]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: clear running_alg flag after reset
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
102
103 static struct target_type *target_types[] = {
104         &arm7tdmi_target,
105         &arm9tdmi_target,
106         &arm920t_target,
107         &arm720t_target,
108         &arm966e_target,
109         &arm946e_target,
110         &arm926ejs_target,
111         &fa526_target,
112         &feroceon_target,
113         &dragonite_target,
114         &xscale_target,
115         &cortexm3_target,
116         &cortexa8_target,
117         &cortexr4_target,
118         &arm11_target,
119         &mips_m4k_target,
120         &avr_target,
121         &dsp563xx_target,
122         &dsp5680xx_target,
123         &testee_target,
124         &avr32_ap7k_target,
125         &hla_target,
126         &nds32_v2_target,
127         &nds32_v3_target,
128         &nds32_v3m_target,
129         NULL,
130 };
131
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
136
137 static const Jim_Nvp nvp_assert[] = {
138         { .name = "assert", NVP_ASSERT },
139         { .name = "deassert", NVP_DEASSERT },
140         { .name = "T", NVP_ASSERT },
141         { .name = "F", NVP_DEASSERT },
142         { .name = "t", NVP_ASSERT },
143         { .name = "f", NVP_DEASSERT },
144         { .name = NULL, .value = -1 }
145 };
146
147 static const Jim_Nvp nvp_error_target[] = {
148         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
154         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
157         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159         { .value = -1, .name = NULL }
160 };
161
162 static const char *target_strerror_safe(int err)
163 {
164         const Jim_Nvp *n;
165
166         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167         if (n->name == NULL)
168                 return "unknown";
169         else
170                 return n->name;
171 }
172
173 static const Jim_Nvp nvp_target_event[] = {
174
175         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176         { .value = TARGET_EVENT_HALTED, .name = "halted" },
177         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
180
181         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
183
184         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
185         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
186         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
187         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
188         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
189         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
191         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
192         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
193         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
194         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
195         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
196
197         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
199
200         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
202
203         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
205
206         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
208
209         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
211
212         { .name = NULL, .value = -1 }
213 };
214
215 static const Jim_Nvp nvp_target_state[] = {
216         { .name = "unknown", .value = TARGET_UNKNOWN },
217         { .name = "running", .value = TARGET_RUNNING },
218         { .name = "halted",  .value = TARGET_HALTED },
219         { .name = "reset",   .value = TARGET_RESET },
220         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221         { .name = NULL, .value = -1 },
222 };
223
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
226         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
227         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
228         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
230         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
231         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
232         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
233         { .name = NULL, .value = -1 },
234 };
235
236 static const Jim_Nvp nvp_target_endian[] = {
237         { .name = "big",    .value = TARGET_BIG_ENDIAN },
238         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
239         { .name = "be",     .value = TARGET_BIG_ENDIAN },
240         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
241         { .name = NULL,     .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_reset_modes[] = {
245         { .name = "unknown", .value = RESET_UNKNOWN },
246         { .name = "run"    , .value = RESET_RUN },
247         { .name = "halt"   , .value = RESET_HALT },
248         { .name = "init"   , .value = RESET_INIT },
249         { .name = NULL     , .value = -1 },
250 };
251
252 const char *debug_reason_name(struct target *t)
253 {
254         const char *cp;
255
256         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
257                         t->debug_reason)->name;
258         if (!cp) {
259                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
260                 cp = "(*BUG*unknown*BUG*)";
261         }
262         return cp;
263 }
264
265 const char *target_state_name(struct target *t)
266 {
267         const char *cp;
268         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
269         if (!cp) {
270                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
271                 cp = "(*BUG*unknown*BUG*)";
272         }
273         return cp;
274 }
275
276 /* determine the number of the new target */
277 static int new_target_number(void)
278 {
279         struct target *t;
280         int x;
281
282         /* number is 0 based */
283         x = -1;
284         t = all_targets;
285         while (t) {
286                 if (x < t->target_number)
287                         x = t->target_number;
288                 t = t->next;
289         }
290         return x + 1;
291 }
292
293 /* read a uint32_t from a buffer in target memory endianness */
294 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
295 {
296         if (target->endianness == TARGET_LITTLE_ENDIAN)
297                 return le_to_h_u32(buffer);
298         else
299                 return be_to_h_u32(buffer);
300 }
301
302 /* read a uint24_t from a buffer in target memory endianness */
303 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
304 {
305         if (target->endianness == TARGET_LITTLE_ENDIAN)
306                 return le_to_h_u24(buffer);
307         else
308                 return be_to_h_u24(buffer);
309 }
310
311 /* read a uint16_t from a buffer in target memory endianness */
312 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
313 {
314         if (target->endianness == TARGET_LITTLE_ENDIAN)
315                 return le_to_h_u16(buffer);
316         else
317                 return be_to_h_u16(buffer);
318 }
319
320 /* read a uint8_t from a buffer in target memory endianness */
321 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
322 {
323         return *buffer & 0x0ff;
324 }
325
326 /* write a uint32_t to a buffer in target memory endianness */
327 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
328 {
329         if (target->endianness == TARGET_LITTLE_ENDIAN)
330                 h_u32_to_le(buffer, value);
331         else
332                 h_u32_to_be(buffer, value);
333 }
334
335 /* write a uint24_t to a buffer in target memory endianness */
336 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
337 {
338         if (target->endianness == TARGET_LITTLE_ENDIAN)
339                 h_u24_to_le(buffer, value);
340         else
341                 h_u24_to_be(buffer, value);
342 }
343
344 /* write a uint16_t to a buffer in target memory endianness */
345 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
346 {
347         if (target->endianness == TARGET_LITTLE_ENDIAN)
348                 h_u16_to_le(buffer, value);
349         else
350                 h_u16_to_be(buffer, value);
351 }
352
353 /* write a uint8_t to a buffer in target memory endianness */
354 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
355 {
356         *buffer = value;
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
361 {
362         uint32_t i;
363         for (i = 0; i < count; i++)
364                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
369 {
370         uint32_t i;
371         for (i = 0; i < count; i++)
372                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
373 }
374
375 /* write a uint32_t array to a buffer in target memory endianness */
376 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
377 {
378         uint32_t i;
379         for (i = 0; i < count; i++)
380                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
381 }
382
383 /* write a uint16_t array to a buffer in target memory endianness */
384 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
385 {
386         uint32_t i;
387         for (i = 0; i < count; i++)
388                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
389 }
390
391 /* return a pointer to a configured target; id is name or number */
392 struct target *get_target(const char *id)
393 {
394         struct target *target;
395
396         /* try as tcltarget name */
397         for (target = all_targets; target; target = target->next) {
398                 if (target_name(target) == NULL)
399                         continue;
400                 if (strcmp(id, target_name(target)) == 0)
401                         return target;
402         }
403
404         /* It's OK to remove this fallback sometime after August 2010 or so */
405
406         /* no match, try as number */
407         unsigned num;
408         if (parse_uint(id, &num) != ERROR_OK)
409                 return NULL;
410
411         for (target = all_targets; target; target = target->next) {
412                 if (target->target_number == (int)num) {
413                         LOG_WARNING("use '%s' as target identifier, not '%u'",
414                                         target_name(target), num);
415                         return target;
416                 }
417         }
418
419         return NULL;
420 }
421
422 /* returns a pointer to the n-th configured target */
423 static struct target *get_target_by_num(int num)
424 {
425         struct target *target = all_targets;
426
427         while (target) {
428                 if (target->target_number == num)
429                         return target;
430                 target = target->next;
431         }
432
433         return NULL;
434 }
435
436 struct target *get_current_target(struct command_context *cmd_ctx)
437 {
438         struct target *target = get_target_by_num(cmd_ctx->current_target);
439
440         if (target == NULL) {
441                 LOG_ERROR("BUG: current_target out of bounds");
442                 exit(-1);
443         }
444
445         return target;
446 }
447
448 int target_poll(struct target *target)
449 {
450         int retval;
451
452         /* We can't poll until after examine */
453         if (!target_was_examined(target)) {
454                 /* Fail silently lest we pollute the log */
455                 return ERROR_FAIL;
456         }
457
458         retval = target->type->poll(target);
459         if (retval != ERROR_OK)
460                 return retval;
461
462         if (target->halt_issued) {
463                 if (target->state == TARGET_HALTED)
464                         target->halt_issued = false;
465                 else {
466                         long long t = timeval_ms() - target->halt_issued_time;
467                         if (t > DEFAULT_HALT_TIMEOUT) {
468                                 target->halt_issued = false;
469                                 LOG_INFO("Halt timed out, wake up GDB.");
470                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
471                         }
472                 }
473         }
474
475         return ERROR_OK;
476 }
477
478 int target_halt(struct target *target)
479 {
480         int retval;
481         /* We can't poll until after examine */
482         if (!target_was_examined(target)) {
483                 LOG_ERROR("Target not examined yet");
484                 return ERROR_FAIL;
485         }
486
487         retval = target->type->halt(target);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         target->halt_issued = true;
492         target->halt_issued_time = timeval_ms();
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Make the target (re)start executing using its saved execution
499  * context (possibly with some modifications).
500  *
501  * @param target Which target should start executing.
502  * @param current True to use the target's saved program counter instead
503  *      of the address parameter
504  * @param address Optionally used as the program counter.
505  * @param handle_breakpoints True iff breakpoints at the resumption PC
506  *      should be skipped.  (For example, maybe execution was stopped by
507  *      such a breakpoint, in which case it would be counterprodutive to
508  *      let it re-trigger.
509  * @param debug_execution False if all working areas allocated by OpenOCD
510  *      should be released and/or restored to their original contents.
511  *      (This would for example be true to run some downloaded "helper"
512  *      algorithm code, which resides in one such working buffer and uses
513  *      another for data storage.)
514  *
515  * @todo Resolve the ambiguity about what the "debug_execution" flag
516  * signifies.  For example, Target implementations don't agree on how
517  * it relates to invalidation of the register cache, or to whether
518  * breakpoints and watchpoints should be enabled.  (It would seem wrong
519  * to enable breakpoints when running downloaded "helper" algorithms
520  * (debug_execution true), since the breakpoints would be set to match
521  * target firmware being debugged, not the helper algorithm.... and
522  * enabling them could cause such helpers to malfunction (for example,
523  * by overwriting data with a breakpoint instruction.  On the other
524  * hand the infrastructure for running such helpers might use this
525  * procedure but rely on hardware breakpoint to detect termination.)
526  */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target)) {
533                 LOG_ERROR("Target not examined yet");
534                 return ERROR_FAIL;
535         }
536
537         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
538
539         /* note that resume *must* be asynchronous. The CPU can halt before
540          * we poll. The CPU can even halt at the current PC as a result of
541          * a software breakpoint being inserted by (a bug?) the application.
542          */
543         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
544         if (retval != ERROR_OK)
545                 return retval;
546
547         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
548
549         return retval;
550 }
551
552 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
553 {
554         char buf[100];
555         int retval;
556         Jim_Nvp *n;
557         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
558         if (n->name == NULL) {
559                 LOG_ERROR("invalid reset mode");
560                 return ERROR_FAIL;
561         }
562
563         /* disable polling during reset to make reset event scripts
564          * more predictable, i.e. dr/irscan & pathmove in events will
565          * not have JTAG operations injected into the middle of a sequence.
566          */
567         bool save_poll = jtag_poll_get_enabled();
568
569         jtag_poll_set_enabled(false);
570
571         sprintf(buf, "ocd_process_reset %s", n->name);
572         retval = Jim_Eval(cmd_ctx->interp, buf);
573
574         jtag_poll_set_enabled(save_poll);
575
576         if (retval != JIM_OK) {
577                 Jim_MakeErrorMessage(cmd_ctx->interp);
578                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
579                 return ERROR_FAIL;
580         }
581
582         /* We want any events to be processed before the prompt */
583         retval = target_call_timer_callbacks_now();
584
585         struct target *target;
586         for (target = all_targets; target; target = target->next) {
587                 target->type->check_reset(target);
588                 target->running_alg = false;
589         }
590
591         return retval;
592 }
593
594 static int identity_virt2phys(struct target *target,
595                 uint32_t virtual, uint32_t *physical)
596 {
597         *physical = virtual;
598         return ERROR_OK;
599 }
600
601 static int no_mmu(struct target *target, int *enabled)
602 {
603         *enabled = 0;
604         return ERROR_OK;
605 }
606
607 static int default_examine(struct target *target)
608 {
609         target_set_examined(target);
610         return ERROR_OK;
611 }
612
613 /* no check by default */
614 static int default_check_reset(struct target *target)
615 {
616         return ERROR_OK;
617 }
618
619 int target_examine_one(struct target *target)
620 {
621         return target->type->examine(target);
622 }
623
624 static int jtag_enable_callback(enum jtag_event event, void *priv)
625 {
626         struct target *target = priv;
627
628         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
629                 return ERROR_OK;
630
631         jtag_unregister_event_callback(jtag_enable_callback, target);
632
633         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
634
635         int retval = target_examine_one(target);
636         if (retval != ERROR_OK)
637                 return retval;
638
639         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
640
641         return retval;
642 }
643
644 /* Targets that correctly implement init + examine, i.e.
645  * no communication with target during init:
646  *
647  * XScale
648  */
649 int target_examine(void)
650 {
651         int retval = ERROR_OK;
652         struct target *target;
653
654         for (target = all_targets; target; target = target->next) {
655                 /* defer examination, but don't skip it */
656                 if (!target->tap->enabled) {
657                         jtag_register_event_callback(jtag_enable_callback,
658                                         target);
659                         continue;
660                 }
661
662                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
663
664                 retval = target_examine_one(target);
665                 if (retval != ERROR_OK)
666                         return retval;
667
668                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
669         }
670         return retval;
671 }
672
673 const char *target_type_name(struct target *target)
674 {
675         return target->type->name;
676 }
677
678 static int target_soft_reset_halt(struct target *target)
679 {
680         if (!target_was_examined(target)) {
681                 LOG_ERROR("Target not examined yet");
682                 return ERROR_FAIL;
683         }
684         if (!target->type->soft_reset_halt) {
685                 LOG_ERROR("Target %s does not support soft_reset_halt",
686                                 target_name(target));
687                 return ERROR_FAIL;
688         }
689         return target->type->soft_reset_halt(target);
690 }
691
692 /**
693  * Downloads a target-specific native code algorithm to the target,
694  * and executes it.  * Note that some targets may need to set up, enable,
695  * and tear down a breakpoint (hard or * soft) to detect algorithm
696  * termination, while others may support  lower overhead schemes where
697  * soft breakpoints embedded in the algorithm automatically terminate the
698  * algorithm.
699  *
700  * @param target used to run the algorithm
701  * @param arch_info target-specific description of the algorithm.
702  */
703 int target_run_algorithm(struct target *target,
704                 int num_mem_params, struct mem_param *mem_params,
705                 int num_reg_params, struct reg_param *reg_param,
706                 uint32_t entry_point, uint32_t exit_point,
707                 int timeout_ms, void *arch_info)
708 {
709         int retval = ERROR_FAIL;
710
711         if (!target_was_examined(target)) {
712                 LOG_ERROR("Target not examined yet");
713                 goto done;
714         }
715         if (!target->type->run_algorithm) {
716                 LOG_ERROR("Target type '%s' does not support %s",
717                                 target_type_name(target), __func__);
718                 goto done;
719         }
720
721         target->running_alg = true;
722         retval = target->type->run_algorithm(target,
723                         num_mem_params, mem_params,
724                         num_reg_params, reg_param,
725                         entry_point, exit_point, timeout_ms, arch_info);
726         target->running_alg = false;
727
728 done:
729         return retval;
730 }
731
732 /**
733  * Downloads a target-specific native code algorithm to the target,
734  * executes and leaves it running.
735  *
736  * @param target used to run the algorithm
737  * @param arch_info target-specific description of the algorithm.
738  */
739 int target_start_algorithm(struct target *target,
740                 int num_mem_params, struct mem_param *mem_params,
741                 int num_reg_params, struct reg_param *reg_params,
742                 uint32_t entry_point, uint32_t exit_point,
743                 void *arch_info)
744 {
745         int retval = ERROR_FAIL;
746
747         if (!target_was_examined(target)) {
748                 LOG_ERROR("Target not examined yet");
749                 goto done;
750         }
751         if (!target->type->start_algorithm) {
752                 LOG_ERROR("Target type '%s' does not support %s",
753                                 target_type_name(target), __func__);
754                 goto done;
755         }
756         if (target->running_alg) {
757                 LOG_ERROR("Target is already running an algorithm");
758                 goto done;
759         }
760
761         target->running_alg = true;
762         retval = target->type->start_algorithm(target,
763                         num_mem_params, mem_params,
764                         num_reg_params, reg_params,
765                         entry_point, exit_point, arch_info);
766
767 done:
768         return retval;
769 }
770
771 /**
772  * Waits for an algorithm started with target_start_algorithm() to complete.
773  *
774  * @param target used to run the algorithm
775  * @param arch_info target-specific description of the algorithm.
776  */
777 int target_wait_algorithm(struct target *target,
778                 int num_mem_params, struct mem_param *mem_params,
779                 int num_reg_params, struct reg_param *reg_params,
780                 uint32_t exit_point, int timeout_ms,
781                 void *arch_info)
782 {
783         int retval = ERROR_FAIL;
784
785         if (!target->type->wait_algorithm) {
786                 LOG_ERROR("Target type '%s' does not support %s",
787                                 target_type_name(target), __func__);
788                 goto done;
789         }
790         if (!target->running_alg) {
791                 LOG_ERROR("Target is not running an algorithm");
792                 goto done;
793         }
794
795         retval = target->type->wait_algorithm(target,
796                         num_mem_params, mem_params,
797                         num_reg_params, reg_params,
798                         exit_point, timeout_ms, arch_info);
799         if (retval != ERROR_TARGET_TIMEOUT)
800                 target->running_alg = false;
801
802 done:
803         return retval;
804 }
805
806 /**
807  * Executes a target-specific native code algorithm in the target.
808  * It differs from target_run_algorithm in that the algorithm is asynchronous.
809  * Because of this it requires an compliant algorithm:
810  * see contrib/loaders/flash/stm32f1x.S for example.
811  *
812  * @param target used to run the algorithm
813  */
814
815 int target_run_flash_async_algorithm(struct target *target,
816                 uint8_t *buffer, uint32_t count, int block_size,
817                 int num_mem_params, struct mem_param *mem_params,
818                 int num_reg_params, struct reg_param *reg_params,
819                 uint32_t buffer_start, uint32_t buffer_size,
820                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
821 {
822         int retval;
823         int timeout = 0;
824
825         /* Set up working area. First word is write pointer, second word is read pointer,
826          * rest is fifo data area. */
827         uint32_t wp_addr = buffer_start;
828         uint32_t rp_addr = buffer_start + 4;
829         uint32_t fifo_start_addr = buffer_start + 8;
830         uint32_t fifo_end_addr = buffer_start + buffer_size;
831
832         uint32_t wp = fifo_start_addr;
833         uint32_t rp = fifo_start_addr;
834
835         /* validate block_size is 2^n */
836         assert(!block_size || !(block_size & (block_size - 1)));
837
838         retval = target_write_u32(target, wp_addr, wp);
839         if (retval != ERROR_OK)
840                 return retval;
841         retval = target_write_u32(target, rp_addr, rp);
842         if (retval != ERROR_OK)
843                 return retval;
844
845         /* Start up algorithm on target and let it idle while writing the first chunk */
846         retval = target_start_algorithm(target, num_mem_params, mem_params,
847                         num_reg_params, reg_params,
848                         entry_point,
849                         exit_point,
850                         arch_info);
851
852         if (retval != ERROR_OK) {
853                 LOG_ERROR("error starting target flash write algorithm");
854                 return retval;
855         }
856
857         while (count > 0) {
858
859                 retval = target_read_u32(target, rp_addr, &rp);
860                 if (retval != ERROR_OK) {
861                         LOG_ERROR("failed to get read pointer");
862                         break;
863                 }
864
865                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
866
867                 if (rp == 0) {
868                         LOG_ERROR("flash write algorithm aborted by target");
869                         retval = ERROR_FLASH_OPERATION_FAILED;
870                         break;
871                 }
872
873                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
874                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
875                         break;
876                 }
877
878                 /* Count the number of bytes available in the fifo without
879                  * crossing the wrap around. Make sure to not fill it completely,
880                  * because that would make wp == rp and that's the empty condition. */
881                 uint32_t thisrun_bytes;
882                 if (rp > wp)
883                         thisrun_bytes = rp - wp - block_size;
884                 else if (rp > fifo_start_addr)
885                         thisrun_bytes = fifo_end_addr - wp;
886                 else
887                         thisrun_bytes = fifo_end_addr - wp - block_size;
888
889                 if (thisrun_bytes == 0) {
890                         /* Throttle polling a bit if transfer is (much) faster than flash
891                          * programming. The exact delay shouldn't matter as long as it's
892                          * less than buffer size / flash speed. This is very unlikely to
893                          * run when using high latency connections such as USB. */
894                         alive_sleep(10);
895
896                         /* to stop an infinite loop on some targets check and increment a timeout
897                          * this issue was observed on a stellaris using the new ICDI interface */
898                         if (timeout++ >= 500) {
899                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
900                                 return ERROR_FLASH_OPERATION_FAILED;
901                         }
902                         continue;
903                 }
904
905                 /* reset our timeout */
906                 timeout = 0;
907
908                 /* Limit to the amount of data we actually want to write */
909                 if (thisrun_bytes > count * block_size)
910                         thisrun_bytes = count * block_size;
911
912                 /* Write data to fifo */
913                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
914                 if (retval != ERROR_OK)
915                         break;
916
917                 /* Update counters and wrap write pointer */
918                 buffer += thisrun_bytes;
919                 count -= thisrun_bytes / block_size;
920                 wp += thisrun_bytes;
921                 if (wp >= fifo_end_addr)
922                         wp = fifo_start_addr;
923
924                 /* Store updated write pointer to target */
925                 retval = target_write_u32(target, wp_addr, wp);
926                 if (retval != ERROR_OK)
927                         break;
928         }
929
930         if (retval != ERROR_OK) {
931                 /* abort flash write algorithm on target */
932                 target_write_u32(target, wp_addr, 0);
933         }
934
935         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
936                         num_reg_params, reg_params,
937                         exit_point,
938                         10000,
939                         arch_info);
940
941         if (retval2 != ERROR_OK) {
942                 LOG_ERROR("error waiting for target flash write algorithm");
943                 retval = retval2;
944         }
945
946         return retval;
947 }
948
949 int target_read_memory(struct target *target,
950                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
951 {
952         if (!target_was_examined(target)) {
953                 LOG_ERROR("Target not examined yet");
954                 return ERROR_FAIL;
955         }
956         return target->type->read_memory(target, address, size, count, buffer);
957 }
958
959 int target_read_phys_memory(struct target *target,
960                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
961 {
962         if (!target_was_examined(target)) {
963                 LOG_ERROR("Target not examined yet");
964                 return ERROR_FAIL;
965         }
966         return target->type->read_phys_memory(target, address, size, count, buffer);
967 }
968
969 int target_write_memory(struct target *target,
970                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
971 {
972         if (!target_was_examined(target)) {
973                 LOG_ERROR("Target not examined yet");
974                 return ERROR_FAIL;
975         }
976         return target->type->write_memory(target, address, size, count, buffer);
977 }
978
979 int target_write_phys_memory(struct target *target,
980                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
981 {
982         if (!target_was_examined(target)) {
983                 LOG_ERROR("Target not examined yet");
984                 return ERROR_FAIL;
985         }
986         return target->type->write_phys_memory(target, address, size, count, buffer);
987 }
988
989 static int target_bulk_write_memory_default(struct target *target,
990                 uint32_t address, uint32_t count, const uint8_t *buffer)
991 {
992         return target_write_memory(target, address, 4, count, buffer);
993 }
994
995 int target_add_breakpoint(struct target *target,
996                 struct breakpoint *breakpoint)
997 {
998         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
999                 LOG_WARNING("target %s is not halted", target_name(target));
1000                 return ERROR_TARGET_NOT_HALTED;
1001         }
1002         return target->type->add_breakpoint(target, breakpoint);
1003 }
1004
1005 int target_add_context_breakpoint(struct target *target,
1006                 struct breakpoint *breakpoint)
1007 {
1008         if (target->state != TARGET_HALTED) {
1009                 LOG_WARNING("target %s is not halted", target_name(target));
1010                 return ERROR_TARGET_NOT_HALTED;
1011         }
1012         return target->type->add_context_breakpoint(target, breakpoint);
1013 }
1014
1015 int target_add_hybrid_breakpoint(struct target *target,
1016                 struct breakpoint *breakpoint)
1017 {
1018         if (target->state != TARGET_HALTED) {
1019                 LOG_WARNING("target %s is not halted", target_name(target));
1020                 return ERROR_TARGET_NOT_HALTED;
1021         }
1022         return target->type->add_hybrid_breakpoint(target, breakpoint);
1023 }
1024
1025 int target_remove_breakpoint(struct target *target,
1026                 struct breakpoint *breakpoint)
1027 {
1028         return target->type->remove_breakpoint(target, breakpoint);
1029 }
1030
1031 int target_add_watchpoint(struct target *target,
1032                 struct watchpoint *watchpoint)
1033 {
1034         if (target->state != TARGET_HALTED) {
1035                 LOG_WARNING("target %s is not halted", target_name(target));
1036                 return ERROR_TARGET_NOT_HALTED;
1037         }
1038         return target->type->add_watchpoint(target, watchpoint);
1039 }
1040 int target_remove_watchpoint(struct target *target,
1041                 struct watchpoint *watchpoint)
1042 {
1043         return target->type->remove_watchpoint(target, watchpoint);
1044 }
1045 int target_hit_watchpoint(struct target *target,
1046                 struct watchpoint **hit_watchpoint)
1047 {
1048         if (target->state != TARGET_HALTED) {
1049                 LOG_WARNING("target %s is not halted", target->cmd_name);
1050                 return ERROR_TARGET_NOT_HALTED;
1051         }
1052
1053         if (target->type->hit_watchpoint == NULL) {
1054                 /* For backward compatible, if hit_watchpoint is not implemented,
1055                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1056                  * information. */
1057                 return ERROR_FAIL;
1058         }
1059
1060         return target->type->hit_watchpoint(target, hit_watchpoint);
1061 }
1062
1063 int target_get_gdb_reg_list(struct target *target,
1064                 struct reg **reg_list[], int *reg_list_size,
1065                 enum target_register_class reg_class)
1066 {
1067         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1068 }
1069 int target_step(struct target *target,
1070                 int current, uint32_t address, int handle_breakpoints)
1071 {
1072         return target->type->step(target, current, address, handle_breakpoints);
1073 }
1074
1075 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1076 {
1077         if (target->state != TARGET_HALTED) {
1078                 LOG_WARNING("target %s is not halted", target->cmd_name);
1079                 return ERROR_TARGET_NOT_HALTED;
1080         }
1081         return target->type->get_gdb_fileio_info(target, fileio_info);
1082 }
1083
1084 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1085 {
1086         if (target->state != TARGET_HALTED) {
1087                 LOG_WARNING("target %s is not halted", target->cmd_name);
1088                 return ERROR_TARGET_NOT_HALTED;
1089         }
1090         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1091 }
1092
1093 /**
1094  * Reset the @c examined flag for the given target.
1095  * Pure paranoia -- targets are zeroed on allocation.
1096  */
1097 static void target_reset_examined(struct target *target)
1098 {
1099         target->examined = false;
1100 }
1101
1102 static int err_read_phys_memory(struct target *target, uint32_t address,
1103                 uint32_t size, uint32_t count, uint8_t *buffer)
1104 {
1105         LOG_ERROR("Not implemented: %s", __func__);
1106         return ERROR_FAIL;
1107 }
1108
1109 static int err_write_phys_memory(struct target *target, uint32_t address,
1110                 uint32_t size, uint32_t count, const uint8_t *buffer)
1111 {
1112         LOG_ERROR("Not implemented: %s", __func__);
1113         return ERROR_FAIL;
1114 }
1115
1116 static int handle_target(void *priv);
1117
1118 static int target_init_one(struct command_context *cmd_ctx,
1119                 struct target *target)
1120 {
1121         target_reset_examined(target);
1122
1123         struct target_type *type = target->type;
1124         if (type->examine == NULL)
1125                 type->examine = default_examine;
1126
1127         if (type->check_reset == NULL)
1128                 type->check_reset = default_check_reset;
1129
1130         assert(type->init_target != NULL);
1131
1132         int retval = type->init_target(cmd_ctx, target);
1133         if (ERROR_OK != retval) {
1134                 LOG_ERROR("target '%s' init failed", target_name(target));
1135                 return retval;
1136         }
1137
1138         /* Sanity-check MMU support ... stub in what we must, to help
1139          * implement it in stages, but warn if we need to do so.
1140          */
1141         if (type->mmu) {
1142                 if (type->write_phys_memory == NULL) {
1143                         LOG_ERROR("type '%s' is missing write_phys_memory",
1144                                         type->name);
1145                         type->write_phys_memory = err_write_phys_memory;
1146                 }
1147                 if (type->read_phys_memory == NULL) {
1148                         LOG_ERROR("type '%s' is missing read_phys_memory",
1149                                         type->name);
1150                         type->read_phys_memory = err_read_phys_memory;
1151                 }
1152                 if (type->virt2phys == NULL) {
1153                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1154                         type->virt2phys = identity_virt2phys;
1155                 }
1156         } else {
1157                 /* Make sure no-MMU targets all behave the same:  make no
1158                  * distinction between physical and virtual addresses, and
1159                  * ensure that virt2phys() is always an identity mapping.
1160                  */
1161                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1162                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1163
1164                 type->mmu = no_mmu;
1165                 type->write_phys_memory = type->write_memory;
1166                 type->read_phys_memory = type->read_memory;
1167                 type->virt2phys = identity_virt2phys;
1168         }
1169
1170         if (target->type->read_buffer == NULL)
1171                 target->type->read_buffer = target_read_buffer_default;
1172
1173         if (target->type->write_buffer == NULL)
1174                 target->type->write_buffer = target_write_buffer_default;
1175
1176         if (target->type->bulk_write_memory == NULL)
1177                 target->type->bulk_write_memory = target_bulk_write_memory_default;
1178
1179         if (target->type->get_gdb_fileio_info == NULL)
1180                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1181
1182         if (target->type->gdb_fileio_end == NULL)
1183                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1184
1185         return ERROR_OK;
1186 }
1187
1188 static int target_init(struct command_context *cmd_ctx)
1189 {
1190         struct target *target;
1191         int retval;
1192
1193         for (target = all_targets; target; target = target->next) {
1194                 retval = target_init_one(cmd_ctx, target);
1195                 if (ERROR_OK != retval)
1196                         return retval;
1197         }
1198
1199         if (!all_targets)
1200                 return ERROR_OK;
1201
1202         retval = target_register_user_commands(cmd_ctx);
1203         if (ERROR_OK != retval)
1204                 return retval;
1205
1206         retval = target_register_timer_callback(&handle_target,
1207                         polling_interval, 1, cmd_ctx->interp);
1208         if (ERROR_OK != retval)
1209                 return retval;
1210
1211         return ERROR_OK;
1212 }
1213
1214 COMMAND_HANDLER(handle_target_init_command)
1215 {
1216         int retval;
1217
1218         if (CMD_ARGC != 0)
1219                 return ERROR_COMMAND_SYNTAX_ERROR;
1220
1221         static bool target_initialized;
1222         if (target_initialized) {
1223                 LOG_INFO("'target init' has already been called");
1224                 return ERROR_OK;
1225         }
1226         target_initialized = true;
1227
1228         retval = command_run_line(CMD_CTX, "init_targets");
1229         if (ERROR_OK != retval)
1230                 return retval;
1231
1232         retval = command_run_line(CMD_CTX, "init_board");
1233         if (ERROR_OK != retval)
1234                 return retval;
1235
1236         LOG_DEBUG("Initializing targets...");
1237         return target_init(CMD_CTX);
1238 }
1239
1240 int target_register_event_callback(int (*callback)(struct target *target,
1241                 enum target_event event, void *priv), void *priv)
1242 {
1243         struct target_event_callback **callbacks_p = &target_event_callbacks;
1244
1245         if (callback == NULL)
1246                 return ERROR_COMMAND_SYNTAX_ERROR;
1247
1248         if (*callbacks_p) {
1249                 while ((*callbacks_p)->next)
1250                         callbacks_p = &((*callbacks_p)->next);
1251                 callbacks_p = &((*callbacks_p)->next);
1252         }
1253
1254         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1255         (*callbacks_p)->callback = callback;
1256         (*callbacks_p)->priv = priv;
1257         (*callbacks_p)->next = NULL;
1258
1259         return ERROR_OK;
1260 }
1261
1262 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1263 {
1264         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1265         struct timeval now;
1266
1267         if (callback == NULL)
1268                 return ERROR_COMMAND_SYNTAX_ERROR;
1269
1270         if (*callbacks_p) {
1271                 while ((*callbacks_p)->next)
1272                         callbacks_p = &((*callbacks_p)->next);
1273                 callbacks_p = &((*callbacks_p)->next);
1274         }
1275
1276         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1277         (*callbacks_p)->callback = callback;
1278         (*callbacks_p)->periodic = periodic;
1279         (*callbacks_p)->time_ms = time_ms;
1280
1281         gettimeofday(&now, NULL);
1282         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1283         time_ms -= (time_ms % 1000);
1284         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1285         if ((*callbacks_p)->when.tv_usec > 1000000) {
1286                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1287                 (*callbacks_p)->when.tv_sec += 1;
1288         }
1289
1290         (*callbacks_p)->priv = priv;
1291         (*callbacks_p)->next = NULL;
1292
1293         return ERROR_OK;
1294 }
1295
1296 int target_unregister_event_callback(int (*callback)(struct target *target,
1297                 enum target_event event, void *priv), void *priv)
1298 {
1299         struct target_event_callback **p = &target_event_callbacks;
1300         struct target_event_callback *c = target_event_callbacks;
1301
1302         if (callback == NULL)
1303                 return ERROR_COMMAND_SYNTAX_ERROR;
1304
1305         while (c) {
1306                 struct target_event_callback *next = c->next;
1307                 if ((c->callback == callback) && (c->priv == priv)) {
1308                         *p = next;
1309                         free(c);
1310                         return ERROR_OK;
1311                 } else
1312                         p = &(c->next);
1313                 c = next;
1314         }
1315
1316         return ERROR_OK;
1317 }
1318
1319 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1320 {
1321         struct target_timer_callback **p = &target_timer_callbacks;
1322         struct target_timer_callback *c = target_timer_callbacks;
1323
1324         if (callback == NULL)
1325                 return ERROR_COMMAND_SYNTAX_ERROR;
1326
1327         while (c) {
1328                 struct target_timer_callback *next = c->next;
1329                 if ((c->callback == callback) && (c->priv == priv)) {
1330                         *p = next;
1331                         free(c);
1332                         return ERROR_OK;
1333                 } else
1334                         p = &(c->next);
1335                 c = next;
1336         }
1337
1338         return ERROR_OK;
1339 }
1340
1341 int target_call_event_callbacks(struct target *target, enum target_event event)
1342 {
1343         struct target_event_callback *callback = target_event_callbacks;
1344         struct target_event_callback *next_callback;
1345
1346         if (event == TARGET_EVENT_HALTED) {
1347                 /* execute early halted first */
1348                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1349         }
1350
1351         LOG_DEBUG("target event %i (%s)", event,
1352                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1353
1354         target_handle_event(target, event);
1355
1356         while (callback) {
1357                 next_callback = callback->next;
1358                 callback->callback(target, event, callback->priv);
1359                 callback = next_callback;
1360         }
1361
1362         return ERROR_OK;
1363 }
1364
1365 static int target_timer_callback_periodic_restart(
1366                 struct target_timer_callback *cb, struct timeval *now)
1367 {
1368         int time_ms = cb->time_ms;
1369         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1370         time_ms -= (time_ms % 1000);
1371         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1372         if (cb->when.tv_usec > 1000000) {
1373                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1374                 cb->when.tv_sec += 1;
1375         }
1376         return ERROR_OK;
1377 }
1378
1379 static int target_call_timer_callback(struct target_timer_callback *cb,
1380                 struct timeval *now)
1381 {
1382         cb->callback(cb->priv);
1383
1384         if (cb->periodic)
1385                 return target_timer_callback_periodic_restart(cb, now);
1386
1387         return target_unregister_timer_callback(cb->callback, cb->priv);
1388 }
1389
1390 static int target_call_timer_callbacks_check_time(int checktime)
1391 {
1392         keep_alive();
1393
1394         struct timeval now;
1395         gettimeofday(&now, NULL);
1396
1397         struct target_timer_callback *callback = target_timer_callbacks;
1398         while (callback) {
1399                 /* cleaning up may unregister and free this callback */
1400                 struct target_timer_callback *next_callback = callback->next;
1401
1402                 bool call_it = callback->callback &&
1403                         ((!checktime && callback->periodic) ||
1404                           now.tv_sec > callback->when.tv_sec ||
1405                          (now.tv_sec == callback->when.tv_sec &&
1406                           now.tv_usec >= callback->when.tv_usec));
1407
1408                 if (call_it) {
1409                         int retval = target_call_timer_callback(callback, &now);
1410                         if (retval != ERROR_OK)
1411                                 return retval;
1412                 }
1413
1414                 callback = next_callback;
1415         }
1416
1417         return ERROR_OK;
1418 }
1419
1420 int target_call_timer_callbacks(void)
1421 {
1422         return target_call_timer_callbacks_check_time(1);
1423 }
1424
1425 /* invoke periodic callbacks immediately */
1426 int target_call_timer_callbacks_now(void)
1427 {
1428         return target_call_timer_callbacks_check_time(0);
1429 }
1430
1431 /* Prints the working area layout for debug purposes */
1432 static void print_wa_layout(struct target *target)
1433 {
1434         struct working_area *c = target->working_areas;
1435
1436         while (c) {
1437                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1438                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1439                         c->address, c->address + c->size - 1, c->size);
1440                 c = c->next;
1441         }
1442 }
1443
1444 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1445 static void target_split_working_area(struct working_area *area, uint32_t size)
1446 {
1447         assert(area->free); /* Shouldn't split an allocated area */
1448         assert(size <= area->size); /* Caller should guarantee this */
1449
1450         /* Split only if not already the right size */
1451         if (size < area->size) {
1452                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1453
1454                 if (new_wa == NULL)
1455                         return;
1456
1457                 new_wa->next = area->next;
1458                 new_wa->size = area->size - size;
1459                 new_wa->address = area->address + size;
1460                 new_wa->backup = NULL;
1461                 new_wa->user = NULL;
1462                 new_wa->free = true;
1463
1464                 area->next = new_wa;
1465                 area->size = size;
1466
1467                 /* If backup memory was allocated to this area, it has the wrong size
1468                  * now so free it and it will be reallocated if/when needed */
1469                 if (area->backup) {
1470                         free(area->backup);
1471                         area->backup = NULL;
1472                 }
1473         }
1474 }
1475
1476 /* Merge all adjacent free areas into one */
1477 static void target_merge_working_areas(struct target *target)
1478 {
1479         struct working_area *c = target->working_areas;
1480
1481         while (c && c->next) {
1482                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1483
1484                 /* Find two adjacent free areas */
1485                 if (c->free && c->next->free) {
1486                         /* Merge the last into the first */
1487                         c->size += c->next->size;
1488
1489                         /* Remove the last */
1490                         struct working_area *to_be_freed = c->next;
1491                         c->next = c->next->next;
1492                         if (to_be_freed->backup)
1493                                 free(to_be_freed->backup);
1494                         free(to_be_freed);
1495
1496                         /* If backup memory was allocated to the remaining area, it's has
1497                          * the wrong size now */
1498                         if (c->backup) {
1499                                 free(c->backup);
1500                                 c->backup = NULL;
1501                         }
1502                 } else {
1503                         c = c->next;
1504                 }
1505         }
1506 }
1507
1508 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1509 {
1510         /* Reevaluate working area address based on MMU state*/
1511         if (target->working_areas == NULL) {
1512                 int retval;
1513                 int enabled;
1514
1515                 retval = target->type->mmu(target, &enabled);
1516                 if (retval != ERROR_OK)
1517                         return retval;
1518
1519                 if (!enabled) {
1520                         if (target->working_area_phys_spec) {
1521                                 LOG_DEBUG("MMU disabled, using physical "
1522                                         "address for working memory 0x%08"PRIx32,
1523                                         target->working_area_phys);
1524                                 target->working_area = target->working_area_phys;
1525                         } else {
1526                                 LOG_ERROR("No working memory available. "
1527                                         "Specify -work-area-phys to target.");
1528                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1529                         }
1530                 } else {
1531                         if (target->working_area_virt_spec) {
1532                                 LOG_DEBUG("MMU enabled, using virtual "
1533                                         "address for working memory 0x%08"PRIx32,
1534                                         target->working_area_virt);
1535                                 target->working_area = target->working_area_virt;
1536                         } else {
1537                                 LOG_ERROR("No working memory available. "
1538                                         "Specify -work-area-virt to target.");
1539                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1540                         }
1541                 }
1542
1543                 /* Set up initial working area on first call */
1544                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1545                 if (new_wa) {
1546                         new_wa->next = NULL;
1547                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1548                         new_wa->address = target->working_area;
1549                         new_wa->backup = NULL;
1550                         new_wa->user = NULL;
1551                         new_wa->free = true;
1552                 }
1553
1554                 target->working_areas = new_wa;
1555         }
1556
1557         /* only allocate multiples of 4 byte */
1558         if (size % 4)
1559                 size = (size + 3) & (~3UL);
1560
1561         struct working_area *c = target->working_areas;
1562
1563         /* Find the first large enough working area */
1564         while (c) {
1565                 if (c->free && c->size >= size)
1566                         break;
1567                 c = c->next;
1568         }
1569
1570         if (c == NULL)
1571                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1572
1573         /* Split the working area into the requested size */
1574         target_split_working_area(c, size);
1575
1576         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1577
1578         if (target->backup_working_area) {
1579                 if (c->backup == NULL) {
1580                         c->backup = malloc(c->size);
1581                         if (c->backup == NULL)
1582                                 return ERROR_FAIL;
1583                 }
1584
1585                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1586                 if (retval != ERROR_OK)
1587                         return retval;
1588         }
1589
1590         /* mark as used, and return the new (reused) area */
1591         c->free = false;
1592         *area = c;
1593
1594         /* user pointer */
1595         c->user = area;
1596
1597         print_wa_layout(target);
1598
1599         return ERROR_OK;
1600 }
1601
1602 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1603 {
1604         int retval;
1605
1606         retval = target_alloc_working_area_try(target, size, area);
1607         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1608                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1609         return retval;
1610
1611 }
1612
1613 static int target_restore_working_area(struct target *target, struct working_area *area)
1614 {
1615         int retval = ERROR_OK;
1616
1617         if (target->backup_working_area && area->backup != NULL) {
1618                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1619                 if (retval != ERROR_OK)
1620                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1621                                         area->size, area->address);
1622         }
1623
1624         return retval;
1625 }
1626
1627 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1628 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1629 {
1630         int retval = ERROR_OK;
1631
1632         if (area->free)
1633                 return retval;
1634
1635         if (restore) {
1636                 retval = target_restore_working_area(target, area);
1637                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1638                 if (retval != ERROR_OK)
1639                         return retval;
1640         }
1641
1642         area->free = true;
1643
1644         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1645                         area->size, area->address);
1646
1647         /* mark user pointer invalid */
1648         /* TODO: Is this really safe? It points to some previous caller's memory.
1649          * How could we know that the area pointer is still in that place and not
1650          * some other vital data? What's the purpose of this, anyway? */
1651         *area->user = NULL;
1652         area->user = NULL;
1653
1654         target_merge_working_areas(target);
1655
1656         print_wa_layout(target);
1657
1658         return retval;
1659 }
1660
1661 int target_free_working_area(struct target *target, struct working_area *area)
1662 {
1663         return target_free_working_area_restore(target, area, 1);
1664 }
1665
1666 /* free resources and restore memory, if restoring memory fails,
1667  * free up resources anyway
1668  */
1669 static void target_free_all_working_areas_restore(struct target *target, int restore)
1670 {
1671         struct working_area *c = target->working_areas;
1672
1673         LOG_DEBUG("freeing all working areas");
1674
1675         /* Loop through all areas, restoring the allocated ones and marking them as free */
1676         while (c) {
1677                 if (!c->free) {
1678                         if (restore)
1679                                 target_restore_working_area(target, c);
1680                         c->free = true;
1681                         *c->user = NULL; /* Same as above */
1682                         c->user = NULL;
1683                 }
1684                 c = c->next;
1685         }
1686
1687         /* Run a merge pass to combine all areas into one */
1688         target_merge_working_areas(target);
1689
1690         print_wa_layout(target);
1691 }
1692
1693 void target_free_all_working_areas(struct target *target)
1694 {
1695         target_free_all_working_areas_restore(target, 1);
1696 }
1697
1698 /* Find the largest number of bytes that can be allocated */
1699 uint32_t target_get_working_area_avail(struct target *target)
1700 {
1701         struct working_area *c = target->working_areas;
1702         uint32_t max_size = 0;
1703
1704         if (c == NULL)
1705                 return target->working_area_size;
1706
1707         while (c) {
1708                 if (c->free && max_size < c->size)
1709                         max_size = c->size;
1710
1711                 c = c->next;
1712         }
1713
1714         return max_size;
1715 }
1716
1717 int target_arch_state(struct target *target)
1718 {
1719         int retval;
1720         if (target == NULL) {
1721                 LOG_USER("No target has been configured");
1722                 return ERROR_OK;
1723         }
1724
1725         LOG_USER("target state: %s", target_state_name(target));
1726
1727         if (target->state != TARGET_HALTED)
1728                 return ERROR_OK;
1729
1730         retval = target->type->arch_state(target);
1731         return retval;
1732 }
1733
1734 static int target_get_gdb_fileio_info_default(struct target *target,
1735                 struct gdb_fileio_info *fileio_info)
1736 {
1737         LOG_ERROR("Not implemented: %s", __func__);
1738         return ERROR_FAIL;
1739 }
1740
1741 static int target_gdb_fileio_end_default(struct target *target,
1742                 int retcode, int fileio_errno, bool ctrl_c)
1743 {
1744         LOG_ERROR("Not implemented: %s", __func__);
1745         return ERROR_OK;
1746 }
1747
1748 /* Single aligned words are guaranteed to use 16 or 32 bit access
1749  * mode respectively, otherwise data is handled as quickly as
1750  * possible
1751  */
1752 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1753 {
1754         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1755                         (int)size, (unsigned)address);
1756
1757         if (!target_was_examined(target)) {
1758                 LOG_ERROR("Target not examined yet");
1759                 return ERROR_FAIL;
1760         }
1761
1762         if (size == 0)
1763                 return ERROR_OK;
1764
1765         if ((address + size - 1) < address) {
1766                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1767                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1768                                   (unsigned)address,
1769                                   (unsigned)size);
1770                 return ERROR_FAIL;
1771         }
1772
1773         return target->type->write_buffer(target, address, size, buffer);
1774 }
1775
1776 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1777 {
1778         int retval = ERROR_OK;
1779
1780         if (((address % 2) == 0) && (size == 2))
1781                 return target_write_memory(target, address, 2, 1, buffer);
1782
1783         /* handle unaligned head bytes */
1784         if (address % 4) {
1785                 uint32_t unaligned = 4 - (address % 4);
1786
1787                 if (unaligned > size)
1788                         unaligned = size;
1789
1790                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1791                 if (retval != ERROR_OK)
1792                         return retval;
1793
1794                 buffer += unaligned;
1795                 address += unaligned;
1796                 size -= unaligned;
1797         }
1798
1799         /* handle aligned words */
1800         if (size >= 4) {
1801                 int aligned = size - (size % 4);
1802
1803                 /* use bulk writes above a certain limit. This may have to be changed */
1804                 if (aligned > 128) {
1805                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1806                         if (retval != ERROR_OK)
1807                                 return retval;
1808                 } else {
1809                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1810                         if (retval != ERROR_OK)
1811                                 return retval;
1812                 }
1813
1814                 buffer += aligned;
1815                 address += aligned;
1816                 size -= aligned;
1817         }
1818
1819         /* handle tail writes of less than 4 bytes */
1820         if (size > 0) {
1821                 retval = target_write_memory(target, address, 1, size, buffer);
1822                 if (retval != ERROR_OK)
1823                         return retval;
1824         }
1825
1826         return retval;
1827 }
1828
1829 /* Single aligned words are guaranteed to use 16 or 32 bit access
1830  * mode respectively, otherwise data is handled as quickly as
1831  * possible
1832  */
1833 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1834 {
1835         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1836                           (int)size, (unsigned)address);
1837
1838         if (!target_was_examined(target)) {
1839                 LOG_ERROR("Target not examined yet");
1840                 return ERROR_FAIL;
1841         }
1842
1843         if (size == 0)
1844                 return ERROR_OK;
1845
1846         if ((address + size - 1) < address) {
1847                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1848                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1849                                   address,
1850                                   size);
1851                 return ERROR_FAIL;
1852         }
1853
1854         return target->type->read_buffer(target, address, size, buffer);
1855 }
1856
1857 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1858 {
1859         int retval = ERROR_OK;
1860
1861         if (((address % 2) == 0) && (size == 2))
1862                 return target_read_memory(target, address, 2, 1, buffer);
1863
1864         /* handle unaligned head bytes */
1865         if (address % 4) {
1866                 uint32_t unaligned = 4 - (address % 4);
1867
1868                 if (unaligned > size)
1869                         unaligned = size;
1870
1871                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1872                 if (retval != ERROR_OK)
1873                         return retval;
1874
1875                 buffer += unaligned;
1876                 address += unaligned;
1877                 size -= unaligned;
1878         }
1879
1880         /* handle aligned words */
1881         if (size >= 4) {
1882                 int aligned = size - (size % 4);
1883
1884                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1885                 if (retval != ERROR_OK)
1886                         return retval;
1887
1888                 buffer += aligned;
1889                 address += aligned;
1890                 size -= aligned;
1891         }
1892
1893         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1894         if (size        >= 2) {
1895                 int aligned = size - (size % 2);
1896                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1897                 if (retval != ERROR_OK)
1898                         return retval;
1899
1900                 buffer += aligned;
1901                 address += aligned;
1902                 size -= aligned;
1903         }
1904         /* handle tail writes of less than 4 bytes */
1905         if (size > 0) {
1906                 retval = target_read_memory(target, address, 1, size, buffer);
1907                 if (retval != ERROR_OK)
1908                         return retval;
1909         }
1910
1911         return ERROR_OK;
1912 }
1913
1914 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1915 {
1916         uint8_t *buffer;
1917         int retval;
1918         uint32_t i;
1919         uint32_t checksum = 0;
1920         if (!target_was_examined(target)) {
1921                 LOG_ERROR("Target not examined yet");
1922                 return ERROR_FAIL;
1923         }
1924
1925         retval = target->type->checksum_memory(target, address, size, &checksum);
1926         if (retval != ERROR_OK) {
1927                 buffer = malloc(size);
1928                 if (buffer == NULL) {
1929                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1930                         return ERROR_COMMAND_SYNTAX_ERROR;
1931                 }
1932                 retval = target_read_buffer(target, address, size, buffer);
1933                 if (retval != ERROR_OK) {
1934                         free(buffer);
1935                         return retval;
1936                 }
1937
1938                 /* convert to target endianness */
1939                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1940                         uint32_t target_data;
1941                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1942                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1943                 }
1944
1945                 retval = image_calculate_checksum(buffer, size, &checksum);
1946                 free(buffer);
1947         }
1948
1949         *crc = checksum;
1950
1951         return retval;
1952 }
1953
1954 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1955 {
1956         int retval;
1957         if (!target_was_examined(target)) {
1958                 LOG_ERROR("Target not examined yet");
1959                 return ERROR_FAIL;
1960         }
1961
1962         if (target->type->blank_check_memory == 0)
1963                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1964
1965         retval = target->type->blank_check_memory(target, address, size, blank);
1966
1967         return retval;
1968 }
1969
1970 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1971 {
1972         uint8_t value_buf[4];
1973         if (!target_was_examined(target)) {
1974                 LOG_ERROR("Target not examined yet");
1975                 return ERROR_FAIL;
1976         }
1977
1978         int retval = target_read_memory(target, address, 4, 1, value_buf);
1979
1980         if (retval == ERROR_OK) {
1981                 *value = target_buffer_get_u32(target, value_buf);
1982                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1983                                   address,
1984                                   *value);
1985         } else {
1986                 *value = 0x0;
1987                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1988                                   address);
1989         }
1990
1991         return retval;
1992 }
1993
1994 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1995 {
1996         uint8_t value_buf[2];
1997         if (!target_was_examined(target)) {
1998                 LOG_ERROR("Target not examined yet");
1999                 return ERROR_FAIL;
2000         }
2001
2002         int retval = target_read_memory(target, address, 2, 1, value_buf);
2003
2004         if (retval == ERROR_OK) {
2005                 *value = target_buffer_get_u16(target, value_buf);
2006                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2007                                   address,
2008                                   *value);
2009         } else {
2010                 *value = 0x0;
2011                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2012                                   address);
2013         }
2014
2015         return retval;
2016 }
2017
2018 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2019 {
2020         int retval = target_read_memory(target, address, 1, 1, value);
2021         if (!target_was_examined(target)) {
2022                 LOG_ERROR("Target not examined yet");
2023                 return ERROR_FAIL;
2024         }
2025
2026         if (retval == ERROR_OK) {
2027                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2028                                   address,
2029                                   *value);
2030         } else {
2031                 *value = 0x0;
2032                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2033                                   address);
2034         }
2035
2036         return retval;
2037 }
2038
2039 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2040 {
2041         int retval;
2042         uint8_t value_buf[4];
2043         if (!target_was_examined(target)) {
2044                 LOG_ERROR("Target not examined yet");
2045                 return ERROR_FAIL;
2046         }
2047
2048         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2049                           address,
2050                           value);
2051
2052         target_buffer_set_u32(target, value_buf, value);
2053         retval = target_write_memory(target, address, 4, 1, value_buf);
2054         if (retval != ERROR_OK)
2055                 LOG_DEBUG("failed: %i", retval);
2056
2057         return retval;
2058 }
2059
2060 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2061 {
2062         int retval;
2063         uint8_t value_buf[2];
2064         if (!target_was_examined(target)) {
2065                 LOG_ERROR("Target not examined yet");
2066                 return ERROR_FAIL;
2067         }
2068
2069         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2070                           address,
2071                           value);
2072
2073         target_buffer_set_u16(target, value_buf, value);
2074         retval = target_write_memory(target, address, 2, 1, value_buf);
2075         if (retval != ERROR_OK)
2076                 LOG_DEBUG("failed: %i", retval);
2077
2078         return retval;
2079 }
2080
2081 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2082 {
2083         int retval;
2084         if (!target_was_examined(target)) {
2085                 LOG_ERROR("Target not examined yet");
2086                 return ERROR_FAIL;
2087         }
2088
2089         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2090                           address, value);
2091
2092         retval = target_write_memory(target, address, 1, 1, &value);
2093         if (retval != ERROR_OK)
2094                 LOG_DEBUG("failed: %i", retval);
2095
2096         return retval;
2097 }
2098
2099 static int find_target(struct command_context *cmd_ctx, const char *name)
2100 {
2101         struct target *target = get_target(name);
2102         if (target == NULL) {
2103                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2104                 return ERROR_FAIL;
2105         }
2106         if (!target->tap->enabled) {
2107                 LOG_USER("Target: TAP %s is disabled, "
2108                          "can't be the current target\n",
2109                          target->tap->dotted_name);
2110                 return ERROR_FAIL;
2111         }
2112
2113         cmd_ctx->current_target = target->target_number;
2114         return ERROR_OK;
2115 }
2116
2117
2118 COMMAND_HANDLER(handle_targets_command)
2119 {
2120         int retval = ERROR_OK;
2121         if (CMD_ARGC == 1) {
2122                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2123                 if (retval == ERROR_OK) {
2124                         /* we're done! */
2125                         return retval;
2126                 }
2127         }
2128
2129         struct target *target = all_targets;
2130         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2131         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2132         while (target) {
2133                 const char *state;
2134                 char marker = ' ';
2135
2136                 if (target->tap->enabled)
2137                         state = target_state_name(target);
2138                 else
2139                         state = "tap-disabled";
2140
2141                 if (CMD_CTX->current_target == target->target_number)
2142                         marker = '*';
2143
2144                 /* keep columns lined up to match the headers above */
2145                 command_print(CMD_CTX,
2146                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2147                                 target->target_number,
2148                                 marker,
2149                                 target_name(target),
2150                                 target_type_name(target),
2151                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2152                                         target->endianness)->name,
2153                                 target->tap->dotted_name,
2154                                 state);
2155                 target = target->next;
2156         }
2157
2158         return retval;
2159 }
2160
2161 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2162
2163 static int powerDropout;
2164 static int srstAsserted;
2165
2166 static int runPowerRestore;
2167 static int runPowerDropout;
2168 static int runSrstAsserted;
2169 static int runSrstDeasserted;
2170
2171 static int sense_handler(void)
2172 {
2173         static int prevSrstAsserted;
2174         static int prevPowerdropout;
2175
2176         int retval = jtag_power_dropout(&powerDropout);
2177         if (retval != ERROR_OK)
2178                 return retval;
2179
2180         int powerRestored;
2181         powerRestored = prevPowerdropout && !powerDropout;
2182         if (powerRestored)
2183                 runPowerRestore = 1;
2184
2185         long long current = timeval_ms();
2186         static long long lastPower;
2187         int waitMore = lastPower + 2000 > current;
2188         if (powerDropout && !waitMore) {
2189                 runPowerDropout = 1;
2190                 lastPower = current;
2191         }
2192
2193         retval = jtag_srst_asserted(&srstAsserted);
2194         if (retval != ERROR_OK)
2195                 return retval;
2196
2197         int srstDeasserted;
2198         srstDeasserted = prevSrstAsserted && !srstAsserted;
2199
2200         static long long lastSrst;
2201         waitMore = lastSrst + 2000 > current;
2202         if (srstDeasserted && !waitMore) {
2203                 runSrstDeasserted = 1;
2204                 lastSrst = current;
2205         }
2206
2207         if (!prevSrstAsserted && srstAsserted)
2208                 runSrstAsserted = 1;
2209
2210         prevSrstAsserted = srstAsserted;
2211         prevPowerdropout = powerDropout;
2212
2213         if (srstDeasserted || powerRestored) {
2214                 /* Other than logging the event we can't do anything here.
2215                  * Issuing a reset is a particularly bad idea as we might
2216                  * be inside a reset already.
2217                  */
2218         }
2219
2220         return ERROR_OK;
2221 }
2222
2223 /* process target state changes */
2224 static int handle_target(void *priv)
2225 {
2226         Jim_Interp *interp = (Jim_Interp *)priv;
2227         int retval = ERROR_OK;
2228
2229         if (!is_jtag_poll_safe()) {
2230                 /* polling is disabled currently */
2231                 return ERROR_OK;
2232         }
2233
2234         /* we do not want to recurse here... */
2235         static int recursive;
2236         if (!recursive) {
2237                 recursive = 1;
2238                 sense_handler();
2239                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2240                  * We need to avoid an infinite loop/recursion here and we do that by
2241                  * clearing the flags after running these events.
2242                  */
2243                 int did_something = 0;
2244                 if (runSrstAsserted) {
2245                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2246                         Jim_Eval(interp, "srst_asserted");
2247                         did_something = 1;
2248                 }
2249                 if (runSrstDeasserted) {
2250                         Jim_Eval(interp, "srst_deasserted");
2251                         did_something = 1;
2252                 }
2253                 if (runPowerDropout) {
2254                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2255                         Jim_Eval(interp, "power_dropout");
2256                         did_something = 1;
2257                 }
2258                 if (runPowerRestore) {
2259                         Jim_Eval(interp, "power_restore");
2260                         did_something = 1;
2261                 }
2262
2263                 if (did_something) {
2264                         /* clear detect flags */
2265                         sense_handler();
2266                 }
2267
2268                 /* clear action flags */
2269
2270                 runSrstAsserted = 0;
2271                 runSrstDeasserted = 0;
2272                 runPowerRestore = 0;
2273                 runPowerDropout = 0;
2274
2275                 recursive = 0;
2276         }
2277
2278         /* Poll targets for state changes unless that's globally disabled.
2279          * Skip targets that are currently disabled.
2280          */
2281         for (struct target *target = all_targets;
2282                         is_jtag_poll_safe() && target;
2283                         target = target->next) {
2284                 if (!target->tap->enabled)
2285                         continue;
2286
2287                 if (target->backoff.times > target->backoff.count) {
2288                         /* do not poll this time as we failed previously */
2289                         target->backoff.count++;
2290                         continue;
2291                 }
2292                 target->backoff.count = 0;
2293
2294                 /* only poll target if we've got power and srst isn't asserted */
2295                 if (!powerDropout && !srstAsserted) {
2296                         /* polling may fail silently until the target has been examined */
2297                         retval = target_poll(target);
2298                         if (retval != ERROR_OK) {
2299                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2300                                 if (target->backoff.times * polling_interval < 5000) {
2301                                         target->backoff.times *= 2;
2302                                         target->backoff.times++;
2303                                 }
2304                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2305                                                 target_name(target),
2306                                                 target->backoff.times * polling_interval);
2307
2308                                 /* Tell GDB to halt the debugger. This allows the user to
2309                                  * run monitor commands to handle the situation.
2310                                  */
2311                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2312                                 return retval;
2313                         }
2314                         /* Since we succeeded, we reset backoff count */
2315                         if (target->backoff.times > 0)
2316                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2317                         target->backoff.times = 0;
2318                 }
2319         }
2320
2321         return retval;
2322 }
2323
2324 COMMAND_HANDLER(handle_reg_command)
2325 {
2326         struct target *target;
2327         struct reg *reg = NULL;
2328         unsigned count = 0;
2329         char *value;
2330
2331         LOG_DEBUG("-");
2332
2333         target = get_current_target(CMD_CTX);
2334
2335         /* list all available registers for the current target */
2336         if (CMD_ARGC == 0) {
2337                 struct reg_cache *cache = target->reg_cache;
2338
2339                 count = 0;
2340                 while (cache) {
2341                         unsigned i;
2342
2343                         command_print(CMD_CTX, "===== %s", cache->name);
2344
2345                         for (i = 0, reg = cache->reg_list;
2346                                         i < cache->num_regs;
2347                                         i++, reg++, count++) {
2348                                 /* only print cached values if they are valid */
2349                                 if (reg->valid) {
2350                                         value = buf_to_str(reg->value,
2351                                                         reg->size, 16);
2352                                         command_print(CMD_CTX,
2353                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2354                                                         count, reg->name,
2355                                                         reg->size, value,
2356                                                         reg->dirty
2357                                                                 ? " (dirty)"
2358                                                                 : "");
2359                                         free(value);
2360                                 } else {
2361                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2362                                                           count, reg->name,
2363                                                           reg->size) ;
2364                                 }
2365                         }
2366                         cache = cache->next;
2367                 }
2368
2369                 return ERROR_OK;
2370         }
2371
2372         /* access a single register by its ordinal number */
2373         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2374                 unsigned num;
2375                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2376
2377                 struct reg_cache *cache = target->reg_cache;
2378                 count = 0;
2379                 while (cache) {
2380                         unsigned i;
2381                         for (i = 0; i < cache->num_regs; i++) {
2382                                 if (count++ == num) {
2383                                         reg = &cache->reg_list[i];
2384                                         break;
2385                                 }
2386                         }
2387                         if (reg)
2388                                 break;
2389                         cache = cache->next;
2390                 }
2391
2392                 if (!reg) {
2393                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2394                                         "has only %i registers (0 - %i)", num, count, count - 1);
2395                         return ERROR_OK;
2396                 }
2397         } else {
2398                 /* access a single register by its name */
2399                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2400
2401                 if (!reg) {
2402                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2403                         return ERROR_OK;
2404                 }
2405         }
2406
2407         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2408
2409         /* display a register */
2410         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2411                         && (CMD_ARGV[1][0] <= '9')))) {
2412                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2413                         reg->valid = 0;
2414
2415                 if (reg->valid == 0)
2416                         reg->type->get(reg);
2417                 value = buf_to_str(reg->value, reg->size, 16);
2418                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2419                 free(value);
2420                 return ERROR_OK;
2421         }
2422
2423         /* set register value */
2424         if (CMD_ARGC == 2) {
2425                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2426                 if (buf == NULL)
2427                         return ERROR_FAIL;
2428                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2429
2430                 reg->type->set(reg, buf);
2431
2432                 value = buf_to_str(reg->value, reg->size, 16);
2433                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2434                 free(value);
2435
2436                 free(buf);
2437
2438                 return ERROR_OK;
2439         }
2440
2441         return ERROR_COMMAND_SYNTAX_ERROR;
2442 }
2443
2444 COMMAND_HANDLER(handle_poll_command)
2445 {
2446         int retval = ERROR_OK;
2447         struct target *target = get_current_target(CMD_CTX);
2448
2449         if (CMD_ARGC == 0) {
2450                 command_print(CMD_CTX, "background polling: %s",
2451                                 jtag_poll_get_enabled() ? "on" : "off");
2452                 command_print(CMD_CTX, "TAP: %s (%s)",
2453                                 target->tap->dotted_name,
2454                                 target->tap->enabled ? "enabled" : "disabled");
2455                 if (!target->tap->enabled)
2456                         return ERROR_OK;
2457                 retval = target_poll(target);
2458                 if (retval != ERROR_OK)
2459                         return retval;
2460                 retval = target_arch_state(target);
2461                 if (retval != ERROR_OK)
2462                         return retval;
2463         } else if (CMD_ARGC == 1) {
2464                 bool enable;
2465                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2466                 jtag_poll_set_enabled(enable);
2467         } else
2468                 return ERROR_COMMAND_SYNTAX_ERROR;
2469
2470         return retval;
2471 }
2472
2473 COMMAND_HANDLER(handle_wait_halt_command)
2474 {
2475         if (CMD_ARGC > 1)
2476                 return ERROR_COMMAND_SYNTAX_ERROR;
2477
2478         unsigned ms = DEFAULT_HALT_TIMEOUT;
2479         if (1 == CMD_ARGC) {
2480                 int retval = parse_uint(CMD_ARGV[0], &ms);
2481                 if (ERROR_OK != retval)
2482                         return ERROR_COMMAND_SYNTAX_ERROR;
2483         }
2484
2485         struct target *target = get_current_target(CMD_CTX);
2486         return target_wait_state(target, TARGET_HALTED, ms);
2487 }
2488
2489 /* wait for target state to change. The trick here is to have a low
2490  * latency for short waits and not to suck up all the CPU time
2491  * on longer waits.
2492  *
2493  * After 500ms, keep_alive() is invoked
2494  */
2495 int target_wait_state(struct target *target, enum target_state state, int ms)
2496 {
2497         int retval;
2498         long long then = 0, cur;
2499         int once = 1;
2500
2501         for (;;) {
2502                 retval = target_poll(target);
2503                 if (retval != ERROR_OK)
2504                         return retval;
2505                 if (target->state == state)
2506                         break;
2507                 cur = timeval_ms();
2508                 if (once) {
2509                         once = 0;
2510                         then = timeval_ms();
2511                         LOG_DEBUG("waiting for target %s...",
2512                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2513                 }
2514
2515                 if (cur-then > 500)
2516                         keep_alive();
2517
2518                 if ((cur-then) > ms) {
2519                         LOG_ERROR("timed out while waiting for target %s",
2520                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2521                         return ERROR_FAIL;
2522                 }
2523         }
2524
2525         return ERROR_OK;
2526 }
2527
2528 COMMAND_HANDLER(handle_halt_command)
2529 {
2530         LOG_DEBUG("-");
2531
2532         struct target *target = get_current_target(CMD_CTX);
2533         int retval = target_halt(target);
2534         if (ERROR_OK != retval)
2535                 return retval;
2536
2537         if (CMD_ARGC == 1) {
2538                 unsigned wait_local;
2539                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2540                 if (ERROR_OK != retval)
2541                         return ERROR_COMMAND_SYNTAX_ERROR;
2542                 if (!wait_local)
2543                         return ERROR_OK;
2544         }
2545
2546         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2547 }
2548
2549 COMMAND_HANDLER(handle_soft_reset_halt_command)
2550 {
2551         struct target *target = get_current_target(CMD_CTX);
2552
2553         LOG_USER("requesting target halt and executing a soft reset");
2554
2555         target_soft_reset_halt(target);
2556
2557         return ERROR_OK;
2558 }
2559
2560 COMMAND_HANDLER(handle_reset_command)
2561 {
2562         if (CMD_ARGC > 1)
2563                 return ERROR_COMMAND_SYNTAX_ERROR;
2564
2565         enum target_reset_mode reset_mode = RESET_RUN;
2566         if (CMD_ARGC == 1) {
2567                 const Jim_Nvp *n;
2568                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2569                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2570                         return ERROR_COMMAND_SYNTAX_ERROR;
2571                 reset_mode = n->value;
2572         }
2573
2574         /* reset *all* targets */
2575         return target_process_reset(CMD_CTX, reset_mode);
2576 }
2577
2578
2579 COMMAND_HANDLER(handle_resume_command)
2580 {
2581         int current = 1;
2582         if (CMD_ARGC > 1)
2583                 return ERROR_COMMAND_SYNTAX_ERROR;
2584
2585         struct target *target = get_current_target(CMD_CTX);
2586
2587         /* with no CMD_ARGV, resume from current pc, addr = 0,
2588          * with one arguments, addr = CMD_ARGV[0],
2589          * handle breakpoints, not debugging */
2590         uint32_t addr = 0;
2591         if (CMD_ARGC == 1) {
2592                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2593                 current = 0;
2594         }
2595
2596         return target_resume(target, current, addr, 1, 0);
2597 }
2598
2599 COMMAND_HANDLER(handle_step_command)
2600 {
2601         if (CMD_ARGC > 1)
2602                 return ERROR_COMMAND_SYNTAX_ERROR;
2603
2604         LOG_DEBUG("-");
2605
2606         /* with no CMD_ARGV, step from current pc, addr = 0,
2607          * with one argument addr = CMD_ARGV[0],
2608          * handle breakpoints, debugging */
2609         uint32_t addr = 0;
2610         int current_pc = 1;
2611         if (CMD_ARGC == 1) {
2612                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2613                 current_pc = 0;
2614         }
2615
2616         struct target *target = get_current_target(CMD_CTX);
2617
2618         return target->type->step(target, current_pc, addr, 1);
2619 }
2620
2621 static void handle_md_output(struct command_context *cmd_ctx,
2622                 struct target *target, uint32_t address, unsigned size,
2623                 unsigned count, const uint8_t *buffer)
2624 {
2625         const unsigned line_bytecnt = 32;
2626         unsigned line_modulo = line_bytecnt / size;
2627
2628         char output[line_bytecnt * 4 + 1];
2629         unsigned output_len = 0;
2630
2631         const char *value_fmt;
2632         switch (size) {
2633         case 4:
2634                 value_fmt = "%8.8x ";
2635                 break;
2636         case 2:
2637                 value_fmt = "%4.4x ";
2638                 break;
2639         case 1:
2640                 value_fmt = "%2.2x ";
2641                 break;
2642         default:
2643                 /* "can't happen", caller checked */
2644                 LOG_ERROR("invalid memory read size: %u", size);
2645                 return;
2646         }
2647
2648         for (unsigned i = 0; i < count; i++) {
2649                 if (i % line_modulo == 0) {
2650                         output_len += snprintf(output + output_len,
2651                                         sizeof(output) - output_len,
2652                                         "0x%8.8x: ",
2653                                         (unsigned)(address + (i*size)));
2654                 }
2655
2656                 uint32_t value = 0;
2657                 const uint8_t *value_ptr = buffer + i * size;
2658                 switch (size) {
2659                 case 4:
2660                         value = target_buffer_get_u32(target, value_ptr);
2661                         break;
2662                 case 2:
2663                         value = target_buffer_get_u16(target, value_ptr);
2664                         break;
2665                 case 1:
2666                         value = *value_ptr;
2667                 }
2668                 output_len += snprintf(output + output_len,
2669                                 sizeof(output) - output_len,
2670                                 value_fmt, value);
2671
2672                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2673                         command_print(cmd_ctx, "%s", output);
2674                         output_len = 0;
2675                 }
2676         }
2677 }
2678
2679 COMMAND_HANDLER(handle_md_command)
2680 {
2681         if (CMD_ARGC < 1)
2682                 return ERROR_COMMAND_SYNTAX_ERROR;
2683
2684         unsigned size = 0;
2685         switch (CMD_NAME[2]) {
2686         case 'w':
2687                 size = 4;
2688                 break;
2689         case 'h':
2690                 size = 2;
2691                 break;
2692         case 'b':
2693                 size = 1;
2694                 break;
2695         default:
2696                 return ERROR_COMMAND_SYNTAX_ERROR;
2697         }
2698
2699         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2700         int (*fn)(struct target *target,
2701                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2702         if (physical) {
2703                 CMD_ARGC--;
2704                 CMD_ARGV++;
2705                 fn = target_read_phys_memory;
2706         } else
2707                 fn = target_read_memory;
2708         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2709                 return ERROR_COMMAND_SYNTAX_ERROR;
2710
2711         uint32_t address;
2712         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2713
2714         unsigned count = 1;
2715         if (CMD_ARGC == 2)
2716                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2717
2718         uint8_t *buffer = calloc(count, size);
2719
2720         struct target *target = get_current_target(CMD_CTX);
2721         int retval = fn(target, address, size, count, buffer);
2722         if (ERROR_OK == retval)
2723                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2724
2725         free(buffer);
2726
2727         return retval;
2728 }
2729
2730 typedef int (*target_write_fn)(struct target *target,
2731                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2732
2733 static int target_write_memory_fast(struct target *target,
2734                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2735 {
2736         return target_write_buffer(target, address, size * count, buffer);
2737 }
2738
2739 static int target_fill_mem(struct target *target,
2740                 uint32_t address,
2741                 target_write_fn fn,
2742                 unsigned data_size,
2743                 /* value */
2744                 uint32_t b,
2745                 /* count */
2746                 unsigned c)
2747 {
2748         /* We have to write in reasonably large chunks to be able
2749          * to fill large memory areas with any sane speed */
2750         const unsigned chunk_size = 16384;
2751         uint8_t *target_buf = malloc(chunk_size * data_size);
2752         if (target_buf == NULL) {
2753                 LOG_ERROR("Out of memory");
2754                 return ERROR_FAIL;
2755         }
2756
2757         for (unsigned i = 0; i < chunk_size; i++) {
2758                 switch (data_size) {
2759                 case 4:
2760                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2761                         break;
2762                 case 2:
2763                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2764                         break;
2765                 case 1:
2766                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2767                         break;
2768                 default:
2769                         exit(-1);
2770                 }
2771         }
2772
2773         int retval = ERROR_OK;
2774
2775         for (unsigned x = 0; x < c; x += chunk_size) {
2776                 unsigned current;
2777                 current = c - x;
2778                 if (current > chunk_size)
2779                         current = chunk_size;
2780                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2781                 if (retval != ERROR_OK)
2782                         break;
2783                 /* avoid GDB timeouts */
2784                 keep_alive();
2785         }
2786         free(target_buf);
2787
2788         return retval;
2789 }
2790
2791
2792 COMMAND_HANDLER(handle_mw_command)
2793 {
2794         if (CMD_ARGC < 2)
2795                 return ERROR_COMMAND_SYNTAX_ERROR;
2796         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2797         target_write_fn fn;
2798         if (physical) {
2799                 CMD_ARGC--;
2800                 CMD_ARGV++;
2801                 fn = target_write_phys_memory;
2802         } else
2803                 fn = target_write_memory_fast;
2804         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2805                 return ERROR_COMMAND_SYNTAX_ERROR;
2806
2807         uint32_t address;
2808         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2809
2810         uint32_t value;
2811         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2812
2813         unsigned count = 1;
2814         if (CMD_ARGC == 3)
2815                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2816
2817         struct target *target = get_current_target(CMD_CTX);
2818         unsigned wordsize;
2819         switch (CMD_NAME[2]) {
2820                 case 'w':
2821                         wordsize = 4;
2822                         break;
2823                 case 'h':
2824                         wordsize = 2;
2825                         break;
2826                 case 'b':
2827                         wordsize = 1;
2828                         break;
2829                 default:
2830                         return ERROR_COMMAND_SYNTAX_ERROR;
2831         }
2832
2833         return target_fill_mem(target, address, fn, wordsize, value, count);
2834 }
2835
2836 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2837                 uint32_t *min_address, uint32_t *max_address)
2838 {
2839         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2840                 return ERROR_COMMAND_SYNTAX_ERROR;
2841
2842         /* a base address isn't always necessary,
2843          * default to 0x0 (i.e. don't relocate) */
2844         if (CMD_ARGC >= 2) {
2845                 uint32_t addr;
2846                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2847                 image->base_address = addr;
2848                 image->base_address_set = 1;
2849         } else
2850                 image->base_address_set = 0;
2851
2852         image->start_address_set = 0;
2853
2854         if (CMD_ARGC >= 4)
2855                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2856         if (CMD_ARGC == 5) {
2857                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2858                 /* use size (given) to find max (required) */
2859                 *max_address += *min_address;
2860         }
2861
2862         if (*min_address > *max_address)
2863                 return ERROR_COMMAND_SYNTAX_ERROR;
2864
2865         return ERROR_OK;
2866 }
2867
2868 COMMAND_HANDLER(handle_load_image_command)
2869 {
2870         uint8_t *buffer;
2871         size_t buf_cnt;
2872         uint32_t image_size;
2873         uint32_t min_address = 0;
2874         uint32_t max_address = 0xffffffff;
2875         int i;
2876         struct image image;
2877
2878         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2879                         &image, &min_address, &max_address);
2880         if (ERROR_OK != retval)
2881                 return retval;
2882
2883         struct target *target = get_current_target(CMD_CTX);
2884
2885         struct duration bench;
2886         duration_start(&bench);
2887
2888         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2889                 return ERROR_OK;
2890
2891         image_size = 0x0;
2892         retval = ERROR_OK;
2893         for (i = 0; i < image.num_sections; i++) {
2894                 buffer = malloc(image.sections[i].size);
2895                 if (buffer == NULL) {
2896                         command_print(CMD_CTX,
2897                                                   "error allocating buffer for section (%d bytes)",
2898                                                   (int)(image.sections[i].size));
2899                         break;
2900                 }
2901
2902                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2903                 if (retval != ERROR_OK) {
2904                         free(buffer);
2905                         break;
2906                 }
2907
2908                 uint32_t offset = 0;
2909                 uint32_t length = buf_cnt;
2910
2911                 /* DANGER!!! beware of unsigned comparision here!!! */
2912
2913                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2914                                 (image.sections[i].base_address < max_address)) {
2915
2916                         if (image.sections[i].base_address < min_address) {
2917                                 /* clip addresses below */
2918                                 offset += min_address-image.sections[i].base_address;
2919                                 length -= offset;
2920                         }
2921
2922                         if (image.sections[i].base_address + buf_cnt > max_address)
2923                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2924
2925                         retval = target_write_buffer(target,
2926                                         image.sections[i].base_address + offset, length, buffer + offset);
2927                         if (retval != ERROR_OK) {
2928                                 free(buffer);
2929                                 break;
2930                         }
2931                         image_size += length;
2932                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2933                                         (unsigned int)length,
2934                                         image.sections[i].base_address + offset);
2935                 }
2936
2937                 free(buffer);
2938         }
2939
2940         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2941                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2942                                 "in %fs (%0.3f KiB/s)", image_size,
2943                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2944         }
2945
2946         image_close(&image);
2947
2948         return retval;
2949
2950 }
2951
2952 COMMAND_HANDLER(handle_dump_image_command)
2953 {
2954         struct fileio fileio;
2955         uint8_t *buffer;
2956         int retval, retvaltemp;
2957         uint32_t address, size;
2958         struct duration bench;
2959         struct target *target = get_current_target(CMD_CTX);
2960
2961         if (CMD_ARGC != 3)
2962                 return ERROR_COMMAND_SYNTAX_ERROR;
2963
2964         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2965         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2966
2967         uint32_t buf_size = (size > 4096) ? 4096 : size;
2968         buffer = malloc(buf_size);
2969         if (!buffer)
2970                 return ERROR_FAIL;
2971
2972         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2973         if (retval != ERROR_OK) {
2974                 free(buffer);
2975                 return retval;
2976         }
2977
2978         duration_start(&bench);
2979
2980         while (size > 0) {
2981                 size_t size_written;
2982                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2983                 retval = target_read_buffer(target, address, this_run_size, buffer);
2984                 if (retval != ERROR_OK)
2985                         break;
2986
2987                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2988                 if (retval != ERROR_OK)
2989                         break;
2990
2991                 size -= this_run_size;
2992                 address += this_run_size;
2993         }
2994
2995         free(buffer);
2996
2997         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2998                 int filesize;
2999                 retval = fileio_size(&fileio, &filesize);
3000                 if (retval != ERROR_OK)
3001                         return retval;
3002                 command_print(CMD_CTX,
3003                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3004                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3005         }
3006
3007         retvaltemp = fileio_close(&fileio);
3008         if (retvaltemp != ERROR_OK)
3009                 return retvaltemp;
3010
3011         return retval;
3012 }
3013
3014 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3015 {
3016         uint8_t *buffer;
3017         size_t buf_cnt;
3018         uint32_t image_size;
3019         int i;
3020         int retval;
3021         uint32_t checksum = 0;
3022         uint32_t mem_checksum = 0;
3023
3024         struct image image;
3025
3026         struct target *target = get_current_target(CMD_CTX);
3027
3028         if (CMD_ARGC < 1)
3029                 return ERROR_COMMAND_SYNTAX_ERROR;
3030
3031         if (!target) {
3032                 LOG_ERROR("no target selected");
3033                 return ERROR_FAIL;
3034         }
3035
3036         struct duration bench;
3037         duration_start(&bench);
3038
3039         if (CMD_ARGC >= 2) {
3040                 uint32_t addr;
3041                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3042                 image.base_address = addr;
3043                 image.base_address_set = 1;
3044         } else {
3045                 image.base_address_set = 0;
3046                 image.base_address = 0x0;
3047         }
3048
3049         image.start_address_set = 0;
3050
3051         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3052         if (retval != ERROR_OK)
3053                 return retval;
3054
3055         image_size = 0x0;
3056         int diffs = 0;
3057         retval = ERROR_OK;
3058         for (i = 0; i < image.num_sections; i++) {
3059                 buffer = malloc(image.sections[i].size);
3060                 if (buffer == NULL) {
3061                         command_print(CMD_CTX,
3062                                         "error allocating buffer for section (%d bytes)",
3063                                         (int)(image.sections[i].size));
3064                         break;
3065                 }
3066                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3067                 if (retval != ERROR_OK) {
3068                         free(buffer);
3069                         break;
3070                 }
3071
3072                 if (verify) {
3073                         /* calculate checksum of image */
3074                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3075                         if (retval != ERROR_OK) {
3076                                 free(buffer);
3077                                 break;
3078                         }
3079
3080                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3081                         if (retval != ERROR_OK) {
3082                                 free(buffer);
3083                                 break;
3084                         }
3085
3086                         if (checksum != mem_checksum) {
3087                                 /* failed crc checksum, fall back to a binary compare */
3088                                 uint8_t *data;
3089
3090                                 if (diffs == 0)
3091                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3092
3093                                 data = (uint8_t *)malloc(buf_cnt);
3094
3095                                 /* Can we use 32bit word accesses? */
3096                                 int size = 1;
3097                                 int count = buf_cnt;
3098                                 if ((count % 4) == 0) {
3099                                         size *= 4;
3100                                         count /= 4;
3101                                 }
3102                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3103                                 if (retval == ERROR_OK) {
3104                                         uint32_t t;
3105                                         for (t = 0; t < buf_cnt; t++) {
3106                                                 if (data[t] != buffer[t]) {
3107                                                         command_print(CMD_CTX,
3108                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3109                                                                                   diffs,
3110                                                                                   (unsigned)(t + image.sections[i].base_address),
3111                                                                                   data[t],
3112                                                                                   buffer[t]);
3113                                                         if (diffs++ >= 127) {
3114                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3115                                                                 free(data);
3116                                                                 free(buffer);
3117                                                                 goto done;
3118                                                         }
3119                                                 }
3120                                                 keep_alive();
3121                                         }
3122                                 }
3123                                 free(data);
3124                         }
3125                 } else {
3126                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3127                                                   image.sections[i].base_address,
3128                                                   buf_cnt);
3129                 }
3130
3131                 free(buffer);
3132                 image_size += buf_cnt;
3133         }
3134         if (diffs > 0)
3135                 command_print(CMD_CTX, "No more differences found.");
3136 done:
3137         if (diffs > 0)
3138                 retval = ERROR_FAIL;
3139         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3140                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3141                                 "in %fs (%0.3f KiB/s)", image_size,
3142                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3143         }
3144
3145         image_close(&image);
3146
3147         return retval;
3148 }
3149
3150 COMMAND_HANDLER(handle_verify_image_command)
3151 {
3152         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3153 }
3154
3155 COMMAND_HANDLER(handle_test_image_command)
3156 {
3157         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3158 }
3159
3160 static int handle_bp_command_list(struct command_context *cmd_ctx)
3161 {
3162         struct target *target = get_current_target(cmd_ctx);
3163         struct breakpoint *breakpoint = target->breakpoints;
3164         while (breakpoint) {
3165                 if (breakpoint->type == BKPT_SOFT) {
3166                         char *buf = buf_to_str(breakpoint->orig_instr,
3167                                         breakpoint->length, 16);
3168                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3169                                         breakpoint->address,
3170                                         breakpoint->length,
3171                                         breakpoint->set, buf);
3172                         free(buf);
3173                 } else {
3174                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3175                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3176                                                         breakpoint->asid,
3177                                                         breakpoint->length, breakpoint->set);
3178                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3179                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3180                                                         breakpoint->address,
3181                                                         breakpoint->length, breakpoint->set);
3182                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3183                                                         breakpoint->asid);
3184                         } else
3185                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3186                                                         breakpoint->address,
3187                                                         breakpoint->length, breakpoint->set);
3188                 }
3189
3190                 breakpoint = breakpoint->next;
3191         }
3192         return ERROR_OK;
3193 }
3194
3195 static int handle_bp_command_set(struct command_context *cmd_ctx,
3196                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3197 {
3198         struct target *target = get_current_target(cmd_ctx);
3199
3200         if (asid == 0) {
3201                 int retval = breakpoint_add(target, addr, length, hw);
3202                 if (ERROR_OK == retval)
3203                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3204                 else {
3205                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3206                         return retval;
3207                 }
3208         } else if (addr == 0) {
3209                 int retval = context_breakpoint_add(target, asid, length, hw);
3210                 if (ERROR_OK == retval)
3211                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3212                 else {
3213                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3214                         return retval;
3215                 }
3216         } else {
3217                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3218                 if (ERROR_OK == retval)
3219                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3220                 else {
3221                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3222                         return retval;
3223                 }
3224         }
3225         return ERROR_OK;
3226 }
3227
3228 COMMAND_HANDLER(handle_bp_command)
3229 {
3230         uint32_t addr;
3231         uint32_t asid;
3232         uint32_t length;
3233         int hw = BKPT_SOFT;
3234
3235         switch (CMD_ARGC) {
3236                 case 0:
3237                         return handle_bp_command_list(CMD_CTX);
3238
3239                 case 2:
3240                         asid = 0;
3241                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3242                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3243                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3244
3245                 case 3:
3246                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3247                                 hw = BKPT_HARD;
3248                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3249
3250                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3251
3252                                 asid = 0;
3253                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3254                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3255                                 hw = BKPT_HARD;
3256                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3257                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3258                                 addr = 0;
3259                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3260                         }
3261
3262                 case 4:
3263                         hw = BKPT_HARD;
3264                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3265                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3266                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3267                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3268
3269                 default:
3270                         return ERROR_COMMAND_SYNTAX_ERROR;
3271         }
3272 }
3273
3274 COMMAND_HANDLER(handle_rbp_command)
3275 {
3276         if (CMD_ARGC != 1)
3277                 return ERROR_COMMAND_SYNTAX_ERROR;
3278
3279         uint32_t addr;
3280         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3281
3282         struct target *target = get_current_target(CMD_CTX);
3283         breakpoint_remove(target, addr);
3284
3285         return ERROR_OK;
3286 }
3287
3288 COMMAND_HANDLER(handle_wp_command)
3289 {
3290         struct target *target = get_current_target(CMD_CTX);
3291
3292         if (CMD_ARGC == 0) {
3293                 struct watchpoint *watchpoint = target->watchpoints;
3294
3295                 while (watchpoint) {
3296                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3297                                         ", len: 0x%8.8" PRIx32
3298                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3299                                         ", mask: 0x%8.8" PRIx32,
3300                                         watchpoint->address,
3301                                         watchpoint->length,
3302                                         (int)watchpoint->rw,
3303                                         watchpoint->value,
3304                                         watchpoint->mask);
3305                         watchpoint = watchpoint->next;
3306                 }
3307                 return ERROR_OK;
3308         }
3309
3310         enum watchpoint_rw type = WPT_ACCESS;
3311         uint32_t addr = 0;
3312         uint32_t length = 0;
3313         uint32_t data_value = 0x0;
3314         uint32_t data_mask = 0xffffffff;
3315
3316         switch (CMD_ARGC) {
3317         case 5:
3318                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3319                 /* fall through */
3320         case 4:
3321                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3322                 /* fall through */
3323         case 3:
3324                 switch (CMD_ARGV[2][0]) {
3325                 case 'r':
3326                         type = WPT_READ;
3327                         break;
3328                 case 'w':
3329                         type = WPT_WRITE;
3330                         break;
3331                 case 'a':
3332                         type = WPT_ACCESS;
3333                         break;
3334                 default:
3335                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3336                         return ERROR_COMMAND_SYNTAX_ERROR;
3337                 }
3338                 /* fall through */
3339         case 2:
3340                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3341                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3342                 break;
3343
3344         default:
3345                 return ERROR_COMMAND_SYNTAX_ERROR;
3346         }
3347
3348         int retval = watchpoint_add(target, addr, length, type,
3349                         data_value, data_mask);
3350         if (ERROR_OK != retval)
3351                 LOG_ERROR("Failure setting watchpoints");
3352
3353         return retval;
3354 }
3355
3356 COMMAND_HANDLER(handle_rwp_command)
3357 {
3358         if (CMD_ARGC != 1)
3359                 return ERROR_COMMAND_SYNTAX_ERROR;
3360
3361         uint32_t addr;
3362         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3363
3364         struct target *target = get_current_target(CMD_CTX);
3365         watchpoint_remove(target, addr);
3366
3367         return ERROR_OK;
3368 }
3369
3370 /**
3371  * Translate a virtual address to a physical address.
3372  *
3373  * The low-level target implementation must have logged a detailed error
3374  * which is forwarded to telnet/GDB session.
3375  */
3376 COMMAND_HANDLER(handle_virt2phys_command)
3377 {
3378         if (CMD_ARGC != 1)
3379                 return ERROR_COMMAND_SYNTAX_ERROR;
3380
3381         uint32_t va;
3382         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3383         uint32_t pa;
3384
3385         struct target *target = get_current_target(CMD_CTX);
3386         int retval = target->type->virt2phys(target, va, &pa);
3387         if (retval == ERROR_OK)
3388                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3389
3390         return retval;
3391 }
3392
3393 static void writeData(FILE *f, const void *data, size_t len)
3394 {
3395         size_t written = fwrite(data, 1, len, f);
3396         if (written != len)
3397                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3398 }
3399
3400 static void writeLong(FILE *f, int l)
3401 {
3402         int i;
3403         for (i = 0; i < 4; i++) {
3404                 char c = (l >> (i*8))&0xff;
3405                 writeData(f, &c, 1);
3406         }
3407
3408 }
3409
3410 static void writeString(FILE *f, char *s)
3411 {
3412         writeData(f, s, strlen(s));
3413 }
3414
3415 /* Dump a gmon.out histogram file. */
3416 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3417 {
3418         uint32_t i;
3419         FILE *f = fopen(filename, "w");
3420         if (f == NULL)
3421                 return;
3422         writeString(f, "gmon");
3423         writeLong(f, 0x00000001); /* Version */
3424         writeLong(f, 0); /* padding */
3425         writeLong(f, 0); /* padding */
3426         writeLong(f, 0); /* padding */
3427
3428         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3429         writeData(f, &zero, 1);
3430
3431         /* figure out bucket size */
3432         uint32_t min = samples[0];
3433         uint32_t max = samples[0];
3434         for (i = 0; i < sampleNum; i++) {
3435                 if (min > samples[i])
3436                         min = samples[i];
3437                 if (max < samples[i])
3438                         max = samples[i];
3439         }
3440
3441         int addressSpace = (max - min + 1);
3442         assert(addressSpace >= 2);
3443
3444         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3445         uint32_t length = addressSpace;
3446         if (length > maxBuckets)
3447                 length = maxBuckets;
3448         int *buckets = malloc(sizeof(int)*length);
3449         if (buckets == NULL) {
3450                 fclose(f);
3451                 return;
3452         }
3453         memset(buckets, 0, sizeof(int) * length);
3454         for (i = 0; i < sampleNum; i++) {
3455                 uint32_t address = samples[i];
3456                 long long a = address - min;
3457                 long long b = length - 1;
3458                 long long c = addressSpace - 1;
3459                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3460                 buckets[index_t]++;
3461         }
3462
3463         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3464         writeLong(f, min);                      /* low_pc */
3465         writeLong(f, max);                      /* high_pc */
3466         writeLong(f, length);           /* # of samples */
3467         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3468         writeString(f, "seconds");
3469         for (i = 0; i < (15-strlen("seconds")); i++)
3470                 writeData(f, &zero, 1);
3471         writeString(f, "s");
3472
3473         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3474
3475         char *data = malloc(2 * length);
3476         if (data != NULL) {
3477                 for (i = 0; i < length; i++) {
3478                         int val;
3479                         val = buckets[i];
3480                         if (val > 65535)
3481                                 val = 65535;
3482                         data[i * 2] = val&0xff;
3483                         data[i * 2 + 1] = (val >> 8) & 0xff;
3484                 }
3485                 free(buckets);
3486                 writeData(f, data, length * 2);
3487                 free(data);
3488         } else
3489                 free(buckets);
3490
3491         fclose(f);
3492 }
3493
3494 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3495  * which will be used as a random sampling of PC */
3496 COMMAND_HANDLER(handle_profile_command)
3497 {
3498         struct target *target = get_current_target(CMD_CTX);
3499         struct timeval timeout, now;
3500
3501         gettimeofday(&timeout, NULL);
3502         if (CMD_ARGC != 2)
3503                 return ERROR_COMMAND_SYNTAX_ERROR;
3504         unsigned offset;
3505         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3506
3507         timeval_add_time(&timeout, offset, 0);
3508
3509         /**
3510          * @todo: Some cores let us sample the PC without the
3511          * annoying halt/resume step; for example, ARMv7 PCSR.
3512          * Provide a way to use that more efficient mechanism.
3513          */
3514
3515         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3516
3517         static const int maxSample = 10000;
3518         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3519         if (samples == NULL)
3520                 return ERROR_OK;
3521
3522         int numSamples = 0;
3523         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3524         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3525
3526         int retval = ERROR_OK;
3527         for (;;) {
3528                 target_poll(target);
3529                 if (target->state == TARGET_HALTED) {
3530                         uint32_t t = *((uint32_t *)reg->value);
3531                         samples[numSamples++] = t;
3532                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3533                         retval = target_resume(target, 1, 0, 0, 0);
3534                         target_poll(target);
3535                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3536                 } else if (target->state == TARGET_RUNNING) {
3537                         /* We want to quickly sample the PC. */
3538                         retval = target_halt(target);
3539                         if (retval != ERROR_OK) {
3540                                 free(samples);
3541                                 return retval;
3542                         }
3543                 } else {
3544                         command_print(CMD_CTX, "Target not halted or running");
3545                         retval = ERROR_OK;
3546                         break;
3547                 }
3548                 if (retval != ERROR_OK)
3549                         break;
3550
3551                 gettimeofday(&now, NULL);
3552                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3553                                 && (now.tv_usec >= timeout.tv_usec))) {
3554                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3555                         retval = target_poll(target);
3556                         if (retval != ERROR_OK) {
3557                                 free(samples);
3558                                 return retval;
3559                         }
3560                         if (target->state == TARGET_HALTED) {
3561                                 /* current pc, addr = 0, do not handle
3562                                  * breakpoints, not debugging */
3563                                 target_resume(target, 1, 0, 0, 0);
3564                         }
3565                         retval = target_poll(target);
3566                         if (retval != ERROR_OK) {
3567                                 free(samples);
3568                                 return retval;
3569                         }
3570                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3571                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3572                         break;
3573                 }
3574         }
3575         free(samples);
3576
3577         return retval;
3578 }
3579
3580 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3581 {
3582         char *namebuf;
3583         Jim_Obj *nameObjPtr, *valObjPtr;
3584         int result;
3585
3586         namebuf = alloc_printf("%s(%d)", varname, idx);
3587         if (!namebuf)
3588                 return JIM_ERR;
3589
3590         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3591         valObjPtr = Jim_NewIntObj(interp, val);
3592         if (!nameObjPtr || !valObjPtr) {
3593                 free(namebuf);
3594                 return JIM_ERR;
3595         }
3596
3597         Jim_IncrRefCount(nameObjPtr);
3598         Jim_IncrRefCount(valObjPtr);
3599         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3600         Jim_DecrRefCount(interp, nameObjPtr);
3601         Jim_DecrRefCount(interp, valObjPtr);
3602         free(namebuf);
3603         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3604         return result;
3605 }
3606
3607 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3608 {
3609         struct command_context *context;
3610         struct target *target;
3611
3612         context = current_command_context(interp);
3613         assert(context != NULL);
3614
3615         target = get_current_target(context);
3616         if (target == NULL) {
3617                 LOG_ERROR("mem2array: no current target");
3618                 return JIM_ERR;
3619         }
3620
3621         return target_mem2array(interp, target, argc - 1, argv + 1);
3622 }
3623
3624 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3625 {
3626         long l;
3627         uint32_t width;
3628         int len;
3629         uint32_t addr;
3630         uint32_t count;
3631         uint32_t v;
3632         const char *varname;
3633         int  n, e, retval;
3634         uint32_t i;
3635
3636         /* argv[1] = name of array to receive the data
3637          * argv[2] = desired width
3638          * argv[3] = memory address
3639          * argv[4] = count of times to read
3640          */
3641         if (argc != 4) {
3642                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3643                 return JIM_ERR;
3644         }
3645         varname = Jim_GetString(argv[0], &len);
3646         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3647
3648         e = Jim_GetLong(interp, argv[1], &l);
3649         width = l;
3650         if (e != JIM_OK)
3651                 return e;
3652
3653         e = Jim_GetLong(interp, argv[2], &l);
3654         addr = l;
3655         if (e != JIM_OK)
3656                 return e;
3657         e = Jim_GetLong(interp, argv[3], &l);
3658         len = l;
3659         if (e != JIM_OK)
3660                 return e;
3661         switch (width) {
3662                 case 8:
3663                         width = 1;
3664                         break;
3665                 case 16:
3666                         width = 2;
3667                         break;
3668                 case 32:
3669                         width = 4;
3670                         break;
3671                 default:
3672                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3673                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3674                         return JIM_ERR;
3675         }
3676         if (len == 0) {
3677                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3678                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3679                 return JIM_ERR;
3680         }
3681         if ((addr + (len * width)) < addr) {
3682                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3683                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3684                 return JIM_ERR;
3685         }
3686         /* absurd transfer size? */
3687         if (len > 65536) {
3688                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3689                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3690                 return JIM_ERR;
3691         }
3692
3693         if ((width == 1) ||
3694                 ((width == 2) && ((addr & 1) == 0)) ||
3695                 ((width == 4) && ((addr & 3) == 0))) {
3696                 /* all is well */
3697         } else {
3698                 char buf[100];
3699                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3700                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3701                                 addr,
3702                                 width);
3703                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3704                 return JIM_ERR;
3705         }
3706
3707         /* Transfer loop */
3708
3709         /* index counter */
3710         n = 0;
3711
3712         size_t buffersize = 4096;
3713         uint8_t *buffer = malloc(buffersize);
3714         if (buffer == NULL)
3715                 return JIM_ERR;
3716
3717         /* assume ok */
3718         e = JIM_OK;
3719         while (len) {
3720                 /* Slurp... in buffer size chunks */
3721
3722                 count = len; /* in objects.. */
3723                 if (count > (buffersize / width))
3724                         count = (buffersize / width);
3725
3726                 retval = target_read_memory(target, addr, width, count, buffer);
3727                 if (retval != ERROR_OK) {
3728                         /* BOO !*/
3729                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3730                                           (unsigned int)addr,
3731                                           (int)width,
3732                                           (int)count);
3733                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3734                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3735                         e = JIM_ERR;
3736                         break;
3737                 } else {
3738                         v = 0; /* shut up gcc */
3739                         for (i = 0; i < count ; i++, n++) {
3740                                 switch (width) {
3741                                         case 4:
3742                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3743                                                 break;
3744                                         case 2:
3745                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3746                                                 break;
3747                                         case 1:
3748                                                 v = buffer[i] & 0x0ff;
3749                                                 break;
3750                                 }
3751                                 new_int_array_element(interp, varname, n, v);
3752                         }
3753                         len -= count;
3754                 }
3755         }
3756
3757         free(buffer);
3758
3759         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3760
3761         return e;
3762 }
3763
3764 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3765 {
3766         char *namebuf;
3767         Jim_Obj *nameObjPtr, *valObjPtr;
3768         int result;
3769         long l;
3770
3771         namebuf = alloc_printf("%s(%d)", varname, idx);
3772         if (!namebuf)
3773                 return JIM_ERR;
3774
3775         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3776         if (!nameObjPtr) {
3777                 free(namebuf);
3778                 return JIM_ERR;
3779         }
3780
3781         Jim_IncrRefCount(nameObjPtr);
3782         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3783         Jim_DecrRefCount(interp, nameObjPtr);
3784         free(namebuf);
3785         if (valObjPtr == NULL)
3786                 return JIM_ERR;
3787
3788         result = Jim_GetLong(interp, valObjPtr, &l);
3789         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3790         *val = l;
3791         return result;
3792 }
3793
3794 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3795 {
3796         struct command_context *context;
3797         struct target *target;
3798
3799         context = current_command_context(interp);
3800         assert(context != NULL);
3801
3802         target = get_current_target(context);
3803         if (target == NULL) {
3804                 LOG_ERROR("array2mem: no current target");
3805                 return JIM_ERR;
3806         }
3807
3808         return target_array2mem(interp, target, argc-1, argv + 1);
3809 }
3810
3811 static int target_array2mem(Jim_Interp *interp, struct target *target,
3812                 int argc, Jim_Obj *const *argv)
3813 {
3814         long l;
3815         uint32_t width;
3816         int len;
3817         uint32_t addr;
3818         uint32_t count;
3819         uint32_t v;
3820         const char *varname;
3821         int  n, e, retval;
3822         uint32_t i;
3823
3824         /* argv[1] = name of array to get the data
3825          * argv[2] = desired width
3826          * argv[3] = memory address
3827          * argv[4] = count to write
3828          */
3829         if (argc != 4) {
3830                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3831                 return JIM_ERR;
3832         }
3833         varname = Jim_GetString(argv[0], &len);
3834         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3835
3836         e = Jim_GetLong(interp, argv[1], &l);
3837         width = l;
3838         if (e != JIM_OK)
3839                 return e;
3840
3841         e = Jim_GetLong(interp, argv[2], &l);
3842         addr = l;
3843         if (e != JIM_OK)
3844                 return e;
3845         e = Jim_GetLong(interp, argv[3], &l);
3846         len = l;
3847         if (e != JIM_OK)
3848                 return e;
3849         switch (width) {
3850                 case 8:
3851                         width = 1;
3852                         break;
3853                 case 16:
3854                         width = 2;
3855                         break;
3856                 case 32:
3857                         width = 4;
3858                         break;
3859                 default:
3860                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3861                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3862                                         "Invalid width param, must be 8/16/32", NULL);
3863                         return JIM_ERR;
3864         }
3865         if (len == 0) {
3866                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3867                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3868                                 "array2mem: zero width read?", NULL);
3869                 return JIM_ERR;
3870         }
3871         if ((addr + (len * width)) < addr) {
3872                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3873                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3874                                 "array2mem: addr + len - wraps to zero?", NULL);
3875                 return JIM_ERR;
3876         }
3877         /* absurd transfer size? */
3878         if (len > 65536) {
3879                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3880                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3881                                 "array2mem: absurd > 64K item request", NULL);
3882                 return JIM_ERR;
3883         }
3884
3885         if ((width == 1) ||
3886                 ((width == 2) && ((addr & 1) == 0)) ||
3887                 ((width == 4) && ((addr & 3) == 0))) {
3888                 /* all is well */
3889         } else {
3890                 char buf[100];
3891                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3892                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3893                                 (unsigned int)addr,
3894                                 (int)width);
3895                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3896                 return JIM_ERR;
3897         }
3898
3899         /* Transfer loop */
3900
3901         /* index counter */
3902         n = 0;
3903         /* assume ok */
3904         e = JIM_OK;
3905
3906         size_t buffersize = 4096;
3907         uint8_t *buffer = malloc(buffersize);
3908         if (buffer == NULL)
3909                 return JIM_ERR;
3910
3911         while (len) {
3912                 /* Slurp... in buffer size chunks */
3913
3914                 count = len; /* in objects.. */
3915                 if (count > (buffersize / width))
3916                         count = (buffersize / width);
3917
3918                 v = 0; /* shut up gcc */
3919                 for (i = 0; i < count; i++, n++) {
3920                         get_int_array_element(interp, varname, n, &v);
3921                         switch (width) {
3922                         case 4:
3923                                 target_buffer_set_u32(target, &buffer[i * width], v);
3924                                 break;
3925                         case 2:
3926                                 target_buffer_set_u16(target, &buffer[i * width], v);
3927                                 break;
3928                         case 1:
3929                                 buffer[i] = v & 0x0ff;
3930                                 break;
3931                         }
3932                 }
3933                 len -= count;
3934
3935                 retval = target_write_memory(target, addr, width, count, buffer);
3936                 if (retval != ERROR_OK) {
3937                         /* BOO !*/
3938                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3939                                           (unsigned int)addr,
3940                                           (int)width,
3941                                           (int)count);
3942                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3943                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3944                         e = JIM_ERR;
3945                         break;
3946                 }
3947         }
3948
3949         free(buffer);
3950
3951         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3952
3953         return e;
3954 }
3955
3956 /* FIX? should we propagate errors here rather than printing them
3957  * and continuing?
3958  */
3959 void target_handle_event(struct target *target, enum target_event e)
3960 {
3961         struct target_event_action *teap;
3962
3963         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3964                 if (teap->event == e) {
3965                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3966                                            target->target_number,
3967                                            target_name(target),
3968                                            target_type_name(target),
3969                                            e,
3970                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3971                                            Jim_GetString(teap->body, NULL));
3972                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3973                                 Jim_MakeErrorMessage(teap->interp);
3974                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3975                         }
3976                 }
3977         }
3978 }
3979
3980 /**
3981  * Returns true only if the target has a handler for the specified event.
3982  */
3983 bool target_has_event_action(struct target *target, enum target_event event)
3984 {
3985         struct target_event_action *teap;
3986
3987         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3988                 if (teap->event == event)
3989                         return true;
3990         }
3991         return false;
3992 }
3993
3994 enum target_cfg_param {
3995         TCFG_TYPE,
3996         TCFG_EVENT,
3997         TCFG_WORK_AREA_VIRT,
3998         TCFG_WORK_AREA_PHYS,
3999         TCFG_WORK_AREA_SIZE,
4000         TCFG_WORK_AREA_BACKUP,
4001         TCFG_ENDIAN,
4002         TCFG_VARIANT,
4003         TCFG_COREID,
4004         TCFG_CHAIN_POSITION,
4005         TCFG_DBGBASE,
4006         TCFG_RTOS,
4007 };
4008
4009 static Jim_Nvp nvp_config_opts[] = {
4010         { .name = "-type",             .value = TCFG_TYPE },
4011         { .name = "-event",            .value = TCFG_EVENT },
4012         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4013         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4014         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4015         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4016         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4017         { .name = "-variant",          .value = TCFG_VARIANT },
4018         { .name = "-coreid",           .value = TCFG_COREID },
4019         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4020         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4021         { .name = "-rtos",             .value = TCFG_RTOS },
4022         { .name = NULL, .value = -1 }
4023 };
4024
4025 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4026 {
4027         Jim_Nvp *n;
4028         Jim_Obj *o;
4029         jim_wide w;
4030         char *cp;
4031         int e;
4032
4033         /* parse config or cget options ... */
4034         while (goi->argc > 0) {
4035                 Jim_SetEmptyResult(goi->interp);
4036                 /* Jim_GetOpt_Debug(goi); */
4037
4038                 if (target->type->target_jim_configure) {
4039                         /* target defines a configure function */
4040                         /* target gets first dibs on parameters */
4041                         e = (*(target->type->target_jim_configure))(target, goi);
4042                         if (e == JIM_OK) {
4043                                 /* more? */
4044                                 continue;
4045                         }
4046                         if (e == JIM_ERR) {
4047                                 /* An error */
4048                                 return e;
4049                         }
4050                         /* otherwise we 'continue' below */
4051                 }
4052                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4053                 if (e != JIM_OK) {
4054                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4055                         return e;
4056                 }
4057                 switch (n->value) {
4058                 case TCFG_TYPE:
4059                         /* not setable */
4060                         if (goi->isconfigure) {
4061                                 Jim_SetResultFormatted(goi->interp,
4062                                                 "not settable: %s", n->name);
4063                                 return JIM_ERR;
4064                         } else {
4065 no_params:
4066                                 if (goi->argc != 0) {
4067                                         Jim_WrongNumArgs(goi->interp,
4068                                                         goi->argc, goi->argv,
4069                                                         "NO PARAMS");
4070                                         return JIM_ERR;
4071                                 }
4072                         }
4073                         Jim_SetResultString(goi->interp,
4074                                         target_type_name(target), -1);
4075                         /* loop for more */
4076                         break;
4077                 case TCFG_EVENT:
4078                         if (goi->argc == 0) {
4079                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4080                                 return JIM_ERR;
4081                         }
4082
4083                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4084                         if (e != JIM_OK) {
4085                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4086                                 return e;
4087                         }
4088
4089                         if (goi->isconfigure) {
4090                                 if (goi->argc != 1) {
4091                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4092                                         return JIM_ERR;
4093                                 }
4094                         } else {
4095                                 if (goi->argc != 0) {
4096                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4097                                         return JIM_ERR;
4098                                 }
4099                         }
4100
4101                         {
4102                                 struct target_event_action *teap;
4103
4104                                 teap = target->event_action;
4105                                 /* replace existing? */
4106                                 while (teap) {
4107                                         if (teap->event == (enum target_event)n->value)
4108                                                 break;
4109                                         teap = teap->next;
4110                                 }
4111
4112                                 if (goi->isconfigure) {
4113                                         bool replace = true;
4114                                         if (teap == NULL) {
4115                                                 /* create new */
4116                                                 teap = calloc(1, sizeof(*teap));
4117                                                 replace = false;
4118                                         }
4119                                         teap->event = n->value;
4120                                         teap->interp = goi->interp;
4121                                         Jim_GetOpt_Obj(goi, &o);
4122                                         if (teap->body)
4123                                                 Jim_DecrRefCount(teap->interp, teap->body);
4124                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4125                                         /*
4126                                          * FIXME:
4127                                          *     Tcl/TK - "tk events" have a nice feature.
4128                                          *     See the "BIND" command.
4129                                          *    We should support that here.
4130                                          *     You can specify %X and %Y in the event code.
4131                                          *     The idea is: %T - target name.
4132                                          *     The idea is: %N - target number
4133                                          *     The idea is: %E - event name.
4134                                          */
4135                                         Jim_IncrRefCount(teap->body);
4136
4137                                         if (!replace) {
4138                                                 /* add to head of event list */
4139                                                 teap->next = target->event_action;
4140                                                 target->event_action = teap;
4141                                         }
4142                                         Jim_SetEmptyResult(goi->interp);
4143                                 } else {
4144                                         /* get */
4145                                         if (teap == NULL)
4146                                                 Jim_SetEmptyResult(goi->interp);
4147                                         else
4148                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4149                                 }
4150                         }
4151                         /* loop for more */
4152                         break;
4153
4154                 case TCFG_WORK_AREA_VIRT:
4155                         if (goi->isconfigure) {
4156                                 target_free_all_working_areas(target);
4157                                 e = Jim_GetOpt_Wide(goi, &w);
4158                                 if (e != JIM_OK)
4159                                         return e;
4160                                 target->working_area_virt = w;
4161                                 target->working_area_virt_spec = true;
4162                         } else {
4163                                 if (goi->argc != 0)
4164                                         goto no_params;
4165                         }
4166                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4167                         /* loop for more */
4168                         break;
4169
4170                 case TCFG_WORK_AREA_PHYS:
4171                         if (goi->isconfigure) {
4172                                 target_free_all_working_areas(target);
4173                                 e = Jim_GetOpt_Wide(goi, &w);
4174                                 if (e != JIM_OK)
4175                                         return e;
4176                                 target->working_area_phys = w;
4177                                 target->working_area_phys_spec = true;
4178                         } else {
4179                                 if (goi->argc != 0)
4180                                         goto no_params;
4181                         }
4182                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4183                         /* loop for more */
4184                         break;
4185
4186                 case TCFG_WORK_AREA_SIZE:
4187                         if (goi->isconfigure) {
4188                                 target_free_all_working_areas(target);
4189                                 e = Jim_GetOpt_Wide(goi, &w);
4190                                 if (e != JIM_OK)
4191                                         return e;
4192                                 target->working_area_size = w;
4193                         } else {
4194                                 if (goi->argc != 0)
4195                                         goto no_params;
4196                         }
4197                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4198                         /* loop for more */
4199                         break;
4200
4201                 case TCFG_WORK_AREA_BACKUP:
4202                         if (goi->isconfigure) {
4203                                 target_free_all_working_areas(target);
4204                                 e = Jim_GetOpt_Wide(goi, &w);
4205                                 if (e != JIM_OK)
4206                                         return e;
4207                                 /* make this exactly 1 or 0 */
4208                                 target->backup_working_area = (!!w);
4209                         } else {
4210                                 if (goi->argc != 0)
4211                                         goto no_params;
4212                         }
4213                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4214                         /* loop for more e*/
4215                         break;
4216
4217
4218                 case TCFG_ENDIAN:
4219                         if (goi->isconfigure) {
4220                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4221                                 if (e != JIM_OK) {
4222                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4223                                         return e;
4224                                 }
4225                                 target->endianness = n->value;
4226                         } else {
4227                                 if (goi->argc != 0)
4228                                         goto no_params;
4229                         }
4230                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4231                         if (n->name == NULL) {
4232                                 target->endianness = TARGET_LITTLE_ENDIAN;
4233                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4234                         }
4235                         Jim_SetResultString(goi->interp, n->name, -1);
4236                         /* loop for more */
4237                         break;
4238
4239                 case TCFG_VARIANT:
4240                         if (goi->isconfigure) {
4241                                 if (goi->argc < 1) {
4242                                         Jim_SetResultFormatted(goi->interp,
4243                                                                                    "%s ?STRING?",
4244                                                                                    n->name);
4245                                         return JIM_ERR;
4246                                 }
4247                                 if (target->variant)
4248                                         free((void *)(target->variant));
4249                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4250                                 if (e != JIM_OK)
4251                                         return e;
4252                                 target->variant = strdup(cp);
4253                         } else {
4254                                 if (goi->argc != 0)
4255                                         goto no_params;
4256                         }
4257                         Jim_SetResultString(goi->interp, target->variant, -1);
4258                         /* loop for more */
4259                         break;
4260
4261                 case TCFG_COREID:
4262                         if (goi->isconfigure) {
4263                                 e = Jim_GetOpt_Wide(goi, &w);
4264                                 if (e != JIM_OK)
4265                                         return e;
4266                                 target->coreid = (int32_t)w;
4267                         } else {
4268                                 if (goi->argc != 0)
4269                                         goto no_params;
4270                         }
4271                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4272                         /* loop for more */
4273                         break;
4274
4275                 case TCFG_CHAIN_POSITION:
4276                         if (goi->isconfigure) {
4277                                 Jim_Obj *o_t;
4278                                 struct jtag_tap *tap;
4279                                 target_free_all_working_areas(target);
4280                                 e = Jim_GetOpt_Obj(goi, &o_t);
4281                                 if (e != JIM_OK)
4282                                         return e;
4283                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4284                                 if (tap == NULL)
4285                                         return JIM_ERR;
4286                                 /* make this exactly 1 or 0 */
4287                                 target->tap = tap;
4288                         } else {
4289                                 if (goi->argc != 0)
4290                                         goto no_params;
4291                         }
4292                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4293                         /* loop for more e*/
4294                         break;
4295                 case TCFG_DBGBASE:
4296                         if (goi->isconfigure) {
4297                                 e = Jim_GetOpt_Wide(goi, &w);
4298                                 if (e != JIM_OK)
4299                                         return e;
4300                                 target->dbgbase = (uint32_t)w;
4301                                 target->dbgbase_set = true;
4302                         } else {
4303                                 if (goi->argc != 0)
4304                                         goto no_params;
4305                         }
4306                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4307                         /* loop for more */
4308                         break;
4309
4310                 case TCFG_RTOS:
4311                         /* RTOS */
4312                         {
4313                                 int result = rtos_create(goi, target);
4314                                 if (result != JIM_OK)
4315                                         return result;
4316                         }
4317                         /* loop for more */
4318                         break;
4319                 }
4320         } /* while (goi->argc) */
4321
4322
4323                 /* done - we return */
4324         return JIM_OK;
4325 }
4326
4327 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4328 {
4329         Jim_GetOptInfo goi;
4330
4331         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4332         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4333         int need_args = 1 + goi.isconfigure;
4334         if (goi.argc < need_args) {
4335                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4336                         goi.isconfigure
4337                                 ? "missing: -option VALUE ..."
4338                                 : "missing: -option ...");
4339                 return JIM_ERR;
4340         }
4341         struct target *target = Jim_CmdPrivData(goi.interp);
4342         return target_configure(&goi, target);
4343 }
4344
4345 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4346 {
4347         const char *cmd_name = Jim_GetString(argv[0], NULL);
4348
4349         Jim_GetOptInfo goi;
4350         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4351
4352         if (goi.argc < 2 || goi.argc > 4) {
4353                 Jim_SetResultFormatted(goi.interp,
4354                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4355                 return JIM_ERR;
4356         }
4357
4358         target_write_fn fn;
4359         fn = target_write_memory_fast;
4360
4361         int e;
4362         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4363                 /* consume it */
4364                 struct Jim_Obj *obj;
4365                 e = Jim_GetOpt_Obj(&goi, &obj);
4366                 if (e != JIM_OK)
4367                         return e;
4368
4369                 fn = target_write_phys_memory;
4370         }
4371
4372         jim_wide a;
4373         e = Jim_GetOpt_Wide(&goi, &a);
4374         if (e != JIM_OK)
4375                 return e;
4376
4377         jim_wide b;
4378         e = Jim_GetOpt_Wide(&goi, &b);
4379         if (e != JIM_OK)
4380                 return e;
4381
4382         jim_wide c = 1;
4383         if (goi.argc == 1) {
4384                 e = Jim_GetOpt_Wide(&goi, &c);
4385                 if (e != JIM_OK)
4386                         return e;
4387         }
4388
4389         /* all args must be consumed */
4390         if (goi.argc != 0)
4391                 return JIM_ERR;
4392
4393         struct target *target = Jim_CmdPrivData(goi.interp);
4394         unsigned data_size;
4395         if (strcasecmp(cmd_name, "mww") == 0)
4396                 data_size = 4;
4397         else if (strcasecmp(cmd_name, "mwh") == 0)
4398                 data_size = 2;
4399         else if (strcasecmp(cmd_name, "mwb") == 0)
4400                 data_size = 1;
4401         else {
4402                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4403                 return JIM_ERR;
4404         }
4405
4406         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4407 }
4408
4409 /**
4410 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4411 *
4412 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4413 *         mdh [phys] <address> [<count>] - for 16 bit reads
4414 *         mdb [phys] <address> [<count>] - for  8 bit reads
4415 *
4416 *  Count defaults to 1.
4417 *
4418 *  Calls target_read_memory or target_read_phys_memory depending on
4419 *  the presence of the "phys" argument
4420 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4421 *  to int representation in base16.
4422 *  Also outputs read data in a human readable form using command_print
4423 *
4424 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4425 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4426 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4427 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4428 *  on success, with [<count>] number of elements.
4429 *
4430 *  In case of little endian target:
4431 *      Example1: "mdw 0x00000000"  returns "10123456"
4432 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4433 *      Example3: "mdb 0x00000000" returns "56"
4434 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4435 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4436 **/
4437 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4438 {
4439         const char *cmd_name = Jim_GetString(argv[0], NULL);
4440
4441         Jim_GetOptInfo goi;
4442         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4443
4444         if ((goi.argc < 1) || (goi.argc > 3)) {
4445                 Jim_SetResultFormatted(goi.interp,
4446                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4447                 return JIM_ERR;
4448         }
4449
4450         int (*fn)(struct target *target,
4451                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4452         fn = target_read_memory;
4453
4454         int e;
4455         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4456                 /* consume it */
4457                 struct Jim_Obj *obj;
4458                 e = Jim_GetOpt_Obj(&goi, &obj);
4459                 if (e != JIM_OK)
4460                         return e;
4461
4462                 fn = target_read_phys_memory;
4463         }
4464
4465         /* Read address parameter */
4466         jim_wide addr;
4467         e = Jim_GetOpt_Wide(&goi, &addr);
4468         if (e != JIM_OK)
4469                 return JIM_ERR;
4470
4471         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4472         jim_wide count;
4473         if (goi.argc == 1) {
4474                 e = Jim_GetOpt_Wide(&goi, &count);
4475                 if (e != JIM_OK)
4476                         return JIM_ERR;
4477         } else
4478                 count = 1;
4479
4480         /* all args must be consumed */
4481         if (goi.argc != 0)
4482                 return JIM_ERR;
4483
4484         jim_wide dwidth = 1; /* shut up gcc */
4485         if (strcasecmp(cmd_name, "mdw") == 0)
4486                 dwidth = 4;
4487         else if (strcasecmp(cmd_name, "mdh") == 0)
4488                 dwidth = 2;
4489         else if (strcasecmp(cmd_name, "mdb") == 0)
4490                 dwidth = 1;
4491         else {
4492                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4493                 return JIM_ERR;
4494         }
4495
4496         /* convert count to "bytes" */
4497         int bytes = count * dwidth;
4498
4499         struct target *target = Jim_CmdPrivData(goi.interp);
4500         uint8_t  target_buf[32];
4501         jim_wide x, y, z;
4502         while (bytes > 0) {
4503                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4504
4505                 /* Try to read out next block */
4506                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4507
4508                 if (e != ERROR_OK) {
4509                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4510                         return JIM_ERR;
4511                 }
4512
4513                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4514                 switch (dwidth) {
4515                 case 4:
4516                         for (x = 0; x < 16 && x < y; x += 4) {
4517                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4518                                 command_print_sameline(NULL, "%08x ", (int)(z));
4519                         }
4520                         for (; (x < 16) ; x += 4)
4521                                 command_print_sameline(NULL, "         ");
4522                         break;
4523                 case 2:
4524                         for (x = 0; x < 16 && x < y; x += 2) {
4525                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4526                                 command_print_sameline(NULL, "%04x ", (int)(z));
4527                         }
4528                         for (; (x < 16) ; x += 2)
4529                                 command_print_sameline(NULL, "     ");
4530                         break;
4531                 case 1:
4532                 default:
4533                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4534                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4535                                 command_print_sameline(NULL, "%02x ", (int)(z));
4536                         }
4537                         for (; (x < 16) ; x += 1)
4538                                 command_print_sameline(NULL, "   ");
4539                         break;
4540                 }
4541                 /* ascii-ify the bytes */
4542                 for (x = 0 ; x < y ; x++) {
4543                         if ((target_buf[x] >= 0x20) &&
4544                                 (target_buf[x] <= 0x7e)) {
4545                                 /* good */
4546                         } else {
4547                                 /* smack it */
4548                                 target_buf[x] = '.';
4549                         }
4550                 }
4551                 /* space pad  */
4552                 while (x < 16) {
4553                         target_buf[x] = ' ';
4554                         x++;
4555                 }
4556                 /* terminate */
4557                 target_buf[16] = 0;
4558                 /* print - with a newline */
4559                 command_print_sameline(NULL, "%s\n", target_buf);
4560                 /* NEXT... */
4561                 bytes -= 16;
4562                 addr += 16;
4563         }
4564         return JIM_OK;
4565 }
4566
4567 static int jim_target_mem2array(Jim_Interp *interp,
4568                 int argc, Jim_Obj *const *argv)
4569 {
4570         struct target *target = Jim_CmdPrivData(interp);
4571         return target_mem2array(interp, target, argc - 1, argv + 1);
4572 }
4573
4574 static int jim_target_array2mem(Jim_Interp *interp,
4575                 int argc, Jim_Obj *const *argv)
4576 {
4577         struct target *target = Jim_CmdPrivData(interp);
4578         return target_array2mem(interp, target, argc - 1, argv + 1);
4579 }
4580
4581 static int jim_target_tap_disabled(Jim_Interp *interp)
4582 {
4583         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4584         return JIM_ERR;
4585 }
4586
4587 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4588 {
4589         if (argc != 1) {
4590                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4591                 return JIM_ERR;
4592         }
4593         struct target *target = Jim_CmdPrivData(interp);
4594         if (!target->tap->enabled)
4595                 return jim_target_tap_disabled(interp);
4596
4597         int e = target->type->examine(target);
4598         if (e != ERROR_OK)
4599                 return JIM_ERR;
4600         return JIM_OK;
4601 }
4602
4603 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4604 {
4605         if (argc != 1) {
4606                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4607                 return JIM_ERR;
4608         }
4609         struct target *target = Jim_CmdPrivData(interp);
4610
4611         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4612                 return JIM_ERR;
4613
4614         return JIM_OK;
4615 }
4616
4617 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4618 {
4619         if (argc != 1) {
4620                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4621                 return JIM_ERR;
4622         }
4623         struct target *target = Jim_CmdPrivData(interp);
4624         if (!target->tap->enabled)
4625                 return jim_target_tap_disabled(interp);
4626
4627         int e;
4628         if (!(target_was_examined(target)))
4629                 e = ERROR_TARGET_NOT_EXAMINED;
4630         else
4631                 e = target->type->poll(target);
4632         if (e != ERROR_OK)
4633                 return JIM_ERR;
4634         return JIM_OK;
4635 }
4636
4637 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4638 {
4639         Jim_GetOptInfo goi;
4640         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4641
4642         if (goi.argc != 2) {
4643                 Jim_WrongNumArgs(interp, 0, argv,
4644                                 "([tT]|[fF]|assert|deassert) BOOL");
4645                 return JIM_ERR;
4646         }
4647
4648         Jim_Nvp *n;
4649         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4650         if (e != JIM_OK) {
4651                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4652                 return e;
4653         }
4654         /* the halt or not param */
4655         jim_wide a;
4656         e = Jim_GetOpt_Wide(&goi, &a);
4657         if (e != JIM_OK)
4658                 return e;
4659
4660         struct target *target = Jim_CmdPrivData(goi.interp);
4661         if (!target->tap->enabled)
4662                 return jim_target_tap_disabled(interp);
4663         if (!(target_was_examined(target))) {
4664                 LOG_ERROR("Target not examined yet");
4665                 return ERROR_TARGET_NOT_EXAMINED;
4666         }
4667         if (!target->type->assert_reset || !target->type->deassert_reset) {
4668                 Jim_SetResultFormatted(interp,
4669                                 "No target-specific reset for %s",
4670                                 target_name(target));
4671                 return JIM_ERR;
4672         }
4673         /* determine if we should halt or not. */
4674         target->reset_halt = !!a;
4675         /* When this happens - all workareas are invalid. */
4676         target_free_all_working_areas_restore(target, 0);
4677
4678         /* do the assert */
4679         if (n->value == NVP_ASSERT)
4680                 e = target->type->assert_reset(target);
4681         else
4682                 e = target->type->deassert_reset(target);
4683         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4684 }
4685
4686 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4687 {
4688         if (argc != 1) {
4689                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4690                 return JIM_ERR;
4691         }
4692         struct target *target = Jim_CmdPrivData(interp);
4693         if (!target->tap->enabled)
4694                 return jim_target_tap_disabled(interp);
4695         int e = target->type->halt(target);
4696         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4697 }
4698
4699 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4700 {
4701         Jim_GetOptInfo goi;
4702         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4703
4704         /* params:  <name>  statename timeoutmsecs */
4705         if (goi.argc != 2) {
4706                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4707                 Jim_SetResultFormatted(goi.interp,
4708                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4709                 return JIM_ERR;
4710         }
4711
4712         Jim_Nvp *n;
4713         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4714         if (e != JIM_OK) {
4715                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4716                 return e;
4717         }
4718         jim_wide a;
4719         e = Jim_GetOpt_Wide(&goi, &a);
4720         if (e != JIM_OK)
4721                 return e;
4722         struct target *target = Jim_CmdPrivData(interp);
4723         if (!target->tap->enabled)
4724                 return jim_target_tap_disabled(interp);
4725
4726         e = target_wait_state(target, n->value, a);
4727         if (e != ERROR_OK) {
4728                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4729                 Jim_SetResultFormatted(goi.interp,
4730                                 "target: %s wait %s fails (%#s) %s",
4731                                 target_name(target), n->name,
4732                                 eObj, target_strerror_safe(e));
4733                 Jim_FreeNewObj(interp, eObj);
4734                 return JIM_ERR;
4735         }
4736         return JIM_OK;
4737 }
4738 /* List for human, Events defined for this target.
4739  * scripts/programs should use 'name cget -event NAME'
4740  */
4741 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4742 {
4743         struct command_context *cmd_ctx = current_command_context(interp);
4744         assert(cmd_ctx != NULL);
4745
4746         struct target *target = Jim_CmdPrivData(interp);
4747         struct target_event_action *teap = target->event_action;
4748         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4749                                    target->target_number,
4750                                    target_name(target));
4751         command_print(cmd_ctx, "%-25s | Body", "Event");
4752         command_print(cmd_ctx, "------------------------- | "
4753                         "----------------------------------------");
4754         while (teap) {
4755                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4756                 command_print(cmd_ctx, "%-25s | %s",
4757                                 opt->name, Jim_GetString(teap->body, NULL));
4758                 teap = teap->next;
4759         }
4760         command_print(cmd_ctx, "***END***");
4761         return JIM_OK;
4762 }
4763 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4764 {
4765         if (argc != 1) {
4766                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4767                 return JIM_ERR;
4768         }
4769         struct target *target = Jim_CmdPrivData(interp);
4770         Jim_SetResultString(interp, target_state_name(target), -1);
4771         return JIM_OK;
4772 }
4773 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4774 {
4775         Jim_GetOptInfo goi;
4776         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4777         if (goi.argc != 1) {
4778                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4779                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4780                 return JIM_ERR;
4781         }
4782         Jim_Nvp *n;
4783         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4784         if (e != JIM_OK) {
4785                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4786                 return e;
4787         }
4788         struct target *target = Jim_CmdPrivData(interp);
4789         target_handle_event(target, n->value);
4790         return JIM_OK;
4791 }
4792
4793 static const struct command_registration target_instance_command_handlers[] = {
4794         {
4795                 .name = "configure",
4796                 .mode = COMMAND_CONFIG,
4797                 .jim_handler = jim_target_configure,
4798                 .help  = "configure a new target for use",
4799                 .usage = "[target_attribute ...]",
4800         },
4801         {
4802                 .name = "cget",
4803                 .mode = COMMAND_ANY,
4804                 .jim_handler = jim_target_configure,
4805                 .help  = "returns the specified target attribute",
4806                 .usage = "target_attribute",
4807         },
4808         {
4809                 .name = "mww",
4810                 .mode = COMMAND_EXEC,
4811                 .jim_handler = jim_target_mw,
4812                 .help = "Write 32-bit word(s) to target memory",
4813                 .usage = "address data [count]",
4814         },
4815         {
4816                 .name = "mwh",
4817                 .mode = COMMAND_EXEC,
4818                 .jim_handler = jim_target_mw,
4819                 .help = "Write 16-bit half-word(s) to target memory",
4820                 .usage = "address data [count]",
4821         },
4822         {
4823                 .name = "mwb",
4824                 .mode = COMMAND_EXEC,
4825                 .jim_handler = jim_target_mw,
4826                 .help = "Write byte(s) to target memory",
4827                 .usage = "address data [count]",
4828         },
4829         {
4830                 .name = "mdw",
4831                 .mode = COMMAND_EXEC,
4832                 .jim_handler = jim_target_md,
4833                 .help = "Display target memory as 32-bit words",
4834                 .usage = "address [count]",
4835         },
4836         {
4837                 .name = "mdh",
4838                 .mode = COMMAND_EXEC,
4839                 .jim_handler = jim_target_md,
4840                 .help = "Display target memory as 16-bit half-words",
4841                 .usage = "address [count]",
4842         },
4843         {
4844                 .name = "mdb",
4845                 .mode = COMMAND_EXEC,
4846                 .jim_handler = jim_target_md,
4847                 .help = "Display target memory as 8-bit bytes",
4848                 .usage = "address [count]",
4849         },
4850         {
4851                 .name = "array2mem",
4852                 .mode = COMMAND_EXEC,
4853                 .jim_handler = jim_target_array2mem,
4854                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4855                         "to target memory",
4856                 .usage = "arrayname bitwidth address count",
4857         },
4858         {
4859                 .name = "mem2array",
4860                 .mode = COMMAND_EXEC,
4861                 .jim_handler = jim_target_mem2array,
4862                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4863                         "from target memory",
4864                 .usage = "arrayname bitwidth address count",
4865         },
4866         {
4867                 .name = "eventlist",
4868                 .mode = COMMAND_EXEC,
4869                 .jim_handler = jim_target_event_list,
4870                 .help = "displays a table of events defined for this target",
4871         },
4872         {
4873                 .name = "curstate",
4874                 .mode = COMMAND_EXEC,
4875                 .jim_handler = jim_target_current_state,
4876                 .help = "displays the current state of this target",
4877         },
4878         {
4879                 .name = "arp_examine",
4880                 .mode = COMMAND_EXEC,
4881                 .jim_handler = jim_target_examine,
4882                 .help = "used internally for reset processing",
4883         },
4884         {
4885                 .name = "arp_halt_gdb",
4886                 .mode = COMMAND_EXEC,
4887                 .jim_handler = jim_target_halt_gdb,
4888                 .help = "used internally for reset processing to halt GDB",
4889         },
4890         {
4891                 .name = "arp_poll",
4892                 .mode = COMMAND_EXEC,
4893                 .jim_handler = jim_target_poll,
4894                 .help = "used internally for reset processing",
4895         },
4896         {
4897                 .name = "arp_reset",
4898                 .mode = COMMAND_EXEC,
4899                 .jim_handler = jim_target_reset,
4900                 .help = "used internally for reset processing",
4901         },
4902         {
4903                 .name = "arp_halt",
4904                 .mode = COMMAND_EXEC,
4905                 .jim_handler = jim_target_halt,
4906                 .help = "used internally for reset processing",
4907         },
4908         {
4909                 .name = "arp_waitstate",
4910                 .mode = COMMAND_EXEC,
4911                 .jim_handler = jim_target_wait_state,
4912                 .help = "used internally for reset processing",
4913         },
4914         {
4915                 .name = "invoke-event",
4916                 .mode = COMMAND_EXEC,
4917                 .jim_handler = jim_target_invoke_event,
4918                 .help = "invoke handler for specified event",
4919                 .usage = "event_name",
4920         },
4921         COMMAND_REGISTRATION_DONE
4922 };
4923
4924 static int target_create(Jim_GetOptInfo *goi)
4925 {
4926         Jim_Obj *new_cmd;
4927         Jim_Cmd *cmd;
4928         const char *cp;
4929         char *cp2;
4930         int e;
4931         int x;
4932         struct target *target;
4933         struct command_context *cmd_ctx;
4934
4935         cmd_ctx = current_command_context(goi->interp);
4936         assert(cmd_ctx != NULL);
4937
4938         if (goi->argc < 3) {
4939                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4940                 return JIM_ERR;
4941         }
4942
4943         /* COMMAND */
4944         Jim_GetOpt_Obj(goi, &new_cmd);
4945         /* does this command exist? */
4946         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4947         if (cmd) {
4948                 cp = Jim_GetString(new_cmd, NULL);
4949                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4950                 return JIM_ERR;
4951         }
4952
4953         /* TYPE */
4954         e = Jim_GetOpt_String(goi, &cp2, NULL);
4955         if (e != JIM_OK)
4956                 return e;
4957         cp = cp2;
4958         /* now does target type exist */
4959         for (x = 0 ; target_types[x] ; x++) {
4960                 if (0 == strcmp(cp, target_types[x]->name)) {
4961                         /* found */
4962                         break;
4963                 }
4964
4965                 /* check for deprecated name */
4966                 if (target_types[x]->deprecated_name) {
4967                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4968                                 /* found */
4969                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4970                                 break;
4971                         }
4972                 }
4973         }
4974         if (target_types[x] == NULL) {
4975                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4976                 for (x = 0 ; target_types[x] ; x++) {
4977                         if (target_types[x + 1]) {
4978                                 Jim_AppendStrings(goi->interp,
4979                                                                    Jim_GetResult(goi->interp),
4980                                                                    target_types[x]->name,
4981                                                                    ", ", NULL);
4982                         } else {
4983                                 Jim_AppendStrings(goi->interp,
4984                                                                    Jim_GetResult(goi->interp),
4985                                                                    " or ",
4986                                                                    target_types[x]->name, NULL);
4987                         }
4988                 }
4989                 return JIM_ERR;
4990         }
4991
4992         /* Create it */
4993         target = calloc(1, sizeof(struct target));
4994         /* set target number */
4995         target->target_number = new_target_number();
4996
4997         /* allocate memory for each unique target type */
4998         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4999
5000         memcpy(target->type, target_types[x], sizeof(struct target_type));
5001
5002         /* will be set by "-endian" */
5003         target->endianness = TARGET_ENDIAN_UNKNOWN;
5004
5005         /* default to first core, override with -coreid */
5006         target->coreid = 0;
5007
5008         target->working_area        = 0x0;
5009         target->working_area_size   = 0x0;
5010         target->working_areas       = NULL;
5011         target->backup_working_area = 0;
5012
5013         target->state               = TARGET_UNKNOWN;
5014         target->debug_reason        = DBG_REASON_UNDEFINED;
5015         target->reg_cache           = NULL;
5016         target->breakpoints         = NULL;
5017         target->watchpoints         = NULL;
5018         target->next                = NULL;
5019         target->arch_info           = NULL;
5020
5021         target->display             = 1;
5022
5023         target->halt_issued                     = false;
5024
5025         /* initialize trace information */
5026         target->trace_info = malloc(sizeof(struct trace));
5027         target->trace_info->num_trace_points         = 0;
5028         target->trace_info->trace_points_size        = 0;
5029         target->trace_info->trace_points             = NULL;
5030         target->trace_info->trace_history_size       = 0;
5031         target->trace_info->trace_history            = NULL;
5032         target->trace_info->trace_history_pos        = 0;
5033         target->trace_info->trace_history_overflowed = 0;
5034
5035         target->dbgmsg          = NULL;
5036         target->dbg_msg_enabled = 0;
5037
5038         target->endianness = TARGET_ENDIAN_UNKNOWN;
5039
5040         target->rtos = NULL;
5041         target->rtos_auto_detect = false;
5042
5043         /* Do the rest as "configure" options */
5044         goi->isconfigure = 1;
5045         e = target_configure(goi, target);
5046
5047         if (target->tap == NULL) {
5048                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5049                 e = JIM_ERR;
5050         }
5051
5052         if (e != JIM_OK) {
5053                 free(target->type);
5054                 free(target);
5055                 return e;
5056         }
5057
5058         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5059                 /* default endian to little if not specified */
5060                 target->endianness = TARGET_LITTLE_ENDIAN;
5061         }
5062
5063         /* incase variant is not set */
5064         if (!target->variant)
5065                 target->variant = strdup("");
5066
5067         cp = Jim_GetString(new_cmd, NULL);
5068         target->cmd_name = strdup(cp);
5069
5070         /* create the target specific commands */
5071         if (target->type->commands) {
5072                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5073                 if (ERROR_OK != e)
5074                         LOG_ERROR("unable to register '%s' commands", cp);
5075         }
5076         if (target->type->target_create)
5077                 (*(target->type->target_create))(target, goi->interp);
5078
5079         /* append to end of list */
5080         {
5081                 struct target **tpp;
5082                 tpp = &(all_targets);
5083                 while (*tpp)
5084                         tpp = &((*tpp)->next);
5085                 *tpp = target;
5086         }
5087
5088         /* now - create the new target name command */
5089         const struct command_registration target_subcommands[] = {
5090                 {
5091                         .chain = target_instance_command_handlers,
5092                 },
5093                 {
5094                         .chain = target->type->commands,
5095                 },
5096                 COMMAND_REGISTRATION_DONE
5097         };
5098         const struct command_registration target_commands[] = {
5099                 {
5100                         .name = cp,
5101                         .mode = COMMAND_ANY,
5102                         .help = "target command group",
5103                         .usage = "",
5104                         .chain = target_subcommands,
5105                 },
5106                 COMMAND_REGISTRATION_DONE
5107         };
5108         e = register_commands(cmd_ctx, NULL, target_commands);
5109         if (ERROR_OK != e)
5110                 return JIM_ERR;
5111
5112         struct command *c = command_find_in_context(cmd_ctx, cp);
5113         assert(c);
5114         command_set_handler_data(c, target);
5115
5116         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5117 }
5118
5119 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5120 {
5121         if (argc != 1) {
5122                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5123                 return JIM_ERR;
5124         }
5125         struct command_context *cmd_ctx = current_command_context(interp);
5126         assert(cmd_ctx != NULL);
5127
5128         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5129         return JIM_OK;
5130 }
5131
5132 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5133 {
5134         if (argc != 1) {
5135                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5136                 return JIM_ERR;
5137         }
5138         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5139         for (unsigned x = 0; NULL != target_types[x]; x++) {
5140                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5141                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5142         }
5143         return JIM_OK;
5144 }
5145
5146 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5147 {
5148         if (argc != 1) {
5149                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5150                 return JIM_ERR;
5151         }
5152         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5153         struct target *target = all_targets;
5154         while (target) {
5155                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5156                         Jim_NewStringObj(interp, target_name(target), -1));
5157                 target = target->next;
5158         }
5159         return JIM_OK;
5160 }
5161
5162 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5163 {
5164         int i;
5165         const char *targetname;
5166         int retval, len;
5167         struct target *target = (struct target *) NULL;
5168         struct target_list *head, *curr, *new;
5169         curr = (struct target_list *) NULL;
5170         head = (struct target_list *) NULL;
5171
5172         retval = 0;
5173         LOG_DEBUG("%d", argc);
5174         /* argv[1] = target to associate in smp
5175          * argv[2] = target to assoicate in smp
5176          * argv[3] ...
5177          */
5178
5179         for (i = 1; i < argc; i++) {
5180
5181                 targetname = Jim_GetString(argv[i], &len);
5182                 target = get_target(targetname);
5183                 LOG_DEBUG("%s ", targetname);
5184                 if (target) {
5185                         new = malloc(sizeof(struct target_list));
5186                         new->target = target;
5187                         new->next = (struct target_list *)NULL;
5188                         if (head == (struct target_list *)NULL) {
5189                                 head = new;
5190                                 curr = head;
5191                         } else {
5192                                 curr->next = new;
5193                                 curr = new;
5194                         }
5195                 }
5196         }
5197         /*  now parse the list of cpu and put the target in smp mode*/
5198         curr = head;
5199
5200         while (curr != (struct target_list *)NULL) {
5201                 target = curr->target;
5202                 target->smp = 1;
5203                 target->head = head;
5204                 curr = curr->next;
5205         }
5206
5207         if (target && target->rtos)
5208                 retval = rtos_smp_init(head->target);
5209
5210         return retval;
5211 }
5212
5213
5214 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5215 {
5216         Jim_GetOptInfo goi;
5217         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5218         if (goi.argc < 3) {
5219                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5220                         "<name> <target_type> [<target_options> ...]");
5221                 return JIM_ERR;
5222         }
5223         return target_create(&goi);
5224 }
5225
5226 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5227 {
5228         Jim_GetOptInfo goi;
5229         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5230
5231         /* It's OK to remove this mechanism sometime after August 2010 or so */
5232         LOG_WARNING("don't use numbers as target identifiers; use names");
5233         if (goi.argc != 1) {
5234                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5235                 return JIM_ERR;
5236         }
5237         jim_wide w;
5238         int e = Jim_GetOpt_Wide(&goi, &w);
5239         if (e != JIM_OK)
5240                 return JIM_ERR;
5241
5242         struct target *target;
5243         for (target = all_targets; NULL != target; target = target->next) {
5244                 if (target->target_number != w)
5245                         continue;
5246
5247                 Jim_SetResultString(goi.interp, target_name(target), -1);
5248                 return JIM_OK;
5249         }
5250         {
5251                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5252                 Jim_SetResultFormatted(goi.interp,
5253                         "Target: number %#s does not exist", wObj);
5254                 Jim_FreeNewObj(interp, wObj);
5255         }
5256         return JIM_ERR;
5257 }
5258
5259 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5260 {
5261         if (argc != 1) {
5262                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5263                 return JIM_ERR;
5264         }
5265         unsigned count = 0;
5266         struct target *target = all_targets;
5267         while (NULL != target) {
5268                 target = target->next;
5269                 count++;
5270         }
5271         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5272         return JIM_OK;
5273 }
5274
5275 static const struct command_registration target_subcommand_handlers[] = {
5276         {
5277                 .name = "init",
5278                 .mode = COMMAND_CONFIG,
5279                 .handler = handle_target_init_command,
5280                 .help = "initialize targets",
5281         },
5282         {
5283                 .name = "create",
5284                 /* REVISIT this should be COMMAND_CONFIG ... */
5285                 .mode = COMMAND_ANY,
5286                 .jim_handler = jim_target_create,
5287                 .usage = "name type '-chain-position' name [options ...]",
5288                 .help = "Creates and selects a new target",
5289         },
5290         {
5291                 .name = "current",
5292                 .mode = COMMAND_ANY,
5293                 .jim_handler = jim_target_current,
5294                 .help = "Returns the currently selected target",
5295         },
5296         {
5297                 .name = "types",
5298                 .mode = COMMAND_ANY,
5299                 .jim_handler = jim_target_types,
5300                 .help = "Returns the available target types as "
5301                                 "a list of strings",
5302         },
5303         {
5304                 .name = "names",
5305                 .mode = COMMAND_ANY,
5306                 .jim_handler = jim_target_names,
5307                 .help = "Returns the names of all targets as a list of strings",
5308         },
5309         {
5310                 .name = "number",
5311                 .mode = COMMAND_ANY,
5312                 .jim_handler = jim_target_number,
5313                 .usage = "number",
5314                 .help = "Returns the name of the numbered target "
5315                         "(DEPRECATED)",
5316         },
5317         {
5318                 .name = "count",
5319                 .mode = COMMAND_ANY,
5320                 .jim_handler = jim_target_count,
5321                 .help = "Returns the number of targets as an integer "
5322                         "(DEPRECATED)",
5323         },
5324         {
5325                 .name = "smp",
5326                 .mode = COMMAND_ANY,
5327                 .jim_handler = jim_target_smp,
5328                 .usage = "targetname1 targetname2 ...",
5329                 .help = "gather several target in a smp list"
5330         },
5331
5332         COMMAND_REGISTRATION_DONE
5333 };
5334
5335 struct FastLoad {
5336         uint32_t address;
5337         uint8_t *data;
5338         int length;
5339
5340 };
5341
5342 static int fastload_num;
5343 static struct FastLoad *fastload;
5344
5345 static void free_fastload(void)
5346 {
5347         if (fastload != NULL) {
5348                 int i;
5349                 for (i = 0; i < fastload_num; i++) {
5350                         if (fastload[i].data)
5351                                 free(fastload[i].data);
5352                 }
5353                 free(fastload);
5354                 fastload = NULL;
5355         }
5356 }
5357
5358 COMMAND_HANDLER(handle_fast_load_image_command)
5359 {
5360         uint8_t *buffer;
5361         size_t buf_cnt;
5362         uint32_t image_size;
5363         uint32_t min_address = 0;
5364         uint32_t max_address = 0xffffffff;
5365         int i;
5366
5367         struct image image;
5368
5369         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5370                         &image, &min_address, &max_address);
5371         if (ERROR_OK != retval)
5372                 return retval;
5373
5374         struct duration bench;
5375         duration_start(&bench);
5376
5377         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5378         if (retval != ERROR_OK)
5379                 return retval;
5380
5381         image_size = 0x0;
5382         retval = ERROR_OK;
5383         fastload_num = image.num_sections;
5384         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5385         if (fastload == NULL) {
5386                 command_print(CMD_CTX, "out of memory");
5387                 image_close(&image);
5388                 return ERROR_FAIL;
5389         }
5390         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5391         for (i = 0; i < image.num_sections; i++) {
5392                 buffer = malloc(image.sections[i].size);
5393                 if (buffer == NULL) {
5394                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5395                                                   (int)(image.sections[i].size));
5396                         retval = ERROR_FAIL;
5397                         break;
5398                 }
5399
5400                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5401                 if (retval != ERROR_OK) {
5402                         free(buffer);
5403                         break;
5404                 }
5405
5406                 uint32_t offset = 0;
5407                 uint32_t length = buf_cnt;
5408
5409                 /* DANGER!!! beware of unsigned comparision here!!! */
5410
5411                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5412                                 (image.sections[i].base_address < max_address)) {
5413                         if (image.sections[i].base_address < min_address) {
5414                                 /* clip addresses below */
5415                                 offset += min_address-image.sections[i].base_address;
5416                                 length -= offset;
5417                         }
5418
5419                         if (image.sections[i].base_address + buf_cnt > max_address)
5420                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5421
5422                         fastload[i].address = image.sections[i].base_address + offset;
5423                         fastload[i].data = malloc(length);
5424                         if (fastload[i].data == NULL) {
5425                                 free(buffer);
5426                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5427                                                           length);
5428                                 retval = ERROR_FAIL;
5429                                 break;
5430                         }
5431                         memcpy(fastload[i].data, buffer + offset, length);
5432                         fastload[i].length = length;
5433
5434                         image_size += length;
5435                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5436                                                   (unsigned int)length,
5437                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5438                 }
5439
5440                 free(buffer);
5441         }
5442
5443         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5444                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5445                                 "in %fs (%0.3f KiB/s)", image_size,
5446                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5447
5448                 command_print(CMD_CTX,
5449                                 "WARNING: image has not been loaded to target!"
5450                                 "You can issue a 'fast_load' to finish loading.");
5451         }
5452
5453         image_close(&image);
5454
5455         if (retval != ERROR_OK)
5456                 free_fastload();
5457
5458         return retval;
5459 }
5460
5461 COMMAND_HANDLER(handle_fast_load_command)
5462 {
5463         if (CMD_ARGC > 0)
5464                 return ERROR_COMMAND_SYNTAX_ERROR;
5465         if (fastload == NULL) {
5466                 LOG_ERROR("No image in memory");
5467                 return ERROR_FAIL;
5468         }
5469         int i;
5470         int ms = timeval_ms();
5471         int size = 0;
5472         int retval = ERROR_OK;
5473         for (i = 0; i < fastload_num; i++) {
5474                 struct target *target = get_current_target(CMD_CTX);
5475                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5476                                           (unsigned int)(fastload[i].address),
5477                                           (unsigned int)(fastload[i].length));
5478                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5479                 if (retval != ERROR_OK)
5480                         break;
5481                 size += fastload[i].length;
5482         }
5483         if (retval == ERROR_OK) {
5484                 int after = timeval_ms();
5485                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5486         }
5487         return retval;
5488 }
5489
5490 static const struct command_registration target_command_handlers[] = {
5491         {
5492                 .name = "targets",
5493                 .handler = handle_targets_command,
5494                 .mode = COMMAND_ANY,
5495                 .help = "change current default target (one parameter) "
5496                         "or prints table of all targets (no parameters)",
5497                 .usage = "[target]",
5498         },
5499         {
5500                 .name = "target",
5501                 .mode = COMMAND_CONFIG,
5502                 .help = "configure target",
5503
5504                 .chain = target_subcommand_handlers,
5505         },
5506         COMMAND_REGISTRATION_DONE
5507 };
5508
5509 int target_register_commands(struct command_context *cmd_ctx)
5510 {
5511         return register_commands(cmd_ctx, NULL, target_command_handlers);
5512 }
5513
5514 static bool target_reset_nag = true;
5515
5516 bool get_target_reset_nag(void)
5517 {
5518         return target_reset_nag;
5519 }
5520
5521 COMMAND_HANDLER(handle_target_reset_nag)
5522 {
5523         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5524                         &target_reset_nag, "Nag after each reset about options to improve "
5525                         "performance");
5526 }
5527
5528 COMMAND_HANDLER(handle_ps_command)
5529 {
5530         struct target *target = get_current_target(CMD_CTX);
5531         char *display;
5532         if (target->state != TARGET_HALTED) {
5533                 LOG_INFO("target not halted !!");
5534                 return ERROR_OK;
5535         }
5536
5537         if ((target->rtos) && (target->rtos->type)
5538                         && (target->rtos->type->ps_command)) {
5539                 display = target->rtos->type->ps_command(target);
5540                 command_print(CMD_CTX, "%s", display);
5541                 free(display);
5542                 return ERROR_OK;
5543         } else {
5544                 LOG_INFO("failed");
5545                 return ERROR_TARGET_FAILURE;
5546         }
5547 }
5548
5549 static const struct command_registration target_exec_command_handlers[] = {
5550         {
5551                 .name = "fast_load_image",
5552                 .handler = handle_fast_load_image_command,
5553                 .mode = COMMAND_ANY,
5554                 .help = "Load image into server memory for later use by "
5555                         "fast_load; primarily for profiling",
5556                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5557                         "[min_address [max_length]]",
5558         },
5559         {
5560                 .name = "fast_load",
5561                 .handler = handle_fast_load_command,
5562                 .mode = COMMAND_EXEC,
5563                 .help = "loads active fast load image to current target "
5564                         "- mainly for profiling purposes",
5565                 .usage = "",
5566         },
5567         {
5568                 .name = "profile",
5569                 .handler = handle_profile_command,
5570                 .mode = COMMAND_EXEC,
5571                 .usage = "seconds filename",
5572                 .help = "profiling samples the CPU PC",
5573         },
5574         /** @todo don't register virt2phys() unless target supports it */
5575         {
5576                 .name = "virt2phys",
5577                 .handler = handle_virt2phys_command,
5578                 .mode = COMMAND_ANY,
5579                 .help = "translate a virtual address into a physical address",
5580                 .usage = "virtual_address",
5581         },
5582         {
5583                 .name = "reg",
5584                 .handler = handle_reg_command,
5585                 .mode = COMMAND_EXEC,
5586                 .help = "display or set a register; with no arguments, "
5587                         "displays all registers and their values",
5588                 .usage = "[(register_name|register_number) [value]]",
5589         },
5590         {
5591                 .name = "poll",
5592                 .handler = handle_poll_command,
5593                 .mode = COMMAND_EXEC,
5594                 .help = "poll target state; or reconfigure background polling",
5595                 .usage = "['on'|'off']",
5596         },
5597         {
5598                 .name = "wait_halt",
5599                 .handler = handle_wait_halt_command,
5600                 .mode = COMMAND_EXEC,
5601                 .help = "wait up to the specified number of milliseconds "
5602                         "(default 5000) for a previously requested halt",
5603                 .usage = "[milliseconds]",
5604         },
5605         {
5606                 .name = "halt",
5607                 .handler = handle_halt_command,
5608                 .mode = COMMAND_EXEC,
5609                 .help = "request target to halt, then wait up to the specified"
5610                         "number of milliseconds (default 5000) for it to complete",
5611                 .usage = "[milliseconds]",
5612         },
5613         {
5614                 .name = "resume",
5615                 .handler = handle_resume_command,
5616                 .mode = COMMAND_EXEC,
5617                 .help = "resume target execution from current PC or address",
5618                 .usage = "[address]",
5619         },
5620         {
5621                 .name = "reset",
5622                 .handler = handle_reset_command,
5623                 .mode = COMMAND_EXEC,
5624                 .usage = "[run|halt|init]",
5625                 .help = "Reset all targets into the specified mode."
5626                         "Default reset mode is run, if not given.",
5627         },
5628         {
5629                 .name = "soft_reset_halt",
5630                 .handler = handle_soft_reset_halt_command,
5631                 .mode = COMMAND_EXEC,
5632                 .usage = "",
5633                 .help = "halt the target and do a soft reset",
5634         },
5635         {
5636                 .name = "step",
5637                 .handler = handle_step_command,
5638                 .mode = COMMAND_EXEC,
5639                 .help = "step one instruction from current PC or address",
5640                 .usage = "[address]",
5641         },
5642         {
5643                 .name = "mdw",
5644                 .handler = handle_md_command,
5645                 .mode = COMMAND_EXEC,
5646                 .help = "display memory words",
5647                 .usage = "['phys'] address [count]",
5648         },
5649         {
5650                 .name = "mdh",
5651                 .handler = handle_md_command,
5652                 .mode = COMMAND_EXEC,
5653                 .help = "display memory half-words",
5654                 .usage = "['phys'] address [count]",
5655         },
5656         {
5657                 .name = "mdb",
5658                 .handler = handle_md_command,
5659                 .mode = COMMAND_EXEC,
5660                 .help = "display memory bytes",
5661                 .usage = "['phys'] address [count]",
5662         },
5663         {
5664                 .name = "mww",
5665                 .handler = handle_mw_command,
5666                 .mode = COMMAND_EXEC,
5667                 .help = "write memory word",
5668                 .usage = "['phys'] address value [count]",
5669         },
5670         {
5671                 .name = "mwh",
5672                 .handler = handle_mw_command,
5673                 .mode = COMMAND_EXEC,
5674                 .help = "write memory half-word",
5675                 .usage = "['phys'] address value [count]",
5676         },
5677         {
5678                 .name = "mwb",
5679                 .handler = handle_mw_command,
5680                 .mode = COMMAND_EXEC,
5681                 .help = "write memory byte",
5682                 .usage = "['phys'] address value [count]",
5683         },
5684         {
5685                 .name = "bp",
5686                 .handler = handle_bp_command,
5687                 .mode = COMMAND_EXEC,
5688                 .help = "list or set hardware or software breakpoint",
5689                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5690         },
5691         {
5692                 .name = "rbp",
5693                 .handler = handle_rbp_command,
5694                 .mode = COMMAND_EXEC,
5695                 .help = "remove breakpoint",
5696                 .usage = "address",
5697         },
5698         {
5699                 .name = "wp",
5700                 .handler = handle_wp_command,
5701                 .mode = COMMAND_EXEC,
5702                 .help = "list (no params) or create watchpoints",
5703                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5704         },
5705         {
5706                 .name = "rwp",
5707                 .handler = handle_rwp_command,
5708                 .mode = COMMAND_EXEC,
5709                 .help = "remove watchpoint",
5710                 .usage = "address",
5711         },
5712         {
5713                 .name = "load_image",
5714                 .handler = handle_load_image_command,
5715                 .mode = COMMAND_EXEC,
5716                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5717                         "[min_address] [max_length]",
5718         },
5719         {
5720                 .name = "dump_image",
5721                 .handler = handle_dump_image_command,
5722                 .mode = COMMAND_EXEC,
5723                 .usage = "filename address size",
5724         },
5725         {
5726                 .name = "verify_image",
5727                 .handler = handle_verify_image_command,
5728                 .mode = COMMAND_EXEC,
5729                 .usage = "filename [offset [type]]",
5730         },
5731         {
5732                 .name = "test_image",
5733                 .handler = handle_test_image_command,
5734                 .mode = COMMAND_EXEC,
5735                 .usage = "filename [offset [type]]",
5736         },
5737         {
5738                 .name = "mem2array",
5739                 .mode = COMMAND_EXEC,
5740                 .jim_handler = jim_mem2array,
5741                 .help = "read 8/16/32 bit memory and return as a TCL array "
5742                         "for script processing",
5743                 .usage = "arrayname bitwidth address count",
5744         },
5745         {
5746                 .name = "array2mem",
5747                 .mode = COMMAND_EXEC,
5748                 .jim_handler = jim_array2mem,
5749                 .help = "convert a TCL array to memory locations "
5750                         "and write the 8/16/32 bit values",
5751                 .usage = "arrayname bitwidth address count",
5752         },
5753         {
5754                 .name = "reset_nag",
5755                 .handler = handle_target_reset_nag,
5756                 .mode = COMMAND_ANY,
5757                 .help = "Nag after each reset about options that could have been "
5758                                 "enabled to improve performance. ",
5759                 .usage = "['enable'|'disable']",
5760         },
5761         {
5762                 .name = "ps",
5763                 .handler = handle_ps_command,
5764                 .mode = COMMAND_EXEC,
5765                 .help = "list all tasks ",
5766                 .usage = " ",
5767         },
5768
5769         COMMAND_REGISTRATION_DONE
5770 };
5771 static int target_register_user_commands(struct command_context *cmd_ctx)
5772 {
5773         int retval = ERROR_OK;
5774         retval = target_request_register_commands(cmd_ctx);
5775         if (retval != ERROR_OK)
5776                 return retval;
5777
5778         retval = trace_register_commands(cmd_ctx);
5779         if (retval != ERROR_OK)
5780                 return retval;
5781
5782
5783         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5784 }