]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: fix timer callbacks processing
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66                 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70                 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73                 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75                 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &mips_m4k_target,
125         &avr_target,
126         &dsp563xx_target,
127         &dsp5680xx_target,
128         &testee_target,
129         &avr32_ap7k_target,
130         &hla_target,
131         &nds32_v2_target,
132         &nds32_v3_target,
133         &nds32_v3m_target,
134         &or1k_target,
135         &quark_x10xx_target,
136         NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 static const int polling_interval = 100;
144
145 static const Jim_Nvp nvp_assert[] = {
146         { .name = "assert", NVP_ASSERT },
147         { .name = "deassert", NVP_DEASSERT },
148         { .name = "T", NVP_ASSERT },
149         { .name = "F", NVP_DEASSERT },
150         { .name = "t", NVP_ASSERT },
151         { .name = "f", NVP_DEASSERT },
152         { .name = NULL, .value = -1 }
153 };
154
155 static const Jim_Nvp nvp_error_target[] = {
156         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
157         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
158         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
159         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
160         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
161         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
162         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
163         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
164         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
165         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
166         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
167         { .value = -1, .name = NULL }
168 };
169
170 static const char *target_strerror_safe(int err)
171 {
172         const Jim_Nvp *n;
173
174         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
175         if (n->name == NULL)
176                 return "unknown";
177         else
178                 return n->name;
179 }
180
181 static const Jim_Nvp nvp_target_event[] = {
182
183         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
184         { .value = TARGET_EVENT_HALTED, .name = "halted" },
185         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
186         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
187         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
188
189         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
190         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
191
192         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
193         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
194         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
195         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
196         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
197         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
198         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
199         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
200         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
201         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
202         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
203         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
204
205         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
206         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
207
208         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
209         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
210
211         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
212         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
213
214         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
215         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
216
217         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
218         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
219
220         { .name = NULL, .value = -1 }
221 };
222
223 static const Jim_Nvp nvp_target_state[] = {
224         { .name = "unknown", .value = TARGET_UNKNOWN },
225         { .name = "running", .value = TARGET_RUNNING },
226         { .name = "halted",  .value = TARGET_HALTED },
227         { .name = "reset",   .value = TARGET_RESET },
228         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
229         { .name = NULL, .value = -1 },
230 };
231
232 static const Jim_Nvp nvp_target_debug_reason[] = {
233         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
234         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
235         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
236         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
237         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
238         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
239         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
240         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
241         { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_target_endian[] = {
245         { .name = "big",    .value = TARGET_BIG_ENDIAN },
246         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
247         { .name = "be",     .value = TARGET_BIG_ENDIAN },
248         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
249         { .name = NULL,     .value = -1 },
250 };
251
252 static const Jim_Nvp nvp_reset_modes[] = {
253         { .name = "unknown", .value = RESET_UNKNOWN },
254         { .name = "run"    , .value = RESET_RUN },
255         { .name = "halt"   , .value = RESET_HALT },
256         { .name = "init"   , .value = RESET_INIT },
257         { .name = NULL     , .value = -1 },
258 };
259
260 const char *debug_reason_name(struct target *t)
261 {
262         const char *cp;
263
264         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
265                         t->debug_reason)->name;
266         if (!cp) {
267                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
268                 cp = "(*BUG*unknown*BUG*)";
269         }
270         return cp;
271 }
272
273 const char *target_state_name(struct target *t)
274 {
275         const char *cp;
276         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
277         if (!cp) {
278                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
279                 cp = "(*BUG*unknown*BUG*)";
280         }
281         return cp;
282 }
283
284 const char *target_event_name(enum target_event event)
285 {
286         const char *cp;
287         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
288         if (!cp) {
289                 LOG_ERROR("Invalid target event: %d", (int)(event));
290                 cp = "(*BUG*unknown*BUG*)";
291         }
292         return cp;
293 }
294
295 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
296 {
297         const char *cp;
298         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
299         if (!cp) {
300                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
301                 cp = "(*BUG*unknown*BUG*)";
302         }
303         return cp;
304 }
305
306 /* determine the number of the new target */
307 static int new_target_number(void)
308 {
309         struct target *t;
310         int x;
311
312         /* number is 0 based */
313         x = -1;
314         t = all_targets;
315         while (t) {
316                 if (x < t->target_number)
317                         x = t->target_number;
318                 t = t->next;
319         }
320         return x + 1;
321 }
322
323 /* read a uint64_t from a buffer in target memory endianness */
324 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
325 {
326         if (target->endianness == TARGET_LITTLE_ENDIAN)
327                 return le_to_h_u64(buffer);
328         else
329                 return be_to_h_u64(buffer);
330 }
331
332 /* read a uint32_t from a buffer in target memory endianness */
333 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
334 {
335         if (target->endianness == TARGET_LITTLE_ENDIAN)
336                 return le_to_h_u32(buffer);
337         else
338                 return be_to_h_u32(buffer);
339 }
340
341 /* read a uint24_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 return le_to_h_u24(buffer);
346         else
347                 return be_to_h_u24(buffer);
348 }
349
350 /* read a uint16_t from a buffer in target memory endianness */
351 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 return le_to_h_u16(buffer);
355         else
356                 return be_to_h_u16(buffer);
357 }
358
359 /* read a uint8_t from a buffer in target memory endianness */
360 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
361 {
362         return *buffer & 0x0ff;
363 }
364
365 /* write a uint64_t to a buffer in target memory endianness */
366 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
367 {
368         if (target->endianness == TARGET_LITTLE_ENDIAN)
369                 h_u64_to_le(buffer, value);
370         else
371                 h_u64_to_be(buffer, value);
372 }
373
374 /* write a uint32_t to a buffer in target memory endianness */
375 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
376 {
377         if (target->endianness == TARGET_LITTLE_ENDIAN)
378                 h_u32_to_le(buffer, value);
379         else
380                 h_u32_to_be(buffer, value);
381 }
382
383 /* write a uint24_t to a buffer in target memory endianness */
384 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
385 {
386         if (target->endianness == TARGET_LITTLE_ENDIAN)
387                 h_u24_to_le(buffer, value);
388         else
389                 h_u24_to_be(buffer, value);
390 }
391
392 /* write a uint16_t to a buffer in target memory endianness */
393 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
394 {
395         if (target->endianness == TARGET_LITTLE_ENDIAN)
396                 h_u16_to_le(buffer, value);
397         else
398                 h_u16_to_be(buffer, value);
399 }
400
401 /* write a uint8_t to a buffer in target memory endianness */
402 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
403 {
404         *buffer = value;
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
409 {
410         uint32_t i;
411         for (i = 0; i < count; i++)
412                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
417 {
418         uint32_t i;
419         for (i = 0; i < count; i++)
420                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
429 }
430
431 /* write a uint64_t array to a buffer in target memory endianness */
432 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
433 {
434         uint32_t i;
435         for (i = 0; i < count; i++)
436                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
437 }
438
439 /* write a uint32_t array to a buffer in target memory endianness */
440 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
441 {
442         uint32_t i;
443         for (i = 0; i < count; i++)
444                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
445 }
446
447 /* write a uint16_t array to a buffer in target memory endianness */
448 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
449 {
450         uint32_t i;
451         for (i = 0; i < count; i++)
452                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
453 }
454
455 /* return a pointer to a configured target; id is name or number */
456 struct target *get_target(const char *id)
457 {
458         struct target *target;
459
460         /* try as tcltarget name */
461         for (target = all_targets; target; target = target->next) {
462                 if (target_name(target) == NULL)
463                         continue;
464                 if (strcmp(id, target_name(target)) == 0)
465                         return target;
466         }
467
468         /* It's OK to remove this fallback sometime after August 2010 or so */
469
470         /* no match, try as number */
471         unsigned num;
472         if (parse_uint(id, &num) != ERROR_OK)
473                 return NULL;
474
475         for (target = all_targets; target; target = target->next) {
476                 if (target->target_number == (int)num) {
477                         LOG_WARNING("use '%s' as target identifier, not '%u'",
478                                         target_name(target), num);
479                         return target;
480                 }
481         }
482
483         return NULL;
484 }
485
486 /* returns a pointer to the n-th configured target */
487 static struct target *get_target_by_num(int num)
488 {
489         struct target *target = all_targets;
490
491         while (target) {
492                 if (target->target_number == num)
493                         return target;
494                 target = target->next;
495         }
496
497         return NULL;
498 }
499
500 struct target *get_current_target(struct command_context *cmd_ctx)
501 {
502         struct target *target = get_target_by_num(cmd_ctx->current_target);
503
504         if (target == NULL) {
505                 LOG_ERROR("BUG: current_target out of bounds");
506                 exit(-1);
507         }
508
509         return target;
510 }
511
512 int target_poll(struct target *target)
513 {
514         int retval;
515
516         /* We can't poll until after examine */
517         if (!target_was_examined(target)) {
518                 /* Fail silently lest we pollute the log */
519                 return ERROR_FAIL;
520         }
521
522         retval = target->type->poll(target);
523         if (retval != ERROR_OK)
524                 return retval;
525
526         if (target->halt_issued) {
527                 if (target->state == TARGET_HALTED)
528                         target->halt_issued = false;
529                 else {
530                         long long t = timeval_ms() - target->halt_issued_time;
531                         if (t > DEFAULT_HALT_TIMEOUT) {
532                                 target->halt_issued = false;
533                                 LOG_INFO("Halt timed out, wake up GDB.");
534                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
535                         }
536                 }
537         }
538
539         return ERROR_OK;
540 }
541
542 int target_halt(struct target *target)
543 {
544         int retval;
545         /* We can't poll until after examine */
546         if (!target_was_examined(target)) {
547                 LOG_ERROR("Target not examined yet");
548                 return ERROR_FAIL;
549         }
550
551         retval = target->type->halt(target);
552         if (retval != ERROR_OK)
553                 return retval;
554
555         target->halt_issued = true;
556         target->halt_issued_time = timeval_ms();
557
558         return ERROR_OK;
559 }
560
561 /**
562  * Make the target (re)start executing using its saved execution
563  * context (possibly with some modifications).
564  *
565  * @param target Which target should start executing.
566  * @param current True to use the target's saved program counter instead
567  *      of the address parameter
568  * @param address Optionally used as the program counter.
569  * @param handle_breakpoints True iff breakpoints at the resumption PC
570  *      should be skipped.  (For example, maybe execution was stopped by
571  *      such a breakpoint, in which case it would be counterprodutive to
572  *      let it re-trigger.
573  * @param debug_execution False if all working areas allocated by OpenOCD
574  *      should be released and/or restored to their original contents.
575  *      (This would for example be true to run some downloaded "helper"
576  *      algorithm code, which resides in one such working buffer and uses
577  *      another for data storage.)
578  *
579  * @todo Resolve the ambiguity about what the "debug_execution" flag
580  * signifies.  For example, Target implementations don't agree on how
581  * it relates to invalidation of the register cache, or to whether
582  * breakpoints and watchpoints should be enabled.  (It would seem wrong
583  * to enable breakpoints when running downloaded "helper" algorithms
584  * (debug_execution true), since the breakpoints would be set to match
585  * target firmware being debugged, not the helper algorithm.... and
586  * enabling them could cause such helpers to malfunction (for example,
587  * by overwriting data with a breakpoint instruction.  On the other
588  * hand the infrastructure for running such helpers might use this
589  * procedure but rely on hardware breakpoint to detect termination.)
590  */
591 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
592 {
593         int retval;
594
595         /* We can't poll until after examine */
596         if (!target_was_examined(target)) {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600
601         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
602
603         /* note that resume *must* be asynchronous. The CPU can halt before
604          * we poll. The CPU can even halt at the current PC as a result of
605          * a software breakpoint being inserted by (a bug?) the application.
606          */
607         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
608         if (retval != ERROR_OK)
609                 return retval;
610
611         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
612
613         return retval;
614 }
615
616 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
617 {
618         char buf[100];
619         int retval;
620         Jim_Nvp *n;
621         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
622         if (n->name == NULL) {
623                 LOG_ERROR("invalid reset mode");
624                 return ERROR_FAIL;
625         }
626
627         struct target *target;
628         for (target = all_targets; target; target = target->next)
629                 target_call_reset_callbacks(target, reset_mode);
630
631         /* disable polling during reset to make reset event scripts
632          * more predictable, i.e. dr/irscan & pathmove in events will
633          * not have JTAG operations injected into the middle of a sequence.
634          */
635         bool save_poll = jtag_poll_get_enabled();
636
637         jtag_poll_set_enabled(false);
638
639         sprintf(buf, "ocd_process_reset %s", n->name);
640         retval = Jim_Eval(cmd_ctx->interp, buf);
641
642         jtag_poll_set_enabled(save_poll);
643
644         if (retval != JIM_OK) {
645                 Jim_MakeErrorMessage(cmd_ctx->interp);
646                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
647                 return ERROR_FAIL;
648         }
649
650         /* We want any events to be processed before the prompt */
651         retval = target_call_timer_callbacks_now();
652
653         for (target = all_targets; target; target = target->next) {
654                 target->type->check_reset(target);
655                 target->running_alg = false;
656         }
657
658         return retval;
659 }
660
661 static int identity_virt2phys(struct target *target,
662                 uint32_t virtual, uint32_t *physical)
663 {
664         *physical = virtual;
665         return ERROR_OK;
666 }
667
668 static int no_mmu(struct target *target, int *enabled)
669 {
670         *enabled = 0;
671         return ERROR_OK;
672 }
673
674 static int default_examine(struct target *target)
675 {
676         target_set_examined(target);
677         return ERROR_OK;
678 }
679
680 /* no check by default */
681 static int default_check_reset(struct target *target)
682 {
683         return ERROR_OK;
684 }
685
686 int target_examine_one(struct target *target)
687 {
688         return target->type->examine(target);
689 }
690
691 static int jtag_enable_callback(enum jtag_event event, void *priv)
692 {
693         struct target *target = priv;
694
695         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
696                 return ERROR_OK;
697
698         jtag_unregister_event_callback(jtag_enable_callback, target);
699
700         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
701
702         int retval = target_examine_one(target);
703         if (retval != ERROR_OK)
704                 return retval;
705
706         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
707
708         return retval;
709 }
710
711 /* Targets that correctly implement init + examine, i.e.
712  * no communication with target during init:
713  *
714  * XScale
715  */
716 int target_examine(void)
717 {
718         int retval = ERROR_OK;
719         struct target *target;
720
721         for (target = all_targets; target; target = target->next) {
722                 /* defer examination, but don't skip it */
723                 if (!target->tap->enabled) {
724                         jtag_register_event_callback(jtag_enable_callback,
725                                         target);
726                         continue;
727                 }
728
729                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
730
731                 retval = target_examine_one(target);
732                 if (retval != ERROR_OK)
733                         return retval;
734
735                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
736         }
737         return retval;
738 }
739
740 const char *target_type_name(struct target *target)
741 {
742         return target->type->name;
743 }
744
745 static int target_soft_reset_halt(struct target *target)
746 {
747         if (!target_was_examined(target)) {
748                 LOG_ERROR("Target not examined yet");
749                 return ERROR_FAIL;
750         }
751         if (!target->type->soft_reset_halt) {
752                 LOG_ERROR("Target %s does not support soft_reset_halt",
753                                 target_name(target));
754                 return ERROR_FAIL;
755         }
756         return target->type->soft_reset_halt(target);
757 }
758
759 /**
760  * Downloads a target-specific native code algorithm to the target,
761  * and executes it.  * Note that some targets may need to set up, enable,
762  * and tear down a breakpoint (hard or * soft) to detect algorithm
763  * termination, while others may support  lower overhead schemes where
764  * soft breakpoints embedded in the algorithm automatically terminate the
765  * algorithm.
766  *
767  * @param target used to run the algorithm
768  * @param arch_info target-specific description of the algorithm.
769  */
770 int target_run_algorithm(struct target *target,
771                 int num_mem_params, struct mem_param *mem_params,
772                 int num_reg_params, struct reg_param *reg_param,
773                 uint32_t entry_point, uint32_t exit_point,
774                 int timeout_ms, void *arch_info)
775 {
776         int retval = ERROR_FAIL;
777
778         if (!target_was_examined(target)) {
779                 LOG_ERROR("Target not examined yet");
780                 goto done;
781         }
782         if (!target->type->run_algorithm) {
783                 LOG_ERROR("Target type '%s' does not support %s",
784                                 target_type_name(target), __func__);
785                 goto done;
786         }
787
788         target->running_alg = true;
789         retval = target->type->run_algorithm(target,
790                         num_mem_params, mem_params,
791                         num_reg_params, reg_param,
792                         entry_point, exit_point, timeout_ms, arch_info);
793         target->running_alg = false;
794
795 done:
796         return retval;
797 }
798
799 /**
800  * Downloads a target-specific native code algorithm to the target,
801  * executes and leaves it running.
802  *
803  * @param target used to run the algorithm
804  * @param arch_info target-specific description of the algorithm.
805  */
806 int target_start_algorithm(struct target *target,
807                 int num_mem_params, struct mem_param *mem_params,
808                 int num_reg_params, struct reg_param *reg_params,
809                 uint32_t entry_point, uint32_t exit_point,
810                 void *arch_info)
811 {
812         int retval = ERROR_FAIL;
813
814         if (!target_was_examined(target)) {
815                 LOG_ERROR("Target not examined yet");
816                 goto done;
817         }
818         if (!target->type->start_algorithm) {
819                 LOG_ERROR("Target type '%s' does not support %s",
820                                 target_type_name(target), __func__);
821                 goto done;
822         }
823         if (target->running_alg) {
824                 LOG_ERROR("Target is already running an algorithm");
825                 goto done;
826         }
827
828         target->running_alg = true;
829         retval = target->type->start_algorithm(target,
830                         num_mem_params, mem_params,
831                         num_reg_params, reg_params,
832                         entry_point, exit_point, arch_info);
833
834 done:
835         return retval;
836 }
837
838 /**
839  * Waits for an algorithm started with target_start_algorithm() to complete.
840  *
841  * @param target used to run the algorithm
842  * @param arch_info target-specific description of the algorithm.
843  */
844 int target_wait_algorithm(struct target *target,
845                 int num_mem_params, struct mem_param *mem_params,
846                 int num_reg_params, struct reg_param *reg_params,
847                 uint32_t exit_point, int timeout_ms,
848                 void *arch_info)
849 {
850         int retval = ERROR_FAIL;
851
852         if (!target->type->wait_algorithm) {
853                 LOG_ERROR("Target type '%s' does not support %s",
854                                 target_type_name(target), __func__);
855                 goto done;
856         }
857         if (!target->running_alg) {
858                 LOG_ERROR("Target is not running an algorithm");
859                 goto done;
860         }
861
862         retval = target->type->wait_algorithm(target,
863                         num_mem_params, mem_params,
864                         num_reg_params, reg_params,
865                         exit_point, timeout_ms, arch_info);
866         if (retval != ERROR_TARGET_TIMEOUT)
867                 target->running_alg = false;
868
869 done:
870         return retval;
871 }
872
873 /**
874  * Executes a target-specific native code algorithm in the target.
875  * It differs from target_run_algorithm in that the algorithm is asynchronous.
876  * Because of this it requires an compliant algorithm:
877  * see contrib/loaders/flash/stm32f1x.S for example.
878  *
879  * @param target used to run the algorithm
880  */
881
882 int target_run_flash_async_algorithm(struct target *target,
883                 const uint8_t *buffer, uint32_t count, int block_size,
884                 int num_mem_params, struct mem_param *mem_params,
885                 int num_reg_params, struct reg_param *reg_params,
886                 uint32_t buffer_start, uint32_t buffer_size,
887                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
888 {
889         int retval;
890         int timeout = 0;
891
892         const uint8_t *buffer_orig = buffer;
893
894         /* Set up working area. First word is write pointer, second word is read pointer,
895          * rest is fifo data area. */
896         uint32_t wp_addr = buffer_start;
897         uint32_t rp_addr = buffer_start + 4;
898         uint32_t fifo_start_addr = buffer_start + 8;
899         uint32_t fifo_end_addr = buffer_start + buffer_size;
900
901         uint32_t wp = fifo_start_addr;
902         uint32_t rp = fifo_start_addr;
903
904         /* validate block_size is 2^n */
905         assert(!block_size || !(block_size & (block_size - 1)));
906
907         retval = target_write_u32(target, wp_addr, wp);
908         if (retval != ERROR_OK)
909                 return retval;
910         retval = target_write_u32(target, rp_addr, rp);
911         if (retval != ERROR_OK)
912                 return retval;
913
914         /* Start up algorithm on target and let it idle while writing the first chunk */
915         retval = target_start_algorithm(target, num_mem_params, mem_params,
916                         num_reg_params, reg_params,
917                         entry_point,
918                         exit_point,
919                         arch_info);
920
921         if (retval != ERROR_OK) {
922                 LOG_ERROR("error starting target flash write algorithm");
923                 return retval;
924         }
925
926         while (count > 0) {
927
928                 retval = target_read_u32(target, rp_addr, &rp);
929                 if (retval != ERROR_OK) {
930                         LOG_ERROR("failed to get read pointer");
931                         break;
932                 }
933
934                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
935                         (size_t) (buffer - buffer_orig), count, wp, rp);
936
937                 if (rp == 0) {
938                         LOG_ERROR("flash write algorithm aborted by target");
939                         retval = ERROR_FLASH_OPERATION_FAILED;
940                         break;
941                 }
942
943                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
944                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
945                         break;
946                 }
947
948                 /* Count the number of bytes available in the fifo without
949                  * crossing the wrap around. Make sure to not fill it completely,
950                  * because that would make wp == rp and that's the empty condition. */
951                 uint32_t thisrun_bytes;
952                 if (rp > wp)
953                         thisrun_bytes = rp - wp - block_size;
954                 else if (rp > fifo_start_addr)
955                         thisrun_bytes = fifo_end_addr - wp;
956                 else
957                         thisrun_bytes = fifo_end_addr - wp - block_size;
958
959                 if (thisrun_bytes == 0) {
960                         /* Throttle polling a bit if transfer is (much) faster than flash
961                          * programming. The exact delay shouldn't matter as long as it's
962                          * less than buffer size / flash speed. This is very unlikely to
963                          * run when using high latency connections such as USB. */
964                         alive_sleep(10);
965
966                         /* to stop an infinite loop on some targets check and increment a timeout
967                          * this issue was observed on a stellaris using the new ICDI interface */
968                         if (timeout++ >= 500) {
969                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
970                                 return ERROR_FLASH_OPERATION_FAILED;
971                         }
972                         continue;
973                 }
974
975                 /* reset our timeout */
976                 timeout = 0;
977
978                 /* Limit to the amount of data we actually want to write */
979                 if (thisrun_bytes > count * block_size)
980                         thisrun_bytes = count * block_size;
981
982                 /* Write data to fifo */
983                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
984                 if (retval != ERROR_OK)
985                         break;
986
987                 /* Update counters and wrap write pointer */
988                 buffer += thisrun_bytes;
989                 count -= thisrun_bytes / block_size;
990                 wp += thisrun_bytes;
991                 if (wp >= fifo_end_addr)
992                         wp = fifo_start_addr;
993
994                 /* Store updated write pointer to target */
995                 retval = target_write_u32(target, wp_addr, wp);
996                 if (retval != ERROR_OK)
997                         break;
998         }
999
1000         if (retval != ERROR_OK) {
1001                 /* abort flash write algorithm on target */
1002                 target_write_u32(target, wp_addr, 0);
1003         }
1004
1005         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1006                         num_reg_params, reg_params,
1007                         exit_point,
1008                         10000,
1009                         arch_info);
1010
1011         if (retval2 != ERROR_OK) {
1012                 LOG_ERROR("error waiting for target flash write algorithm");
1013                 retval = retval2;
1014         }
1015
1016         return retval;
1017 }
1018
1019 int target_read_memory(struct target *target,
1020                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1021 {
1022         if (!target_was_examined(target)) {
1023                 LOG_ERROR("Target not examined yet");
1024                 return ERROR_FAIL;
1025         }
1026         return target->type->read_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_read_phys_memory(struct target *target,
1030                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1031 {
1032         if (!target_was_examined(target)) {
1033                 LOG_ERROR("Target not examined yet");
1034                 return ERROR_FAIL;
1035         }
1036         return target->type->read_phys_memory(target, address, size, count, buffer);
1037 }
1038
1039 int target_write_memory(struct target *target,
1040                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1041 {
1042         if (!target_was_examined(target)) {
1043                 LOG_ERROR("Target not examined yet");
1044                 return ERROR_FAIL;
1045         }
1046         return target->type->write_memory(target, address, size, count, buffer);
1047 }
1048
1049 int target_write_phys_memory(struct target *target,
1050                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1051 {
1052         if (!target_was_examined(target)) {
1053                 LOG_ERROR("Target not examined yet");
1054                 return ERROR_FAIL;
1055         }
1056         return target->type->write_phys_memory(target, address, size, count, buffer);
1057 }
1058
1059 int target_add_breakpoint(struct target *target,
1060                 struct breakpoint *breakpoint)
1061 {
1062         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1063                 LOG_WARNING("target %s is not halted", target_name(target));
1064                 return ERROR_TARGET_NOT_HALTED;
1065         }
1066         return target->type->add_breakpoint(target, breakpoint);
1067 }
1068
1069 int target_add_context_breakpoint(struct target *target,
1070                 struct breakpoint *breakpoint)
1071 {
1072         if (target->state != TARGET_HALTED) {
1073                 LOG_WARNING("target %s is not halted", target_name(target));
1074                 return ERROR_TARGET_NOT_HALTED;
1075         }
1076         return target->type->add_context_breakpoint(target, breakpoint);
1077 }
1078
1079 int target_add_hybrid_breakpoint(struct target *target,
1080                 struct breakpoint *breakpoint)
1081 {
1082         if (target->state != TARGET_HALTED) {
1083                 LOG_WARNING("target %s is not halted", target_name(target));
1084                 return ERROR_TARGET_NOT_HALTED;
1085         }
1086         return target->type->add_hybrid_breakpoint(target, breakpoint);
1087 }
1088
1089 int target_remove_breakpoint(struct target *target,
1090                 struct breakpoint *breakpoint)
1091 {
1092         return target->type->remove_breakpoint(target, breakpoint);
1093 }
1094
1095 int target_add_watchpoint(struct target *target,
1096                 struct watchpoint *watchpoint)
1097 {
1098         if (target->state != TARGET_HALTED) {
1099                 LOG_WARNING("target %s is not halted", target_name(target));
1100                 return ERROR_TARGET_NOT_HALTED;
1101         }
1102         return target->type->add_watchpoint(target, watchpoint);
1103 }
1104 int target_remove_watchpoint(struct target *target,
1105                 struct watchpoint *watchpoint)
1106 {
1107         return target->type->remove_watchpoint(target, watchpoint);
1108 }
1109 int target_hit_watchpoint(struct target *target,
1110                 struct watchpoint **hit_watchpoint)
1111 {
1112         if (target->state != TARGET_HALTED) {
1113                 LOG_WARNING("target %s is not halted", target->cmd_name);
1114                 return ERROR_TARGET_NOT_HALTED;
1115         }
1116
1117         if (target->type->hit_watchpoint == NULL) {
1118                 /* For backward compatible, if hit_watchpoint is not implemented,
1119                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1120                  * information. */
1121                 return ERROR_FAIL;
1122         }
1123
1124         return target->type->hit_watchpoint(target, hit_watchpoint);
1125 }
1126
1127 int target_get_gdb_reg_list(struct target *target,
1128                 struct reg **reg_list[], int *reg_list_size,
1129                 enum target_register_class reg_class)
1130 {
1131         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1132 }
1133 int target_step(struct target *target,
1134                 int current, uint32_t address, int handle_breakpoints)
1135 {
1136         return target->type->step(target, current, address, handle_breakpoints);
1137 }
1138
1139 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1140 {
1141         if (target->state != TARGET_HALTED) {
1142                 LOG_WARNING("target %s is not halted", target->cmd_name);
1143                 return ERROR_TARGET_NOT_HALTED;
1144         }
1145         return target->type->get_gdb_fileio_info(target, fileio_info);
1146 }
1147
1148 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1149 {
1150         if (target->state != TARGET_HALTED) {
1151                 LOG_WARNING("target %s is not halted", target->cmd_name);
1152                 return ERROR_TARGET_NOT_HALTED;
1153         }
1154         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1155 }
1156
1157 int target_profiling(struct target *target, uint32_t *samples,
1158                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1159 {
1160         if (target->state != TARGET_HALTED) {
1161                 LOG_WARNING("target %s is not halted", target->cmd_name);
1162                 return ERROR_TARGET_NOT_HALTED;
1163         }
1164         return target->type->profiling(target, samples, max_num_samples,
1165                         num_samples, seconds);
1166 }
1167
1168 /**
1169  * Reset the @c examined flag for the given target.
1170  * Pure paranoia -- targets are zeroed on allocation.
1171  */
1172 static void target_reset_examined(struct target *target)
1173 {
1174         target->examined = false;
1175 }
1176
1177 static int err_read_phys_memory(struct target *target, uint32_t address,
1178                 uint32_t size, uint32_t count, uint8_t *buffer)
1179 {
1180         LOG_ERROR("Not implemented: %s", __func__);
1181         return ERROR_FAIL;
1182 }
1183
1184 static int err_write_phys_memory(struct target *target, uint32_t address,
1185                 uint32_t size, uint32_t count, const uint8_t *buffer)
1186 {
1187         LOG_ERROR("Not implemented: %s", __func__);
1188         return ERROR_FAIL;
1189 }
1190
1191 static int handle_target(void *priv);
1192
1193 static int target_init_one(struct command_context *cmd_ctx,
1194                 struct target *target)
1195 {
1196         target_reset_examined(target);
1197
1198         struct target_type *type = target->type;
1199         if (type->examine == NULL)
1200                 type->examine = default_examine;
1201
1202         if (type->check_reset == NULL)
1203                 type->check_reset = default_check_reset;
1204
1205         assert(type->init_target != NULL);
1206
1207         int retval = type->init_target(cmd_ctx, target);
1208         if (ERROR_OK != retval) {
1209                 LOG_ERROR("target '%s' init failed", target_name(target));
1210                 return retval;
1211         }
1212
1213         /* Sanity-check MMU support ... stub in what we must, to help
1214          * implement it in stages, but warn if we need to do so.
1215          */
1216         if (type->mmu) {
1217                 if (type->write_phys_memory == NULL) {
1218                         LOG_ERROR("type '%s' is missing write_phys_memory",
1219                                         type->name);
1220                         type->write_phys_memory = err_write_phys_memory;
1221                 }
1222                 if (type->read_phys_memory == NULL) {
1223                         LOG_ERROR("type '%s' is missing read_phys_memory",
1224                                         type->name);
1225                         type->read_phys_memory = err_read_phys_memory;
1226                 }
1227                 if (type->virt2phys == NULL) {
1228                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1229                         type->virt2phys = identity_virt2phys;
1230                 }
1231         } else {
1232                 /* Make sure no-MMU targets all behave the same:  make no
1233                  * distinction between physical and virtual addresses, and
1234                  * ensure that virt2phys() is always an identity mapping.
1235                  */
1236                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1237                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1238
1239                 type->mmu = no_mmu;
1240                 type->write_phys_memory = type->write_memory;
1241                 type->read_phys_memory = type->read_memory;
1242                 type->virt2phys = identity_virt2phys;
1243         }
1244
1245         if (target->type->read_buffer == NULL)
1246                 target->type->read_buffer = target_read_buffer_default;
1247
1248         if (target->type->write_buffer == NULL)
1249                 target->type->write_buffer = target_write_buffer_default;
1250
1251         if (target->type->get_gdb_fileio_info == NULL)
1252                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1253
1254         if (target->type->gdb_fileio_end == NULL)
1255                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1256
1257         if (target->type->profiling == NULL)
1258                 target->type->profiling = target_profiling_default;
1259
1260         return ERROR_OK;
1261 }
1262
1263 static int target_init(struct command_context *cmd_ctx)
1264 {
1265         struct target *target;
1266         int retval;
1267
1268         for (target = all_targets; target; target = target->next) {
1269                 retval = target_init_one(cmd_ctx, target);
1270                 if (ERROR_OK != retval)
1271                         return retval;
1272         }
1273
1274         if (!all_targets)
1275                 return ERROR_OK;
1276
1277         retval = target_register_user_commands(cmd_ctx);
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         retval = target_register_timer_callback(&handle_target,
1282                         polling_interval, 1, cmd_ctx->interp);
1283         if (ERROR_OK != retval)
1284                 return retval;
1285
1286         return ERROR_OK;
1287 }
1288
1289 COMMAND_HANDLER(handle_target_init_command)
1290 {
1291         int retval;
1292
1293         if (CMD_ARGC != 0)
1294                 return ERROR_COMMAND_SYNTAX_ERROR;
1295
1296         static bool target_initialized;
1297         if (target_initialized) {
1298                 LOG_INFO("'target init' has already been called");
1299                 return ERROR_OK;
1300         }
1301         target_initialized = true;
1302
1303         retval = command_run_line(CMD_CTX, "init_targets");
1304         if (ERROR_OK != retval)
1305                 return retval;
1306
1307         retval = command_run_line(CMD_CTX, "init_target_events");
1308         if (ERROR_OK != retval)
1309                 return retval;
1310
1311         retval = command_run_line(CMD_CTX, "init_board");
1312         if (ERROR_OK != retval)
1313                 return retval;
1314
1315         LOG_DEBUG("Initializing targets...");
1316         return target_init(CMD_CTX);
1317 }
1318
1319 int target_register_event_callback(int (*callback)(struct target *target,
1320                 enum target_event event, void *priv), void *priv)
1321 {
1322         struct target_event_callback **callbacks_p = &target_event_callbacks;
1323
1324         if (callback == NULL)
1325                 return ERROR_COMMAND_SYNTAX_ERROR;
1326
1327         if (*callbacks_p) {
1328                 while ((*callbacks_p)->next)
1329                         callbacks_p = &((*callbacks_p)->next);
1330                 callbacks_p = &((*callbacks_p)->next);
1331         }
1332
1333         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1334         (*callbacks_p)->callback = callback;
1335         (*callbacks_p)->priv = priv;
1336         (*callbacks_p)->next = NULL;
1337
1338         return ERROR_OK;
1339 }
1340
1341 int target_register_reset_callback(int (*callback)(struct target *target,
1342                 enum target_reset_mode reset_mode, void *priv), void *priv)
1343 {
1344         struct target_reset_callback *entry;
1345
1346         if (callback == NULL)
1347                 return ERROR_COMMAND_SYNTAX_ERROR;
1348
1349         entry = malloc(sizeof(struct target_reset_callback));
1350         if (entry == NULL) {
1351                 LOG_ERROR("error allocating buffer for reset callback entry");
1352                 return ERROR_COMMAND_SYNTAX_ERROR;
1353         }
1354
1355         entry->callback = callback;
1356         entry->priv = priv;
1357         list_add(&entry->list, &target_reset_callback_list);
1358
1359
1360         return ERROR_OK;
1361 }
1362
1363 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1364 {
1365         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1366         struct timeval now;
1367
1368         if (callback == NULL)
1369                 return ERROR_COMMAND_SYNTAX_ERROR;
1370
1371         if (*callbacks_p) {
1372                 while ((*callbacks_p)->next)
1373                         callbacks_p = &((*callbacks_p)->next);
1374                 callbacks_p = &((*callbacks_p)->next);
1375         }
1376
1377         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1378         (*callbacks_p)->callback = callback;
1379         (*callbacks_p)->periodic = periodic;
1380         (*callbacks_p)->time_ms = time_ms;
1381         (*callbacks_p)->removed = false;
1382
1383         gettimeofday(&now, NULL);
1384         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1385         time_ms -= (time_ms % 1000);
1386         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1387         if ((*callbacks_p)->when.tv_usec > 1000000) {
1388                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1389                 (*callbacks_p)->when.tv_sec += 1;
1390         }
1391
1392         (*callbacks_p)->priv = priv;
1393         (*callbacks_p)->next = NULL;
1394
1395         return ERROR_OK;
1396 }
1397
1398 int target_unregister_event_callback(int (*callback)(struct target *target,
1399                 enum target_event event, void *priv), void *priv)
1400 {
1401         struct target_event_callback **p = &target_event_callbacks;
1402         struct target_event_callback *c = target_event_callbacks;
1403
1404         if (callback == NULL)
1405                 return ERROR_COMMAND_SYNTAX_ERROR;
1406
1407         while (c) {
1408                 struct target_event_callback *next = c->next;
1409                 if ((c->callback == callback) && (c->priv == priv)) {
1410                         *p = next;
1411                         free(c);
1412                         return ERROR_OK;
1413                 } else
1414                         p = &(c->next);
1415                 c = next;
1416         }
1417
1418         return ERROR_OK;
1419 }
1420
1421 int target_unregister_reset_callback(int (*callback)(struct target *target,
1422                 enum target_reset_mode reset_mode, void *priv), void *priv)
1423 {
1424         struct target_reset_callback *entry;
1425
1426         if (callback == NULL)
1427                 return ERROR_COMMAND_SYNTAX_ERROR;
1428
1429         list_for_each_entry(entry, &target_reset_callback_list, list) {
1430                 if (entry->callback == callback && entry->priv == priv) {
1431                         list_del(&entry->list);
1432                         free(entry);
1433                         break;
1434                 }
1435         }
1436
1437         return ERROR_OK;
1438 }
1439
1440 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1441 {
1442         if (callback == NULL)
1443                 return ERROR_COMMAND_SYNTAX_ERROR;
1444
1445         for (struct target_timer_callback *c = target_timer_callbacks;
1446              c; c = c->next) {
1447                 if ((c->callback == callback) && (c->priv == priv)) {
1448                         c->removed = true;
1449                         return ERROR_OK;
1450                 }
1451         }
1452
1453         return ERROR_FAIL;
1454 }
1455
1456 int target_call_event_callbacks(struct target *target, enum target_event event)
1457 {
1458         struct target_event_callback *callback = target_event_callbacks;
1459         struct target_event_callback *next_callback;
1460
1461         if (event == TARGET_EVENT_HALTED) {
1462                 /* execute early halted first */
1463                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1464         }
1465
1466         LOG_DEBUG("target event %i (%s)", event,
1467                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1468
1469         target_handle_event(target, event);
1470
1471         while (callback) {
1472                 next_callback = callback->next;
1473                 callback->callback(target, event, callback->priv);
1474                 callback = next_callback;
1475         }
1476
1477         return ERROR_OK;
1478 }
1479
1480 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1481 {
1482         struct target_reset_callback *callback;
1483
1484         LOG_DEBUG("target reset %i (%s)", reset_mode,
1485                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1486
1487         list_for_each_entry(callback, &target_reset_callback_list, list)
1488                 callback->callback(target, reset_mode, callback->priv);
1489
1490         return ERROR_OK;
1491 }
1492
1493 static int target_timer_callback_periodic_restart(
1494                 struct target_timer_callback *cb, struct timeval *now)
1495 {
1496         int time_ms = cb->time_ms;
1497         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1498         time_ms -= (time_ms % 1000);
1499         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1500         if (cb->when.tv_usec > 1000000) {
1501                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1502                 cb->when.tv_sec += 1;
1503         }
1504         return ERROR_OK;
1505 }
1506
1507 static int target_call_timer_callback(struct target_timer_callback *cb,
1508                 struct timeval *now)
1509 {
1510         cb->callback(cb->priv);
1511
1512         if (cb->periodic)
1513                 return target_timer_callback_periodic_restart(cb, now);
1514
1515         return target_unregister_timer_callback(cb->callback, cb->priv);
1516 }
1517
1518 static int target_call_timer_callbacks_check_time(int checktime)
1519 {
1520         static bool callback_processing;
1521
1522         /* Do not allow nesting */
1523         if (callback_processing)
1524                 return ERROR_OK;
1525
1526         callback_processing = true;
1527
1528         keep_alive();
1529
1530         struct timeval now;
1531         gettimeofday(&now, NULL);
1532
1533         /* Store an address of the place containing a pointer to the
1534          * next item; initially, that's a standalone "root of the
1535          * list" variable. */
1536         struct target_timer_callback **callback = &target_timer_callbacks;
1537         while (*callback) {
1538                 if ((*callback)->removed) {
1539                         struct target_timer_callback *p = *callback;
1540                         *callback = (*callback)->next;
1541                         free(p);
1542                         continue;
1543                 }
1544
1545                 bool call_it = (*callback)->callback &&
1546                         ((!checktime && (*callback)->periodic) ||
1547                          now.tv_sec > (*callback)->when.tv_sec ||
1548                          (now.tv_sec == (*callback)->when.tv_sec &&
1549                           now.tv_usec >= (*callback)->when.tv_usec));
1550
1551                 if (call_it)
1552                         target_call_timer_callback(*callback, &now);
1553
1554                 callback = &(*callback)->next;
1555         }
1556
1557         callback_processing = false;
1558         return ERROR_OK;
1559 }
1560
1561 int target_call_timer_callbacks(void)
1562 {
1563         return target_call_timer_callbacks_check_time(1);
1564 }
1565
1566 /* invoke periodic callbacks immediately */
1567 int target_call_timer_callbacks_now(void)
1568 {
1569         return target_call_timer_callbacks_check_time(0);
1570 }
1571
1572 /* Prints the working area layout for debug purposes */
1573 static void print_wa_layout(struct target *target)
1574 {
1575         struct working_area *c = target->working_areas;
1576
1577         while (c) {
1578                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1579                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1580                         c->address, c->address + c->size - 1, c->size);
1581                 c = c->next;
1582         }
1583 }
1584
1585 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1586 static void target_split_working_area(struct working_area *area, uint32_t size)
1587 {
1588         assert(area->free); /* Shouldn't split an allocated area */
1589         assert(size <= area->size); /* Caller should guarantee this */
1590
1591         /* Split only if not already the right size */
1592         if (size < area->size) {
1593                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1594
1595                 if (new_wa == NULL)
1596                         return;
1597
1598                 new_wa->next = area->next;
1599                 new_wa->size = area->size - size;
1600                 new_wa->address = area->address + size;
1601                 new_wa->backup = NULL;
1602                 new_wa->user = NULL;
1603                 new_wa->free = true;
1604
1605                 area->next = new_wa;
1606                 area->size = size;
1607
1608                 /* If backup memory was allocated to this area, it has the wrong size
1609                  * now so free it and it will be reallocated if/when needed */
1610                 if (area->backup) {
1611                         free(area->backup);
1612                         area->backup = NULL;
1613                 }
1614         }
1615 }
1616
1617 /* Merge all adjacent free areas into one */
1618 static void target_merge_working_areas(struct target *target)
1619 {
1620         struct working_area *c = target->working_areas;
1621
1622         while (c && c->next) {
1623                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1624
1625                 /* Find two adjacent free areas */
1626                 if (c->free && c->next->free) {
1627                         /* Merge the last into the first */
1628                         c->size += c->next->size;
1629
1630                         /* Remove the last */
1631                         struct working_area *to_be_freed = c->next;
1632                         c->next = c->next->next;
1633                         if (to_be_freed->backup)
1634                                 free(to_be_freed->backup);
1635                         free(to_be_freed);
1636
1637                         /* If backup memory was allocated to the remaining area, it's has
1638                          * the wrong size now */
1639                         if (c->backup) {
1640                                 free(c->backup);
1641                                 c->backup = NULL;
1642                         }
1643                 } else {
1644                         c = c->next;
1645                 }
1646         }
1647 }
1648
1649 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1650 {
1651         /* Reevaluate working area address based on MMU state*/
1652         if (target->working_areas == NULL) {
1653                 int retval;
1654                 int enabled;
1655
1656                 retval = target->type->mmu(target, &enabled);
1657                 if (retval != ERROR_OK)
1658                         return retval;
1659
1660                 if (!enabled) {
1661                         if (target->working_area_phys_spec) {
1662                                 LOG_DEBUG("MMU disabled, using physical "
1663                                         "address for working memory 0x%08"PRIx32,
1664                                         target->working_area_phys);
1665                                 target->working_area = target->working_area_phys;
1666                         } else {
1667                                 LOG_ERROR("No working memory available. "
1668                                         "Specify -work-area-phys to target.");
1669                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1670                         }
1671                 } else {
1672                         if (target->working_area_virt_spec) {
1673                                 LOG_DEBUG("MMU enabled, using virtual "
1674                                         "address for working memory 0x%08"PRIx32,
1675                                         target->working_area_virt);
1676                                 target->working_area = target->working_area_virt;
1677                         } else {
1678                                 LOG_ERROR("No working memory available. "
1679                                         "Specify -work-area-virt to target.");
1680                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1681                         }
1682                 }
1683
1684                 /* Set up initial working area on first call */
1685                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1686                 if (new_wa) {
1687                         new_wa->next = NULL;
1688                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1689                         new_wa->address = target->working_area;
1690                         new_wa->backup = NULL;
1691                         new_wa->user = NULL;
1692                         new_wa->free = true;
1693                 }
1694
1695                 target->working_areas = new_wa;
1696         }
1697
1698         /* only allocate multiples of 4 byte */
1699         if (size % 4)
1700                 size = (size + 3) & (~3UL);
1701
1702         struct working_area *c = target->working_areas;
1703
1704         /* Find the first large enough working area */
1705         while (c) {
1706                 if (c->free && c->size >= size)
1707                         break;
1708                 c = c->next;
1709         }
1710
1711         if (c == NULL)
1712                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1713
1714         /* Split the working area into the requested size */
1715         target_split_working_area(c, size);
1716
1717         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1718
1719         if (target->backup_working_area) {
1720                 if (c->backup == NULL) {
1721                         c->backup = malloc(c->size);
1722                         if (c->backup == NULL)
1723                                 return ERROR_FAIL;
1724                 }
1725
1726                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1727                 if (retval != ERROR_OK)
1728                         return retval;
1729         }
1730
1731         /* mark as used, and return the new (reused) area */
1732         c->free = false;
1733         *area = c;
1734
1735         /* user pointer */
1736         c->user = area;
1737
1738         print_wa_layout(target);
1739
1740         return ERROR_OK;
1741 }
1742
1743 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1744 {
1745         int retval;
1746
1747         retval = target_alloc_working_area_try(target, size, area);
1748         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1749                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1750         return retval;
1751
1752 }
1753
1754 static int target_restore_working_area(struct target *target, struct working_area *area)
1755 {
1756         int retval = ERROR_OK;
1757
1758         if (target->backup_working_area && area->backup != NULL) {
1759                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1760                 if (retval != ERROR_OK)
1761                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1762                                         area->size, area->address);
1763         }
1764
1765         return retval;
1766 }
1767
1768 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1769 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1770 {
1771         int retval = ERROR_OK;
1772
1773         if (area->free)
1774                 return retval;
1775
1776         if (restore) {
1777                 retval = target_restore_working_area(target, area);
1778                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1779                 if (retval != ERROR_OK)
1780                         return retval;
1781         }
1782
1783         area->free = true;
1784
1785         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1786                         area->size, area->address);
1787
1788         /* mark user pointer invalid */
1789         /* TODO: Is this really safe? It points to some previous caller's memory.
1790          * How could we know that the area pointer is still in that place and not
1791          * some other vital data? What's the purpose of this, anyway? */
1792         *area->user = NULL;
1793         area->user = NULL;
1794
1795         target_merge_working_areas(target);
1796
1797         print_wa_layout(target);
1798
1799         return retval;
1800 }
1801
1802 int target_free_working_area(struct target *target, struct working_area *area)
1803 {
1804         return target_free_working_area_restore(target, area, 1);
1805 }
1806
1807 /* free resources and restore memory, if restoring memory fails,
1808  * free up resources anyway
1809  */
1810 static void target_free_all_working_areas_restore(struct target *target, int restore)
1811 {
1812         struct working_area *c = target->working_areas;
1813
1814         LOG_DEBUG("freeing all working areas");
1815
1816         /* Loop through all areas, restoring the allocated ones and marking them as free */
1817         while (c) {
1818                 if (!c->free) {
1819                         if (restore)
1820                                 target_restore_working_area(target, c);
1821                         c->free = true;
1822                         *c->user = NULL; /* Same as above */
1823                         c->user = NULL;
1824                 }
1825                 c = c->next;
1826         }
1827
1828         /* Run a merge pass to combine all areas into one */
1829         target_merge_working_areas(target);
1830
1831         print_wa_layout(target);
1832 }
1833
1834 void target_free_all_working_areas(struct target *target)
1835 {
1836         target_free_all_working_areas_restore(target, 1);
1837 }
1838
1839 /* Find the largest number of bytes that can be allocated */
1840 uint32_t target_get_working_area_avail(struct target *target)
1841 {
1842         struct working_area *c = target->working_areas;
1843         uint32_t max_size = 0;
1844
1845         if (c == NULL)
1846                 return target->working_area_size;
1847
1848         while (c) {
1849                 if (c->free && max_size < c->size)
1850                         max_size = c->size;
1851
1852                 c = c->next;
1853         }
1854
1855         return max_size;
1856 }
1857
1858 int target_arch_state(struct target *target)
1859 {
1860         int retval;
1861         if (target == NULL) {
1862                 LOG_USER("No target has been configured");
1863                 return ERROR_OK;
1864         }
1865
1866         LOG_USER("target state: %s", target_state_name(target));
1867
1868         if (target->state != TARGET_HALTED)
1869                 return ERROR_OK;
1870
1871         retval = target->type->arch_state(target);
1872         return retval;
1873 }
1874
1875 static int target_get_gdb_fileio_info_default(struct target *target,
1876                 struct gdb_fileio_info *fileio_info)
1877 {
1878         /* If target does not support semi-hosting function, target
1879            has no need to provide .get_gdb_fileio_info callback.
1880            It just return ERROR_FAIL and gdb_server will return "Txx"
1881            as target halted every time.  */
1882         return ERROR_FAIL;
1883 }
1884
1885 static int target_gdb_fileio_end_default(struct target *target,
1886                 int retcode, int fileio_errno, bool ctrl_c)
1887 {
1888         return ERROR_OK;
1889 }
1890
1891 static int target_profiling_default(struct target *target, uint32_t *samples,
1892                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1893 {
1894         struct timeval timeout, now;
1895
1896         gettimeofday(&timeout, NULL);
1897         timeval_add_time(&timeout, seconds, 0);
1898
1899         LOG_INFO("Starting profiling. Halting and resuming the"
1900                         " target as often as we can...");
1901
1902         uint32_t sample_count = 0;
1903         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1904         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1905
1906         int retval = ERROR_OK;
1907         for (;;) {
1908                 target_poll(target);
1909                 if (target->state == TARGET_HALTED) {
1910                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1911                         samples[sample_count++] = t;
1912                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1913                         retval = target_resume(target, 1, 0, 0, 0);
1914                         target_poll(target);
1915                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1916                 } else if (target->state == TARGET_RUNNING) {
1917                         /* We want to quickly sample the PC. */
1918                         retval = target_halt(target);
1919                 } else {
1920                         LOG_INFO("Target not halted or running");
1921                         retval = ERROR_OK;
1922                         break;
1923                 }
1924
1925                 if (retval != ERROR_OK)
1926                         break;
1927
1928                 gettimeofday(&now, NULL);
1929                 if ((sample_count >= max_num_samples) ||
1930                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1931                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1932                         break;
1933                 }
1934         }
1935
1936         *num_samples = sample_count;
1937         return retval;
1938 }
1939
1940 /* Single aligned words are guaranteed to use 16 or 32 bit access
1941  * mode respectively, otherwise data is handled as quickly as
1942  * possible
1943  */
1944 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1945 {
1946         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1947                         (int)size, (unsigned)address);
1948
1949         if (!target_was_examined(target)) {
1950                 LOG_ERROR("Target not examined yet");
1951                 return ERROR_FAIL;
1952         }
1953
1954         if (size == 0)
1955                 return ERROR_OK;
1956
1957         if ((address + size - 1) < address) {
1958                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1959                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1960                                   (unsigned)address,
1961                                   (unsigned)size);
1962                 return ERROR_FAIL;
1963         }
1964
1965         return target->type->write_buffer(target, address, size, buffer);
1966 }
1967
1968 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1969 {
1970         uint32_t size;
1971
1972         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1973          * will have something to do with the size we leave to it. */
1974         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1975                 if (address & size) {
1976                         int retval = target_write_memory(target, address, size, 1, buffer);
1977                         if (retval != ERROR_OK)
1978                                 return retval;
1979                         address += size;
1980                         count -= size;
1981                         buffer += size;
1982                 }
1983         }
1984
1985         /* Write the data with as large access size as possible. */
1986         for (; size > 0; size /= 2) {
1987                 uint32_t aligned = count - count % size;
1988                 if (aligned > 0) {
1989                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1990                         if (retval != ERROR_OK)
1991                                 return retval;
1992                         address += aligned;
1993                         count -= aligned;
1994                         buffer += aligned;
1995                 }
1996         }
1997
1998         return ERROR_OK;
1999 }
2000
2001 /* Single aligned words are guaranteed to use 16 or 32 bit access
2002  * mode respectively, otherwise data is handled as quickly as
2003  * possible
2004  */
2005 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2006 {
2007         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2008                           (int)size, (unsigned)address);
2009
2010         if (!target_was_examined(target)) {
2011                 LOG_ERROR("Target not examined yet");
2012                 return ERROR_FAIL;
2013         }
2014
2015         if (size == 0)
2016                 return ERROR_OK;
2017
2018         if ((address + size - 1) < address) {
2019                 /* GDB can request this when e.g. PC is 0xfffffffc*/
2020                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2021                                   address,
2022                                   size);
2023                 return ERROR_FAIL;
2024         }
2025
2026         return target->type->read_buffer(target, address, size, buffer);
2027 }
2028
2029 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2030 {
2031         uint32_t size;
2032
2033         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2034          * will have something to do with the size we leave to it. */
2035         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2036                 if (address & size) {
2037                         int retval = target_read_memory(target, address, size, 1, buffer);
2038                         if (retval != ERROR_OK)
2039                                 return retval;
2040                         address += size;
2041                         count -= size;
2042                         buffer += size;
2043                 }
2044         }
2045
2046         /* Read the data with as large access size as possible. */
2047         for (; size > 0; size /= 2) {
2048                 uint32_t aligned = count - count % size;
2049                 if (aligned > 0) {
2050                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2051                         if (retval != ERROR_OK)
2052                                 return retval;
2053                         address += aligned;
2054                         count -= aligned;
2055                         buffer += aligned;
2056                 }
2057         }
2058
2059         return ERROR_OK;
2060 }
2061
2062 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2063 {
2064         uint8_t *buffer;
2065         int retval;
2066         uint32_t i;
2067         uint32_t checksum = 0;
2068         if (!target_was_examined(target)) {
2069                 LOG_ERROR("Target not examined yet");
2070                 return ERROR_FAIL;
2071         }
2072
2073         retval = target->type->checksum_memory(target, address, size, &checksum);
2074         if (retval != ERROR_OK) {
2075                 buffer = malloc(size);
2076                 if (buffer == NULL) {
2077                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2078                         return ERROR_COMMAND_SYNTAX_ERROR;
2079                 }
2080                 retval = target_read_buffer(target, address, size, buffer);
2081                 if (retval != ERROR_OK) {
2082                         free(buffer);
2083                         return retval;
2084                 }
2085
2086                 /* convert to target endianness */
2087                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2088                         uint32_t target_data;
2089                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2090                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2091                 }
2092
2093                 retval = image_calculate_checksum(buffer, size, &checksum);
2094                 free(buffer);
2095         }
2096
2097         *crc = checksum;
2098
2099         return retval;
2100 }
2101
2102 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2103 {
2104         int retval;
2105         if (!target_was_examined(target)) {
2106                 LOG_ERROR("Target not examined yet");
2107                 return ERROR_FAIL;
2108         }
2109
2110         if (target->type->blank_check_memory == 0)
2111                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2112
2113         retval = target->type->blank_check_memory(target, address, size, blank);
2114
2115         return retval;
2116 }
2117
2118 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2119 {
2120         uint8_t value_buf[8];
2121         if (!target_was_examined(target)) {
2122                 LOG_ERROR("Target not examined yet");
2123                 return ERROR_FAIL;
2124         }
2125
2126         int retval = target_read_memory(target, address, 8, 1, value_buf);
2127
2128         if (retval == ERROR_OK) {
2129                 *value = target_buffer_get_u64(target, value_buf);
2130                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2131                                   address,
2132                                   *value);
2133         } else {
2134                 *value = 0x0;
2135                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2136                                   address);
2137         }
2138
2139         return retval;
2140 }
2141
2142 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2143 {
2144         uint8_t value_buf[4];
2145         if (!target_was_examined(target)) {
2146                 LOG_ERROR("Target not examined yet");
2147                 return ERROR_FAIL;
2148         }
2149
2150         int retval = target_read_memory(target, address, 4, 1, value_buf);
2151
2152         if (retval == ERROR_OK) {
2153                 *value = target_buffer_get_u32(target, value_buf);
2154                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2155                                   address,
2156                                   *value);
2157         } else {
2158                 *value = 0x0;
2159                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2160                                   address);
2161         }
2162
2163         return retval;
2164 }
2165
2166 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2167 {
2168         uint8_t value_buf[2];
2169         if (!target_was_examined(target)) {
2170                 LOG_ERROR("Target not examined yet");
2171                 return ERROR_FAIL;
2172         }
2173
2174         int retval = target_read_memory(target, address, 2, 1, value_buf);
2175
2176         if (retval == ERROR_OK) {
2177                 *value = target_buffer_get_u16(target, value_buf);
2178                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2179                                   address,
2180                                   *value);
2181         } else {
2182                 *value = 0x0;
2183                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2184                                   address);
2185         }
2186
2187         return retval;
2188 }
2189
2190 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2191 {
2192         if (!target_was_examined(target)) {
2193                 LOG_ERROR("Target not examined yet");
2194                 return ERROR_FAIL;
2195         }
2196
2197         int retval = target_read_memory(target, address, 1, 1, value);
2198
2199         if (retval == ERROR_OK) {
2200                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2201                                   address,
2202                                   *value);
2203         } else {
2204                 *value = 0x0;
2205                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2206                                   address);
2207         }
2208
2209         return retval;
2210 }
2211
2212 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2213 {
2214         int retval;
2215         uint8_t value_buf[8];
2216         if (!target_was_examined(target)) {
2217                 LOG_ERROR("Target not examined yet");
2218                 return ERROR_FAIL;
2219         }
2220
2221         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2222                           address,
2223                           value);
2224
2225         target_buffer_set_u64(target, value_buf, value);
2226         retval = target_write_memory(target, address, 8, 1, value_buf);
2227         if (retval != ERROR_OK)
2228                 LOG_DEBUG("failed: %i", retval);
2229
2230         return retval;
2231 }
2232
2233 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2234 {
2235         int retval;
2236         uint8_t value_buf[4];
2237         if (!target_was_examined(target)) {
2238                 LOG_ERROR("Target not examined yet");
2239                 return ERROR_FAIL;
2240         }
2241
2242         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2243                           address,
2244                           value);
2245
2246         target_buffer_set_u32(target, value_buf, value);
2247         retval = target_write_memory(target, address, 4, 1, value_buf);
2248         if (retval != ERROR_OK)
2249                 LOG_DEBUG("failed: %i", retval);
2250
2251         return retval;
2252 }
2253
2254 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2255 {
2256         int retval;
2257         uint8_t value_buf[2];
2258         if (!target_was_examined(target)) {
2259                 LOG_ERROR("Target not examined yet");
2260                 return ERROR_FAIL;
2261         }
2262
2263         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2264                           address,
2265                           value);
2266
2267         target_buffer_set_u16(target, value_buf, value);
2268         retval = target_write_memory(target, address, 2, 1, value_buf);
2269         if (retval != ERROR_OK)
2270                 LOG_DEBUG("failed: %i", retval);
2271
2272         return retval;
2273 }
2274
2275 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2276 {
2277         int retval;
2278         if (!target_was_examined(target)) {
2279                 LOG_ERROR("Target not examined yet");
2280                 return ERROR_FAIL;
2281         }
2282
2283         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2284                           address, value);
2285
2286         retval = target_write_memory(target, address, 1, 1, &value);
2287         if (retval != ERROR_OK)
2288                 LOG_DEBUG("failed: %i", retval);
2289
2290         return retval;
2291 }
2292
2293 static int find_target(struct command_context *cmd_ctx, const char *name)
2294 {
2295         struct target *target = get_target(name);
2296         if (target == NULL) {
2297                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2298                 return ERROR_FAIL;
2299         }
2300         if (!target->tap->enabled) {
2301                 LOG_USER("Target: TAP %s is disabled, "
2302                          "can't be the current target\n",
2303                          target->tap->dotted_name);
2304                 return ERROR_FAIL;
2305         }
2306
2307         cmd_ctx->current_target = target->target_number;
2308         return ERROR_OK;
2309 }
2310
2311
2312 COMMAND_HANDLER(handle_targets_command)
2313 {
2314         int retval = ERROR_OK;
2315         if (CMD_ARGC == 1) {
2316                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2317                 if (retval == ERROR_OK) {
2318                         /* we're done! */
2319                         return retval;
2320                 }
2321         }
2322
2323         struct target *target = all_targets;
2324         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2325         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2326         while (target) {
2327                 const char *state;
2328                 char marker = ' ';
2329
2330                 if (target->tap->enabled)
2331                         state = target_state_name(target);
2332                 else
2333                         state = "tap-disabled";
2334
2335                 if (CMD_CTX->current_target == target->target_number)
2336                         marker = '*';
2337
2338                 /* keep columns lined up to match the headers above */
2339                 command_print(CMD_CTX,
2340                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2341                                 target->target_number,
2342                                 marker,
2343                                 target_name(target),
2344                                 target_type_name(target),
2345                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2346                                         target->endianness)->name,
2347                                 target->tap->dotted_name,
2348                                 state);
2349                 target = target->next;
2350         }
2351
2352         return retval;
2353 }
2354
2355 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2356
2357 static int powerDropout;
2358 static int srstAsserted;
2359
2360 static int runPowerRestore;
2361 static int runPowerDropout;
2362 static int runSrstAsserted;
2363 static int runSrstDeasserted;
2364
2365 static int sense_handler(void)
2366 {
2367         static int prevSrstAsserted;
2368         static int prevPowerdropout;
2369
2370         int retval = jtag_power_dropout(&powerDropout);
2371         if (retval != ERROR_OK)
2372                 return retval;
2373
2374         int powerRestored;
2375         powerRestored = prevPowerdropout && !powerDropout;
2376         if (powerRestored)
2377                 runPowerRestore = 1;
2378
2379         long long current = timeval_ms();
2380         static long long lastPower;
2381         int waitMore = lastPower + 2000 > current;
2382         if (powerDropout && !waitMore) {
2383                 runPowerDropout = 1;
2384                 lastPower = current;
2385         }
2386
2387         retval = jtag_srst_asserted(&srstAsserted);
2388         if (retval != ERROR_OK)
2389                 return retval;
2390
2391         int srstDeasserted;
2392         srstDeasserted = prevSrstAsserted && !srstAsserted;
2393
2394         static long long lastSrst;
2395         waitMore = lastSrst + 2000 > current;
2396         if (srstDeasserted && !waitMore) {
2397                 runSrstDeasserted = 1;
2398                 lastSrst = current;
2399         }
2400
2401         if (!prevSrstAsserted && srstAsserted)
2402                 runSrstAsserted = 1;
2403
2404         prevSrstAsserted = srstAsserted;
2405         prevPowerdropout = powerDropout;
2406
2407         if (srstDeasserted || powerRestored) {
2408                 /* Other than logging the event we can't do anything here.
2409                  * Issuing a reset is a particularly bad idea as we might
2410                  * be inside a reset already.
2411                  */
2412         }
2413
2414         return ERROR_OK;
2415 }
2416
2417 /* process target state changes */
2418 static int handle_target(void *priv)
2419 {
2420         Jim_Interp *interp = (Jim_Interp *)priv;
2421         int retval = ERROR_OK;
2422
2423         if (!is_jtag_poll_safe()) {
2424                 /* polling is disabled currently */
2425                 return ERROR_OK;
2426         }
2427
2428         /* we do not want to recurse here... */
2429         static int recursive;
2430         if (!recursive) {
2431                 recursive = 1;
2432                 sense_handler();
2433                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2434                  * We need to avoid an infinite loop/recursion here and we do that by
2435                  * clearing the flags after running these events.
2436                  */
2437                 int did_something = 0;
2438                 if (runSrstAsserted) {
2439                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2440                         Jim_Eval(interp, "srst_asserted");
2441                         did_something = 1;
2442                 }
2443                 if (runSrstDeasserted) {
2444                         Jim_Eval(interp, "srst_deasserted");
2445                         did_something = 1;
2446                 }
2447                 if (runPowerDropout) {
2448                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2449                         Jim_Eval(interp, "power_dropout");
2450                         did_something = 1;
2451                 }
2452                 if (runPowerRestore) {
2453                         Jim_Eval(interp, "power_restore");
2454                         did_something = 1;
2455                 }
2456
2457                 if (did_something) {
2458                         /* clear detect flags */
2459                         sense_handler();
2460                 }
2461
2462                 /* clear action flags */
2463
2464                 runSrstAsserted = 0;
2465                 runSrstDeasserted = 0;
2466                 runPowerRestore = 0;
2467                 runPowerDropout = 0;
2468
2469                 recursive = 0;
2470         }
2471
2472         /* Poll targets for state changes unless that's globally disabled.
2473          * Skip targets that are currently disabled.
2474          */
2475         for (struct target *target = all_targets;
2476                         is_jtag_poll_safe() && target;
2477                         target = target->next) {
2478
2479                 if (!target_was_examined(target))
2480                         continue;
2481
2482                 if (!target->tap->enabled)
2483                         continue;
2484
2485                 if (target->backoff.times > target->backoff.count) {
2486                         /* do not poll this time as we failed previously */
2487                         target->backoff.count++;
2488                         continue;
2489                 }
2490                 target->backoff.count = 0;
2491
2492                 /* only poll target if we've got power and srst isn't asserted */
2493                 if (!powerDropout && !srstAsserted) {
2494                         /* polling may fail silently until the target has been examined */
2495                         retval = target_poll(target);
2496                         if (retval != ERROR_OK) {
2497                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2498                                 if (target->backoff.times * polling_interval < 5000) {
2499                                         target->backoff.times *= 2;
2500                                         target->backoff.times++;
2501                                 }
2502                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2503                                                 target_name(target),
2504                                                 target->backoff.times * polling_interval);
2505
2506                                 /* Tell GDB to halt the debugger. This allows the user to
2507                                  * run monitor commands to handle the situation.
2508                                  */
2509                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2510                                 return retval;
2511                         }
2512                         /* Since we succeeded, we reset backoff count */
2513                         if (target->backoff.times > 0) {
2514                                 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2515                                 target_reset_examined(target);
2516                                 retval = target_examine_one(target);
2517                                 /* Target examination could have failed due to unstable connection,
2518                                  * but we set the examined flag anyway to repoll it later */
2519                                 if (retval != ERROR_OK) {
2520                                         target->examined = true;
2521                                         return retval;
2522                                 }
2523                         }
2524
2525                         target->backoff.times = 0;
2526                 }
2527         }
2528
2529         return retval;
2530 }
2531
2532 COMMAND_HANDLER(handle_reg_command)
2533 {
2534         struct target *target;
2535         struct reg *reg = NULL;
2536         unsigned count = 0;
2537         char *value;
2538
2539         LOG_DEBUG("-");
2540
2541         target = get_current_target(CMD_CTX);
2542
2543         /* list all available registers for the current target */
2544         if (CMD_ARGC == 0) {
2545                 struct reg_cache *cache = target->reg_cache;
2546
2547                 count = 0;
2548                 while (cache) {
2549                         unsigned i;
2550
2551                         command_print(CMD_CTX, "===== %s", cache->name);
2552
2553                         for (i = 0, reg = cache->reg_list;
2554                                         i < cache->num_regs;
2555                                         i++, reg++, count++) {
2556                                 /* only print cached values if they are valid */
2557                                 if (reg->valid) {
2558                                         value = buf_to_str(reg->value,
2559                                                         reg->size, 16);
2560                                         command_print(CMD_CTX,
2561                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2562                                                         count, reg->name,
2563                                                         reg->size, value,
2564                                                         reg->dirty
2565                                                                 ? " (dirty)"
2566                                                                 : "");
2567                                         free(value);
2568                                 } else {
2569                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2570                                                           count, reg->name,
2571                                                           reg->size) ;
2572                                 }
2573                         }
2574                         cache = cache->next;
2575                 }
2576
2577                 return ERROR_OK;
2578         }
2579
2580         /* access a single register by its ordinal number */
2581         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2582                 unsigned num;
2583                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2584
2585                 struct reg_cache *cache = target->reg_cache;
2586                 count = 0;
2587                 while (cache) {
2588                         unsigned i;
2589                         for (i = 0; i < cache->num_regs; i++) {
2590                                 if (count++ == num) {
2591                                         reg = &cache->reg_list[i];
2592                                         break;
2593                                 }
2594                         }
2595                         if (reg)
2596                                 break;
2597                         cache = cache->next;
2598                 }
2599
2600                 if (!reg) {
2601                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2602                                         "has only %i registers (0 - %i)", num, count, count - 1);
2603                         return ERROR_OK;
2604                 }
2605         } else {
2606                 /* access a single register by its name */
2607                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2608
2609                 if (!reg) {
2610                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2611                         return ERROR_OK;
2612                 }
2613         }
2614
2615         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2616
2617         /* display a register */
2618         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2619                         && (CMD_ARGV[1][0] <= '9')))) {
2620                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2621                         reg->valid = 0;
2622
2623                 if (reg->valid == 0)
2624                         reg->type->get(reg);
2625                 value = buf_to_str(reg->value, reg->size, 16);
2626                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2627                 free(value);
2628                 return ERROR_OK;
2629         }
2630
2631         /* set register value */
2632         if (CMD_ARGC == 2) {
2633                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2634                 if (buf == NULL)
2635                         return ERROR_FAIL;
2636                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2637
2638                 reg->type->set(reg, buf);
2639
2640                 value = buf_to_str(reg->value, reg->size, 16);
2641                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2642                 free(value);
2643
2644                 free(buf);
2645
2646                 return ERROR_OK;
2647         }
2648
2649         return ERROR_COMMAND_SYNTAX_ERROR;
2650 }
2651
2652 COMMAND_HANDLER(handle_poll_command)
2653 {
2654         int retval = ERROR_OK;
2655         struct target *target = get_current_target(CMD_CTX);
2656
2657         if (CMD_ARGC == 0) {
2658                 command_print(CMD_CTX, "background polling: %s",
2659                                 jtag_poll_get_enabled() ? "on" : "off");
2660                 command_print(CMD_CTX, "TAP: %s (%s)",
2661                                 target->tap->dotted_name,
2662                                 target->tap->enabled ? "enabled" : "disabled");
2663                 if (!target->tap->enabled)
2664                         return ERROR_OK;
2665                 retval = target_poll(target);
2666                 if (retval != ERROR_OK)
2667                         return retval;
2668                 retval = target_arch_state(target);
2669                 if (retval != ERROR_OK)
2670                         return retval;
2671         } else if (CMD_ARGC == 1) {
2672                 bool enable;
2673                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2674                 jtag_poll_set_enabled(enable);
2675         } else
2676                 return ERROR_COMMAND_SYNTAX_ERROR;
2677
2678         return retval;
2679 }
2680
2681 COMMAND_HANDLER(handle_wait_halt_command)
2682 {
2683         if (CMD_ARGC > 1)
2684                 return ERROR_COMMAND_SYNTAX_ERROR;
2685
2686         unsigned ms = DEFAULT_HALT_TIMEOUT;
2687         if (1 == CMD_ARGC) {
2688                 int retval = parse_uint(CMD_ARGV[0], &ms);
2689                 if (ERROR_OK != retval)
2690                         return ERROR_COMMAND_SYNTAX_ERROR;
2691         }
2692
2693         struct target *target = get_current_target(CMD_CTX);
2694         return target_wait_state(target, TARGET_HALTED, ms);
2695 }
2696
2697 /* wait for target state to change. The trick here is to have a low
2698  * latency for short waits and not to suck up all the CPU time
2699  * on longer waits.
2700  *
2701  * After 500ms, keep_alive() is invoked
2702  */
2703 int target_wait_state(struct target *target, enum target_state state, int ms)
2704 {
2705         int retval;
2706         long long then = 0, cur;
2707         int once = 1;
2708
2709         for (;;) {
2710                 retval = target_poll(target);
2711                 if (retval != ERROR_OK)
2712                         return retval;
2713                 if (target->state == state)
2714                         break;
2715                 cur = timeval_ms();
2716                 if (once) {
2717                         once = 0;
2718                         then = timeval_ms();
2719                         LOG_DEBUG("waiting for target %s...",
2720                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2721                 }
2722
2723                 if (cur-then > 500)
2724                         keep_alive();
2725
2726                 if ((cur-then) > ms) {
2727                         LOG_ERROR("timed out while waiting for target %s",
2728                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2729                         return ERROR_FAIL;
2730                 }
2731         }
2732
2733         return ERROR_OK;
2734 }
2735
2736 COMMAND_HANDLER(handle_halt_command)
2737 {
2738         LOG_DEBUG("-");
2739
2740         struct target *target = get_current_target(CMD_CTX);
2741         int retval = target_halt(target);
2742         if (ERROR_OK != retval)
2743                 return retval;
2744
2745         if (CMD_ARGC == 1) {
2746                 unsigned wait_local;
2747                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2748                 if (ERROR_OK != retval)
2749                         return ERROR_COMMAND_SYNTAX_ERROR;
2750                 if (!wait_local)
2751                         return ERROR_OK;
2752         }
2753
2754         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2755 }
2756
2757 COMMAND_HANDLER(handle_soft_reset_halt_command)
2758 {
2759         struct target *target = get_current_target(CMD_CTX);
2760
2761         LOG_USER("requesting target halt and executing a soft reset");
2762
2763         target_soft_reset_halt(target);
2764
2765         return ERROR_OK;
2766 }
2767
2768 COMMAND_HANDLER(handle_reset_command)
2769 {
2770         if (CMD_ARGC > 1)
2771                 return ERROR_COMMAND_SYNTAX_ERROR;
2772
2773         enum target_reset_mode reset_mode = RESET_RUN;
2774         if (CMD_ARGC == 1) {
2775                 const Jim_Nvp *n;
2776                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2777                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2778                         return ERROR_COMMAND_SYNTAX_ERROR;
2779                 reset_mode = n->value;
2780         }
2781
2782         /* reset *all* targets */
2783         return target_process_reset(CMD_CTX, reset_mode);
2784 }
2785
2786
2787 COMMAND_HANDLER(handle_resume_command)
2788 {
2789         int current = 1;
2790         if (CMD_ARGC > 1)
2791                 return ERROR_COMMAND_SYNTAX_ERROR;
2792
2793         struct target *target = get_current_target(CMD_CTX);
2794
2795         /* with no CMD_ARGV, resume from current pc, addr = 0,
2796          * with one arguments, addr = CMD_ARGV[0],
2797          * handle breakpoints, not debugging */
2798         uint32_t addr = 0;
2799         if (CMD_ARGC == 1) {
2800                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2801                 current = 0;
2802         }
2803
2804         return target_resume(target, current, addr, 1, 0);
2805 }
2806
2807 COMMAND_HANDLER(handle_step_command)
2808 {
2809         if (CMD_ARGC > 1)
2810                 return ERROR_COMMAND_SYNTAX_ERROR;
2811
2812         LOG_DEBUG("-");
2813
2814         /* with no CMD_ARGV, step from current pc, addr = 0,
2815          * with one argument addr = CMD_ARGV[0],
2816          * handle breakpoints, debugging */
2817         uint32_t addr = 0;
2818         int current_pc = 1;
2819         if (CMD_ARGC == 1) {
2820                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2821                 current_pc = 0;
2822         }
2823
2824         struct target *target = get_current_target(CMD_CTX);
2825
2826         return target->type->step(target, current_pc, addr, 1);
2827 }
2828
2829 static void handle_md_output(struct command_context *cmd_ctx,
2830                 struct target *target, uint32_t address, unsigned size,
2831                 unsigned count, const uint8_t *buffer)
2832 {
2833         const unsigned line_bytecnt = 32;
2834         unsigned line_modulo = line_bytecnt / size;
2835
2836         char output[line_bytecnt * 4 + 1];
2837         unsigned output_len = 0;
2838
2839         const char *value_fmt;
2840         switch (size) {
2841         case 4:
2842                 value_fmt = "%8.8x ";
2843                 break;
2844         case 2:
2845                 value_fmt = "%4.4x ";
2846                 break;
2847         case 1:
2848                 value_fmt = "%2.2x ";
2849                 break;
2850         default:
2851                 /* "can't happen", caller checked */
2852                 LOG_ERROR("invalid memory read size: %u", size);
2853                 return;
2854         }
2855
2856         for (unsigned i = 0; i < count; i++) {
2857                 if (i % line_modulo == 0) {
2858                         output_len += snprintf(output + output_len,
2859                                         sizeof(output) - output_len,
2860                                         "0x%8.8x: ",
2861                                         (unsigned)(address + (i*size)));
2862                 }
2863
2864                 uint32_t value = 0;
2865                 const uint8_t *value_ptr = buffer + i * size;
2866                 switch (size) {
2867                 case 4:
2868                         value = target_buffer_get_u32(target, value_ptr);
2869                         break;
2870                 case 2:
2871                         value = target_buffer_get_u16(target, value_ptr);
2872                         break;
2873                 case 1:
2874                         value = *value_ptr;
2875                 }
2876                 output_len += snprintf(output + output_len,
2877                                 sizeof(output) - output_len,
2878                                 value_fmt, value);
2879
2880                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2881                         command_print(cmd_ctx, "%s", output);
2882                         output_len = 0;
2883                 }
2884         }
2885 }
2886
2887 COMMAND_HANDLER(handle_md_command)
2888 {
2889         if (CMD_ARGC < 1)
2890                 return ERROR_COMMAND_SYNTAX_ERROR;
2891
2892         unsigned size = 0;
2893         switch (CMD_NAME[2]) {
2894         case 'w':
2895                 size = 4;
2896                 break;
2897         case 'h':
2898                 size = 2;
2899                 break;
2900         case 'b':
2901                 size = 1;
2902                 break;
2903         default:
2904                 return ERROR_COMMAND_SYNTAX_ERROR;
2905         }
2906
2907         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2908         int (*fn)(struct target *target,
2909                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2910         if (physical) {
2911                 CMD_ARGC--;
2912                 CMD_ARGV++;
2913                 fn = target_read_phys_memory;
2914         } else
2915                 fn = target_read_memory;
2916         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2917                 return ERROR_COMMAND_SYNTAX_ERROR;
2918
2919         uint32_t address;
2920         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2921
2922         unsigned count = 1;
2923         if (CMD_ARGC == 2)
2924                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2925
2926         uint8_t *buffer = calloc(count, size);
2927
2928         struct target *target = get_current_target(CMD_CTX);
2929         int retval = fn(target, address, size, count, buffer);
2930         if (ERROR_OK == retval)
2931                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2932
2933         free(buffer);
2934
2935         return retval;
2936 }
2937
2938 typedef int (*target_write_fn)(struct target *target,
2939                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2940
2941 static int target_fill_mem(struct target *target,
2942                 uint32_t address,
2943                 target_write_fn fn,
2944                 unsigned data_size,
2945                 /* value */
2946                 uint32_t b,
2947                 /* count */
2948                 unsigned c)
2949 {
2950         /* We have to write in reasonably large chunks to be able
2951          * to fill large memory areas with any sane speed */
2952         const unsigned chunk_size = 16384;
2953         uint8_t *target_buf = malloc(chunk_size * data_size);
2954         if (target_buf == NULL) {
2955                 LOG_ERROR("Out of memory");
2956                 return ERROR_FAIL;
2957         }
2958
2959         for (unsigned i = 0; i < chunk_size; i++) {
2960                 switch (data_size) {
2961                 case 4:
2962                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2963                         break;
2964                 case 2:
2965                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2966                         break;
2967                 case 1:
2968                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2969                         break;
2970                 default:
2971                         exit(-1);
2972                 }
2973         }
2974
2975         int retval = ERROR_OK;
2976
2977         for (unsigned x = 0; x < c; x += chunk_size) {
2978                 unsigned current;
2979                 current = c - x;
2980                 if (current > chunk_size)
2981                         current = chunk_size;
2982                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2983                 if (retval != ERROR_OK)
2984                         break;
2985                 /* avoid GDB timeouts */
2986                 keep_alive();
2987         }
2988         free(target_buf);
2989
2990         return retval;
2991 }
2992
2993
2994 COMMAND_HANDLER(handle_mw_command)
2995 {
2996         if (CMD_ARGC < 2)
2997                 return ERROR_COMMAND_SYNTAX_ERROR;
2998         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2999         target_write_fn fn;
3000         if (physical) {
3001                 CMD_ARGC--;
3002                 CMD_ARGV++;
3003                 fn = target_write_phys_memory;
3004         } else
3005                 fn = target_write_memory;
3006         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3007                 return ERROR_COMMAND_SYNTAX_ERROR;
3008
3009         uint32_t address;
3010         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3011
3012         uint32_t value;
3013         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3014
3015         unsigned count = 1;
3016         if (CMD_ARGC == 3)
3017                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3018
3019         struct target *target = get_current_target(CMD_CTX);
3020         unsigned wordsize;
3021         switch (CMD_NAME[2]) {
3022                 case 'w':
3023                         wordsize = 4;
3024                         break;
3025                 case 'h':
3026                         wordsize = 2;
3027                         break;
3028                 case 'b':
3029                         wordsize = 1;
3030                         break;
3031                 default:
3032                         return ERROR_COMMAND_SYNTAX_ERROR;
3033         }
3034
3035         return target_fill_mem(target, address, fn, wordsize, value, count);
3036 }
3037
3038 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3039                 uint32_t *min_address, uint32_t *max_address)
3040 {
3041         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3042                 return ERROR_COMMAND_SYNTAX_ERROR;
3043
3044         /* a base address isn't always necessary,
3045          * default to 0x0 (i.e. don't relocate) */
3046         if (CMD_ARGC >= 2) {
3047                 uint32_t addr;
3048                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3049                 image->base_address = addr;
3050                 image->base_address_set = 1;
3051         } else
3052                 image->base_address_set = 0;
3053
3054         image->start_address_set = 0;
3055
3056         if (CMD_ARGC >= 4)
3057                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3058         if (CMD_ARGC == 5) {
3059                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3060                 /* use size (given) to find max (required) */
3061                 *max_address += *min_address;
3062         }
3063
3064         if (*min_address > *max_address)
3065                 return ERROR_COMMAND_SYNTAX_ERROR;
3066
3067         return ERROR_OK;
3068 }
3069
3070 COMMAND_HANDLER(handle_load_image_command)
3071 {
3072         uint8_t *buffer;
3073         size_t buf_cnt;
3074         uint32_t image_size;
3075         uint32_t min_address = 0;
3076         uint32_t max_address = 0xffffffff;
3077         int i;
3078         struct image image;
3079
3080         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3081                         &image, &min_address, &max_address);
3082         if (ERROR_OK != retval)
3083                 return retval;
3084
3085         struct target *target = get_current_target(CMD_CTX);
3086
3087         struct duration bench;
3088         duration_start(&bench);
3089
3090         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3091                 return ERROR_OK;
3092
3093         image_size = 0x0;
3094         retval = ERROR_OK;
3095         for (i = 0; i < image.num_sections; i++) {
3096                 buffer = malloc(image.sections[i].size);
3097                 if (buffer == NULL) {
3098                         command_print(CMD_CTX,
3099                                                   "error allocating buffer for section (%d bytes)",
3100                                                   (int)(image.sections[i].size));
3101                         break;
3102                 }
3103
3104                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3105                 if (retval != ERROR_OK) {
3106                         free(buffer);
3107                         break;
3108                 }
3109
3110                 uint32_t offset = 0;
3111                 uint32_t length = buf_cnt;
3112
3113                 /* DANGER!!! beware of unsigned comparision here!!! */
3114
3115                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3116                                 (image.sections[i].base_address < max_address)) {
3117
3118                         if (image.sections[i].base_address < min_address) {
3119                                 /* clip addresses below */
3120                                 offset += min_address-image.sections[i].base_address;
3121                                 length -= offset;
3122                         }
3123
3124                         if (image.sections[i].base_address + buf_cnt > max_address)
3125                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3126
3127                         retval = target_write_buffer(target,
3128                                         image.sections[i].base_address + offset, length, buffer + offset);
3129                         if (retval != ERROR_OK) {
3130                                 free(buffer);
3131                                 break;
3132                         }
3133                         image_size += length;
3134                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3135                                         (unsigned int)length,
3136                                         image.sections[i].base_address + offset);
3137                 }
3138
3139                 free(buffer);
3140         }
3141
3142         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3143                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3144                                 "in %fs (%0.3f KiB/s)", image_size,
3145                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3146         }
3147
3148         image_close(&image);
3149
3150         return retval;
3151
3152 }
3153
3154 COMMAND_HANDLER(handle_dump_image_command)
3155 {
3156         struct fileio fileio;
3157         uint8_t *buffer;
3158         int retval, retvaltemp;
3159         uint32_t address, size;
3160         struct duration bench;
3161         struct target *target = get_current_target(CMD_CTX);
3162
3163         if (CMD_ARGC != 3)
3164                 return ERROR_COMMAND_SYNTAX_ERROR;
3165
3166         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3167         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3168
3169         uint32_t buf_size = (size > 4096) ? 4096 : size;
3170         buffer = malloc(buf_size);
3171         if (!buffer)
3172                 return ERROR_FAIL;
3173
3174         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3175         if (retval != ERROR_OK) {
3176                 free(buffer);
3177                 return retval;
3178         }
3179
3180         duration_start(&bench);
3181
3182         while (size > 0) {
3183                 size_t size_written;
3184                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3185                 retval = target_read_buffer(target, address, this_run_size, buffer);
3186                 if (retval != ERROR_OK)
3187                         break;
3188
3189                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3190                 if (retval != ERROR_OK)
3191                         break;
3192
3193                 size -= this_run_size;
3194                 address += this_run_size;
3195         }
3196
3197         free(buffer);
3198
3199         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3200                 int filesize;
3201                 retval = fileio_size(&fileio, &filesize);
3202                 if (retval != ERROR_OK)
3203                         return retval;
3204                 command_print(CMD_CTX,
3205                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3206                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3207         }
3208
3209         retvaltemp = fileio_close(&fileio);
3210         if (retvaltemp != ERROR_OK)
3211                 return retvaltemp;
3212
3213         return retval;
3214 }
3215
3216 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3217 {
3218         uint8_t *buffer;
3219         size_t buf_cnt;
3220         uint32_t image_size;
3221         int i;
3222         int retval;
3223         uint32_t checksum = 0;
3224         uint32_t mem_checksum = 0;
3225
3226         struct image image;
3227
3228         struct target *target = get_current_target(CMD_CTX);
3229
3230         if (CMD_ARGC < 1)
3231                 return ERROR_COMMAND_SYNTAX_ERROR;
3232
3233         if (!target) {
3234                 LOG_ERROR("no target selected");
3235                 return ERROR_FAIL;
3236         }
3237
3238         struct duration bench;
3239         duration_start(&bench);
3240
3241         if (CMD_ARGC >= 2) {
3242                 uint32_t addr;
3243                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3244                 image.base_address = addr;
3245                 image.base_address_set = 1;
3246         } else {
3247                 image.base_address_set = 0;
3248                 image.base_address = 0x0;
3249         }
3250
3251         image.start_address_set = 0;
3252
3253         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3254         if (retval != ERROR_OK)
3255                 return retval;
3256
3257         image_size = 0x0;
3258         int diffs = 0;
3259         retval = ERROR_OK;
3260         for (i = 0; i < image.num_sections; i++) {
3261                 buffer = malloc(image.sections[i].size);
3262                 if (buffer == NULL) {
3263                         command_print(CMD_CTX,
3264                                         "error allocating buffer for section (%d bytes)",
3265                                         (int)(image.sections[i].size));
3266                         break;
3267                 }
3268                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3269                 if (retval != ERROR_OK) {
3270                         free(buffer);
3271                         break;
3272                 }
3273
3274                 if (verify) {
3275                         /* calculate checksum of image */
3276                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3277                         if (retval != ERROR_OK) {
3278                                 free(buffer);
3279                                 break;
3280                         }
3281
3282                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3283                         if (retval != ERROR_OK) {
3284                                 free(buffer);
3285                                 break;
3286                         }
3287
3288                         if (checksum != mem_checksum) {
3289                                 /* failed crc checksum, fall back to a binary compare */
3290                                 uint8_t *data;
3291
3292                                 if (diffs == 0)
3293                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3294
3295                                 data = malloc(buf_cnt);
3296
3297                                 /* Can we use 32bit word accesses? */
3298                                 int size = 1;
3299                                 int count = buf_cnt;
3300                                 if ((count % 4) == 0) {
3301                                         size *= 4;
3302                                         count /= 4;
3303                                 }
3304                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3305                                 if (retval == ERROR_OK) {
3306                                         uint32_t t;
3307                                         for (t = 0; t < buf_cnt; t++) {
3308                                                 if (data[t] != buffer[t]) {
3309                                                         command_print(CMD_CTX,
3310                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3311                                                                                   diffs,
3312                                                                                   (unsigned)(t + image.sections[i].base_address),
3313                                                                                   data[t],
3314                                                                                   buffer[t]);
3315                                                         if (diffs++ >= 127) {
3316                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3317                                                                 free(data);
3318                                                                 free(buffer);
3319                                                                 goto done;
3320                                                         }
3321                                                 }
3322                                                 keep_alive();
3323                                         }
3324                                 }
3325                                 free(data);
3326                         }
3327                 } else {
3328                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3329                                                   image.sections[i].base_address,
3330                                                   buf_cnt);
3331                 }
3332
3333                 free(buffer);
3334                 image_size += buf_cnt;
3335         }
3336         if (diffs > 0)
3337                 command_print(CMD_CTX, "No more differences found.");
3338 done:
3339         if (diffs > 0)
3340                 retval = ERROR_FAIL;
3341         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3342                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3343                                 "in %fs (%0.3f KiB/s)", image_size,
3344                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3345         }
3346
3347         image_close(&image);
3348
3349         return retval;
3350 }
3351
3352 COMMAND_HANDLER(handle_verify_image_command)
3353 {
3354         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3355 }
3356
3357 COMMAND_HANDLER(handle_test_image_command)
3358 {
3359         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3360 }
3361
3362 static int handle_bp_command_list(struct command_context *cmd_ctx)
3363 {
3364         struct target *target = get_current_target(cmd_ctx);
3365         struct breakpoint *breakpoint = target->breakpoints;
3366         while (breakpoint) {
3367                 if (breakpoint->type == BKPT_SOFT) {
3368                         char *buf = buf_to_str(breakpoint->orig_instr,
3369                                         breakpoint->length, 16);
3370                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3371                                         breakpoint->address,
3372                                         breakpoint->length,
3373                                         breakpoint->set, buf);
3374                         free(buf);
3375                 } else {
3376                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3377                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3378                                                         breakpoint->asid,
3379                                                         breakpoint->length, breakpoint->set);
3380                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3381                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3382                                                         breakpoint->address,
3383                                                         breakpoint->length, breakpoint->set);
3384                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3385                                                         breakpoint->asid);
3386                         } else
3387                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3388                                                         breakpoint->address,
3389                                                         breakpoint->length, breakpoint->set);
3390                 }
3391
3392                 breakpoint = breakpoint->next;
3393         }
3394         return ERROR_OK;
3395 }
3396
3397 static int handle_bp_command_set(struct command_context *cmd_ctx,
3398                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3399 {
3400         struct target *target = get_current_target(cmd_ctx);
3401         int retval;
3402
3403         if (asid == 0) {
3404                 retval = breakpoint_add(target, addr, length, hw);
3405                 if (ERROR_OK == retval)
3406                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3407                 else {
3408                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3409                         return retval;
3410                 }
3411         } else if (addr == 0) {
3412                 if (target->type->add_context_breakpoint == NULL) {
3413                         LOG_WARNING("Context breakpoint not available");
3414                         return ERROR_OK;
3415                 }
3416                 retval = context_breakpoint_add(target, asid, length, hw);
3417                 if (ERROR_OK == retval)
3418                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3419                 else {
3420                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3421                         return retval;
3422                 }
3423         } else {
3424                 if (target->type->add_hybrid_breakpoint == NULL) {
3425                         LOG_WARNING("Hybrid breakpoint not available");
3426                         return ERROR_OK;
3427                 }
3428                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3429                 if (ERROR_OK == retval)
3430                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3431                 else {
3432                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3433                         return retval;
3434                 }
3435         }
3436         return ERROR_OK;
3437 }
3438
3439 COMMAND_HANDLER(handle_bp_command)
3440 {
3441         uint32_t addr;
3442         uint32_t asid;
3443         uint32_t length;
3444         int hw = BKPT_SOFT;
3445
3446         switch (CMD_ARGC) {
3447                 case 0:
3448                         return handle_bp_command_list(CMD_CTX);
3449
3450                 case 2:
3451                         asid = 0;
3452                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3453                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3454                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3455
3456                 case 3:
3457                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3458                                 hw = BKPT_HARD;
3459                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3460
3461                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3462
3463                                 asid = 0;
3464                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3465                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3466                                 hw = BKPT_HARD;
3467                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3468                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3469                                 addr = 0;
3470                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3471                         }
3472
3473                 case 4:
3474                         hw = BKPT_HARD;
3475                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3476                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3477                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3478                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3479
3480                 default:
3481                         return ERROR_COMMAND_SYNTAX_ERROR;
3482         }
3483 }
3484
3485 COMMAND_HANDLER(handle_rbp_command)
3486 {
3487         if (CMD_ARGC != 1)
3488                 return ERROR_COMMAND_SYNTAX_ERROR;
3489
3490         uint32_t addr;
3491         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3492
3493         struct target *target = get_current_target(CMD_CTX);
3494         breakpoint_remove(target, addr);
3495
3496         return ERROR_OK;
3497 }
3498
3499 COMMAND_HANDLER(handle_wp_command)
3500 {
3501         struct target *target = get_current_target(CMD_CTX);
3502
3503         if (CMD_ARGC == 0) {
3504                 struct watchpoint *watchpoint = target->watchpoints;
3505
3506                 while (watchpoint) {
3507                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3508                                         ", len: 0x%8.8" PRIx32
3509                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3510                                         ", mask: 0x%8.8" PRIx32,
3511                                         watchpoint->address,
3512                                         watchpoint->length,
3513                                         (int)watchpoint->rw,
3514                                         watchpoint->value,
3515                                         watchpoint->mask);
3516                         watchpoint = watchpoint->next;
3517                 }
3518                 return ERROR_OK;
3519         }
3520
3521         enum watchpoint_rw type = WPT_ACCESS;
3522         uint32_t addr = 0;
3523         uint32_t length = 0;
3524         uint32_t data_value = 0x0;
3525         uint32_t data_mask = 0xffffffff;
3526
3527         switch (CMD_ARGC) {
3528         case 5:
3529                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3530                 /* fall through */
3531         case 4:
3532                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3533                 /* fall through */
3534         case 3:
3535                 switch (CMD_ARGV[2][0]) {
3536                 case 'r':
3537                         type = WPT_READ;
3538                         break;
3539                 case 'w':
3540                         type = WPT_WRITE;
3541                         break;
3542                 case 'a':
3543                         type = WPT_ACCESS;
3544                         break;
3545                 default:
3546                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3547                         return ERROR_COMMAND_SYNTAX_ERROR;
3548                 }
3549                 /* fall through */
3550         case 2:
3551                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3552                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3553                 break;
3554
3555         default:
3556                 return ERROR_COMMAND_SYNTAX_ERROR;
3557         }
3558
3559         int retval = watchpoint_add(target, addr, length, type,
3560                         data_value, data_mask);
3561         if (ERROR_OK != retval)
3562                 LOG_ERROR("Failure setting watchpoints");
3563
3564         return retval;
3565 }
3566
3567 COMMAND_HANDLER(handle_rwp_command)
3568 {
3569         if (CMD_ARGC != 1)
3570                 return ERROR_COMMAND_SYNTAX_ERROR;
3571
3572         uint32_t addr;
3573         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3574
3575         struct target *target = get_current_target(CMD_CTX);
3576         watchpoint_remove(target, addr);
3577
3578         return ERROR_OK;
3579 }
3580
3581 /**
3582  * Translate a virtual address to a physical address.
3583  *
3584  * The low-level target implementation must have logged a detailed error
3585  * which is forwarded to telnet/GDB session.
3586  */
3587 COMMAND_HANDLER(handle_virt2phys_command)
3588 {
3589         if (CMD_ARGC != 1)
3590                 return ERROR_COMMAND_SYNTAX_ERROR;
3591
3592         uint32_t va;
3593         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3594         uint32_t pa;
3595
3596         struct target *target = get_current_target(CMD_CTX);
3597         int retval = target->type->virt2phys(target, va, &pa);
3598         if (retval == ERROR_OK)
3599                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3600
3601         return retval;
3602 }
3603
3604 static void writeData(FILE *f, const void *data, size_t len)
3605 {
3606         size_t written = fwrite(data, 1, len, f);
3607         if (written != len)
3608                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3609 }
3610
3611 static void writeLong(FILE *f, int l, struct target *target)
3612 {
3613         uint8_t val[4];
3614
3615         target_buffer_set_u32(target, val, l);
3616         writeData(f, val, 4);
3617 }
3618
3619 static void writeString(FILE *f, char *s)
3620 {
3621         writeData(f, s, strlen(s));
3622 }
3623
3624 typedef unsigned char UNIT[2];  /* unit of profiling */
3625
3626 /* Dump a gmon.out histogram file. */
3627 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3628                         uint32_t start_address, uint32_t end_address, struct target *target)
3629 {
3630         uint32_t i;
3631         FILE *f = fopen(filename, "w");
3632         if (f == NULL)
3633                 return;
3634         writeString(f, "gmon");
3635         writeLong(f, 0x00000001, target); /* Version */
3636         writeLong(f, 0, target); /* padding */
3637         writeLong(f, 0, target); /* padding */
3638         writeLong(f, 0, target); /* padding */
3639
3640         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3641         writeData(f, &zero, 1);
3642
3643         /* figure out bucket size */
3644         uint32_t min;
3645         uint32_t max;
3646         if (with_range) {
3647                 min = start_address;
3648                 max = end_address;
3649         } else {
3650                 min = samples[0];
3651                 max = samples[0];
3652                 for (i = 0; i < sampleNum; i++) {
3653                         if (min > samples[i])
3654                                 min = samples[i];
3655                         if (max < samples[i])
3656                                 max = samples[i];
3657                 }
3658
3659                 /* max should be (largest sample + 1)
3660                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3661                 max++;
3662         }
3663
3664         int addressSpace = max - min;
3665         assert(addressSpace >= 2);
3666
3667         /* FIXME: What is the reasonable number of buckets?
3668          * The profiling result will be more accurate if there are enough buckets. */
3669         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3670         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3671         if (numBuckets > maxBuckets)
3672                 numBuckets = maxBuckets;
3673         int *buckets = malloc(sizeof(int) * numBuckets);
3674         if (buckets == NULL) {
3675                 fclose(f);
3676                 return;
3677         }
3678         memset(buckets, 0, sizeof(int) * numBuckets);
3679         for (i = 0; i < sampleNum; i++) {
3680                 uint32_t address = samples[i];
3681
3682                 if ((address < min) || (max <= address))
3683                         continue;
3684
3685                 long long a = address - min;
3686                 long long b = numBuckets;
3687                 long long c = addressSpace;
3688                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3689                 buckets[index_t]++;
3690         }
3691
3692         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3693         writeLong(f, min, target);                      /* low_pc */
3694         writeLong(f, max, target);                      /* high_pc */
3695         writeLong(f, numBuckets, target);       /* # of buckets */
3696         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3697         writeString(f, "seconds");
3698         for (i = 0; i < (15-strlen("seconds")); i++)
3699                 writeData(f, &zero, 1);
3700         writeString(f, "s");
3701
3702         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3703
3704         char *data = malloc(2 * numBuckets);
3705         if (data != NULL) {
3706                 for (i = 0; i < numBuckets; i++) {
3707                         int val;
3708                         val = buckets[i];
3709                         if (val > 65535)
3710                                 val = 65535;
3711                         data[i * 2] = val&0xff;
3712                         data[i * 2 + 1] = (val >> 8) & 0xff;
3713                 }
3714                 free(buckets);
3715                 writeData(f, data, numBuckets * 2);
3716                 free(data);
3717         } else
3718                 free(buckets);
3719
3720         fclose(f);
3721 }
3722
3723 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3724  * which will be used as a random sampling of PC */
3725 COMMAND_HANDLER(handle_profile_command)
3726 {
3727         struct target *target = get_current_target(CMD_CTX);
3728
3729         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3730                 return ERROR_COMMAND_SYNTAX_ERROR;
3731
3732         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3733         uint32_t offset;
3734         uint32_t num_of_samples;
3735         int retval = ERROR_OK;
3736
3737         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3738
3739         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3740         if (samples == NULL) {
3741                 LOG_ERROR("No memory to store samples.");
3742                 return ERROR_FAIL;
3743         }
3744
3745         /**
3746          * Some cores let us sample the PC without the
3747          * annoying halt/resume step; for example, ARMv7 PCSR.
3748          * Provide a way to use that more efficient mechanism.
3749          */
3750         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3751                                 &num_of_samples, offset);
3752         if (retval != ERROR_OK) {
3753                 free(samples);
3754                 return retval;
3755         }
3756
3757         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3758
3759         retval = target_poll(target);
3760         if (retval != ERROR_OK) {
3761                 free(samples);
3762                 return retval;
3763         }
3764         if (target->state == TARGET_RUNNING) {
3765                 retval = target_halt(target);
3766                 if (retval != ERROR_OK) {
3767                         free(samples);
3768                         return retval;
3769                 }
3770         }
3771
3772         retval = target_poll(target);
3773         if (retval != ERROR_OK) {
3774                 free(samples);
3775                 return retval;
3776         }
3777
3778         uint32_t start_address = 0;
3779         uint32_t end_address = 0;
3780         bool with_range = false;
3781         if (CMD_ARGC == 4) {
3782                 with_range = true;
3783                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3784                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3785         }
3786
3787         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3788                    with_range, start_address, end_address, target);
3789         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3790
3791         free(samples);
3792         return retval;
3793 }
3794
3795 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3796 {
3797         char *namebuf;
3798         Jim_Obj *nameObjPtr, *valObjPtr;
3799         int result;
3800
3801         namebuf = alloc_printf("%s(%d)", varname, idx);
3802         if (!namebuf)
3803                 return JIM_ERR;
3804
3805         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3806         valObjPtr = Jim_NewIntObj(interp, val);
3807         if (!nameObjPtr || !valObjPtr) {
3808                 free(namebuf);
3809                 return JIM_ERR;
3810         }
3811
3812         Jim_IncrRefCount(nameObjPtr);
3813         Jim_IncrRefCount(valObjPtr);
3814         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3815         Jim_DecrRefCount(interp, nameObjPtr);
3816         Jim_DecrRefCount(interp, valObjPtr);
3817         free(namebuf);
3818         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3819         return result;
3820 }
3821
3822 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3823 {
3824         struct command_context *context;
3825         struct target *target;
3826
3827         context = current_command_context(interp);
3828         assert(context != NULL);
3829
3830         target = get_current_target(context);
3831         if (target == NULL) {
3832                 LOG_ERROR("mem2array: no current target");
3833                 return JIM_ERR;
3834         }
3835
3836         return target_mem2array(interp, target, argc - 1, argv + 1);
3837 }
3838
3839 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3840 {
3841         long l;
3842         uint32_t width;
3843         int len;
3844         uint32_t addr;
3845         uint32_t count;
3846         uint32_t v;
3847         const char *varname;
3848         int  n, e, retval;
3849         uint32_t i;
3850
3851         /* argv[1] = name of array to receive the data
3852          * argv[2] = desired width
3853          * argv[3] = memory address
3854          * argv[4] = count of times to read
3855          */
3856         if (argc != 4) {
3857                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3858                 return JIM_ERR;
3859         }
3860         varname = Jim_GetString(argv[0], &len);
3861         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3862
3863         e = Jim_GetLong(interp, argv[1], &l);
3864         width = l;
3865         if (e != JIM_OK)
3866                 return e;
3867
3868         e = Jim_GetLong(interp, argv[2], &l);
3869         addr = l;
3870         if (e != JIM_OK)
3871                 return e;
3872         e = Jim_GetLong(interp, argv[3], &l);
3873         len = l;
3874         if (e != JIM_OK)
3875                 return e;
3876         switch (width) {
3877                 case 8:
3878                         width = 1;
3879                         break;
3880                 case 16:
3881                         width = 2;
3882                         break;
3883                 case 32:
3884                         width = 4;
3885                         break;
3886                 default:
3887                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3888                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3889                         return JIM_ERR;
3890         }
3891         if (len == 0) {
3892                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3893                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3894                 return JIM_ERR;
3895         }
3896         if ((addr + (len * width)) < addr) {
3897                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3898                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3899                 return JIM_ERR;
3900         }
3901         /* absurd transfer size? */
3902         if (len > 65536) {
3903                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3904                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3905                 return JIM_ERR;
3906         }
3907
3908         if ((width == 1) ||
3909                 ((width == 2) && ((addr & 1) == 0)) ||
3910                 ((width == 4) && ((addr & 3) == 0))) {
3911                 /* all is well */
3912         } else {
3913                 char buf[100];
3914                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3915                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3916                                 addr,
3917                                 width);
3918                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3919                 return JIM_ERR;
3920         }
3921
3922         /* Transfer loop */
3923
3924         /* index counter */
3925         n = 0;
3926
3927         size_t buffersize = 4096;
3928         uint8_t *buffer = malloc(buffersize);
3929         if (buffer == NULL)
3930                 return JIM_ERR;
3931
3932         /* assume ok */
3933         e = JIM_OK;
3934         while (len) {
3935                 /* Slurp... in buffer size chunks */
3936
3937                 count = len; /* in objects.. */
3938                 if (count > (buffersize / width))
3939                         count = (buffersize / width);
3940
3941                 retval = target_read_memory(target, addr, width, count, buffer);
3942                 if (retval != ERROR_OK) {
3943                         /* BOO !*/
3944                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3945                                           (unsigned int)addr,
3946                                           (int)width,
3947                                           (int)count);
3948                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3949                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3950                         e = JIM_ERR;
3951                         break;
3952                 } else {
3953                         v = 0; /* shut up gcc */
3954                         for (i = 0; i < count ; i++, n++) {
3955                                 switch (width) {
3956                                         case 4:
3957                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3958                                                 break;
3959                                         case 2:
3960                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3961                                                 break;
3962                                         case 1:
3963                                                 v = buffer[i] & 0x0ff;
3964                                                 break;
3965                                 }
3966                                 new_int_array_element(interp, varname, n, v);
3967                         }
3968                         len -= count;
3969                         addr += count * width;
3970                 }
3971         }
3972
3973         free(buffer);
3974
3975         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3976
3977         return e;
3978 }
3979
3980 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3981 {
3982         char *namebuf;
3983         Jim_Obj *nameObjPtr, *valObjPtr;
3984         int result;
3985         long l;
3986
3987         namebuf = alloc_printf("%s(%d)", varname, idx);
3988         if (!namebuf)
3989                 return JIM_ERR;
3990
3991         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3992         if (!nameObjPtr) {
3993                 free(namebuf);
3994                 return JIM_ERR;
3995         }
3996
3997         Jim_IncrRefCount(nameObjPtr);
3998         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3999         Jim_DecrRefCount(interp, nameObjPtr);
4000         free(namebuf);
4001         if (valObjPtr == NULL)
4002                 return JIM_ERR;
4003
4004         result = Jim_GetLong(interp, valObjPtr, &l);
4005         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4006         *val = l;
4007         return result;
4008 }
4009
4010 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4011 {
4012         struct command_context *context;
4013         struct target *target;
4014
4015         context = current_command_context(interp);
4016         assert(context != NULL);
4017
4018         target = get_current_target(context);
4019         if (target == NULL) {
4020                 LOG_ERROR("array2mem: no current target");
4021                 return JIM_ERR;
4022         }
4023
4024         return target_array2mem(interp, target, argc-1, argv + 1);
4025 }
4026
4027 static int target_array2mem(Jim_Interp *interp, struct target *target,
4028                 int argc, Jim_Obj *const *argv)
4029 {
4030         long l;
4031         uint32_t width;
4032         int len;
4033         uint32_t addr;
4034         uint32_t count;
4035         uint32_t v;
4036         const char *varname;
4037         int  n, e, retval;
4038         uint32_t i;
4039
4040         /* argv[1] = name of array to get the data
4041          * argv[2] = desired width
4042          * argv[3] = memory address
4043          * argv[4] = count to write
4044          */
4045         if (argc != 4) {
4046                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
4047                 return JIM_ERR;
4048         }
4049         varname = Jim_GetString(argv[0], &len);
4050         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4051
4052         e = Jim_GetLong(interp, argv[1], &l);
4053         width = l;
4054         if (e != JIM_OK)
4055                 return e;
4056
4057         e = Jim_GetLong(interp, argv[2], &l);
4058         addr = l;
4059         if (e != JIM_OK)
4060                 return e;
4061         e = Jim_GetLong(interp, argv[3], &l);
4062         len = l;
4063         if (e != JIM_OK)
4064                 return e;
4065         switch (width) {
4066                 case 8:
4067                         width = 1;
4068                         break;
4069                 case 16:
4070                         width = 2;
4071                         break;
4072                 case 32:
4073                         width = 4;
4074                         break;
4075                 default:
4076                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4077                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4078                                         "Invalid width param, must be 8/16/32", NULL);
4079                         return JIM_ERR;
4080         }
4081         if (len == 0) {
4082                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4083                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4084                                 "array2mem: zero width read?", NULL);
4085                 return JIM_ERR;
4086         }
4087         if ((addr + (len * width)) < addr) {
4088                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4089                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4090                                 "array2mem: addr + len - wraps to zero?", NULL);
4091                 return JIM_ERR;
4092         }
4093         /* absurd transfer size? */
4094         if (len > 65536) {
4095                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4096                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4097                                 "array2mem: absurd > 64K item request", NULL);
4098                 return JIM_ERR;
4099         }
4100
4101         if ((width == 1) ||
4102                 ((width == 2) && ((addr & 1) == 0)) ||
4103                 ((width == 4) && ((addr & 3) == 0))) {
4104                 /* all is well */
4105         } else {
4106                 char buf[100];
4107                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4108                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4109                                 (unsigned int)addr,
4110                                 (int)width);
4111                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4112                 return JIM_ERR;
4113         }
4114
4115         /* Transfer loop */
4116
4117         /* index counter */
4118         n = 0;
4119         /* assume ok */
4120         e = JIM_OK;
4121
4122         size_t buffersize = 4096;
4123         uint8_t *buffer = malloc(buffersize);
4124         if (buffer == NULL)
4125                 return JIM_ERR;
4126
4127         while (len) {
4128                 /* Slurp... in buffer size chunks */
4129
4130                 count = len; /* in objects.. */
4131                 if (count > (buffersize / width))
4132                         count = (buffersize / width);
4133
4134                 v = 0; /* shut up gcc */
4135                 for (i = 0; i < count; i++, n++) {
4136                         get_int_array_element(interp, varname, n, &v);
4137                         switch (width) {
4138                         case 4:
4139                                 target_buffer_set_u32(target, &buffer[i * width], v);
4140                                 break;
4141                         case 2:
4142                                 target_buffer_set_u16(target, &buffer[i * width], v);
4143                                 break;
4144                         case 1:
4145                                 buffer[i] = v & 0x0ff;
4146                                 break;
4147                         }
4148                 }
4149                 len -= count;
4150
4151                 retval = target_write_memory(target, addr, width, count, buffer);
4152                 if (retval != ERROR_OK) {
4153                         /* BOO !*/
4154                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4155                                           (unsigned int)addr,
4156                                           (int)width,
4157                                           (int)count);
4158                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4159                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4160                         e = JIM_ERR;
4161                         break;
4162                 }
4163                 addr += count * width;
4164         }
4165
4166         free(buffer);
4167
4168         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4169
4170         return e;
4171 }
4172
4173 /* FIX? should we propagate errors here rather than printing them
4174  * and continuing?
4175  */
4176 void target_handle_event(struct target *target, enum target_event e)
4177 {
4178         struct target_event_action *teap;
4179
4180         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4181                 if (teap->event == e) {
4182                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4183                                            target->target_number,
4184                                            target_name(target),
4185                                            target_type_name(target),
4186                                            e,
4187                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4188                                            Jim_GetString(teap->body, NULL));
4189                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4190                                 Jim_MakeErrorMessage(teap->interp);
4191                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4192                         }
4193                 }
4194         }
4195 }
4196
4197 /**
4198  * Returns true only if the target has a handler for the specified event.
4199  */
4200 bool target_has_event_action(struct target *target, enum target_event event)
4201 {
4202         struct target_event_action *teap;
4203
4204         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4205                 if (teap->event == event)
4206                         return true;
4207         }
4208         return false;
4209 }
4210
4211 enum target_cfg_param {
4212         TCFG_TYPE,
4213         TCFG_EVENT,
4214         TCFG_WORK_AREA_VIRT,
4215         TCFG_WORK_AREA_PHYS,
4216         TCFG_WORK_AREA_SIZE,
4217         TCFG_WORK_AREA_BACKUP,
4218         TCFG_ENDIAN,
4219         TCFG_COREID,
4220         TCFG_CHAIN_POSITION,
4221         TCFG_DBGBASE,
4222         TCFG_RTOS,
4223 };
4224
4225 static Jim_Nvp nvp_config_opts[] = {
4226         { .name = "-type",             .value = TCFG_TYPE },
4227         { .name = "-event",            .value = TCFG_EVENT },
4228         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4229         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4230         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4231         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4232         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4233         { .name = "-coreid",           .value = TCFG_COREID },
4234         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4235         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4236         { .name = "-rtos",             .value = TCFG_RTOS },
4237         { .name = NULL, .value = -1 }
4238 };
4239
4240 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4241 {
4242         Jim_Nvp *n;
4243         Jim_Obj *o;
4244         jim_wide w;
4245         int e;
4246
4247         /* parse config or cget options ... */
4248         while (goi->argc > 0) {
4249                 Jim_SetEmptyResult(goi->interp);
4250                 /* Jim_GetOpt_Debug(goi); */
4251
4252                 if (target->type->target_jim_configure) {
4253                         /* target defines a configure function */
4254                         /* target gets first dibs on parameters */
4255                         e = (*(target->type->target_jim_configure))(target, goi);
4256                         if (e == JIM_OK) {
4257                                 /* more? */
4258                                 continue;
4259                         }
4260                         if (e == JIM_ERR) {
4261                                 /* An error */
4262                                 return e;
4263                         }
4264                         /* otherwise we 'continue' below */
4265                 }
4266                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4267                 if (e != JIM_OK) {
4268                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4269                         return e;
4270                 }
4271                 switch (n->value) {
4272                 case TCFG_TYPE:
4273                         /* not setable */
4274                         if (goi->isconfigure) {
4275                                 Jim_SetResultFormatted(goi->interp,
4276                                                 "not settable: %s", n->name);
4277                                 return JIM_ERR;
4278                         } else {
4279 no_params:
4280                                 if (goi->argc != 0) {
4281                                         Jim_WrongNumArgs(goi->interp,
4282                                                         goi->argc, goi->argv,
4283                                                         "NO PARAMS");
4284                                         return JIM_ERR;
4285                                 }
4286                         }
4287                         Jim_SetResultString(goi->interp,
4288                                         target_type_name(target), -1);
4289                         /* loop for more */
4290                         break;
4291                 case TCFG_EVENT:
4292                         if (goi->argc == 0) {
4293                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4294                                 return JIM_ERR;
4295                         }
4296
4297                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4298                         if (e != JIM_OK) {
4299                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4300                                 return e;
4301                         }
4302
4303                         if (goi->isconfigure) {
4304                                 if (goi->argc != 1) {
4305                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4306                                         return JIM_ERR;
4307                                 }
4308                         } else {
4309                                 if (goi->argc != 0) {
4310                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4311                                         return JIM_ERR;
4312                                 }
4313                         }
4314
4315                         {
4316                                 struct target_event_action *teap;
4317
4318                                 teap = target->event_action;
4319                                 /* replace existing? */
4320                                 while (teap) {
4321                                         if (teap->event == (enum target_event)n->value)
4322                                                 break;
4323                                         teap = teap->next;
4324                                 }
4325
4326                                 if (goi->isconfigure) {
4327                                         bool replace = true;
4328                                         if (teap == NULL) {
4329                                                 /* create new */
4330                                                 teap = calloc(1, sizeof(*teap));
4331                                                 replace = false;
4332                                         }
4333                                         teap->event = n->value;
4334                                         teap->interp = goi->interp;
4335                                         Jim_GetOpt_Obj(goi, &o);
4336                                         if (teap->body)
4337                                                 Jim_DecrRefCount(teap->interp, teap->body);
4338                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4339                                         /*
4340                                          * FIXME:
4341                                          *     Tcl/TK - "tk events" have a nice feature.
4342                                          *     See the "BIND" command.
4343                                          *    We should support that here.
4344                                          *     You can specify %X and %Y in the event code.
4345                                          *     The idea is: %T - target name.
4346                                          *     The idea is: %N - target number
4347                                          *     The idea is: %E - event name.
4348                                          */
4349                                         Jim_IncrRefCount(teap->body);
4350
4351                                         if (!replace) {
4352                                                 /* add to head of event list */
4353                                                 teap->next = target->event_action;
4354                                                 target->event_action = teap;
4355                                         }
4356                                         Jim_SetEmptyResult(goi->interp);
4357                                 } else {
4358                                         /* get */
4359                                         if (teap == NULL)
4360                                                 Jim_SetEmptyResult(goi->interp);
4361                                         else
4362                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4363                                 }
4364                         }
4365                         /* loop for more */
4366                         break;
4367
4368                 case TCFG_WORK_AREA_VIRT:
4369                         if (goi->isconfigure) {
4370                                 target_free_all_working_areas(target);
4371                                 e = Jim_GetOpt_Wide(goi, &w);
4372                                 if (e != JIM_OK)
4373                                         return e;
4374                                 target->working_area_virt = w;
4375                                 target->working_area_virt_spec = true;
4376                         } else {
4377                                 if (goi->argc != 0)
4378                                         goto no_params;
4379                         }
4380                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4381                         /* loop for more */
4382                         break;
4383
4384                 case TCFG_WORK_AREA_PHYS:
4385                         if (goi->isconfigure) {
4386                                 target_free_all_working_areas(target);
4387                                 e = Jim_GetOpt_Wide(goi, &w);
4388                                 if (e != JIM_OK)
4389                                         return e;
4390                                 target->working_area_phys = w;
4391                                 target->working_area_phys_spec = true;
4392                         } else {
4393                                 if (goi->argc != 0)
4394                                         goto no_params;
4395                         }
4396                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4397                         /* loop for more */
4398                         break;
4399
4400                 case TCFG_WORK_AREA_SIZE:
4401                         if (goi->isconfigure) {
4402                                 target_free_all_working_areas(target);
4403                                 e = Jim_GetOpt_Wide(goi, &w);
4404                                 if (e != JIM_OK)
4405                                         return e;
4406                                 target->working_area_size = w;
4407                         } else {
4408                                 if (goi->argc != 0)
4409                                         goto no_params;
4410                         }
4411                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4412                         /* loop for more */
4413                         break;
4414
4415                 case TCFG_WORK_AREA_BACKUP:
4416                         if (goi->isconfigure) {
4417                                 target_free_all_working_areas(target);
4418                                 e = Jim_GetOpt_Wide(goi, &w);
4419                                 if (e != JIM_OK)
4420                                         return e;
4421                                 /* make this exactly 1 or 0 */
4422                                 target->backup_working_area = (!!w);
4423                         } else {
4424                                 if (goi->argc != 0)
4425                                         goto no_params;
4426                         }
4427                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4428                         /* loop for more e*/
4429                         break;
4430
4431
4432                 case TCFG_ENDIAN:
4433                         if (goi->isconfigure) {
4434                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4435                                 if (e != JIM_OK) {
4436                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4437                                         return e;
4438                                 }
4439                                 target->endianness = n->value;
4440                         } else {
4441                                 if (goi->argc != 0)
4442                                         goto no_params;
4443                         }
4444                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4445                         if (n->name == NULL) {
4446                                 target->endianness = TARGET_LITTLE_ENDIAN;
4447                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4448                         }
4449                         Jim_SetResultString(goi->interp, n->name, -1);
4450                         /* loop for more */
4451                         break;
4452
4453                 case TCFG_COREID:
4454                         if (goi->isconfigure) {
4455                                 e = Jim_GetOpt_Wide(goi, &w);
4456                                 if (e != JIM_OK)
4457                                         return e;
4458                                 target->coreid = (int32_t)w;
4459                         } else {
4460                                 if (goi->argc != 0)
4461                                         goto no_params;
4462                         }
4463                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4464                         /* loop for more */
4465                         break;
4466
4467                 case TCFG_CHAIN_POSITION:
4468                         if (goi->isconfigure) {
4469                                 Jim_Obj *o_t;
4470                                 struct jtag_tap *tap;
4471                                 target_free_all_working_areas(target);
4472                                 e = Jim_GetOpt_Obj(goi, &o_t);
4473                                 if (e != JIM_OK)
4474                                         return e;
4475                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4476                                 if (tap == NULL)
4477                                         return JIM_ERR;
4478                                 /* make this exactly 1 or 0 */
4479                                 target->tap = tap;
4480                         } else {
4481                                 if (goi->argc != 0)
4482                                         goto no_params;
4483                         }
4484                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4485                         /* loop for more e*/
4486                         break;
4487                 case TCFG_DBGBASE:
4488                         if (goi->isconfigure) {
4489                                 e = Jim_GetOpt_Wide(goi, &w);
4490                                 if (e != JIM_OK)
4491                                         return e;
4492                                 target->dbgbase = (uint32_t)w;
4493                                 target->dbgbase_set = true;
4494                         } else {
4495                                 if (goi->argc != 0)
4496                                         goto no_params;
4497                         }
4498                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4499                         /* loop for more */
4500                         break;
4501
4502                 case TCFG_RTOS:
4503                         /* RTOS */
4504                         {
4505                                 int result = rtos_create(goi, target);
4506                                 if (result != JIM_OK)
4507                                         return result;
4508                         }
4509                         /* loop for more */
4510                         break;
4511                 }
4512         } /* while (goi->argc) */
4513
4514
4515                 /* done - we return */
4516         return JIM_OK;
4517 }
4518
4519 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4520 {
4521         Jim_GetOptInfo goi;
4522
4523         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4524         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4525         int need_args = 1 + goi.isconfigure;
4526         if (goi.argc < need_args) {
4527                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4528                         goi.isconfigure
4529                                 ? "missing: -option VALUE ..."
4530                                 : "missing: -option ...");
4531                 return JIM_ERR;
4532         }
4533         struct target *target = Jim_CmdPrivData(goi.interp);
4534         return target_configure(&goi, target);
4535 }
4536
4537 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4538 {
4539         const char *cmd_name = Jim_GetString(argv[0], NULL);
4540
4541         Jim_GetOptInfo goi;
4542         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4543
4544         if (goi.argc < 2 || goi.argc > 4) {
4545                 Jim_SetResultFormatted(goi.interp,
4546                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4547                 return JIM_ERR;
4548         }
4549
4550         target_write_fn fn;
4551         fn = target_write_memory;
4552
4553         int e;
4554         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4555                 /* consume it */
4556                 struct Jim_Obj *obj;
4557                 e = Jim_GetOpt_Obj(&goi, &obj);
4558                 if (e != JIM_OK)
4559                         return e;
4560
4561                 fn = target_write_phys_memory;
4562         }
4563
4564         jim_wide a;
4565         e = Jim_GetOpt_Wide(&goi, &a);
4566         if (e != JIM_OK)
4567                 return e;
4568
4569         jim_wide b;
4570         e = Jim_GetOpt_Wide(&goi, &b);
4571         if (e != JIM_OK)
4572                 return e;
4573
4574         jim_wide c = 1;
4575         if (goi.argc == 1) {
4576                 e = Jim_GetOpt_Wide(&goi, &c);
4577                 if (e != JIM_OK)
4578                         return e;
4579         }
4580
4581         /* all args must be consumed */
4582         if (goi.argc != 0)
4583                 return JIM_ERR;
4584
4585         struct target *target = Jim_CmdPrivData(goi.interp);
4586         unsigned data_size;
4587         if (strcasecmp(cmd_name, "mww") == 0)
4588                 data_size = 4;
4589         else if (strcasecmp(cmd_name, "mwh") == 0)
4590                 data_size = 2;
4591         else if (strcasecmp(cmd_name, "mwb") == 0)
4592                 data_size = 1;
4593         else {
4594                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4595                 return JIM_ERR;
4596         }
4597
4598         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4599 }
4600
4601 /**
4602 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4603 *
4604 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4605 *         mdh [phys] <address> [<count>] - for 16 bit reads
4606 *         mdb [phys] <address> [<count>] - for  8 bit reads
4607 *
4608 *  Count defaults to 1.
4609 *
4610 *  Calls target_read_memory or target_read_phys_memory depending on
4611 *  the presence of the "phys" argument
4612 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4613 *  to int representation in base16.
4614 *  Also outputs read data in a human readable form using command_print
4615 *
4616 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4617 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4618 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4619 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4620 *  on success, with [<count>] number of elements.
4621 *
4622 *  In case of little endian target:
4623 *      Example1: "mdw 0x00000000"  returns "10123456"
4624 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4625 *      Example3: "mdb 0x00000000" returns "56"
4626 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4627 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4628 **/
4629 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4630 {
4631         const char *cmd_name = Jim_GetString(argv[0], NULL);
4632
4633         Jim_GetOptInfo goi;
4634         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4635
4636         if ((goi.argc < 1) || (goi.argc > 3)) {
4637                 Jim_SetResultFormatted(goi.interp,
4638                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4639                 return JIM_ERR;
4640         }
4641
4642         int (*fn)(struct target *target,
4643                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4644         fn = target_read_memory;
4645
4646         int e;
4647         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4648                 /* consume it */
4649                 struct Jim_Obj *obj;
4650                 e = Jim_GetOpt_Obj(&goi, &obj);
4651                 if (e != JIM_OK)
4652                         return e;
4653
4654                 fn = target_read_phys_memory;
4655         }
4656
4657         /* Read address parameter */
4658         jim_wide addr;
4659         e = Jim_GetOpt_Wide(&goi, &addr);
4660         if (e != JIM_OK)
4661                 return JIM_ERR;
4662
4663         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4664         jim_wide count;
4665         if (goi.argc == 1) {
4666                 e = Jim_GetOpt_Wide(&goi, &count);
4667                 if (e != JIM_OK)
4668                         return JIM_ERR;
4669         } else
4670                 count = 1;
4671
4672         /* all args must be consumed */
4673         if (goi.argc != 0)
4674                 return JIM_ERR;
4675
4676         jim_wide dwidth = 1; /* shut up gcc */
4677         if (strcasecmp(cmd_name, "mdw") == 0)
4678                 dwidth = 4;
4679         else if (strcasecmp(cmd_name, "mdh") == 0)
4680                 dwidth = 2;
4681         else if (strcasecmp(cmd_name, "mdb") == 0)
4682                 dwidth = 1;
4683         else {
4684                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4685                 return JIM_ERR;
4686         }
4687
4688         /* convert count to "bytes" */
4689         int bytes = count * dwidth;
4690
4691         struct target *target = Jim_CmdPrivData(goi.interp);
4692         uint8_t  target_buf[32];
4693         jim_wide x, y, z;
4694         while (bytes > 0) {
4695                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4696
4697                 /* Try to read out next block */
4698                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4699
4700                 if (e != ERROR_OK) {
4701                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4702                         return JIM_ERR;
4703                 }
4704
4705                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4706                 switch (dwidth) {
4707                 case 4:
4708                         for (x = 0; x < 16 && x < y; x += 4) {
4709                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4710                                 command_print_sameline(NULL, "%08x ", (int)(z));
4711                         }
4712                         for (; (x < 16) ; x += 4)
4713                                 command_print_sameline(NULL, "         ");
4714                         break;
4715                 case 2:
4716                         for (x = 0; x < 16 && x < y; x += 2) {
4717                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4718                                 command_print_sameline(NULL, "%04x ", (int)(z));
4719                         }
4720                         for (; (x < 16) ; x += 2)
4721                                 command_print_sameline(NULL, "     ");
4722                         break;
4723                 case 1:
4724                 default:
4725                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4726                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4727                                 command_print_sameline(NULL, "%02x ", (int)(z));
4728                         }
4729                         for (; (x < 16) ; x += 1)
4730                                 command_print_sameline(NULL, "   ");
4731                         break;
4732                 }
4733                 /* ascii-ify the bytes */
4734                 for (x = 0 ; x < y ; x++) {
4735                         if ((target_buf[x] >= 0x20) &&
4736                                 (target_buf[x] <= 0x7e)) {
4737                                 /* good */
4738                         } else {
4739                                 /* smack it */
4740                                 target_buf[x] = '.';
4741                         }
4742                 }
4743                 /* space pad  */
4744                 while (x < 16) {
4745                         target_buf[x] = ' ';
4746                         x++;
4747                 }
4748                 /* terminate */
4749                 target_buf[16] = 0;
4750                 /* print - with a newline */
4751                 command_print_sameline(NULL, "%s\n", target_buf);
4752                 /* NEXT... */
4753                 bytes -= 16;
4754                 addr += 16;
4755         }
4756         return JIM_OK;
4757 }
4758
4759 static int jim_target_mem2array(Jim_Interp *interp,
4760                 int argc, Jim_Obj *const *argv)
4761 {
4762         struct target *target = Jim_CmdPrivData(interp);
4763         return target_mem2array(interp, target, argc - 1, argv + 1);
4764 }
4765
4766 static int jim_target_array2mem(Jim_Interp *interp,
4767                 int argc, Jim_Obj *const *argv)
4768 {
4769         struct target *target = Jim_CmdPrivData(interp);
4770         return target_array2mem(interp, target, argc - 1, argv + 1);
4771 }
4772
4773 static int jim_target_tap_disabled(Jim_Interp *interp)
4774 {
4775         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4776         return JIM_ERR;
4777 }
4778
4779 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4780 {
4781         if (argc != 1) {
4782                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4783                 return JIM_ERR;
4784         }
4785         struct target *target = Jim_CmdPrivData(interp);
4786         if (!target->tap->enabled)
4787                 return jim_target_tap_disabled(interp);
4788
4789         int e = target->type->examine(target);
4790         if (e != ERROR_OK)
4791                 return JIM_ERR;
4792         return JIM_OK;
4793 }
4794
4795 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4796 {
4797         if (argc != 1) {
4798                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4799                 return JIM_ERR;
4800         }
4801         struct target *target = Jim_CmdPrivData(interp);
4802
4803         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4804                 return JIM_ERR;
4805
4806         return JIM_OK;
4807 }
4808
4809 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4810 {
4811         if (argc != 1) {
4812                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4813                 return JIM_ERR;
4814         }
4815         struct target *target = Jim_CmdPrivData(interp);
4816         if (!target->tap->enabled)
4817                 return jim_target_tap_disabled(interp);
4818
4819         int e;
4820         if (!(target_was_examined(target)))
4821                 e = ERROR_TARGET_NOT_EXAMINED;
4822         else
4823                 e = target->type->poll(target);
4824         if (e != ERROR_OK)
4825                 return JIM_ERR;
4826         return JIM_OK;
4827 }
4828
4829 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4830 {
4831         Jim_GetOptInfo goi;
4832         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4833
4834         if (goi.argc != 2) {
4835                 Jim_WrongNumArgs(interp, 0, argv,
4836                                 "([tT]|[fF]|assert|deassert) BOOL");
4837                 return JIM_ERR;
4838         }
4839
4840         Jim_Nvp *n;
4841         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4842         if (e != JIM_OK) {
4843                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4844                 return e;
4845         }
4846         /* the halt or not param */
4847         jim_wide a;
4848         e = Jim_GetOpt_Wide(&goi, &a);
4849         if (e != JIM_OK)
4850                 return e;
4851
4852         struct target *target = Jim_CmdPrivData(goi.interp);
4853         if (!target->tap->enabled)
4854                 return jim_target_tap_disabled(interp);
4855         if (!(target_was_examined(target))) {
4856                 LOG_ERROR("Target not examined yet");
4857                 return ERROR_TARGET_NOT_EXAMINED;
4858         }
4859         if (!target->type->assert_reset || !target->type->deassert_reset) {
4860                 Jim_SetResultFormatted(interp,
4861                                 "No target-specific reset for %s",
4862                                 target_name(target));
4863                 return JIM_ERR;
4864         }
4865         /* determine if we should halt or not. */
4866         target->reset_halt = !!a;
4867         /* When this happens - all workareas are invalid. */
4868         target_free_all_working_areas_restore(target, 0);
4869
4870         /* do the assert */
4871         if (n->value == NVP_ASSERT)
4872                 e = target->type->assert_reset(target);
4873         else
4874                 e = target->type->deassert_reset(target);
4875         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4876 }
4877
4878 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4879 {
4880         if (argc != 1) {
4881                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4882                 return JIM_ERR;
4883         }
4884         struct target *target = Jim_CmdPrivData(interp);
4885         if (!target->tap->enabled)
4886                 return jim_target_tap_disabled(interp);
4887         int e = target->type->halt(target);
4888         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4889 }
4890
4891 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4892 {
4893         Jim_GetOptInfo goi;
4894         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4895
4896         /* params:  <name>  statename timeoutmsecs */
4897         if (goi.argc != 2) {
4898                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4899                 Jim_SetResultFormatted(goi.interp,
4900                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4901                 return JIM_ERR;
4902         }
4903
4904         Jim_Nvp *n;
4905         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4906         if (e != JIM_OK) {
4907                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4908                 return e;
4909         }
4910         jim_wide a;
4911         e = Jim_GetOpt_Wide(&goi, &a);
4912         if (e != JIM_OK)
4913                 return e;
4914         struct target *target = Jim_CmdPrivData(interp);
4915         if (!target->tap->enabled)
4916                 return jim_target_tap_disabled(interp);
4917
4918         e = target_wait_state(target, n->value, a);
4919         if (e != ERROR_OK) {
4920                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4921                 Jim_SetResultFormatted(goi.interp,
4922                                 "target: %s wait %s fails (%#s) %s",
4923                                 target_name(target), n->name,
4924                                 eObj, target_strerror_safe(e));
4925                 Jim_FreeNewObj(interp, eObj);
4926                 return JIM_ERR;
4927         }
4928         return JIM_OK;
4929 }
4930 /* List for human, Events defined for this target.
4931  * scripts/programs should use 'name cget -event NAME'
4932  */
4933 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4934 {
4935         struct command_context *cmd_ctx = current_command_context(interp);
4936         assert(cmd_ctx != NULL);
4937
4938         struct target *target = Jim_CmdPrivData(interp);
4939         struct target_event_action *teap = target->event_action;
4940         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4941                                    target->target_number,
4942                                    target_name(target));
4943         command_print(cmd_ctx, "%-25s | Body", "Event");
4944         command_print(cmd_ctx, "------------------------- | "
4945                         "----------------------------------------");
4946         while (teap) {
4947                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4948                 command_print(cmd_ctx, "%-25s | %s",
4949                                 opt->name, Jim_GetString(teap->body, NULL));
4950                 teap = teap->next;
4951         }
4952         command_print(cmd_ctx, "***END***");
4953         return JIM_OK;
4954 }
4955 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4956 {
4957         if (argc != 1) {
4958                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4959                 return JIM_ERR;
4960         }
4961         struct target *target = Jim_CmdPrivData(interp);
4962         Jim_SetResultString(interp, target_state_name(target), -1);
4963         return JIM_OK;
4964 }
4965 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4966 {
4967         Jim_GetOptInfo goi;
4968         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4969         if (goi.argc != 1) {
4970                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4971                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4972                 return JIM_ERR;
4973         }
4974         Jim_Nvp *n;
4975         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4976         if (e != JIM_OK) {
4977                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4978                 return e;
4979         }
4980         struct target *target = Jim_CmdPrivData(interp);
4981         target_handle_event(target, n->value);
4982         return JIM_OK;
4983 }
4984
4985 static const struct command_registration target_instance_command_handlers[] = {
4986         {
4987                 .name = "configure",
4988                 .mode = COMMAND_CONFIG,
4989                 .jim_handler = jim_target_configure,
4990                 .help  = "configure a new target for use",
4991                 .usage = "[target_attribute ...]",
4992         },
4993         {
4994                 .name = "cget",
4995                 .mode = COMMAND_ANY,
4996                 .jim_handler = jim_target_configure,
4997                 .help  = "returns the specified target attribute",
4998                 .usage = "target_attribute",
4999         },
5000         {
5001                 .name = "mww",
5002                 .mode = COMMAND_EXEC,
5003                 .jim_handler = jim_target_mw,
5004                 .help = "Write 32-bit word(s) to target memory",
5005                 .usage = "address data [count]",
5006         },
5007         {
5008                 .name = "mwh",
5009                 .mode = COMMAND_EXEC,
5010                 .jim_handler = jim_target_mw,
5011                 .help = "Write 16-bit half-word(s) to target memory",
5012                 .usage = "address data [count]",
5013         },
5014         {
5015                 .name = "mwb",
5016                 .mode = COMMAND_EXEC,
5017                 .jim_handler = jim_target_mw,
5018                 .help = "Write byte(s) to target memory",
5019                 .usage = "address data [count]",
5020         },
5021         {
5022                 .name = "mdw",
5023                 .mode = COMMAND_EXEC,
5024                 .jim_handler = jim_target_md,
5025                 .help = "Display target memory as 32-bit words",
5026                 .usage = "address [count]",
5027         },
5028         {
5029                 .name = "mdh",
5030                 .mode = COMMAND_EXEC,
5031                 .jim_handler = jim_target_md,
5032                 .help = "Display target memory as 16-bit half-words",
5033                 .usage = "address [count]",
5034         },
5035         {
5036                 .name = "mdb",
5037                 .mode = COMMAND_EXEC,
5038                 .jim_handler = jim_target_md,
5039                 .help = "Display target memory as 8-bit bytes",
5040                 .usage = "address [count]",
5041         },
5042         {
5043                 .name = "array2mem",
5044                 .mode = COMMAND_EXEC,
5045                 .jim_handler = jim_target_array2mem,
5046                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5047                         "to target memory",
5048                 .usage = "arrayname bitwidth address count",
5049         },
5050         {
5051                 .name = "mem2array",
5052                 .mode = COMMAND_EXEC,
5053                 .jim_handler = jim_target_mem2array,
5054                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5055                         "from target memory",
5056                 .usage = "arrayname bitwidth address count",
5057         },
5058         {
5059                 .name = "eventlist",
5060                 .mode = COMMAND_EXEC,
5061                 .jim_handler = jim_target_event_list,
5062                 .help = "displays a table of events defined for this target",
5063         },
5064         {
5065                 .name = "curstate",
5066                 .mode = COMMAND_EXEC,
5067                 .jim_handler = jim_target_current_state,
5068                 .help = "displays the current state of this target",
5069         },
5070         {
5071                 .name = "arp_examine",
5072                 .mode = COMMAND_EXEC,
5073                 .jim_handler = jim_target_examine,
5074                 .help = "used internally for reset processing",
5075         },
5076         {
5077                 .name = "arp_halt_gdb",
5078                 .mode = COMMAND_EXEC,
5079                 .jim_handler = jim_target_halt_gdb,
5080                 .help = "used internally for reset processing to halt GDB",
5081         },
5082         {
5083                 .name = "arp_poll",
5084                 .mode = COMMAND_EXEC,
5085                 .jim_handler = jim_target_poll,
5086                 .help = "used internally for reset processing",
5087         },
5088         {
5089                 .name = "arp_reset",
5090                 .mode = COMMAND_EXEC,
5091                 .jim_handler = jim_target_reset,
5092                 .help = "used internally for reset processing",
5093         },
5094         {
5095                 .name = "arp_halt",
5096                 .mode = COMMAND_EXEC,
5097                 .jim_handler = jim_target_halt,
5098                 .help = "used internally for reset processing",
5099         },
5100         {
5101                 .name = "arp_waitstate",
5102                 .mode = COMMAND_EXEC,
5103                 .jim_handler = jim_target_wait_state,
5104                 .help = "used internally for reset processing",
5105         },
5106         {
5107                 .name = "invoke-event",
5108                 .mode = COMMAND_EXEC,
5109                 .jim_handler = jim_target_invoke_event,
5110                 .help = "invoke handler for specified event",
5111                 .usage = "event_name",
5112         },
5113         COMMAND_REGISTRATION_DONE
5114 };
5115
5116 static int target_create(Jim_GetOptInfo *goi)
5117 {
5118         Jim_Obj *new_cmd;
5119         Jim_Cmd *cmd;
5120         const char *cp;
5121         char *cp2;
5122         int e;
5123         int x;
5124         struct target *target;
5125         struct command_context *cmd_ctx;
5126
5127         cmd_ctx = current_command_context(goi->interp);
5128         assert(cmd_ctx != NULL);
5129
5130         if (goi->argc < 3) {
5131                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5132                 return JIM_ERR;
5133         }
5134
5135         /* COMMAND */
5136         Jim_GetOpt_Obj(goi, &new_cmd);
5137         /* does this command exist? */
5138         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5139         if (cmd) {
5140                 cp = Jim_GetString(new_cmd, NULL);
5141                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5142                 return JIM_ERR;
5143         }
5144
5145         /* TYPE */
5146         e = Jim_GetOpt_String(goi, &cp2, NULL);
5147         if (e != JIM_OK)
5148                 return e;
5149         cp = cp2;
5150         struct transport *tr = get_current_transport();
5151         if (tr->override_target) {
5152                 e = tr->override_target(&cp);
5153                 if (e != ERROR_OK) {
5154                         LOG_ERROR("The selected transport doesn't support this target");
5155                         return JIM_ERR;
5156                 }
5157                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5158         }
5159         /* now does target type exist */
5160         for (x = 0 ; target_types[x] ; x++) {
5161                 if (0 == strcmp(cp, target_types[x]->name)) {
5162                         /* found */
5163                         break;
5164                 }
5165
5166                 /* check for deprecated name */
5167                 if (target_types[x]->deprecated_name) {
5168                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5169                                 /* found */
5170                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5171                                 break;
5172                         }
5173                 }
5174         }
5175         if (target_types[x] == NULL) {
5176                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5177                 for (x = 0 ; target_types[x] ; x++) {
5178                         if (target_types[x + 1]) {
5179                                 Jim_AppendStrings(goi->interp,
5180                                                                    Jim_GetResult(goi->interp),
5181                                                                    target_types[x]->name,
5182                                                                    ", ", NULL);
5183                         } else {
5184                                 Jim_AppendStrings(goi->interp,
5185                                                                    Jim_GetResult(goi->interp),
5186                                                                    " or ",
5187                                                                    target_types[x]->name, NULL);
5188                         }
5189                 }
5190                 return JIM_ERR;
5191         }
5192
5193         /* Create it */
5194         target = calloc(1, sizeof(struct target));
5195         /* set target number */
5196         target->target_number = new_target_number();
5197         cmd_ctx->current_target = target->target_number;
5198
5199         /* allocate memory for each unique target type */
5200         target->type = calloc(1, sizeof(struct target_type));
5201
5202         memcpy(target->type, target_types[x], sizeof(struct target_type));
5203
5204         /* will be set by "-endian" */
5205         target->endianness = TARGET_ENDIAN_UNKNOWN;
5206
5207         /* default to first core, override with -coreid */
5208         target->coreid = 0;
5209
5210         target->working_area        = 0x0;
5211         target->working_area_size   = 0x0;
5212         target->working_areas       = NULL;
5213         target->backup_working_area = 0;
5214
5215         target->state               = TARGET_UNKNOWN;
5216         target->debug_reason        = DBG_REASON_UNDEFINED;
5217         target->reg_cache           = NULL;
5218         target->breakpoints         = NULL;
5219         target->watchpoints         = NULL;
5220         target->next                = NULL;
5221         target->arch_info           = NULL;
5222
5223         target->display             = 1;
5224
5225         target->halt_issued                     = false;
5226
5227         /* initialize trace information */
5228         target->trace_info = malloc(sizeof(struct trace));
5229         target->trace_info->num_trace_points         = 0;
5230         target->trace_info->trace_points_size        = 0;
5231         target->trace_info->trace_points             = NULL;
5232         target->trace_info->trace_history_size       = 0;
5233         target->trace_info->trace_history            = NULL;
5234         target->trace_info->trace_history_pos        = 0;
5235         target->trace_info->trace_history_overflowed = 0;
5236
5237         target->dbgmsg          = NULL;
5238         target->dbg_msg_enabled = 0;
5239
5240         target->endianness = TARGET_ENDIAN_UNKNOWN;
5241
5242         target->rtos = NULL;
5243         target->rtos_auto_detect = false;
5244
5245         /* Do the rest as "configure" options */
5246         goi->isconfigure = 1;
5247         e = target_configure(goi, target);
5248
5249         if (target->tap == NULL) {
5250                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5251                 e = JIM_ERR;
5252         }
5253
5254         if (e != JIM_OK) {
5255                 free(target->type);
5256                 free(target);
5257                 return e;
5258         }
5259
5260         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5261                 /* default endian to little if not specified */
5262                 target->endianness = TARGET_LITTLE_ENDIAN;
5263         }
5264
5265         cp = Jim_GetString(new_cmd, NULL);
5266         target->cmd_name = strdup(cp);
5267
5268         /* create the target specific commands */
5269         if (target->type->commands) {
5270                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5271                 if (ERROR_OK != e)
5272                         LOG_ERROR("unable to register '%s' commands", cp);
5273         }
5274         if (target->type->target_create)
5275                 (*(target->type->target_create))(target, goi->interp);
5276
5277         /* append to end of list */
5278         {
5279                 struct target **tpp;
5280                 tpp = &(all_targets);
5281                 while (*tpp)
5282                         tpp = &((*tpp)->next);
5283                 *tpp = target;
5284         }
5285
5286         /* now - create the new target name command */
5287         const struct command_registration target_subcommands[] = {
5288                 {
5289                         .chain = target_instance_command_handlers,
5290                 },
5291                 {
5292                         .chain = target->type->commands,
5293                 },
5294                 COMMAND_REGISTRATION_DONE
5295         };
5296         const struct command_registration target_commands[] = {
5297                 {
5298                         .name = cp,
5299                         .mode = COMMAND_ANY,
5300                         .help = "target command group",
5301                         .usage = "",
5302                         .chain = target_subcommands,
5303                 },
5304                 COMMAND_REGISTRATION_DONE
5305         };
5306         e = register_commands(cmd_ctx, NULL, target_commands);
5307         if (ERROR_OK != e)
5308                 return JIM_ERR;
5309
5310         struct command *c = command_find_in_context(cmd_ctx, cp);
5311         assert(c);
5312         command_set_handler_data(c, target);
5313
5314         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5315 }
5316
5317 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5318 {
5319         if (argc != 1) {
5320                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5321                 return JIM_ERR;
5322         }
5323         struct command_context *cmd_ctx = current_command_context(interp);
5324         assert(cmd_ctx != NULL);
5325
5326         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5327         return JIM_OK;
5328 }
5329
5330 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5331 {
5332         if (argc != 1) {
5333                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5334                 return JIM_ERR;
5335         }
5336         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5337         for (unsigned x = 0; NULL != target_types[x]; x++) {
5338                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5339                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5340         }
5341         return JIM_OK;
5342 }
5343
5344 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5345 {
5346         if (argc != 1) {
5347                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5348                 return JIM_ERR;
5349         }
5350         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5351         struct target *target = all_targets;
5352         while (target) {
5353                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5354                         Jim_NewStringObj(interp, target_name(target), -1));
5355                 target = target->next;
5356         }
5357         return JIM_OK;
5358 }
5359
5360 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5361 {
5362         int i;
5363         const char *targetname;
5364         int retval, len;
5365         struct target *target = (struct target *) NULL;
5366         struct target_list *head, *curr, *new;
5367         curr = (struct target_list *) NULL;
5368         head = (struct target_list *) NULL;
5369
5370         retval = 0;
5371         LOG_DEBUG("%d", argc);
5372         /* argv[1] = target to associate in smp
5373          * argv[2] = target to assoicate in smp
5374          * argv[3] ...
5375          */
5376
5377         for (i = 1; i < argc; i++) {
5378
5379                 targetname = Jim_GetString(argv[i], &len);
5380                 target = get_target(targetname);
5381                 LOG_DEBUG("%s ", targetname);
5382                 if (target) {
5383                         new = malloc(sizeof(struct target_list));
5384                         new->target = target;
5385                         new->next = (struct target_list *)NULL;
5386                         if (head == (struct target_list *)NULL) {
5387                                 head = new;
5388                                 curr = head;
5389                         } else {
5390                                 curr->next = new;
5391                                 curr = new;
5392                         }
5393                 }
5394         }
5395         /*  now parse the list of cpu and put the target in smp mode*/
5396         curr = head;
5397
5398         while (curr != (struct target_list *)NULL) {
5399                 target = curr->target;
5400                 target->smp = 1;
5401                 target->head = head;
5402                 curr = curr->next;
5403         }
5404
5405         if (target && target->rtos)
5406                 retval = rtos_smp_init(head->target);
5407
5408         return retval;
5409 }
5410
5411
5412 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5413 {
5414         Jim_GetOptInfo goi;
5415         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5416         if (goi.argc < 3) {
5417                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5418                         "<name> <target_type> [<target_options> ...]");
5419                 return JIM_ERR;
5420         }
5421         return target_create(&goi);
5422 }
5423
5424 static const struct command_registration target_subcommand_handlers[] = {
5425         {
5426                 .name = "init",
5427                 .mode = COMMAND_CONFIG,
5428                 .handler = handle_target_init_command,
5429                 .help = "initialize targets",
5430         },
5431         {
5432                 .name = "create",
5433                 /* REVISIT this should be COMMAND_CONFIG ... */
5434                 .mode = COMMAND_ANY,
5435                 .jim_handler = jim_target_create,
5436                 .usage = "name type '-chain-position' name [options ...]",
5437                 .help = "Creates and selects a new target",
5438         },
5439         {
5440                 .name = "current",
5441                 .mode = COMMAND_ANY,
5442                 .jim_handler = jim_target_current,
5443                 .help = "Returns the currently selected target",
5444         },
5445         {
5446                 .name = "types",
5447                 .mode = COMMAND_ANY,
5448                 .jim_handler = jim_target_types,
5449                 .help = "Returns the available target types as "
5450                                 "a list of strings",
5451         },
5452         {
5453                 .name = "names",
5454                 .mode = COMMAND_ANY,
5455                 .jim_handler = jim_target_names,
5456                 .help = "Returns the names of all targets as a list of strings",
5457         },
5458         {
5459                 .name = "smp",
5460                 .mode = COMMAND_ANY,
5461                 .jim_handler = jim_target_smp,
5462                 .usage = "targetname1 targetname2 ...",
5463                 .help = "gather several target in a smp list"
5464         },
5465
5466         COMMAND_REGISTRATION_DONE
5467 };
5468
5469 struct FastLoad {
5470         uint32_t address;
5471         uint8_t *data;
5472         int length;
5473
5474 };
5475
5476 static int fastload_num;
5477 static struct FastLoad *fastload;
5478
5479 static void free_fastload(void)
5480 {
5481         if (fastload != NULL) {
5482                 int i;
5483                 for (i = 0; i < fastload_num; i++) {
5484                         if (fastload[i].data)
5485                                 free(fastload[i].data);
5486                 }
5487                 free(fastload);
5488                 fastload = NULL;
5489         }
5490 }
5491
5492 COMMAND_HANDLER(handle_fast_load_image_command)
5493 {
5494         uint8_t *buffer;
5495         size_t buf_cnt;
5496         uint32_t image_size;
5497         uint32_t min_address = 0;
5498         uint32_t max_address = 0xffffffff;
5499         int i;
5500
5501         struct image image;
5502
5503         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5504                         &image, &min_address, &max_address);
5505         if (ERROR_OK != retval)
5506                 return retval;
5507
5508         struct duration bench;
5509         duration_start(&bench);
5510
5511         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5512         if (retval != ERROR_OK)
5513                 return retval;
5514
5515         image_size = 0x0;
5516         retval = ERROR_OK;
5517         fastload_num = image.num_sections;
5518         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5519         if (fastload == NULL) {
5520                 command_print(CMD_CTX, "out of memory");
5521                 image_close(&image);
5522                 return ERROR_FAIL;
5523         }
5524         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5525         for (i = 0; i < image.num_sections; i++) {
5526                 buffer = malloc(image.sections[i].size);
5527                 if (buffer == NULL) {
5528                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5529                                                   (int)(image.sections[i].size));
5530                         retval = ERROR_FAIL;
5531                         break;
5532                 }
5533
5534                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5535                 if (retval != ERROR_OK) {
5536                         free(buffer);
5537                         break;
5538                 }
5539
5540                 uint32_t offset = 0;
5541                 uint32_t length = buf_cnt;
5542
5543                 /* DANGER!!! beware of unsigned comparision here!!! */
5544
5545                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5546                                 (image.sections[i].base_address < max_address)) {
5547                         if (image.sections[i].base_address < min_address) {
5548                                 /* clip addresses below */
5549                                 offset += min_address-image.sections[i].base_address;
5550                                 length -= offset;
5551                         }
5552
5553                         if (image.sections[i].base_address + buf_cnt > max_address)
5554                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5555
5556                         fastload[i].address = image.sections[i].base_address + offset;
5557                         fastload[i].data = malloc(length);
5558                         if (fastload[i].data == NULL) {
5559                                 free(buffer);
5560                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5561                                                           length);
5562                                 retval = ERROR_FAIL;
5563                                 break;
5564                         }
5565                         memcpy(fastload[i].data, buffer + offset, length);
5566                         fastload[i].length = length;
5567
5568                         image_size += length;
5569                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5570                                                   (unsigned int)length,
5571                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5572                 }
5573
5574                 free(buffer);
5575         }
5576
5577         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5578                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5579                                 "in %fs (%0.3f KiB/s)", image_size,
5580                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5581
5582                 command_print(CMD_CTX,
5583                                 "WARNING: image has not been loaded to target!"
5584                                 "You can issue a 'fast_load' to finish loading.");
5585         }
5586
5587         image_close(&image);
5588
5589         if (retval != ERROR_OK)
5590                 free_fastload();
5591
5592         return retval;
5593 }
5594
5595 COMMAND_HANDLER(handle_fast_load_command)
5596 {
5597         if (CMD_ARGC > 0)
5598                 return ERROR_COMMAND_SYNTAX_ERROR;
5599         if (fastload == NULL) {
5600                 LOG_ERROR("No image in memory");
5601                 return ERROR_FAIL;
5602         }
5603         int i;
5604         int ms = timeval_ms();
5605         int size = 0;
5606         int retval = ERROR_OK;
5607         for (i = 0; i < fastload_num; i++) {
5608                 struct target *target = get_current_target(CMD_CTX);
5609                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5610                                           (unsigned int)(fastload[i].address),
5611                                           (unsigned int)(fastload[i].length));
5612                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5613                 if (retval != ERROR_OK)
5614                         break;
5615                 size += fastload[i].length;
5616         }
5617         if (retval == ERROR_OK) {
5618                 int after = timeval_ms();
5619                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5620         }
5621         return retval;
5622 }
5623
5624 static const struct command_registration target_command_handlers[] = {
5625         {
5626                 .name = "targets",
5627                 .handler = handle_targets_command,
5628                 .mode = COMMAND_ANY,
5629                 .help = "change current default target (one parameter) "
5630                         "or prints table of all targets (no parameters)",
5631                 .usage = "[target]",
5632         },
5633         {
5634                 .name = "target",
5635                 .mode = COMMAND_CONFIG,
5636                 .help = "configure target",
5637
5638                 .chain = target_subcommand_handlers,
5639         },
5640         COMMAND_REGISTRATION_DONE
5641 };
5642
5643 int target_register_commands(struct command_context *cmd_ctx)
5644 {
5645         return register_commands(cmd_ctx, NULL, target_command_handlers);
5646 }
5647
5648 static bool target_reset_nag = true;
5649
5650 bool get_target_reset_nag(void)
5651 {
5652         return target_reset_nag;
5653 }
5654
5655 COMMAND_HANDLER(handle_target_reset_nag)
5656 {
5657         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5658                         &target_reset_nag, "Nag after each reset about options to improve "
5659                         "performance");
5660 }
5661
5662 COMMAND_HANDLER(handle_ps_command)
5663 {
5664         struct target *target = get_current_target(CMD_CTX);
5665         char *display;
5666         if (target->state != TARGET_HALTED) {
5667                 LOG_INFO("target not halted !!");
5668                 return ERROR_OK;
5669         }
5670
5671         if ((target->rtos) && (target->rtos->type)
5672                         && (target->rtos->type->ps_command)) {
5673                 display = target->rtos->type->ps_command(target);
5674                 command_print(CMD_CTX, "%s", display);
5675                 free(display);
5676                 return ERROR_OK;
5677         } else {
5678                 LOG_INFO("failed");
5679                 return ERROR_TARGET_FAILURE;
5680         }
5681 }
5682
5683 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5684 {
5685         if (text != NULL)
5686                 command_print_sameline(cmd_ctx, "%s", text);
5687         for (int i = 0; i < size; i++)
5688                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5689         command_print(cmd_ctx, " ");
5690 }
5691
5692 COMMAND_HANDLER(handle_test_mem_access_command)
5693 {
5694         struct target *target = get_current_target(CMD_CTX);
5695         uint32_t test_size;
5696         int retval = ERROR_OK;
5697
5698         if (target->state != TARGET_HALTED) {
5699                 LOG_INFO("target not halted !!");
5700                 return ERROR_FAIL;
5701         }
5702
5703         if (CMD_ARGC != 1)
5704                 return ERROR_COMMAND_SYNTAX_ERROR;
5705
5706         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5707
5708         /* Test reads */
5709         size_t num_bytes = test_size + 4;
5710
5711         struct working_area *wa = NULL;
5712         retval = target_alloc_working_area(target, num_bytes, &wa);
5713         if (retval != ERROR_OK) {
5714                 LOG_ERROR("Not enough working area");
5715                 return ERROR_FAIL;
5716         }
5717
5718         uint8_t *test_pattern = malloc(num_bytes);
5719
5720         for (size_t i = 0; i < num_bytes; i++)
5721                 test_pattern[i] = rand();
5722
5723         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5724         if (retval != ERROR_OK) {
5725                 LOG_ERROR("Test pattern write failed");
5726                 goto out;
5727         }
5728
5729         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5730                 for (int size = 1; size <= 4; size *= 2) {
5731                         for (int offset = 0; offset < 4; offset++) {
5732                                 uint32_t count = test_size / size;
5733                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5734                                 uint8_t *read_ref = malloc(host_bufsiz);
5735                                 uint8_t *read_buf = malloc(host_bufsiz);
5736
5737                                 for (size_t i = 0; i < host_bufsiz; i++) {
5738                                         read_ref[i] = rand();
5739                                         read_buf[i] = read_ref[i];
5740                                 }
5741                                 command_print_sameline(CMD_CTX,
5742                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5743                                                 size, offset, host_offset ? "un" : "");
5744
5745                                 struct duration bench;
5746                                 duration_start(&bench);
5747
5748                                 retval = target_read_memory(target, wa->address + offset, size, count,
5749                                                 read_buf + size + host_offset);
5750
5751                                 duration_measure(&bench);
5752
5753                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5754                                         command_print(CMD_CTX, "Unsupported alignment");
5755                                         goto next;
5756                                 } else if (retval != ERROR_OK) {
5757                                         command_print(CMD_CTX, "Memory read failed");
5758                                         goto next;
5759                                 }
5760
5761                                 /* replay on host */
5762                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5763
5764                                 /* check result */
5765                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5766                                 if (result == 0) {
5767                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5768                                                         duration_elapsed(&bench),
5769                                                         duration_kbps(&bench, count * size));
5770                                 } else {
5771                                         command_print(CMD_CTX, "Compare failed");
5772                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5773                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5774                                 }
5775 next:
5776                                 free(read_ref);
5777                                 free(read_buf);
5778                         }
5779                 }
5780         }
5781
5782 out:
5783         free(test_pattern);
5784
5785         if (wa != NULL)
5786                 target_free_working_area(target, wa);
5787
5788         /* Test writes */
5789         num_bytes = test_size + 4 + 4 + 4;
5790
5791         retval = target_alloc_working_area(target, num_bytes, &wa);
5792         if (retval != ERROR_OK) {
5793                 LOG_ERROR("Not enough working area");
5794                 return ERROR_FAIL;
5795         }
5796
5797         test_pattern = malloc(num_bytes);
5798
5799         for (size_t i = 0; i < num_bytes; i++)
5800                 test_pattern[i] = rand();
5801
5802         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5803                 for (int size = 1; size <= 4; size *= 2) {
5804                         for (int offset = 0; offset < 4; offset++) {
5805                                 uint32_t count = test_size / size;
5806                                 size_t host_bufsiz = count * size + host_offset;
5807                                 uint8_t *read_ref = malloc(num_bytes);
5808                                 uint8_t *read_buf = malloc(num_bytes);
5809                                 uint8_t *write_buf = malloc(host_bufsiz);
5810
5811                                 for (size_t i = 0; i < host_bufsiz; i++)
5812                                         write_buf[i] = rand();
5813                                 command_print_sameline(CMD_CTX,
5814                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5815                                                 size, offset, host_offset ? "un" : "");
5816
5817                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5818                                 if (retval != ERROR_OK) {
5819                                         command_print(CMD_CTX, "Test pattern write failed");
5820                                         goto nextw;
5821                                 }
5822
5823                                 /* replay on host */
5824                                 memcpy(read_ref, test_pattern, num_bytes);
5825                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5826
5827                                 struct duration bench;
5828                                 duration_start(&bench);
5829
5830                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5831                                                 write_buf + host_offset);
5832
5833                                 duration_measure(&bench);
5834
5835                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5836                                         command_print(CMD_CTX, "Unsupported alignment");
5837                                         goto nextw;
5838                                 } else if (retval != ERROR_OK) {
5839                                         command_print(CMD_CTX, "Memory write failed");
5840                                         goto nextw;
5841                                 }
5842
5843                                 /* read back */
5844                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5845                                 if (retval != ERROR_OK) {
5846                                         command_print(CMD_CTX, "Test pattern write failed");
5847                                         goto nextw;
5848                                 }
5849
5850                                 /* check result */
5851                                 int result = memcmp(read_ref, read_buf, num_bytes);
5852                                 if (result == 0) {
5853                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5854                                                         duration_elapsed(&bench),
5855                                                         duration_kbps(&bench, count * size));
5856                                 } else {
5857                                         command_print(CMD_CTX, "Compare failed");
5858                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5859                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5860                                 }
5861 nextw:
5862                                 free(read_ref);
5863                                 free(read_buf);
5864                         }
5865                 }
5866         }
5867
5868         free(test_pattern);
5869
5870         if (wa != NULL)
5871                 target_free_working_area(target, wa);
5872         return retval;
5873 }
5874
5875 static const struct command_registration target_exec_command_handlers[] = {
5876         {
5877                 .name = "fast_load_image",
5878                 .handler = handle_fast_load_image_command,
5879                 .mode = COMMAND_ANY,
5880                 .help = "Load image into server memory for later use by "
5881                         "fast_load; primarily for profiling",
5882                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5883                         "[min_address [max_length]]",
5884         },
5885         {
5886                 .name = "fast_load",
5887                 .handler = handle_fast_load_command,
5888                 .mode = COMMAND_EXEC,
5889                 .help = "loads active fast load image to current target "
5890                         "- mainly for profiling purposes",
5891                 .usage = "",
5892         },
5893         {
5894                 .name = "profile",
5895                 .handler = handle_profile_command,
5896                 .mode = COMMAND_EXEC,
5897                 .usage = "seconds filename [start end]",
5898                 .help = "profiling samples the CPU PC",
5899         },
5900         /** @todo don't register virt2phys() unless target supports it */
5901         {
5902                 .name = "virt2phys",
5903                 .handler = handle_virt2phys_command,
5904                 .mode = COMMAND_ANY,
5905                 .help = "translate a virtual address into a physical address",
5906                 .usage = "virtual_address",
5907         },
5908         {
5909                 .name = "reg",
5910                 .handler = handle_reg_command,
5911                 .mode = COMMAND_EXEC,
5912                 .help = "display (reread from target with \"force\") or set a register; "
5913                         "with no arguments, displays all registers and their values",
5914                 .usage = "[(register_number|register_name) [(value|'force')]]",
5915         },
5916         {
5917                 .name = "poll",
5918                 .handler = handle_poll_command,
5919                 .mode = COMMAND_EXEC,
5920                 .help = "poll target state; or reconfigure background polling",
5921                 .usage = "['on'|'off']",
5922         },
5923         {
5924                 .name = "wait_halt",
5925                 .handler = handle_wait_halt_command,
5926                 .mode = COMMAND_EXEC,
5927                 .help = "wait up to the specified number of milliseconds "
5928                         "(default 5000) for a previously requested halt",
5929                 .usage = "[milliseconds]",
5930         },
5931         {
5932                 .name = "halt",
5933                 .handler = handle_halt_command,
5934                 .mode = COMMAND_EXEC,
5935                 .help = "request target to halt, then wait up to the specified"
5936                         "number of milliseconds (default 5000) for it to complete",
5937                 .usage = "[milliseconds]",
5938         },
5939         {
5940                 .name = "resume",
5941                 .handler = handle_resume_command,
5942                 .mode = COMMAND_EXEC,
5943                 .help = "resume target execution from current PC or address",
5944                 .usage = "[address]",
5945         },
5946         {
5947                 .name = "reset",
5948                 .handler = handle_reset_command,
5949                 .mode = COMMAND_EXEC,
5950                 .usage = "[run|halt|init]",
5951                 .help = "Reset all targets into the specified mode."
5952                         "Default reset mode is run, if not given.",
5953         },
5954         {
5955                 .name = "soft_reset_halt",
5956                 .handler = handle_soft_reset_halt_command,
5957                 .mode = COMMAND_EXEC,
5958                 .usage = "",
5959                 .help = "halt the target and do a soft reset",
5960         },
5961         {
5962                 .name = "step",
5963                 .handler = handle_step_command,
5964                 .mode = COMMAND_EXEC,
5965                 .help = "step one instruction from current PC or address",
5966                 .usage = "[address]",
5967         },
5968         {
5969                 .name = "mdw",
5970                 .handler = handle_md_command,
5971                 .mode = COMMAND_EXEC,
5972                 .help = "display memory words",
5973                 .usage = "['phys'] address [count]",
5974         },
5975         {
5976                 .name = "mdh",
5977                 .handler = handle_md_command,
5978                 .mode = COMMAND_EXEC,
5979                 .help = "display memory half-words",
5980                 .usage = "['phys'] address [count]",
5981         },
5982         {
5983                 .name = "mdb",
5984                 .handler = handle_md_command,
5985                 .mode = COMMAND_EXEC,
5986                 .help = "display memory bytes",
5987                 .usage = "['phys'] address [count]",
5988         },
5989         {
5990                 .name = "mww",
5991                 .handler = handle_mw_command,
5992                 .mode = COMMAND_EXEC,
5993                 .help = "write memory word",
5994                 .usage = "['phys'] address value [count]",
5995         },
5996         {
5997                 .name = "mwh",
5998                 .handler = handle_mw_command,
5999                 .mode = COMMAND_EXEC,
6000                 .help = "write memory half-word",
6001                 .usage = "['phys'] address value [count]",
6002         },
6003         {
6004                 .name = "mwb",
6005                 .handler = handle_mw_command,
6006                 .mode = COMMAND_EXEC,
6007                 .help = "write memory byte",
6008                 .usage = "['phys'] address value [count]",
6009         },
6010         {
6011                 .name = "bp",
6012                 .handler = handle_bp_command,
6013                 .mode = COMMAND_EXEC,
6014                 .help = "list or set hardware or software breakpoint",
6015                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6016         },
6017         {
6018                 .name = "rbp",
6019                 .handler = handle_rbp_command,
6020                 .mode = COMMAND_EXEC,
6021                 .help = "remove breakpoint",
6022                 .usage = "address",
6023         },
6024         {
6025                 .name = "wp",
6026                 .handler = handle_wp_command,
6027                 .mode = COMMAND_EXEC,
6028                 .help = "list (no params) or create watchpoints",
6029                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6030         },
6031         {
6032                 .name = "rwp",
6033                 .handler = handle_rwp_command,
6034                 .mode = COMMAND_EXEC,
6035                 .help = "remove watchpoint",
6036                 .usage = "address",
6037         },
6038         {
6039                 .name = "load_image",
6040                 .handler = handle_load_image_command,
6041                 .mode = COMMAND_EXEC,
6042                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6043                         "[min_address] [max_length]",
6044         },
6045         {
6046                 .name = "dump_image",
6047                 .handler = handle_dump_image_command,
6048                 .mode = COMMAND_EXEC,
6049                 .usage = "filename address size",
6050         },
6051         {
6052                 .name = "verify_image",
6053                 .handler = handle_verify_image_command,
6054                 .mode = COMMAND_EXEC,
6055                 .usage = "filename [offset [type]]",
6056         },
6057         {
6058                 .name = "test_image",
6059                 .handler = handle_test_image_command,
6060                 .mode = COMMAND_EXEC,
6061                 .usage = "filename [offset [type]]",
6062         },
6063         {
6064                 .name = "mem2array",
6065                 .mode = COMMAND_EXEC,
6066                 .jim_handler = jim_mem2array,
6067                 .help = "read 8/16/32 bit memory and return as a TCL array "
6068                         "for script processing",
6069                 .usage = "arrayname bitwidth address count",
6070         },
6071         {
6072                 .name = "array2mem",
6073                 .mode = COMMAND_EXEC,
6074                 .jim_handler = jim_array2mem,
6075                 .help = "convert a TCL array to memory locations "
6076                         "and write the 8/16/32 bit values",
6077                 .usage = "arrayname bitwidth address count",
6078         },
6079         {
6080                 .name = "reset_nag",
6081                 .handler = handle_target_reset_nag,
6082                 .mode = COMMAND_ANY,
6083                 .help = "Nag after each reset about options that could have been "
6084                                 "enabled to improve performance. ",
6085                 .usage = "['enable'|'disable']",
6086         },
6087         {
6088                 .name = "ps",
6089                 .handler = handle_ps_command,
6090                 .mode = COMMAND_EXEC,
6091                 .help = "list all tasks ",
6092                 .usage = " ",
6093         },
6094         {
6095                 .name = "test_mem_access",
6096                 .handler = handle_test_mem_access_command,
6097                 .mode = COMMAND_EXEC,
6098                 .help = "Test the target's memory access functions",
6099                 .usage = "size",
6100         },
6101
6102         COMMAND_REGISTRATION_DONE
6103 };
6104 static int target_register_user_commands(struct command_context *cmd_ctx)
6105 {
6106         int retval = ERROR_OK;
6107         retval = target_request_register_commands(cmd_ctx);
6108         if (retval != ERROR_OK)
6109                 return retval;
6110
6111         retval = trace_register_commands(cmd_ctx);
6112         if (retval != ERROR_OK)
6113                 return retval;
6114
6115
6116         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6117 }