]> git.sur5r.net Git - openocd/blob - src/target/target.c
TARGET: review handle_load_image_command()
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73 extern struct target_type avr32_ap7k_target;
74
75 static struct target_type *target_types[] =
76 {
77         &arm7tdmi_target,
78         &arm9tdmi_target,
79         &arm920t_target,
80         &arm720t_target,
81         &arm966e_target,
82         &arm926ejs_target,
83         &fa526_target,
84         &feroceon_target,
85         &dragonite_target,
86         &xscale_target,
87         &cortexm3_target,
88         &cortexa8_target,
89         &arm11_target,
90         &mips_m4k_target,
91         &avr_target,
92         &dsp563xx_target,
93         &testee_target,
94         &avr32_ap7k_target,
95         NULL,
96 };
97
98 struct target *all_targets = NULL;
99 static struct target_event_callback *target_event_callbacks = NULL;
100 static struct target_timer_callback *target_timer_callbacks = NULL;
101 static const int polling_interval = 100;
102
103 static const Jim_Nvp nvp_assert[] = {
104         { .name = "assert", NVP_ASSERT },
105         { .name = "deassert", NVP_DEASSERT },
106         { .name = "T", NVP_ASSERT },
107         { .name = "F", NVP_DEASSERT },
108         { .name = "t", NVP_ASSERT },
109         { .name = "f", NVP_DEASSERT },
110         { .name = NULL, .value = -1 }
111 };
112
113 static const Jim_Nvp nvp_error_target[] = {
114         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
115         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
116         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
117         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
118         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
119         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
120         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
121         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
122         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
123         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
124         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
125         { .value = -1, .name = NULL }
126 };
127
128 static const char *target_strerror_safe(int err)
129 {
130         const Jim_Nvp *n;
131
132         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
133         if (n->name == NULL) {
134                 return "unknown";
135         } else {
136                 return n->name;
137         }
138 }
139
140 static const Jim_Nvp nvp_target_event[] = {
141         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
142         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
143
144         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
145         { .value = TARGET_EVENT_HALTED, .name = "halted" },
146         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
147         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
148         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
149
150         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
151         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
152
153         /* historical name */
154
155         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
156
157         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
158         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
159         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
160         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
161         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
162         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
163         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
164         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
165         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
166         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
167         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
168
169         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
170         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
171
172         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
173         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
174
175         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
176         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
177
178         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
180
181         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
182         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
183
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
186         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
187
188         { .name = NULL, .value = -1 }
189 };
190
191 static const Jim_Nvp nvp_target_state[] = {
192         { .name = "unknown", .value = TARGET_UNKNOWN },
193         { .name = "running", .value = TARGET_RUNNING },
194         { .name = "halted",  .value = TARGET_HALTED },
195         { .name = "reset",   .value = TARGET_RESET },
196         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
197         { .name = NULL, .value = -1 },
198 };
199
200 static const Jim_Nvp nvp_target_debug_reason [] = {
201         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
202         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
203         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
204         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
205         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
206         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
207         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
208         { .name = NULL, .value = -1 },
209 };
210
211 static const Jim_Nvp nvp_target_endian[] = {
212         { .name = "big",    .value = TARGET_BIG_ENDIAN },
213         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
214         { .name = "be",     .value = TARGET_BIG_ENDIAN },
215         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
216         { .name = NULL,     .value = -1 },
217 };
218
219 static const Jim_Nvp nvp_reset_modes[] = {
220         { .name = "unknown", .value = RESET_UNKNOWN },
221         { .name = "run"    , .value = RESET_RUN },
222         { .name = "halt"   , .value = RESET_HALT },
223         { .name = "init"   , .value = RESET_INIT },
224         { .name = NULL     , .value = -1 },
225 };
226
227 const char *debug_reason_name(struct target *t)
228 {
229         const char *cp;
230
231         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
232                         t->debug_reason)->name;
233         if (!cp) {
234                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
235                 cp = "(*BUG*unknown*BUG*)";
236         }
237         return cp;
238 }
239
240 const char *
241 target_state_name( struct target *t )
242 {
243         const char *cp;
244         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245         if( !cp ){
246                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247                 cp = "(*BUG*unknown*BUG*)";
248         }
249         return cp;
250 }
251
252 /* determine the number of the new target */
253 static int new_target_number(void)
254 {
255         struct target *t;
256         int x;
257
258         /* number is 0 based */
259         x = -1;
260         t = all_targets;
261         while (t) {
262                 if (x < t->target_number) {
263                         x = t->target_number;
264                 }
265                 t = t->next;
266         }
267         return x + 1;
268 }
269
270 /* read a uint32_t from a buffer in target memory endianness */
271 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
272 {
273         if (target->endianness == TARGET_LITTLE_ENDIAN)
274                 return le_to_h_u32(buffer);
275         else
276                 return be_to_h_u32(buffer);
277 }
278
279 /* read a uint16_t from a buffer in target memory endianness */
280 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 return le_to_h_u16(buffer);
284         else
285                 return be_to_h_u16(buffer);
286 }
287
288 /* read a uint8_t from a buffer in target memory endianness */
289 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
290 {
291         return *buffer & 0x0ff;
292 }
293
294 /* write a uint32_t to a buffer in target memory endianness */
295 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 h_u32_to_le(buffer, value);
299         else
300                 h_u32_to_be(buffer, value);
301 }
302
303 /* write a uint16_t to a buffer in target memory endianness */
304 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 h_u16_to_le(buffer, value);
308         else
309                 h_u16_to_be(buffer, value);
310 }
311
312 /* write a uint8_t to a buffer in target memory endianness */
313 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
314 {
315         *buffer = value;
316 }
317
318 /* return a pointer to a configured target; id is name or number */
319 struct target *get_target(const char *id)
320 {
321         struct target *target;
322
323         /* try as tcltarget name */
324         for (target = all_targets; target; target = target->next) {
325                 if (target->cmd_name == NULL)
326                         continue;
327                 if (strcmp(id, target->cmd_name) == 0)
328                         return target;
329         }
330
331         /* It's OK to remove this fallback sometime after August 2010 or so */
332
333         /* no match, try as number */
334         unsigned num;
335         if (parse_uint(id, &num) != ERROR_OK)
336                 return NULL;
337
338         for (target = all_targets; target; target = target->next) {
339                 if (target->target_number == (int)num) {
340                         LOG_WARNING("use '%s' as target identifier, not '%u'",
341                                         target->cmd_name, num);
342                         return target;
343                 }
344         }
345
346         return NULL;
347 }
348
349 /* returns a pointer to the n-th configured target */
350 static struct target *get_target_by_num(int num)
351 {
352         struct target *target = all_targets;
353
354         while (target) {
355                 if (target->target_number == num) {
356                         return target;
357                 }
358                 target = target->next;
359         }
360
361         return NULL;
362 }
363
364 struct target* get_current_target(struct command_context *cmd_ctx)
365 {
366         struct target *target = get_target_by_num(cmd_ctx->current_target);
367
368         if (target == NULL)
369         {
370                 LOG_ERROR("BUG: current_target out of bounds");
371                 exit(-1);
372         }
373
374         return target;
375 }
376
377 int target_poll(struct target *target)
378 {
379         int retval;
380
381         /* We can't poll until after examine */
382         if (!target_was_examined(target))
383         {
384                 /* Fail silently lest we pollute the log */
385                 return ERROR_FAIL;
386         }
387
388         retval = target->type->poll(target);
389         if (retval != ERROR_OK)
390                 return retval;
391
392         if (target->halt_issued)
393         {
394                 if (target->state == TARGET_HALTED)
395                 {
396                         target->halt_issued = false;
397                 } else
398                 {
399                         long long t = timeval_ms() - target->halt_issued_time;
400                         if (t>1000)
401                         {
402                                 target->halt_issued = false;
403                                 LOG_INFO("Halt timed out, wake up GDB.");
404                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
405                         }
406                 }
407         }
408
409         return ERROR_OK;
410 }
411
412 int target_halt(struct target *target)
413 {
414         int retval;
415         /* We can't poll until after examine */
416         if (!target_was_examined(target))
417         {
418                 LOG_ERROR("Target not examined yet");
419                 return ERROR_FAIL;
420         }
421
422         retval = target->type->halt(target);
423         if (retval != ERROR_OK)
424                 return retval;
425
426         target->halt_issued = true;
427         target->halt_issued_time = timeval_ms();
428
429         return ERROR_OK;
430 }
431
432 /**
433  * Make the target (re)start executing using its saved execution
434  * context (possibly with some modifications).
435  *
436  * @param target Which target should start executing.
437  * @param current True to use the target's saved program counter instead
438  *      of the address parameter
439  * @param address Optionally used as the program counter.
440  * @param handle_breakpoints True iff breakpoints at the resumption PC
441  *      should be skipped.  (For example, maybe execution was stopped by
442  *      such a breakpoint, in which case it would be counterprodutive to
443  *      let it re-trigger.
444  * @param debug_execution False if all working areas allocated by OpenOCD
445  *      should be released and/or restored to their original contents.
446  *      (This would for example be true to run some downloaded "helper"
447  *      algorithm code, which resides in one such working buffer and uses
448  *      another for data storage.)
449  *
450  * @todo Resolve the ambiguity about what the "debug_execution" flag
451  * signifies.  For example, Target implementations don't agree on how
452  * it relates to invalidation of the register cache, or to whether
453  * breakpoints and watchpoints should be enabled.  (It would seem wrong
454  * to enable breakpoints when running downloaded "helper" algorithms
455  * (debug_execution true), since the breakpoints would be set to match
456  * target firmware being debugged, not the helper algorithm.... and
457  * enabling them could cause such helpers to malfunction (for example,
458  * by overwriting data with a breakpoint instruction.  On the other
459  * hand the infrastructure for running such helpers might use this
460  * procedure but rely on hardware breakpoint to detect termination.)
461  */
462 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
463 {
464         int retval;
465
466         /* We can't poll until after examine */
467         if (!target_was_examined(target))
468         {
469                 LOG_ERROR("Target not examined yet");
470                 return ERROR_FAIL;
471         }
472
473         /* note that resume *must* be asynchronous. The CPU can halt before
474          * we poll. The CPU can even halt at the current PC as a result of
475          * a software breakpoint being inserted by (a bug?) the application.
476          */
477         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
478                 return retval;
479
480         return retval;
481 }
482
483 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
484 {
485         char buf[100];
486         int retval;
487         Jim_Nvp *n;
488         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
489         if (n->name == NULL) {
490                 LOG_ERROR("invalid reset mode");
491                 return ERROR_FAIL;
492         }
493
494         /* disable polling during reset to make reset event scripts
495          * more predictable, i.e. dr/irscan & pathmove in events will
496          * not have JTAG operations injected into the middle of a sequence.
497          */
498         bool save_poll = jtag_poll_get_enabled();
499
500         jtag_poll_set_enabled(false);
501
502         sprintf(buf, "ocd_process_reset %s", n->name);
503         retval = Jim_Eval(cmd_ctx->interp, buf);
504
505         jtag_poll_set_enabled(save_poll);
506
507         if (retval != JIM_OK) {
508                 Jim_PrintErrorMessage(cmd_ctx->interp);
509                 return ERROR_FAIL;
510         }
511
512         /* We want any events to be processed before the prompt */
513         retval = target_call_timer_callbacks_now();
514
515         struct target *target;
516         for (target = all_targets; target; target = target->next) {
517                 target->type->check_reset(target);
518         }
519
520         return retval;
521 }
522
523 static int identity_virt2phys(struct target *target,
524                 uint32_t virtual, uint32_t *physical)
525 {
526         *physical = virtual;
527         return ERROR_OK;
528 }
529
530 static int no_mmu(struct target *target, int *enabled)
531 {
532         *enabled = 0;
533         return ERROR_OK;
534 }
535
536 static int default_examine(struct target *target)
537 {
538         target_set_examined(target);
539         return ERROR_OK;
540 }
541
542 /* no check by default */
543 static int default_check_reset(struct target *target)
544 {
545         return ERROR_OK;
546 }
547
548 int target_examine_one(struct target *target)
549 {
550         return target->type->examine(target);
551 }
552
553 static int jtag_enable_callback(enum jtag_event event, void *priv)
554 {
555         struct target *target = priv;
556
557         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
558                 return ERROR_OK;
559
560         jtag_unregister_event_callback(jtag_enable_callback, target);
561         return target_examine_one(target);
562 }
563
564
565 /* Targets that correctly implement init + examine, i.e.
566  * no communication with target during init:
567  *
568  * XScale
569  */
570 int target_examine(void)
571 {
572         int retval = ERROR_OK;
573         struct target *target;
574
575         for (target = all_targets; target; target = target->next)
576         {
577                 /* defer examination, but don't skip it */
578                 if (!target->tap->enabled) {
579                         jtag_register_event_callback(jtag_enable_callback,
580                                         target);
581                         continue;
582                 }
583                 if ((retval = target_examine_one(target)) != ERROR_OK)
584                         return retval;
585         }
586         return retval;
587 }
588 const char *target_type_name(struct target *target)
589 {
590         return target->type->name;
591 }
592
593 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
594 {
595         if (!target_was_examined(target))
596         {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600         return target->type->write_memory_imp(target, address, size, count, buffer);
601 }
602
603 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         if (!target_was_examined(target))
606         {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610         return target->type->read_memory_imp(target, address, size, count, buffer);
611 }
612
613 static int target_soft_reset_halt_imp(struct target *target)
614 {
615         if (!target_was_examined(target))
616         {
617                 LOG_ERROR("Target not examined yet");
618                 return ERROR_FAIL;
619         }
620         if (!target->type->soft_reset_halt_imp) {
621                 LOG_ERROR("Target %s does not support soft_reset_halt",
622                                 target_name(target));
623                 return ERROR_FAIL;
624         }
625         return target->type->soft_reset_halt_imp(target);
626 }
627
628 /**
629  * Downloads a target-specific native code algorithm to the target,
630  * and executes it.  * Note that some targets may need to set up, enable,
631  * and tear down a breakpoint (hard or * soft) to detect algorithm
632  * termination, while others may support  lower overhead schemes where
633  * soft breakpoints embedded in the algorithm automatically terminate the
634  * algorithm.
635  *
636  * @param target used to run the algorithm
637  * @param arch_info target-specific description of the algorithm.
638  */
639 int target_run_algorithm(struct target *target,
640                 int num_mem_params, struct mem_param *mem_params,
641                 int num_reg_params, struct reg_param *reg_param,
642                 uint32_t entry_point, uint32_t exit_point,
643                 int timeout_ms, void *arch_info)
644 {
645         int retval = ERROR_FAIL;
646
647         if (!target_was_examined(target))
648         {
649                 LOG_ERROR("Target not examined yet");
650                 goto done;
651         }
652         if (!target->type->run_algorithm) {
653                 LOG_ERROR("Target type '%s' does not support %s",
654                                 target_type_name(target), __func__);
655                 goto done;
656         }
657
658         target->running_alg = true;
659         retval = target->type->run_algorithm(target,
660                         num_mem_params, mem_params,
661                         num_reg_params, reg_param,
662                         entry_point, exit_point, timeout_ms, arch_info);
663         target->running_alg = false;
664
665 done:
666         return retval;
667 }
668
669
670 int target_read_memory(struct target *target,
671                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673         return target->type->read_memory(target, address, size, count, buffer);
674 }
675
676 static int target_read_phys_memory(struct target *target,
677                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
678 {
679         return target->type->read_phys_memory(target, address, size, count, buffer);
680 }
681
682 int target_write_memory(struct target *target,
683                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
684 {
685         return target->type->write_memory(target, address, size, count, buffer);
686 }
687
688 static int target_write_phys_memory(struct target *target,
689                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
690 {
691         return target->type->write_phys_memory(target, address, size, count, buffer);
692 }
693
694 int target_bulk_write_memory(struct target *target,
695                 uint32_t address, uint32_t count, uint8_t *buffer)
696 {
697         return target->type->bulk_write_memory(target, address, count, buffer);
698 }
699
700 int target_add_breakpoint(struct target *target,
701                 struct breakpoint *breakpoint)
702 {
703         if (target->state != TARGET_HALTED) {
704                 LOG_WARNING("target %s is not halted", target->cmd_name);
705                 return ERROR_TARGET_NOT_HALTED;
706         }
707         return target->type->add_breakpoint(target, breakpoint);
708 }
709 int target_remove_breakpoint(struct target *target,
710                 struct breakpoint *breakpoint)
711 {
712         return target->type->remove_breakpoint(target, breakpoint);
713 }
714
715 int target_add_watchpoint(struct target *target,
716                 struct watchpoint *watchpoint)
717 {
718         if (target->state != TARGET_HALTED) {
719                 LOG_WARNING("target %s is not halted", target->cmd_name);
720                 return ERROR_TARGET_NOT_HALTED;
721         }
722         return target->type->add_watchpoint(target, watchpoint);
723 }
724 int target_remove_watchpoint(struct target *target,
725                 struct watchpoint *watchpoint)
726 {
727         return target->type->remove_watchpoint(target, watchpoint);
728 }
729
730 int target_get_gdb_reg_list(struct target *target,
731                 struct reg **reg_list[], int *reg_list_size)
732 {
733         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
734 }
735 int target_step(struct target *target,
736                 int current, uint32_t address, int handle_breakpoints)
737 {
738         return target->type->step(target, current, address, handle_breakpoints);
739 }
740
741
742 /**
743  * Reset the @c examined flag for the given target.
744  * Pure paranoia -- targets are zeroed on allocation.
745  */
746 static void target_reset_examined(struct target *target)
747 {
748         target->examined = false;
749 }
750
751 static int
752 err_read_phys_memory(struct target *target, uint32_t address,
753                 uint32_t size, uint32_t count, uint8_t *buffer)
754 {
755         LOG_ERROR("Not implemented: %s", __func__);
756         return ERROR_FAIL;
757 }
758
759 static int
760 err_write_phys_memory(struct target *target, uint32_t address,
761                 uint32_t size, uint32_t count, uint8_t *buffer)
762 {
763         LOG_ERROR("Not implemented: %s", __func__);
764         return ERROR_FAIL;
765 }
766
767 static int handle_target(void *priv);
768
769 static int target_init_one(struct command_context *cmd_ctx,
770                 struct target *target)
771 {
772         target_reset_examined(target);
773
774         struct target_type *type = target->type;
775         if (type->examine == NULL)
776                 type->examine = default_examine;
777
778         if (type->check_reset== NULL)
779                 type->check_reset = default_check_reset;
780
781         int retval = type->init_target(cmd_ctx, target);
782         if (ERROR_OK != retval)
783         {
784                 LOG_ERROR("target '%s' init failed", target_name(target));
785                 return retval;
786         }
787
788         /**
789          * @todo get rid of those *memory_imp() methods, now that all
790          * callers are using target_*_memory() accessors ... and make
791          * sure the "physical" paths handle the same issues.
792          */
793         /* a non-invasive way(in terms of patches) to add some code that
794          * runs before the type->write/read_memory implementation
795          */
796         type->write_memory_imp = target->type->write_memory;
797         type->write_memory = target_write_memory_imp;
798
799         type->read_memory_imp = target->type->read_memory;
800         type->read_memory = target_read_memory_imp;
801
802         type->soft_reset_halt_imp = target->type->soft_reset_halt;
803         type->soft_reset_halt = target_soft_reset_halt_imp;
804
805         /* Sanity-check MMU support ... stub in what we must, to help
806          * implement it in stages, but warn if we need to do so.
807          */
808         if (type->mmu)
809         {
810                 if (type->write_phys_memory == NULL)
811                 {
812                         LOG_ERROR("type '%s' is missing write_phys_memory",
813                                         type->name);
814                         type->write_phys_memory = err_write_phys_memory;
815                 }
816                 if (type->read_phys_memory == NULL)
817                 {
818                         LOG_ERROR("type '%s' is missing read_phys_memory",
819                                         type->name);
820                         type->read_phys_memory = err_read_phys_memory;
821                 }
822                 if (type->virt2phys == NULL)
823                 {
824                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
825                         type->virt2phys = identity_virt2phys;
826                 }
827         }
828         else
829         {
830                 /* Make sure no-MMU targets all behave the same:  make no
831                  * distinction between physical and virtual addresses, and
832                  * ensure that virt2phys() is always an identity mapping.
833                  */
834                 if (type->write_phys_memory || type->read_phys_memory
835                                 || type->virt2phys)
836                 {
837                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
838                 }
839
840                 type->mmu = no_mmu;
841                 type->write_phys_memory = type->write_memory;
842                 type->read_phys_memory = type->read_memory;
843                 type->virt2phys = identity_virt2phys;
844         }
845         return ERROR_OK;
846 }
847
848 static int target_init(struct command_context *cmd_ctx)
849 {
850         struct target *target;
851         int retval;
852
853         for (target = all_targets; target; target = target->next)
854         {
855                 retval = target_init_one(cmd_ctx, target);
856                 if (ERROR_OK != retval)
857                         return retval;
858         }
859
860         if (!all_targets)
861                 return ERROR_OK;
862
863         retval = target_register_user_commands(cmd_ctx);
864         if (ERROR_OK != retval)
865                 return retval;
866
867         retval = target_register_timer_callback(&handle_target,
868                         polling_interval, 1, cmd_ctx->interp);
869         if (ERROR_OK != retval)
870                 return retval;
871
872         return ERROR_OK;
873 }
874
875 COMMAND_HANDLER(handle_target_init_command)
876 {
877         if (CMD_ARGC != 0)
878                 return ERROR_COMMAND_SYNTAX_ERROR;
879
880         static bool target_initialized = false;
881         if (target_initialized)
882         {
883                 LOG_INFO("'target init' has already been called");
884                 return ERROR_OK;
885         }
886         target_initialized = true;
887
888         LOG_DEBUG("Initializing targets...");
889         return target_init(CMD_CTX);
890 }
891
892 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
893 {
894         struct target_event_callback **callbacks_p = &target_event_callbacks;
895
896         if (callback == NULL)
897         {
898                 return ERROR_INVALID_ARGUMENTS;
899         }
900
901         if (*callbacks_p)
902         {
903                 while ((*callbacks_p)->next)
904                         callbacks_p = &((*callbacks_p)->next);
905                 callbacks_p = &((*callbacks_p)->next);
906         }
907
908         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
909         (*callbacks_p)->callback = callback;
910         (*callbacks_p)->priv = priv;
911         (*callbacks_p)->next = NULL;
912
913         return ERROR_OK;
914 }
915
916 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
917 {
918         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
919         struct timeval now;
920
921         if (callback == NULL)
922         {
923                 return ERROR_INVALID_ARGUMENTS;
924         }
925
926         if (*callbacks_p)
927         {
928                 while ((*callbacks_p)->next)
929                         callbacks_p = &((*callbacks_p)->next);
930                 callbacks_p = &((*callbacks_p)->next);
931         }
932
933         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
934         (*callbacks_p)->callback = callback;
935         (*callbacks_p)->periodic = periodic;
936         (*callbacks_p)->time_ms = time_ms;
937
938         gettimeofday(&now, NULL);
939         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
940         time_ms -= (time_ms % 1000);
941         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
942         if ((*callbacks_p)->when.tv_usec > 1000000)
943         {
944                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
945                 (*callbacks_p)->when.tv_sec += 1;
946         }
947
948         (*callbacks_p)->priv = priv;
949         (*callbacks_p)->next = NULL;
950
951         return ERROR_OK;
952 }
953
954 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
955 {
956         struct target_event_callback **p = &target_event_callbacks;
957         struct target_event_callback *c = target_event_callbacks;
958
959         if (callback == NULL)
960         {
961                 return ERROR_INVALID_ARGUMENTS;
962         }
963
964         while (c)
965         {
966                 struct target_event_callback *next = c->next;
967                 if ((c->callback == callback) && (c->priv == priv))
968                 {
969                         *p = next;
970                         free(c);
971                         return ERROR_OK;
972                 }
973                 else
974                         p = &(c->next);
975                 c = next;
976         }
977
978         return ERROR_OK;
979 }
980
981 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
982 {
983         struct target_timer_callback **p = &target_timer_callbacks;
984         struct target_timer_callback *c = target_timer_callbacks;
985
986         if (callback == NULL)
987         {
988                 return ERROR_INVALID_ARGUMENTS;
989         }
990
991         while (c)
992         {
993                 struct target_timer_callback *next = c->next;
994                 if ((c->callback == callback) && (c->priv == priv))
995                 {
996                         *p = next;
997                         free(c);
998                         return ERROR_OK;
999                 }
1000                 else
1001                         p = &(c->next);
1002                 c = next;
1003         }
1004
1005         return ERROR_OK;
1006 }
1007
1008 int target_call_event_callbacks(struct target *target, enum target_event event)
1009 {
1010         struct target_event_callback *callback = target_event_callbacks;
1011         struct target_event_callback *next_callback;
1012
1013         if (event == TARGET_EVENT_HALTED)
1014         {
1015                 /* execute early halted first */
1016                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1017         }
1018
1019         LOG_DEBUG("target event %i (%s)",
1020                           event,
1021                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1022
1023         target_handle_event(target, event);
1024
1025         while (callback)
1026         {
1027                 next_callback = callback->next;
1028                 callback->callback(target, event, callback->priv);
1029                 callback = next_callback;
1030         }
1031
1032         return ERROR_OK;
1033 }
1034
1035 static int target_timer_callback_periodic_restart(
1036                 struct target_timer_callback *cb, struct timeval *now)
1037 {
1038         int time_ms = cb->time_ms;
1039         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1040         time_ms -= (time_ms % 1000);
1041         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1042         if (cb->when.tv_usec > 1000000)
1043         {
1044                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1045                 cb->when.tv_sec += 1;
1046         }
1047         return ERROR_OK;
1048 }
1049
1050 static int target_call_timer_callback(struct target_timer_callback *cb,
1051                 struct timeval *now)
1052 {
1053         cb->callback(cb->priv);
1054
1055         if (cb->periodic)
1056                 return target_timer_callback_periodic_restart(cb, now);
1057
1058         return target_unregister_timer_callback(cb->callback, cb->priv);
1059 }
1060
1061 static int target_call_timer_callbacks_check_time(int checktime)
1062 {
1063         keep_alive();
1064
1065         struct timeval now;
1066         gettimeofday(&now, NULL);
1067
1068         struct target_timer_callback *callback = target_timer_callbacks;
1069         while (callback)
1070         {
1071                 // cleaning up may unregister and free this callback
1072                 struct target_timer_callback *next_callback = callback->next;
1073
1074                 bool call_it = callback->callback &&
1075                         ((!checktime && callback->periodic) ||
1076                           now.tv_sec > callback->when.tv_sec ||
1077                          (now.tv_sec == callback->when.tv_sec &&
1078                           now.tv_usec >= callback->when.tv_usec));
1079
1080                 if (call_it)
1081                 {
1082                         int retval = target_call_timer_callback(callback, &now);
1083                         if (retval != ERROR_OK)
1084                                 return retval;
1085                 }
1086
1087                 callback = next_callback;
1088         }
1089
1090         return ERROR_OK;
1091 }
1092
1093 int target_call_timer_callbacks(void)
1094 {
1095         return target_call_timer_callbacks_check_time(1);
1096 }
1097
1098 /* invoke periodic callbacks immediately */
1099 int target_call_timer_callbacks_now(void)
1100 {
1101         return target_call_timer_callbacks_check_time(0);
1102 }
1103
1104 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1105 {
1106         struct working_area *c = target->working_areas;
1107         struct working_area *new_wa = NULL;
1108
1109         /* Reevaluate working area address based on MMU state*/
1110         if (target->working_areas == NULL)
1111         {
1112                 int retval;
1113                 int enabled;
1114
1115                 retval = target->type->mmu(target, &enabled);
1116                 if (retval != ERROR_OK)
1117                 {
1118                         return retval;
1119                 }
1120
1121                 if (!enabled) {
1122                         if (target->working_area_phys_spec) {
1123                                 LOG_DEBUG("MMU disabled, using physical "
1124                                         "address for working memory 0x%08x",
1125                                         (unsigned)target->working_area_phys);
1126                                 target->working_area = target->working_area_phys;
1127                         } else {
1128                                 LOG_ERROR("No working memory available. "
1129                                         "Specify -work-area-phys to target.");
1130                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1131                         }
1132                 } else {
1133                         if (target->working_area_virt_spec) {
1134                                 LOG_DEBUG("MMU enabled, using virtual "
1135                                         "address for working memory 0x%08x",
1136                                         (unsigned)target->working_area_virt);
1137                                 target->working_area = target->working_area_virt;
1138                         } else {
1139                                 LOG_ERROR("No working memory available. "
1140                                         "Specify -work-area-virt to target.");
1141                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1142                         }
1143                 }
1144         }
1145
1146         /* only allocate multiples of 4 byte */
1147         if (size % 4)
1148         {
1149                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1150                 size = (size + 3) & (~3);
1151         }
1152
1153         /* see if there's already a matching working area */
1154         while (c)
1155         {
1156                 if ((c->free) && (c->size == size))
1157                 {
1158                         new_wa = c;
1159                         break;
1160                 }
1161                 c = c->next;
1162         }
1163
1164         /* if not, allocate a new one */
1165         if (!new_wa)
1166         {
1167                 struct working_area **p = &target->working_areas;
1168                 uint32_t first_free = target->working_area;
1169                 uint32_t free_size = target->working_area_size;
1170
1171                 c = target->working_areas;
1172                 while (c)
1173                 {
1174                         first_free += c->size;
1175                         free_size -= c->size;
1176                         p = &c->next;
1177                         c = c->next;
1178                 }
1179
1180                 if (free_size < size)
1181                 {
1182                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1183                 }
1184
1185                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1186
1187                 new_wa = malloc(sizeof(struct working_area));
1188                 new_wa->next = NULL;
1189                 new_wa->size = size;
1190                 new_wa->address = first_free;
1191
1192                 if (target->backup_working_area)
1193                 {
1194                         int retval;
1195                         new_wa->backup = malloc(new_wa->size);
1196                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1197                         {
1198                                 free(new_wa->backup);
1199                                 free(new_wa);
1200                                 return retval;
1201                         }
1202                 }
1203                 else
1204                 {
1205                         new_wa->backup = NULL;
1206                 }
1207
1208                 /* put new entry in list */
1209                 *p = new_wa;
1210         }
1211
1212         /* mark as used, and return the new (reused) area */
1213         new_wa->free = 0;
1214         *area = new_wa;
1215
1216         /* user pointer */
1217         new_wa->user = area;
1218
1219         return ERROR_OK;
1220 }
1221
1222 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1223 {
1224         int retval;
1225
1226         retval = target_alloc_working_area_try(target, size, area);
1227         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1228         {
1229                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1230         }
1231         return retval;
1232
1233 }
1234
1235 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1236 {
1237         if (area->free)
1238                 return ERROR_OK;
1239
1240         if (restore && target->backup_working_area)
1241         {
1242                 int retval;
1243                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1244                         return retval;
1245         }
1246
1247         area->free = 1;
1248
1249         /* mark user pointer invalid */
1250         *area->user = NULL;
1251         area->user = NULL;
1252
1253         return ERROR_OK;
1254 }
1255
1256 int target_free_working_area(struct target *target, struct working_area *area)
1257 {
1258         return target_free_working_area_restore(target, area, 1);
1259 }
1260
1261 /* free resources and restore memory, if restoring memory fails,
1262  * free up resources anyway
1263  */
1264 static void target_free_all_working_areas_restore(struct target *target, int restore)
1265 {
1266         struct working_area *c = target->working_areas;
1267
1268         while (c)
1269         {
1270                 struct working_area *next = c->next;
1271                 target_free_working_area_restore(target, c, restore);
1272
1273                 if (c->backup)
1274                         free(c->backup);
1275
1276                 free(c);
1277
1278                 c = next;
1279         }
1280
1281         target->working_areas = NULL;
1282 }
1283
1284 void target_free_all_working_areas(struct target *target)
1285 {
1286         target_free_all_working_areas_restore(target, 1);
1287 }
1288
1289 int target_arch_state(struct target *target)
1290 {
1291         int retval;
1292         if (target == NULL)
1293         {
1294                 LOG_USER("No target has been configured");
1295                 return ERROR_OK;
1296         }
1297
1298         LOG_USER("target state: %s", target_state_name( target ));
1299
1300         if (target->state != TARGET_HALTED)
1301                 return ERROR_OK;
1302
1303         retval = target->type->arch_state(target);
1304         return retval;
1305 }
1306
1307 /* Single aligned words are guaranteed to use 16 or 32 bit access
1308  * mode respectively, otherwise data is handled as quickly as
1309  * possible
1310  */
1311 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1312 {
1313         int retval;
1314         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1315                   (int)size, (unsigned)address);
1316
1317         if (!target_was_examined(target))
1318         {
1319                 LOG_ERROR("Target not examined yet");
1320                 return ERROR_FAIL;
1321         }
1322
1323         if (size == 0) {
1324                 return ERROR_OK;
1325         }
1326
1327         if ((address + size - 1) < address)
1328         {
1329                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1330                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1331                                   (unsigned)address,
1332                                   (unsigned)size);
1333                 return ERROR_FAIL;
1334         }
1335
1336         if (((address % 2) == 0) && (size == 2))
1337         {
1338                 return target_write_memory(target, address, 2, 1, buffer);
1339         }
1340
1341         /* handle unaligned head bytes */
1342         if (address % 4)
1343         {
1344                 uint32_t unaligned = 4 - (address % 4);
1345
1346                 if (unaligned > size)
1347                         unaligned = size;
1348
1349                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1350                         return retval;
1351
1352                 buffer += unaligned;
1353                 address += unaligned;
1354                 size -= unaligned;
1355         }
1356
1357         /* handle aligned words */
1358         if (size >= 4)
1359         {
1360                 int aligned = size - (size % 4);
1361
1362                 /* use bulk writes above a certain limit. This may have to be changed */
1363                 if (aligned > 128)
1364                 {
1365                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1366                                 return retval;
1367                 }
1368                 else
1369                 {
1370                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1371                                 return retval;
1372                 }
1373
1374                 buffer += aligned;
1375                 address += aligned;
1376                 size -= aligned;
1377         }
1378
1379         /* handle tail writes of less than 4 bytes */
1380         if (size > 0)
1381         {
1382                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1383                         return retval;
1384         }
1385
1386         return ERROR_OK;
1387 }
1388
1389 /* Single aligned words are guaranteed to use 16 or 32 bit access
1390  * mode respectively, otherwise data is handled as quickly as
1391  * possible
1392  */
1393 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1394 {
1395         int retval;
1396         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1397                           (int)size, (unsigned)address);
1398
1399         if (!target_was_examined(target))
1400         {
1401                 LOG_ERROR("Target not examined yet");
1402                 return ERROR_FAIL;
1403         }
1404
1405         if (size == 0) {
1406                 return ERROR_OK;
1407         }
1408
1409         if ((address + size - 1) < address)
1410         {
1411                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1412                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1413                                   address,
1414                                   size);
1415                 return ERROR_FAIL;
1416         }
1417
1418         if (((address % 2) == 0) && (size == 2))
1419         {
1420                 return target_read_memory(target, address, 2, 1, buffer);
1421         }
1422
1423         /* handle unaligned head bytes */
1424         if (address % 4)
1425         {
1426                 uint32_t unaligned = 4 - (address % 4);
1427
1428                 if (unaligned > size)
1429                         unaligned = size;
1430
1431                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1432                         return retval;
1433
1434                 buffer += unaligned;
1435                 address += unaligned;
1436                 size -= unaligned;
1437         }
1438
1439         /* handle aligned words */
1440         if (size >= 4)
1441         {
1442                 int aligned = size - (size % 4);
1443
1444                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1445                         return retval;
1446
1447                 buffer += aligned;
1448                 address += aligned;
1449                 size -= aligned;
1450         }
1451
1452         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1453         if(size >=2)
1454         {
1455                 int aligned = size - (size%2);
1456                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1457                 if (retval != ERROR_OK)
1458                         return retval;
1459
1460                 buffer += aligned;
1461                 address += aligned;
1462                 size -= aligned;
1463         }
1464         /* handle tail writes of less than 4 bytes */
1465         if (size > 0)
1466         {
1467                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1468                         return retval;
1469         }
1470
1471         return ERROR_OK;
1472 }
1473
1474 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1475 {
1476         uint8_t *buffer;
1477         int retval;
1478         uint32_t i;
1479         uint32_t checksum = 0;
1480         if (!target_was_examined(target))
1481         {
1482                 LOG_ERROR("Target not examined yet");
1483                 return ERROR_FAIL;
1484         }
1485
1486         if ((retval = target->type->checksum_memory(target, address,
1487                 size, &checksum)) != ERROR_OK)
1488         {
1489                 buffer = malloc(size);
1490                 if (buffer == NULL)
1491                 {
1492                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1493                         return ERROR_INVALID_ARGUMENTS;
1494                 }
1495                 retval = target_read_buffer(target, address, size, buffer);
1496                 if (retval != ERROR_OK)
1497                 {
1498                         free(buffer);
1499                         return retval;
1500                 }
1501
1502                 /* convert to target endianess */
1503                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1504                 {
1505                         uint32_t target_data;
1506                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1507                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1508                 }
1509
1510                 retval = image_calculate_checksum(buffer, size, &checksum);
1511                 free(buffer);
1512         }
1513
1514         *crc = checksum;
1515
1516         return retval;
1517 }
1518
1519 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1520 {
1521         int retval;
1522         if (!target_was_examined(target))
1523         {
1524                 LOG_ERROR("Target not examined yet");
1525                 return ERROR_FAIL;
1526         }
1527
1528         if (target->type->blank_check_memory == 0)
1529                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1530
1531         retval = target->type->blank_check_memory(target, address, size, blank);
1532
1533         return retval;
1534 }
1535
1536 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1537 {
1538         uint8_t value_buf[4];
1539         if (!target_was_examined(target))
1540         {
1541                 LOG_ERROR("Target not examined yet");
1542                 return ERROR_FAIL;
1543         }
1544
1545         int retval = target_read_memory(target, address, 4, 1, value_buf);
1546
1547         if (retval == ERROR_OK)
1548         {
1549                 *value = target_buffer_get_u32(target, value_buf);
1550                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1551                                   address,
1552                                   *value);
1553         }
1554         else
1555         {
1556                 *value = 0x0;
1557                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1558                                   address);
1559         }
1560
1561         return retval;
1562 }
1563
1564 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1565 {
1566         uint8_t value_buf[2];
1567         if (!target_was_examined(target))
1568         {
1569                 LOG_ERROR("Target not examined yet");
1570                 return ERROR_FAIL;
1571         }
1572
1573         int retval = target_read_memory(target, address, 2, 1, value_buf);
1574
1575         if (retval == ERROR_OK)
1576         {
1577                 *value = target_buffer_get_u16(target, value_buf);
1578                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1579                                   address,
1580                                   *value);
1581         }
1582         else
1583         {
1584                 *value = 0x0;
1585                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1586                                   address);
1587         }
1588
1589         return retval;
1590 }
1591
1592 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1593 {
1594         int retval = target_read_memory(target, address, 1, 1, value);
1595         if (!target_was_examined(target))
1596         {
1597                 LOG_ERROR("Target not examined yet");
1598                 return ERROR_FAIL;
1599         }
1600
1601         if (retval == ERROR_OK)
1602         {
1603                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1604                                   address,
1605                                   *value);
1606         }
1607         else
1608         {
1609                 *value = 0x0;
1610                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1611                                   address);
1612         }
1613
1614         return retval;
1615 }
1616
1617 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1618 {
1619         int retval;
1620         uint8_t value_buf[4];
1621         if (!target_was_examined(target))
1622         {
1623                 LOG_ERROR("Target not examined yet");
1624                 return ERROR_FAIL;
1625         }
1626
1627         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1628                           address,
1629                           value);
1630
1631         target_buffer_set_u32(target, value_buf, value);
1632         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1633         {
1634                 LOG_DEBUG("failed: %i", retval);
1635         }
1636
1637         return retval;
1638 }
1639
1640 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1641 {
1642         int retval;
1643         uint8_t value_buf[2];
1644         if (!target_was_examined(target))
1645         {
1646                 LOG_ERROR("Target not examined yet");
1647                 return ERROR_FAIL;
1648         }
1649
1650         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1651                           address,
1652                           value);
1653
1654         target_buffer_set_u16(target, value_buf, value);
1655         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1656         {
1657                 LOG_DEBUG("failed: %i", retval);
1658         }
1659
1660         return retval;
1661 }
1662
1663 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1664 {
1665         int retval;
1666         if (!target_was_examined(target))
1667         {
1668                 LOG_ERROR("Target not examined yet");
1669                 return ERROR_FAIL;
1670         }
1671
1672         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1673                           address, value);
1674
1675         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1676         {
1677                 LOG_DEBUG("failed: %i", retval);
1678         }
1679
1680         return retval;
1681 }
1682
1683 COMMAND_HANDLER(handle_targets_command)
1684 {
1685         struct target *target = all_targets;
1686
1687         if (CMD_ARGC == 1)
1688         {
1689                 target = get_target(CMD_ARGV[0]);
1690                 if (target == NULL) {
1691                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1692                         goto DumpTargets;
1693                 }
1694                 if (!target->tap->enabled) {
1695                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1696                                         "can't be the current target\n",
1697                                         target->tap->dotted_name);
1698                         return ERROR_FAIL;
1699                 }
1700
1701                 CMD_CTX->current_target = target->target_number;
1702                 return ERROR_OK;
1703         }
1704 DumpTargets:
1705
1706         target = all_targets;
1707         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1708         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1709         while (target)
1710         {
1711                 const char *state;
1712                 char marker = ' ';
1713
1714                 if (target->tap->enabled)
1715                         state = target_state_name( target );
1716                 else
1717                         state = "tap-disabled";
1718
1719                 if (CMD_CTX->current_target == target->target_number)
1720                         marker = '*';
1721
1722                 /* keep columns lined up to match the headers above */
1723                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1724                                           target->target_number,
1725                                           marker,
1726                                           target_name(target),
1727                                           target_type_name(target),
1728                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1729                                                                 target->endianness)->name,
1730                                           target->tap->dotted_name,
1731                                           state);
1732                 target = target->next;
1733         }
1734
1735         return ERROR_OK;
1736 }
1737
1738 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1739
1740 static int powerDropout;
1741 static int srstAsserted;
1742
1743 static int runPowerRestore;
1744 static int runPowerDropout;
1745 static int runSrstAsserted;
1746 static int runSrstDeasserted;
1747
1748 static int sense_handler(void)
1749 {
1750         static int prevSrstAsserted = 0;
1751         static int prevPowerdropout = 0;
1752
1753         int retval;
1754         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1755                 return retval;
1756
1757         int powerRestored;
1758         powerRestored = prevPowerdropout && !powerDropout;
1759         if (powerRestored)
1760         {
1761                 runPowerRestore = 1;
1762         }
1763
1764         long long current = timeval_ms();
1765         static long long lastPower = 0;
1766         int waitMore = lastPower + 2000 > current;
1767         if (powerDropout && !waitMore)
1768         {
1769                 runPowerDropout = 1;
1770                 lastPower = current;
1771         }
1772
1773         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1774                 return retval;
1775
1776         int srstDeasserted;
1777         srstDeasserted = prevSrstAsserted && !srstAsserted;
1778
1779         static long long lastSrst = 0;
1780         waitMore = lastSrst + 2000 > current;
1781         if (srstDeasserted && !waitMore)
1782         {
1783                 runSrstDeasserted = 1;
1784                 lastSrst = current;
1785         }
1786
1787         if (!prevSrstAsserted && srstAsserted)
1788         {
1789                 runSrstAsserted = 1;
1790         }
1791
1792         prevSrstAsserted = srstAsserted;
1793         prevPowerdropout = powerDropout;
1794
1795         if (srstDeasserted || powerRestored)
1796         {
1797                 /* Other than logging the event we can't do anything here.
1798                  * Issuing a reset is a particularly bad idea as we might
1799                  * be inside a reset already.
1800                  */
1801         }
1802
1803         return ERROR_OK;
1804 }
1805
1806 static int backoff_times = 0;
1807 static int backoff_count = 0;
1808
1809 /* process target state changes */
1810 static int handle_target(void *priv)
1811 {
1812         Jim_Interp *interp = (Jim_Interp *)priv;
1813         int retval = ERROR_OK;
1814
1815         if (!is_jtag_poll_safe())
1816         {
1817                 /* polling is disabled currently */
1818                 return ERROR_OK;
1819         }
1820
1821         /* we do not want to recurse here... */
1822         static int recursive = 0;
1823         if (! recursive)
1824         {
1825                 recursive = 1;
1826                 sense_handler();
1827                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1828                  * We need to avoid an infinite loop/recursion here and we do that by
1829                  * clearing the flags after running these events.
1830                  */
1831                 int did_something = 0;
1832                 if (runSrstAsserted)
1833                 {
1834                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1835                         Jim_Eval(interp, "srst_asserted");
1836                         did_something = 1;
1837                 }
1838                 if (runSrstDeasserted)
1839                 {
1840                         Jim_Eval(interp, "srst_deasserted");
1841                         did_something = 1;
1842                 }
1843                 if (runPowerDropout)
1844                 {
1845                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1846                         Jim_Eval(interp, "power_dropout");
1847                         did_something = 1;
1848                 }
1849                 if (runPowerRestore)
1850                 {
1851                         Jim_Eval(interp, "power_restore");
1852                         did_something = 1;
1853                 }
1854
1855                 if (did_something)
1856                 {
1857                         /* clear detect flags */
1858                         sense_handler();
1859                 }
1860
1861                 /* clear action flags */
1862
1863                 runSrstAsserted = 0;
1864                 runSrstDeasserted = 0;
1865                 runPowerRestore = 0;
1866                 runPowerDropout = 0;
1867
1868                 recursive = 0;
1869         }
1870
1871         if (backoff_times > backoff_count)
1872         {
1873                 /* do not poll this time as we failed previously */
1874                 backoff_count++;
1875                 return ERROR_OK;
1876         }
1877         backoff_count = 0;
1878
1879         /* Poll targets for state changes unless that's globally disabled.
1880          * Skip targets that are currently disabled.
1881          */
1882         for (struct target *target = all_targets;
1883                         is_jtag_poll_safe() && target;
1884                         target = target->next)
1885         {
1886                 if (!target->tap->enabled)
1887                         continue;
1888
1889                 /* only poll target if we've got power and srst isn't asserted */
1890                 if (!powerDropout && !srstAsserted)
1891                 {
1892                         /* polling may fail silently until the target has been examined */
1893                         if ((retval = target_poll(target)) != ERROR_OK)
1894                         {
1895                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1896                                 if (backoff_times * polling_interval < 5000)
1897                                 {
1898                                         backoff_times *= 2;
1899                                         backoff_times++;
1900                                 }
1901                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
1902
1903                                 /* Tell GDB to halt the debugger. This allows the user to
1904                                  * run monitor commands to handle the situation.
1905                                  */
1906                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1907                                 return retval;
1908                         }
1909                         /* Since we succeeded, we reset backoff count */
1910                         if (backoff_times > 0)
1911                         {
1912                                 LOG_USER("Polling succeeded again");
1913                         }
1914                         backoff_times = 0;
1915                 }
1916         }
1917
1918         return retval;
1919 }
1920
1921 COMMAND_HANDLER(handle_reg_command)
1922 {
1923         struct target *target;
1924         struct reg *reg = NULL;
1925         unsigned count = 0;
1926         char *value;
1927
1928         LOG_DEBUG("-");
1929
1930         target = get_current_target(CMD_CTX);
1931
1932         /* list all available registers for the current target */
1933         if (CMD_ARGC == 0)
1934         {
1935                 struct reg_cache *cache = target->reg_cache;
1936
1937                 count = 0;
1938                 while (cache)
1939                 {
1940                         unsigned i;
1941
1942                         command_print(CMD_CTX, "===== %s", cache->name);
1943
1944                         for (i = 0, reg = cache->reg_list;
1945                                         i < cache->num_regs;
1946                                         i++, reg++, count++)
1947                         {
1948                                 /* only print cached values if they are valid */
1949                                 if (reg->valid) {
1950                                         value = buf_to_str(reg->value,
1951                                                         reg->size, 16);
1952                                         command_print(CMD_CTX,
1953                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1954                                                         count, reg->name,
1955                                                         reg->size, value,
1956                                                         reg->dirty
1957                                                                 ? " (dirty)"
1958                                                                 : "");
1959                                         free(value);
1960                                 } else {
1961                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1962                                                           count, reg->name,
1963                                                           reg->size) ;
1964                                 }
1965                         }
1966                         cache = cache->next;
1967                 }
1968
1969                 return ERROR_OK;
1970         }
1971
1972         /* access a single register by its ordinal number */
1973         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1974         {
1975                 unsigned num;
1976                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1977
1978                 struct reg_cache *cache = target->reg_cache;
1979                 count = 0;
1980                 while (cache)
1981                 {
1982                         unsigned i;
1983                         for (i = 0; i < cache->num_regs; i++)
1984                         {
1985                                 if (count++ == num)
1986                                 {
1987                                         reg = &cache->reg_list[i];
1988                                         break;
1989                                 }
1990                         }
1991                         if (reg)
1992                                 break;
1993                         cache = cache->next;
1994                 }
1995
1996                 if (!reg)
1997                 {
1998                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1999                         return ERROR_OK;
2000                 }
2001         } else /* access a single register by its name */
2002         {
2003                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2004
2005                 if (!reg)
2006                 {
2007                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2008                         return ERROR_OK;
2009                 }
2010         }
2011
2012         /* display a register */
2013         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2014         {
2015                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2016                         reg->valid = 0;
2017
2018                 if (reg->valid == 0)
2019                 {
2020                         reg->type->get(reg);
2021                 }
2022                 value = buf_to_str(reg->value, reg->size, 16);
2023                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2024                 free(value);
2025                 return ERROR_OK;
2026         }
2027
2028         /* set register value */
2029         if (CMD_ARGC == 2)
2030         {
2031                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2032                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2033
2034                 reg->type->set(reg, buf);
2035
2036                 value = buf_to_str(reg->value, reg->size, 16);
2037                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2038                 free(value);
2039
2040                 free(buf);
2041
2042                 return ERROR_OK;
2043         }
2044
2045         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2046
2047         return ERROR_OK;
2048 }
2049
2050 COMMAND_HANDLER(handle_poll_command)
2051 {
2052         int retval = ERROR_OK;
2053         struct target *target = get_current_target(CMD_CTX);
2054
2055         if (CMD_ARGC == 0)
2056         {
2057                 command_print(CMD_CTX, "background polling: %s",
2058                                 jtag_poll_get_enabled() ? "on" : "off");
2059                 command_print(CMD_CTX, "TAP: %s (%s)",
2060                                 target->tap->dotted_name,
2061                                 target->tap->enabled ? "enabled" : "disabled");
2062                 if (!target->tap->enabled)
2063                         return ERROR_OK;
2064                 if ((retval = target_poll(target)) != ERROR_OK)
2065                         return retval;
2066                 if ((retval = target_arch_state(target)) != ERROR_OK)
2067                         return retval;
2068         }
2069         else if (CMD_ARGC == 1)
2070         {
2071                 bool enable;
2072                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2073                 jtag_poll_set_enabled(enable);
2074         }
2075         else
2076         {
2077                 return ERROR_COMMAND_SYNTAX_ERROR;
2078         }
2079
2080         return retval;
2081 }
2082
2083 COMMAND_HANDLER(handle_wait_halt_command)
2084 {
2085         if (CMD_ARGC > 1)
2086                 return ERROR_COMMAND_SYNTAX_ERROR;
2087
2088         unsigned ms = 5000;
2089         if (1 == CMD_ARGC)
2090         {
2091                 int retval = parse_uint(CMD_ARGV[0], &ms);
2092                 if (ERROR_OK != retval)
2093                 {
2094                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2095                         return ERROR_COMMAND_SYNTAX_ERROR;
2096                 }
2097                 // convert seconds (given) to milliseconds (needed)
2098                 ms *= 1000;
2099         }
2100
2101         struct target *target = get_current_target(CMD_CTX);
2102         return target_wait_state(target, TARGET_HALTED, ms);
2103 }
2104
2105 /* wait for target state to change. The trick here is to have a low
2106  * latency for short waits and not to suck up all the CPU time
2107  * on longer waits.
2108  *
2109  * After 500ms, keep_alive() is invoked
2110  */
2111 int target_wait_state(struct target *target, enum target_state state, int ms)
2112 {
2113         int retval;
2114         long long then = 0, cur;
2115         int once = 1;
2116
2117         for (;;)
2118         {
2119                 if ((retval = target_poll(target)) != ERROR_OK)
2120                         return retval;
2121                 if (target->state == state)
2122                 {
2123                         break;
2124                 }
2125                 cur = timeval_ms();
2126                 if (once)
2127                 {
2128                         once = 0;
2129                         then = timeval_ms();
2130                         LOG_DEBUG("waiting for target %s...",
2131                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2132                 }
2133
2134                 if (cur-then > 500)
2135                 {
2136                         keep_alive();
2137                 }
2138
2139                 if ((cur-then) > ms)
2140                 {
2141                         LOG_ERROR("timed out while waiting for target %s",
2142                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2143                         return ERROR_FAIL;
2144                 }
2145         }
2146
2147         return ERROR_OK;
2148 }
2149
2150 COMMAND_HANDLER(handle_halt_command)
2151 {
2152         LOG_DEBUG("-");
2153
2154         struct target *target = get_current_target(CMD_CTX);
2155         int retval = target_halt(target);
2156         if (ERROR_OK != retval)
2157                 return retval;
2158
2159         if (CMD_ARGC == 1)
2160         {
2161                 unsigned wait_local;
2162                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2163                 if (ERROR_OK != retval)
2164                         return ERROR_COMMAND_SYNTAX_ERROR;
2165                 if (!wait_local)
2166                         return ERROR_OK;
2167         }
2168
2169         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2170 }
2171
2172 COMMAND_HANDLER(handle_soft_reset_halt_command)
2173 {
2174         struct target *target = get_current_target(CMD_CTX);
2175
2176         LOG_USER("requesting target halt and executing a soft reset");
2177
2178         target->type->soft_reset_halt(target);
2179
2180         return ERROR_OK;
2181 }
2182
2183 COMMAND_HANDLER(handle_reset_command)
2184 {
2185         if (CMD_ARGC > 1)
2186                 return ERROR_COMMAND_SYNTAX_ERROR;
2187
2188         enum target_reset_mode reset_mode = RESET_RUN;
2189         if (CMD_ARGC == 1)
2190         {
2191                 const Jim_Nvp *n;
2192                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2193                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2194                         return ERROR_COMMAND_SYNTAX_ERROR;
2195                 }
2196                 reset_mode = n->value;
2197         }
2198
2199         /* reset *all* targets */
2200         return target_process_reset(CMD_CTX, reset_mode);
2201 }
2202
2203
2204 COMMAND_HANDLER(handle_resume_command)
2205 {
2206         int current = 1;
2207         if (CMD_ARGC > 1)
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209
2210         struct target *target = get_current_target(CMD_CTX);
2211         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2212
2213         /* with no CMD_ARGV, resume from current pc, addr = 0,
2214          * with one arguments, addr = CMD_ARGV[0],
2215          * handle breakpoints, not debugging */
2216         uint32_t addr = 0;
2217         if (CMD_ARGC == 1)
2218         {
2219                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2220                 current = 0;
2221         }
2222
2223         return target_resume(target, current, addr, 1, 0);
2224 }
2225
2226 COMMAND_HANDLER(handle_step_command)
2227 {
2228         if (CMD_ARGC > 1)
2229                 return ERROR_COMMAND_SYNTAX_ERROR;
2230
2231         LOG_DEBUG("-");
2232
2233         /* with no CMD_ARGV, step from current pc, addr = 0,
2234          * with one argument addr = CMD_ARGV[0],
2235          * handle breakpoints, debugging */
2236         uint32_t addr = 0;
2237         int current_pc = 1;
2238         if (CMD_ARGC == 1)
2239         {
2240                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2241                 current_pc = 0;
2242         }
2243
2244         struct target *target = get_current_target(CMD_CTX);
2245
2246         return target->type->step(target, current_pc, addr, 1);
2247 }
2248
2249 static void handle_md_output(struct command_context *cmd_ctx,
2250                 struct target *target, uint32_t address, unsigned size,
2251                 unsigned count, const uint8_t *buffer)
2252 {
2253         const unsigned line_bytecnt = 32;
2254         unsigned line_modulo = line_bytecnt / size;
2255
2256         char output[line_bytecnt * 4 + 1];
2257         unsigned output_len = 0;
2258
2259         const char *value_fmt;
2260         switch (size) {
2261         case 4: value_fmt = "%8.8x "; break;
2262         case 2: value_fmt = "%4.4x "; break;
2263         case 1: value_fmt = "%2.2x "; break;
2264         default:
2265                 /* "can't happen", caller checked */
2266                 LOG_ERROR("invalid memory read size: %u", size);
2267                 return;
2268         }
2269
2270         for (unsigned i = 0; i < count; i++)
2271         {
2272                 if (i % line_modulo == 0)
2273                 {
2274                         output_len += snprintf(output + output_len,
2275                                         sizeof(output) - output_len,
2276                                         "0x%8.8x: ",
2277                                         (unsigned)(address + (i*size)));
2278                 }
2279
2280                 uint32_t value = 0;
2281                 const uint8_t *value_ptr = buffer + i * size;
2282                 switch (size) {
2283                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2284                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2285                 case 1: value = *value_ptr;
2286                 }
2287                 output_len += snprintf(output + output_len,
2288                                 sizeof(output) - output_len,
2289                                 value_fmt, value);
2290
2291                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2292                 {
2293                         command_print(cmd_ctx, "%s", output);
2294                         output_len = 0;
2295                 }
2296         }
2297 }
2298
2299 COMMAND_HANDLER(handle_md_command)
2300 {
2301         if (CMD_ARGC < 1)
2302                 return ERROR_COMMAND_SYNTAX_ERROR;
2303
2304         unsigned size = 0;
2305         switch (CMD_NAME[2]) {
2306         case 'w': size = 4; break;
2307         case 'h': size = 2; break;
2308         case 'b': size = 1; break;
2309         default: return ERROR_COMMAND_SYNTAX_ERROR;
2310         }
2311
2312         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2313         int (*fn)(struct target *target,
2314                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2315         if (physical)
2316         {
2317                 CMD_ARGC--;
2318                 CMD_ARGV++;
2319                 fn=target_read_phys_memory;
2320         } else
2321         {
2322                 fn=target_read_memory;
2323         }
2324         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2325         {
2326                 return ERROR_COMMAND_SYNTAX_ERROR;
2327         }
2328
2329         uint32_t address;
2330         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2331
2332         unsigned count = 1;
2333         if (CMD_ARGC == 2)
2334                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2335
2336         uint8_t *buffer = calloc(count, size);
2337
2338         struct target *target = get_current_target(CMD_CTX);
2339         int retval = fn(target, address, size, count, buffer);
2340         if (ERROR_OK == retval)
2341                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2342
2343         free(buffer);
2344
2345         return retval;
2346 }
2347
2348 typedef int (*target_write_fn)(struct target *target,
2349                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2350
2351 static int target_write_memory_fast(struct target *target,
2352                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2353 {
2354         return target_write_buffer(target, address, size * count, buffer);
2355 }
2356
2357 static int target_fill_mem(struct target *target,
2358                 uint32_t address,
2359                 target_write_fn fn,
2360                 unsigned data_size,
2361                 /* value */
2362                 uint32_t b,
2363                 /* count */
2364                 unsigned c)
2365 {
2366         /* We have to write in reasonably large chunks to be able
2367          * to fill large memory areas with any sane speed */
2368         const unsigned chunk_size = 16384;
2369         uint8_t *target_buf = malloc(chunk_size * data_size);
2370         if (target_buf == NULL)
2371         {
2372                 LOG_ERROR("Out of memory");
2373                 return ERROR_FAIL;
2374         }
2375
2376         for (unsigned i = 0; i < chunk_size; i ++)
2377         {
2378                 switch (data_size)
2379                 {
2380                 case 4:
2381                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2382                         break;
2383                 case 2:
2384                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2385                         break;
2386                 case 1:
2387                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2388                         break;
2389                 default:
2390                         exit(-1);
2391                 }
2392         }
2393
2394         int retval = ERROR_OK;
2395
2396         for (unsigned x = 0; x < c; x += chunk_size)
2397         {
2398                 unsigned current;
2399                 current = c - x;
2400                 if (current > chunk_size)
2401                 {
2402                         current = chunk_size;
2403                 }
2404                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2405                 if (retval != ERROR_OK)
2406                 {
2407                         break;
2408                 }
2409                 /* avoid GDB timeouts */
2410                 keep_alive();
2411         }
2412         free(target_buf);
2413
2414         return retval;
2415 }
2416
2417
2418 COMMAND_HANDLER(handle_mw_command)
2419 {
2420         if (CMD_ARGC < 2)
2421         {
2422                 return ERROR_COMMAND_SYNTAX_ERROR;
2423         }
2424         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2425         target_write_fn fn;
2426         if (physical)
2427         {
2428                 CMD_ARGC--;
2429                 CMD_ARGV++;
2430                 fn=target_write_phys_memory;
2431         } else
2432         {
2433                 fn = target_write_memory_fast;
2434         }
2435         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2436                 return ERROR_COMMAND_SYNTAX_ERROR;
2437
2438         uint32_t address;
2439         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2440
2441         uint32_t value;
2442         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2443
2444         unsigned count = 1;
2445         if (CMD_ARGC == 3)
2446                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2447
2448         struct target *target = get_current_target(CMD_CTX);
2449         unsigned wordsize;
2450         switch (CMD_NAME[2])
2451         {
2452                 case 'w':
2453                         wordsize = 4;
2454                         break;
2455                 case 'h':
2456                         wordsize = 2;
2457                         break;
2458                 case 'b':
2459                         wordsize = 1;
2460                         break;
2461                 default:
2462                         return ERROR_COMMAND_SYNTAX_ERROR;
2463         }
2464
2465         return target_fill_mem(target, address, fn, wordsize, value, count);
2466 }
2467
2468 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2469                 uint32_t *min_address, uint32_t *max_address)
2470 {
2471         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2472                 return ERROR_COMMAND_SYNTAX_ERROR;
2473
2474         /* a base address isn't always necessary,
2475          * default to 0x0 (i.e. don't relocate) */
2476         if (CMD_ARGC >= 2)
2477         {
2478                 uint32_t addr;
2479                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2480                 image->base_address = addr;
2481                 image->base_address_set = 1;
2482         }
2483         else
2484                 image->base_address_set = 0;
2485
2486         image->start_address_set = 0;
2487
2488         if (CMD_ARGC >= 4)
2489         {
2490                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2491         }
2492         if (CMD_ARGC == 5)
2493         {
2494                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2495                 // use size (given) to find max (required)
2496                 *max_address += *min_address;
2497         }
2498
2499         if (*min_address > *max_address)
2500                 return ERROR_COMMAND_SYNTAX_ERROR;
2501
2502         return ERROR_OK;
2503 }
2504
2505 COMMAND_HANDLER(handle_load_image_command)
2506 {
2507         uint8_t *buffer;
2508         size_t buf_cnt;
2509         uint32_t image_size;
2510         uint32_t min_address = 0;
2511         uint32_t max_address = 0xffffffff;
2512         int i;
2513         struct image image;
2514
2515         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2516                         &image, &min_address, &max_address);
2517         if (ERROR_OK != retval)
2518                 return retval;
2519
2520         struct target *target = get_current_target(CMD_CTX);
2521
2522         struct duration bench;
2523         duration_start(&bench);
2524
2525         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2526         {
2527                 return ERROR_OK;
2528         }
2529
2530         image_size = 0x0;
2531         retval = ERROR_OK;
2532         for (i = 0; i < image.num_sections; i++)
2533         {
2534                 buffer = malloc(image.sections[i].size);
2535                 if (buffer == NULL)
2536                 {
2537                         command_print(CMD_CTX,
2538                                                   "error allocating buffer for section (%d bytes)",
2539                                                   (int)(image.sections[i].size));
2540                         break;
2541                 }
2542
2543                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2544                 {
2545                         free(buffer);
2546                         break;
2547                 }
2548
2549                 uint32_t offset = 0;
2550                 uint32_t length = buf_cnt;
2551
2552                 /* DANGER!!! beware of unsigned comparision here!!! */
2553
2554                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2555                                 (image.sections[i].base_address < max_address))
2556                 {
2557                         if (image.sections[i].base_address < min_address)
2558                         {
2559                                 /* clip addresses below */
2560                                 offset += min_address-image.sections[i].base_address;
2561                                 length -= offset;
2562                         }
2563
2564                         if (image.sections[i].base_address + buf_cnt > max_address)
2565                         {
2566                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2567                         }
2568
2569                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2570                         {
2571                                 free(buffer);
2572                                 break;
2573                         }
2574                         image_size += length;
2575                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2576                                                   (unsigned int)length,
2577                                                   image.sections[i].base_address + offset);
2578                 }
2579
2580                 free(buffer);
2581         }
2582
2583         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2584         {
2585                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2586                                 "in %fs (%0.3f KiB/s)", image_size,
2587                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2588         }
2589
2590         image_close(&image);
2591
2592         return retval;
2593
2594 }
2595
2596 COMMAND_HANDLER(handle_dump_image_command)
2597 {
2598         struct fileio fileio;
2599         uint8_t buffer[560];
2600         int retval, retvaltemp;
2601         uint32_t address, size;
2602         struct duration bench;
2603         struct target *target = get_current_target(CMD_CTX);
2604
2605         if (CMD_ARGC != 3)
2606                 return ERROR_COMMAND_SYNTAX_ERROR;
2607
2608         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2609         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2610
2611         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2612         if (retval != ERROR_OK)
2613                 return retval;
2614
2615         duration_start(&bench);
2616
2617         retval = ERROR_OK;
2618         while (size > 0)
2619         {
2620                 size_t size_written;
2621                 uint32_t this_run_size = (size > 560) ? 560 : size;
2622                 retval = target_read_buffer(target, address, this_run_size, buffer);
2623                 if (retval != ERROR_OK)
2624                 {
2625                         break;
2626                 }
2627
2628                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2629                 if (retval != ERROR_OK)
2630                 {
2631                         break;
2632                 }
2633
2634                 size -= this_run_size;
2635                 address += this_run_size;
2636         }
2637
2638         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2639         {
2640                 int filesize;
2641                 retval = fileio_size(&fileio, &filesize);
2642                 if (retval != ERROR_OK)
2643                         return retval;
2644                 command_print(CMD_CTX,
2645                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2646                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2647         }
2648
2649         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2650                 return retvaltemp;
2651
2652         return retval;
2653 }
2654
2655 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2656 {
2657         uint8_t *buffer;
2658         size_t buf_cnt;
2659         uint32_t image_size;
2660         int i;
2661         int retval;
2662         uint32_t checksum = 0;
2663         uint32_t mem_checksum = 0;
2664
2665         struct image image;
2666
2667         struct target *target = get_current_target(CMD_CTX);
2668
2669         if (CMD_ARGC < 1)
2670         {
2671                 return ERROR_COMMAND_SYNTAX_ERROR;
2672         }
2673
2674         if (!target)
2675         {
2676                 LOG_ERROR("no target selected");
2677                 return ERROR_FAIL;
2678         }
2679
2680         struct duration bench;
2681         duration_start(&bench);
2682
2683         if (CMD_ARGC >= 2)
2684         {
2685                 uint32_t addr;
2686                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2687                 image.base_address = addr;
2688                 image.base_address_set = 1;
2689         }
2690         else
2691         {
2692                 image.base_address_set = 0;
2693                 image.base_address = 0x0;
2694         }
2695
2696         image.start_address_set = 0;
2697
2698         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2699         {
2700                 return retval;
2701         }
2702
2703         image_size = 0x0;
2704         int diffs = 0;
2705         retval = ERROR_OK;
2706         for (i = 0; i < image.num_sections; i++)
2707         {
2708                 buffer = malloc(image.sections[i].size);
2709                 if (buffer == NULL)
2710                 {
2711                         command_print(CMD_CTX,
2712                                                   "error allocating buffer for section (%d bytes)",
2713                                                   (int)(image.sections[i].size));
2714                         break;
2715                 }
2716                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2717                 {
2718                         free(buffer);
2719                         break;
2720                 }
2721
2722                 if (verify)
2723                 {
2724                         /* calculate checksum of image */
2725                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2726                         if (retval != ERROR_OK)
2727                         {
2728                                 free(buffer);
2729                                 break;
2730                         }
2731
2732                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2733                         if (retval != ERROR_OK)
2734                         {
2735                                 free(buffer);
2736                                 break;
2737                         }
2738
2739                         if (checksum != mem_checksum)
2740                         {
2741                                 /* failed crc checksum, fall back to a binary compare */
2742                                 uint8_t *data;
2743
2744                                 if (diffs == 0)
2745                                 {
2746                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2747                                 }
2748
2749                                 data = (uint8_t*)malloc(buf_cnt);
2750
2751                                 /* Can we use 32bit word accesses? */
2752                                 int size = 1;
2753                                 int count = buf_cnt;
2754                                 if ((count % 4) == 0)
2755                                 {
2756                                         size *= 4;
2757                                         count /= 4;
2758                                 }
2759                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2760                                 if (retval == ERROR_OK)
2761                                 {
2762                                         uint32_t t;
2763                                         for (t = 0; t < buf_cnt; t++)
2764                                         {
2765                                                 if (data[t] != buffer[t])
2766                                                 {
2767                                                         command_print(CMD_CTX,
2768                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2769                                                                                   diffs,
2770                                                                                   (unsigned)(t + image.sections[i].base_address),
2771                                                                                   data[t],
2772                                                                                   buffer[t]);
2773                                                         if (diffs++ >= 127)
2774                                                         {
2775                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2776                                                                 free(data);
2777                                                                 free(buffer);
2778                                                                 goto done;
2779                                                         }
2780                                                 }
2781                                                 keep_alive();
2782                                         }
2783                                 }
2784                                 free(data);
2785                         }
2786                 } else
2787                 {
2788                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2789                                                   image.sections[i].base_address,
2790                                                   buf_cnt);
2791                 }
2792
2793                 free(buffer);
2794                 image_size += buf_cnt;
2795         }
2796         if (diffs > 0)
2797         {
2798                 command_print(CMD_CTX, "No more differences found.");
2799         }
2800 done:
2801         if (diffs > 0)
2802         {
2803                 retval = ERROR_FAIL;
2804         }
2805         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2806         {
2807                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2808                                 "in %fs (%0.3f KiB/s)", image_size,
2809                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2810         }
2811
2812         image_close(&image);
2813
2814         return retval;
2815 }
2816
2817 COMMAND_HANDLER(handle_verify_image_command)
2818 {
2819         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2820 }
2821
2822 COMMAND_HANDLER(handle_test_image_command)
2823 {
2824         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2825 }
2826
2827 static int handle_bp_command_list(struct command_context *cmd_ctx)
2828 {
2829         struct target *target = get_current_target(cmd_ctx);
2830         struct breakpoint *breakpoint = target->breakpoints;
2831         while (breakpoint)
2832         {
2833                 if (breakpoint->type == BKPT_SOFT)
2834                 {
2835                         char* buf = buf_to_str(breakpoint->orig_instr,
2836                                         breakpoint->length, 16);
2837                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2838                                         breakpoint->address,
2839                                         breakpoint->length,
2840                                         breakpoint->set, buf);
2841                         free(buf);
2842                 }
2843                 else
2844                 {
2845                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2846                                                   breakpoint->address,
2847                                                   breakpoint->length, breakpoint->set);
2848                 }
2849
2850                 breakpoint = breakpoint->next;
2851         }
2852         return ERROR_OK;
2853 }
2854
2855 static int handle_bp_command_set(struct command_context *cmd_ctx,
2856                 uint32_t addr, uint32_t length, int hw)
2857 {
2858         struct target *target = get_current_target(cmd_ctx);
2859         int retval = breakpoint_add(target, addr, length, hw);
2860         if (ERROR_OK == retval)
2861                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2862         else
2863                 LOG_ERROR("Failure setting breakpoint");
2864         return retval;
2865 }
2866
2867 COMMAND_HANDLER(handle_bp_command)
2868 {
2869         if (CMD_ARGC == 0)
2870                 return handle_bp_command_list(CMD_CTX);
2871
2872         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2873         {
2874                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2875                 return ERROR_COMMAND_SYNTAX_ERROR;
2876         }
2877
2878         uint32_t addr;
2879         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2880         uint32_t length;
2881         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2882
2883         int hw = BKPT_SOFT;
2884         if (CMD_ARGC == 3)
2885         {
2886                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2887                         hw = BKPT_HARD;
2888                 else
2889                         return ERROR_COMMAND_SYNTAX_ERROR;
2890         }
2891
2892         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2893 }
2894
2895 COMMAND_HANDLER(handle_rbp_command)
2896 {
2897         if (CMD_ARGC != 1)
2898                 return ERROR_COMMAND_SYNTAX_ERROR;
2899
2900         uint32_t addr;
2901         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2902
2903         struct target *target = get_current_target(CMD_CTX);
2904         breakpoint_remove(target, addr);
2905
2906         return ERROR_OK;
2907 }
2908
2909 COMMAND_HANDLER(handle_wp_command)
2910 {
2911         struct target *target = get_current_target(CMD_CTX);
2912
2913         if (CMD_ARGC == 0)
2914         {
2915                 struct watchpoint *watchpoint = target->watchpoints;
2916
2917                 while (watchpoint)
2918                 {
2919                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2920                                         ", len: 0x%8.8" PRIx32
2921                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2922                                         ", mask: 0x%8.8" PRIx32,
2923                                         watchpoint->address,
2924                                         watchpoint->length,
2925                                         (int)watchpoint->rw,
2926                                         watchpoint->value,
2927                                         watchpoint->mask);
2928                         watchpoint = watchpoint->next;
2929                 }
2930                 return ERROR_OK;
2931         }
2932
2933         enum watchpoint_rw type = WPT_ACCESS;
2934         uint32_t addr = 0;
2935         uint32_t length = 0;
2936         uint32_t data_value = 0x0;
2937         uint32_t data_mask = 0xffffffff;
2938
2939         switch (CMD_ARGC)
2940         {
2941         case 5:
2942                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2943                 // fall through
2944         case 4:
2945                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2946                 // fall through
2947         case 3:
2948                 switch (CMD_ARGV[2][0])
2949                 {
2950                 case 'r':
2951                         type = WPT_READ;
2952                         break;
2953                 case 'w':
2954                         type = WPT_WRITE;
2955                         break;
2956                 case 'a':
2957                         type = WPT_ACCESS;
2958                         break;
2959                 default:
2960                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2961                         return ERROR_COMMAND_SYNTAX_ERROR;
2962                 }
2963                 // fall through
2964         case 2:
2965                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2966                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2967                 break;
2968
2969         default:
2970                 command_print(CMD_CTX, "usage: wp [address length "
2971                                 "[(r|w|a) [value [mask]]]]");
2972                 return ERROR_COMMAND_SYNTAX_ERROR;
2973         }
2974
2975         int retval = watchpoint_add(target, addr, length, type,
2976                         data_value, data_mask);
2977         if (ERROR_OK != retval)
2978                 LOG_ERROR("Failure setting watchpoints");
2979
2980         return retval;
2981 }
2982
2983 COMMAND_HANDLER(handle_rwp_command)
2984 {
2985         if (CMD_ARGC != 1)
2986                 return ERROR_COMMAND_SYNTAX_ERROR;
2987
2988         uint32_t addr;
2989         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2990
2991         struct target *target = get_current_target(CMD_CTX);
2992         watchpoint_remove(target, addr);
2993
2994         return ERROR_OK;
2995 }
2996
2997
2998 /**
2999  * Translate a virtual address to a physical address.
3000  *
3001  * The low-level target implementation must have logged a detailed error
3002  * which is forwarded to telnet/GDB session.
3003  */
3004 COMMAND_HANDLER(handle_virt2phys_command)
3005 {
3006         if (CMD_ARGC != 1)
3007                 return ERROR_COMMAND_SYNTAX_ERROR;
3008
3009         uint32_t va;
3010         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3011         uint32_t pa;
3012
3013         struct target *target = get_current_target(CMD_CTX);
3014         int retval = target->type->virt2phys(target, va, &pa);
3015         if (retval == ERROR_OK)
3016                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3017
3018         return retval;
3019 }
3020
3021 static void writeData(FILE *f, const void *data, size_t len)
3022 {
3023         size_t written = fwrite(data, 1, len, f);
3024         if (written != len)
3025                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3026 }
3027
3028 static void writeLong(FILE *f, int l)
3029 {
3030         int i;
3031         for (i = 0; i < 4; i++)
3032         {
3033                 char c = (l >> (i*8))&0xff;
3034                 writeData(f, &c, 1);
3035         }
3036
3037 }
3038
3039 static void writeString(FILE *f, char *s)
3040 {
3041         writeData(f, s, strlen(s));
3042 }
3043
3044 /* Dump a gmon.out histogram file. */
3045 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3046 {
3047         uint32_t i;
3048         FILE *f = fopen(filename, "w");
3049         if (f == NULL)
3050                 return;
3051         writeString(f, "gmon");
3052         writeLong(f, 0x00000001); /* Version */
3053         writeLong(f, 0); /* padding */
3054         writeLong(f, 0); /* padding */
3055         writeLong(f, 0); /* padding */
3056
3057         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3058         writeData(f, &zero, 1);
3059
3060         /* figure out bucket size */
3061         uint32_t min = samples[0];
3062         uint32_t max = samples[0];
3063         for (i = 0; i < sampleNum; i++)
3064         {
3065                 if (min > samples[i])
3066                 {
3067                         min = samples[i];
3068                 }
3069                 if (max < samples[i])
3070                 {
3071                         max = samples[i];
3072                 }
3073         }
3074
3075         int addressSpace = (max-min + 1);
3076
3077         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3078         uint32_t length = addressSpace;
3079         if (length > maxBuckets)
3080         {
3081                 length = maxBuckets;
3082         }
3083         int *buckets = malloc(sizeof(int)*length);
3084         if (buckets == NULL)
3085         {
3086                 fclose(f);
3087                 return;
3088         }
3089         memset(buckets, 0, sizeof(int)*length);
3090         for (i = 0; i < sampleNum;i++)
3091         {
3092                 uint32_t address = samples[i];
3093                 long long a = address-min;
3094                 long long b = length-1;
3095                 long long c = addressSpace-1;
3096                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3097                 buckets[index_t]++;
3098         }
3099
3100         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3101         writeLong(f, min);                      /* low_pc */
3102         writeLong(f, max);                      /* high_pc */
3103         writeLong(f, length);           /* # of samples */
3104         writeLong(f, 64000000);         /* 64MHz */
3105         writeString(f, "seconds");
3106         for (i = 0; i < (15-strlen("seconds")); i++)
3107                 writeData(f, &zero, 1);
3108         writeString(f, "s");
3109
3110         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3111
3112         char *data = malloc(2*length);
3113         if (data != NULL)
3114         {
3115                 for (i = 0; i < length;i++)
3116                 {
3117                         int val;
3118                         val = buckets[i];
3119                         if (val > 65535)
3120                         {
3121                                 val = 65535;
3122                         }
3123                         data[i*2]=val&0xff;
3124                         data[i*2 + 1]=(val >> 8)&0xff;
3125                 }
3126                 free(buckets);
3127                 writeData(f, data, length * 2);
3128                 free(data);
3129         } else
3130         {
3131                 free(buckets);
3132         }
3133
3134         fclose(f);
3135 }
3136
3137 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3138  * which will be used as a random sampling of PC */
3139 COMMAND_HANDLER(handle_profile_command)
3140 {
3141         struct target *target = get_current_target(CMD_CTX);
3142         struct timeval timeout, now;
3143
3144         gettimeofday(&timeout, NULL);
3145         if (CMD_ARGC != 2)
3146         {
3147                 return ERROR_COMMAND_SYNTAX_ERROR;
3148         }
3149         unsigned offset;
3150         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3151
3152         timeval_add_time(&timeout, offset, 0);
3153
3154         /**
3155          * @todo: Some cores let us sample the PC without the
3156          * annoying halt/resume step; for example, ARMv7 PCSR.
3157          * Provide a way to use that more efficient mechanism.
3158          */
3159
3160         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3161
3162         static const int maxSample = 10000;
3163         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3164         if (samples == NULL)
3165                 return ERROR_OK;
3166
3167         int numSamples = 0;
3168         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3169         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3170
3171         for (;;)
3172         {
3173                 int retval;
3174                 target_poll(target);
3175                 if (target->state == TARGET_HALTED)
3176                 {
3177                         uint32_t t=*((uint32_t *)reg->value);
3178                         samples[numSamples++]=t;
3179                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3180                         target_poll(target);
3181                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3182                 } else if (target->state == TARGET_RUNNING)
3183                 {
3184                         /* We want to quickly sample the PC. */
3185                         if ((retval = target_halt(target)) != ERROR_OK)
3186                         {
3187                                 free(samples);
3188                                 return retval;
3189                         }
3190                 } else
3191                 {
3192                         command_print(CMD_CTX, "Target not halted or running");
3193                         retval = ERROR_OK;
3194                         break;
3195                 }
3196                 if (retval != ERROR_OK)
3197                 {
3198                         break;
3199                 }
3200
3201                 gettimeofday(&now, NULL);
3202                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3203                 {
3204                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3205                         if ((retval = target_poll(target)) != ERROR_OK)
3206                         {
3207                                 free(samples);
3208                                 return retval;
3209                         }
3210                         if (target->state == TARGET_HALTED)
3211                         {
3212                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3213                         }
3214                         if ((retval = target_poll(target)) != ERROR_OK)
3215                         {
3216                                 free(samples);
3217                                 return retval;
3218                         }
3219                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3220                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3221                         break;
3222                 }
3223         }
3224         free(samples);
3225
3226         return ERROR_OK;
3227 }
3228
3229 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3230 {
3231         char *namebuf;
3232         Jim_Obj *nameObjPtr, *valObjPtr;
3233         int result;
3234
3235         namebuf = alloc_printf("%s(%d)", varname, idx);
3236         if (!namebuf)
3237                 return JIM_ERR;
3238
3239         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3240         valObjPtr = Jim_NewIntObj(interp, val);
3241         if (!nameObjPtr || !valObjPtr)
3242         {
3243                 free(namebuf);
3244                 return JIM_ERR;
3245         }
3246
3247         Jim_IncrRefCount(nameObjPtr);
3248         Jim_IncrRefCount(valObjPtr);
3249         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3250         Jim_DecrRefCount(interp, nameObjPtr);
3251         Jim_DecrRefCount(interp, valObjPtr);
3252         free(namebuf);
3253         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3254         return result;
3255 }
3256
3257 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3258 {
3259         struct command_context *context;
3260         struct target *target;
3261
3262         context = current_command_context(interp);
3263         assert (context != NULL);
3264
3265         target = get_current_target(context);
3266         if (target == NULL)
3267         {
3268                 LOG_ERROR("mem2array: no current target");
3269                 return JIM_ERR;
3270         }
3271
3272         return  target_mem2array(interp, target, argc-1, argv + 1);
3273 }
3274
3275 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3276 {
3277         long l;
3278         uint32_t width;
3279         int len;
3280         uint32_t addr;
3281         uint32_t count;
3282         uint32_t v;
3283         const char *varname;
3284         int  n, e, retval;
3285         uint32_t i;
3286
3287         /* argv[1] = name of array to receive the data
3288          * argv[2] = desired width
3289          * argv[3] = memory address
3290          * argv[4] = count of times to read
3291          */
3292         if (argc != 4) {
3293                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3294                 return JIM_ERR;
3295         }
3296         varname = Jim_GetString(argv[0], &len);
3297         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3298
3299         e = Jim_GetLong(interp, argv[1], &l);
3300         width = l;
3301         if (e != JIM_OK) {
3302                 return e;
3303         }
3304
3305         e = Jim_GetLong(interp, argv[2], &l);
3306         addr = l;
3307         if (e != JIM_OK) {
3308                 return e;
3309         }
3310         e = Jim_GetLong(interp, argv[3], &l);
3311         len = l;
3312         if (e != JIM_OK) {
3313                 return e;
3314         }
3315         switch (width) {
3316                 case 8:
3317                         width = 1;
3318                         break;
3319                 case 16:
3320                         width = 2;
3321                         break;
3322                 case 32:
3323                         width = 4;
3324                         break;
3325                 default:
3326                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3327                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3328                         return JIM_ERR;
3329         }
3330         if (len == 0) {
3331                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3332                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3333                 return JIM_ERR;
3334         }
3335         if ((addr + (len * width)) < addr) {
3336                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3337                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3338                 return JIM_ERR;
3339         }
3340         /* absurd transfer size? */
3341         if (len > 65536) {
3342                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3343                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3344                 return JIM_ERR;
3345         }
3346
3347         if ((width == 1) ||
3348                 ((width == 2) && ((addr & 1) == 0)) ||
3349                 ((width == 4) && ((addr & 3) == 0))) {
3350                 /* all is well */
3351         } else {
3352                 char buf[100];
3353                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3354                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3355                                 addr,
3356                                 width);
3357                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3358                 return JIM_ERR;
3359         }
3360
3361         /* Transfer loop */
3362
3363         /* index counter */
3364         n = 0;
3365
3366         size_t buffersize = 4096;
3367         uint8_t *buffer = malloc(buffersize);
3368         if (buffer == NULL)
3369                 return JIM_ERR;
3370
3371         /* assume ok */
3372         e = JIM_OK;
3373         while (len) {
3374                 /* Slurp... in buffer size chunks */
3375
3376                 count = len; /* in objects.. */
3377                 if (count > (buffersize/width)) {
3378                         count = (buffersize/width);
3379                 }
3380
3381                 retval = target_read_memory(target, addr, width, count, buffer);
3382                 if (retval != ERROR_OK) {
3383                         /* BOO !*/
3384                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3385                                           (unsigned int)addr,
3386                                           (int)width,
3387                                           (int)count);
3388                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3389                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3390                         e = JIM_ERR;
3391                         len = 0;
3392                 } else {
3393                         v = 0; /* shut up gcc */
3394                         for (i = 0 ;i < count ;i++, n++) {
3395                                 switch (width) {
3396                                         case 4:
3397                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3398                                                 break;
3399                                         case 2:
3400                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3401                                                 break;
3402                                         case 1:
3403                                                 v = buffer[i] & 0x0ff;
3404                                                 break;
3405                                 }
3406                                 new_int_array_element(interp, varname, n, v);
3407                         }
3408                         len -= count;
3409                 }
3410         }
3411
3412         free(buffer);
3413
3414         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3415
3416         return JIM_OK;
3417 }
3418
3419 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3420 {
3421         char *namebuf;
3422         Jim_Obj *nameObjPtr, *valObjPtr;
3423         int result;
3424         long l;
3425
3426         namebuf = alloc_printf("%s(%d)", varname, idx);
3427         if (!namebuf)
3428                 return JIM_ERR;
3429
3430         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3431         if (!nameObjPtr)
3432         {
3433                 free(namebuf);
3434                 return JIM_ERR;
3435         }
3436
3437         Jim_IncrRefCount(nameObjPtr);
3438         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3439         Jim_DecrRefCount(interp, nameObjPtr);
3440         free(namebuf);
3441         if (valObjPtr == NULL)
3442                 return JIM_ERR;
3443
3444         result = Jim_GetLong(interp, valObjPtr, &l);
3445         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3446         *val = l;
3447         return result;
3448 }
3449
3450 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3451 {
3452         struct command_context *context;
3453         struct target *target;
3454
3455         context = current_command_context(interp);
3456         assert (context != NULL);
3457
3458         target = get_current_target(context);
3459         if (target == NULL) {
3460                 LOG_ERROR("array2mem: no current target");
3461                 return JIM_ERR;
3462         }
3463
3464         return target_array2mem(interp,target, argc-1, argv + 1);
3465 }
3466
3467 static int target_array2mem(Jim_Interp *interp, struct target *target,
3468                 int argc, Jim_Obj *const *argv)
3469 {
3470         long l;
3471         uint32_t width;
3472         int len;
3473         uint32_t addr;
3474         uint32_t count;
3475         uint32_t v;
3476         const char *varname;
3477         int  n, e, retval;
3478         uint32_t i;
3479
3480         /* argv[1] = name of array to get the data
3481          * argv[2] = desired width
3482          * argv[3] = memory address
3483          * argv[4] = count to write
3484          */
3485         if (argc != 4) {
3486                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3487                 return JIM_ERR;
3488         }
3489         varname = Jim_GetString(argv[0], &len);
3490         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3491
3492         e = Jim_GetLong(interp, argv[1], &l);
3493         width = l;
3494         if (e != JIM_OK) {
3495                 return e;
3496         }
3497
3498         e = Jim_GetLong(interp, argv[2], &l);
3499         addr = l;
3500         if (e != JIM_OK) {
3501                 return e;
3502         }
3503         e = Jim_GetLong(interp, argv[3], &l);
3504         len = l;
3505         if (e != JIM_OK) {
3506                 return e;
3507         }
3508         switch (width) {
3509                 case 8:
3510                         width = 1;
3511                         break;
3512                 case 16:
3513                         width = 2;
3514                         break;
3515                 case 32:
3516                         width = 4;
3517                         break;
3518                 default:
3519                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3520                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3521                         return JIM_ERR;
3522         }
3523         if (len == 0) {
3524                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3525                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3526                 return JIM_ERR;
3527         }
3528         if ((addr + (len * width)) < addr) {
3529                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3530                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3531                 return JIM_ERR;
3532         }
3533         /* absurd transfer size? */
3534         if (len > 65536) {
3535                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3536                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3537                 return JIM_ERR;
3538         }
3539
3540         if ((width == 1) ||
3541                 ((width == 2) && ((addr & 1) == 0)) ||
3542                 ((width == 4) && ((addr & 3) == 0))) {
3543                 /* all is well */
3544         } else {
3545                 char buf[100];
3546                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3547                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3548                                 (unsigned int)addr,
3549                                 (int)width);
3550                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3551                 return JIM_ERR;
3552         }
3553
3554         /* Transfer loop */
3555
3556         /* index counter */
3557         n = 0;
3558         /* assume ok */
3559         e = JIM_OK;
3560
3561         size_t buffersize = 4096;
3562         uint8_t *buffer = malloc(buffersize);
3563         if (buffer == NULL)
3564                 return JIM_ERR;
3565
3566         while (len) {
3567                 /* Slurp... in buffer size chunks */
3568
3569                 count = len; /* in objects.. */
3570                 if (count > (buffersize/width)) {
3571                         count = (buffersize/width);
3572                 }
3573
3574                 v = 0; /* shut up gcc */
3575                 for (i = 0 ;i < count ;i++, n++) {
3576                         get_int_array_element(interp, varname, n, &v);
3577                         switch (width) {
3578                         case 4:
3579                                 target_buffer_set_u32(target, &buffer[i*width], v);
3580                                 break;
3581                         case 2:
3582                                 target_buffer_set_u16(target, &buffer[i*width], v);
3583                                 break;
3584                         case 1:
3585                                 buffer[i] = v & 0x0ff;
3586                                 break;
3587                         }
3588                 }
3589                 len -= count;
3590
3591                 retval = target_write_memory(target, addr, width, count, buffer);
3592                 if (retval != ERROR_OK) {
3593                         /* BOO !*/
3594                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3595                                           (unsigned int)addr,
3596                                           (int)width,
3597                                           (int)count);
3598                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3599                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3600                         e = JIM_ERR;
3601                         len = 0;
3602                 }
3603         }
3604
3605         free(buffer);
3606
3607         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3608
3609         return JIM_OK;
3610 }
3611
3612 /* FIX? should we propagate errors here rather than printing them
3613  * and continuing?
3614  */
3615 void target_handle_event(struct target *target, enum target_event e)
3616 {
3617         struct target_event_action *teap;
3618
3619         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3620                 if (teap->event == e) {
3621                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3622                                            target->target_number,
3623                                            target_name(target),
3624                                            target_type_name(target),
3625                                            e,
3626                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3627                                            Jim_GetString(teap->body, NULL));
3628                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3629                         {
3630                                 Jim_PrintErrorMessage(teap->interp);
3631                         }
3632                 }
3633         }
3634 }
3635
3636 /**
3637  * Returns true only if the target has a handler for the specified event.
3638  */
3639 bool target_has_event_action(struct target *target, enum target_event event)
3640 {
3641         struct target_event_action *teap;
3642
3643         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3644                 if (teap->event == event)
3645                         return true;
3646         }
3647         return false;
3648 }
3649
3650 enum target_cfg_param {
3651         TCFG_TYPE,
3652         TCFG_EVENT,
3653         TCFG_WORK_AREA_VIRT,
3654         TCFG_WORK_AREA_PHYS,
3655         TCFG_WORK_AREA_SIZE,
3656         TCFG_WORK_AREA_BACKUP,
3657         TCFG_ENDIAN,
3658         TCFG_VARIANT,
3659         TCFG_CHAIN_POSITION,
3660 };
3661
3662 static Jim_Nvp nvp_config_opts[] = {
3663         { .name = "-type",             .value = TCFG_TYPE },
3664         { .name = "-event",            .value = TCFG_EVENT },
3665         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3666         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3667         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3668         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3669         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3670         { .name = "-variant",          .value = TCFG_VARIANT },
3671         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3672
3673         { .name = NULL, .value = -1 }
3674 };
3675
3676 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3677 {
3678         Jim_Nvp *n;
3679         Jim_Obj *o;
3680         jim_wide w;
3681         char *cp;
3682         int e;
3683
3684         /* parse config or cget options ... */
3685         while (goi->argc > 0) {
3686                 Jim_SetEmptyResult(goi->interp);
3687                 /* Jim_GetOpt_Debug(goi); */
3688
3689                 if (target->type->target_jim_configure) {
3690                         /* target defines a configure function */
3691                         /* target gets first dibs on parameters */
3692                         e = (*(target->type->target_jim_configure))(target, goi);
3693                         if (e == JIM_OK) {
3694                                 /* more? */
3695                                 continue;
3696                         }
3697                         if (e == JIM_ERR) {
3698                                 /* An error */
3699                                 return e;
3700                         }
3701                         /* otherwise we 'continue' below */
3702                 }
3703                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3704                 if (e != JIM_OK) {
3705                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3706                         return e;
3707                 }
3708                 switch (n->value) {
3709                 case TCFG_TYPE:
3710                         /* not setable */
3711                         if (goi->isconfigure) {
3712                                 Jim_SetResult_sprintf(goi->interp,
3713                                                 "not settable: %s", n->name);
3714                                 return JIM_ERR;
3715                         } else {
3716                         no_params:
3717                                 if (goi->argc != 0) {
3718                                         Jim_WrongNumArgs(goi->interp,
3719                                                         goi->argc, goi->argv,
3720                                                         "NO PARAMS");
3721                                         return JIM_ERR;
3722                                 }
3723                         }
3724                         Jim_SetResultString(goi->interp,
3725                                         target_type_name(target), -1);
3726                         /* loop for more */
3727                         break;
3728                 case TCFG_EVENT:
3729                         if (goi->argc == 0) {
3730                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3731                                 return JIM_ERR;
3732                         }
3733
3734                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3735                         if (e != JIM_OK) {
3736                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3737                                 return e;
3738                         }
3739
3740                         if (goi->isconfigure) {
3741                                 if (goi->argc != 1) {
3742                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3743                                         return JIM_ERR;
3744                                 }
3745                         } else {
3746                                 if (goi->argc != 0) {
3747                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3748                                         return JIM_ERR;
3749                                 }
3750                         }
3751
3752                         {
3753                                 struct target_event_action *teap;
3754
3755                                 teap = target->event_action;
3756                                 /* replace existing? */
3757                                 while (teap) {
3758                                         if (teap->event == (enum target_event)n->value) {
3759                                                 break;
3760                                         }
3761                                         teap = teap->next;
3762                                 }
3763
3764                                 if (goi->isconfigure) {
3765                                         bool replace = true;
3766                                         if (teap == NULL) {
3767                                                 /* create new */
3768                                                 teap = calloc(1, sizeof(*teap));
3769                                                 replace = false;
3770                                         }
3771                                         teap->event = n->value;
3772                                         teap->interp = goi->interp;
3773                                         Jim_GetOpt_Obj(goi, &o);
3774                                         if (teap->body) {
3775                                                 Jim_DecrRefCount(teap->interp, teap->body);
3776                                         }
3777                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3778                                         /*
3779                                          * FIXME:
3780                                          *     Tcl/TK - "tk events" have a nice feature.
3781                                          *     See the "BIND" command.
3782                                          *    We should support that here.
3783                                          *     You can specify %X and %Y in the event code.
3784                                          *     The idea is: %T - target name.
3785                                          *     The idea is: %N - target number
3786                                          *     The idea is: %E - event name.
3787                                          */
3788                                         Jim_IncrRefCount(teap->body);
3789
3790                                         if (!replace)
3791                                         {
3792                                                 /* add to head of event list */
3793                                                 teap->next = target->event_action;
3794                                                 target->event_action = teap;
3795                                         }
3796                                         Jim_SetEmptyResult(goi->interp);
3797                                 } else {
3798                                         /* get */
3799                                         if (teap == NULL) {
3800                                                 Jim_SetEmptyResult(goi->interp);
3801                                         } else {
3802                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3803                                         }
3804                                 }
3805                         }
3806                         /* loop for more */
3807                         break;
3808
3809                 case TCFG_WORK_AREA_VIRT:
3810                         if (goi->isconfigure) {
3811                                 target_free_all_working_areas(target);
3812                                 e = Jim_GetOpt_Wide(goi, &w);
3813                                 if (e != JIM_OK) {
3814                                         return e;
3815                                 }
3816                                 target->working_area_virt = w;
3817                                 target->working_area_virt_spec = true;
3818                         } else {
3819                                 if (goi->argc != 0) {
3820                                         goto no_params;
3821                                 }
3822                         }
3823                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3824                         /* loop for more */
3825                         break;
3826
3827                 case TCFG_WORK_AREA_PHYS:
3828                         if (goi->isconfigure) {
3829                                 target_free_all_working_areas(target);
3830                                 e = Jim_GetOpt_Wide(goi, &w);
3831                                 if (e != JIM_OK) {
3832                                         return e;
3833                                 }
3834                                 target->working_area_phys = w;
3835                                 target->working_area_phys_spec = true;
3836                         } else {
3837                                 if (goi->argc != 0) {
3838                                         goto no_params;
3839                                 }
3840                         }
3841                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3842                         /* loop for more */
3843                         break;
3844
3845                 case TCFG_WORK_AREA_SIZE:
3846                         if (goi->isconfigure) {
3847                                 target_free_all_working_areas(target);
3848                                 e = Jim_GetOpt_Wide(goi, &w);
3849                                 if (e != JIM_OK) {
3850                                         return e;
3851                                 }
3852                                 target->working_area_size = w;
3853                         } else {
3854                                 if (goi->argc != 0) {
3855                                         goto no_params;
3856                                 }
3857                         }
3858                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3859                         /* loop for more */
3860                         break;
3861
3862                 case TCFG_WORK_AREA_BACKUP:
3863                         if (goi->isconfigure) {
3864                                 target_free_all_working_areas(target);
3865                                 e = Jim_GetOpt_Wide(goi, &w);
3866                                 if (e != JIM_OK) {
3867                                         return e;
3868                                 }
3869                                 /* make this exactly 1 or 0 */
3870                                 target->backup_working_area = (!!w);
3871                         } else {
3872                                 if (goi->argc != 0) {
3873                                         goto no_params;
3874                                 }
3875                         }
3876                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3877                         /* loop for more e*/
3878                         break;
3879
3880                 case TCFG_ENDIAN:
3881                         if (goi->isconfigure) {
3882                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3883                                 if (e != JIM_OK) {
3884                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3885                                         return e;
3886                                 }
3887                                 target->endianness = n->value;
3888                         } else {
3889                                 if (goi->argc != 0) {
3890                                         goto no_params;
3891                                 }
3892                         }
3893                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3894                         if (n->name == NULL) {
3895                                 target->endianness = TARGET_LITTLE_ENDIAN;
3896                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3897                         }
3898                         Jim_SetResultString(goi->interp, n->name, -1);
3899                         /* loop for more */
3900                         break;
3901
3902                 case TCFG_VARIANT:
3903                         if (goi->isconfigure) {
3904                                 if (goi->argc < 1) {
3905                                         Jim_SetResult_sprintf(goi->interp,
3906                                                                                    "%s ?STRING?",
3907                                                                                    n->name);
3908                                         return JIM_ERR;
3909                                 }
3910                                 if (target->variant) {
3911                                         free((void *)(target->variant));
3912                                 }
3913                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3914                                 target->variant = strdup(cp);
3915                         } else {
3916                                 if (goi->argc != 0) {
3917                                         goto no_params;
3918                                 }
3919                         }
3920                         Jim_SetResultString(goi->interp, target->variant,-1);
3921                         /* loop for more */
3922                         break;
3923                 case TCFG_CHAIN_POSITION:
3924                         if (goi->isconfigure) {
3925                                 Jim_Obj *o_t;
3926                                 struct jtag_tap *tap;
3927                                 target_free_all_working_areas(target);
3928                                 e = Jim_GetOpt_Obj(goi, &o_t);
3929                                 if (e != JIM_OK) {
3930                                         return e;
3931                                 }
3932                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3933                                 if (tap == NULL) {
3934                                         return JIM_ERR;
3935                                 }
3936                                 /* make this exactly 1 or 0 */
3937                                 target->tap = tap;
3938                         } else {
3939                                 if (goi->argc != 0) {
3940                                         goto no_params;
3941                                 }
3942                         }
3943                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3944                         /* loop for more e*/
3945                         break;
3946                 }
3947         } /* while (goi->argc) */
3948
3949
3950                 /* done - we return */
3951         return JIM_OK;
3952 }
3953
3954 static int
3955 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3956 {
3957         Jim_GetOptInfo goi;
3958
3959         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3960         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3961         int need_args = 1 + goi.isconfigure;
3962         if (goi.argc < need_args)
3963         {
3964                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3965                         goi.isconfigure
3966                                 ? "missing: -option VALUE ..."
3967                                 : "missing: -option ...");
3968                 return JIM_ERR;
3969         }
3970         struct target *target = Jim_CmdPrivData(goi.interp);
3971         return target_configure(&goi, target);
3972 }
3973
3974 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3975 {
3976         const char *cmd_name = Jim_GetString(argv[0], NULL);
3977
3978         Jim_GetOptInfo goi;
3979         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3980
3981         if (goi.argc < 2 || goi.argc > 4)
3982         {
3983                 Jim_SetResult_sprintf(goi.interp,
3984                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
3985                 return JIM_ERR;
3986         }
3987
3988         target_write_fn fn;
3989         fn = target_write_memory_fast;
3990
3991         int e;
3992         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
3993         {
3994                 /* consume it */
3995                 struct Jim_Obj *obj;
3996                 e = Jim_GetOpt_Obj(&goi, &obj);
3997                 if (e != JIM_OK)
3998                         return e;
3999
4000                 fn = target_write_phys_memory;
4001         }
4002
4003         jim_wide a;
4004         e = Jim_GetOpt_Wide(&goi, &a);
4005         if (e != JIM_OK)
4006                 return e;
4007
4008         jim_wide b;
4009         e = Jim_GetOpt_Wide(&goi, &b);
4010         if (e != JIM_OK)
4011                 return e;
4012
4013         jim_wide c = 1;
4014         if (goi.argc == 1)
4015         {
4016                 e = Jim_GetOpt_Wide(&goi, &c);
4017                 if (e != JIM_OK)
4018                         return e;
4019         }
4020
4021         /* all args must be consumed */
4022         if (goi.argc != 0)
4023         {
4024                 return JIM_ERR;
4025         }
4026
4027         struct target *target = Jim_CmdPrivData(goi.interp);
4028         unsigned data_size;
4029         if (strcasecmp(cmd_name, "mww") == 0) {
4030                 data_size = 4;
4031         }
4032         else if (strcasecmp(cmd_name, "mwh") == 0) {
4033                 data_size = 2;
4034         }
4035         else if (strcasecmp(cmd_name, "mwb") == 0) {
4036                 data_size = 1;
4037         } else {
4038                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4039                 return JIM_ERR;
4040         }
4041
4042         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4043 }
4044
4045 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4046 {
4047         const char *cmd_name = Jim_GetString(argv[0], NULL);
4048
4049         Jim_GetOptInfo goi;
4050         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4051
4052         if ((goi.argc < 1) || (goi.argc > 3))
4053         {
4054                 Jim_SetResult_sprintf(goi.interp,
4055                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4056                 return JIM_ERR;
4057         }
4058
4059         int (*fn)(struct target *target,
4060                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4061         fn=target_read_memory;
4062
4063         int e;
4064         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4065         {
4066                 /* consume it */
4067                 struct Jim_Obj *obj;
4068                 e = Jim_GetOpt_Obj(&goi, &obj);
4069                 if (e != JIM_OK)
4070                         return e;
4071
4072                 fn=target_read_phys_memory;
4073         }
4074
4075         jim_wide a;
4076         e = Jim_GetOpt_Wide(&goi, &a);
4077         if (e != JIM_OK) {
4078                 return JIM_ERR;
4079         }
4080         jim_wide c;
4081         if (goi.argc == 1) {
4082                 e = Jim_GetOpt_Wide(&goi, &c);
4083                 if (e != JIM_OK) {
4084                         return JIM_ERR;
4085                 }
4086         } else {
4087                 c = 1;
4088         }
4089
4090         /* all args must be consumed */
4091         if (goi.argc != 0)
4092         {
4093                 return JIM_ERR;
4094         }
4095
4096         jim_wide b = 1; /* shut up gcc */
4097         if (strcasecmp(cmd_name, "mdw") == 0)
4098                 b = 4;
4099         else if (strcasecmp(cmd_name, "mdh") == 0)
4100                 b = 2;
4101         else if (strcasecmp(cmd_name, "mdb") == 0)
4102                 b = 1;
4103         else {
4104                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4105                 return JIM_ERR;
4106         }
4107
4108         /* convert count to "bytes" */
4109         c = c * b;
4110
4111         struct target *target = Jim_CmdPrivData(goi.interp);
4112         uint8_t  target_buf[32];
4113         jim_wide x, y, z;
4114         while (c > 0) {
4115                 y = c;
4116                 if (y > 16) {
4117                         y = 16;
4118                 }
4119                 e = fn(target, a, b, y / b, target_buf);
4120                 if (e != ERROR_OK) {
4121                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4122                         return JIM_ERR;
4123                 }
4124
4125                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4126                 switch (b) {
4127                 case 4:
4128                         for (x = 0; x < 16 && x < y; x += 4)
4129                         {
4130                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4131                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4132                         }
4133                         for (; (x < 16) ; x += 4) {
4134                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4135                         }
4136                         break;
4137                 case 2:
4138                         for (x = 0; x < 16 && x < y; x += 2)
4139                         {
4140                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4141                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4142                         }
4143                         for (; (x < 16) ; x += 2) {
4144                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4145                         }
4146                         break;
4147                 case 1:
4148                 default:
4149                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4150                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4151                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4152                         }
4153                         for (; (x < 16) ; x += 1) {
4154                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4155                         }
4156                         break;
4157                 }
4158                 /* ascii-ify the bytes */
4159                 for (x = 0 ; x < y ; x++) {
4160                         if ((target_buf[x] >= 0x20) &&
4161                                 (target_buf[x] <= 0x7e)) {
4162                                 /* good */
4163                         } else {
4164                                 /* smack it */
4165                                 target_buf[x] = '.';
4166                         }
4167                 }
4168                 /* space pad  */
4169                 while (x < 16) {
4170                         target_buf[x] = ' ';
4171                         x++;
4172                 }
4173                 /* terminate */
4174                 target_buf[16] = 0;
4175                 /* print - with a newline */
4176                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4177                 /* NEXT... */
4178                 c -= 16;
4179                 a += 16;
4180         }
4181         return JIM_OK;
4182 }
4183
4184 static int jim_target_mem2array(Jim_Interp *interp,
4185                 int argc, Jim_Obj *const *argv)
4186 {
4187         struct target *target = Jim_CmdPrivData(interp);
4188         return target_mem2array(interp, target, argc - 1, argv + 1);
4189 }
4190
4191 static int jim_target_array2mem(Jim_Interp *interp,
4192                 int argc, Jim_Obj *const *argv)
4193 {
4194         struct target *target = Jim_CmdPrivData(interp);
4195         return target_array2mem(interp, target, argc - 1, argv + 1);
4196 }
4197
4198 static int jim_target_tap_disabled(Jim_Interp *interp)
4199 {
4200         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4201         return JIM_ERR;
4202 }
4203
4204 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4205 {
4206         if (argc != 1)
4207         {
4208                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4209                 return JIM_ERR;
4210         }
4211         struct target *target = Jim_CmdPrivData(interp);
4212         if (!target->tap->enabled)
4213                 return jim_target_tap_disabled(interp);
4214
4215         int e = target->type->examine(target);
4216         if (e != ERROR_OK)
4217         {
4218                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4219                 return JIM_ERR;
4220         }
4221         return JIM_OK;
4222 }
4223
4224 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4225 {
4226         if (argc != 1)
4227         {
4228                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4229                 return JIM_ERR;
4230         }
4231         struct target *target = Jim_CmdPrivData(interp);
4232
4233         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4234                 return JIM_ERR;
4235
4236         return JIM_OK;
4237 }
4238
4239 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4240 {
4241         if (argc != 1)
4242         {
4243                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4244                 return JIM_ERR;
4245         }
4246         struct target *target = Jim_CmdPrivData(interp);
4247         if (!target->tap->enabled)
4248                 return jim_target_tap_disabled(interp);
4249
4250         int e;
4251         if (!(target_was_examined(target))) {
4252                 e = ERROR_TARGET_NOT_EXAMINED;
4253         } else {
4254                 e = target->type->poll(target);
4255         }
4256         if (e != ERROR_OK)
4257         {
4258                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4259                 return JIM_ERR;
4260         }
4261         return JIM_OK;
4262 }
4263
4264 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4265 {
4266         Jim_GetOptInfo goi;
4267         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4268
4269         if (goi.argc != 2)
4270         {
4271                 Jim_WrongNumArgs(interp, 0, argv,
4272                                 "([tT]|[fF]|assert|deassert) BOOL");
4273                 return JIM_ERR;
4274         }
4275
4276         Jim_Nvp *n;
4277         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4278         if (e != JIM_OK)
4279         {
4280                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4281                 return e;
4282         }
4283         /* the halt or not param */
4284         jim_wide a;
4285         e = Jim_GetOpt_Wide(&goi, &a);
4286         if (e != JIM_OK)
4287                 return e;
4288
4289         struct target *target = Jim_CmdPrivData(goi.interp);
4290         if (!target->tap->enabled)
4291                 return jim_target_tap_disabled(interp);
4292         if (!(target_was_examined(target)))
4293         {
4294                 LOG_ERROR("Target not examined yet");
4295                 return ERROR_TARGET_NOT_EXAMINED;
4296         }
4297         if (!target->type->assert_reset || !target->type->deassert_reset)
4298         {
4299                 Jim_SetResult_sprintf(interp,
4300                                 "No target-specific reset for %s",
4301                                 target_name(target));
4302                 return JIM_ERR;
4303         }
4304         /* determine if we should halt or not. */
4305         target->reset_halt = !!a;
4306         /* When this happens - all workareas are invalid. */
4307         target_free_all_working_areas_restore(target, 0);
4308
4309         /* do the assert */
4310         if (n->value == NVP_ASSERT) {
4311                 e = target->type->assert_reset(target);
4312         } else {
4313                 e = target->type->deassert_reset(target);
4314         }
4315         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4316 }
4317
4318 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4319 {
4320         if (argc != 1) {
4321                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4322                 return JIM_ERR;
4323         }
4324         struct target *target = Jim_CmdPrivData(interp);
4325         if (!target->tap->enabled)
4326                 return jim_target_tap_disabled(interp);
4327         int e = target->type->halt(target);
4328         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4329 }
4330
4331 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4332 {
4333         Jim_GetOptInfo goi;
4334         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4335
4336         /* params:  <name>  statename timeoutmsecs */
4337         if (goi.argc != 2)
4338         {
4339                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4340                 Jim_SetResult_sprintf(goi.interp,
4341                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4342                 return JIM_ERR;
4343         }
4344
4345         Jim_Nvp *n;
4346         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4347         if (e != JIM_OK) {
4348                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4349                 return e;
4350         }
4351         jim_wide a;
4352         e = Jim_GetOpt_Wide(&goi, &a);
4353         if (e != JIM_OK) {
4354                 return e;
4355         }
4356         struct target *target = Jim_CmdPrivData(interp);
4357         if (!target->tap->enabled)
4358                 return jim_target_tap_disabled(interp);
4359
4360         e = target_wait_state(target, n->value, a);
4361         if (e != ERROR_OK)
4362         {
4363                 Jim_SetResult_sprintf(goi.interp,
4364                                 "target: %s wait %s fails (%d) %s",
4365                                 target_name(target), n->name,
4366                                 e, target_strerror_safe(e));
4367                 return JIM_ERR;
4368         }
4369         return JIM_OK;
4370 }
4371 /* List for human, Events defined for this target.
4372  * scripts/programs should use 'name cget -event NAME'
4373  */
4374 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4375 {
4376         struct command_context *cmd_ctx = current_command_context(interp);
4377         assert (cmd_ctx != NULL);
4378
4379         struct target *target = Jim_CmdPrivData(interp);
4380         struct target_event_action *teap = target->event_action;
4381         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4382                                    target->target_number,
4383                                    target_name(target));
4384         command_print(cmd_ctx, "%-25s | Body", "Event");
4385         command_print(cmd_ctx, "------------------------- | "
4386                         "----------------------------------------");
4387         while (teap)
4388         {
4389                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4390                 command_print(cmd_ctx, "%-25s | %s",
4391                                 opt->name, Jim_GetString(teap->body, NULL));
4392                 teap = teap->next;
4393         }
4394         command_print(cmd_ctx, "***END***");
4395         return JIM_OK;
4396 }
4397 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4398 {
4399         if (argc != 1)
4400         {
4401                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4402                 return JIM_ERR;
4403         }
4404         struct target *target = Jim_CmdPrivData(interp);
4405         Jim_SetResultString(interp, target_state_name(target), -1);
4406         return JIM_OK;
4407 }
4408 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4409 {
4410         Jim_GetOptInfo goi;
4411         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4412         if (goi.argc != 1)
4413         {
4414                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4415                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4416                 return JIM_ERR;
4417         }
4418         Jim_Nvp *n;
4419         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4420         if (e != JIM_OK)
4421         {
4422                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4423                 return e;
4424         }
4425         struct target *target = Jim_CmdPrivData(interp);
4426         target_handle_event(target, n->value);
4427         return JIM_OK;
4428 }
4429
4430 static const struct command_registration target_instance_command_handlers[] = {
4431         {
4432                 .name = "configure",
4433                 .mode = COMMAND_CONFIG,
4434                 .jim_handler = jim_target_configure,
4435                 .help  = "configure a new target for use",
4436                 .usage = "[target_attribute ...]",
4437         },
4438         {
4439                 .name = "cget",
4440                 .mode = COMMAND_ANY,
4441                 .jim_handler = jim_target_configure,
4442                 .help  = "returns the specified target attribute",
4443                 .usage = "target_attribute",
4444         },
4445         {
4446                 .name = "mww",
4447                 .mode = COMMAND_EXEC,
4448                 .jim_handler = jim_target_mw,
4449                 .help = "Write 32-bit word(s) to target memory",
4450                 .usage = "address data [count]",
4451         },
4452         {
4453                 .name = "mwh",
4454                 .mode = COMMAND_EXEC,
4455                 .jim_handler = jim_target_mw,
4456                 .help = "Write 16-bit half-word(s) to target memory",
4457                 .usage = "address data [count]",
4458         },
4459         {
4460                 .name = "mwb",
4461                 .mode = COMMAND_EXEC,
4462                 .jim_handler = jim_target_mw,
4463                 .help = "Write byte(s) to target memory",
4464                 .usage = "address data [count]",
4465         },
4466         {
4467                 .name = "mdw",
4468                 .mode = COMMAND_EXEC,
4469                 .jim_handler = jim_target_md,
4470                 .help = "Display target memory as 32-bit words",
4471                 .usage = "address [count]",
4472         },
4473         {
4474                 .name = "mdh",
4475                 .mode = COMMAND_EXEC,
4476                 .jim_handler = jim_target_md,
4477                 .help = "Display target memory as 16-bit half-words",
4478                 .usage = "address [count]",
4479         },
4480         {
4481                 .name = "mdb",
4482                 .mode = COMMAND_EXEC,
4483                 .jim_handler = jim_target_md,
4484                 .help = "Display target memory as 8-bit bytes",
4485                 .usage = "address [count]",
4486         },
4487         {
4488                 .name = "array2mem",
4489                 .mode = COMMAND_EXEC,
4490                 .jim_handler = jim_target_array2mem,
4491                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4492                         "to target memory",
4493                 .usage = "arrayname bitwidth address count",
4494         },
4495         {
4496                 .name = "mem2array",
4497                 .mode = COMMAND_EXEC,
4498                 .jim_handler = jim_target_mem2array,
4499                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4500                         "from target memory",
4501                 .usage = "arrayname bitwidth address count",
4502         },
4503         {
4504                 .name = "eventlist",
4505                 .mode = COMMAND_EXEC,
4506                 .jim_handler = jim_target_event_list,
4507                 .help = "displays a table of events defined for this target",
4508         },
4509         {
4510                 .name = "curstate",
4511                 .mode = COMMAND_EXEC,
4512                 .jim_handler = jim_target_current_state,
4513                 .help = "displays the current state of this target",
4514         },
4515         {
4516                 .name = "arp_examine",
4517                 .mode = COMMAND_EXEC,
4518                 .jim_handler = jim_target_examine,
4519                 .help = "used internally for reset processing",
4520         },
4521         {
4522                 .name = "arp_halt_gdb",
4523                 .mode = COMMAND_EXEC,
4524                 .jim_handler = jim_target_halt_gdb,
4525                 .help = "used internally for reset processing to halt GDB",
4526         },
4527         {
4528                 .name = "arp_poll",
4529                 .mode = COMMAND_EXEC,
4530                 .jim_handler = jim_target_poll,
4531                 .help = "used internally for reset processing",
4532         },
4533         {
4534                 .name = "arp_reset",
4535                 .mode = COMMAND_EXEC,
4536                 .jim_handler = jim_target_reset,
4537                 .help = "used internally for reset processing",
4538         },
4539         {
4540                 .name = "arp_halt",
4541                 .mode = COMMAND_EXEC,
4542                 .jim_handler = jim_target_halt,
4543                 .help = "used internally for reset processing",
4544         },
4545         {
4546                 .name = "arp_waitstate",
4547                 .mode = COMMAND_EXEC,
4548                 .jim_handler = jim_target_wait_state,
4549                 .help = "used internally for reset processing",
4550         },
4551         {
4552                 .name = "invoke-event",
4553                 .mode = COMMAND_EXEC,
4554                 .jim_handler = jim_target_invoke_event,
4555                 .help = "invoke handler for specified event",
4556                 .usage = "event_name",
4557         },
4558         COMMAND_REGISTRATION_DONE
4559 };
4560
4561 static int target_create(Jim_GetOptInfo *goi)
4562 {
4563         Jim_Obj *new_cmd;
4564         Jim_Cmd *cmd;
4565         const char *cp;
4566         char *cp2;
4567         int e;
4568         int x;
4569         struct target *target;
4570         struct command_context *cmd_ctx;
4571
4572         cmd_ctx = current_command_context(goi->interp);
4573         assert (cmd_ctx != NULL);
4574
4575         if (goi->argc < 3) {
4576                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4577                 return JIM_ERR;
4578         }
4579
4580         /* COMMAND */
4581         Jim_GetOpt_Obj(goi, &new_cmd);
4582         /* does this command exist? */
4583         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4584         if (cmd) {
4585                 cp = Jim_GetString(new_cmd, NULL);
4586                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4587                 return JIM_ERR;
4588         }
4589
4590         /* TYPE */
4591         e = Jim_GetOpt_String(goi, &cp2, NULL);
4592         cp = cp2;
4593         /* now does target type exist */
4594         for (x = 0 ; target_types[x] ; x++) {
4595                 if (0 == strcmp(cp, target_types[x]->name)) {
4596                         /* found */
4597                         break;
4598                 }
4599         }
4600         if (target_types[x] == NULL) {
4601                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4602                 for (x = 0 ; target_types[x] ; x++) {
4603                         if (target_types[x + 1]) {
4604                                 Jim_AppendStrings(goi->interp,
4605                                                                    Jim_GetResult(goi->interp),
4606                                                                    target_types[x]->name,
4607                                                                    ", ", NULL);
4608                         } else {
4609                                 Jim_AppendStrings(goi->interp,
4610                                                                    Jim_GetResult(goi->interp),
4611                                                                    " or ",
4612                                                                    target_types[x]->name,NULL);
4613                         }
4614                 }
4615                 return JIM_ERR;
4616         }
4617
4618         /* Create it */
4619         target = calloc(1,sizeof(struct target));
4620         /* set target number */
4621         target->target_number = new_target_number();
4622
4623         /* allocate memory for each unique target type */
4624         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4625
4626         memcpy(target->type, target_types[x], sizeof(struct target_type));
4627
4628         /* will be set by "-endian" */
4629         target->endianness = TARGET_ENDIAN_UNKNOWN;
4630
4631         target->working_area        = 0x0;
4632         target->working_area_size   = 0x0;
4633         target->working_areas       = NULL;
4634         target->backup_working_area = 0;
4635
4636         target->state               = TARGET_UNKNOWN;
4637         target->debug_reason        = DBG_REASON_UNDEFINED;
4638         target->reg_cache           = NULL;
4639         target->breakpoints         = NULL;
4640         target->watchpoints         = NULL;
4641         target->next                = NULL;
4642         target->arch_info           = NULL;
4643
4644         target->display             = 1;
4645
4646         target->halt_issued                     = false;
4647
4648         /* initialize trace information */
4649         target->trace_info = malloc(sizeof(struct trace));
4650         target->trace_info->num_trace_points         = 0;
4651         target->trace_info->trace_points_size        = 0;
4652         target->trace_info->trace_points             = NULL;
4653         target->trace_info->trace_history_size       = 0;
4654         target->trace_info->trace_history            = NULL;
4655         target->trace_info->trace_history_pos        = 0;
4656         target->trace_info->trace_history_overflowed = 0;
4657
4658         target->dbgmsg          = NULL;
4659         target->dbg_msg_enabled = 0;
4660
4661         target->endianness = TARGET_ENDIAN_UNKNOWN;
4662
4663         /* Do the rest as "configure" options */
4664         goi->isconfigure = 1;
4665         e = target_configure(goi, target);
4666
4667         if (target->tap == NULL)
4668         {
4669                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4670                 e = JIM_ERR;
4671         }
4672
4673         if (e != JIM_OK) {
4674                 free(target->type);
4675                 free(target);
4676                 return e;
4677         }
4678
4679         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4680                 /* default endian to little if not specified */
4681                 target->endianness = TARGET_LITTLE_ENDIAN;
4682         }
4683
4684         /* incase variant is not set */
4685         if (!target->variant)
4686                 target->variant = strdup("");
4687
4688         cp = Jim_GetString(new_cmd, NULL);
4689         target->cmd_name = strdup(cp);
4690
4691         /* create the target specific commands */
4692         if (target->type->commands) {
4693                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4694                 if (ERROR_OK != e)
4695                         LOG_ERROR("unable to register '%s' commands", cp);
4696         }
4697         if (target->type->target_create) {
4698                 (*(target->type->target_create))(target, goi->interp);
4699         }
4700
4701         /* append to end of list */
4702         {
4703                 struct target **tpp;
4704                 tpp = &(all_targets);
4705                 while (*tpp) {
4706                         tpp = &((*tpp)->next);
4707                 }
4708                 *tpp = target;
4709         }
4710
4711         /* now - create the new target name command */
4712         const const struct command_registration target_subcommands[] = {
4713                 {
4714                         .chain = target_instance_command_handlers,
4715                 },
4716                 {
4717                         .chain = target->type->commands,
4718                 },
4719                 COMMAND_REGISTRATION_DONE
4720         };
4721         const const struct command_registration target_commands[] = {
4722                 {
4723                         .name = cp,
4724                         .mode = COMMAND_ANY,
4725                         .help = "target command group",
4726                         .chain = target_subcommands,
4727                 },
4728                 COMMAND_REGISTRATION_DONE
4729         };
4730         e = register_commands(cmd_ctx, NULL, target_commands);
4731         if (ERROR_OK != e)
4732                 return JIM_ERR;
4733
4734         struct command *c = command_find_in_context(cmd_ctx, cp);
4735         assert(c);
4736         command_set_handler_data(c, target);
4737
4738         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4739 }
4740
4741 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4742 {
4743         if (argc != 1)
4744         {
4745                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4746                 return JIM_ERR;
4747         }
4748         struct command_context *cmd_ctx = current_command_context(interp);
4749         assert (cmd_ctx != NULL);
4750
4751         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4752         return JIM_OK;
4753 }
4754
4755 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4756 {
4757         if (argc != 1)
4758         {
4759                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4760                 return JIM_ERR;
4761         }
4762         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4763         for (unsigned x = 0; NULL != target_types[x]; x++)
4764         {
4765                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4766                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4767         }
4768         return JIM_OK;
4769 }
4770
4771 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4772 {
4773         if (argc != 1)
4774         {
4775                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4776                 return JIM_ERR;
4777         }
4778         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4779         struct target *target = all_targets;
4780         while (target)
4781         {
4782                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4783                         Jim_NewStringObj(interp, target_name(target), -1));
4784                 target = target->next;
4785         }
4786         return JIM_OK;
4787 }
4788
4789 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4790 {
4791         Jim_GetOptInfo goi;
4792         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4793         if (goi.argc < 3)
4794         {
4795                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4796                         "<name> <target_type> [<target_options> ...]");
4797                 return JIM_ERR;
4798         }
4799         return target_create(&goi);
4800 }
4801
4802 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4803 {
4804         Jim_GetOptInfo goi;
4805         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4806
4807         /* It's OK to remove this mechanism sometime after August 2010 or so */
4808         LOG_WARNING("don't use numbers as target identifiers; use names");
4809         if (goi.argc != 1)
4810         {
4811                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4812                 return JIM_ERR;
4813         }
4814         jim_wide w;
4815         int e = Jim_GetOpt_Wide(&goi, &w);
4816         if (e != JIM_OK)
4817                 return JIM_ERR;
4818
4819         struct target *target;
4820         for (target = all_targets; NULL != target; target = target->next)
4821         {
4822                 if (target->target_number != w)
4823                         continue;
4824
4825                 Jim_SetResultString(goi.interp, target_name(target), -1);
4826                 return JIM_OK;
4827         }
4828         Jim_SetResult_sprintf(goi.interp,
4829                         "Target: number %d does not exist", (int)(w));
4830         return JIM_ERR;
4831 }
4832
4833 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4834 {
4835         if (argc != 1)
4836         {
4837                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4838                 return JIM_ERR;
4839         }
4840         unsigned count = 0;
4841         struct target *target = all_targets;
4842         while (NULL != target)
4843         {
4844                 target = target->next;
4845                 count++;
4846         }
4847         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4848         return JIM_OK;
4849 }
4850
4851 static const struct command_registration target_subcommand_handlers[] = {
4852         {
4853                 .name = "init",
4854                 .mode = COMMAND_CONFIG,
4855                 .handler = handle_target_init_command,
4856                 .help = "initialize targets",
4857         },
4858         {
4859                 .name = "create",
4860                 /* REVISIT this should be COMMAND_CONFIG ... */
4861                 .mode = COMMAND_ANY,
4862                 .jim_handler = jim_target_create,
4863                 .usage = "name type '-chain-position' name [options ...]",
4864                 .help = "Creates and selects a new target",
4865         },
4866         {
4867                 .name = "current",
4868                 .mode = COMMAND_ANY,
4869                 .jim_handler = jim_target_current,
4870                 .help = "Returns the currently selected target",
4871         },
4872         {
4873                 .name = "types",
4874                 .mode = COMMAND_ANY,
4875                 .jim_handler = jim_target_types,
4876                 .help = "Returns the available target types as "
4877                                 "a list of strings",
4878         },
4879         {
4880                 .name = "names",
4881                 .mode = COMMAND_ANY,
4882                 .jim_handler = jim_target_names,
4883                 .help = "Returns the names of all targets as a list of strings",
4884         },
4885         {
4886                 .name = "number",
4887                 .mode = COMMAND_ANY,
4888                 .jim_handler = jim_target_number,
4889                 .usage = "number",
4890                 .help = "Returns the name of the numbered target "
4891                         "(DEPRECATED)",
4892         },
4893         {
4894                 .name = "count",
4895                 .mode = COMMAND_ANY,
4896                 .jim_handler = jim_target_count,
4897                 .help = "Returns the number of targets as an integer "
4898                         "(DEPRECATED)",
4899         },
4900         COMMAND_REGISTRATION_DONE
4901 };
4902
4903 struct FastLoad
4904 {
4905         uint32_t address;
4906         uint8_t *data;
4907         int length;
4908
4909 };
4910
4911 static int fastload_num;
4912 static struct FastLoad *fastload;
4913
4914 static void free_fastload(void)
4915 {
4916         if (fastload != NULL)
4917         {
4918                 int i;
4919                 for (i = 0; i < fastload_num; i++)
4920                 {
4921                         if (fastload[i].data)
4922                                 free(fastload[i].data);
4923                 }
4924                 free(fastload);
4925                 fastload = NULL;
4926         }
4927 }
4928
4929
4930
4931
4932 COMMAND_HANDLER(handle_fast_load_image_command)
4933 {
4934         uint8_t *buffer;
4935         size_t buf_cnt;
4936         uint32_t image_size;
4937         uint32_t min_address = 0;
4938         uint32_t max_address = 0xffffffff;
4939         int i;
4940
4941         struct image image;
4942
4943         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4944                         &image, &min_address, &max_address);
4945         if (ERROR_OK != retval)
4946                 return retval;
4947
4948         struct duration bench;
4949         duration_start(&bench);
4950
4951         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4952         {
4953                 return ERROR_OK;
4954         }
4955
4956         image_size = 0x0;
4957         retval = ERROR_OK;
4958         fastload_num = image.num_sections;
4959         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4960         if (fastload == NULL)
4961         {
4962                 image_close(&image);
4963                 return ERROR_FAIL;
4964         }
4965         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4966         for (i = 0; i < image.num_sections; i++)
4967         {
4968                 buffer = malloc(image.sections[i].size);
4969                 if (buffer == NULL)
4970                 {
4971                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4972                                                   (int)(image.sections[i].size));
4973                         break;
4974                 }
4975
4976                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4977                 {
4978                         free(buffer);
4979                         break;
4980                 }
4981
4982                 uint32_t offset = 0;
4983                 uint32_t length = buf_cnt;
4984
4985
4986                 /* DANGER!!! beware of unsigned comparision here!!! */
4987
4988                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4989                                 (image.sections[i].base_address < max_address))
4990                 {
4991                         if (image.sections[i].base_address < min_address)
4992                         {
4993                                 /* clip addresses below */
4994                                 offset += min_address-image.sections[i].base_address;
4995                                 length -= offset;
4996                         }
4997
4998                         if (image.sections[i].base_address + buf_cnt > max_address)
4999                         {
5000                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5001                         }
5002
5003                         fastload[i].address = image.sections[i].base_address + offset;
5004                         fastload[i].data = malloc(length);
5005                         if (fastload[i].data == NULL)
5006                         {
5007                                 free(buffer);
5008                                 break;
5009                         }
5010                         memcpy(fastload[i].data, buffer + offset, length);
5011                         fastload[i].length = length;
5012
5013                         image_size += length;
5014                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5015                                                   (unsigned int)length,
5016                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5017                 }
5018
5019                 free(buffer);
5020         }
5021
5022         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5023         {
5024                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5025                                 "in %fs (%0.3f KiB/s)", image_size,
5026                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5027
5028                 command_print(CMD_CTX,
5029                                 "WARNING: image has not been loaded to target!"
5030                                 "You can issue a 'fast_load' to finish loading.");
5031         }
5032
5033         image_close(&image);
5034
5035         if (retval != ERROR_OK)
5036         {
5037                 free_fastload();
5038         }
5039
5040         return retval;
5041 }
5042
5043 COMMAND_HANDLER(handle_fast_load_command)
5044 {
5045         if (CMD_ARGC > 0)
5046                 return ERROR_COMMAND_SYNTAX_ERROR;
5047         if (fastload == NULL)
5048         {
5049                 LOG_ERROR("No image in memory");
5050                 return ERROR_FAIL;
5051         }
5052         int i;
5053         int ms = timeval_ms();
5054         int size = 0;
5055         int retval = ERROR_OK;
5056         for (i = 0; i < fastload_num;i++)
5057         {
5058                 struct target *target = get_current_target(CMD_CTX);
5059                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5060                                           (unsigned int)(fastload[i].address),
5061                                           (unsigned int)(fastload[i].length));
5062                 if (retval == ERROR_OK)
5063                 {
5064                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5065                 }
5066                 size += fastload[i].length;
5067         }
5068         int after = timeval_ms();
5069         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5070         return retval;
5071 }
5072
5073 static const struct command_registration target_command_handlers[] = {
5074         {
5075                 .name = "targets",
5076                 .handler = handle_targets_command,
5077                 .mode = COMMAND_ANY,
5078                 .help = "change current default target (one parameter) "
5079                         "or prints table of all targets (no parameters)",
5080                 .usage = "[target]",
5081         },
5082         {
5083                 .name = "target",
5084                 .mode = COMMAND_CONFIG,
5085                 .help = "configure target",
5086
5087                 .chain = target_subcommand_handlers,
5088         },
5089         COMMAND_REGISTRATION_DONE
5090 };
5091
5092 int target_register_commands(struct command_context *cmd_ctx)
5093 {
5094         return register_commands(cmd_ctx, NULL, target_command_handlers);
5095 }
5096
5097 static bool target_reset_nag = true;
5098
5099 bool get_target_reset_nag(void)
5100 {
5101         return target_reset_nag;
5102 }
5103
5104 COMMAND_HANDLER(handle_target_reset_nag)
5105 {
5106         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5107                         &target_reset_nag, "Nag after each reset about options to improve "
5108                         "performance");
5109 }
5110
5111 static const struct command_registration target_exec_command_handlers[] = {
5112         {
5113                 .name = "fast_load_image",
5114                 .handler = handle_fast_load_image_command,
5115                 .mode = COMMAND_ANY,
5116                 .help = "Load image into server memory for later use by "
5117                         "fast_load; primarily for profiling",
5118                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5119                         "[min_address [max_length]]",
5120         },
5121         {
5122                 .name = "fast_load",
5123                 .handler = handle_fast_load_command,
5124                 .mode = COMMAND_EXEC,
5125                 .help = "loads active fast load image to current target "
5126                         "- mainly for profiling purposes",
5127         },
5128         {
5129                 .name = "profile",
5130                 .handler = handle_profile_command,
5131                 .mode = COMMAND_EXEC,
5132                 .help = "profiling samples the CPU PC",
5133         },
5134         /** @todo don't register virt2phys() unless target supports it */
5135         {
5136                 .name = "virt2phys",
5137                 .handler = handle_virt2phys_command,
5138                 .mode = COMMAND_ANY,
5139                 .help = "translate a virtual address into a physical address",
5140                 .usage = "virtual_address",
5141         },
5142         {
5143                 .name = "reg",
5144                 .handler = handle_reg_command,
5145                 .mode = COMMAND_EXEC,
5146                 .help = "display or set a register; with no arguments, "
5147                         "displays all registers and their values",
5148                 .usage = "[(register_name|register_number) [value]]",
5149         },
5150         {
5151                 .name = "poll",
5152                 .handler = handle_poll_command,
5153                 .mode = COMMAND_EXEC,
5154                 .help = "poll target state; or reconfigure background polling",
5155                 .usage = "['on'|'off']",
5156         },
5157         {
5158                 .name = "wait_halt",
5159                 .handler = handle_wait_halt_command,
5160                 .mode = COMMAND_EXEC,
5161                 .help = "wait up to the specified number of milliseconds "
5162                         "(default 5) for a previously requested halt",
5163                 .usage = "[milliseconds]",
5164         },
5165         {
5166                 .name = "halt",
5167                 .handler = handle_halt_command,
5168                 .mode = COMMAND_EXEC,
5169                 .help = "request target to halt, then wait up to the specified"
5170                         "number of milliseconds (default 5) for it to complete",
5171                 .usage = "[milliseconds]",
5172         },
5173         {
5174                 .name = "resume",
5175                 .handler = handle_resume_command,
5176                 .mode = COMMAND_EXEC,
5177                 .help = "resume target execution from current PC or address",
5178                 .usage = "[address]",
5179         },
5180         {
5181                 .name = "reset",
5182                 .handler = handle_reset_command,
5183                 .mode = COMMAND_EXEC,
5184                 .usage = "[run|halt|init]",
5185                 .help = "Reset all targets into the specified mode."
5186                         "Default reset mode is run, if not given.",
5187         },
5188         {
5189                 .name = "soft_reset_halt",
5190                 .handler = handle_soft_reset_halt_command,
5191                 .mode = COMMAND_EXEC,
5192                 .help = "halt the target and do a soft reset",
5193         },
5194         {
5195                 .name = "step",
5196                 .handler = handle_step_command,
5197                 .mode = COMMAND_EXEC,
5198                 .help = "step one instruction from current PC or address",
5199                 .usage = "[address]",
5200         },
5201         {
5202                 .name = "mdw",
5203                 .handler = handle_md_command,
5204                 .mode = COMMAND_EXEC,
5205                 .help = "display memory words",
5206                 .usage = "['phys'] address [count]",
5207         },
5208         {
5209                 .name = "mdh",
5210                 .handler = handle_md_command,
5211                 .mode = COMMAND_EXEC,
5212                 .help = "display memory half-words",
5213                 .usage = "['phys'] address [count]",
5214         },
5215         {
5216                 .name = "mdb",
5217                 .handler = handle_md_command,
5218                 .mode = COMMAND_EXEC,
5219                 .help = "display memory bytes",
5220                 .usage = "['phys'] address [count]",
5221         },
5222         {
5223                 .name = "mww",
5224                 .handler = handle_mw_command,
5225                 .mode = COMMAND_EXEC,
5226                 .help = "write memory word",
5227                 .usage = "['phys'] address value [count]",
5228         },
5229         {
5230                 .name = "mwh",
5231                 .handler = handle_mw_command,
5232                 .mode = COMMAND_EXEC,
5233                 .help = "write memory half-word",
5234                 .usage = "['phys'] address value [count]",
5235         },
5236         {
5237                 .name = "mwb",
5238                 .handler = handle_mw_command,
5239                 .mode = COMMAND_EXEC,
5240                 .help = "write memory byte",
5241                 .usage = "['phys'] address value [count]",
5242         },
5243         {
5244                 .name = "bp",
5245                 .handler = handle_bp_command,
5246                 .mode = COMMAND_EXEC,
5247                 .help = "list or set hardware or software breakpoint",
5248                 .usage = "[address length ['hw']]",
5249         },
5250         {
5251                 .name = "rbp",
5252                 .handler = handle_rbp_command,
5253                 .mode = COMMAND_EXEC,
5254                 .help = "remove breakpoint",
5255                 .usage = "address",
5256         },
5257         {
5258                 .name = "wp",
5259                 .handler = handle_wp_command,
5260                 .mode = COMMAND_EXEC,
5261                 .help = "list (no params) or create watchpoints",
5262                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5263         },
5264         {
5265                 .name = "rwp",
5266                 .handler = handle_rwp_command,
5267                 .mode = COMMAND_EXEC,
5268                 .help = "remove watchpoint",
5269                 .usage = "address",
5270         },
5271         {
5272                 .name = "load_image",
5273                 .handler = handle_load_image_command,
5274                 .mode = COMMAND_EXEC,
5275                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5276                         "[min_address] [max_length]",
5277         },
5278         {
5279                 .name = "dump_image",
5280                 .handler = handle_dump_image_command,
5281                 .mode = COMMAND_EXEC,
5282                 .usage = "filename address size",
5283         },
5284         {
5285                 .name = "verify_image",
5286                 .handler = handle_verify_image_command,
5287                 .mode = COMMAND_EXEC,
5288                 .usage = "filename [offset [type]]",
5289         },
5290         {
5291                 .name = "test_image",
5292                 .handler = handle_test_image_command,
5293                 .mode = COMMAND_EXEC,
5294                 .usage = "filename [offset [type]]",
5295         },
5296         {
5297                 .name = "mem2array",
5298                 .mode = COMMAND_EXEC,
5299                 .jim_handler = jim_mem2array,
5300                 .help = "read 8/16/32 bit memory and return as a TCL array "
5301                         "for script processing",
5302                 .usage = "arrayname bitwidth address count",
5303         },
5304         {
5305                 .name = "array2mem",
5306                 .mode = COMMAND_EXEC,
5307                 .jim_handler = jim_array2mem,
5308                 .help = "convert a TCL array to memory locations "
5309                         "and write the 8/16/32 bit values",
5310                 .usage = "arrayname bitwidth address count",
5311         },
5312         {
5313                 .name = "reset_nag",
5314                 .handler = handle_target_reset_nag,
5315                 .mode = COMMAND_ANY,
5316                 .help = "Nag after each reset about options that could have been "
5317                                 "enabled to improve performance. ",
5318                 .usage = "['enable'|'disable']",
5319         },
5320         COMMAND_REGISTRATION_DONE
5321 };
5322 static int target_register_user_commands(struct command_context *cmd_ctx)
5323 {
5324         int retval = ERROR_OK;
5325         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5326                 return retval;
5327
5328         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5329                 return retval;
5330
5331
5332         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5333 }