->target_number == num)
509                         return target;
510                 target = target->next;
511         }
512
513         return NULL;
514 }
515
516 struct target *get_current_target(struct command_context *cmd_ctx)
517 {
518         struct target *target = cmd_ctx->current_target_override
519                 ? cmd_ctx->current_target_override
520                 : cmd_ctx->current_target;
521
522         if (target == NULL) {
523                 LOG_ERROR("BUG: current_target out of bounds");
524                 exit(-1);
525         }
526
527         return target;
528 }
529
530 int target_poll(struct target *target)
531 {
532         int retval;
533
534         /* We can't poll until after examine */
535         if (!target_was_examined(target)) {
536                 /* Fail silently lest we pollute the log */
537                 return ERROR_FAIL;
538         }
539
540         retval = target->type->poll(target);
541         if (retval != ERROR_OK)
542                 return retval;
543
544         if (target->halt_issued) {
545                 if (target->state == TARGET_HALTED)
546                         target->halt_issued = false;
547                 else {
548                         int64_t t = timeval_ms() - target->halt_issued_time;
549                         if (t > DEFAULT_HALT_TIMEOUT) {
550                                 target->halt_issued = false;
551                                 LOG_INFO("Halt timed out, wake up GDB.");
552                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
553                         }
554                 }
555         }
556
557         return ERROR_OK;
558 }
559
560 int target_halt(struct target *target)
561 {
562         int retval;
563         /* We can't poll until after examine */
564         if (!target_was_examined(target)) {
565                 LOG_ERROR("Target not examined yet");
566                 return ERROR_FAIL;
567         }
568
569         retval = target->type->halt(target);
570         if (retval != ERROR_OK)
571                 return retval;
572
573         target->halt_issued = true;
574         target->halt_issued_time = timeval_ms();
575
576         return ERROR_OK;
577 }
578
579 /**
580  * Make the target (re)start executing using its saved execution
581  * context (possibly with some modifications).
582  *
583  * @param target Which target should start executing.
584  * @param current True to use the target's saved program counter instead
585  *      of the address parameter
586  * @param address Optionally used as the program counter.
587  * @param handle_breakpoints True iff breakpoints at the resumption PC
588  *      should be skipped.  (For example, maybe execution was stopped by
589  *      such a breakpoint, in which case it would be counterprodutive to
590  *      let it re-trigger.
591  * @param debug_execution False if all working areas allocated by OpenOCD
592  *      should be released and/or restored to their original contents.
593  *      (This would for example be true to run some downloaded "helper"
594  *      algorithm code, which resides in one such working buffer and uses
595  *      another for data storage.)
596  *
597  * @todo Resolve the ambiguity about what the "debug_execution" flag
598  * signifies.  For example, Target implementations don't agree on how
599  * it relates to invalidation of the register cache, or to whether
600  * breakpoints and watchpoints should be enabled.  (It would seem wrong
601  * to enable breakpoints when running downloaded "helper" algorithms
602  * (debug_execution true), since the breakpoints would be set to match
603  * target firmware being debugged, not the helper algorithm.... and
604  * enabling them could cause such helpers to malfunction (for example,
605  * by overwriting data with a breakpoint instruction.  On the other
606  * hand the infrastructure for running such helpers might use this
607  * procedure but rely on hardware breakpoint to detect termination.)
608  */
609 int target_resume(struct target *target, int current, target_addr_t address,
610                 int handle_breakpoints, int debug_execution)
611 {
612         int retval;
613
614         /* We can't poll until after examine */
615         if (!target_was_examined(target)) {
616                 LOG_ERROR("Target not examined yet");
617                 return ERROR_FAIL;
618         }
619
620         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
621
622         /* note that resume *must* be asynchronous. The CPU can halt before
623          * we poll. The CPU can even halt at the current PC as a result of
624          * a software breakpoint being inserted by (a bug?) the application.
625          */
626         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
627         if (retval != ERROR_OK)
628                 return retval;
629
630         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
631
632         return retval;
633 }
634
635 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
636 {
637         char buf[100];
638         int retval;
639         Jim_Nvp *n;
640         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
641         if (n->name == NULL) {
642                 LOG_ERROR("invalid reset mode");
643                 return ERROR_FAIL;
644         }
645
646         struct target *target;
647         for (target = all_targets; target; target = target->next)
648                 target_call_reset_callbacks(target, reset_mode);
649
650         /* disable polling during reset to make reset event scripts
651          * more predictable, i.e. dr/irscan & pathmove in events will
652          * not have JTAG operations injected into the middle of a sequence.
653          */
654         bool save_poll = jtag_poll_get_enabled();
655
656         jtag_poll_set_enabled(false);
657
658         sprintf(buf, "ocd_process_reset %s", n->name);
659         retval = Jim_Eval(cmd_ctx->interp, buf);
660
661         jtag_poll_set_enabled(save_poll);
662
663         if (retval != JIM_OK) {
664                 Jim_MakeErrorMessage(cmd_ctx->interp);
665                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
666                 return ERROR_FAIL;
667         }
668
669         /* We want any events to be processed before the prompt */
670         retval = target_call_timer_callbacks_now();
671
672         for (target = all_targets; target; target = target->next) {
673                 target->type->check_reset(target);
674                 target->running_alg = false;
675         }
676
677         return retval;
678 }
679
680 static int identity_virt2phys(struct target *target,
681                 target_addr_t virtual, target_addr_t *physical)
682 {
683         *physical = virtual;
684         return ERROR_OK;
685 }
686
687 static int no_mmu(struct target *target, int *enabled)
688 {
689         *enabled = 0;
690         return ERROR_OK;
691 }
692
693 static int default_examine(struct target *target)
694 {
695         target_set_examined(target);
696         return ERROR_OK;
697 }
698
699 /* no check by default */
700 static int default_check_reset(struct target *target)
701 {
702         return ERROR_OK;
703 }
704
705 int target_examine_one(struct target *target)
706 {
707         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
708
709         int retval = target->type->examine(target);
710         if (retval != ERROR_OK)
711                 return retval;
712
713         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
714
715         return ERROR_OK;
716 }
717
718 static int jtag_enable_callback(enum jtag_event event, void *priv)
719 {
720         struct target *target = priv;
721
722         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
723                 return ERROR_OK;
724
725         jtag_unregister_event_callback(jtag_enable_callback, target);
726
727         return target_examine_one(target);
728 }
729
730 /* Targets that correctly implement init + examine, i.e.
731  * no communication with target during init:
732  *
733  * XScale
734  */
735 int target_examine(void)
736 {
737         int retval = ERROR_OK;
738         struct target *target;
739
740         for (target = all_targets; target; target = target->next) {
741                 /* defer examination, but don't skip it */
742                 if (!target->tap->enabled) {
743                         jtag_register_event_callback(jtag_enable_callback,
744                                         target);
745                         continue;
746                 }
747
748                 if (target->defer_examine)
749                         continue;
750
751                 retval = target_examine_one(target);
752                 if (retval != ERROR_OK)
753                         return retval;
754         }
755         return retval;
756 }
757
758 const char *target_type_name(struct target *target)
759 {
760         return target->type->name;
761 }
762
763 static int target_soft_reset_halt(struct target *target)
764 {
765         if (!target_was_examined(target)) {
766                 LOG_ERROR("Target not examined yet");
767                 return ERROR_FAIL;
768         }
769         if (!target->type->soft_reset_halt) {
770                 LOG_ERROR("Target %s does not support soft_reset_halt",
771                                 target_name(target));
772                 return ERROR_FAIL;
773         }
774         return target->type->soft_reset_halt(target);
775 }
776
777 /**
778  * Downloads a target-specific native code algorithm to the target,
779  * and executes it.  * Note that some targets may need to set up, enable,
780  * and tear down a breakpoint (hard or * soft) to detect algorithm
781  * termination, while others may support  lower overhead schemes where
782  * soft breakpoints embedded in the algorithm automatically terminate the
783  * algorithm.
784  *
785  * @param target used to run the algorithm
786  * @param arch_info target-specific description of the algorithm.
787  */
788 int target_run_algorithm(struct target *target,
789                 int num_mem_params, struct mem_param *mem_params,
790                 int num_reg_params, struct reg_param *reg_param,
791                 uint32_t entry_point, uint32_t exit_point,
792                 int timeout_ms, void *arch_info)
793 {
794         int retval = ERROR_FAIL;
795
796         if (!target_was_examined(target)) {
797                 LOG_ERROR("Target not examined yet");
798                 goto done;
799         }
800         if (!target->type->run_algorithm) {
801                 LOG_ERROR("Target type '%s' does not support %s",
802                                 target_type_name(target), __func__);
803                 goto done;
804         }
805
806         target->running_alg = true;
807         retval = target->type->run_algorithm(target,
808                         num_mem_params, mem_params,
809                         num_reg_params, reg_param,
810                         entry_point, exit_point, timeout_ms, arch_info);
811         target->running_alg = false;
812
813 done:
814         return retval;
815 }
816
817 /**
818  * Executes a target-specific native code algorithm and leaves it running.
819  *
820  * @param target used to run the algorithm
821  * @param arch_info target-specific description of the algorithm.
822  */
823 int target_start_algorithm(struct target *target,
824                 int num_mem_params, struct mem_param *mem_params,
825                 int num_reg_params, struct reg_param *reg_params,
826                 uint32_t entry_point, uint32_t exit_point,
827                 void *arch_info)
828 {
829         int retval = ERROR_FAIL;
830
831         if (!target_was_examined(target)) {
832                 LOG_ERROR("Target not examined yet");
833                 goto done;
834         }
835         if (!target->type->start_algorithm) {
836                 LOG_ERROR("Target type '%s' does not support %s",
837                                 target_type_name(target), __func__);
838                 goto done;
839         }
840         if (target->running_alg) {
841                 LOG_ERROR("Target is already running an algorithm");
842                 goto done;
843         }
844
845         target->running_alg = true;
846         retval = target->type->start_algorithm(target,
847                         num_mem_params, mem_params,
848                         num_reg_params, reg_params,
849                         entry_point, exit_point, arch_info);
850
851 done:
852         return retval;
853 }
854
855 /**
856  * Waits for an algorithm started with target_start_algorithm() to complete.
857  *
858  * @param target used to run the algorithm
859  * @param arch_info target-specific description of the algorithm.
860  */
861 int target_wait_algorithm(struct target *target,
862                 int num_mem_params, struct mem_param *mem_params,
863                 int num_reg_params, struct reg_param *reg_params,
864                 uint32_t exit_point, int timeout_ms,
865                 void *arch_info)
866 {
867         int retval = ERROR_FAIL;
868
869         if (!target->type->wait_algorithm) {
870                 LOG_ERROR("Target type '%s' does not support %s",
871                                 target_type_name(target), __func__);
872                 goto done;
873         }
874         if (!target->running_alg) {
875                 LOG_ERROR("Target is not running an algorithm");
876                 goto done;
877         }
878
879         retval = target->type->wait_algorithm(target,
880                         num_mem_params, mem_params,
881                         num_reg_params, reg_params,
882                         exit_point, timeout_ms, arch_info);
883         if (retval != ERROR_TARGET_TIMEOUT)
884                 target->running_alg = false;
885
886 done:
887         return retval;
888 }
889
890 /**
891  * Streams data to a circular buffer on target intended for consumption by code
892  * running asynchronously on target.
893  *
894  * This is intended for applications where target-specific native code runs
895  * on the target, receives data from the circular buffer, does something with
896  * it (most likely writing it to a flash memory), and advances the circular
897  * buffer pointer.
898  *
899  * This assumes that the helper algorithm has already been loaded to the target,
900  * but has not been started yet. Given memory and register parameters are passed
901  * to the algorithm.
902  *
903  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
904  * following format:
905  *
906  *     [buffer_start + 0, buffer_start + 4):
907  *         Write Pointer address (aka head). Written and updated by this
908  *         routine when new data is written to the circular buffer.
909  *     [buffer_start + 4, buffer_start + 8):
910  *         Read Pointer address (aka tail). Updated by code running on the
911  *         target after it consumes data.
912  *     [buffer_start + 8, buffer_start + buffer_size):
913  *         Circular buffer contents.
914  *
915  * See contrib/loaders/flash/stm32f1x.S for an example.
916  *
917  * @param target used to run the algorithm
918  * @param buffer address on the host where data to be sent is located
919  * @param count number of blocks to send
920  * @param block_size size in bytes of each block
921  * @param num_mem_params count of memory-based params to pass to algorithm
922  * @param mem_params memory-based params to pass to algorithm
923  * @param num_reg_params count of register-based params to pass to algorithm
924  * @param reg_params memory-based params to pass to algorithm
925  * @param buffer_start address on the target of the circular buffer structure
926  * @param buffer_size size of the circular buffer structure
927  * @param entry_point address on the target to execute to start the algorithm
928  * @param exit_point address at which to set a breakpoint to catch the
929  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
930  */
931
932 int target_run_flash_async_algorithm(struct target *target,
933                 const uint8_t *buffer, uint32_t count, int block_size,
934                 int num_mem_params, struct mem_param *mem_params,
935                 int num_reg_params, struct reg_param *reg_params,
936                 uint32_t buffer_start, uint32_t buffer_size,
937                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
938 {
939         int retval;
940         int timeout = 0;
941
942         const uint8_t *buffer_orig = buffer;
943
944         /* Set up working area. First word is write pointer, second word is read pointer,
945          * rest is fifo data area. */
946         uint32_t wp_addr = buffer_start;
947         uint32_t rp_addr = buffer_start + 4;
948         uint32_t fifo_start_addr = buffer_start + 8;
949         uint32_t fifo_end_addr = buffer_start + buffer_size;
950
951         uint32_t wp = fifo_start_addr;
952         uint32_t rp = fifo_start_addr;
953
954         /* validate block_size is 2^n */
955         assert(!block_size || !(block_size & (block_size - 1)));
956
957         retval = target_write_u32(target, wp_addr, wp);
958         if (retval != ERROR_OK)
959                 return retval;
960         retval = target_write_u32(target, rp_addr, rp);
961         if (retval != ERROR_OK)
962                 return retval;
963
964         /* Start up algorithm on target and let it idle while writing the first chunk */
965         retval = target_start_algorithm(target, num_mem_params, mem_params,
966                         num_reg_params, reg_params,
967                         entry_point,
968                         exit_point,
969                         arch_info);
970
971         if (retval != ERROR_OK) {
972                 LOG_ERROR("error starting target flash write algorithm");
973                 return retval;
974         }
975
976         while (count > 0) {
977
978                 retval = target_read_u32(target, rp_addr, &rp);
979                 if (retval != ERROR_OK) {
980                         LOG_ERROR("failed to get read pointer");
981                         break;
982                 }
983
984                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
985                         (size_t) (buffer - buffer_orig), count, wp, rp);
986
987                 if (rp == 0) {
988                         LOG_ERROR("flash write algorithm aborted by target");
989                         retval = ERROR_FLASH_OPERATION_FAILED;
990                         break;
991                 }
992
993                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
994                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
995                         break;
996                 }
997
998                 /* Count the number of bytes available in the fifo without
999                  * crossing the wrap around. Make sure to not fill it completely,
1000                  * because that would make wp == rp and that's the empty condition. */
1001                 uint32_t thisrun_bytes;
1002                 if (rp > wp)
1003                         thisrun_bytes = rp - wp - block_size;
1004                 else if (rp > fifo_start_addr)
1005                         thisrun_bytes = fifo_end_addr - wp;
1006                 else
1007                         thisrun_bytes = fifo_end_addr - wp - block_size;
1008
1009                 if (thisrun_bytes == 0) {
1010                         /* Throttle polling a bit if transfer is (much) faster than flash
1011                          * programming. The exact delay shouldn't matter as long as it's
1012                          * less than buffer size / flash speed. This is very unlikely to
1013                          * run when using high latency connections such as USB. */
1014                         alive_sleep(10);
1015
1016                         /* to stop an infinite loop on some targets check and increment a timeout
1017                          * this issue was observed on a stellaris using the new ICDI interface */
1018                         if (timeout++ >= 500) {
1019                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1020                                 return ERROR_FLASH_OPERATION_FAILED;
1021                         }
1022                         continue;
1023                 }
1024
1025                 /* reset our timeout */
1026                 timeout = 0;
1027
1028                 /* Limit to the amount of data we actually want to write */
1029                 if (thisrun_bytes > count * block_size)
1030                         thisrun_bytes = count * block_size;
1031
1032                 /* Write data to fifo */
1033                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1034                 if (retval != ERROR_OK)
1035                         break;
1036
1037                 /* Update counters and wrap write pointer */
1038                 buffer += thisrun_bytes;
1039                 count -= thisrun_bytes / block_size;
1040                 wp += thisrun_bytes;
1041                 if (wp >= fifo_end_addr)
1042                         wp = fifo_start_addr;
1043
1044                 /* Store updated write pointer to target */
1045                 retval = target_write_u32(target, wp_addr, wp);
1046                 if (retval != ERROR_OK)
1047                         break;
1048         }
1049
1050         if (retval != ERROR_OK) {
1051                 /* abort flash write algorithm on target */
1052                 target_write_u32(target, wp_addr, 0);
1053         }
1054
1055         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1056                         num_reg_params, reg_params,
1057                         exit_point,
1058                         10000,
1059                         arch_info);
1060
1061         if (retval2 != ERROR_OK) {
1062                 LOG_ERROR("error waiting for target flash write algorithm");
1063                 retval = retval2;
1064         }
1065
1066         if (retval == ERROR_OK) {
1067                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1068                 retval = target_read_u32(target, rp_addr, &rp);
1069                 if (retval == ERROR_OK && rp == 0) {
1070                         LOG_ERROR("flash write algorithm aborted by target");
1071                         retval = ERROR_FLASH_OPERATION_FAILED;
1072                 }
1073         }
1074
1075         return retval;
1076 }
1077
1078 int target_read_memory(struct target *target,
1079                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1080 {
1081         if (!target_was_examined(target)) {
1082                 LOG_ERROR("Target not examined yet");
1083                 return ERROR_FAIL;
1084         }
1085         if (!target->type->read_memory) {
1086                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1087                 return ERROR_FAIL;
1088         }
1089         return target->type->read_memory(target, address, size, count, buffer);
1090 }
1091
1092 int target_read_phys_memory(struct target *target,
1093                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1094 {
1095         if (!target_was_examined(target)) {
1096                 LOG_ERROR("Target not examined yet");
1097                 return ERROR_FAIL;
1098         }
1099         if (!target->type->read_phys_memory) {
1100                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1101                 return ERROR_FAIL;
1102         }
1103         return target->type->read_phys_memory(target, address, size, count, buffer);
1104 }
1105
1106 int target_write_memory(struct target *target,
1107                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1108 {
1109         if (!target_was_examined(target)) {
1110                 LOG_ERROR("Target not examined yet");
1111                 return ERROR_FAIL;
1112         }
1113         if (!target->type->write_memory) {
1114                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1115                 return ERROR_FAIL;
1116         }
1117         return target->type->write_memory(target, address, size, count, buffer);
1118 }
1119
1120 int target_write_phys_memory(struct target *target,
1121                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1122 {
1123         if (!target_was_examined(target)) {
1124                 LOG_ERROR("Target not examined yet");
1125                 return ERROR_FAIL;
1126         }
1127         if (!target->type->write_phys_memory) {
1128                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1129                 return ERROR_FAIL;
1130         }
1131         return target->type->write_phys_memory(target, address, size, count, buffer);
1132 }
1133
1134 int target_add_breakpoint(struct target *target,
1135                 struct breakpoint *breakpoint)
1136 {
1137         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1138                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1139                 return ERROR_TARGET_NOT_HALTED;
1140         }
1141         return target->type->add_breakpoint(target, breakpoint);
1142 }
1143
1144 int target_add_context_breakpoint(struct target *target,
1145                 struct breakpoint *breakpoint)
1146 {
1147         if (target->state != TARGET_HALTED) {
1148                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1149                 return ERROR_TARGET_NOT_HALTED;
1150         }
1151         return target->type->add_context_breakpoint(target, breakpoint);
1152 }
1153
1154 int target_add_hybrid_breakpoint(struct target *target,
1155                 struct breakpoint *breakpoint)
1156 {
1157         if (target->state != TARGET_HALTED) {
1158                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1159                 return ERROR_TARGET_NOT_HALTED;
1160         }
1161         return target->type->add_hybrid_breakpoint(target, breakpoint);
1162 }
1163
1164 int target_remove_breakpoint(struct target *target,
1165                 struct breakpoint *breakpoint)
1166 {
1167         return target->type->remove_breakpoint(target, breakpoint);
1168 }
1169
1170 int target_add_watchpoint(struct target *target,
1171                 struct watchpoint *watchpoint)
1172 {
1173         if (target->state != TARGET_HALTED) {
1174                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1175                 return ERROR_TARGET_NOT_HALTED;
1176         }
1177         return target->type->add_watchpoint(target, watchpoint);
1178 }
1179 int target_remove_watchpoint(struct target *target,
1180                 struct watchpoint *watchpoint)
1181 {
1182         return target->type->remove_watchpoint(target, watchpoint);
1183 }
1184 int target_hit_watchpoint(struct target *target,
1185                 struct watchpoint **hit_watchpoint)
1186 {
1187         if (target->state != TARGET_HALTED) {
1188                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1189                 return ERROR_TARGET_NOT_HALTED;
1190         }
1191
1192         if (target->type->hit_watchpoint == NULL) {
1193                 /* For backward compatible, if hit_watchpoint is not implemented,
1194                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1195                  * information. */
1196                 return ERROR_FAIL;
1197         }
1198
1199         return target->type->hit_watchpoint(target, hit_watchpoint);
1200 }
1201
1202 int target_get_gdb_reg_list(struct target *target,
1203                 struct reg **reg_list[], int *reg_list_size,
1204                 enum target_register_class reg_class)
1205 {
1206         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1207 }
1208 int target_step(struct target *target,
1209                 int current, target_addr_t address, int handle_breakpoints)
1210 {
1211         return target->type->step(target, current, address, handle_breakpoints);
1212 }
1213
1214 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1215 {
1216         if (target->state != TARGET_HALTED) {
1217                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1218                 return ERROR_TARGET_NOT_HALTED;
1219         }
1220         return target->type->get_gdb_fileio_info(target, fileio_info);
1221 }
1222
1223 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1224 {
1225         if (target->state != TARGET_HALTED) {
1226                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1227                 return ERROR_TARGET_NOT_HALTED;
1228         }
1229         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1230 }
1231
1232 int target_profiling(struct target *target, uint32_t *samples,
1233                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1234 {
1235         if (target->state != TARGET_HALTED) {
1236                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1237                 return ERROR_TARGET_NOT_HALTED;
1238         }
1239         return target->type->profiling(target, samples, max_num_samples,
1240                         num_samples, seconds);
1241 }
1242
1243 /**
1244  * Reset the @c examined flag for the given target.
1245  * Pure paranoia -- targets are zeroed on allocation.
1246  */
1247 static void target_reset_examined(struct target *target)
1248 {
1249         target->examined = false;
1250 }
1251
1252 static int handle_target(void *priv);
1253
1254 static int target_init_one(struct command_context *cmd_ctx,
1255                 struct target *target)
1256 {
1257         target_reset_examined(target);
1258
1259         struct target_type *type = target->type;
1260         if (type->examine == NULL)
1261                 type->examine = default_examine;
1262
1263         if (type->check_reset == NULL)
1264                 type->check_reset = default_check_reset;
1265
1266         assert(type->init_target != NULL);
1267
1268         int retval = type->init_target(cmd_ctx, target);
1269         if (ERROR_OK != retval) {
1270                 LOG_ERROR("target '%s' init failed", target_name(target));
1271                 return retval;
1272         }
1273
1274         /* Sanity-check MMU support ... stub in what we must, to help
1275          * implement it in stages, but warn if we need to do so.
1276          */
1277         if (type->mmu) {
1278                 if (type->virt2phys == NULL) {
1279                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1280                         type->virt2phys = identity_virt2phys;
1281                 }
1282         } else {
1283                 /* Make sure no-MMU targets all behave the same:  make no
1284                  * distinction between physical and virtual addresses, and
1285                  * ensure that virt2phys() is always an identity mapping.
1286                  */
1287                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1288                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1289
1290                 type->mmu = no_mmu;
1291                 type->write_phys_memory = type->write_memory;
1292                 type->read_phys_memory = type->read_memory;
1293                 type->virt2phys = identity_virt2phys;
1294         }
1295
1296         if (target->type->read_buffer == NULL)
1297                 target->type->read_buffer = target_read_buffer_default;
1298
1299         if (target->type->write_buffer == NULL)
1300                 target->type->write_buffer = target_write_buffer_default;
1301
1302         if (target->type->get_gdb_fileio_info == NULL)
1303                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1304
1305         if (target->type->gdb_fileio_end == NULL)
1306                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1307
1308         if (target->type->profiling == NULL)
1309                 target->type->profiling = target_profiling_default;
1310
1311         return ERROR_OK;
1312 }
1313
1314 static int target_init(struct command_context *cmd_ctx)
1315 {
1316         struct target *target;
1317         int retval;
1318
1319         for (target = all_targets; target; target = target->next) {
1320                 retval = target_init_one(cmd_ctx, target);
1321                 if (ERROR_OK != retval)
1322                         return retval;
1323         }
1324
1325         if (!all_targets)
1326                 return ERROR_OK;
1327
1328         retval = target_register_user_commands(cmd_ctx);
1329         if (ERROR_OK != retval)
1330                 return retval;
1331
1332         retval = target_register_timer_callback(&handle_target,
1333                         polling_interval, 1, cmd_ctx->interp);
1334         if (ERROR_OK != retval)
1335                 return retval;
1336
1337         return ERROR_OK;
1338 }
1339
1340 COMMAND_HANDLER(handle_target_init_command)
1341 {
1342         int retval;
1343
1344         if (CMD_ARGC != 0)
1345                 return ERROR_COMMAND_SYNTAX_ERROR;
1346
1347         static bool target_initialized;
1348         if (target_initialized) {
1349                 LOG_INFO("'target init' has already been called");
1350                 return ERROR_OK;
1351         }
1352         target_initialized = true;
1353
1354         retval = command_run_line(CMD_CTX, "init_targets");
1355         if (ERROR_OK != retval)
1356                 return retval;
1357
1358         retval = command_run_line(CMD_CTX, "init_target_events");
1359         if (ERROR_OK != retval)
1360                 return retval;
1361
1362         retval = command_run_line(CMD_CTX, "init_board");
1363         if (ERROR_OK != retval)
1364                 return retval;
1365
1366         LOG_DEBUG("Initializing targets...");
1367         return target_init(CMD_CTX);
1368 }
1369
1370 int target_register_event_callback(int (*callback)(struct target *target,
1371                 enum target_event event, void *priv), void *priv)
1372 {
1373         struct target_event_callback **callbacks_p = &target_event_callbacks;
1374
1375         if (callback == NULL)
1376                 return ERROR_COMMAND_SYNTAX_ERROR;
1377
1378         if (*callbacks_p) {
1379                 while ((*callbacks_p)->next)
1380                         callbacks_p = &((*callbacks_p)->next);
1381                 callbacks_p = &((*callbacks_p)->next);
1382         }
1383
1384         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1385         (*callbacks_p)->callback = callback;
1386         (*callbacks_p)->priv = priv;
1387         (*callbacks_p)->next = NULL;
1388
1389         return ERROR_OK;
1390 }
1391
1392 int target_register_reset_callback(int (*callback)(struct target *target,
1393                 enum target_reset_mode reset_mode, void *priv), void *priv)
1394 {
1395         struct target_reset_callback *entry;
1396
1397         if (callback == NULL)
1398                 return ERROR_COMMAND_SYNTAX_ERROR;
1399
1400         entry = malloc(sizeof(struct target_reset_callback));
1401         if (entry == NULL) {
1402                 LOG_ERROR("error allocating buffer for reset callback entry");
1403                 return ERROR_COMMAND_SYNTAX_ERROR;
1404         }
1405
1406         entry->callback = callback;
1407         entry->priv = priv;
1408         list_add(&entry->list, &target_reset_callback_list);
1409
1410
1411         return ERROR_OK;
1412 }
1413
1414 int target_register_trace_callback(int (*callback)(struct target *target,
1415                 size_t len, uint8_t *data, void *priv), void *priv)
1416 {
1417         struct target_trace_callback *entry;
1418
1419         if (callback == NULL)
1420                 return ERROR_COMMAND_SYNTAX_ERROR;
1421
1422         entry = malloc(sizeof(struct target_trace_callback));
1423         if (entry == NULL) {
1424                 LOG_ERROR("error allocating buffer for trace callback entry");
1425                 return ERROR_COMMAND_SYNTAX_ERROR;
1426         }
1427
1428         entry->callback = callback;
1429         entry->priv = priv;
1430         list_add(&entry->list, &target_trace_callback_list);
1431
1432
1433         return ERROR_OK;
1434 }
1435
1436 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1437 {
1438         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1439
1440         if (callback == NULL)
1441                 return ERROR_COMMAND_SYNTAX_ERROR;
1442
1443         if (*callbacks_p) {
1444                 while ((*callbacks_p)->next)
1445                         callbacks_p = &((*callbacks_p)->next);
1446                 callbacks_p = &((*callbacks_p)->next);
1447         }
1448
1449         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1450         (*callbacks_p)->callback = callback;
1451         (*callbacks_p)->periodic = periodic;
1452         (*callbacks_p)->time_ms = time_ms;
1453         (*callbacks_p)->removed = false;
1454
1455         gettimeofday(&(*callbacks_p)->when, NULL);
1456         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1457
1458         (*callbacks_p)->priv = priv;
1459         (*callbacks_p)->next = NULL;
1460
1461         return ERROR_OK;
1462 }
1463
1464 int target_unregister_event_callback(int (*callback)(struct target *target,
1465                 enum target_event event, void *priv), void *priv)
1466 {
1467         struct target_event_callback **p = &target_event_callbacks;
1468         struct target_event_callback *c = target_event_callbacks;
1469
1470         if (callback == NULL)
1471                 return ERROR_COMMAND_SYNTAX_ERROR;
1472
1473         while (c) {
1474                 struct target_event_callback *next = c->next;
1475                 if ((c->callback == callback) && (c->priv == priv)) {
1476                         *p = next;
1477                         free(c);
1478                         return ERROR_OK;
1479                 } else
1480                         p = &(c->next);
1481                 c = next;
1482         }
1483
1484         return ERROR_OK;
1485 }
1486
1487 int target_unregister_reset_callback(int (*callback)(struct target *target,
1488                 enum target_reset_mode reset_mode, void *priv), void *priv)
1489 {
1490         struct target_reset_callback *entry;
1491
1492         if (callback == NULL)
1493                 return ERROR_COMMAND_SYNTAX_ERROR;
1494
1495         list_for_each_entry(entry, &target_reset_callback_list, list) {
1496                 if (entry->callback == callback && entry->priv == priv) {
1497                         list_del(&entry->list);
1498                         free(entry);
1499                         break;
1500                 }
1501         }
1502
1503         return ERROR_OK;
1504 }
1505
1506 int target_unregister_trace_callback(int (*callback)(struct target *target,
1507                 size_t len, uint8_t *data, void *priv), void *priv)
1508 {
1509         struct target_trace_callback *entry;
1510
1511         if (callback == NULL)
1512                 return ERROR_COMMAND_SYNTAX_ERROR;
1513
1514         list_for_each_entry(entry, &target_trace_callback_list, list) {
1515                 if (entry->callback == callback && entry->priv == priv) {
1516                         list_del(&entry->list);
1517                         free(entry);
1518                         break;
1519                 }
1520         }
1521
1522         return ERROR_OK;
1523 }
1524
1525 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1526 {
1527         if (callback == NULL)
1528                 return ERROR_COMMAND_SYNTAX_ERROR;
1529
1530         for (struct target_timer_callback *c = target_timer_callbacks;
1531              c; c = c->next) {
1532                 if ((c->callback == callback) && (c->priv == priv)) {
1533                         c->removed = true;
1534                         return ERROR_OK;
1535                 }
1536         }
1537
1538         return ERROR_FAIL;
1539 }
1540
1541 int target_call_event_callbacks(struct target *target, enum target_event event)
1542 {
1543         struct target_event_callback *callback = target_event_callbacks;
1544         struct target_event_callback *next_callback;
1545
1546         if (event == TARGET_EVENT_HALTED) {
1547                 /* execute early halted first */
1548                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1549         }
1550
1551         LOG_DEBUG("target event %i (%s)", event,
1552                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1553
1554         target_handle_event(target, event);
1555
1556         while (callback) {
1557                 next_callback = callback->next;
1558                 callback->callback(target, event, callback->priv);
1559                 callback = next_callback;
1560         }
1561
1562         return ERROR_OK;
1563 }
1564
1565 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1566 {
1567         struct target_reset_callback *callback;
1568
1569         LOG_DEBUG("target reset %i (%s)", reset_mode,
1570                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1571
1572         list_for_each_entry(callback, &target_reset_callback_list, list)
1573                 callback->callback(target, reset_mode, callback->priv);
1574
1575         return ERROR_OK;
1576 }
1577
1578 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1579 {
1580         struct target_trace_callback *callback;
1581
1582         list_for_each_entry(callback, &target_trace_callback_list, list)
1583                 callback->callback(target, len, data, callback->priv);
1584
1585         return ERROR_OK;
1586 }
1587
1588 static int target_timer_callback_periodic_restart(
1589                 struct target_timer_callback *cb, struct timeval *now)
1590 {
1591         cb->when = *now;
1592         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1593         return ERROR_OK;
1594 }
1595
1596 static int target_call_timer_callback(struct target_timer_callback *cb,
1597                 struct timeval *now)
1598 {
1599         cb->callback(cb->priv);
1600
1601         if (cb->periodic)
1602                 return target_timer_callback_periodic_restart(cb, now);
1603
1604         return target_unregister_timer_callback(cb->callback, cb->priv);
1605 }
1606
1607 static int target_call_timer_callbacks_check_time(int checktime)
1608 {
1609         static bool callback_processing;
1610
1611         /* Do not allow nesting */
1612         if (callback_processing)
1613                 return ERROR_OK;
1614
1615         callback_processing = true;
1616
1617         keep_alive();
1618
1619         struct timeval now;
1620         gettimeofday(&now, NULL);
1621
1622         /* Store an address of the place containing a pointer to the
1623          * next item; initially, that's a standalone "root of the
1624          * list" variable. */
1625         struct target_timer_callback **callback = &target_timer_callbacks;
1626         while (*callback) {
1627                 if ((*callback)->removed) {
1628                         struct target_timer_callback *p = *callback;
1629                         *callback = (*callback)->next;
1630                         free(p);
1631                         continue;
1632                 }
1633
1634                 bool call_it = (*callback)->callback &&
1635                         ((!checktime && (*callback)->periodic) ||
1636                          timeval_compare(&now, &(*callback)->when) >= 0);
1637
1638                 if (call_it)
1639                         target_call_timer_callback(*callback, &now);
1640
1641                 callback = &(*callback)->next;
1642         }
1643
1644         callback_processing = false;
1645         return ERROR_OK;
1646 }
1647
1648 int target_call_timer_callbacks(void)
1649 {
1650         return target_call_timer_callbacks_check_time(1);
1651 }
1652
1653 /* invoke periodic callbacks immediately */
1654 int target_call_timer_callbacks_now(void)
1655 {
1656         return target_call_timer_callbacks_check_time(0);
1657 }
1658
1659 /* Prints the working area layout for debug purposes */
1660 static void print_wa_layout(struct target *target)
1661 {
1662         struct working_area *c = target->working_areas;
1663
1664         while (c) {
1665                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1666                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1667                         c->address, c->address + c->size - 1, c->size);
1668                 c = c->next;
1669         }
1670 }
1671
1672 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1673 static void target_split_working_area(struct working_area *area, uint32_t size)
1674 {
1675         assert(area->free); /* Shouldn't split an allocated area */
1676         assert(size <= area->size); /* Caller should guarantee this */
1677
1678         /* Split only if not already the right size */
1679         if (size < area->size) {
1680                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1681
1682                 if (new_wa == NULL)
1683                         return;
1684
1685                 new_wa->next = area->next;
1686                 new_wa->size = area->size - size;
1687                 new_wa->address = area->address + size;
1688                 new_wa->backup = NULL;
1689                 new_wa->user = NULL;
1690                 new_wa->free = true;
1691
1692                 area->next = new_wa;
1693                 area->size = size;
1694
1695                 /* If backup memory was allocated to this area, it has the wrong size
1696                  * now so free it and it will be reallocated if/when needed */
1697                 if (area->backup) {
1698                         free(area->backup);
1699                         area->backup = NULL;
1700                 }
1701         }
1702 }
1703
1704 /* Merge all adjacent free areas into one */
1705 static void target_merge_working_areas(struct target *target)
1706 {
1707         struct working_area *c = target->working_areas;
1708
1709         while (c && c->next) {
1710                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1711
1712                 /* Find two adjacent free areas */
1713                 if (c->free && c->next->free) {
1714                         /* Merge the last into the first */
1715                         c->size += c->next->size;
1716
1717                         /* Remove the last */
1718                         struct working_area *to_be_freed = c->next;
1719                         c->next = c->next->next;
1720                         if (to_be_freed->backup)
1721                                 free(to_be_freed->backup);
1722                         free(to_be_freed);
1723
1724                         /* If backup memory was allocated to the remaining area, it's has
1725                          * the wrong size now */
1726                         if (c->backup) {
1727                                 free(c->backup);
1728                                 c->backup = NULL;
1729                         }
1730                 } else {
1731                         c = c->next;
1732                 }
1733         }
1734 }
1735
1736 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1737 {
1738         /* Reevaluate working area address based on MMU state*/
1739         if (target->working_areas == NULL) {
1740                 int retval;
1741                 int enabled;
1742
1743                 retval = target->type->mmu(target, &enabled);
1744                 if (retval != ERROR_OK)
1745                         return retval;
1746
1747                 if (!enabled) {
1748                         if (target->working_area_phys_spec) {
1749                                 LOG_DEBUG("MMU disabled, using physical "
1750                                         "address for working memory " TARGET_ADDR_FMT,
1751                                         target->working_area_phys);
1752                                 target->working_area = target->working_area_phys;
1753                         } else {
1754                                 LOG_ERROR("No working memory available. "
1755                                         "Specify -work-area-phys to target.");
1756                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1757                         }
1758                 } else {
1759                         if (target->working_area_virt_spec) {
1760                                 LOG_DEBUG("MMU enabled, using virtual "
1761                                         "address for working memory " TARGET_ADDR_FMT,
1762                                         target->working_area_virt);
1763                                 target->working_area = target->working_area_virt;
1764                         } else {
1765                                 LOG_ERROR("No working memory available. "
1766                                         "Specify -work-area-virt to target.");
1767                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1768                         }
1769                 }
1770
1771                 /* Set up initial working area on first call */
1772                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1773                 if (new_wa) {
1774                         new_wa->next = NULL;
1775                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1776                         new_wa->address = target->working_area;
1777                         new_wa->backup = NULL;
1778                         new_wa->user = NULL;
1779                         new_wa->free = true;
1780                 }
1781
1782                 target->working_areas = new_wa;
1783         }
1784
1785         /* only allocate multiples of 4 byte */
1786         if (size % 4)
1787                 size = (size + 3) & (~3UL);
1788
1789         struct working_area *c = target->working_areas;
1790
1791         /* Find the first large enough working area */
1792         while (c) {
1793                 if (c->free && c->size >= size)
1794                         break;
1795                 c = c->next;
1796         }
1797
1798         if (c == NULL)
1799                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1800
1801         /* Split the working area into the requested size */
1802         target_split_working_area(c, size);
1803
1804         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1805                           size, c->address);
1806
1807         if (target->backup_working_area) {
1808                 if (c->backup == NULL) {
1809                         c->backup = malloc(c->size);
1810                         if (c->backup == NULL)
1811                                 return ERROR_FAIL;
1812                 }
1813
1814                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1815                 if (retval != ERROR_OK)
1816                         return retval;
1817         }
1818
1819         /* mark as used, and return the new (reused) area */
1820         c->free = false;
1821         *area = c;
1822
1823         /* user pointer */
1824         c->user = area;
1825
1826         print_wa_layout(target);
1827
1828         return ERROR_OK;
1829 }
1830
1831 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1832 {
1833         int retval;
1834
1835         retval = target_alloc_working_area_try(target, size, area);
1836         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1837                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1838         return retval;
1839
1840 }
1841
1842 static int target_restore_working_area(struct target *target, struct working_area *area)
1843 {
1844         int retval = ERROR_OK;
1845
1846         if (target->backup_working_area && area->backup != NULL) {
1847                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1848                 if (retval != ERROR_OK)
1849                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1850                                         area->size, area->address);
1851         }
1852
1853         return retval;
1854 }
1855
1856 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1857 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1858 {
1859         int retval = ERROR_OK;
1860
1861         if (area->free)
1862                 return retval;
1863
1864         if (restore) {
1865                 retval = target_restore_working_area(target, area);
1866                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1867                 if (retval != ERROR_OK)
1868                         return retval;
1869         }
1870
1871         area->free = true;
1872
1873         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1874                         area->size, area->address);
1875
1876         /* mark user pointer invalid */
1877         /* TODO: Is this really safe? It points to some previous caller's memory.
1878          * How could we know that the area pointer is still in that place and not
1879          * some other vital data? What's the purpose of this, anyway? */
1880         *area->user = NULL;
1881         area->user = NULL;
1882
1883         target_merge_working_areas(target);
1884
1885         print_wa_layout(target);
1886
1887         return retval;
1888 }
1889
1890 int target_free_working_area(struct target *target, struct working_area *area)
1891 {
1892         return target_free_working_area_restore(target, area, 1);
1893 }
1894
1895 static void target_destroy(struct target *target)
1896 {
1897         if (target->type->deinit_target)
1898                 target->type->deinit_target(target);
1899
1900         if (target->semihosting)
1901                 free(target->semihosting);
1902
1903         jtag_unregister_event_callback(jtag_enable_callback, target);
1904
1905         struct target_event_action *teap = target->event_action;
1906         while (teap) {
1907                 struct target_event_action *next = teap->next;
1908                 Jim_DecrRefCount(teap->interp, teap->body);
1909                 free(teap);
1910                 teap = next;
1911         }
1912
1913         target_free_all_working_areas(target);
1914         /* Now we have none or only one working area marked as free */
1915         if (target->working_areas) {
1916                 free(target->working_areas->backup);
1917                 free(target->working_areas);
1918         }
1919
1920         /* release the targets SMP list */
1921         if (target->smp) {
1922                 struct target_list *head = target->head;
1923                 while (head != NULL) {
1924                         struct target_list *pos = head->next;
1925                         head->target->smp = 0;
1926                         free(head);
1927                         head = pos;
1928                 }
1929                 target->smp = 0;
1930         }
1931
1932         free(target->gdb_port_override);
1933         free(target->type);
1934         free(target->trace_info);
1935         free(target->fileio_info);
1936         free(target->cmd_name);
1937         free(target);
1938 }
1939
1940 void target_quit(void)
1941 {
1942         struct target_event_callback *pe = target_event_callbacks;
1943         while (pe) {
1944                 struct target_event_callback *t = pe->next;
1945                 free(pe);
1946                 pe = t;
1947         }
1948         target_event_callbacks = NULL;
1949
1950         struct target_timer_callback *pt = target_timer_callbacks;
1951         while (pt) {
1952                 struct target_timer_callback *t = pt->next;
1953                 free(pt);
1954                 pt = t;
1955         }
1956         target_timer_callbacks = NULL;
1957
1958         for (struct target *target = all_targets; target;) {
1959                 struct target *tmp;
1960
1961                 tmp = target->next;
1962                 target_destroy(target);
1963                 target = tmp;
1964         }
1965
1966         all_targets = NULL;
1967 }
1968
1969 /* free resources and restore memory, if restoring memory fails,
1970  * free up resources anyway
1971  */
1972 static void target_free_all_working_areas_restore(struct target *target, int restore)
1973 {
1974         struct working_area *c = target->working_areas;
1975
1976         LOG_DEBUG("freeing all working areas");
1977
1978         /* Loop through all areas, restoring the allocated ones and marking them as free */
1979         while (c) {
1980                 if (!c->free) {
1981                         if (restore)
1982                                 target_restore_working_area(target, c);
1983                         c->free = true;
1984                         *c->user = NULL; /* Same as above */
1985                         c->user = NULL;
1986                 }
1987                 c = c->next;
1988         }
1989
1990         /* Run a merge pass to combine all areas into one */
1991         target_merge_working_areas(target);
1992
1993         print_wa_layout(target);
1994 }
1995
1996 void target_free_all_working_areas(struct target *target)
1997 {
1998         target_free_all_working_areas_restore(target, 1);
1999 }
2000
2001 /* Find the largest number of bytes that can be allocated */
2002 uint32_t target_get_working_area_avail(struct target *target)
2003 {
2004         struct working_area *c = target->working_areas;
2005         uint32_t max_size = 0;
2006
2007         if (c == NULL)
2008                 return target->working_area_size;
2009
2010         while (c) {
2011                 if (c->free && max_size < c->size)
2012                         max_size = c->size;
2013
2014                 c = c->next;
2015         }
2016
2017         return max_size;
2018 }
2019
2020 int target_arch_state(struct target *target)
2021 {
2022         int retval;
2023         if (target == NULL) {
2024                 LOG_WARNING("No target has been configured");
2025                 return ERROR_OK;
2026         }
2027
2028         if (target->state != TARGET_HALTED)
2029                 return ERROR_OK;
2030
2031         retval = target->type->arch_state(target);
2032         return retval;
2033 }
2034
2035 static int target_get_gdb_fileio_info_default(struct target *target,
2036                 struct gdb_fileio_info *fileio_info)
2037 {
2038         /* If target does not support semi-hosting function, target
2039            has no need to provide .get_gdb_fileio_info callback.
2040            It just return ERROR_FAIL and gdb_server will return "Txx"
2041            as target halted every time.  */
2042         return ERROR_FAIL;
2043 }
2044
2045 static int target_gdb_fileio_end_default(struct target *target,
2046                 int retcode, int fileio_errno, bool ctrl_c)
2047 {
2048         return ERROR_OK;
2049 }
2050
2051 static int target_profiling_default(struct target *target, uint32_t *samples,
2052                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2053 {
2054         struct timeval timeout, now;
2055
2056         gettimeofday(&timeout, NULL);
2057         timeval_add_time(&timeout, seconds, 0);
2058
2059         LOG_INFO("Starting profiling. Halting and resuming the"
2060                         " target as often as we can...");
2061
2062         uint32_t sample_count = 0;
2063         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2064         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2065
2066         int retval = ERROR_OK;
2067         for (;;) {
2068                 target_poll(target);
2069                 if (target->state == TARGET_HALTED) {
2070                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2071                         samples[sample_count++] = t;
2072                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2073                         retval = target_resume(target, 1, 0, 0, 0);
2074                         target_poll(target);
2075                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2076                 } else if (target->state == TARGET_RUNNING) {
2077                         /* We want to quickly sample the PC. */
2078                         retval = target_halt(target);
2079                 } else {
2080                         LOG_INFO("Target not halted or running");
2081                         retval = ERROR_OK;
2082                         break;
2083                 }
2084
2085                 if (retval != ERROR_OK)
2086                         break;
2087
2088                 gettimeofday(&now, NULL);
2089                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2090                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2091                         break;
2092                 }
2093         }
2094
2095         *num_samples = sample_count;
2096         return retval;
2097 }
2098
2099 /* Single aligned words are guaranteed to use 16 or 32 bit access
2100  * mode respectively, otherwise data is handled as quickly as
2101  * possible
2102  */
2103 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2104 {
2105         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2106                           size, address);
2107
2108         if (!target_was_examined(target)) {
2109                 LOG_ERROR("Target not examined yet");
2110                 return ERROR_FAIL;
2111         }
2112
2113         if (size == 0)
2114                 return ERROR_OK;
2115
2116         if ((address + size - 1) < address) {
2117                 /* GDB can request this when e.g. PC is 0xfffffffc */
2118                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2119                                   address,
2120                                   size);
2121                 return ERROR_FAIL;
2122         }
2123
2124         return target->type->write_buffer(target, address, size, buffer);
2125 }
2126
2127 static int target_write_buffer_default(struct target *target,
2128         target_addr_t address, uint32_t count, const uint8_t *buffer)
2129 {
2130         uint32_t size;
2131
2132         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2133          * will have something to do with the size we leave to it. */
2134         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2135                 if (address & size) {
2136                         int retval = target_write_memory(target, address, size, 1, buffer);
2137                         if (retval != ERROR_OK)
2138                                 return retval;
2139                         address += size;
2140                         count -= size;
2141                         buffer += size;
2142                 }
2143         }
2144
2145         /* Write the data with as large access size as possible. */
2146         for (; size > 0; size /= 2) {
2147                 uint32_t aligned = count - count % size;
2148                 if (aligned > 0) {
2149                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2150                         if (retval != ERROR_OK)
2151                                 return retval;
2152                         address += aligned;
2153                         count -= aligned;
2154                         buffer += aligned;
2155                 }
2156         }
2157
2158         return ERROR_OK;
2159 }
2160
2161 /* Single aligned words are guaranteed to use 16 or 32 bit access
2162  * mode respectively, otherwise data is handled as quickly as
2163  * possible
2164  */
2165 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2166 {
2167         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2168                           size, address);
2169
2170         if (!target_was_examined(target)) {
2171                 LOG_ERROR("Target not examined yet");
2172                 return ERROR_FAIL;
2173         }
2174
2175         if (size == 0)
2176                 return ERROR_OK;
2177
2178         if ((address + size - 1) < address) {
2179                 /* GDB can request this when e.g. PC is 0xfffffffc */
2180                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2181                                   address,
2182                                   size);
2183                 return ERROR_FAIL;
2184         }
2185
2186         return target->type->read_buffer(target, address, size, buffer);
2187 }
2188
2189 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2190 {
2191         uint32_t size;
2192
2193         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2194          * will have something to do with the size we leave to it. */
2195         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2196                 if (address & size) {
2197                         int retval = target_read_memory(target, address, size, 1, buffer);
2198                         if (retval != ERROR_OK)
2199                                 return retval;
2200                         address += size;
2201                         count -= size;
2202                         buffer += size;
2203                 }
2204         }
2205
2206         /* Read the data with as large access size as possible. */
2207         for (; size > 0; size /= 2) {
2208                 uint32_t aligned = count - count % size;
2209                 if (aligned > 0) {
2210                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2211                         if (retval != ERROR_OK)
2212                                 return retval;
2213                         address += aligned;
2214                         count -= aligned;
2215                         buffer += aligned;
2216                 }
2217         }
2218
2219         return ERROR_OK;
2220 }
2221
2222 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2223 {
2224         uint8_t *buffer;
2225         int retval;
2226         uint32_t i;
2227         uint32_t checksum = 0;
2228         if (!target_was_examined(target)) {
2229                 LOG_ERROR("Target not examined yet");
2230                 return ERROR_FAIL;
2231         }
2232
2233         retval = target->type->checksum_memory(target, address, size, &checksum);
2234         if (retval != ERROR_OK) {
2235                 buffer = malloc(size);
2236                 if (buffer == NULL) {
2237                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2238                         return ERROR_COMMAND_SYNTAX_ERROR;
2239                 }
2240                 retval = target_read_buffer(target, address, size, buffer);
2241                 if (retval != ERROR_OK) {
2242                         free(buffer);
2243                         return retval;
2244                 }
2245
2246                 /* convert to target endianness */
2247                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2248                         uint32_t target_data;
2249                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2250                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2251                 }
2252
2253                 retval = image_calculate_checksum(buffer, size, &checksum);
2254                 free(buffer);
2255         }
2256
2257         *crc = checksum;
2258
2259         return retval;
2260 }
2261
2262 int target_blank_check_memory(struct target *target,
2263         struct target_memory_check_block *blocks, int num_blocks,
2264         uint8_t erased_value)
2265 {
2266         if (!target_was_examined(target)) {
2267                 LOG_ERROR("Target not examined yet");
2268                 return ERROR_FAIL;
2269         }
2270
2271         if (target->type->blank_check_memory == NULL)
2272                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2273
2274         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2275 }
2276
2277 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2278 {
2279         uint8_t value_buf[8];
2280         if (!target_was_examined(target)) {
2281                 LOG_ERROR("Target not examined yet");
2282                 return ERROR_FAIL;
2283         }
2284
2285         int retval = target_read_memory(target, address, 8, 1, value_buf);
2286
2287         if (retval == ERROR_OK) {
2288                 *value = target_buffer_get_u64(target, value_buf);
2289                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2290                                   address,
2291                                   *value);
2292         } else {
2293                 *value = 0x0;
2294                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2295                                   address);
2296         }
2297
2298         return retval;
2299 }
2300
2301 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2302 {
2303         uint8_t value_buf[4];
2304         if (!target_was_examined(target)) {
2305                 LOG_ERROR("Target not examined yet");
2306                 return ERROR_FAIL;
2307         }
2308
2309         int retval = target_read_memory(target, address, 4, 1, value_buf);
2310
2311         if (retval == ERROR_OK) {
2312                 *value = target_buffer_get_u32(target, value_buf);
2313                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2314                                   address,
2315                                   *value);
2316         } else {
2317                 *value = 0x0;
2318                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2319                                   address);
2320         }
2321
2322         return retval;
2323 }
2324
2325 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2326 {
2327         uint8_t value_buf[2];
2328         if (!target_was_examined(target)) {
2329                 LOG_ERROR("Target not examined yet");
2330                 return ERROR_FAIL;
2331         }
2332
2333         int retval = target_read_memory(target, address, 2, 1, value_buf);
2334
2335         if (retval == ERROR_OK) {
2336                 *value = target_buffer_get_u16(target, value_buf);
2337                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2338                                   address,
2339                                   *value);
2340         } else {
2341                 *value = 0x0;
2342                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2343                                   address);
2344         }
2345
2346         return retval;
2347 }
2348
2349 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2350 {
2351         if (!target_was_examined(target)) {
2352                 LOG_ERROR("Target not examined yet");
2353                 return ERROR_FAIL;
2354         }
2355
2356         int retval = target_read_memory(target, address, 1, 1, value);
2357
2358         if (retval == ERROR_OK) {
2359                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2360                                   address,
2361                                   *value);
2362         } else {
2363                 *value = 0x0;
2364                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2365                                   address);
2366         }
2367
2368         return retval;
2369 }
2370
2371 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2372 {
2373         int retval;
2374         uint8_t value_buf[8];
2375         if (!target_was_examined(target)) {
2376                 LOG_ERROR("Target not examined yet");
2377                 return ERROR_FAIL;
2378         }
2379
2380         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2381                           address,
2382                           value);
2383
2384         target_buffer_set_u64(target, value_buf, value);
2385         retval = target_write_memory(target, address, 8, 1, value_buf);
2386         if (retval != ERROR_OK)
2387                 LOG_DEBUG("failed: %i", retval);
2388
2389         return retval;
2390 }
2391
2392 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2393 {
2394         int retval;
2395         uint8_t value_buf[4];
2396         if (!target_was_examined(target)) {
2397                 LOG_ERROR("Target not examined yet");
2398                 return ERROR_FAIL;
2399         }
2400
2401         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2402                           address,
2403                           value);
2404
2405         target_buffer_set_u32(target, value_buf, value);
2406         retval = target_write_memory(target, address, 4, 1, value_buf);
2407         if (retval != ERROR_OK)
2408                 LOG_DEBUG("failed: %i", retval);
2409
2410         return retval;
2411 }
2412
2413 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2414 {
2415         int retval;
2416         uint8_t value_buf[2];
2417         if (!target_was_examined(target)) {
2418                 LOG_ERROR("Target not examined yet");
2419                 return ERROR_FAIL;
2420         }
2421
2422         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2423                           address,
2424                           value);
2425
2426         target_buffer_set_u16(target, value_buf, value);
2427         retval = target_write_memory(target, address, 2, 1, value_buf);
2428         if (retval != ERROR_OK)
2429                 LOG_DEBUG("failed: %i", retval);
2430
2431         return retval;
2432 }
2433
2434 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2435 {
2436         int retval;
2437         if (!target_was_examined(target)) {
2438                 LOG_ERROR("Target not examined yet");
2439                 return ERROR_FAIL;
2440         }
2441
2442         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2443                           address, value);
2444
2445         retval = target_write_memory(target, address, 1, 1, &value);
2446         if (retval != ERROR_OK)
2447                 LOG_DEBUG("failed: %i", retval);
2448
2449         return retval;
2450 }
2451
2452 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2453 {
2454         int retval;
2455         uint8_t value_buf[8];
2456         if (!target_was_examined(target)) {
2457                 LOG_ERROR("Target not examined yet");
2458                 return ERROR_FAIL;
2459         }
2460
2461         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2462                           address,
2463                           value);
2464
2465         target_buffer_set_u64(target, value_buf, value);
2466         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2467         if (retval != ERROR_OK)
2468                 LOG_DEBUG("failed: %i", retval);
2469
2470         return retval;
2471 }
2472
2473 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2474 {
2475         int retval;
2476         uint8_t value_buf[4];
2477         if (!target_was_examined(target)) {
2478                 LOG_ERROR("Target not examined yet");
2479                 return ERROR_FAIL;
2480         }
2481
2482         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2483                           address,
2484                           value);
2485
2486         target_buffer_set_u32(target, value_buf, value);
2487         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2488         if (retval != ERROR_OK)
2489                 LOG_DEBUG("failed: %i", retval);
2490
2491         return retval;
2492 }
2493
2494 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2495 {
2496         int retval;
2497         uint8_t value_buf[2];
2498         if (!target_was_examined(target)) {
2499                 LOG_ERROR("Target not examined yet");
2500                 return ERROR_FAIL;
2501         }
2502
2503         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2504                           address,
2505                           value);
2506
2507         target_buffer_set_u16(target, value_buf, value);
2508         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2509         if (retval != ERROR_OK)
2510                 LOG_DEBUG("failed: %i", retval);
2511
2512         return retval;
2513 }
2514
2515 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2516 {
2517         int retval;
2518         if (!target_was_examined(target)) {
2519                 LOG_ERROR("Target not examined yet");
2520                 return ERROR_FAIL;
2521         }
2522
2523         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2524                           address, value);
2525
2526         retval = target_write_phys_memory(target, address, 1, 1, &value);
2527         if (retval != ERROR_OK)
2528                 LOG_DEBUG("failed: %i", retval);
2529
2530         return retval;
2531 }
2532
2533 static int find_target(struct command_context *cmd_ctx, const char *name)
2534 {
2535         struct target *target = get_target(name);
2536         if (target == NULL) {
2537                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2538                 return ERROR_FAIL;
2539         }
2540         if (!target->tap->enabled) {
2541                 LOG_USER("Target: TAP %s is disabled, "
2542                          "can't be the current target\n",
2543                          target->tap->dotted_name);
2544                 return ERROR_FAIL;
2545         }
2546
2547         cmd_ctx->current_target = target;
2548         if (cmd_ctx->current_target_override)
2549                 cmd_ctx->current_target_override = target;
2550
2551         return ERROR_OK;
2552 }
2553
2554
2555 COMMAND_HANDLER(handle_targets_command)
2556 {
2557         int retval = ERROR_OK;
2558         if (CMD_ARGC == 1) {
2559                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2560                 if (retval == ERROR_OK) {
2561                         /* we're done! */
2562                         return retval;
2563                 }
2564         }
2565
2566         struct target *target = all_targets;
2567         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2568         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2569         while (target) {
2570                 const char *state;
2571                 char marker = ' ';
2572
2573                 if (target->tap->enabled)
2574                         state = target_state_name(target);
2575                 else
2576                         state = "tap-disabled";
2577
2578                 if (CMD_CTX->current_target == target)
2579                         marker = '*';
2580
2581                 /* keep columns lined up to match the headers above */
2582                 command_print(CMD_CTX,
2583                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2584                                 target->target_number,
2585                                 marker,
2586                                 target_name(target),
2587                                 target_type_name(target),
2588                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2589                                         target->endianness)->name,
2590                                 target->tap->dotted_name,
2591                                 state);
2592                 target = target->next;
2593         }
2594
2595         return retval;
2596 }
2597
2598 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2599
2600 static int powerDropout;
2601 static int srstAsserted;
2602
2603 static int runPowerRestore;
2604 static int runPowerDropout;
2605 static int runSrstAsserted;
2606 static int runSrstDeasserted;
2607
2608 static int sense_handler(void)
2609 {
2610         static int prevSrstAsserted;
2611         static int prevPowerdropout;
2612
2613         int retval = jtag_power_dropout(&powerDropout);
2614         if (retval != ERROR_OK)
2615                 return retval;
2616
2617         int powerRestored;
2618         powerRestored = prevPowerdropout && !powerDropout;
2619         if (powerRestored)
2620                 runPowerRestore = 1;
2621
2622         int64_t current = timeval_ms();
2623         static int64_t lastPower;
2624         bool waitMore = lastPower + 2000 > current;
2625         if (powerDropout && !waitMore) {
2626                 runPowerDropout = 1;
2627                 lastPower = current;
2628         }
2629
2630         retval = jtag_srst_asserted(&srstAsserted);
2631         if (retval != ERROR_OK)
2632                 return retval;
2633
2634         int srstDeasserted;
2635         srstDeasserted = prevSrstAsserted && !srstAsserted;
2636
2637         static int64_t lastSrst;
2638         waitMore = lastSrst + 2000 > current;
2639         if (srstDeasserted && !waitMore) {
2640                 runSrstDeasserted = 1;
2641                 lastSrst = current;
2642         }
2643
2644         if (!prevSrstAsserted && srstAsserted)
2645                 runSrstAsserted = 1;
2646
2647         prevSrstAsserted = srstAsserted;
2648         prevPowerdropout = powerDropout;
2649
2650         if (srstDeasserted || powerRestored) {
2651                 /* Other than logging the event we can't do anything here.
2652                  * Issuing a reset is a particularly bad idea as we might
2653                  * be inside a reset already.
2654                  */
2655         }
2656
2657         return ERROR_OK;
2658 }
2659
2660 /* process target state changes */
2661 static int handle_target(void *priv)
2662 {
2663         Jim_Interp *interp = (Jim_Interp *)priv;
2664         int retval = ERROR_OK;
2665
2666         if (!is_jtag_poll_safe()) {
2667                 /* polling is disabled currently */
2668                 return ERROR_OK;
2669         }
2670
2671         /* we do not want to recurse here... */
2672         static int recursive;
2673         if (!recursive) {
2674                 recursive = 1;
2675                 sense_handler();
2676                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2677                  * We need to avoid an infinite loop/recursion here and we do that by
2678                  * clearing the flags after running these events.
2679                  */
2680                 int did_something = 0;
2681                 if (runSrstAsserted) {
2682                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2683                         Jim_Eval(interp, "srst_asserted");
2684                         did_something = 1;
2685                 }
2686                 if (runSrstDeasserted) {
2687                         Jim_Eval(interp, "srst_deasserted");
2688                         did_something = 1;
2689                 }
2690                 if (runPowerDropout) {
2691                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2692                         Jim_Eval(interp, "power_dropout");
2693                         did_something = 1;
2694                 }
2695                 if (runPowerRestore) {
2696                         Jim_Eval(interp, "power_restore");
2697                         did_something = 1;
2698                 }
2699
2700                 if (did_something) {
2701                         /* clear detect flags */
2702                         sense_handler();
2703                 }
2704
2705                 /* clear action flags */
2706
2707                 runSrstAsserted = 0;
2708                 runSrstDeasserted = 0;
2709                 runPowerRestore = 0;
2710                 runPowerDropout = 0;
2711
2712                 recursive = 0;
2713         }
2714
2715         /* Poll targets for state changes unless that's globally disabled.
2716          * Skip targets that are currently disabled.
2717          */
2718         for (struct target *target = all_targets;
2719                         is_jtag_poll_safe() && target;
2720                         target = target->next) {
2721
2722                 if (!target_was_examined(target))
2723                         continue;
2724
2725                 if (!target->tap->enabled)
2726                         continue;
2727
2728                 if (target->backoff.times > target->backoff.count) {
2729                         /* do not poll this time as we failed previously */
2730                         target->backoff.count++;
2731                         continue;
2732                 }
2733                 target->backoff.count = 0;
2734
2735                 /* only poll target if we've got power and srst isn't asserted */
2736                 if (!powerDropout && !srstAsserted) {
2737                         /* polling may fail silently until the target has been examined */
2738                         retval = target_poll(target);
2739                         if (retval != ERROR_OK) {
2740                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2741                                 if (target->backoff.times * polling_interval < 5000) {
2742                                         target->backoff.times *= 2;
2743                                         target->backoff.times++;
2744                                 }
2745
2746                                 /* Tell GDB to halt the debugger. This allows the user to
2747                                  * run monitor commands to handle the situation.
2748                                  */
2749                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2750                         }
2751                         if (target->backoff.times > 0) {
2752                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2753                                 target_reset_examined(target);
2754                                 retval = target_examine_one(target);
2755                                 /* Target examination could have failed due to unstable connection,
2756                                  * but we set the examined flag anyway to repoll it later */
2757                                 if (retval != ERROR_OK) {
2758                                         target->examined = true;
2759                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2760                                                  target->backoff.times * polling_interval);
2761                                         return retval;
2762                                 }
2763                         }
2764
2765                         /* Since we succeeded, we reset backoff count */
2766                         target->backoff.times = 0;
2767                 }
2768         }
2769
2770         return retval;
2771 }
2772
2773 COMMAND_HANDLER(handle_reg_command)
2774 {
2775         struct target *target;
2776         struct reg *reg = NULL;
2777         unsigned count = 0;
2778         char *value;
2779
2780         LOG_DEBUG("-");
2781
2782         target = get_current_target(CMD_CTX);
2783
2784         /* list all available registers for the current target */
2785         if (CMD_ARGC == 0) {
2786                 struct reg_cache *cache = target->reg_cache;
2787
2788                 count = 0;
2789                 while (cache) {
2790                         unsigned i;
2791
2792                         command_print(CMD_CTX, "===== %s", cache->name);
2793
2794                         for (i = 0, reg = cache->reg_list;
2795                                         i < cache->num_regs;
2796                                         i++, reg++, count++) {
2797                                 /* only print cached values if they are valid */
2798                                 if (reg->valid) {
2799                                         value = buf_to_str(reg->value,
2800                                                         reg->size, 16);
2801                                         command_print(CMD_CTX,
2802                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2803                                                         count, reg->name,
2804                                                         reg->size, value,
2805                                                         reg->dirty
2806                                                                 ? " (dirty)"
2807                                                                 : "");
2808                                         free(value);
2809                                 } else {
2810                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2811                                                           count, reg->name,
2812                                                           reg->size) ;
2813                                 }
2814                         }
2815                         cache = cache->next;
2816                 }
2817
2818                 return ERROR_OK;
2819         }
2820
2821         /* access a single register by its ordinal number */
2822         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2823                 unsigned num;
2824                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2825
2826                 struct reg_cache *cache = target->reg_cache;
2827                 count = 0;
2828                 while (cache) {
2829                         unsigned i;
2830                         for (i = 0; i < cache->num_regs; i++) {
2831                                 if (count++ == num) {
2832                                         reg = &cache->reg_list[i];
2833                                         break;
2834                                 }
2835                         }
2836                         if (reg)
2837                                 break;
2838                         cache = cache->next;
2839                 }
2840
2841                 if (!reg) {
2842                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2843                                         "has only %i registers (0 - %i)", num, count, count - 1);
2844                         return ERROR_OK;
2845                 }
2846         } else {
2847                 /* access a single register by its name */
2848                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2849
2850                 if (!reg) {
2851                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2852                         return ERROR_OK;
2853                 }
2854         }
2855
2856         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2857
2858         /* display a register */
2859         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2860                         && (CMD_ARGV[1][0] <= '9')))) {
2861                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2862                         reg->valid = 0;
2863
2864                 if (reg->valid == 0)
2865                         reg->type->get(reg);
2866                 value = buf_to_str(reg->value, reg->size, 16);
2867                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2868                 free(value);
2869                 return ERROR_OK;
2870         }
2871
2872         /* set register value */
2873         if (CMD_ARGC == 2) {
2874                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2875                 if (buf == NULL)
2876                         return ERROR_FAIL;
2877                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2878
2879                 reg->type->set(reg, buf);
2880
2881                 value = buf_to_str(reg->value, reg->size, 16);
2882                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2883                 free(value);
2884
2885                 free(buf);
2886
2887                 return ERROR_OK;
2888         }
2889
2890         return ERROR_COMMAND_SYNTAX_ERROR;
2891 }
2892
2893 COMMAND_HANDLER(handle_poll_command)
2894 {
2895         int retval = ERROR_OK;
2896         struct target *target = get_current_target(CMD_CTX);
2897
2898         if (CMD_ARGC == 0) {
2899                 command_print(CMD_CTX, "background polling: %s",
2900                                 jtag_poll_get_enabled() ? "on" : "off");
2901                 command_print(CMD_CTX, "TAP: %s (%s)",
2902                                 target->tap->dotted_name,
2903                                 target->tap->enabled ? "enabled" : "disabled");
2904                 if (!target->tap->enabled)
2905                         return ERROR_OK;
2906                 retval = target_poll(target);
2907                 if (retval != ERROR_OK)
2908                         return retval;
2909                 retval = target_arch_state(target);
2910                 if (retval != ERROR_OK)
2911                         return retval;
2912         } else if (CMD_ARGC == 1) {
2913                 bool enable;
2914                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2915                 jtag_poll_set_enabled(enable);
2916         } else
2917                 return ERROR_COMMAND_SYNTAX_ERROR;
2918
2919         return retval;
2920 }
2921
2922 COMMAND_HANDLER(handle_wait_halt_command)
2923 {
2924         if (CMD_ARGC > 1)
2925                 return ERROR_COMMAND_SYNTAX_ERROR;
2926
2927         unsigned ms = DEFAULT_HALT_TIMEOUT;
2928         if (1 == CMD_ARGC) {
2929                 int retval = parse_uint(CMD_ARGV[0], &ms);
2930                 if (ERROR_OK != retval)
2931                         return ERROR_COMMAND_SYNTAX_ERROR;
2932         }
2933
2934         struct target *target = get_current_target(CMD_CTX);
2935         return target_wait_state(target, TARGET_HALTED, ms);
2936 }
2937
2938 /* wait for target state to change. The trick here is to have a low
2939  * latency for short waits and not to suck up all the CPU time
2940  * on longer waits.
2941  *
2942  * After 500ms, keep_alive() is invoked
2943  */
2944 int target_wait_state(struct target *target, enum target_state state, int ms)
2945 {
2946         int retval;
2947         int64_t then = 0, cur;
2948         bool once = true;
2949
2950         for (;;) {
2951                 retval = target_poll(target);
2952                 if (retval != ERROR_OK)
2953                         return retval;
2954                 if (target->state == state)
2955                         break;
2956                 cur = timeval_ms();
2957                 if (once) {
2958                         once = false;
2959                         then = timeval_ms();
2960                         LOG_DEBUG("waiting for target %s...",
2961                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2962                 }
2963
2964                 if (cur-then > 500)
2965                         keep_alive();
2966
2967                 if ((cur-then) > ms) {
2968                         LOG_ERROR("timed out while waiting for target %s",
2969                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2970                         return ERROR_FAIL;
2971                 }
2972         }
2973
2974         return ERROR_OK;
2975 }
2976
2977 COMMAND_HANDLER(handle_halt_command)
2978 {
2979         LOG_DEBUG("-");
2980
2981         struct target *target = get_current_target(CMD_CTX);
2982
2983         target->verbose_halt_msg = true;
2984
2985         int retval = target_halt(target);
2986         if (ERROR_OK != retval)
2987                 return retval;
2988
2989         if (CMD_ARGC == 1) {
2990                 unsigned wait_local;
2991                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2992                 if (ERROR_OK != retval)
2993                         return ERROR_COMMAND_SYNTAX_ERROR;
2994                 if (!wait_local)
2995                         return ERROR_OK;
2996         }
2997
2998         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2999 }
3000
3001 COMMAND_HANDLER(handle_soft_reset_halt_command)
3002 {
3003         struct target *target = get_current_target(CMD_CTX);
3004
3005         LOG_USER("requesting target halt and executing a soft reset");
3006
3007         target_soft_reset_halt(target);
3008
3009         return ERROR_OK;
3010 }
3011
3012 COMMAND_HANDLER(handle_reset_command)
3013 {
3014         if (CMD_ARGC > 1)
3015                 return ERROR_COMMAND_SYNTAX_ERROR;
3016
3017         enum target_reset_mode reset_mode = RESET_RUN;
3018         if (CMD_ARGC == 1) {
3019                 const Jim_Nvp *n;
3020                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3021                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3022                         return ERROR_COMMAND_SYNTAX_ERROR;
3023                 reset_mode = n->value;
3024         }
3025
3026         /* reset *all* targets */
3027         return target_process_reset(CMD_CTX, reset_mode);
3028 }
3029
3030
3031 COMMAND_HANDLER(handle_resume_command)
3032 {
3033         int current = 1;
3034         if (CMD_ARGC > 1)
3035                 return ERROR_COMMAND_SYNTAX_ERROR;
3036
3037         struct target *target = get_current_target(CMD_CTX);
3038
3039         /* with no CMD_ARGV, resume from current pc, addr = 0,
3040          * with one arguments, addr = CMD_ARGV[0],
3041          * handle breakpoints, not debugging */
3042         target_addr_t addr = 0;
3043         if (CMD_ARGC == 1) {
3044                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3045                 current = 0;
3046         }
3047
3048         return target_resume(target, current, addr, 1, 0);
3049 }
3050
3051 COMMAND_HANDLER(handle_step_command)
3052 {
3053         if (CMD_ARGC > 1)
3054                 return ERROR_COMMAND_SYNTAX_ERROR;
3055
3056         LOG_DEBUG("-");
3057
3058         /* with no CMD_ARGV, step from current pc, addr = 0,
3059          * with one argument addr = CMD_ARGV[0],
3060          * handle breakpoints, debugging */
3061         target_addr_t addr = 0;
3062         int current_pc = 1;
3063         if (CMD_ARGC == 1) {
3064                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3065                 current_pc = 0;
3066         }
3067
3068         struct target *target = get_current_target(CMD_CTX);
3069
3070         return target->type->step(target, current_pc, addr, 1);
3071 }
3072
3073 static void handle_md_output(struct command_context *cmd_ctx,
3074                 struct target *target, target_addr_t address, unsigned size,
3075                 unsigned count, const uint8_t *buffer)
3076 {
3077         const unsigned line_bytecnt = 32;
3078         unsigned line_modulo = line_bytecnt / size;
3079
3080         char output[line_bytecnt * 4 + 1];
3081         unsigned output_len = 0;
3082
3083         const char *value_fmt;
3084         switch (size) {
3085         case 8:
3086                 value_fmt = "%16.16"PRIx64" ";
3087                 break;
3088         case 4:
3089                 value_fmt = "%8.8"PRIx64" ";
3090                 break;
3091         case 2:
3092                 value_fmt = "%4.4"PRIx64" ";
3093                 break;
3094         case 1:
3095                 value_fmt = "%2.2"PRIx64" ";
3096                 break;
3097         default:
3098                 /* "can't happen", caller checked */
3099                 LOG_ERROR("invalid memory read size: %u", size);
3100                 return;
3101         }
3102
3103         for (unsigned i = 0; i < count; i++) {
3104                 if (i % line_modulo == 0) {
3105                         output_len += snprintf(output + output_len,
3106                                         sizeof(output) - output_len,
3107                                         TARGET_ADDR_FMT ": ",
3108                                         (address + (i * size)));
3109                 }
3110
3111                 uint64_t value = 0;
3112                 const uint8_t *value_ptr = buffer + i * size;
3113                 switch (size) {
3114                 case 8:
3115                         value = target_buffer_get_u64(target, value_ptr);
3116                         break;
3117                 case 4:
3118                         value = target_buffer_get_u32(target, value_ptr);
3119                         break;
3120                 case 2:
3121                         value = target_buffer_get_u16(target, value_ptr);
3122                         break;
3123                 case 1:
3124                         value = *value_ptr;
3125                 }
3126                 output_len += snprintf(output + output_len,
3127                                 sizeof(output) - output_len,
3128                                 value_fmt, value);
3129
3130                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3131                         command_print(cmd_ctx, "%s", output);
3132                         output_len = 0;
3133                 }
3134         }
3135 }
3136
3137 COMMAND_HANDLER(handle_md_command)
3138 {
3139         if (CMD_ARGC < 1)
3140                 return ERROR_COMMAND_SYNTAX_ERROR;
3141
3142         unsigned size = 0;
3143         switch (CMD_NAME[2]) {
3144         case 'd':
3145                 size = 8;
3146                 break;
3147         case 'w':
3148                 size = 4;
3149                 break;
3150         case 'h':
3151                 size = 2;
3152                 break;
3153         case 'b':
3154                 size = 1;
3155                 break;
3156         default:
3157                 return ERROR_COMMAND_SYNTAX_ERROR;
3158         }
3159
3160         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3161         int (*fn)(struct target *target,
3162                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3163         if (physical) {
3164                 CMD_ARGC--;
3165                 CMD_ARGV++;
3166                 fn = target_read_phys_memory;
3167         } else
3168                 fn = target_read_memory;
3169         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3170                 return ERROR_COMMAND_SYNTAX_ERROR;
3171
3172         target_addr_t address;
3173         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3174
3175         unsigned count = 1;
3176         if (CMD_ARGC == 2)
3177                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3178
3179         uint8_t *buffer = calloc(count, size);
3180         if (buffer == NULL) {
3181                 LOG_ERROR("Failed to allocate md read buffer");
3182                 return ERROR_FAIL;
3183         }
3184
3185         struct target *target = get_current_target(CMD_CTX);
3186         int retval = fn(target, address, size, count, buffer);
3187         if (ERROR_OK == retval)
3188                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3189
3190         free(buffer);
3191
3192         return retval;
3193 }
3194
3195 typedef int (*target_write_fn)(struct target *target,
3196                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3197
3198 static int target_fill_mem(struct target *target,
3199                 target_addr_t address,
3200                 target_write_fn fn,
3201                 unsigned data_size,
3202                 /* value */
3203                 uint64_t b,
3204                 /* count */
3205                 unsigned c)
3206 {
3207         /* We have to write in reasonably large chunks to be able
3208          * to fill large memory areas with any sane speed */
3209         const unsigned chunk_size = 16384;
3210         uint8_t *target_buf = malloc(chunk_size * data_size);
3211         if (target_buf == NULL) {
3212                 LOG_ERROR("Out of memory");
3213                 return ERROR_FAIL;
3214         }
3215
3216         for (unsigned i = 0; i < chunk_size; i++) {
3217                 switch (data_size) {
3218                 case 8:
3219                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3220                         break;
3221                 case 4:
3222                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3223                         break;
3224                 case 2:
3225                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3226                         break;
3227                 case 1:
3228                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3229                         break;
3230                 default:
3231                         exit(-1);
3232                 }
3233         }
3234
3235         int retval = ERROR_OK;
3236
3237         for (unsigned x = 0; x < c; x += chunk_size) {
3238                 unsigned current;
3239                 current = c - x;
3240                 if (current > chunk_size)
3241                         current = chunk_size;
3242                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3243                 if (retval != ERROR_OK)
3244                         break;
3245                 /* avoid GDB timeouts */
3246                 keep_alive();
3247         }
3248         free(target_buf);
3249
3250         return retval;
3251 }
3252
3253
3254 COMMAND_HANDLER(handle_mw_command)
3255 {
3256         if (CMD_ARGC < 2)
3257                 return ERROR_COMMAND_SYNTAX_ERROR;
3258         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3259         target_write_fn fn;
3260         if (physical) {
3261                 CMD_ARGC--;
3262                 CMD_ARGV++;
3263                 fn = target_write_phys_memory;
3264         } else
3265                 fn = target_write_memory;
3266         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3267                 return ERROR_COMMAND_SYNTAX_ERROR;
3268
3269         target_addr_t address;
3270         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3271
3272         target_addr_t value;
3273         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3274
3275         unsigned count = 1;
3276         if (CMD_ARGC == 3)
3277                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3278
3279         struct target *target = get_current_target(CMD_CTX);
3280         unsigned wordsize;
3281         switch (CMD_NAME[2]) {
3282                 case 'd':
3283                         wordsize = 8;
3284                         break;
3285                 case 'w':
3286                         wordsize = 4;
3287                         break;
3288                 case 'h':
3289                         wordsize = 2;
3290                         break;
3291                 case 'b':
3292                         wordsize = 1;
3293                         break;
3294                 default:
3295                         return ERROR_COMMAND_SYNTAX_ERROR;
3296         }
3297
3298         return target_fill_mem(target, address, fn, wordsize, value, count);
3299 }
3300
3301 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3302                 target_addr_t *min_address, target_addr_t *max_address)
3303 {
3304         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3305                 return ERROR_COMMAND_SYNTAX_ERROR;
3306
3307         /* a base address isn't always necessary,
3308          * default to 0x0 (i.e. don't relocate) */
3309         if (CMD_ARGC >= 2) {
3310                 target_addr_t addr;
3311                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3312                 image->base_address = addr;
3313                 image->base_address_set = 1;
3314         } else
3315                 image->base_address_set = 0;
3316
3317         image->start_address_set = 0;
3318
3319         if (CMD_ARGC >= 4)
3320                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3321         if (CMD_ARGC == 5) {
3322                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3323                 /* use size (given) to find max (required) */
3324                 *max_address += *min_address;
3325         }
3326
3327         if (*min_address > *max_address)
3328                 return ERROR_COMMAND_SYNTAX_ERROR;
3329
3330         return ERROR_OK;
3331 }
3332
3333 COMMAND_HANDLER(handle_load_image_command)
3334 {
3335         uint8_t *buffer;
3336         size_t buf_cnt;
3337         uint32_t image_size;
3338         target_addr_t min_address = 0;
3339         target_addr_t max_address = -1;
3340         int i;
3341         struct image image;
3342
3343         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3344                         &image, &min_address, &max_address);
3345         if (ERROR_OK != retval)
3346                 return retval;
3347
3348         struct target *target = get_current_target(CMD_CTX);
3349
3350         struct duration bench;
3351         duration_start(&bench);
3352
3353         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3354                 return ERROR_FAIL;
3355
3356         image_size = 0x0;
3357         retval = ERROR_OK;
3358         for (i = 0; i < image.num_sections; i++) {
3359                 buffer = malloc(image.sections[i].size);
3360                 if (buffer == NULL) {
3361                         command_print(CMD_CTX,
3362                                                   "error allocating buffer for section (%d bytes)",
3363                                                   (int)(image.sections[i].size));
3364                         retval = ERROR_FAIL;
3365                         break;
3366                 }
3367
3368                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3369                 if (retval != ERROR_OK) {
3370                         free(buffer);
3371                         break;
3372                 }
3373
3374                 uint32_t offset = 0;
3375                 uint32_t length = buf_cnt;
3376
3377                 /* DANGER!!! beware of unsigned comparision here!!! */
3378
3379                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3380                                 (image.sections[i].base_address < max_address)) {
3381
3382                         if (image.sections[i].base_address < min_address) {
3383                                 /* clip addresses below */
3384                                 offset += min_address-image.sections[i].base_address;
3385                                 length -= offset;
3386                         }
3387
3388                         if (image.sections[i].base_address + buf_cnt > max_address)
3389                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3390
3391                         retval = target_write_buffer(target,
3392                                         image.sections[i].base_address + offset, length, buffer + offset);
3393                         if (retval != ERROR_OK) {
3394                                 free(buffer);
3395                                 break;
3396                         }
3397                         image_size += length;
3398                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3399                                         (unsigned int)length,
3400                                         image.sections[i].base_address + offset);
3401                 }
3402
3403                 free(buffer);
3404         }
3405
3406         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3407                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3408                                 "in %fs (%0.3f KiB/s)", image_size,
3409                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3410         }
3411
3412         image_close(&image);
3413
3414         return retval;
3415
3416 }
3417
3418 COMMAND_HANDLER(handle_dump_image_command)
3419 {
3420         struct fileio *fileio;
3421         uint8_t *buffer;
3422         int retval, retvaltemp;
3423         target_addr_t address, size;
3424         struct duration bench;
3425         struct target *target = get_current_target(CMD_CTX);
3426
3427         if (CMD_ARGC != 3)
3428                 return ERROR_COMMAND_SYNTAX_ERROR;
3429
3430         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3431         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3432
3433         uint32_t buf_size = (size > 4096) ? 4096 : size;
3434         buffer = malloc(buf_size);
3435         if (!buffer)
3436                 return ERROR_FAIL;
3437
3438         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3439         if (retval != ERROR_OK) {
3440                 free(buffer);
3441                 return retval;
3442         }
3443
3444         duration_start(&bench);
3445
3446         while (size > 0) {
3447                 size_t size_written;
3448                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3449                 retval = target_read_buffer(target, address, this_run_size, buffer);
3450                 if (retval != ERROR_OK)
3451                         break;
3452
3453                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3454                 if (retval != ERROR_OK)
3455                         break;
3456
3457                 size -= this_run_size;
3458                 address += this_run_size;
3459         }
3460
3461         free(buffer);
3462
3463         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3464                 size_t filesize;
3465                 retval = fileio_size(fileio, &filesize);
3466                 if (retval != ERROR_OK)
3467                         return retval;
3468                 command_print(CMD_CTX,
3469                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3470                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3471         }
3472
3473         retvaltemp = fileio_close(fileio);
3474         if (retvaltemp != ERROR_OK)
3475                 return retvaltemp;
3476
3477         return retval;
3478 }
3479
3480 enum verify_mode {
3481         IMAGE_TEST = 0,
3482         IMAGE_VERIFY = 1,
3483         IMAGE_CHECKSUM_ONLY = 2
3484 };
3485
3486 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3487 {
3488         uint8_t *buffer;
3489         size_t buf_cnt;
3490         uint32_t image_size;
3491         int i;
3492         int retval;
3493         uint32_t checksum = 0;
3494         uint32_t mem_checksum = 0;
3495
3496         struct image image;
3497
3498         struct target *target = get_current_target(CMD_CTX);
3499
3500         if (CMD_ARGC < 1)
3501                 return ERROR_COMMAND_SYNTAX_ERROR;
3502
3503         if (!target) {
3504                 LOG_ERROR("no target selected");
3505                 return ERROR_FAIL;
3506         }
3507
3508         struct duration bench;
3509         duration_start(&bench);
3510
3511         if (CMD_ARGC >= 2) {
3512                 target_addr_t addr;
3513                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3514                 image.base_address = addr;
3515                 image.base_address_set = 1;
3516         } else {
3517                 image.base_address_set = 0;
3518                 image.base_address = 0x0;
3519         }
3520
3521         image.start_address_set = 0;
3522
3523         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3524         if (retval != ERROR_OK)
3525                 return retval;
3526
3527         image_size = 0x0;
3528         int diffs = 0;
3529         retval = ERROR_OK;
3530         for (i = 0; i < image.num_sections; i++) {
3531                 buffer = malloc(image.sections[i].size);
3532                 if (buffer == NULL) {
3533                         command_print(CMD_CTX,
3534                                         "error allocating buffer for section (%d bytes)",
3535                                         (int)(image.sections[i].size));
3536                         break;
3537                 }
3538                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3539                 if (retval != ERROR_OK) {
3540                         free(buffer);
3541                         break;
3542                 }
3543
3544                 if (verify >= IMAGE_VERIFY) {
3545                         /* calculate checksum of image */
3546                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3547                         if (retval != ERROR_OK) {
3548                                 free(buffer);
3549                                 break;
3550                         }
3551
3552                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3553                         if (retval != ERROR_OK) {
3554                                 free(buffer);
3555                                 break;
3556                         }
3557                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3558                                 LOG_ERROR("checksum mismatch");
3559                                 free(buffer);
3560                                 retval = ERROR_FAIL;
3561                                 goto done;
3562                         }
3563                         if (checksum != mem_checksum) {
3564                                 /* failed crc checksum, fall back to a binary compare */
3565                                 uint8_t *data;
3566
3567                                 if (diffs == 0)
3568                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3569
3570                                 data = malloc(buf_cnt);
3571
3572                                 /* Can we use 32bit word accesses? */
3573                                 int size = 1;
3574                                 int count = buf_cnt;
3575                                 if ((count % 4) == 0) {
3576                                         size *= 4;
3577                                         count /= 4;
3578                                 }
3579                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3580                                 if (retval == ERROR_OK) {
3581                                         uint32_t t;
3582                                         for (t = 0; t < buf_cnt; t++) {
3583                                                 if (data[t] != buffer[t]) {
3584                                                         command_print(CMD_CTX,
3585                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3586                                                                                   diffs,
3587                                                                                   (unsigned)(t + image.sections[i].base_address),
3588                                                                                   data[t],
3589                                                                                   buffer[t]);
3590                                                         if (diffs++ >= 127) {
3591                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3592                                                                 free(data);
3593                                                                 free(buffer);
3594                                                                 goto done;
3595                                                         }
3596                                                 }
3597                                                 keep_alive();
3598                                         }
3599                                 }
3600                                 free(data);
3601                         }
3602                 } else {
3603                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3604                                                   image.sections[i].base_address,
3605                                                   buf_cnt);
3606                 }
3607
3608                 free(buffer);
3609                 image_size += buf_cnt;
3610         }
3611         if (diffs > 0)
3612                 command_print(CMD_CTX, "No more differences found.");
3613 done:
3614         if (diffs > 0)
3615                 retval = ERROR_FAIL;
3616         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3617                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3618                                 "in %fs (%0.3f KiB/s)", image_size,
3619                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3620         }
3621
3622         image_close(&image);
3623
3624         return retval;
3625 }
3626
3627 COMMAND_HANDLER(handle_verify_image_checksum_command)
3628 {
3629         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3630 }
3631
3632 COMMAND_HANDLER(handle_verify_image_command)
3633 {
3634         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3635 }
3636
3637 COMMAND_HANDLER(handle_test_image_command)
3638 {
3639         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3640 }
3641
3642 static int handle_bp_command_list(struct command_context *cmd_ctx)
3643 {
3644         struct target *target = get_current_target(cmd_ctx);
3645         struct breakpoint *breakpoint = target->breakpoints;
3646         while (breakpoint) {
3647                 if (breakpoint->type == BKPT_SOFT) {
3648                         char *buf = buf_to_str(breakpoint->orig_instr,
3649                                         breakpoint->length, 16);
3650                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3651                                         breakpoint->address,
3652                                         breakpoint->length,
3653                                         breakpoint->set, buf);
3654                         free(buf);
3655                 } else {
3656                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3657                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3658                                                         breakpoint->asid,
3659                                                         breakpoint->length, breakpoint->set);
3660                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3661                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3662                                                         breakpoint->address,
3663                                                         breakpoint->length, breakpoint->set);
3664                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3665                                                         breakpoint->asid);
3666                         } else
3667                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3668                                                         breakpoint->address,
3669                                                         breakpoint->length, breakpoint->set);
3670                 }
3671
3672                 breakpoint = breakpoint->next;
3673         }
3674         return ERROR_OK;
3675 }
3676
3677 static int handle_bp_command_set(struct command_context *cmd_ctx,
3678                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3679 {
3680         struct target *target = get_current_target(cmd_ctx);
3681         int retval;
3682
3683         if (asid == 0) {
3684                 retval = breakpoint_add(target, addr, length, hw);
3685                 if (ERROR_OK == retval)
3686                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3687                 else {
3688                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3689                         return retval;
3690                 }
3691         } else if (addr == 0) {
3692                 if (target->type->add_context_breakpoint == NULL) {
3693                         LOG_WARNING("Context breakpoint not available");
3694                         return ERROR_OK;
3695                 }
3696                 retval = context_breakpoint_add(target, asid, length, hw);
3697                 if (ERROR_OK == retval)
3698                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3699                 else {
3700                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3701                         return retval;
3702                 }
3703         } else {
3704                 if (target->type->add_hybrid_breakpoint == NULL) {
3705                         LOG_WARNING("Hybrid breakpoint not available");
3706                         return ERROR_OK;
3707                 }
3708                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3709                 if (ERROR_OK == retval)
3710                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3711                 else {
3712                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3713                         return retval;
3714                 }
3715         }
3716         return ERROR_OK;
3717 }
3718
3719 COMMAND_HANDLER(handle_bp_command)
3720 {
3721         target_addr_t addr;
3722         uint32_t asid;
3723         uint32_t length;
3724         int hw = BKPT_SOFT;
3725
3726         switch (CMD_ARGC) {
3727                 case 0:
3728                         return handle_bp_command_list(CMD_CTX);
3729
3730                 case 2:
3731                         asid = 0;
3732                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3733                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3734                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3735
3736                 case 3:
3737                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3738                                 hw = BKPT_HARD;
3739                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3740                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3741                                 asid = 0;
3742                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3743                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3744                                 hw = BKPT_HARD;
3745                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3746                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3747                                 addr = 0;
3748                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3749                         }
3750                         /* fallthrough */
3751                 case 4:
3752                         hw = BKPT_HARD;
3753                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3754                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3755                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3756                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3757
3758                 default:
3759                         return ERROR_COMMAND_SYNTAX_ERROR;
3760         }
3761 }
3762
3763 COMMAND_HANDLER(handle_rbp_command)
3764 {
3765         if (CMD_ARGC != 1)
3766                 return ERROR_COMMAND_SYNTAX_ERROR;
3767
3768         target_addr_t addr;
3769         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3770
3771         struct target *target = get_current_target(CMD_CTX);
3772         breakpoint_remove(target, addr);
3773
3774         return ERROR_OK;
3775 }
3776
3777 COMMAND_HANDLER(handle_wp_command)
3778 {
3779         struct target *target = get_current_target(CMD_CTX);
3780
3781         if (CMD_ARGC == 0) {
3782                 struct watchpoint *watchpoint = target->watchpoints;
3783
3784                 while (watchpoint) {
3785                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3786                                         ", len: 0x%8.8" PRIx32
3787                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3788                                         ", mask: 0x%8.8" PRIx32,
3789                                         watchpoint->address,
3790                                         watchpoint->length,
3791                                         (int)watchpoint->rw,
3792                                         watchpoint->value,
3793                                         watchpoint->mask);
3794                         watchpoint = watchpoint->next;
3795                 }
3796                 return ERROR_OK;
3797         }
3798
3799         enum watchpoint_rw type = WPT_ACCESS;
3800         uint32_t addr = 0;
3801         uint32_t length = 0;
3802         uint32_t data_value = 0x0;
3803         uint32_t data_mask = 0xffffffff;
3804
3805         switch (CMD_ARGC) {
3806         case 5:
3807                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3808                 /* fall through */
3809         case 4:
3810                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3811                 /* fall through */
3812         case 3:
3813                 switch (CMD_ARGV[2][0]) {
3814                 case 'r':
3815                         type = WPT_READ;
3816                         break;
3817                 case 'w':
3818                         type = WPT_WRITE;
3819                         break;
3820                 case 'a':
3821                         type = WPT_ACCESS;
3822                         break;
3823                 default:
3824                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3825                         return ERROR_COMMAND_SYNTAX_ERROR;
3826                 }
3827                 /* fall through */
3828         case 2:
3829                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3830                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3831                 break;
3832
3833         default:
3834                 return ERROR_COMMAND_SYNTAX_ERROR;
3835         }
3836
3837         int retval = watchpoint_add(target, addr, length, type,
3838                         data_value, data_mask);
3839         if (ERROR_OK != retval)
3840                 LOG_ERROR("Failure setting watchpoints");
3841
3842         return retval;
3843 }
3844
3845 COMMAND_HANDLER(handle_rwp_command)
3846 {
3847         if (CMD_ARGC != 1)
3848                 return ERROR_COMMAND_SYNTAX_ERROR;
3849
3850         uint32_t addr;
3851         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3852
3853         struct target *target = get_current_target(CMD_CTX);
3854         watchpoint_remove(target, addr);
3855
3856         return ERROR_OK;
3857 }
3858
3859 /**
3860  * Translate a virtual address to a physical address.
3861  *
3862  * The low-level target implementation must have logged a detailed error
3863  * which is forwarded to telnet/GDB session.
3864  */
3865 COMMAND_HANDLER(handle_virt2phys_command)
3866 {
3867         if (CMD_ARGC != 1)
3868                 return ERROR_COMMAND_SYNTAX_ERROR;
3869
3870         target_addr_t va;
3871         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3872         target_addr_t pa;
3873
3874         struct target *target = get_current_target(CMD_CTX);
3875         int retval = target->type->virt2phys(target, va, &pa);
3876         if (retval == ERROR_OK)
3877                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3878
3879         return retval;
3880 }
3881
3882 static void writeData(FILE *f, const void *data, size_t len)
3883 {
3884         size_t written = fwrite(data, 1, len, f);
3885         if (written != len)
3886                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3887 }
3888
3889 static void writeLong(FILE *f, int l, struct target *target)
3890 {
3891         uint8_t val[4];
3892
3893         target_buffer_set_u32(target, val, l);
3894         writeData(f, val, 4);
3895 }
3896
3897 static void writeString(FILE *f, char *s)
3898 {
3899         writeData(f, s, strlen(s));
3900 }
3901
3902 typedef unsigned char UNIT[2];  /* unit of profiling */
3903
3904 /* Dump a gmon.out histogram file. */
3905 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3906                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3907 {
3908         uint32_t i;
3909         FILE *f = fopen(filename, "w");
3910         if (f == NULL)
3911                 return;
3912         writeString(f, "gmon");
3913         writeLong(f, 0x00000001, target); /* Version */
3914         writeLong(f, 0, target); /* padding */
3915         writeLong(f, 0, target); /* padding */
3916         writeLong(f, 0, target); /* padding */
3917
3918         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3919         writeData(f, &zero, 1);
3920
3921         /* figure out bucket size */
3922         uint32_t min;
3923         uint32_t max;
3924         if (with_range) {
3925                 min = start_address;
3926                 max = end_address;
3927         } else {
3928                 min = samples[0];
3929                 max = samples[0];
3930                 for (i = 0; i < sampleNum; i++) {
3931                         if (min > samples[i])
3932                                 min = samples[i];
3933                         if (max < samples[i])
3934                                 max = samples[i];
3935                 }
3936
3937                 /* max should be (largest sample + 1)
3938                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3939                 max++;
3940         }
3941
3942         int addressSpace = max - min;
3943         assert(addressSpace >= 2);
3944
3945         /* FIXME: What is the reasonable number of buckets?
3946          * The profiling result will be more accurate if there are enough buckets. */
3947         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3948         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3949         if (numBuckets > maxBuckets)
3950                 numBuckets = maxBuckets;
3951         int *buckets = malloc(sizeof(int) * numBuckets);
3952         if (buckets == NULL) {
3953                 fclose(f);
3954                 return;
3955         }
3956         memset(buckets, 0, sizeof(int) * numBuckets);
3957         for (i = 0; i < sampleNum; i++) {
3958                 uint32_t address = samples[i];
3959
3960                 if ((address < min) || (max <= address))
3961                         continue;
3962
3963                 long long a = address - min;
3964                 long long b = numBuckets;
3965                 long long c = addressSpace;
3966                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3967                 buckets[index_t]++;
3968         }
3969
3970         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3971         writeLong(f, min, target);                      /* low_pc */
3972         writeLong(f, max, target);                      /* high_pc */
3973         writeLong(f, numBuckets, target);       /* # of buckets */
3974         float sample_rate = sampleNum / (duration_ms / 1000.0);
3975         writeLong(f, sample_rate, target);
3976         writeString(f, "seconds");
3977         for (i = 0; i < (15-strlen("seconds")); i++)
3978                 writeData(f, &zero, 1);
3979         writeString(f, "s");
3980
3981         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3982
3983         char *data = malloc(2 * numBuckets);
3984         if (data != NULL) {
3985                 for (i = 0; i < numBuckets; i++) {
3986                         int val;
3987                         val = buckets[i];
3988                         if (val > 65535)
3989                                 val = 65535;
3990                         data[i * 2] = val&0xff;
3991                         data[i * 2 + 1] = (val >> 8) & 0xff;
3992                 }
3993                 free(buckets);
3994                 writeData(f, data, numBuckets * 2);
3995                 free(data);
3996         } else
3997                 free(buckets);
3998
3999         fclose(f);
4000 }
4001
4002 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4003  * which will be used as a random sampling of PC */
4004 COMMAND_HANDLER(handle_profile_command)
4005 {
4006         struct target *target = get_current_target(CMD_CTX);
4007
4008         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4009                 return ERROR_COMMAND_SYNTAX_ERROR;
4010
4011         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4012         uint32_t offset;
4013         uint32_t num_of_samples;
4014         int retval = ERROR_OK;
4015
4016         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4017
4018         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4019         if (samples == NULL) {
4020                 LOG_ERROR("No memory to store samples.");
4021                 return ERROR_FAIL;
4022         }
4023
4024         uint64_t timestart_ms = timeval_ms();
4025         /**
4026          * Some cores let us sample the PC without the
4027          * annoying halt/resume step; for example, ARMv7 PCSR.
4028          * Provide a way to use that more efficient mechanism.
4029          */
4030         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4031                                 &num_of_samples, offset);
4032         if (retval != ERROR_OK) {
4033                 free(samples);
4034                 return retval;
4035         }
4036         uint32_t duration_ms = timeval_ms() - timestart_ms;
4037
4038         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4039
4040         retval = target_poll(target);
4041         if (retval != ERROR_OK) {
4042                 free(samples);
4043                 return retval;
4044         }
4045         if (target->state == TARGET_RUNNING) {
4046                 retval = target_halt(target);
4047                 if (retval != ERROR_OK) {
4048                         free(samples);
4049                         return retval;
4050                 }
4051         }
4052
4053         retval = target_poll(target);
4054         if (retval != ERROR_OK) {
4055                 free(samples);
4056                 return retval;
4057         }
4058
4059         uint32_t start_address = 0;
4060         uint32_t end_address = 0;
4061         bool with_range = false;
4062         if (CMD_ARGC == 4) {
4063                 with_range = true;
4064                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4065                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4066         }
4067
4068         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4069                    with_range, start_address, end_address, target, duration_ms);
4070         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4071
4072         free(samples);
4073         return retval;
4074 }
4075
4076 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4077 {
4078         char *namebuf;
4079         Jim_Obj *nameObjPtr, *valObjPtr;
4080         int result;
4081
4082         namebuf = alloc_printf("%s(%d)", varname, idx);
4083         if (!namebuf)
4084                 return JIM_ERR;
4085
4086         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4087         valObjPtr = Jim_NewIntObj(interp, val);
4088         if (!nameObjPtr || !valObjPtr) {
4089                 free(namebuf);
4090                 return JIM_ERR;
4091         }
4092
4093         Jim_IncrRefCount(nameObjPtr);
4094         Jim_IncrRefCount(valObjPtr);
4095         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4096         Jim_DecrRefCount(interp, nameObjPtr);
4097         Jim_DecrRefCount(interp, valObjPtr);
4098         free(namebuf);
4099         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4100         return result;
4101 }
4102
4103 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4104 {
4105         struct command_context *context;
4106         struct target *target;
4107
4108         context = current_command_context(interp);
4109         assert(context != NULL);
4110
4111         target = get_current_target(context);
4112         if (target == NULL) {
4113                 LOG_ERROR("mem2array: no current target");
4114                 return JIM_ERR;
4115         }
4116
4117         return target_mem2array(interp, target, argc - 1, argv + 1);
4118 }
4119
4120 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4121 {
4122         long l;
4123         uint32_t width;
4124         int len;
4125         uint32_t addr;
4126         uint32_t count;
4127         uint32_t v;
4128         const char *varname;
4129         const char *phys;
4130         bool is_phys;
4131         int  n, e, retval;
4132         uint32_t i;
4133
4134         /* argv[1] = name of array to receive the data
4135          * argv[2] = desired width
4136          * argv[3] = memory address
4137          * argv[4] = count of times to read
4138          */
4139
4140         if (argc < 4 || argc > 5) {
4141                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4142                 return JIM_ERR;
4143         }
4144         varname = Jim_GetString(argv[0], &len);
4145         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4146
4147         e = Jim_GetLong(interp, argv[1], &l);
4148         width = l;
4149         if (e != JIM_OK)
4150                 return e;
4151
4152         e = Jim_GetLong(interp, argv[2], &l);
4153         addr = l;
4154         if (e != JIM_OK)
4155                 return e;
4156         e = Jim_GetLong(interp, argv[3], &l);
4157         len = l;
4158         if (e != JIM_OK)
4159                 return e;
4160         is_phys = false;
4161         if (argc > 4) {
4162                 phys = Jim_GetString(argv[4], &n);
4163                 if (!strncmp(phys, "phys", n))
4164                         is_phys = true;
4165                 else
4166                         return JIM_ERR;
4167         }
4168         switch (width) {
4169                 case 8:
4170                         width = 1;
4171                         break;
4172                 case 16:
4173                         width = 2;
4174                         break;
4175                 case 32:
4176                         width = 4;
4177                         break;
4178                 default:
4179                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4180                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4181                         return JIM_ERR;
4182         }
4183         if (len == 0) {
4184                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4185                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4186                 return JIM_ERR;
4187         }
4188         if ((addr + (len * width)) < addr) {
4189                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4190                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4191                 return JIM_ERR;
4192         }
4193         /* absurd transfer size? */
4194         if (len > 65536) {
4195                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4196                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4197                 return JIM_ERR;
4198         }
4199
4200         if ((width == 1) ||
4201                 ((width == 2) && ((addr & 1) == 0)) ||
4202                 ((width == 4) && ((addr & 3) == 0))) {
4203                 /* all is well */
4204         } else {
4205                 char buf[100];
4206                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4207                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4208                                 addr,
4209                                 width);
4210                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4211                 return JIM_ERR;
4212         }
4213
4214         /* Transfer loop */
4215
4216         /* index counter */
4217         n = 0;
4218
4219         size_t buffersize = 4096;
4220         uint8_t *buffer = malloc(buffersize);
4221         if (buffer == NULL)
4222                 return JIM_ERR;
4223
4224         /* assume ok */
4225         e = JIM_OK;
4226         while (len) {
4227                 /* Slurp... in buffer size chunks */
4228
4229                 count = len; /* in objects.. */
4230                 if (count > (buffersize / width))
4231                         count = (buffersize / width);
4232
4233                 if (is_phys)
4234                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4235                 else
4236                         retval = target_read_memory(target, addr, width, count, buffer);
4237                 if (retval != ERROR_OK) {
4238                         /* BOO !*/
4239                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4240                                           addr,
4241                                           width,
4242                                           count);
4243                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4244                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4245                         e = JIM_ERR;
4246                         break;
4247                 } else {
4248                         v = 0; /* shut up gcc */
4249                         for (i = 0; i < count ; i++, n++) {
4250                                 switch (width) {
4251                                         case 4:
4252                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4253                                                 break;
4254                                         case 2:
4255                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4256                                                 break;
4257                                         case 1:
4258                                                 v = buffer[i] & 0x0ff;
4259                                                 break;
4260                                 }
4261                                 new_int_array_element(interp, varname, n, v);
4262                         }
4263                         len -= count;
4264                         addr += count * width;
4265                 }
4266         }
4267
4268         free(buffer);
4269
4270         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4271
4272         return e;
4273 }
4274
4275 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4276 {
4277         char *namebuf;
4278         Jim_Obj *nameObjPtr, *valObjPtr;
4279         int result;
4280         long l;
4281
4282         namebuf = alloc_printf("%s(%d)", varname, idx);
4283         if (!namebuf)
4284                 return JIM_ERR;
4285
4286         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4287         if (!nameObjPtr) {
4288                 free(namebuf);
4289                 return JIM_ERR;
4290         }
4291
4292         Jim_IncrRefCount(nameObjPtr);
4293         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4294         Jim_DecrRefCount(interp, nameObjPtr);
4295         free(namebuf);
4296         if (valObjPtr == NULL)
4297                 return JIM_ERR;
4298
4299         result = Jim_GetLong(interp, valObjPtr, &l);
4300         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4301         *val = l;
4302         return result;
4303 }
4304
4305 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4306 {
4307         struct command_context *context;
4308         struct target *target;
4309
4310         context = current_command_context(interp);
4311         assert(context != NULL);
4312
4313         target = get_current_target(context);
4314         if (target == NULL) {
4315                 LOG_ERROR("array2mem: no current target");
4316                 return JIM_ERR;
4317         }
4318
4319         return target_array2mem(interp, target, argc-1, argv + 1);
4320 }
4321
4322 static int target_array2mem(Jim_Interp *interp, struct target *target,
4323                 int argc, Jim_Obj *const *argv)
4324 {
4325         long l;
4326         uint32_t width;
4327         int len;
4328         uint32_t addr;
4329         uint32_t count;
4330         uint32_t v;
4331         const char *varname;
4332         const char *phys;
4333         bool is_phys;
4334         int  n, e, retval;
4335         uint32_t i;
4336
4337         /* argv[1] = name of array to get the data
4338          * argv[2] = desired width
4339          * argv[3] = memory address
4340          * argv[4] = count to write
4341          */
4342         if (argc < 4 || argc > 5) {
4343                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4344                 return JIM_ERR;
4345         }
4346         varname = Jim_GetString(argv[0], &len);
4347         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4348
4349         e = Jim_GetLong(interp, argv[1], &l);
4350         width = l;
4351         if (e != JIM_OK)
4352                 return e;
4353
4354         e = Jim_GetLong(interp, argv[2], &l);
4355         addr = l;
4356         if (e != JIM_OK)
4357                 return e;
4358         e = Jim_GetLong(interp, argv[3], &l);
4359         len = l;
4360         if (e != JIM_OK)
4361                 return e;
4362         is_phys = false;
4363         if (argc > 4) {
4364                 phys = Jim_GetString(argv[4], &n);
4365                 if (!strncmp(phys, "phys", n))
4366                         is_phys = true;
4367                 else
4368                         return JIM_ERR;
4369         }
4370         switch (width) {
4371                 case 8:
4372                         width = 1;
4373                         break;
4374                 case 16:
4375                         width = 2;
4376                         break;
4377                 case 32:
4378                         width = 4;
4379                         break;
4380                 default:
4381                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4382                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4383                                         "Invalid width param, must be 8/16/32", NULL);
4384                         return JIM_ERR;
4385         }
4386         if (len == 0) {
4387                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4388                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4389                                 "array2mem: zero width read?", NULL);
4390                 return JIM_ERR;
4391         }
4392         if ((addr + (len * width)) < addr) {
4393                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4394                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4395                                 "array2mem: addr + len - wraps to zero?", NULL);
4396                 return JIM_ERR;
4397         }
4398         /* absurd transfer size? */
4399         if (len > 65536) {
4400                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4401                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4402                                 "array2mem: absurd > 64K item request", NULL);
4403                 return JIM_ERR;
4404         }
4405
4406         if ((width == 1) ||
4407                 ((width == 2) && ((addr & 1) == 0)) ||
4408                 ((width == 4) && ((addr & 3) == 0))) {
4409                 /* all is well */
4410         } else {
4411                 char buf[100];
4412                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4413                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4414                                 addr,
4415                                 width);
4416                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4417                 return JIM_ERR;
4418         }
4419
4420         /* Transfer loop */
4421
4422         /* index counter */
4423         n = 0;
4424         /* assume ok */
4425         e = JIM_OK;
4426
4427         size_t buffersize = 4096;
4428         uint8_t *buffer = malloc(buffersize);
4429         if (buffer == NULL)
4430                 return JIM_ERR;
4431
4432         while (len) {
4433                 /* Slurp... in buffer size chunks */
4434
4435                 count = len; /* in objects.. */
4436                 if (count > (buffersize / width))
4437                         count = (buffersize / width);
4438
4439                 v = 0; /* shut up gcc */
4440                 for (i = 0; i < count; i++, n++) {
4441                         get_int_array_element(interp, varname, n, &v);
4442                         switch (width) {
4443                         case 4:
4444                                 target_buffer_set_u32(target, &buffer[i * width], v);
4445                                 break;
4446                         case 2:
4447                                 target_buffer_set_u16(target, &buffer[i * width], v);
4448                                 break;
4449                         case 1:
4450                                 buffer[i] = v & 0x0ff;
4451                                 break;
4452                         }
4453                 }
4454                 len -= count;
4455
4456                 if (is_phys)
4457                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4458                 else
4459                         retval = target_write_memory(target, addr, width, count, buffer);
4460                 if (retval != ERROR_OK) {
4461                         /* BOO !*/
4462                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4463                                           addr,
4464                                           width,
4465                                           count);
4466                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4467                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4468                         e = JIM_ERR;
4469                         break;
4470                 }
4471                 addr += count * width;
4472         }
4473
4474         free(buffer);
4475
4476         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4477
4478         return e;
4479 }
4480
4481 /* FIX? should we propagate errors here rather than printing them
4482  * and continuing?
4483  */
4484 void target_handle_event(struct target *target, enum target_event e)
4485 {
4486         struct target_event_action *teap;
4487
4488         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4489                 if (teap->event == e) {
4490                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4491                                            target->target_number,
4492                                            target_name(target),
4493                                            target_type_name(target),
4494                                            e,
4495                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4496                                            Jim_GetString(teap->body, NULL));
4497
4498                         /* Override current target by the target an event
4499                          * is issued from (lot of scripts need it).
4500                          * Return back to previous override as soon
4501                          * as the handler processing is done */
4502                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4503                         struct target *saved_target_override = cmd_ctx->current_target_override;
4504                         cmd_ctx->current_target_override = target;
4505
4506                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4507                                 Jim_MakeErrorMessage(teap->interp);
4508                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4509                         }
4510
4511                         cmd_ctx->current_target_override = saved_target_override;
4512                 }
4513         }
4514 }
4515
4516 /**
4517  * Returns true only if the target has a handler for the specified event.
4518  */
4519 bool target_has_event_action(struct target *target, enum target_event event)
4520 {
4521         struct target_event_action *teap;
4522
4523         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4524                 if (teap->event == event)
4525                         return true;
4526         }
4527         return false;
4528 }
4529
4530 enum target_cfg_param {
4531         TCFG_TYPE,
4532         TCFG_EVENT,
4533         TCFG_WORK_AREA_VIRT,
4534         TCFG_WORK_AREA_PHYS,
4535         TCFG_WORK_AREA_SIZE,
4536         TCFG_WORK_AREA_BACKUP,
4537         TCFG_ENDIAN,
4538         TCFG_COREID,
4539         TCFG_CHAIN_POSITION,
4540         TCFG_DBGBASE,
4541         TCFG_RTOS,
4542         TCFG_DEFER_EXAMINE,
4543         TCFG_GDB_PORT,
4544 };
4545
4546 static Jim_Nvp nvp_config_opts[] = {
4547         { .name = "-type",             .value = TCFG_TYPE },
4548         { .name = "-event",            .value = TCFG_EVENT },
4549         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4550         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4551         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4552         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4553         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4554         { .name = "-coreid",           .value = TCFG_COREID },
4555         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4556         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4557         { .name = "-rtos",             .value = TCFG_RTOS },
4558         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4559         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4560         { .name = NULL, .value = -1 }
4561 };
4562
4563 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4564 {
4565         Jim_Nvp *n;
4566         Jim_Obj *o;
4567         jim_wide w;
4568         int e;
4569
4570         /* parse config or cget options ... */
4571         while (goi->argc > 0) {
4572                 Jim_SetEmptyResult(goi->interp);
4573                 /* Jim_GetOpt_Debug(goi); */
4574
4575                 if (target->type->target_jim_configure) {
4576                         /* target defines a configure function */
4577                         /* target gets first dibs on parameters */
4578                         e = (*(target->type->target_jim_configure))(target, goi);
4579                         if (e == JIM_OK) {
4580                                 /* more? */
4581                                 continue;
4582                         }
4583                         if (e == JIM_ERR) {
4584                                 /* An error */
4585                                 return e;
4586                         }
4587                         /* otherwise we 'continue' below */
4588                 }
4589                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4590                 if (e != JIM_OK) {
4591                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4592                         return e;
4593                 }
4594                 switch (n->value) {
4595                 case TCFG_TYPE:
4596                         /* not setable */
4597                         if (goi->isconfigure) {
4598                                 Jim_SetResultFormatted(goi->interp,
4599                                                 "not settable: %s", n->name);
4600                                 return JIM_ERR;
4601                         } else {
4602 no_params:
4603                                 if (goi->argc != 0) {
4604                                         Jim_WrongNumArgs(goi->interp,
4605                                                         goi->argc, goi->argv,
4606                                                         "NO PARAMS");
4607                                         return JIM_ERR;
4608                                 }
4609                         }
4610                         Jim_SetResultString(goi->interp,
4611                                         target_type_name(target), -1);
4612                         /* loop for more */
4613                         break;
4614                 case TCFG_EVENT:
4615                         if (goi->argc == 0) {
4616                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4617                                 return JIM_ERR;
4618                         }
4619
4620                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4621                         if (e != JIM_OK) {
4622                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4623                                 return e;
4624                         }
4625
4626                         if (goi->isconfigure) {
4627                                 if (goi->argc != 1) {
4628                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4629                                         return JIM_ERR;
4630                                 }
4631                         } else {
4632                                 if (goi->argc != 0) {
4633                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4634                                         return JIM_ERR;
4635                                 }
4636                         }
4637
4638                         {
4639                                 struct target_event_action *teap;
4640
4641                                 teap = target->event_action;
4642                                 /* replace existing? */
4643                                 while (teap) {
4644                                         if (teap->event == (enum target_event)n->value)
4645                                                 break;
4646                                         teap = teap->next;
4647                                 }
4648
4649                                 if (goi->isconfigure) {
4650                                         bool replace = true;
4651                                         if (teap == NULL) {
4652                                                 /* create new */
4653                                                 teap = calloc(1, sizeof(*teap));
4654                                                 replace = false;
4655                                         }
4656                                         teap->event = n->value;
4657                                         teap->interp = goi->interp;
4658                                         Jim_GetOpt_Obj(goi, &o);
4659                                         if (teap->body)
4660                                                 Jim_DecrRefCount(teap->interp, teap->body);
4661                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4662                                         /*
4663                                          * FIXME:
4664                                          *     Tcl/TK - "tk events" have a nice feature.
4665                                          *     See the "BIND" command.
4666                                          *    We should support that here.
4667                                          *     You can specify %X and %Y in the event code.
4668                                          *     The idea is: %T - target name.
4669                                          *     The idea is: %N - target number
4670                                          *     The idea is: %E - event name.
4671                                          */
4672                                         Jim_IncrRefCount(teap->body);
4673
4674                                         if (!replace) {
4675                                                 /* add to head of event list */
4676                                                 teap->next = target->event_action;
4677                                                 target->event_action = teap;
4678                                         }
4679                                         Jim_SetEmptyResult(goi->interp);
4680                                 } else {
4681                                         /* get */
4682                                         if (teap == NULL)
4683                                                 Jim_SetEmptyResult(goi->interp);
4684                                         else
4685                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4686                                 }
4687                         }
4688                         /* loop for more */
4689                         break;
4690
4691                 case TCFG_WORK_AREA_VIRT:
4692                         if (goi->isconfigure) {
4693                                 target_free_all_working_areas(target);
4694                                 e = Jim_GetOpt_Wide(goi, &w);
4695                                 if (e != JIM_OK)
4696                                         return e;
4697                                 target->working_area_virt = w;
4698                                 target->working_area_virt_spec = true;
4699                         } else {
4700                                 if (goi->argc != 0)
4701                                         goto no_params;
4702                         }
4703                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4704                         /* loop for more */
4705                         break;
4706
4707                 case TCFG_WORK_AREA_PHYS:
4708                         if (goi->isconfigure) {
4709                                 target_free_all_working_areas(target);
4710                                 e = Jim_GetOpt_Wide(goi, &w);
4711                                 if (e != JIM_OK)
4712                                         return e;
4713                                 target->working_area_phys = w;
4714                                 target->working_area_phys_spec = true;
4715                         } else {
4716                                 if (goi->argc != 0)
4717                                         goto no_params;
4718                         }
4719                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4720                         /* loop for more */
4721                         break;
4722
4723                 case TCFG_WORK_AREA_SIZE:
4724                         if (goi->isconfigure) {
4725                                 target_free_all_working_areas(target);
4726                                 e = Jim_GetOpt_Wide(goi, &w);
4727                                 if (e != JIM_OK)
4728                                         return e;
4729                                 target->working_area_size = w;
4730                         } else {
4731                                 if (goi->argc != 0)
4732                                         goto no_params;
4733                         }
4734                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4735                         /* loop for more */
4736                         break;
4737
4738                 case TCFG_WORK_AREA_BACKUP:
4739                         if (goi->isconfigure) {
4740                                 target_free_all_working_areas(target);
4741                                 e = Jim_GetOpt_Wide(goi, &w);
4742                                 if (e != JIM_OK)
4743                                         return e;
4744                                 /* make this exactly 1 or 0 */
4745                                 target->backup_working_area = (!!w);
4746                         } else {
4747                                 if (goi->argc != 0)
4748                                         goto no_params;
4749                         }
4750                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4751                         /* loop for more e*/
4752                         break;
4753
4754
4755                 case TCFG_ENDIAN:
4756                         if (goi->isconfigure) {
4757                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4758                                 if (e != JIM_OK) {
4759                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4760                                         return e;
4761                                 }
4762                                 target->endianness = n->value;
4763                         } else {
4764                                 if (goi->argc != 0)
4765                                         goto no_params;
4766                         }
4767                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4768                         if (n->name == NULL) {
4769                                 target->endianness = TARGET_LITTLE_ENDIAN;
4770                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4771                         }
4772                         Jim_SetResultString(goi->interp, n->name, -1);
4773                         /* loop for more */
4774                         break;
4775
4776                 case TCFG_COREID:
4777                         if (goi->isconfigure) {
4778                                 e = Jim_GetOpt_Wide(goi, &w);
4779                                 if (e != JIM_OK)
4780                                         return e;
4781                                 target->coreid = (int32_t)w;
4782                         } else {
4783                                 if (goi->argc != 0)
4784                                         goto no_params;
4785                         }
4786                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4787                         /* loop for more */
4788                         break;
4789
4790                 case TCFG_CHAIN_POSITION:
4791                         if (goi->isconfigure) {
4792                                 Jim_Obj *o_t;
4793                                 struct jtag_tap *tap;
4794
4795                                 if (target->has_dap) {
4796                                         Jim_SetResultString(goi->interp,
4797                                                 "target requires -dap parameter instead of -chain-position!", -1);
4798                                         return JIM_ERR;
4799                                 }
4800
4801                                 target_free_all_working_areas(target);
4802                                 e = Jim_GetOpt_Obj(goi, &o_t);
4803                                 if (e != JIM_OK)
4804                                         return e;
4805                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4806                                 if (tap == NULL)
4807                                         return JIM_ERR;
4808                                 target->tap = tap;
4809                                 target->tap_configured = true;
4810                         } else {
4811                                 if (goi->argc != 0)
4812                                         goto no_params;
4813                         }
4814                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4815                         /* loop for more e*/
4816                         break;
4817                 case TCFG_DBGBASE:
4818                         if (goi->isconfigure) {
4819                                 e = Jim_GetOpt_Wide(goi, &w);
4820                                 if (e != JIM_OK)
4821                                         return e;
4822                                 target->dbgbase = (uint32_t)w;
4823                                 target->dbgbase_set = true;
4824                         } else {
4825                                 if (goi->argc != 0)
4826                                         goto no_params;
4827                         }
4828                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4829                         /* loop for more */
4830                         break;
4831                 case TCFG_RTOS:
4832                         /* RTOS */
4833                         {
4834                                 int result = rtos_create(goi, target);
4835                                 if (result != JIM_OK)
4836                                         return result;
4837                         }
4838                         /* loop for more */
4839                         break;
4840
4841                 case TCFG_DEFER_EXAMINE:
4842                         /* DEFER_EXAMINE */
4843                         target->defer_examine = true;
4844                         /* loop for more */
4845                         break;
4846
4847                 case TCFG_GDB_PORT:
4848                         if (goi->isconfigure) {
4849                                 const char *s;
4850                                 e = Jim_GetOpt_String(goi, &s, NULL);
4851                                 if (e != JIM_OK)
4852                                         return e;
4853                                 target->gdb_port_override = strdup(s);
4854                         } else {
4855                                 if (goi->argc != 0)
4856                                         goto no_params;
4857                         }
4858                         Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4859                         /* loop for more */
4860                         break;
4861                 }
4862         } /* while (goi->argc) */
4863
4864
4865                 /* done - we return */
4866         return JIM_OK;
4867 }
4868
4869 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4870 {
4871         Jim_GetOptInfo goi;
4872
4873         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4874         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4875         if (goi.argc < 1) {
4876                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4877                                  "missing: -option ...");
4878                 return JIM_ERR;
4879         }
4880         struct target *target = Jim_CmdPrivData(goi.interp);
4881         return target_configure(&goi, target);
4882 }
4883
4884 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4885 {
4886         const char *cmd_name = Jim_GetString(argv[0], NULL);
4887
4888         Jim_GetOptInfo goi;
4889         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4890
4891         if (goi.argc < 2 || goi.argc > 4) {
4892                 Jim_SetResultFormatted(goi.interp,
4893                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4894                 return JIM_ERR;
4895         }
4896
4897         target_write_fn fn;
4898         fn = target_write_memory;
4899
4900         int e;
4901         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4902                 /* consume it */
4903                 struct Jim_Obj *obj;
4904                 e = Jim_GetOpt_Obj(&goi, &obj);
4905                 if (e != JIM_OK)
4906                         return e;
4907
4908                 fn = target_write_phys_memory;
4909         }
4910
4911         jim_wide a;
4912         e = Jim_GetOpt_Wide(&goi, &a);
4913         if (e != JIM_OK)
4914                 return e;
4915
4916         jim_wide b;
4917         e = Jim_GetOpt_Wide(&goi, &b);
4918         if (e != JIM_OK)
4919                 return e;
4920
4921         jim_wide c = 1;
4922         if (goi.argc == 1) {
4923                 e = Jim_GetOpt_Wide(&goi, &c);
4924                 if (e != JIM_OK)
4925                         return e;
4926         }
4927
4928         /* all args must be consumed */
4929         if (goi.argc != 0)
4930                 return JIM_ERR;
4931
4932         struct target *target = Jim_CmdPrivData(goi.interp);
4933         unsigned data_size;
4934         if (strcasecmp(cmd_name, "mww") == 0)
4935                 data_size = 4;
4936         else if (strcasecmp(cmd_name, "mwh") == 0)
4937                 data_size = 2;
4938         else if (strcasecmp(cmd_name, "mwb") == 0)
4939                 data_size = 1;
4940         else {
4941                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4942                 return JIM_ERR;
4943         }
4944
4945         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4946 }
4947
4948 /**
4949 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4950 *
4951 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4952 *         mdh [phys] <address> [<count>] - for 16 bit reads
4953 *         mdb [phys] <address> [<count>] - for  8 bit reads
4954 *
4955 *  Count defaults to 1.
4956 *
4957 *  Calls target_read_memory or target_read_phys_memory depending on
4958 *  the presence of the "phys" argument
4959 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4960 *  to int representation in base16.
4961 *  Also outputs read data in a human readable form using command_print
4962 *
4963 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4964 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4965 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4966 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4967 *  on success, with [<count>] number of elements.
4968 *
4969 *  In case of little endian target:
4970 *      Example1: "mdw 0x00000000"  returns "10123456"
4971 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4972 *      Example3: "mdb 0x00000000" returns "56"
4973 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4974 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4975 **/
4976 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4977 {
4978         const char *cmd_name = Jim_GetString(argv[0], NULL);
4979
4980         Jim_GetOptInfo goi;
4981         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4982
4983         if ((goi.argc < 1) || (goi.argc > 3)) {
4984                 Jim_SetResultFormatted(goi.interp,
4985                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4986                 return JIM_ERR;
4987         }
4988
4989         int (*fn)(struct target *target,
4990                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4991         fn = target_read_memory;
4992
4993         int e;
4994         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4995                 /* consume it */
4996                 struct Jim_Obj *obj;
4997                 e = Jim_GetOpt_Obj(&goi, &obj);
4998                 if (e != JIM_OK)
4999                         return e;
5000
5001                 fn = target_read_phys_memory;
5002         }
5003
5004         /* Read address parameter */
5005         jim_wide addr;
5006         e = Jim_GetOpt_Wide(&goi, &addr);
5007         if (e != JIM_OK)
5008                 return JIM_ERR;
5009
5010         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
5011         jim_wide count;
5012         if (goi.argc == 1) {
5013                 e = Jim_GetOpt_Wide(&goi, &count);
5014                 if (e != JIM_OK)
5015                         return JIM_ERR;
5016         } else
5017                 count = 1;
5018
5019         /* all args must be consumed */
5020         if (goi.argc != 0)
5021                 return JIM_ERR;
5022
5023         jim_wide dwidth = 1; /* shut up gcc */
5024         if (strcasecmp(cmd_name, "mdw") == 0)
5025                 dwidth = 4;
5026         else if (strcasecmp(cmd_name, "mdh") == 0)
5027                 dwidth = 2;
5028         else if (strcasecmp(cmd_name, "mdb") == 0)
5029                 dwidth = 1;
5030         else {
5031                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5032                 return JIM_ERR;
5033         }
5034
5035         /* convert count to "bytes" */
5036         int bytes = count * dwidth;
5037
5038         struct target *target = Jim_CmdPrivData(goi.interp);
5039         uint8_t  target_buf[32];
5040         jim_wide x, y, z;
5041         while (bytes > 0) {
5042                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5043
5044                 /* Try to read out next block */
5045                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5046
5047                 if (e != ERROR_OK) {
5048                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5049                         return JIM_ERR;
5050                 }
5051
5052                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5053                 switch (dwidth) {
5054                 case 4:
5055                         for (x = 0; x < 16 && x < y; x += 4) {
5056                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5057                                 command_print_sameline(NULL, "%08x ", (int)(z));
5058                         }
5059                         for (; (x < 16) ; x += 4)
5060                                 command_print_sameline(NULL, "         ");
5061                         break;
5062                 case 2:
5063                         for (x = 0; x < 16 && x < y; x += 2) {
5064                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5065                                 command_print_sameline(NULL, "%04x ", (int)(z));
5066                         }
5067                         for (; (x < 16) ; x += 2)
5068                                 command_print_sameline(NULL, "     ");
5069                         break;
5070                 case 1:
5071                 default:
5072                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5073                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5074                                 command_print_sameline(NULL, "%02x ", (int)(z));
5075                         }
5076                         for (; (x < 16) ; x += 1)
5077                                 command_print_sameline(NULL, "   ");
5078                         break;
5079                 }
5080                 /* ascii-ify the bytes */
5081                 for (x = 0 ; x < y ; x++) {
5082                         if ((target_buf[x] >= 0x20) &&
5083                                 (target_buf[x] <= 0x7e)) {
5084                                 /* good */
5085                         } else {
5086                                 /* smack it */
5087                                 target_buf[x] = '.';
5088                         }
5089                 }
5090                 /* space pad  */
5091                 while (x < 16) {
5092                         target_buf[x] = ' ';
5093                         x++;
5094                 }
5095                 /* terminate */
5096                 target_buf[16] = 0;
5097                 /* print - with a newline */
5098                 command_print_sameline(NULL, "%s\n", target_buf);
5099                 /* NEXT... */
5100                 bytes -= 16;
5101                 addr += 16;
5102         }
5103         return JIM_OK;
5104 }
5105
5106 static int jim_target_mem2array(Jim_Interp *interp,
5107                 int argc, Jim_Obj *const *argv)
5108 {
5109         struct target *target = Jim_CmdPrivData(interp);
5110         return target_mem2array(interp, target, argc - 1, argv + 1);
5111 }
5112
5113 static int jim_target_array2mem(Jim_Interp *interp,
5114                 int argc, Jim_Obj *const *argv)
5115 {
5116         struct target *target = Jim_CmdPrivData(interp);
5117         return target_array2mem(interp, target, argc - 1, argv + 1);
5118 }
5119
5120 static int jim_target_tap_disabled(Jim_Interp *interp)
5121 {
5122         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5123         return JIM_ERR;
5124 }
5125
5126 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5127 {
5128         bool allow_defer = false;
5129
5130         Jim_GetOptInfo goi;
5131         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5132         if (goi.argc > 1) {
5133                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5134                 Jim_SetResultFormatted(goi.interp,
5135                                 "usage: %s ['allow-defer']", cmd_name);
5136                 return JIM_ERR;
5137         }
5138         if (goi.argc > 0 &&
5139             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5140                 /* consume it */
5141                 struct Jim_Obj *obj;
5142                 int e = Jim_GetOpt_Obj(&goi, &obj);
5143                 if (e != JIM_OK)
5144                         return e;
5145                 allow_defer = true;
5146         }
5147
5148         struct target *target = Jim_CmdPrivData(interp);
5149         if (!target->tap->enabled)
5150                 return jim_target_tap_disabled(interp);
5151
5152         if (allow_defer && target->defer_examine) {
5153                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5154                 LOG_INFO("Use arp_examine command to examine it manually!");
5155                 return JIM_OK;
5156         }
5157
5158         int e = target->type->examine(target);
5159         if (e != ERROR_OK)
5160                 return JIM_ERR;
5161         return JIM_OK;
5162 }
5163
5164 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5165 {
5166         struct target *target = Jim_CmdPrivData(interp);
5167
5168         Jim_SetResultBool(interp, target_was_examined(target));
5169         return JIM_OK;
5170 }
5171
5172 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5173 {
5174         struct target *target = Jim_CmdPrivData(interp);
5175
5176         Jim_SetResultBool(interp, target->defer_examine);
5177         return JIM_OK;
5178 }
5179
5180 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5181 {
5182         if (argc != 1) {
5183                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5184                 return JIM_ERR;
5185         }
5186         struct target *target = Jim_CmdPrivData(interp);
5187
5188         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5189                 return JIM_ERR;
5190
5191         return JIM_OK;
5192 }
5193
5194 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5195 {
5196         if (argc != 1) {
5197                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5198                 return JIM_ERR;
5199         }
5200         struct target *target = Jim_CmdPrivData(interp);
5201         if (!target->tap->enabled)
5202                 return jim_target_tap_disabled(interp);
5203
5204         int e;
5205         if (!(target_was_examined(target)))
5206                 e = ERROR_TARGET_NOT_EXAMINED;
5207         else
5208                 e = target->type->poll(target);
5209         if (e != ERROR_OK)
5210                 return JIM_ERR;
5211         return JIM_OK;
5212 }
5213
5214 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5215 {
5216         Jim_GetOptInfo goi;
5217         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5218
5219         if (goi.argc != 2) {
5220                 Jim_WrongNumArgs(interp, 0, argv,
5221                                 "([tT]|[fF]|assert|deassert) BOOL");
5222                 return JIM_ERR;
5223         }
5224
5225         Jim_Nvp *n;
5226         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5227         if (e != JIM_OK) {
5228                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5229                 return e;
5230         }
5231         /* the halt or not param */
5232         jim_wide a;
5233         e = Jim_GetOpt_Wide(&goi, &a);
5234         if (e != JIM_OK)
5235                 return e;
5236
5237         struct target *target = Jim_CmdPrivData(goi.interp);
5238         if (!target->tap->enabled)
5239                 return jim_target_tap_disabled(interp);
5240
5241         if (!target->type->assert_reset || !target->type->deassert_reset) {
5242                 Jim_SetResultFormatted(interp,
5243                                 "No target-specific reset for %s",
5244                                 target_name(target));
5245                 return JIM_ERR;
5246         }
5247
5248         if (target->defer_examine)
5249                 target_reset_examined(target);
5250
5251         /* determine if we should halt or not. */
5252         target->reset_halt = !!a;
5253         /* When this happens - all workareas are invalid. */
5254         target_free_all_working_areas_restore(target, 0);
5255
5256         /* do the assert */
5257         if (n->value == NVP_ASSERT)
5258                 e = target->type->assert_reset(target);
5259         else
5260                 e = target->type->deassert_reset(target);
5261         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5262 }
5263
5264 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5265 {
5266         if (argc != 1) {
5267                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5268                 return JIM_ERR;
5269         }
5270         struct target *target = Jim_CmdPrivData(interp);
5271         if (!target->tap->enabled)
5272                 return jim_target_tap_disabled(interp);
5273         int e = target->type->halt(target);
5274         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5275 }
5276
5277 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5278 {
5279         Jim_GetOptInfo goi;
5280         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5281
5282         /* params:  <name>  statename timeoutmsecs */
5283         if (goi.argc != 2) {
5284                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5285                 Jim_SetResultFormatted(goi.interp,
5286                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5287                 return JIM_ERR;
5288         }
5289
5290         Jim_Nvp *n;
5291         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5292         if (e != JIM_OK) {
5293                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5294                 return e;
5295         }
5296         jim_wide a;
5297         e = Jim_GetOpt_Wide(&goi, &a);
5298         if (e != JIM_OK)
5299                 return e;
5300         struct target *target = Jim_CmdPrivData(interp);
5301         if (!target->tap->enabled)
5302                 return jim_target_tap_disabled(interp);
5303
5304         e = target_wait_state(target, n->value, a);
5305         if (e != ERROR_OK) {
5306                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5307                 Jim_SetResultFormatted(goi.interp,
5308                                 "target: %s wait %s fails (%#s) %s",
5309                                 target_name(target), n->name,
5310                                 eObj, target_strerror_safe(e));
5311                 Jim_FreeNewObj(interp, eObj);
5312                 return JIM_ERR;
5313         }
5314         return JIM_OK;
5315 }
5316 /* List for human, Events defined for this target.
5317  * scripts/programs should use 'name cget -event NAME'
5318  */
5319 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5320 {
5321         struct command_context *cmd_ctx = current_command_context(interp);
5322         assert(cmd_ctx != NULL);
5323
5324         struct target *target = Jim_CmdPrivData(interp);
5325         struct target_event_action *teap = target->event_action;
5326         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5327                                    target->target_number,
5328                                    target_name(target));
5329         command_print(cmd_ctx, "%-25s | Body", "Event");
5330         command_print(cmd_ctx, "------------------------- | "
5331                         "----------------------------------------");
5332         while (teap) {
5333                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5334                 command_print(cmd_ctx, "%-25s | %s",
5335                                 opt->name, Jim_GetString(teap->body, NULL));
5336                 teap = teap->next;
5337         }
5338         command_print(cmd_ctx, "***END***");
5339         return JIM_OK;
5340 }
5341 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5342 {
5343         if (argc != 1) {
5344                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5345                 return JIM_ERR;
5346         }
5347         struct target *target = Jim_CmdPrivData(interp);
5348         Jim_SetResultString(interp, target_state_name(target), -1);
5349         return JIM_OK;
5350 }
5351 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5352 {
5353         Jim_GetOptInfo goi;
5354         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5355         if (goi.argc != 1) {
5356                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5357                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5358                 return JIM_ERR;
5359         }
5360         Jim_Nvp *n;
5361         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5362         if (e != JIM_OK) {
5363                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5364                 return e;
5365         }
5366         struct target *target = Jim_CmdPrivData(interp);
5367         target_handle_event(target, n->value);
5368         return JIM_OK;
5369 }
5370
5371 static const struct command_registration target_instance_command_handlers[] = {
5372         {
5373                 .name = "configure",
5374                 .mode = COMMAND_CONFIG,
5375                 .jim_handler = jim_target_configure,
5376                 .help  = "configure a new target for use",
5377                 .usage = "[target_attribute ...]",
5378         },
5379         {
5380                 .name = "cget",
5381                 .mode = COMMAND_ANY,
5382                 .jim_handler = jim_target_configure,
5383                 .help  = "returns the specified target attribute",
5384                 .usage = "target_attribute",
5385         },
5386         {
5387                 .name = "mww",
5388                 .mode = COMMAND_EXEC,
5389                 .jim_handler = jim_target_mw,
5390                 .help = "Write 32-bit word(s) to target memory",
5391                 .usage = "address data [count]",
5392         },
5393         {
5394                 .name = "mwh",
5395                 .mode = COMMAND_EXEC,
5396                 .jim_handler = jim_target_mw,
5397                 .help = "Write 16-bit half-word(s) to target memory",
5398                 .usage = "address data [count]",
5399         },
5400         {
5401                 .name = "mwb",
5402                 .mode = COMMAND_EXEC,
5403                 .jim_handler = jim_target_mw,
5404                 .help = "Write byte(s) to target memory",
5405                 .usage = "address data [count]",
5406         },
5407         {
5408                 .name = "mdw",
5409                 .mode = COMMAND_EXEC,
5410                 .jim_handler = jim_target_md,
5411                 .help = "Display target memory as 32-bit words",
5412                 .usage = "address [count]",
5413         },
5414         {
5415                 .name = "mdh",
5416                 .mode = COMMAND_EXEC,
5417                 .jim_handler = jim_target_md,
5418                 .help = "Display target memory as 16-bit half-words",
5419                 .usage = "address [count]",
5420         },
5421         {
5422                 .name = "mdb",
5423                 .mode = COMMAND_EXEC,
5424                 .jim_handler = jim_target_md,
5425                 .help = "Display target memory as 8-bit bytes",
5426                 .usage = "address [count]",
5427         },
5428         {
5429                 .name = "array2mem",
5430                 .mode = COMMAND_EXEC,
5431                 .jim_handler = jim_target_array2mem,
5432                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5433                         "to target memory",
5434                 .usage = "arrayname bitwidth address count",
5435         },
5436         {
5437                 .name = "mem2array",
5438                 .mode = COMMAND_EXEC,
5439                 .jim_handler = jim_target_mem2array,
5440                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5441                         "from target memory",
5442                 .usage = "arrayname bitwidth address count",
5443         },
5444         {
5445                 .name = "eventlist",
5446                 .mode = COMMAND_EXEC,
5447                 .jim_handler = jim_target_event_list,
5448                 .help = "displays a table of events defined for this target",
5449         },
5450         {
5451                 .name = "curstate",
5452                 .mode = COMMAND_EXEC,
5453                 .jim_handler = jim_target_current_state,
5454                 .help = "displays the current state of this target",
5455         },
5456         {
5457                 .name = "arp_examine",
5458                 .mode = COMMAND_EXEC,
5459                 .jim_handler = jim_target_examine,
5460                 .help = "used internally for reset processing",
5461                 .usage = "['allow-defer']",
5462         },
5463         {
5464                 .name = "was_examined",
5465                 .mode = COMMAND_EXEC,
5466                 .jim_handler = jim_target_was_examined,
5467                 .help = "used internally for reset processing",
5468         },
5469         {
5470                 .name = "examine_deferred",
5471                 .mode = COMMAND_EXEC,
5472                 .jim_handler = jim_target_examine_deferred,
5473                 .help = "used internally for reset processing",
5474         },
5475         {
5476                 .name = "arp_halt_gdb",
5477                 .mode = COMMAND_EXEC,
5478                 .jim_handler = jim_target_halt_gdb,
5479                 .help = "used internally for reset processing to halt GDB",
5480         },
5481         {
5482                 .name = "arp_poll",
5483                 .mode = COMMAND_EXEC,
5484                 .jim_handler = jim_target_poll,
5485                 .help = "used internally for reset processing",
5486         },
5487         {
5488                 .name = "arp_reset",
5489                 .mode = COMMAND_EXEC,
5490                 .jim_handler = jim_target_reset,
5491                 .help = "used internally for reset processing",
5492         },
5493         {
5494                 .name = "arp_halt",
5495                 .mode = COMMAND_EXEC,
5496                 .jim_handler = jim_target_halt,
5497                 .help = "used internally for reset processing",
5498         },
5499         {
5500                 .name = "arp_waitstate",
5501                 .mode = COMMAND_EXEC,
5502                 .jim_handler = jim_target_wait_state,
5503                 .help = "used internally for reset processing",
5504         },
5505         {
5506                 .name = "invoke-event",
5507                 .mode = COMMAND_EXEC,
5508                 .jim_handler = jim_target_invoke_event,
5509                 .help = "invoke handler for specified event",
5510                 .usage = "event_name",
5511         },
5512         COMMAND_REGISTRATION_DONE
5513 };
5514
5515 static int target_create(Jim_GetOptInfo *goi)
5516 {
5517         Jim_Obj *new_cmd;
5518         Jim_Cmd *cmd;
5519         const char *cp;
5520         int e;
5521         int x;
5522         struct target *target;
5523         struct command_context *cmd_ctx;
5524
5525         cmd_ctx = current_command_context(goi->interp);
5526         assert(cmd_ctx != NULL);
5527
5528         if (goi->argc < 3) {
5529                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5530                 return JIM_ERR;
5531         }
5532
5533         /* COMMAND */
5534         Jim_GetOpt_Obj(goi, &new_cmd);
5535         /* does this command exist? */
5536         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5537         if (cmd) {
5538                 cp = Jim_GetString(new_cmd, NULL);
5539                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5540                 return JIM_ERR;
5541         }
5542
5543         /* TYPE */
5544         e = Jim_GetOpt_String(goi, &cp, NULL);
5545         if (e != JIM_OK)
5546                 return e;
5547         struct transport *tr = get_current_transport();
5548         if (tr->override_target) {
5549                 e = tr->override_target(&cp);
5550                 if (e != ERROR_OK) {
5551                         LOG_ERROR("The selected transport doesn't support this target");
5552                         return JIM_ERR;
5553                 }
5554                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5555         }
5556         /* now does target type exist */
5557         for (x = 0 ; target_types[x] ; x++) {
5558                 if (0 == strcmp(cp, target_types[x]->name)) {
5559                         /* found */
5560                         break;
5561                 }
5562
5563                 /* check for deprecated name */
5564                 if (target_types[x]->deprecated_name) {
5565                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5566                                 /* found */
5567                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5568                                 break;
5569                         }
5570                 }
5571         }
5572         if (target_types[x] == NULL) {
5573                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5574                 for (x = 0 ; target_types[x] ; x++) {
5575                         if (target_types[x + 1]) {
5576                                 Jim_AppendStrings(goi->interp,
5577                                                                    Jim_GetResult(goi->interp),
5578                                                                    target_types[x]->name,
5579                                                                    ", ", NULL);
5580                         } else {
5581                                 Jim_AppendStrings(goi->interp,
5582                                                                    Jim_GetResult(goi->interp),
5583                                                                    " or ",
5584                                                                    target_types[x]->name, NULL);
5585                         }
5586                 }
5587                 return JIM_ERR;
5588         }
5589
5590         /* Create it */
5591         target = calloc(1, sizeof(struct target));
5592         /* set target number */
5593         target->target_number = new_target_number();
5594         cmd_ctx->current_target = target;
5595
5596         /* allocate memory for each unique target type */
5597         target->type = calloc(1, sizeof(struct target_type));
5598
5599         memcpy(target->type, target_types[x], sizeof(struct target_type));
5600
5601         /* will be set by "-endian" */
5602         target->endianness = TARGET_ENDIAN_UNKNOWN;
5603
5604         /* default to first core, override with -coreid */
5605         target->coreid = 0;
5606
5607         target->working_area        = 0x0;
5608         target->working_area_size   = 0x0;
5609         target->working_areas       = NULL;
5610         target->backup_working_area = 0;
5611
5612         target->state               = TARGET_UNKNOWN;
5613         target->debug_reason        = DBG_REASON_UNDEFINED;
5614         target->reg_cache           = NULL;
5615         target->breakpoints         = NULL;
5616         target->watchpoints         = NULL;
5617         target->next                = NULL;
5618         target->arch_info           = NULL;
5619
5620         target->verbose_halt_msg        = true;
5621
5622         target->halt_issued                     = false;
5623
5624         /* initialize trace information */
5625         target->trace_info = calloc(1, sizeof(struct trace));
5626
5627         target->dbgmsg          = NULL;
5628         target->dbg_msg_enabled = 0;
5629
5630         target->endianness = TARGET_ENDIAN_UNKNOWN;
5631
5632         target->rtos = NULL;
5633         target->rtos_auto_detect = false;
5634
5635         target->gdb_port_override = NULL;
5636
5637         /* Do the rest as "configure" options */
5638         goi->isconfigure = 1;
5639         e = target_configure(goi, target);
5640
5641         if (e == JIM_OK) {
5642                 if (target->has_dap) {
5643                         if (!target->dap_configured) {
5644                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5645                                 e = JIM_ERR;
5646                         }
5647                 } else {
5648                         if (!target->tap_configured) {
5649                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5650                                 e = JIM_ERR;
5651                         }
5652                 }
5653                 /* tap must be set after target was configured */
5654                 if (target->tap == NULL)
5655                         e = JIM_ERR;
5656         }
5657
5658         if (e != JIM_OK) {
5659                 free(target->gdb_port_override);
5660                 free(target->type);
5661                 free(target);
5662                 return e;
5663         }
5664
5665         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5666                 /* default endian to little if not specified */
5667                 target->endianness = TARGET_LITTLE_ENDIAN;
5668         }
5669
5670         cp = Jim_GetString(new_cmd, NULL);
5671         target->cmd_name = strdup(cp);
5672
5673         if (target->type->target_create) {
5674                 e = (*(target->type->target_create))(target, goi->interp);
5675                 if (e != ERROR_OK) {
5676                         LOG_DEBUG("target_create failed");
5677                         free(target->gdb_port_override);
5678                         free(target->type);
5679                         free(target->cmd_name);
5680                         free(target);
5681                         return JIM_ERR;
5682                 }
5683         }
5684
5685         /* create the target specific commands */
5686         if (target->type->commands) {
5687                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5688                 if (ERROR_OK != e)
5689                         LOG_ERROR("unable to register '%s' commands", cp);
5690         }
5691
5692         /* append to end of list */
5693         {
5694                 struct target **tpp;
5695                 tpp = &(all_targets);
5696                 while (*tpp)
5697                         tpp = &((*tpp)->next);
5698                 *tpp = target;
5699         }
5700
5701         /* now - create the new target name command */
5702         const struct command_registration target_subcommands[] = {
5703                 {
5704                         .chain = target_instance_command_handlers,
5705                 },
5706                 {
5707                         .chain = target->type->commands,
5708                 },
5709                 COMMAND_REGISTRATION_DONE
5710         };
5711         const struct command_registration target_commands[] = {
5712                 {
5713                         .name = cp,
5714                         .mode = COMMAND_ANY,
5715                         .help = "target command group",
5716                         .usage = "",
5717                         .chain = target_subcommands,
5718                 },
5719                 COMMAND_REGISTRATION_DONE
5720         };
5721         e = register_commands(cmd_ctx, NULL, target_commands);
5722         if (ERROR_OK != e)
5723                 return JIM_ERR;
5724
5725         struct command *c = command_find_in_context(cmd_ctx, cp);
5726         assert(c);
5727         command_set_handler_data(c, target);
5728
5729         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5730 }
5731
5732 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5733 {
5734         if (argc != 1) {
5735                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5736                 return JIM_ERR;
5737         }
5738         struct command_context *cmd_ctx = current_command_context(interp);
5739         assert(cmd_ctx != NULL);
5740
5741         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5742         return JIM_OK;
5743 }
5744
5745 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5746 {
5747         if (argc != 1) {
5748                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5749                 return JIM_ERR;
5750         }
5751         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5752         for (unsigned x = 0; NULL != target_types[x]; x++) {
5753                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5754                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5755         }
5756         return JIM_OK;
5757 }
5758
5759 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5760 {
5761         if (argc != 1) {
5762                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5763                 return JIM_ERR;
5764         }
5765         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5766         struct target *target = all_targets;
5767         while (target) {
5768                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5769                         Jim_NewStringObj(interp, target_name(target), -1));
5770                 target = target->next;
5771         }
5772         return JIM_OK;
5773 }
5774
5775 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5776 {
5777         int i;
5778         const char *targetname;
5779         int retval, len;
5780         struct target *target = (struct target *) NULL;
5781         struct target_list *head, *curr, *new;
5782         curr = (struct target_list *) NULL;
5783         head = (struct target_list *) NULL;
5784
5785         retval = 0;
5786         LOG_DEBUG("%d", argc);
5787         /* argv[1] = target to associate in smp
5788          * argv[2] = target to assoicate in smp
5789          * argv[3] ...
5790          */
5791
5792         for (i = 1; i < argc; i++) {
5793
5794                 targetname = Jim_GetString(argv[i], &len);
5795                 target = get_target(targetname);
5796                 LOG_DEBUG("%s ", targetname);
5797                 if (target) {
5798                         new = malloc(sizeof(struct target_list));
5799                         new->target = target;
5800                         new->next = (struct target_list *)NULL;
5801                         if (head == (struct target_list *)NULL) {
5802                                 head = new;
5803                                 curr = head;
5804                         } else {
5805                                 curr->next = new;
5806                                 curr = new;
5807                         }
5808                 }
5809         }
5810         /*  now parse the list of cpu and put the target in smp mode*/
5811         curr = head;
5812
5813         while (curr != (struct target_list *)NULL) {
5814                 target = curr->target;
5815                 target->smp = 1;
5816                 target->head = head;
5817                 curr = curr->next;
5818         }
5819
5820         if (target && target->rtos)
5821                 retval = rtos_smp_init(head->target);
5822
5823         return retval;
5824 }
5825
5826
5827 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5828 {
5829         Jim_GetOptInfo goi;
5830         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5831         if (goi.argc < 3) {
5832                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5833                         "<name> <target_type> [<target_options> ...]");
5834                 return JIM_ERR;
5835         }
5836         return target_create(&goi);
5837 }
5838
5839 static const struct command_registration target_subcommand_handlers[] = {
5840         {
5841                 .name = "init",
5842                 .mode = COMMAND_CONFIG,
5843                 .handler = handle_target_init_command,
5844                 .help = "initialize targets",
5845         },
5846         {
5847                 .name = "create",
5848                 /* REVISIT this should be COMMAND_CONFIG ... */
5849                 .mode = COMMAND_ANY,
5850                 .jim_handler = jim_target_create,
5851                 .usage = "name type '-chain-position' name [options ...]",
5852                 .help = "Creates and selects a new target",
5853         },
5854         {
5855                 .name = "current",
5856                 .mode = COMMAND_ANY,
5857                 .jim_handler = jim_target_current,
5858                 .help = "Returns the currently selected target",
5859         },
5860         {
5861                 .name = "types",
5862                 .mode = COMMAND_ANY,
5863                 .jim_handler = jim_target_types,
5864                 .help = "Returns the available target types as "
5865                                 "a list of strings",
5866         },
5867         {
5868                 .name = "names",
5869                 .mode = COMMAND_ANY,
5870                 .jim_handler = jim_target_names,
5871                 .help = "Returns the names of all targets as a list of strings",
5872         },
5873         {
5874                 .name = "smp",
5875                 .mode = COMMAND_ANY,
5876                 .jim_handler = jim_target_smp,
5877                 .usage = "targetname1 targetname2 ...",
5878                 .help = "gather several target in a smp list"
5879         },
5880
5881         COMMAND_REGISTRATION_DONE
5882 };
5883
5884 struct FastLoad {
5885         target_addr_t address;
5886         uint8_t *data;
5887         int length;
5888
5889 };
5890
5891 static int fastload_num;
5892 static struct FastLoad *fastload;
5893
5894 static void free_fastload(void)
5895 {
5896         if (fastload != NULL) {
5897                 int i;
5898                 for (i = 0; i < fastload_num; i++) {
5899                         if (fastload[i].data)
5900                                 free(fastload[i].data);
5901                 }
5902                 free(fastload);
5903                 fastload = NULL;
5904         }
5905 }
5906
5907 COMMAND_HANDLER(handle_fast_load_image_command)
5908 {
5909         uint8_t *buffer;
5910         size_t buf_cnt;
5911         uint32_t image_size;
5912         target_addr_t min_address = 0;
5913         target_addr_t max_address = -1;
5914         int i;
5915
5916         struct image image;
5917
5918         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5919                         &image, &min_address, &max_address);
5920         if (ERROR_OK != retval)
5921                 return retval;
5922
5923         struct duration bench;
5924         duration_start(&bench);
5925
5926         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5927         if (retval != ERROR_OK)
5928                 return retval;
5929
5930         image_size = 0x0;
5931         retval = ERROR_OK;
5932         fastload_num = image.num_sections;
5933         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5934         if (fastload == NULL) {
5935                 command_print(CMD_CTX, "out of memory");
5936                 image_close(&image);
5937                 return ERROR_FAIL;
5938         }
5939         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5940         for (i = 0; i < image.num_sections; i++) {
5941                 buffer = malloc(image.sections[i].size);
5942                 if (buffer == NULL) {
5943                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5944                                                   (int)(image.sections[i].size));
5945                         retval = ERROR_FAIL;
5946                         break;
5947                 }
5948
5949                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5950                 if (retval != ERROR_OK) {
5951                         free(buffer);
5952                         break;
5953                 }
5954
5955                 uint32_t offset = 0;
5956                 uint32_t length = buf_cnt;
5957
5958                 /* DANGER!!! beware of unsigned comparision here!!! */
5959
5960                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5961                                 (image.sections[i].base_address < max_address)) {
5962                         if (image.sections[i].base_address < min_address) {
5963                                 /* clip addresses below */
5964                                 offset += min_address-image.sections[i].base_address;
5965                                 length -= offset;
5966                         }
5967
5968                         if (image.sections[i].base_address + buf_cnt > max_address)
5969                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5970
5971                         fastload[i].address = image.sections[i].base_address + offset;
5972                         fastload[i].data = malloc(length);
5973                         if (fastload[i].data == NULL) {
5974                                 free(buffer);
5975                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5976                                                           length);
5977                                 retval = ERROR_FAIL;
5978                                 break;
5979                         }
5980                         memcpy(fastload[i].data, buffer + offset, length);
5981                         fastload[i].length = length;
5982
5983                         image_size += length;
5984                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5985                                                   (unsigned int)length,
5986                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5987                 }
5988
5989                 free(buffer);
5990         }
5991
5992         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5993                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5994                                 "in %fs (%0.3f KiB/s)", image_size,
5995                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5996
5997                 command_print(CMD_CTX,
5998                                 "WARNING: image has not been loaded to target!"
5999                                 "You can issue a 'fast_load' to finish loading.");
6000         }
6001
6002         image_close(&image);
6003
6004         if (retval != ERROR_OK)
6005                 free_fastload();
6006
6007         return retval;
6008 }
6009
6010 COMMAND_HANDLER(handle_fast_load_command)
6011 {
6012         if (CMD_ARGC > 0)
6013                 return ERROR_COMMAND_SYNTAX_ERROR;
6014         if (fastload == NULL) {
6015                 LOG_ERROR("No image in memory");
6016                 return ERROR_FAIL;
6017         }
6018         int i;
6019         int64_t ms = timeval_ms();
6020         int size = 0;
6021         int retval = ERROR_OK;
6022         for (i = 0; i < fastload_num; i++) {
6023                 struct target *target = get_current_target(CMD_CTX);
6024                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6025                                           (unsigned int)(fastload[i].address),
6026                                           (unsigned int)(fastload[i].length));
6027                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6028                 if (retval != ERROR_OK)
6029                         break;
6030                 size += fastload[i].length;
6031         }
6032         if (retval == ERROR_OK) {
6033                 int64_t after = timeval_ms();
6034                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6035         }
6036         return retval;
6037 }
6038
6039 static const struct command_registration target_command_handlers[] = {
6040         {
6041                 .name = "targets",
6042                 .handler = handle_targets_command,
6043                 .mode = COMMAND_ANY,
6044                 .help = "change current default target (one parameter) "
6045                         "or prints table of all targets (no parameters)",
6046                 .usage = "[target]",
6047         },
6048         {
6049                 .name = "target",
6050                 .mode = COMMAND_CONFIG,
6051                 .help = "configure target",
6052
6053                 .chain = target_subcommand_handlers,
6054         },
6055         COMMAND_REGISTRATION_DONE
6056 };
6057
6058 int target_register_commands(struct command_context *cmd_ctx)
6059 {
6060         return register_commands(cmd_ctx, NULL, target_command_handlers);
6061 }
6062
6063 static bool target_reset_nag = true;
6064
6065 bool get_target_reset_nag(void)
6066 {
6067         return target_reset_nag;
6068 }
6069
6070 COMMAND_HANDLER(handle_target_reset_nag)
6071 {
6072         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6073                         &target_reset_nag, "Nag after each reset about options to improve "
6074                         "performance");
6075 }
6076
6077 COMMAND_HANDLER(handle_ps_command)
6078 {
6079         struct target *target = get_current_target(CMD_CTX);
6080         char *display;
6081         if (target->state != TARGET_HALTED) {
6082                 LOG_INFO("target not halted !!");
6083                 return ERROR_OK;
6084         }
6085
6086         if ((target->rtos) && (target->rtos->type)
6087                         && (target->rtos->type->ps_command)) {
6088                 display = target->rtos->type->ps_command(target);
6089                 command_print(CMD_CTX, "%s", display);
6090                 free(display);
6091                 return ERROR_OK;
6092         } else {
6093                 LOG_INFO("failed");
6094                 return ERROR_TARGET_FAILURE;
6095         }
6096 }
6097
6098 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6099 {
6100         if (text != NULL)
6101                 command_print_sameline(cmd_ctx, "%s", text);
6102         for (int i = 0; i < size; i++)
6103                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6104         command_print(cmd_ctx, " ");
6105 }
6106
6107 COMMAND_HANDLER(handle_test_mem_access_command)
6108 {
6109         struct target *target = get_current_target(CMD_CTX);
6110         uint32_t test_size;
6111         int retval = ERROR_OK;
6112
6113         if (target->state != TARGET_HALTED) {
6114                 LOG_INFO("target not halted !!");
6115                 return ERROR_FAIL;
6116         }
6117
6118         if (CMD_ARGC != 1)
6119                 return ERROR_COMMAND_SYNTAX_ERROR;
6120
6121         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6122
6123         /* Test reads */
6124         size_t num_bytes = test_size + 4;
6125
6126         struct working_area *wa = NULL;
6127         retval = target_alloc_working_area(target, num_bytes, &wa);
6128         if (retval != ERROR_OK) {
6129                 LOG_ERROR("Not enough working area");
6130                 return ERROR_FAIL;
6131         }
6132
6133         uint8_t *test_pattern = malloc(num_bytes);
6134
6135         for (size_t i = 0; i < num_bytes; i++)
6136                 test_pattern[i] = rand();
6137
6138         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6139         if (retval != ERROR_OK) {
6140                 LOG_ERROR("Test pattern write failed");
6141                 goto out;
6142         }
6143
6144         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6145                 for (int size = 1; size <= 4; size *= 2) {
6146                         for (int offset = 0; offset < 4; offset++) {
6147                                 uint32_t count = test_size / size;
6148                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6149                                 uint8_t *read_ref = malloc(host_bufsiz);
6150                                 uint8_t *read_buf = malloc(host_bufsiz);
6151
6152                                 for (size_t i = 0; i < host_bufsiz; i++) {
6153                                         read_ref[i] = rand();
6154                                         read_buf[i] = read_ref[i];
6155                                 }
6156                                 command_print_sameline(CMD_CTX,
6157                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6158                                                 size, offset, host_offset ? "un" : "");
6159
6160                                 struct duration bench;
6161                                 duration_start(&bench);
6162
6163                                 retval = target_read_memory(target, wa->address + offset, size, count,
6164                                                 read_buf + size + host_offset);
6165
6166                                 duration_measure(&bench);
6167
6168                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6169                                         command_print(CMD_CTX, "Unsupported alignment");
6170                                         goto next;
6171                                 } else if (retval != ERROR_OK) {
6172                                         command_print(CMD_CTX, "Memory read failed");
6173                                         goto next;
6174                                 }
6175
6176                                 /* replay on host */
6177                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6178
6179                                 /* check result */
6180                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6181                                 if (result == 0) {
6182                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6183                                                         duration_elapsed(&bench),
6184                                                         duration_kbps(&bench, count * size));
6185                                 } else {
6186                                         command_print(CMD_CTX, "Compare failed");
6187                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6188                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6189                                 }
6190 next:
6191                                 free(read_ref);
6192                                 free(read_buf);
6193                         }
6194                 }
6195         }
6196
6197 out:
6198         free(test_pattern);
6199
6200         if (wa != NULL)
6201                 target_free_working_area(target, wa);
6202
6203         /* Test writes */
6204         num_bytes = test_size + 4 + 4 + 4;
6205
6206         retval = target_alloc_working_area(target, num_bytes, &wa);
6207         if (retval != ERROR_OK) {
6208                 LOG_ERROR("Not enough working area");
6209                 return ERROR_FAIL;
6210         }
6211
6212         test_pattern = malloc(num_bytes);
6213
6214         for (size_t i = 0; i < num_bytes; i++)
6215                 test_pattern[i] = rand();
6216
6217         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6218                 for (int size = 1; size <= 4; size *= 2) {
6219                         for (int offset = 0; offset < 4; offset++) {
6220                                 uint32_t count = test_size / size;
6221                                 size_t host_bufsiz = count * size + host_offset;
6222                                 uint8_t *read_ref = malloc(num_bytes);
6223                                 uint8_t *read_buf = malloc(num_bytes);
6224                                 uint8_t *write_buf = malloc(host_bufsiz);
6225
6226                                 for (size_t i = 0; i < host_bufsiz; i++)
6227                                         write_buf[i] = rand();
6228                                 command_print_sameline(CMD_CTX,
6229                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6230                                                 size, offset, host_offset ? "un" : "");
6231
6232                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6233                                 if (retval != ERROR_OK) {
6234                                         command_print(CMD_CTX, "Test pattern write failed");
6235                                         goto nextw;
6236                                 }
6237
6238                                 /* replay on host */
6239                                 memcpy(read_ref, test_pattern, num_bytes);
6240                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6241
6242                                 struct duration bench;
6243                                 duration_start(&bench);
6244
6245                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6246                                                 write_buf + host_offset);
6247
6248                                 duration_measure(&bench);
6249
6250                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6251                                         command_print(CMD_CTX, "Unsupported alignment");
6252                                         goto nextw;
6253                                 } else if (retval != ERROR_OK) {
6254                                         command_print(CMD_CTX, "Memory write failed");
6255                                         goto nextw;
6256                                 }
6257
6258                                 /* read back */
6259                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6260                                 if (retval != ERROR_OK) {
6261                                         command_print(CMD_CTX, "Test pattern write failed");
6262                                         goto nextw;
6263                                 }
6264
6265                                 /* check result */
6266                                 int result = memcmp(read_ref, read_buf, num_bytes);
6267                                 if (result == 0) {
6268                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6269                                                         duration_elapsed(&bench),
6270                                                         duration_kbps(&bench, count * size));
6271                                 } else {
6272                                         command_print(CMD_CTX, "Compare failed");
6273                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6274                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6275                                 }
6276 nextw:
6277                                 free(read_ref);
6278                                 free(read_buf);
6279                         }
6280                 }
6281         }
6282
6283         free(test_pattern);
6284
6285         if (wa != NULL)
6286                 target_free_working_area(target, wa);
6287         return retval;
6288 }
6289
6290 static const struct command_registration target_exec_command_handlers[] = {
6291         {
6292                 .name = "fast_load_image",
6293                 .handler = handle_fast_load_image_command,
6294                 .mode = COMMAND_ANY,
6295                 .help = "Load image into server memory for later use by "
6296                         "fast_load; primarily for profiling",
6297                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6298                         "[min_address [max_length]]",
6299         },
6300         {
6301                 .name = "fast_load",
6302                 .handler = handle_fast_load_command,
6303                 .mode = COMMAND_EXEC,
6304                 .help = "loads active fast load image to current target "
6305                         "- mainly for profiling purposes",
6306                 .usage = "",
6307         },
6308         {
6309                 .name = "profile",
6310                 .handler = handle_profile_command,
6311                 .mode = COMMAND_EXEC,
6312                 .usage = "seconds filename [start end]",
6313                 .help = "profiling samples the CPU PC",
6314         },
6315         /** @todo don't register virt2phys() unless target supports it */
6316         {
6317                 .name = "virt2phys",
6318                 .handler = handle_virt2phys_command,
6319                 .mode = COMMAND_ANY,
6320                 .help = "translate a virtual address into a physical address",
6321                 .usage = "virtual_address",
6322         },
6323         {
6324                 .name = "reg",
6325                 .handler = handle_reg_command,
6326                 .mode = COMMAND_EXEC,
6327                 .help = "display (reread from target with \"force\") or set a register; "
6328                         "with no arguments, displays all registers and their values",
6329                 .usage = "[(register_number|register_name) [(value|'force')]]",
6330         },
6331         {
6332                 .name = "poll",
6333                 .handler = handle_poll_command,
6334                 .mode = COMMAND_EXEC,
6335                 .help = "poll target state; or reconfigure background polling",
6336                 .usage = "['on'|'off']",
6337         },
6338         {
6339                 .name = "wait_halt",
6340                 .handler = handle_wait_halt_command,
6341                 .mode = COMMAND_EXEC,
6342                 .help = "wait up to the specified number of milliseconds "
6343                         "(default 5000) for a previously requested halt",
6344                 .usage = "[milliseconds]",
6345         },
6346         {
6347                 .name = "halt",
6348                 .handler = handle_halt_command,
6349                 .mode = COMMAND_EXEC,
6350                 .help = "request target to halt, then wait up to the specified"
6351                         "number of milliseconds (default 5000) for it to complete",
6352                 .usage = "[milliseconds]",
6353         },
6354         {
6355                 .name = "resume",
6356                 .handler = handle_resume_command,
6357                 .mode = COMMAND_EXEC,
6358                 .help = "resume target execution from current PC or address",
6359                 .usage = "[address]",
6360         },
6361         {
6362                 .name = "reset",
6363                 .handler = handle_reset_command,
6364                 .mode = COMMAND_EXEC,
6365                 .usage = "[run|halt|init]",
6366                 .help = "Reset all targets into the specified mode."
6367                         "Default reset mode is run, if not given.",
6368         },
6369         {
6370                 .name = "soft_reset_halt",
6371                 .handler = handle_soft_reset_halt_command,
6372                 .mode = COMMAND_EXEC,
6373                 .usage = "",
6374                 .help = "halt the target and do a soft reset",
6375         },
6376         {
6377                 .name = "step",
6378                 .handler = handle_step_command,
6379                 .mode = COMMAND_EXEC,
6380                 .help = "step one instruction from current PC or address",
6381                 .usage = "[address]",
6382         },
6383         {
6384                 .name = "mdd",
6385                 .handler = handle_md_command,
6386                 .mode = COMMAND_EXEC,
6387                 .help = "display memory words",
6388                 .usage = "['phys'] address [count]",
6389         },
6390         {
6391                 .name = "mdw",
6392                 .handler = handle_md_command,
6393                 .mode = COMMAND_EXEC,
6394                 .help = "display memory words",
6395                 .usage = "['phys'] address [count]",
6396         },
6397         {
6398                 .name = "mdh",
6399                 .handler = handle_md_command,
6400                 .mode = COMMAND_EXEC,
6401                 .help = "display memory half-words",
6402                 .usage = "['phys'] address [count]",
6403         },
6404         {
6405                 .name = "mdb",
6406                 .handler = handle_md_command,
6407                 .mode = COMMAND_EXEC,
6408                 .help = "display memory bytes",
6409                 .usage = "['phys'] address [count]",
6410         },
6411         {
6412                 .name = "mwd",
6413                 .handler = handle_mw_command,
6414                 .mode = COMMAND_EXEC,
6415                 .help = "write memory word",
6416                 .usage = "['phys'] address value [count]",
6417         },
6418         {
6419                 .name = "mww",
6420                 .handler = handle_mw_command,
6421                 .mode = COMMAND_EXEC,
6422                 .help = "write memory word",
6423                 .usage = "['phys'] address value [count]",
6424         },
6425         {
6426                 .name = "mwh",
6427                 .handler = handle_mw_command,
6428                 .mode = COMMAND_EXEC,
6429                 .help = "write memory half-word",
6430                 .usage = "['phys'] address value [count]",
6431         },
6432         {
6433                 .name = "mwb",
6434                 .handler = handle_mw_command,
6435                 .mode = COMMAND_EXEC,
6436                 .help = "write memory byte",
6437                 .usage = "['phys'] address value [count]",
6438         },
6439         {
6440                 .name = "bp",
6441                 .handler = handle_bp_command,
6442                 .mode = COMMAND_EXEC,
6443                 .help = "list or set hardware or software breakpoint",
6444                 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6445         },
6446         {
6447                 .name = "rbp",
6448                 .handler = handle_rbp_command,
6449                 .mode = COMMAND_EXEC,
6450                 .help = "remove breakpoint",
6451                 .usage = "address",
6452         },
6453         {
6454                 .name = "wp",
6455                 .handler = handle_wp_command,
6456                 .mode = COMMAND_EXEC,
6457                 .help = "list (no params) or create watchpoints",
6458                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6459         },
6460         {
6461                 .name = "rwp",
6462                 .handler = handle_rwp_command,
6463                 .mode = COMMAND_EXEC,
6464                 .help = "remove watchpoint",
6465                 .usage = "address",
6466         },
6467         {
6468                 .name = "load_image",
6469                 .handler = handle_load_image_command,
6470                 .mode = COMMAND_EXEC,
6471                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6472                         "[min_address] [max_length]",
6473         },
6474         {
6475                 .name = "dump_image",
6476                 .handler = handle_dump_image_command,
6477                 .mode = COMMAND_EXEC,
6478                 .usage = "filename address size",
6479         },
6480         {
6481                 .name = "verify_image_checksum",
6482                 .handler = handle_verify_image_checksum_command,
6483                 .mode = COMMAND_EXEC,
6484                 .usage = "filename [offset [type]]",
6485         },
6486         {
6487                 .name = "verify_image",
6488                 .handler = handle_verify_image_command,
6489                 .mode = COMMAND_EXEC,
6490                 .usage = "filename [offset [type]]",
6491         },
6492         {
6493                 .name = "test_image",
6494                 .handler = handle_test_image_command,
6495                 .mode = COMMAND_EXEC,
6496                 .usage = "filename [offset [type]]",
6497         },
6498         {
6499                 .name = "mem2array",
6500                 .mode = COMMAND_EXEC,
6501                 .jim_handler = jim_mem2array,
6502                 .help = "read 8/16/32 bit memory and return as a TCL array "
6503                         "for script processing",
6504                 .usage = "arrayname bitwidth address count",
6505         },
6506         {
6507                 .name = "array2mem",
6508                 .mode = COMMAND_EXEC,
6509                 .jim_handler = jim_array2mem,
6510                 .help = "convert a TCL array to memory locations "
6511                         "and write the 8/16/32 bit values",
6512                 .usage = "arrayname bitwidth address count",
6513         },
6514         {
6515                 .name = "reset_nag",
6516                 .handler = handle_target_reset_nag,
6517                 .mode = COMMAND_ANY,
6518                 .help = "Nag after each reset about options that could have been "
6519                                 "enabled to improve performance. ",
6520                 .usage = "['enable'|'disable']",
6521         },
6522         {
6523                 .name = "ps",
6524                 .handler = handle_ps_command,
6525                 .mode = COMMAND_EXEC,
6526                 .help = "list all tasks ",
6527                 .usage = " ",
6528         },
6529         {
6530                 .name = "test_mem_access",
6531                 .handler = handle_test_mem_access_command,
6532                 .mode = COMMAND_EXEC,
6533                 .help = "Test the target's memory access functions",
6534                 .usage = "size",
6535         },
6536
6537         COMMAND_REGISTRATION_DONE
6538 };
6539 static int target_register_user_commands(struct command_context *cmd_ctx)
6540 {
6541         int retval = ERROR_OK;
6542         retval = target_request_register_commands(cmd_ctx);
6543         if (retval != ERROR_OK)
6544                 return retval;
6545
6546         retval = trace_register_commands(cmd_ctx);
6547         if (retval != ERROR_OK)
6548                 return retval;
6549
6550
6551         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6552 }