]> git.sur5r.net Git - openocd/blob - src/target/target.c
gdb_server: support File-I/O Remote Protocol Extension
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
102
103 static struct target_type *target_types[] = {
104         &arm7tdmi_target,
105         &arm9tdmi_target,
106         &arm920t_target,
107         &arm720t_target,
108         &arm966e_target,
109         &arm946e_target,
110         &arm926ejs_target,
111         &fa526_target,
112         &feroceon_target,
113         &dragonite_target,
114         &xscale_target,
115         &cortexm3_target,
116         &cortexa8_target,
117         &cortexr4_target,
118         &arm11_target,
119         &mips_m4k_target,
120         &avr_target,
121         &dsp563xx_target,
122         &dsp5680xx_target,
123         &testee_target,
124         &avr32_ap7k_target,
125         &hla_target,
126         &nds32_v2_target,
127         &nds32_v3_target,
128         &nds32_v3m_target,
129         NULL,
130 };
131
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
136
137 static const Jim_Nvp nvp_assert[] = {
138         { .name = "assert", NVP_ASSERT },
139         { .name = "deassert", NVP_DEASSERT },
140         { .name = "T", NVP_ASSERT },
141         { .name = "F", NVP_DEASSERT },
142         { .name = "t", NVP_ASSERT },
143         { .name = "f", NVP_DEASSERT },
144         { .name = NULL, .value = -1 }
145 };
146
147 static const Jim_Nvp nvp_error_target[] = {
148         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
154         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
157         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159         { .value = -1, .name = NULL }
160 };
161
162 static const char *target_strerror_safe(int err)
163 {
164         const Jim_Nvp *n;
165
166         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167         if (n->name == NULL)
168                 return "unknown";
169         else
170                 return n->name;
171 }
172
173 static const Jim_Nvp nvp_target_event[] = {
174
175         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176         { .value = TARGET_EVENT_HALTED, .name = "halted" },
177         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
180
181         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
183
184         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
185         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
186         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
187         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
188         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
189         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
191         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
192         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
193         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
194         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
195         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
196
197         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
199
200         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
202
203         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
205
206         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
208
209         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
211
212         { .name = NULL, .value = -1 }
213 };
214
215 static const Jim_Nvp nvp_target_state[] = {
216         { .name = "unknown", .value = TARGET_UNKNOWN },
217         { .name = "running", .value = TARGET_RUNNING },
218         { .name = "halted",  .value = TARGET_HALTED },
219         { .name = "reset",   .value = TARGET_RESET },
220         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221         { .name = NULL, .value = -1 },
222 };
223
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
226         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
227         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
228         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
230         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
231         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
232         { .name = NULL, .value = -1 },
233 };
234
235 static const Jim_Nvp nvp_target_endian[] = {
236         { .name = "big",    .value = TARGET_BIG_ENDIAN },
237         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
238         { .name = "be",     .value = TARGET_BIG_ENDIAN },
239         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
240         { .name = NULL,     .value = -1 },
241 };
242
243 static const Jim_Nvp nvp_reset_modes[] = {
244         { .name = "unknown", .value = RESET_UNKNOWN },
245         { .name = "run"    , .value = RESET_RUN },
246         { .name = "halt"   , .value = RESET_HALT },
247         { .name = "init"   , .value = RESET_INIT },
248         { .name = NULL     , .value = -1 },
249 };
250
251 const char *debug_reason_name(struct target *t)
252 {
253         const char *cp;
254
255         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
256                         t->debug_reason)->name;
257         if (!cp) {
258                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
259                 cp = "(*BUG*unknown*BUG*)";
260         }
261         return cp;
262 }
263
264 const char *target_state_name(struct target *t)
265 {
266         const char *cp;
267         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
268         if (!cp) {
269                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
270                 cp = "(*BUG*unknown*BUG*)";
271         }
272         return cp;
273 }
274
275 /* determine the number of the new target */
276 static int new_target_number(void)
277 {
278         struct target *t;
279         int x;
280
281         /* number is 0 based */
282         x = -1;
283         t = all_targets;
284         while (t) {
285                 if (x < t->target_number)
286                         x = t->target_number;
287                 t = t->next;
288         }
289         return x + 1;
290 }
291
292 /* read a uint32_t from a buffer in target memory endianness */
293 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
294 {
295         if (target->endianness == TARGET_LITTLE_ENDIAN)
296                 return le_to_h_u32(buffer);
297         else
298                 return be_to_h_u32(buffer);
299 }
300
301 /* read a uint24_t from a buffer in target memory endianness */
302 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
303 {
304         if (target->endianness == TARGET_LITTLE_ENDIAN)
305                 return le_to_h_u24(buffer);
306         else
307                 return be_to_h_u24(buffer);
308 }
309
310 /* read a uint16_t from a buffer in target memory endianness */
311 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
312 {
313         if (target->endianness == TARGET_LITTLE_ENDIAN)
314                 return le_to_h_u16(buffer);
315         else
316                 return be_to_h_u16(buffer);
317 }
318
319 /* read a uint8_t from a buffer in target memory endianness */
320 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
321 {
322         return *buffer & 0x0ff;
323 }
324
325 /* write a uint32_t to a buffer in target memory endianness */
326 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
327 {
328         if (target->endianness == TARGET_LITTLE_ENDIAN)
329                 h_u32_to_le(buffer, value);
330         else
331                 h_u32_to_be(buffer, value);
332 }
333
334 /* write a uint24_t to a buffer in target memory endianness */
335 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
336 {
337         if (target->endianness == TARGET_LITTLE_ENDIAN)
338                 h_u24_to_le(buffer, value);
339         else
340                 h_u24_to_be(buffer, value);
341 }
342
343 /* write a uint16_t to a buffer in target memory endianness */
344 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
345 {
346         if (target->endianness == TARGET_LITTLE_ENDIAN)
347                 h_u16_to_le(buffer, value);
348         else
349                 h_u16_to_be(buffer, value);
350 }
351
352 /* write a uint8_t to a buffer in target memory endianness */
353 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
354 {
355         *buffer = value;
356 }
357
358 /* write a uint32_t array to a buffer in target memory endianness */
359 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
360 {
361         uint32_t i;
362         for (i = 0; i < count; i++)
363                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
364 }
365
366 /* write a uint16_t array to a buffer in target memory endianness */
367 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
368 {
369         uint32_t i;
370         for (i = 0; i < count; i++)
371                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
372 }
373
374 /* write a uint32_t array to a buffer in target memory endianness */
375 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
376 {
377         uint32_t i;
378         for (i = 0; i < count; i++)
379                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
380 }
381
382 /* write a uint16_t array to a buffer in target memory endianness */
383 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
384 {
385         uint32_t i;
386         for (i = 0; i < count; i++)
387                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
388 }
389
390 /* return a pointer to a configured target; id is name or number */
391 struct target *get_target(const char *id)
392 {
393         struct target *target;
394
395         /* try as tcltarget name */
396         for (target = all_targets; target; target = target->next) {
397                 if (target_name(target) == NULL)
398                         continue;
399                 if (strcmp(id, target_name(target)) == 0)
400                         return target;
401         }
402
403         /* It's OK to remove this fallback sometime after August 2010 or so */
404
405         /* no match, try as number */
406         unsigned num;
407         if (parse_uint(id, &num) != ERROR_OK)
408                 return NULL;
409
410         for (target = all_targets; target; target = target->next) {
411                 if (target->target_number == (int)num) {
412                         LOG_WARNING("use '%s' as target identifier, not '%u'",
413                                         target_name(target), num);
414                         return target;
415                 }
416         }
417
418         return NULL;
419 }
420
421 /* returns a pointer to the n-th configured target */
422 static struct target *get_target_by_num(int num)
423 {
424         struct target *target = all_targets;
425
426         while (target) {
427                 if (target->target_number == num)
428                         return target;
429                 target = target->next;
430         }
431
432         return NULL;
433 }
434
435 struct target *get_current_target(struct command_context *cmd_ctx)
436 {
437         struct target *target = get_target_by_num(cmd_ctx->current_target);
438
439         if (target == NULL) {
440                 LOG_ERROR("BUG: current_target out of bounds");
441                 exit(-1);
442         }
443
444         return target;
445 }
446
447 int target_poll(struct target *target)
448 {
449         int retval;
450
451         /* We can't poll until after examine */
452         if (!target_was_examined(target)) {
453                 /* Fail silently lest we pollute the log */
454                 return ERROR_FAIL;
455         }
456
457         retval = target->type->poll(target);
458         if (retval != ERROR_OK)
459                 return retval;
460
461         if (target->halt_issued) {
462                 if (target->state == TARGET_HALTED)
463                         target->halt_issued = false;
464                 else {
465                         long long t = timeval_ms() - target->halt_issued_time;
466                         if (t > DEFAULT_HALT_TIMEOUT) {
467                                 target->halt_issued = false;
468                                 LOG_INFO("Halt timed out, wake up GDB.");
469                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470                         }
471                 }
472         }
473
474         return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479         int retval;
480         /* We can't poll until after examine */
481         if (!target_was_examined(target)) {
482                 LOG_ERROR("Target not examined yet");
483                 return ERROR_FAIL;
484         }
485
486         retval = target->type->halt(target);
487         if (retval != ERROR_OK)
488                 return retval;
489
490         target->halt_issued = true;
491         target->halt_issued_time = timeval_ms();
492
493         return ERROR_OK;
494 }
495
496 /**
497  * Make the target (re)start executing using its saved execution
498  * context (possibly with some modifications).
499  *
500  * @param target Which target should start executing.
501  * @param current True to use the target's saved program counter instead
502  *      of the address parameter
503  * @param address Optionally used as the program counter.
504  * @param handle_breakpoints True iff breakpoints at the resumption PC
505  *      should be skipped.  (For example, maybe execution was stopped by
506  *      such a breakpoint, in which case it would be counterprodutive to
507  *      let it re-trigger.
508  * @param debug_execution False if all working areas allocated by OpenOCD
509  *      should be released and/or restored to their original contents.
510  *      (This would for example be true to run some downloaded "helper"
511  *      algorithm code, which resides in one such working buffer and uses
512  *      another for data storage.)
513  *
514  * @todo Resolve the ambiguity about what the "debug_execution" flag
515  * signifies.  For example, Target implementations don't agree on how
516  * it relates to invalidation of the register cache, or to whether
517  * breakpoints and watchpoints should be enabled.  (It would seem wrong
518  * to enable breakpoints when running downloaded "helper" algorithms
519  * (debug_execution true), since the breakpoints would be set to match
520  * target firmware being debugged, not the helper algorithm.... and
521  * enabling them could cause such helpers to malfunction (for example,
522  * by overwriting data with a breakpoint instruction.  On the other
523  * hand the infrastructure for running such helpers might use this
524  * procedure but rely on hardware breakpoint to detect termination.)
525  */
526 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
527 {
528         int retval;
529
530         /* We can't poll until after examine */
531         if (!target_was_examined(target)) {
532                 LOG_ERROR("Target not examined yet");
533                 return ERROR_FAIL;
534         }
535
536         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
537
538         /* note that resume *must* be asynchronous. The CPU can halt before
539          * we poll. The CPU can even halt at the current PC as a result of
540          * a software breakpoint being inserted by (a bug?) the application.
541          */
542         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
543         if (retval != ERROR_OK)
544                 return retval;
545
546         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
547
548         return retval;
549 }
550
551 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
552 {
553         char buf[100];
554         int retval;
555         Jim_Nvp *n;
556         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
557         if (n->name == NULL) {
558                 LOG_ERROR("invalid reset mode");
559                 return ERROR_FAIL;
560         }
561
562         /* disable polling during reset to make reset event scripts
563          * more predictable, i.e. dr/irscan & pathmove in events will
564          * not have JTAG operations injected into the middle of a sequence.
565          */
566         bool save_poll = jtag_poll_get_enabled();
567
568         jtag_poll_set_enabled(false);
569
570         sprintf(buf, "ocd_process_reset %s", n->name);
571         retval = Jim_Eval(cmd_ctx->interp, buf);
572
573         jtag_poll_set_enabled(save_poll);
574
575         if (retval != JIM_OK) {
576                 Jim_MakeErrorMessage(cmd_ctx->interp);
577                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
578                 return ERROR_FAIL;
579         }
580
581         /* We want any events to be processed before the prompt */
582         retval = target_call_timer_callbacks_now();
583
584         struct target *target;
585         for (target = all_targets; target; target = target->next)
586                 target->type->check_reset(target);
587
588         return retval;
589 }
590
591 static int identity_virt2phys(struct target *target,
592                 uint32_t virtual, uint32_t *physical)
593 {
594         *physical = virtual;
595         return ERROR_OK;
596 }
597
598 static int no_mmu(struct target *target, int *enabled)
599 {
600         *enabled = 0;
601         return ERROR_OK;
602 }
603
604 static int default_examine(struct target *target)
605 {
606         target_set_examined(target);
607         return ERROR_OK;
608 }
609
610 /* no check by default */
611 static int default_check_reset(struct target *target)
612 {
613         return ERROR_OK;
614 }
615
616 int target_examine_one(struct target *target)
617 {
618         return target->type->examine(target);
619 }
620
621 static int jtag_enable_callback(enum jtag_event event, void *priv)
622 {
623         struct target *target = priv;
624
625         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
626                 return ERROR_OK;
627
628         jtag_unregister_event_callback(jtag_enable_callback, target);
629
630         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
631
632         int retval = target_examine_one(target);
633         if (retval != ERROR_OK)
634                 return retval;
635
636         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
637
638         return retval;
639 }
640
641 /* Targets that correctly implement init + examine, i.e.
642  * no communication with target during init:
643  *
644  * XScale
645  */
646 int target_examine(void)
647 {
648         int retval = ERROR_OK;
649         struct target *target;
650
651         for (target = all_targets; target; target = target->next) {
652                 /* defer examination, but don't skip it */
653                 if (!target->tap->enabled) {
654                         jtag_register_event_callback(jtag_enable_callback,
655                                         target);
656                         continue;
657                 }
658
659                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
660
661                 retval = target_examine_one(target);
662                 if (retval != ERROR_OK)
663                         return retval;
664
665                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
666         }
667         return retval;
668 }
669
670 const char *target_type_name(struct target *target)
671 {
672         return target->type->name;
673 }
674
675 static int target_soft_reset_halt(struct target *target)
676 {
677         if (!target_was_examined(target)) {
678                 LOG_ERROR("Target not examined yet");
679                 return ERROR_FAIL;
680         }
681         if (!target->type->soft_reset_halt) {
682                 LOG_ERROR("Target %s does not support soft_reset_halt",
683                                 target_name(target));
684                 return ERROR_FAIL;
685         }
686         return target->type->soft_reset_halt(target);
687 }
688
689 /**
690  * Downloads a target-specific native code algorithm to the target,
691  * and executes it.  * Note that some targets may need to set up, enable,
692  * and tear down a breakpoint (hard or * soft) to detect algorithm
693  * termination, while others may support  lower overhead schemes where
694  * soft breakpoints embedded in the algorithm automatically terminate the
695  * algorithm.
696  *
697  * @param target used to run the algorithm
698  * @param arch_info target-specific description of the algorithm.
699  */
700 int target_run_algorithm(struct target *target,
701                 int num_mem_params, struct mem_param *mem_params,
702                 int num_reg_params, struct reg_param *reg_param,
703                 uint32_t entry_point, uint32_t exit_point,
704                 int timeout_ms, void *arch_info)
705 {
706         int retval = ERROR_FAIL;
707
708         if (!target_was_examined(target)) {
709                 LOG_ERROR("Target not examined yet");
710                 goto done;
711         }
712         if (!target->type->run_algorithm) {
713                 LOG_ERROR("Target type '%s' does not support %s",
714                                 target_type_name(target), __func__);
715                 goto done;
716         }
717
718         target->running_alg = true;
719         retval = target->type->run_algorithm(target,
720                         num_mem_params, mem_params,
721                         num_reg_params, reg_param,
722                         entry_point, exit_point, timeout_ms, arch_info);
723         target->running_alg = false;
724
725 done:
726         return retval;
727 }
728
729 /**
730  * Downloads a target-specific native code algorithm to the target,
731  * executes and leaves it running.
732  *
733  * @param target used to run the algorithm
734  * @param arch_info target-specific description of the algorithm.
735  */
736 int target_start_algorithm(struct target *target,
737                 int num_mem_params, struct mem_param *mem_params,
738                 int num_reg_params, struct reg_param *reg_params,
739                 uint32_t entry_point, uint32_t exit_point,
740                 void *arch_info)
741 {
742         int retval = ERROR_FAIL;
743
744         if (!target_was_examined(target)) {
745                 LOG_ERROR("Target not examined yet");
746                 goto done;
747         }
748         if (!target->type->start_algorithm) {
749                 LOG_ERROR("Target type '%s' does not support %s",
750                                 target_type_name(target), __func__);
751                 goto done;
752         }
753         if (target->running_alg) {
754                 LOG_ERROR("Target is already running an algorithm");
755                 goto done;
756         }
757
758         target->running_alg = true;
759         retval = target->type->start_algorithm(target,
760                         num_mem_params, mem_params,
761                         num_reg_params, reg_params,
762                         entry_point, exit_point, arch_info);
763
764 done:
765         return retval;
766 }
767
768 /**
769  * Waits for an algorithm started with target_start_algorithm() to complete.
770  *
771  * @param target used to run the algorithm
772  * @param arch_info target-specific description of the algorithm.
773  */
774 int target_wait_algorithm(struct target *target,
775                 int num_mem_params, struct mem_param *mem_params,
776                 int num_reg_params, struct reg_param *reg_params,
777                 uint32_t exit_point, int timeout_ms,
778                 void *arch_info)
779 {
780         int retval = ERROR_FAIL;
781
782         if (!target->type->wait_algorithm) {
783                 LOG_ERROR("Target type '%s' does not support %s",
784                                 target_type_name(target), __func__);
785                 goto done;
786         }
787         if (!target->running_alg) {
788                 LOG_ERROR("Target is not running an algorithm");
789                 goto done;
790         }
791
792         retval = target->type->wait_algorithm(target,
793                         num_mem_params, mem_params,
794                         num_reg_params, reg_params,
795                         exit_point, timeout_ms, arch_info);
796         if (retval != ERROR_TARGET_TIMEOUT)
797                 target->running_alg = false;
798
799 done:
800         return retval;
801 }
802
803 /**
804  * Executes a target-specific native code algorithm in the target.
805  * It differs from target_run_algorithm in that the algorithm is asynchronous.
806  * Because of this it requires an compliant algorithm:
807  * see contrib/loaders/flash/stm32f1x.S for example.
808  *
809  * @param target used to run the algorithm
810  */
811
812 int target_run_flash_async_algorithm(struct target *target,
813                 uint8_t *buffer, uint32_t count, int block_size,
814                 int num_mem_params, struct mem_param *mem_params,
815                 int num_reg_params, struct reg_param *reg_params,
816                 uint32_t buffer_start, uint32_t buffer_size,
817                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
818 {
819         int retval;
820         int timeout = 0;
821
822         /* Set up working area. First word is write pointer, second word is read pointer,
823          * rest is fifo data area. */
824         uint32_t wp_addr = buffer_start;
825         uint32_t rp_addr = buffer_start + 4;
826         uint32_t fifo_start_addr = buffer_start + 8;
827         uint32_t fifo_end_addr = buffer_start + buffer_size;
828
829         uint32_t wp = fifo_start_addr;
830         uint32_t rp = fifo_start_addr;
831
832         /* validate block_size is 2^n */
833         assert(!block_size || !(block_size & (block_size - 1)));
834
835         retval = target_write_u32(target, wp_addr, wp);
836         if (retval != ERROR_OK)
837                 return retval;
838         retval = target_write_u32(target, rp_addr, rp);
839         if (retval != ERROR_OK)
840                 return retval;
841
842         /* Start up algorithm on target and let it idle while writing the first chunk */
843         retval = target_start_algorithm(target, num_mem_params, mem_params,
844                         num_reg_params, reg_params,
845                         entry_point,
846                         exit_point,
847                         arch_info);
848
849         if (retval != ERROR_OK) {
850                 LOG_ERROR("error starting target flash write algorithm");
851                 return retval;
852         }
853
854         while (count > 0) {
855
856                 retval = target_read_u32(target, rp_addr, &rp);
857                 if (retval != ERROR_OK) {
858                         LOG_ERROR("failed to get read pointer");
859                         break;
860                 }
861
862                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
863
864                 if (rp == 0) {
865                         LOG_ERROR("flash write algorithm aborted by target");
866                         retval = ERROR_FLASH_OPERATION_FAILED;
867                         break;
868                 }
869
870                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
871                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
872                         break;
873                 }
874
875                 /* Count the number of bytes available in the fifo without
876                  * crossing the wrap around. Make sure to not fill it completely,
877                  * because that would make wp == rp and that's the empty condition. */
878                 uint32_t thisrun_bytes;
879                 if (rp > wp)
880                         thisrun_bytes = rp - wp - block_size;
881                 else if (rp > fifo_start_addr)
882                         thisrun_bytes = fifo_end_addr - wp;
883                 else
884                         thisrun_bytes = fifo_end_addr - wp - block_size;
885
886                 if (thisrun_bytes == 0) {
887                         /* Throttle polling a bit if transfer is (much) faster than flash
888                          * programming. The exact delay shouldn't matter as long as it's
889                          * less than buffer size / flash speed. This is very unlikely to
890                          * run when using high latency connections such as USB. */
891                         alive_sleep(10);
892
893                         /* to stop an infinite loop on some targets check and increment a timeout
894                          * this issue was observed on a stellaris using the new ICDI interface */
895                         if (timeout++ >= 500) {
896                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
897                                 return ERROR_FLASH_OPERATION_FAILED;
898                         }
899                         continue;
900                 }
901
902                 /* reset our timeout */
903                 timeout = 0;
904
905                 /* Limit to the amount of data we actually want to write */
906                 if (thisrun_bytes > count * block_size)
907                         thisrun_bytes = count * block_size;
908
909                 /* Write data to fifo */
910                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
911                 if (retval != ERROR_OK)
912                         break;
913
914                 /* Update counters and wrap write pointer */
915                 buffer += thisrun_bytes;
916                 count -= thisrun_bytes / block_size;
917                 wp += thisrun_bytes;
918                 if (wp >= fifo_end_addr)
919                         wp = fifo_start_addr;
920
921                 /* Store updated write pointer to target */
922                 retval = target_write_u32(target, wp_addr, wp);
923                 if (retval != ERROR_OK)
924                         break;
925         }
926
927         if (retval != ERROR_OK) {
928                 /* abort flash write algorithm on target */
929                 target_write_u32(target, wp_addr, 0);
930         }
931
932         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
933                         num_reg_params, reg_params,
934                         exit_point,
935                         10000,
936                         arch_info);
937
938         if (retval2 != ERROR_OK) {
939                 LOG_ERROR("error waiting for target flash write algorithm");
940                 retval = retval2;
941         }
942
943         return retval;
944 }
945
946 int target_read_memory(struct target *target,
947                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
948 {
949         if (!target_was_examined(target)) {
950                 LOG_ERROR("Target not examined yet");
951                 return ERROR_FAIL;
952         }
953         return target->type->read_memory(target, address, size, count, buffer);
954 }
955
956 int target_read_phys_memory(struct target *target,
957                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
958 {
959         if (!target_was_examined(target)) {
960                 LOG_ERROR("Target not examined yet");
961                 return ERROR_FAIL;
962         }
963         return target->type->read_phys_memory(target, address, size, count, buffer);
964 }
965
966 int target_write_memory(struct target *target,
967                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
968 {
969         if (!target_was_examined(target)) {
970                 LOG_ERROR("Target not examined yet");
971                 return ERROR_FAIL;
972         }
973         return target->type->write_memory(target, address, size, count, buffer);
974 }
975
976 int target_write_phys_memory(struct target *target,
977                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
978 {
979         if (!target_was_examined(target)) {
980                 LOG_ERROR("Target not examined yet");
981                 return ERROR_FAIL;
982         }
983         return target->type->write_phys_memory(target, address, size, count, buffer);
984 }
985
986 static int target_bulk_write_memory_default(struct target *target,
987                 uint32_t address, uint32_t count, const uint8_t *buffer)
988 {
989         return target_write_memory(target, address, 4, count, buffer);
990 }
991
992 int target_add_breakpoint(struct target *target,
993                 struct breakpoint *breakpoint)
994 {
995         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
996                 LOG_WARNING("target %s is not halted", target_name(target));
997                 return ERROR_TARGET_NOT_HALTED;
998         }
999         return target->type->add_breakpoint(target, breakpoint);
1000 }
1001
1002 int target_add_context_breakpoint(struct target *target,
1003                 struct breakpoint *breakpoint)
1004 {
1005         if (target->state != TARGET_HALTED) {
1006                 LOG_WARNING("target %s is not halted", target_name(target));
1007                 return ERROR_TARGET_NOT_HALTED;
1008         }
1009         return target->type->add_context_breakpoint(target, breakpoint);
1010 }
1011
1012 int target_add_hybrid_breakpoint(struct target *target,
1013                 struct breakpoint *breakpoint)
1014 {
1015         if (target->state != TARGET_HALTED) {
1016                 LOG_WARNING("target %s is not halted", target_name(target));
1017                 return ERROR_TARGET_NOT_HALTED;
1018         }
1019         return target->type->add_hybrid_breakpoint(target, breakpoint);
1020 }
1021
1022 int target_remove_breakpoint(struct target *target,
1023                 struct breakpoint *breakpoint)
1024 {
1025         return target->type->remove_breakpoint(target, breakpoint);
1026 }
1027
1028 int target_add_watchpoint(struct target *target,
1029                 struct watchpoint *watchpoint)
1030 {
1031         if (target->state != TARGET_HALTED) {
1032                 LOG_WARNING("target %s is not halted", target_name(target));
1033                 return ERROR_TARGET_NOT_HALTED;
1034         }
1035         return target->type->add_watchpoint(target, watchpoint);
1036 }
1037 int target_remove_watchpoint(struct target *target,
1038                 struct watchpoint *watchpoint)
1039 {
1040         return target->type->remove_watchpoint(target, watchpoint);
1041 }
1042 int target_hit_watchpoint(struct target *target,
1043                 struct watchpoint **hit_watchpoint)
1044 {
1045         if (target->state != TARGET_HALTED) {
1046                 LOG_WARNING("target %s is not halted", target->cmd_name);
1047                 return ERROR_TARGET_NOT_HALTED;
1048         }
1049
1050         if (target->type->hit_watchpoint == NULL) {
1051                 /* For backward compatible, if hit_watchpoint is not implemented,
1052                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1053                  * information. */
1054                 return ERROR_FAIL;
1055         }
1056
1057         return target->type->hit_watchpoint(target, hit_watchpoint);
1058 }
1059
1060 int target_get_gdb_reg_list(struct target *target,
1061                 struct reg **reg_list[], int *reg_list_size,
1062                 enum target_register_class reg_class)
1063 {
1064         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1065 }
1066 int target_step(struct target *target,
1067                 int current, uint32_t address, int handle_breakpoints)
1068 {
1069         return target->type->step(target, current, address, handle_breakpoints);
1070 }
1071
1072 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1073 {
1074         if (target->state != TARGET_HALTED) {
1075                 LOG_WARNING("target %s is not halted", target->cmd_name);
1076                 return ERROR_TARGET_NOT_HALTED;
1077         }
1078         return target->type->get_gdb_fileio_info(target, fileio_info);
1079 }
1080
1081 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1082 {
1083         if (target->state != TARGET_HALTED) {
1084                 LOG_WARNING("target %s is not halted", target->cmd_name);
1085                 return ERROR_TARGET_NOT_HALTED;
1086         }
1087         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1088 }
1089
1090 /**
1091  * Reset the @c examined flag for the given target.
1092  * Pure paranoia -- targets are zeroed on allocation.
1093  */
1094 static void target_reset_examined(struct target *target)
1095 {
1096         target->examined = false;
1097 }
1098
1099 static int err_read_phys_memory(struct target *target, uint32_t address,
1100                 uint32_t size, uint32_t count, uint8_t *buffer)
1101 {
1102         LOG_ERROR("Not implemented: %s", __func__);
1103         return ERROR_FAIL;
1104 }
1105
1106 static int err_write_phys_memory(struct target *target, uint32_t address,
1107                 uint32_t size, uint32_t count, const uint8_t *buffer)
1108 {
1109         LOG_ERROR("Not implemented: %s", __func__);
1110         return ERROR_FAIL;
1111 }
1112
1113 static int handle_target(void *priv);
1114
1115 static int target_init_one(struct command_context *cmd_ctx,
1116                 struct target *target)
1117 {
1118         target_reset_examined(target);
1119
1120         struct target_type *type = target->type;
1121         if (type->examine == NULL)
1122                 type->examine = default_examine;
1123
1124         if (type->check_reset == NULL)
1125                 type->check_reset = default_check_reset;
1126
1127         assert(type->init_target != NULL);
1128
1129         int retval = type->init_target(cmd_ctx, target);
1130         if (ERROR_OK != retval) {
1131                 LOG_ERROR("target '%s' init failed", target_name(target));
1132                 return retval;
1133         }
1134
1135         /* Sanity-check MMU support ... stub in what we must, to help
1136          * implement it in stages, but warn if we need to do so.
1137          */
1138         if (type->mmu) {
1139                 if (type->write_phys_memory == NULL) {
1140                         LOG_ERROR("type '%s' is missing write_phys_memory",
1141                                         type->name);
1142                         type->write_phys_memory = err_write_phys_memory;
1143                 }
1144                 if (type->read_phys_memory == NULL) {
1145                         LOG_ERROR("type '%s' is missing read_phys_memory",
1146                                         type->name);
1147                         type->read_phys_memory = err_read_phys_memory;
1148                 }
1149                 if (type->virt2phys == NULL) {
1150                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1151                         type->virt2phys = identity_virt2phys;
1152                 }
1153         } else {
1154                 /* Make sure no-MMU targets all behave the same:  make no
1155                  * distinction between physical and virtual addresses, and
1156                  * ensure that virt2phys() is always an identity mapping.
1157                  */
1158                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1159                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1160
1161                 type->mmu = no_mmu;
1162                 type->write_phys_memory = type->write_memory;
1163                 type->read_phys_memory = type->read_memory;
1164                 type->virt2phys = identity_virt2phys;
1165         }
1166
1167         if (target->type->read_buffer == NULL)
1168                 target->type->read_buffer = target_read_buffer_default;
1169
1170         if (target->type->write_buffer == NULL)
1171                 target->type->write_buffer = target_write_buffer_default;
1172
1173         if (target->type->bulk_write_memory == NULL)
1174                 target->type->bulk_write_memory = target_bulk_write_memory_default;
1175
1176         if (target->type->get_gdb_fileio_info == NULL)
1177                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1178
1179         if (target->type->gdb_fileio_end == NULL)
1180                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1181
1182         return ERROR_OK;
1183 }
1184
1185 static int target_init(struct command_context *cmd_ctx)
1186 {
1187         struct target *target;
1188         int retval;
1189
1190         for (target = all_targets; target; target = target->next) {
1191                 retval = target_init_one(cmd_ctx, target);
1192                 if (ERROR_OK != retval)
1193                         return retval;
1194         }
1195
1196         if (!all_targets)
1197                 return ERROR_OK;
1198
1199         retval = target_register_user_commands(cmd_ctx);
1200         if (ERROR_OK != retval)
1201                 return retval;
1202
1203         retval = target_register_timer_callback(&handle_target,
1204                         polling_interval, 1, cmd_ctx->interp);
1205         if (ERROR_OK != retval)
1206                 return retval;
1207
1208         return ERROR_OK;
1209 }
1210
1211 COMMAND_HANDLER(handle_target_init_command)
1212 {
1213         int retval;
1214
1215         if (CMD_ARGC != 0)
1216                 return ERROR_COMMAND_SYNTAX_ERROR;
1217
1218         static bool target_initialized;
1219         if (target_initialized) {
1220                 LOG_INFO("'target init' has already been called");
1221                 return ERROR_OK;
1222         }
1223         target_initialized = true;
1224
1225         retval = command_run_line(CMD_CTX, "init_targets");
1226         if (ERROR_OK != retval)
1227                 return retval;
1228
1229         retval = command_run_line(CMD_CTX, "init_board");
1230         if (ERROR_OK != retval)
1231                 return retval;
1232
1233         LOG_DEBUG("Initializing targets...");
1234         return target_init(CMD_CTX);
1235 }
1236
1237 int target_register_event_callback(int (*callback)(struct target *target,
1238                 enum target_event event, void *priv), void *priv)
1239 {
1240         struct target_event_callback **callbacks_p = &target_event_callbacks;
1241
1242         if (callback == NULL)
1243                 return ERROR_COMMAND_SYNTAX_ERROR;
1244
1245         if (*callbacks_p) {
1246                 while ((*callbacks_p)->next)
1247                         callbacks_p = &((*callbacks_p)->next);
1248                 callbacks_p = &((*callbacks_p)->next);
1249         }
1250
1251         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1252         (*callbacks_p)->callback = callback;
1253         (*callbacks_p)->priv = priv;
1254         (*callbacks_p)->next = NULL;
1255
1256         return ERROR_OK;
1257 }
1258
1259 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1260 {
1261         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1262         struct timeval now;
1263
1264         if (callback == NULL)
1265                 return ERROR_COMMAND_SYNTAX_ERROR;
1266
1267         if (*callbacks_p) {
1268                 while ((*callbacks_p)->next)
1269                         callbacks_p = &((*callbacks_p)->next);
1270                 callbacks_p = &((*callbacks_p)->next);
1271         }
1272
1273         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1274         (*callbacks_p)->callback = callback;
1275         (*callbacks_p)->periodic = periodic;
1276         (*callbacks_p)->time_ms = time_ms;
1277
1278         gettimeofday(&now, NULL);
1279         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1280         time_ms -= (time_ms % 1000);
1281         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1282         if ((*callbacks_p)->when.tv_usec > 1000000) {
1283                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1284                 (*callbacks_p)->when.tv_sec += 1;
1285         }
1286
1287         (*callbacks_p)->priv = priv;
1288         (*callbacks_p)->next = NULL;
1289
1290         return ERROR_OK;
1291 }
1292
1293 int target_unregister_event_callback(int (*callback)(struct target *target,
1294                 enum target_event event, void *priv), void *priv)
1295 {
1296         struct target_event_callback **p = &target_event_callbacks;
1297         struct target_event_callback *c = target_event_callbacks;
1298
1299         if (callback == NULL)
1300                 return ERROR_COMMAND_SYNTAX_ERROR;
1301
1302         while (c) {
1303                 struct target_event_callback *next = c->next;
1304                 if ((c->callback == callback) && (c->priv == priv)) {
1305                         *p = next;
1306                         free(c);
1307                         return ERROR_OK;
1308                 } else
1309                         p = &(c->next);
1310                 c = next;
1311         }
1312
1313         return ERROR_OK;
1314 }
1315
1316 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1317 {
1318         struct target_timer_callback **p = &target_timer_callbacks;
1319         struct target_timer_callback *c = target_timer_callbacks;
1320
1321         if (callback == NULL)
1322                 return ERROR_COMMAND_SYNTAX_ERROR;
1323
1324         while (c) {
1325                 struct target_timer_callback *next = c->next;
1326                 if ((c->callback == callback) && (c->priv == priv)) {
1327                         *p = next;
1328                         free(c);
1329                         return ERROR_OK;
1330                 } else
1331                         p = &(c->next);
1332                 c = next;
1333         }
1334
1335         return ERROR_OK;
1336 }
1337
1338 int target_call_event_callbacks(struct target *target, enum target_event event)
1339 {
1340         struct target_event_callback *callback = target_event_callbacks;
1341         struct target_event_callback *next_callback;
1342
1343         if (event == TARGET_EVENT_HALTED) {
1344                 /* execute early halted first */
1345                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1346         }
1347
1348         LOG_DEBUG("target event %i (%s)", event,
1349                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1350
1351         target_handle_event(target, event);
1352
1353         while (callback) {
1354                 next_callback = callback->next;
1355                 callback->callback(target, event, callback->priv);
1356                 callback = next_callback;
1357         }
1358
1359         return ERROR_OK;
1360 }
1361
1362 static int target_timer_callback_periodic_restart(
1363                 struct target_timer_callback *cb, struct timeval *now)
1364 {
1365         int time_ms = cb->time_ms;
1366         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1367         time_ms -= (time_ms % 1000);
1368         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1369         if (cb->when.tv_usec > 1000000) {
1370                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1371                 cb->when.tv_sec += 1;
1372         }
1373         return ERROR_OK;
1374 }
1375
1376 static int target_call_timer_callback(struct target_timer_callback *cb,
1377                 struct timeval *now)
1378 {
1379         cb->callback(cb->priv);
1380
1381         if (cb->periodic)
1382                 return target_timer_callback_periodic_restart(cb, now);
1383
1384         return target_unregister_timer_callback(cb->callback, cb->priv);
1385 }
1386
1387 static int target_call_timer_callbacks_check_time(int checktime)
1388 {
1389         keep_alive();
1390
1391         struct timeval now;
1392         gettimeofday(&now, NULL);
1393
1394         struct target_timer_callback *callback = target_timer_callbacks;
1395         while (callback) {
1396                 /* cleaning up may unregister and free this callback */
1397                 struct target_timer_callback *next_callback = callback->next;
1398
1399                 bool call_it = callback->callback &&
1400                         ((!checktime && callback->periodic) ||
1401                           now.tv_sec > callback->when.tv_sec ||
1402                          (now.tv_sec == callback->when.tv_sec &&
1403                           now.tv_usec >= callback->when.tv_usec));
1404
1405                 if (call_it) {
1406                         int retval = target_call_timer_callback(callback, &now);
1407                         if (retval != ERROR_OK)
1408                                 return retval;
1409                 }
1410
1411                 callback = next_callback;
1412         }
1413
1414         return ERROR_OK;
1415 }
1416
1417 int target_call_timer_callbacks(void)
1418 {
1419         return target_call_timer_callbacks_check_time(1);
1420 }
1421
1422 /* invoke periodic callbacks immediately */
1423 int target_call_timer_callbacks_now(void)
1424 {
1425         return target_call_timer_callbacks_check_time(0);
1426 }
1427
1428 /* Prints the working area layout for debug purposes */
1429 static void print_wa_layout(struct target *target)
1430 {
1431         struct working_area *c = target->working_areas;
1432
1433         while (c) {
1434                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1435                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1436                         c->address, c->address + c->size - 1, c->size);
1437                 c = c->next;
1438         }
1439 }
1440
1441 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1442 static void target_split_working_area(struct working_area *area, uint32_t size)
1443 {
1444         assert(area->free); /* Shouldn't split an allocated area */
1445         assert(size <= area->size); /* Caller should guarantee this */
1446
1447         /* Split only if not already the right size */
1448         if (size < area->size) {
1449                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1450
1451                 if (new_wa == NULL)
1452                         return;
1453
1454                 new_wa->next = area->next;
1455                 new_wa->size = area->size - size;
1456                 new_wa->address = area->address + size;
1457                 new_wa->backup = NULL;
1458                 new_wa->user = NULL;
1459                 new_wa->free = true;
1460
1461                 area->next = new_wa;
1462                 area->size = size;
1463
1464                 /* If backup memory was allocated to this area, it has the wrong size
1465                  * now so free it and it will be reallocated if/when needed */
1466                 if (area->backup) {
1467                         free(area->backup);
1468                         area->backup = NULL;
1469                 }
1470         }
1471 }
1472
1473 /* Merge all adjacent free areas into one */
1474 static void target_merge_working_areas(struct target *target)
1475 {
1476         struct working_area *c = target->working_areas;
1477
1478         while (c && c->next) {
1479                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1480
1481                 /* Find two adjacent free areas */
1482                 if (c->free && c->next->free) {
1483                         /* Merge the last into the first */
1484                         c->size += c->next->size;
1485
1486                         /* Remove the last */
1487                         struct working_area *to_be_freed = c->next;
1488                         c->next = c->next->next;
1489                         if (to_be_freed->backup)
1490                                 free(to_be_freed->backup);
1491                         free(to_be_freed);
1492
1493                         /* If backup memory was allocated to the remaining area, it's has
1494                          * the wrong size now */
1495                         if (c->backup) {
1496                                 free(c->backup);
1497                                 c->backup = NULL;
1498                         }
1499                 } else {
1500                         c = c->next;
1501                 }
1502         }
1503 }
1504
1505 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1506 {
1507         /* Reevaluate working area address based on MMU state*/
1508         if (target->working_areas == NULL) {
1509                 int retval;
1510                 int enabled;
1511
1512                 retval = target->type->mmu(target, &enabled);
1513                 if (retval != ERROR_OK)
1514                         return retval;
1515
1516                 if (!enabled) {
1517                         if (target->working_area_phys_spec) {
1518                                 LOG_DEBUG("MMU disabled, using physical "
1519                                         "address for working memory 0x%08"PRIx32,
1520                                         target->working_area_phys);
1521                                 target->working_area = target->working_area_phys;
1522                         } else {
1523                                 LOG_ERROR("No working memory available. "
1524                                         "Specify -work-area-phys to target.");
1525                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1526                         }
1527                 } else {
1528                         if (target->working_area_virt_spec) {
1529                                 LOG_DEBUG("MMU enabled, using virtual "
1530                                         "address for working memory 0x%08"PRIx32,
1531                                         target->working_area_virt);
1532                                 target->working_area = target->working_area_virt;
1533                         } else {
1534                                 LOG_ERROR("No working memory available. "
1535                                         "Specify -work-area-virt to target.");
1536                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1537                         }
1538                 }
1539
1540                 /* Set up initial working area on first call */
1541                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1542                 if (new_wa) {
1543                         new_wa->next = NULL;
1544                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1545                         new_wa->address = target->working_area;
1546                         new_wa->backup = NULL;
1547                         new_wa->user = NULL;
1548                         new_wa->free = true;
1549                 }
1550
1551                 target->working_areas = new_wa;
1552         }
1553
1554         /* only allocate multiples of 4 byte */
1555         if (size % 4)
1556                 size = (size + 3) & (~3UL);
1557
1558         struct working_area *c = target->working_areas;
1559
1560         /* Find the first large enough working area */
1561         while (c) {
1562                 if (c->free && c->size >= size)
1563                         break;
1564                 c = c->next;
1565         }
1566
1567         if (c == NULL)
1568                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1569
1570         /* Split the working area into the requested size */
1571         target_split_working_area(c, size);
1572
1573         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1574
1575         if (target->backup_working_area) {
1576                 if (c->backup == NULL) {
1577                         c->backup = malloc(c->size);
1578                         if (c->backup == NULL)
1579                                 return ERROR_FAIL;
1580                 }
1581
1582                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1583                 if (retval != ERROR_OK)
1584                         return retval;
1585         }
1586
1587         /* mark as used, and return the new (reused) area */
1588         c->free = false;
1589         *area = c;
1590
1591         /* user pointer */
1592         c->user = area;
1593
1594         print_wa_layout(target);
1595
1596         return ERROR_OK;
1597 }
1598
1599 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1600 {
1601         int retval;
1602
1603         retval = target_alloc_working_area_try(target, size, area);
1604         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1605                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1606         return retval;
1607
1608 }
1609
1610 static int target_restore_working_area(struct target *target, struct working_area *area)
1611 {
1612         int retval = ERROR_OK;
1613
1614         if (target->backup_working_area && area->backup != NULL) {
1615                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1616                 if (retval != ERROR_OK)
1617                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1618                                         area->size, area->address);
1619         }
1620
1621         return retval;
1622 }
1623
1624 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1625 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1626 {
1627         int retval = ERROR_OK;
1628
1629         if (area->free)
1630                 return retval;
1631
1632         if (restore) {
1633                 retval = target_restore_working_area(target, area);
1634                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1635                 if (retval != ERROR_OK)
1636                         return retval;
1637         }
1638
1639         area->free = true;
1640
1641         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1642                         area->size, area->address);
1643
1644         /* mark user pointer invalid */
1645         /* TODO: Is this really safe? It points to some previous caller's memory.
1646          * How could we know that the area pointer is still in that place and not
1647          * some other vital data? What's the purpose of this, anyway? */
1648         *area->user = NULL;
1649         area->user = NULL;
1650
1651         target_merge_working_areas(target);
1652
1653         print_wa_layout(target);
1654
1655         return retval;
1656 }
1657
1658 int target_free_working_area(struct target *target, struct working_area *area)
1659 {
1660         return target_free_working_area_restore(target, area, 1);
1661 }
1662
1663 /* free resources and restore memory, if restoring memory fails,
1664  * free up resources anyway
1665  */
1666 static void target_free_all_working_areas_restore(struct target *target, int restore)
1667 {
1668         struct working_area *c = target->working_areas;
1669
1670         LOG_DEBUG("freeing all working areas");
1671
1672         /* Loop through all areas, restoring the allocated ones and marking them as free */
1673         while (c) {
1674                 if (!c->free) {
1675                         if (restore)
1676                                 target_restore_working_area(target, c);
1677                         c->free = true;
1678                         *c->user = NULL; /* Same as above */
1679                         c->user = NULL;
1680                 }
1681                 c = c->next;
1682         }
1683
1684         /* Run a merge pass to combine all areas into one */
1685         target_merge_working_areas(target);
1686
1687         print_wa_layout(target);
1688 }
1689
1690 void target_free_all_working_areas(struct target *target)
1691 {
1692         target_free_all_working_areas_restore(target, 1);
1693 }
1694
1695 /* Find the largest number of bytes that can be allocated */
1696 uint32_t target_get_working_area_avail(struct target *target)
1697 {
1698         struct working_area *c = target->working_areas;
1699         uint32_t max_size = 0;
1700
1701         if (c == NULL)
1702                 return target->working_area_size;
1703
1704         while (c) {
1705                 if (c->free && max_size < c->size)
1706                         max_size = c->size;
1707
1708                 c = c->next;
1709         }
1710
1711         return max_size;
1712 }
1713
1714 int target_arch_state(struct target *target)
1715 {
1716         int retval;
1717         if (target == NULL) {
1718                 LOG_USER("No target has been configured");
1719                 return ERROR_OK;
1720         }
1721
1722         LOG_USER("target state: %s", target_state_name(target));
1723
1724         if (target->state != TARGET_HALTED)
1725                 return ERROR_OK;
1726
1727         retval = target->type->arch_state(target);
1728         return retval;
1729 }
1730
1731 static int target_get_gdb_fileio_info_default(struct target *target,
1732                 struct gdb_fileio_info *fileio_info)
1733 {
1734         LOG_ERROR("Not implemented: %s", __func__);
1735         return ERROR_FAIL;
1736 }
1737
1738 static int target_gdb_fileio_end_default(struct target *target,
1739                 int retcode, int fileio_errno, bool ctrl_c)
1740 {
1741         LOG_ERROR("Not implemented: %s", __func__);
1742         return ERROR_OK;
1743 }
1744
1745 /* Single aligned words are guaranteed to use 16 or 32 bit access
1746  * mode respectively, otherwise data is handled as quickly as
1747  * possible
1748  */
1749 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1750 {
1751         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1752                         (int)size, (unsigned)address);
1753
1754         if (!target_was_examined(target)) {
1755                 LOG_ERROR("Target not examined yet");
1756                 return ERROR_FAIL;
1757         }
1758
1759         if (size == 0)
1760                 return ERROR_OK;
1761
1762         if ((address + size - 1) < address) {
1763                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1764                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1765                                   (unsigned)address,
1766                                   (unsigned)size);
1767                 return ERROR_FAIL;
1768         }
1769
1770         return target->type->write_buffer(target, address, size, buffer);
1771 }
1772
1773 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1774 {
1775         int retval = ERROR_OK;
1776
1777         if (((address % 2) == 0) && (size == 2))
1778                 return target_write_memory(target, address, 2, 1, buffer);
1779
1780         /* handle unaligned head bytes */
1781         if (address % 4) {
1782                 uint32_t unaligned = 4 - (address % 4);
1783
1784                 if (unaligned > size)
1785                         unaligned = size;
1786
1787                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1788                 if (retval != ERROR_OK)
1789                         return retval;
1790
1791                 buffer += unaligned;
1792                 address += unaligned;
1793                 size -= unaligned;
1794         }
1795
1796         /* handle aligned words */
1797         if (size >= 4) {
1798                 int aligned = size - (size % 4);
1799
1800                 /* use bulk writes above a certain limit. This may have to be changed */
1801                 if (aligned > 128) {
1802                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1803                         if (retval != ERROR_OK)
1804                                 return retval;
1805                 } else {
1806                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1807                         if (retval != ERROR_OK)
1808                                 return retval;
1809                 }
1810
1811                 buffer += aligned;
1812                 address += aligned;
1813                 size -= aligned;
1814         }
1815
1816         /* handle tail writes of less than 4 bytes */
1817         if (size > 0) {
1818                 retval = target_write_memory(target, address, 1, size, buffer);
1819                 if (retval != ERROR_OK)
1820                         return retval;
1821         }
1822
1823         return retval;
1824 }
1825
1826 /* Single aligned words are guaranteed to use 16 or 32 bit access
1827  * mode respectively, otherwise data is handled as quickly as
1828  * possible
1829  */
1830 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1831 {
1832         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1833                           (int)size, (unsigned)address);
1834
1835         if (!target_was_examined(target)) {
1836                 LOG_ERROR("Target not examined yet");
1837                 return ERROR_FAIL;
1838         }
1839
1840         if (size == 0)
1841                 return ERROR_OK;
1842
1843         if ((address + size - 1) < address) {
1844                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1845                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1846                                   address,
1847                                   size);
1848                 return ERROR_FAIL;
1849         }
1850
1851         return target->type->read_buffer(target, address, size, buffer);
1852 }
1853
1854 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1855 {
1856         int retval = ERROR_OK;
1857
1858         if (((address % 2) == 0) && (size == 2))
1859                 return target_read_memory(target, address, 2, 1, buffer);
1860
1861         /* handle unaligned head bytes */
1862         if (address % 4) {
1863                 uint32_t unaligned = 4 - (address % 4);
1864
1865                 if (unaligned > size)
1866                         unaligned = size;
1867
1868                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1869                 if (retval != ERROR_OK)
1870                         return retval;
1871
1872                 buffer += unaligned;
1873                 address += unaligned;
1874                 size -= unaligned;
1875         }
1876
1877         /* handle aligned words */
1878         if (size >= 4) {
1879                 int aligned = size - (size % 4);
1880
1881                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1882                 if (retval != ERROR_OK)
1883                         return retval;
1884
1885                 buffer += aligned;
1886                 address += aligned;
1887                 size -= aligned;
1888         }
1889
1890         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1891         if (size        >= 2) {
1892                 int aligned = size - (size % 2);
1893                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1894                 if (retval != ERROR_OK)
1895                         return retval;
1896
1897                 buffer += aligned;
1898                 address += aligned;
1899                 size -= aligned;
1900         }
1901         /* handle tail writes of less than 4 bytes */
1902         if (size > 0) {
1903                 retval = target_read_memory(target, address, 1, size, buffer);
1904                 if (retval != ERROR_OK)
1905                         return retval;
1906         }
1907
1908         return ERROR_OK;
1909 }
1910
1911 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1912 {
1913         uint8_t *buffer;
1914         int retval;
1915         uint32_t i;
1916         uint32_t checksum = 0;
1917         if (!target_was_examined(target)) {
1918                 LOG_ERROR("Target not examined yet");
1919                 return ERROR_FAIL;
1920         }
1921
1922         retval = target->type->checksum_memory(target, address, size, &checksum);
1923         if (retval != ERROR_OK) {
1924                 buffer = malloc(size);
1925                 if (buffer == NULL) {
1926                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1927                         return ERROR_COMMAND_SYNTAX_ERROR;
1928                 }
1929                 retval = target_read_buffer(target, address, size, buffer);
1930                 if (retval != ERROR_OK) {
1931                         free(buffer);
1932                         return retval;
1933                 }
1934
1935                 /* convert to target endianness */
1936                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1937                         uint32_t target_data;
1938                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1939                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1940                 }
1941
1942                 retval = image_calculate_checksum(buffer, size, &checksum);
1943                 free(buffer);
1944         }
1945
1946         *crc = checksum;
1947
1948         return retval;
1949 }
1950
1951 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1952 {
1953         int retval;
1954         if (!target_was_examined(target)) {
1955                 LOG_ERROR("Target not examined yet");
1956                 return ERROR_FAIL;
1957         }
1958
1959         if (target->type->blank_check_memory == 0)
1960                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1961
1962         retval = target->type->blank_check_memory(target, address, size, blank);
1963
1964         return retval;
1965 }
1966
1967 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1968 {
1969         uint8_t value_buf[4];
1970         if (!target_was_examined(target)) {
1971                 LOG_ERROR("Target not examined yet");
1972                 return ERROR_FAIL;
1973         }
1974
1975         int retval = target_read_memory(target, address, 4, 1, value_buf);
1976
1977         if (retval == ERROR_OK) {
1978                 *value = target_buffer_get_u32(target, value_buf);
1979                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1980                                   address,
1981                                   *value);
1982         } else {
1983                 *value = 0x0;
1984                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1985                                   address);
1986         }
1987
1988         return retval;
1989 }
1990
1991 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1992 {
1993         uint8_t value_buf[2];
1994         if (!target_was_examined(target)) {
1995                 LOG_ERROR("Target not examined yet");
1996                 return ERROR_FAIL;
1997         }
1998
1999         int retval = target_read_memory(target, address, 2, 1, value_buf);
2000
2001         if (retval == ERROR_OK) {
2002                 *value = target_buffer_get_u16(target, value_buf);
2003                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2004                                   address,
2005                                   *value);
2006         } else {
2007                 *value = 0x0;
2008                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2009                                   address);
2010         }
2011
2012         return retval;
2013 }
2014
2015 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2016 {
2017         int retval = target_read_memory(target, address, 1, 1, value);
2018         if (!target_was_examined(target)) {
2019                 LOG_ERROR("Target not examined yet");
2020                 return ERROR_FAIL;
2021         }
2022
2023         if (retval == ERROR_OK) {
2024                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2025                                   address,
2026                                   *value);
2027         } else {
2028                 *value = 0x0;
2029                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2030                                   address);
2031         }
2032
2033         return retval;
2034 }
2035
2036 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2037 {
2038         int retval;
2039         uint8_t value_buf[4];
2040         if (!target_was_examined(target)) {
2041                 LOG_ERROR("Target not examined yet");
2042                 return ERROR_FAIL;
2043         }
2044
2045         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2046                           address,
2047                           value);
2048
2049         target_buffer_set_u32(target, value_buf, value);
2050         retval = target_write_memory(target, address, 4, 1, value_buf);
2051         if (retval != ERROR_OK)
2052                 LOG_DEBUG("failed: %i", retval);
2053
2054         return retval;
2055 }
2056
2057 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2058 {
2059         int retval;
2060         uint8_t value_buf[2];
2061         if (!target_was_examined(target)) {
2062                 LOG_ERROR("Target not examined yet");
2063                 return ERROR_FAIL;
2064         }
2065
2066         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2067                           address,
2068                           value);
2069
2070         target_buffer_set_u16(target, value_buf, value);
2071         retval = target_write_memory(target, address, 2, 1, value_buf);
2072         if (retval != ERROR_OK)
2073                 LOG_DEBUG("failed: %i", retval);
2074
2075         return retval;
2076 }
2077
2078 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2079 {
2080         int retval;
2081         if (!target_was_examined(target)) {
2082                 LOG_ERROR("Target not examined yet");
2083                 return ERROR_FAIL;
2084         }
2085
2086         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2087                           address, value);
2088
2089         retval = target_write_memory(target, address, 1, 1, &value);
2090         if (retval != ERROR_OK)
2091                 LOG_DEBUG("failed: %i", retval);
2092
2093         return retval;
2094 }
2095
2096 static int find_target(struct command_context *cmd_ctx, const char *name)
2097 {
2098         struct target *target = get_target(name);
2099         if (target == NULL) {
2100                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2101                 return ERROR_FAIL;
2102         }
2103         if (!target->tap->enabled) {
2104                 LOG_USER("Target: TAP %s is disabled, "
2105                          "can't be the current target\n",
2106                          target->tap->dotted_name);
2107                 return ERROR_FAIL;
2108         }
2109
2110         cmd_ctx->current_target = target->target_number;
2111         return ERROR_OK;
2112 }
2113
2114
2115 COMMAND_HANDLER(handle_targets_command)
2116 {
2117         int retval = ERROR_OK;
2118         if (CMD_ARGC == 1) {
2119                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2120                 if (retval == ERROR_OK) {
2121                         /* we're done! */
2122                         return retval;
2123                 }
2124         }
2125
2126         struct target *target = all_targets;
2127         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2128         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2129         while (target) {
2130                 const char *state;
2131                 char marker = ' ';
2132
2133                 if (target->tap->enabled)
2134                         state = target_state_name(target);
2135                 else
2136                         state = "tap-disabled";
2137
2138                 if (CMD_CTX->current_target == target->target_number)
2139                         marker = '*';
2140
2141                 /* keep columns lined up to match the headers above */
2142                 command_print(CMD_CTX,
2143                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2144                                 target->target_number,
2145                                 marker,
2146                                 target_name(target),
2147                                 target_type_name(target),
2148                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2149                                         target->endianness)->name,
2150                                 target->tap->dotted_name,
2151                                 state);
2152                 target = target->next;
2153         }
2154
2155         return retval;
2156 }
2157
2158 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2159
2160 static int powerDropout;
2161 static int srstAsserted;
2162
2163 static int runPowerRestore;
2164 static int runPowerDropout;
2165 static int runSrstAsserted;
2166 static int runSrstDeasserted;
2167
2168 static int sense_handler(void)
2169 {
2170         static int prevSrstAsserted;
2171         static int prevPowerdropout;
2172
2173         int retval = jtag_power_dropout(&powerDropout);
2174         if (retval != ERROR_OK)
2175                 return retval;
2176
2177         int powerRestored;
2178         powerRestored = prevPowerdropout && !powerDropout;
2179         if (powerRestored)
2180                 runPowerRestore = 1;
2181
2182         long long current = timeval_ms();
2183         static long long lastPower;
2184         int waitMore = lastPower + 2000 > current;
2185         if (powerDropout && !waitMore) {
2186                 runPowerDropout = 1;
2187                 lastPower = current;
2188         }
2189
2190         retval = jtag_srst_asserted(&srstAsserted);
2191         if (retval != ERROR_OK)
2192                 return retval;
2193
2194         int srstDeasserted;
2195         srstDeasserted = prevSrstAsserted && !srstAsserted;
2196
2197         static long long lastSrst;
2198         waitMore = lastSrst + 2000 > current;
2199         if (srstDeasserted && !waitMore) {
2200                 runSrstDeasserted = 1;
2201                 lastSrst = current;
2202         }
2203
2204         if (!prevSrstAsserted && srstAsserted)
2205                 runSrstAsserted = 1;
2206
2207         prevSrstAsserted = srstAsserted;
2208         prevPowerdropout = powerDropout;
2209
2210         if (srstDeasserted || powerRestored) {
2211                 /* Other than logging the event we can't do anything here.
2212                  * Issuing a reset is a particularly bad idea as we might
2213                  * be inside a reset already.
2214                  */
2215         }
2216
2217         return ERROR_OK;
2218 }
2219
2220 /* process target state changes */
2221 static int handle_target(void *priv)
2222 {
2223         Jim_Interp *interp = (Jim_Interp *)priv;
2224         int retval = ERROR_OK;
2225
2226         if (!is_jtag_poll_safe()) {
2227                 /* polling is disabled currently */
2228                 return ERROR_OK;
2229         }
2230
2231         /* we do not want to recurse here... */
2232         static int recursive;
2233         if (!recursive) {
2234                 recursive = 1;
2235                 sense_handler();
2236                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2237                  * We need to avoid an infinite loop/recursion here and we do that by
2238                  * clearing the flags after running these events.
2239                  */
2240                 int did_something = 0;
2241                 if (runSrstAsserted) {
2242                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2243                         Jim_Eval(interp, "srst_asserted");
2244                         did_something = 1;
2245                 }
2246                 if (runSrstDeasserted) {
2247                         Jim_Eval(interp, "srst_deasserted");
2248                         did_something = 1;
2249                 }
2250                 if (runPowerDropout) {
2251                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2252                         Jim_Eval(interp, "power_dropout");
2253                         did_something = 1;
2254                 }
2255                 if (runPowerRestore) {
2256                         Jim_Eval(interp, "power_restore");
2257                         did_something = 1;
2258                 }
2259
2260                 if (did_something) {
2261                         /* clear detect flags */
2262                         sense_handler();
2263                 }
2264
2265                 /* clear action flags */
2266
2267                 runSrstAsserted = 0;
2268                 runSrstDeasserted = 0;
2269                 runPowerRestore = 0;
2270                 runPowerDropout = 0;
2271
2272                 recursive = 0;
2273         }
2274
2275         /* Poll targets for state changes unless that's globally disabled.
2276          * Skip targets that are currently disabled.
2277          */
2278         for (struct target *target = all_targets;
2279                         is_jtag_poll_safe() && target;
2280                         target = target->next) {
2281                 if (!target->tap->enabled)
2282                         continue;
2283
2284                 if (target->backoff.times > target->backoff.count) {
2285                         /* do not poll this time as we failed previously */
2286                         target->backoff.count++;
2287                         continue;
2288                 }
2289                 target->backoff.count = 0;
2290
2291                 /* only poll target if we've got power and srst isn't asserted */
2292                 if (!powerDropout && !srstAsserted) {
2293                         /* polling may fail silently until the target has been examined */
2294                         retval = target_poll(target);
2295                         if (retval != ERROR_OK) {
2296                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2297                                 if (target->backoff.times * polling_interval < 5000) {
2298                                         target->backoff.times *= 2;
2299                                         target->backoff.times++;
2300                                 }
2301                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2302                                                 target_name(target),
2303                                                 target->backoff.times * polling_interval);
2304
2305                                 /* Tell GDB to halt the debugger. This allows the user to
2306                                  * run monitor commands to handle the situation.
2307                                  */
2308                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2309                                 return retval;
2310                         }
2311                         /* Since we succeeded, we reset backoff count */
2312                         if (target->backoff.times > 0)
2313                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2314                         target->backoff.times = 0;
2315                 }
2316         }
2317
2318         return retval;
2319 }
2320
2321 COMMAND_HANDLER(handle_reg_command)
2322 {
2323         struct target *target;
2324         struct reg *reg = NULL;
2325         unsigned count = 0;
2326         char *value;
2327
2328         LOG_DEBUG("-");
2329
2330         target = get_current_target(CMD_CTX);
2331
2332         /* list all available registers for the current target */
2333         if (CMD_ARGC == 0) {
2334                 struct reg_cache *cache = target->reg_cache;
2335
2336                 count = 0;
2337                 while (cache) {
2338                         unsigned i;
2339
2340                         command_print(CMD_CTX, "===== %s", cache->name);
2341
2342                         for (i = 0, reg = cache->reg_list;
2343                                         i < cache->num_regs;
2344                                         i++, reg++, count++) {
2345                                 /* only print cached values if they are valid */
2346                                 if (reg->valid) {
2347                                         value = buf_to_str(reg->value,
2348                                                         reg->size, 16);
2349                                         command_print(CMD_CTX,
2350                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2351                                                         count, reg->name,
2352                                                         reg->size, value,
2353                                                         reg->dirty
2354                                                                 ? " (dirty)"
2355                                                                 : "");
2356                                         free(value);
2357                                 } else {
2358                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2359                                                           count, reg->name,
2360                                                           reg->size) ;
2361                                 }
2362                         }
2363                         cache = cache->next;
2364                 }
2365
2366                 return ERROR_OK;
2367         }
2368
2369         /* access a single register by its ordinal number */
2370         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2371                 unsigned num;
2372                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2373
2374                 struct reg_cache *cache = target->reg_cache;
2375                 count = 0;
2376                 while (cache) {
2377                         unsigned i;
2378                         for (i = 0; i < cache->num_regs; i++) {
2379                                 if (count++ == num) {
2380                                         reg = &cache->reg_list[i];
2381                                         break;
2382                                 }
2383                         }
2384                         if (reg)
2385                                 break;
2386                         cache = cache->next;
2387                 }
2388
2389                 if (!reg) {
2390                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2391                                         "has only %i registers (0 - %i)", num, count, count - 1);
2392                         return ERROR_OK;
2393                 }
2394         } else {
2395                 /* access a single register by its name */
2396                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2397
2398                 if (!reg) {
2399                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2400                         return ERROR_OK;
2401                 }
2402         }
2403
2404         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2405
2406         /* display a register */
2407         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2408                         && (CMD_ARGV[1][0] <= '9')))) {
2409                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2410                         reg->valid = 0;
2411
2412                 if (reg->valid == 0)
2413                         reg->type->get(reg);
2414                 value = buf_to_str(reg->value, reg->size, 16);
2415                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2416                 free(value);
2417                 return ERROR_OK;
2418         }
2419
2420         /* set register value */
2421         if (CMD_ARGC == 2) {
2422                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2423                 if (buf == NULL)
2424                         return ERROR_FAIL;
2425                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2426
2427                 reg->type->set(reg, buf);
2428
2429                 value = buf_to_str(reg->value, reg->size, 16);
2430                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2431                 free(value);
2432
2433                 free(buf);
2434
2435                 return ERROR_OK;
2436         }
2437
2438         return ERROR_COMMAND_SYNTAX_ERROR;
2439 }
2440
2441 COMMAND_HANDLER(handle_poll_command)
2442 {
2443         int retval = ERROR_OK;
2444         struct target *target = get_current_target(CMD_CTX);
2445
2446         if (CMD_ARGC == 0) {
2447                 command_print(CMD_CTX, "background polling: %s",
2448                                 jtag_poll_get_enabled() ? "on" : "off");
2449                 command_print(CMD_CTX, "TAP: %s (%s)",
2450                                 target->tap->dotted_name,
2451                                 target->tap->enabled ? "enabled" : "disabled");
2452                 if (!target->tap->enabled)
2453                         return ERROR_OK;
2454                 retval = target_poll(target);
2455                 if (retval != ERROR_OK)
2456                         return retval;
2457                 retval = target_arch_state(target);
2458                 if (retval != ERROR_OK)
2459                         return retval;
2460         } else if (CMD_ARGC == 1) {
2461                 bool enable;
2462                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2463                 jtag_poll_set_enabled(enable);
2464         } else
2465                 return ERROR_COMMAND_SYNTAX_ERROR;
2466
2467         return retval;
2468 }
2469
2470 COMMAND_HANDLER(handle_wait_halt_command)
2471 {
2472         if (CMD_ARGC > 1)
2473                 return ERROR_COMMAND_SYNTAX_ERROR;
2474
2475         unsigned ms = DEFAULT_HALT_TIMEOUT;
2476         if (1 == CMD_ARGC) {
2477                 int retval = parse_uint(CMD_ARGV[0], &ms);
2478                 if (ERROR_OK != retval)
2479                         return ERROR_COMMAND_SYNTAX_ERROR;
2480         }
2481
2482         struct target *target = get_current_target(CMD_CTX);
2483         return target_wait_state(target, TARGET_HALTED, ms);
2484 }
2485
2486 /* wait for target state to change. The trick here is to have a low
2487  * latency for short waits and not to suck up all the CPU time
2488  * on longer waits.
2489  *
2490  * After 500ms, keep_alive() is invoked
2491  */
2492 int target_wait_state(struct target *target, enum target_state state, int ms)
2493 {
2494         int retval;
2495         long long then = 0, cur;
2496         int once = 1;
2497
2498         for (;;) {
2499                 retval = target_poll(target);
2500                 if (retval != ERROR_OK)
2501                         return retval;
2502                 if (target->state == state)
2503                         break;
2504                 cur = timeval_ms();
2505                 if (once) {
2506                         once = 0;
2507                         then = timeval_ms();
2508                         LOG_DEBUG("waiting for target %s...",
2509                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2510                 }
2511
2512                 if (cur-then > 500)
2513                         keep_alive();
2514
2515                 if ((cur-then) > ms) {
2516                         LOG_ERROR("timed out while waiting for target %s",
2517                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2518                         return ERROR_FAIL;
2519                 }
2520         }
2521
2522         return ERROR_OK;
2523 }
2524
2525 COMMAND_HANDLER(handle_halt_command)
2526 {
2527         LOG_DEBUG("-");
2528
2529         struct target *target = get_current_target(CMD_CTX);
2530         int retval = target_halt(target);
2531         if (ERROR_OK != retval)
2532                 return retval;
2533
2534         if (CMD_ARGC == 1) {
2535                 unsigned wait_local;
2536                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2537                 if (ERROR_OK != retval)
2538                         return ERROR_COMMAND_SYNTAX_ERROR;
2539                 if (!wait_local)
2540                         return ERROR_OK;
2541         }
2542
2543         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2544 }
2545
2546 COMMAND_HANDLER(handle_soft_reset_halt_command)
2547 {
2548         struct target *target = get_current_target(CMD_CTX);
2549
2550         LOG_USER("requesting target halt and executing a soft reset");
2551
2552         target_soft_reset_halt(target);
2553
2554         return ERROR_OK;
2555 }
2556
2557 COMMAND_HANDLER(handle_reset_command)
2558 {
2559         if (CMD_ARGC > 1)
2560                 return ERROR_COMMAND_SYNTAX_ERROR;
2561
2562         enum target_reset_mode reset_mode = RESET_RUN;
2563         if (CMD_ARGC == 1) {
2564                 const Jim_Nvp *n;
2565                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2566                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2567                         return ERROR_COMMAND_SYNTAX_ERROR;
2568                 reset_mode = n->value;
2569         }
2570
2571         /* reset *all* targets */
2572         return target_process_reset(CMD_CTX, reset_mode);
2573 }
2574
2575
2576 COMMAND_HANDLER(handle_resume_command)
2577 {
2578         int current = 1;
2579         if (CMD_ARGC > 1)
2580                 return ERROR_COMMAND_SYNTAX_ERROR;
2581
2582         struct target *target = get_current_target(CMD_CTX);
2583
2584         /* with no CMD_ARGV, resume from current pc, addr = 0,
2585          * with one arguments, addr = CMD_ARGV[0],
2586          * handle breakpoints, not debugging */
2587         uint32_t addr = 0;
2588         if (CMD_ARGC == 1) {
2589                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2590                 current = 0;
2591         }
2592
2593         return target_resume(target, current, addr, 1, 0);
2594 }
2595
2596 COMMAND_HANDLER(handle_step_command)
2597 {
2598         if (CMD_ARGC > 1)
2599                 return ERROR_COMMAND_SYNTAX_ERROR;
2600
2601         LOG_DEBUG("-");
2602
2603         /* with no CMD_ARGV, step from current pc, addr = 0,
2604          * with one argument addr = CMD_ARGV[0],
2605          * handle breakpoints, debugging */
2606         uint32_t addr = 0;
2607         int current_pc = 1;
2608         if (CMD_ARGC == 1) {
2609                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2610                 current_pc = 0;
2611         }
2612
2613         struct target *target = get_current_target(CMD_CTX);
2614
2615         return target->type->step(target, current_pc, addr, 1);
2616 }
2617
2618 static void handle_md_output(struct command_context *cmd_ctx,
2619                 struct target *target, uint32_t address, unsigned size,
2620                 unsigned count, const uint8_t *buffer)
2621 {
2622         const unsigned line_bytecnt = 32;
2623         unsigned line_modulo = line_bytecnt / size;
2624
2625         char output[line_bytecnt * 4 + 1];
2626         unsigned output_len = 0;
2627
2628         const char *value_fmt;
2629         switch (size) {
2630         case 4:
2631                 value_fmt = "%8.8x ";
2632                 break;
2633         case 2:
2634                 value_fmt = "%4.4x ";
2635                 break;
2636         case 1:
2637                 value_fmt = "%2.2x ";
2638                 break;
2639         default:
2640                 /* "can't happen", caller checked */
2641                 LOG_ERROR("invalid memory read size: %u", size);
2642                 return;
2643         }
2644
2645         for (unsigned i = 0; i < count; i++) {
2646                 if (i % line_modulo == 0) {
2647                         output_len += snprintf(output + output_len,
2648                                         sizeof(output) - output_len,
2649                                         "0x%8.8x: ",
2650                                         (unsigned)(address + (i*size)));
2651                 }
2652
2653                 uint32_t value = 0;
2654                 const uint8_t *value_ptr = buffer + i * size;
2655                 switch (size) {
2656                 case 4:
2657                         value = target_buffer_get_u32(target, value_ptr);
2658                         break;
2659                 case 2:
2660                         value = target_buffer_get_u16(target, value_ptr);
2661                         break;
2662                 case 1:
2663                         value = *value_ptr;
2664                 }
2665                 output_len += snprintf(output + output_len,
2666                                 sizeof(output) - output_len,
2667                                 value_fmt, value);
2668
2669                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2670                         command_print(cmd_ctx, "%s", output);
2671                         output_len = 0;
2672                 }
2673         }
2674 }
2675
2676 COMMAND_HANDLER(handle_md_command)
2677 {
2678         if (CMD_ARGC < 1)
2679                 return ERROR_COMMAND_SYNTAX_ERROR;
2680
2681         unsigned size = 0;
2682         switch (CMD_NAME[2]) {
2683         case 'w':
2684                 size = 4;
2685                 break;
2686         case 'h':
2687                 size = 2;
2688                 break;
2689         case 'b':
2690                 size = 1;
2691                 break;
2692         default:
2693                 return ERROR_COMMAND_SYNTAX_ERROR;
2694         }
2695
2696         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2697         int (*fn)(struct target *target,
2698                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2699         if (physical) {
2700                 CMD_ARGC--;
2701                 CMD_ARGV++;
2702                 fn = target_read_phys_memory;
2703         } else
2704                 fn = target_read_memory;
2705         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2706                 return ERROR_COMMAND_SYNTAX_ERROR;
2707
2708         uint32_t address;
2709         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2710
2711         unsigned count = 1;
2712         if (CMD_ARGC == 2)
2713                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2714
2715         uint8_t *buffer = calloc(count, size);
2716
2717         struct target *target = get_current_target(CMD_CTX);
2718         int retval = fn(target, address, size, count, buffer);
2719         if (ERROR_OK == retval)
2720                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2721
2722         free(buffer);
2723
2724         return retval;
2725 }
2726
2727 typedef int (*target_write_fn)(struct target *target,
2728                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2729
2730 static int target_write_memory_fast(struct target *target,
2731                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2732 {
2733         return target_write_buffer(target, address, size * count, buffer);
2734 }
2735
2736 static int target_fill_mem(struct target *target,
2737                 uint32_t address,
2738                 target_write_fn fn,
2739                 unsigned data_size,
2740                 /* value */
2741                 uint32_t b,
2742                 /* count */
2743                 unsigned c)
2744 {
2745         /* We have to write in reasonably large chunks to be able
2746          * to fill large memory areas with any sane speed */
2747         const unsigned chunk_size = 16384;
2748         uint8_t *target_buf = malloc(chunk_size * data_size);
2749         if (target_buf == NULL) {
2750                 LOG_ERROR("Out of memory");
2751                 return ERROR_FAIL;
2752         }
2753
2754         for (unsigned i = 0; i < chunk_size; i++) {
2755                 switch (data_size) {
2756                 case 4:
2757                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2758                         break;
2759                 case 2:
2760                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2761                         break;
2762                 case 1:
2763                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2764                         break;
2765                 default:
2766                         exit(-1);
2767                 }
2768         }
2769
2770         int retval = ERROR_OK;
2771
2772         for (unsigned x = 0; x < c; x += chunk_size) {
2773                 unsigned current;
2774                 current = c - x;
2775                 if (current > chunk_size)
2776                         current = chunk_size;
2777                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2778                 if (retval != ERROR_OK)
2779                         break;
2780                 /* avoid GDB timeouts */
2781                 keep_alive();
2782         }
2783         free(target_buf);
2784
2785         return retval;
2786 }
2787
2788
2789 COMMAND_HANDLER(handle_mw_command)
2790 {
2791         if (CMD_ARGC < 2)
2792                 return ERROR_COMMAND_SYNTAX_ERROR;
2793         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2794         target_write_fn fn;
2795         if (physical) {
2796                 CMD_ARGC--;
2797                 CMD_ARGV++;
2798                 fn = target_write_phys_memory;
2799         } else
2800                 fn = target_write_memory_fast;
2801         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2802                 return ERROR_COMMAND_SYNTAX_ERROR;
2803
2804         uint32_t address;
2805         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2806
2807         uint32_t value;
2808         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2809
2810         unsigned count = 1;
2811         if (CMD_ARGC == 3)
2812                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2813
2814         struct target *target = get_current_target(CMD_CTX);
2815         unsigned wordsize;
2816         switch (CMD_NAME[2]) {
2817                 case 'w':
2818                         wordsize = 4;
2819                         break;
2820                 case 'h':
2821                         wordsize = 2;
2822                         break;
2823                 case 'b':
2824                         wordsize = 1;
2825                         break;
2826                 default:
2827                         return ERROR_COMMAND_SYNTAX_ERROR;
2828         }
2829
2830         return target_fill_mem(target, address, fn, wordsize, value, count);
2831 }
2832
2833 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2834                 uint32_t *min_address, uint32_t *max_address)
2835 {
2836         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2837                 return ERROR_COMMAND_SYNTAX_ERROR;
2838
2839         /* a base address isn't always necessary,
2840          * default to 0x0 (i.e. don't relocate) */
2841         if (CMD_ARGC >= 2) {
2842                 uint32_t addr;
2843                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2844                 image->base_address = addr;
2845                 image->base_address_set = 1;
2846         } else
2847                 image->base_address_set = 0;
2848
2849         image->start_address_set = 0;
2850
2851         if (CMD_ARGC >= 4)
2852                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2853         if (CMD_ARGC == 5) {
2854                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2855                 /* use size (given) to find max (required) */
2856                 *max_address += *min_address;
2857         }
2858
2859         if (*min_address > *max_address)
2860                 return ERROR_COMMAND_SYNTAX_ERROR;
2861
2862         return ERROR_OK;
2863 }
2864
2865 COMMAND_HANDLER(handle_load_image_command)
2866 {
2867         uint8_t *buffer;
2868         size_t buf_cnt;
2869         uint32_t image_size;
2870         uint32_t min_address = 0;
2871         uint32_t max_address = 0xffffffff;
2872         int i;
2873         struct image image;
2874
2875         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2876                         &image, &min_address, &max_address);
2877         if (ERROR_OK != retval)
2878                 return retval;
2879
2880         struct target *target = get_current_target(CMD_CTX);
2881
2882         struct duration bench;
2883         duration_start(&bench);
2884
2885         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2886                 return ERROR_OK;
2887
2888         image_size = 0x0;
2889         retval = ERROR_OK;
2890         for (i = 0; i < image.num_sections; i++) {
2891                 buffer = malloc(image.sections[i].size);
2892                 if (buffer == NULL) {
2893                         command_print(CMD_CTX,
2894                                                   "error allocating buffer for section (%d bytes)",
2895                                                   (int)(image.sections[i].size));
2896                         break;
2897                 }
2898
2899                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2900                 if (retval != ERROR_OK) {
2901                         free(buffer);
2902                         break;
2903                 }
2904
2905                 uint32_t offset = 0;
2906                 uint32_t length = buf_cnt;
2907
2908                 /* DANGER!!! beware of unsigned comparision here!!! */
2909
2910                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2911                                 (image.sections[i].base_address < max_address)) {
2912
2913                         if (image.sections[i].base_address < min_address) {
2914                                 /* clip addresses below */
2915                                 offset += min_address-image.sections[i].base_address;
2916                                 length -= offset;
2917                         }
2918
2919                         if (image.sections[i].base_address + buf_cnt > max_address)
2920                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2921
2922                         retval = target_write_buffer(target,
2923                                         image.sections[i].base_address + offset, length, buffer + offset);
2924                         if (retval != ERROR_OK) {
2925                                 free(buffer);
2926                                 break;
2927                         }
2928                         image_size += length;
2929                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2930                                         (unsigned int)length,
2931                                         image.sections[i].base_address + offset);
2932                 }
2933
2934                 free(buffer);
2935         }
2936
2937         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2938                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2939                                 "in %fs (%0.3f KiB/s)", image_size,
2940                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2941         }
2942
2943         image_close(&image);
2944
2945         return retval;
2946
2947 }
2948
2949 COMMAND_HANDLER(handle_dump_image_command)
2950 {
2951         struct fileio fileio;
2952         uint8_t *buffer;
2953         int retval, retvaltemp;
2954         uint32_t address, size;
2955         struct duration bench;
2956         struct target *target = get_current_target(CMD_CTX);
2957
2958         if (CMD_ARGC != 3)
2959                 return ERROR_COMMAND_SYNTAX_ERROR;
2960
2961         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2962         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2963
2964         uint32_t buf_size = (size > 4096) ? 4096 : size;
2965         buffer = malloc(buf_size);
2966         if (!buffer)
2967                 return ERROR_FAIL;
2968
2969         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2970         if (retval != ERROR_OK) {
2971                 free(buffer);
2972                 return retval;
2973         }
2974
2975         duration_start(&bench);
2976
2977         while (size > 0) {
2978                 size_t size_written;
2979                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2980                 retval = target_read_buffer(target, address, this_run_size, buffer);
2981                 if (retval != ERROR_OK)
2982                         break;
2983
2984                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2985                 if (retval != ERROR_OK)
2986                         break;
2987
2988                 size -= this_run_size;
2989                 address += this_run_size;
2990         }
2991
2992         free(buffer);
2993
2994         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2995                 int filesize;
2996                 retval = fileio_size(&fileio, &filesize);
2997                 if (retval != ERROR_OK)
2998                         return retval;
2999                 command_print(CMD_CTX,
3000                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3001                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3002         }
3003
3004         retvaltemp = fileio_close(&fileio);
3005         if (retvaltemp != ERROR_OK)
3006                 return retvaltemp;
3007
3008         return retval;
3009 }
3010
3011 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3012 {
3013         uint8_t *buffer;
3014         size_t buf_cnt;
3015         uint32_t image_size;
3016         int i;
3017         int retval;
3018         uint32_t checksum = 0;
3019         uint32_t mem_checksum = 0;
3020
3021         struct image image;
3022
3023         struct target *target = get_current_target(CMD_CTX);
3024
3025         if (CMD_ARGC < 1)
3026                 return ERROR_COMMAND_SYNTAX_ERROR;
3027
3028         if (!target) {
3029                 LOG_ERROR("no target selected");
3030                 return ERROR_FAIL;
3031         }
3032
3033         struct duration bench;
3034         duration_start(&bench);
3035
3036         if (CMD_ARGC >= 2) {
3037                 uint32_t addr;
3038                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3039                 image.base_address = addr;
3040                 image.base_address_set = 1;
3041         } else {
3042                 image.base_address_set = 0;
3043                 image.base_address = 0x0;
3044         }
3045
3046         image.start_address_set = 0;
3047
3048         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3049         if (retval != ERROR_OK)
3050                 return retval;
3051
3052         image_size = 0x0;
3053         int diffs = 0;
3054         retval = ERROR_OK;
3055         for (i = 0; i < image.num_sections; i++) {
3056                 buffer = malloc(image.sections[i].size);
3057                 if (buffer == NULL) {
3058                         command_print(CMD_CTX,
3059                                         "error allocating buffer for section (%d bytes)",
3060                                         (int)(image.sections[i].size));
3061                         break;
3062                 }
3063                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3064                 if (retval != ERROR_OK) {
3065                         free(buffer);
3066                         break;
3067                 }
3068
3069                 if (verify) {
3070                         /* calculate checksum of image */
3071                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3072                         if (retval != ERROR_OK) {
3073                                 free(buffer);
3074                                 break;
3075                         }
3076
3077                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3078                         if (retval != ERROR_OK) {
3079                                 free(buffer);
3080                                 break;
3081                         }
3082
3083                         if (checksum != mem_checksum) {
3084                                 /* failed crc checksum, fall back to a binary compare */
3085                                 uint8_t *data;
3086
3087                                 if (diffs == 0)
3088                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3089
3090                                 data = (uint8_t *)malloc(buf_cnt);
3091
3092                                 /* Can we use 32bit word accesses? */
3093                                 int size = 1;
3094                                 int count = buf_cnt;
3095                                 if ((count % 4) == 0) {
3096                                         size *= 4;
3097                                         count /= 4;
3098                                 }
3099                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3100                                 if (retval == ERROR_OK) {
3101                                         uint32_t t;
3102                                         for (t = 0; t < buf_cnt; t++) {
3103                                                 if (data[t] != buffer[t]) {
3104                                                         command_print(CMD_CTX,
3105                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3106                                                                                   diffs,
3107                                                                                   (unsigned)(t + image.sections[i].base_address),
3108                                                                                   data[t],
3109                                                                                   buffer[t]);
3110                                                         if (diffs++ >= 127) {
3111                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3112                                                                 free(data);
3113                                                                 free(buffer);
3114                                                                 goto done;
3115                                                         }
3116                                                 }
3117                                                 keep_alive();
3118                                         }
3119                                 }
3120                                 free(data);
3121                         }
3122                 } else {
3123                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3124                                                   image.sections[i].base_address,
3125                                                   buf_cnt);
3126                 }
3127
3128                 free(buffer);
3129                 image_size += buf_cnt;
3130         }
3131         if (diffs > 0)
3132                 command_print(CMD_CTX, "No more differences found.");
3133 done:
3134         if (diffs > 0)
3135                 retval = ERROR_FAIL;
3136         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3137                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3138                                 "in %fs (%0.3f KiB/s)", image_size,
3139                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3140         }
3141
3142         image_close(&image);
3143
3144         return retval;
3145 }
3146
3147 COMMAND_HANDLER(handle_verify_image_command)
3148 {
3149         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3150 }
3151
3152 COMMAND_HANDLER(handle_test_image_command)
3153 {
3154         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3155 }
3156
3157 static int handle_bp_command_list(struct command_context *cmd_ctx)
3158 {
3159         struct target *target = get_current_target(cmd_ctx);
3160         struct breakpoint *breakpoint = target->breakpoints;
3161         while (breakpoint) {
3162                 if (breakpoint->type == BKPT_SOFT) {
3163                         char *buf = buf_to_str(breakpoint->orig_instr,
3164                                         breakpoint->length, 16);
3165                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3166                                         breakpoint->address,
3167                                         breakpoint->length,
3168                                         breakpoint->set, buf);
3169                         free(buf);
3170                 } else {
3171                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3172                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3173                                                         breakpoint->asid,
3174                                                         breakpoint->length, breakpoint->set);
3175                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3176                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3177                                                         breakpoint->address,
3178                                                         breakpoint->length, breakpoint->set);
3179                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3180                                                         breakpoint->asid);
3181                         } else
3182                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3183                                                         breakpoint->address,
3184                                                         breakpoint->length, breakpoint->set);
3185                 }
3186
3187                 breakpoint = breakpoint->next;
3188         }
3189         return ERROR_OK;
3190 }
3191
3192 static int handle_bp_command_set(struct command_context *cmd_ctx,
3193                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3194 {
3195         struct target *target = get_current_target(cmd_ctx);
3196
3197         if (asid == 0) {
3198                 int retval = breakpoint_add(target, addr, length, hw);
3199                 if (ERROR_OK == retval)
3200                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3201                 else {
3202                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3203                         return retval;
3204                 }
3205         } else if (addr == 0) {
3206                 int retval = context_breakpoint_add(target, asid, length, hw);
3207                 if (ERROR_OK == retval)
3208                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3209                 else {
3210                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3211                         return retval;
3212                 }
3213         } else {
3214                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3215                 if (ERROR_OK == retval)
3216                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3217                 else {
3218                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3219                         return retval;
3220                 }
3221         }
3222         return ERROR_OK;
3223 }
3224
3225 COMMAND_HANDLER(handle_bp_command)
3226 {
3227         uint32_t addr;
3228         uint32_t asid;
3229         uint32_t length;
3230         int hw = BKPT_SOFT;
3231
3232         switch (CMD_ARGC) {
3233                 case 0:
3234                         return handle_bp_command_list(CMD_CTX);
3235
3236                 case 2:
3237                         asid = 0;
3238                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3239                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3240                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3241
3242                 case 3:
3243                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3244                                 hw = BKPT_HARD;
3245                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3246
3247                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3248
3249                                 asid = 0;
3250                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3251                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3252                                 hw = BKPT_HARD;
3253                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3254                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3255                                 addr = 0;
3256                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3257                         }
3258
3259                 case 4:
3260                         hw = BKPT_HARD;
3261                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3262                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3263                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3264                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3265
3266                 default:
3267                         return ERROR_COMMAND_SYNTAX_ERROR;
3268         }
3269 }
3270
3271 COMMAND_HANDLER(handle_rbp_command)
3272 {
3273         if (CMD_ARGC != 1)
3274                 return ERROR_COMMAND_SYNTAX_ERROR;
3275
3276         uint32_t addr;
3277         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3278
3279         struct target *target = get_current_target(CMD_CTX);
3280         breakpoint_remove(target, addr);
3281
3282         return ERROR_OK;
3283 }
3284
3285 COMMAND_HANDLER(handle_wp_command)
3286 {
3287         struct target *target = get_current_target(CMD_CTX);
3288
3289         if (CMD_ARGC == 0) {
3290                 struct watchpoint *watchpoint = target->watchpoints;
3291
3292                 while (watchpoint) {
3293                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3294                                         ", len: 0x%8.8" PRIx32
3295                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3296                                         ", mask: 0x%8.8" PRIx32,
3297                                         watchpoint->address,
3298                                         watchpoint->length,
3299                                         (int)watchpoint->rw,
3300                                         watchpoint->value,
3301                                         watchpoint->mask);
3302                         watchpoint = watchpoint->next;
3303                 }
3304                 return ERROR_OK;
3305         }
3306
3307         enum watchpoint_rw type = WPT_ACCESS;
3308         uint32_t addr = 0;
3309         uint32_t length = 0;
3310         uint32_t data_value = 0x0;
3311         uint32_t data_mask = 0xffffffff;
3312
3313         switch (CMD_ARGC) {
3314         case 5:
3315                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3316                 /* fall through */
3317         case 4:
3318                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3319                 /* fall through */
3320         case 3:
3321                 switch (CMD_ARGV[2][0]) {
3322                 case 'r':
3323                         type = WPT_READ;
3324                         break;
3325                 case 'w':
3326                         type = WPT_WRITE;
3327                         break;
3328                 case 'a':
3329                         type = WPT_ACCESS;
3330                         break;
3331                 default:
3332                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3333                         return ERROR_COMMAND_SYNTAX_ERROR;
3334                 }
3335                 /* fall through */
3336         case 2:
3337                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3338                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3339                 break;
3340
3341         default:
3342                 return ERROR_COMMAND_SYNTAX_ERROR;
3343         }
3344
3345         int retval = watchpoint_add(target, addr, length, type,
3346                         data_value, data_mask);
3347         if (ERROR_OK != retval)
3348                 LOG_ERROR("Failure setting watchpoints");
3349
3350         return retval;
3351 }
3352
3353 COMMAND_HANDLER(handle_rwp_command)
3354 {
3355         if (CMD_ARGC != 1)
3356                 return ERROR_COMMAND_SYNTAX_ERROR;
3357
3358         uint32_t addr;
3359         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3360
3361         struct target *target = get_current_target(CMD_CTX);
3362         watchpoint_remove(target, addr);
3363
3364         return ERROR_OK;
3365 }
3366
3367 /**
3368  * Translate a virtual address to a physical address.
3369  *
3370  * The low-level target implementation must have logged a detailed error
3371  * which is forwarded to telnet/GDB session.
3372  */
3373 COMMAND_HANDLER(handle_virt2phys_command)
3374 {
3375         if (CMD_ARGC != 1)
3376                 return ERROR_COMMAND_SYNTAX_ERROR;
3377
3378         uint32_t va;
3379         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3380         uint32_t pa;
3381
3382         struct target *target = get_current_target(CMD_CTX);
3383         int retval = target->type->virt2phys(target, va, &pa);
3384         if (retval == ERROR_OK)
3385                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3386
3387         return retval;
3388 }
3389
3390 static void writeData(FILE *f, const void *data, size_t len)
3391 {
3392         size_t written = fwrite(data, 1, len, f);
3393         if (written != len)
3394                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3395 }
3396
3397 static void writeLong(FILE *f, int l)
3398 {
3399         int i;
3400         for (i = 0; i < 4; i++) {
3401                 char c = (l >> (i*8))&0xff;
3402                 writeData(f, &c, 1);
3403         }
3404
3405 }
3406
3407 static void writeString(FILE *f, char *s)
3408 {
3409         writeData(f, s, strlen(s));
3410 }
3411
3412 /* Dump a gmon.out histogram file. */
3413 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3414 {
3415         uint32_t i;
3416         FILE *f = fopen(filename, "w");
3417         if (f == NULL)
3418                 return;
3419         writeString(f, "gmon");
3420         writeLong(f, 0x00000001); /* Version */
3421         writeLong(f, 0); /* padding */
3422         writeLong(f, 0); /* padding */
3423         writeLong(f, 0); /* padding */
3424
3425         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3426         writeData(f, &zero, 1);
3427
3428         /* figure out bucket size */
3429         uint32_t min = samples[0];
3430         uint32_t max = samples[0];
3431         for (i = 0; i < sampleNum; i++) {
3432                 if (min > samples[i])
3433                         min = samples[i];
3434                 if (max < samples[i])
3435                         max = samples[i];
3436         }
3437
3438         int addressSpace = (max - min + 1);
3439         assert(addressSpace >= 2);
3440
3441         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3442         uint32_t length = addressSpace;
3443         if (length > maxBuckets)
3444                 length = maxBuckets;
3445         int *buckets = malloc(sizeof(int)*length);
3446         if (buckets == NULL) {
3447                 fclose(f);
3448                 return;
3449         }
3450         memset(buckets, 0, sizeof(int) * length);
3451         for (i = 0; i < sampleNum; i++) {
3452                 uint32_t address = samples[i];
3453                 long long a = address - min;
3454                 long long b = length - 1;
3455                 long long c = addressSpace - 1;
3456                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3457                 buckets[index_t]++;
3458         }
3459
3460         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3461         writeLong(f, min);                      /* low_pc */
3462         writeLong(f, max);                      /* high_pc */
3463         writeLong(f, length);           /* # of samples */
3464         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3465         writeString(f, "seconds");
3466         for (i = 0; i < (15-strlen("seconds")); i++)
3467                 writeData(f, &zero, 1);
3468         writeString(f, "s");
3469
3470         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3471
3472         char *data = malloc(2 * length);
3473         if (data != NULL) {
3474                 for (i = 0; i < length; i++) {
3475                         int val;
3476                         val = buckets[i];
3477                         if (val > 65535)
3478                                 val = 65535;
3479                         data[i * 2] = val&0xff;
3480                         data[i * 2 + 1] = (val >> 8) & 0xff;
3481                 }
3482                 free(buckets);
3483                 writeData(f, data, length * 2);
3484                 free(data);
3485         } else
3486                 free(buckets);
3487
3488         fclose(f);
3489 }
3490
3491 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3492  * which will be used as a random sampling of PC */
3493 COMMAND_HANDLER(handle_profile_command)
3494 {
3495         struct target *target = get_current_target(CMD_CTX);
3496         struct timeval timeout, now;
3497
3498         gettimeofday(&timeout, NULL);
3499         if (CMD_ARGC != 2)
3500                 return ERROR_COMMAND_SYNTAX_ERROR;
3501         unsigned offset;
3502         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3503
3504         timeval_add_time(&timeout, offset, 0);
3505
3506         /**
3507          * @todo: Some cores let us sample the PC without the
3508          * annoying halt/resume step; for example, ARMv7 PCSR.
3509          * Provide a way to use that more efficient mechanism.
3510          */
3511
3512         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3513
3514         static const int maxSample = 10000;
3515         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3516         if (samples == NULL)
3517                 return ERROR_OK;
3518
3519         int numSamples = 0;
3520         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3521         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3522
3523         int retval = ERROR_OK;
3524         for (;;) {
3525                 target_poll(target);
3526                 if (target->state == TARGET_HALTED) {
3527                         uint32_t t = *((uint32_t *)reg->value);
3528                         samples[numSamples++] = t;
3529                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3530                         retval = target_resume(target, 1, 0, 0, 0);
3531                         target_poll(target);
3532                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3533                 } else if (target->state == TARGET_RUNNING) {
3534                         /* We want to quickly sample the PC. */
3535                         retval = target_halt(target);
3536                         if (retval != ERROR_OK) {
3537                                 free(samples);
3538                                 return retval;
3539                         }
3540                 } else {
3541                         command_print(CMD_CTX, "Target not halted or running");
3542                         retval = ERROR_OK;
3543                         break;
3544                 }
3545                 if (retval != ERROR_OK)
3546                         break;
3547
3548                 gettimeofday(&now, NULL);
3549                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3550                                 && (now.tv_usec >= timeout.tv_usec))) {
3551                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3552                         retval = target_poll(target);
3553                         if (retval != ERROR_OK) {
3554                                 free(samples);
3555                                 return retval;
3556                         }
3557                         if (target->state == TARGET_HALTED) {
3558                                 /* current pc, addr = 0, do not handle
3559                                  * breakpoints, not debugging */
3560                                 target_resume(target, 1, 0, 0, 0);
3561                         }
3562                         retval = target_poll(target);
3563                         if (retval != ERROR_OK) {
3564                                 free(samples);
3565                                 return retval;
3566                         }
3567                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3568                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3569                         break;
3570                 }
3571         }
3572         free(samples);
3573
3574         return retval;
3575 }
3576
3577 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3578 {
3579         char *namebuf;
3580         Jim_Obj *nameObjPtr, *valObjPtr;
3581         int result;
3582
3583         namebuf = alloc_printf("%s(%d)", varname, idx);
3584         if (!namebuf)
3585                 return JIM_ERR;
3586
3587         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3588         valObjPtr = Jim_NewIntObj(interp, val);
3589         if (!nameObjPtr || !valObjPtr) {
3590                 free(namebuf);
3591                 return JIM_ERR;
3592         }
3593
3594         Jim_IncrRefCount(nameObjPtr);
3595         Jim_IncrRefCount(valObjPtr);
3596         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3597         Jim_DecrRefCount(interp, nameObjPtr);
3598         Jim_DecrRefCount(interp, valObjPtr);
3599         free(namebuf);
3600         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3601         return result;
3602 }
3603
3604 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3605 {
3606         struct command_context *context;
3607         struct target *target;
3608
3609         context = current_command_context(interp);
3610         assert(context != NULL);
3611
3612         target = get_current_target(context);
3613         if (target == NULL) {
3614                 LOG_ERROR("mem2array: no current target");
3615                 return JIM_ERR;
3616         }
3617
3618         return target_mem2array(interp, target, argc - 1, argv + 1);
3619 }
3620
3621 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3622 {
3623         long l;
3624         uint32_t width;
3625         int len;
3626         uint32_t addr;
3627         uint32_t count;
3628         uint32_t v;
3629         const char *varname;
3630         int  n, e, retval;
3631         uint32_t i;
3632
3633         /* argv[1] = name of array to receive the data
3634          * argv[2] = desired width
3635          * argv[3] = memory address
3636          * argv[4] = count of times to read
3637          */
3638         if (argc != 4) {
3639                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3640                 return JIM_ERR;
3641         }
3642         varname = Jim_GetString(argv[0], &len);
3643         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3644
3645         e = Jim_GetLong(interp, argv[1], &l);
3646         width = l;
3647         if (e != JIM_OK)
3648                 return e;
3649
3650         e = Jim_GetLong(interp, argv[2], &l);
3651         addr = l;
3652         if (e != JIM_OK)
3653                 return e;
3654         e = Jim_GetLong(interp, argv[3], &l);
3655         len = l;
3656         if (e != JIM_OK)
3657                 return e;
3658         switch (width) {
3659                 case 8:
3660                         width = 1;
3661                         break;
3662                 case 16:
3663                         width = 2;
3664                         break;
3665                 case 32:
3666                         width = 4;
3667                         break;
3668                 default:
3669                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3670                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3671                         return JIM_ERR;
3672         }
3673         if (len == 0) {
3674                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3675                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3676                 return JIM_ERR;
3677         }
3678         if ((addr + (len * width)) < addr) {
3679                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3680                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3681                 return JIM_ERR;
3682         }
3683         /* absurd transfer size? */
3684         if (len > 65536) {
3685                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3686                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3687                 return JIM_ERR;
3688         }
3689
3690         if ((width == 1) ||
3691                 ((width == 2) && ((addr & 1) == 0)) ||
3692                 ((width == 4) && ((addr & 3) == 0))) {
3693                 /* all is well */
3694         } else {
3695                 char buf[100];
3696                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3697                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3698                                 addr,
3699                                 width);
3700                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3701                 return JIM_ERR;
3702         }
3703
3704         /* Transfer loop */
3705
3706         /* index counter */
3707         n = 0;
3708
3709         size_t buffersize = 4096;
3710         uint8_t *buffer = malloc(buffersize);
3711         if (buffer == NULL)
3712                 return JIM_ERR;
3713
3714         /* assume ok */
3715         e = JIM_OK;
3716         while (len) {
3717                 /* Slurp... in buffer size chunks */
3718
3719                 count = len; /* in objects.. */
3720                 if (count > (buffersize / width))
3721                         count = (buffersize / width);
3722
3723                 retval = target_read_memory(target, addr, width, count, buffer);
3724                 if (retval != ERROR_OK) {
3725                         /* BOO !*/
3726                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3727                                           (unsigned int)addr,
3728                                           (int)width,
3729                                           (int)count);
3730                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3731                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3732                         e = JIM_ERR;
3733                         break;
3734                 } else {
3735                         v = 0; /* shut up gcc */
3736                         for (i = 0; i < count ; i++, n++) {
3737                                 switch (width) {
3738                                         case 4:
3739                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3740                                                 break;
3741                                         case 2:
3742                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3743                                                 break;
3744                                         case 1:
3745                                                 v = buffer[i] & 0x0ff;
3746                                                 break;
3747                                 }
3748                                 new_int_array_element(interp, varname, n, v);
3749                         }
3750                         len -= count;
3751                 }
3752         }
3753
3754         free(buffer);
3755
3756         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3757
3758         return e;
3759 }
3760
3761 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3762 {
3763         char *namebuf;
3764         Jim_Obj *nameObjPtr, *valObjPtr;
3765         int result;
3766         long l;
3767
3768         namebuf = alloc_printf("%s(%d)", varname, idx);
3769         if (!namebuf)
3770                 return JIM_ERR;
3771
3772         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3773         if (!nameObjPtr) {
3774                 free(namebuf);
3775                 return JIM_ERR;
3776         }
3777
3778         Jim_IncrRefCount(nameObjPtr);
3779         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3780         Jim_DecrRefCount(interp, nameObjPtr);
3781         free(namebuf);
3782         if (valObjPtr == NULL)
3783                 return JIM_ERR;
3784
3785         result = Jim_GetLong(interp, valObjPtr, &l);
3786         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3787         *val = l;
3788         return result;
3789 }
3790
3791 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3792 {
3793         struct command_context *context;
3794         struct target *target;
3795
3796         context = current_command_context(interp);
3797         assert(context != NULL);
3798
3799         target = get_current_target(context);
3800         if (target == NULL) {
3801                 LOG_ERROR("array2mem: no current target");
3802                 return JIM_ERR;
3803         }
3804
3805         return target_array2mem(interp, target, argc-1, argv + 1);
3806 }
3807
3808 static int target_array2mem(Jim_Interp *interp, struct target *target,
3809                 int argc, Jim_Obj *const *argv)
3810 {
3811         long l;
3812         uint32_t width;
3813         int len;
3814         uint32_t addr;
3815         uint32_t count;
3816         uint32_t v;
3817         const char *varname;
3818         int  n, e, retval;
3819         uint32_t i;
3820
3821         /* argv[1] = name of array to get the data
3822          * argv[2] = desired width
3823          * argv[3] = memory address
3824          * argv[4] = count to write
3825          */
3826         if (argc != 4) {
3827                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3828                 return JIM_ERR;
3829         }
3830         varname = Jim_GetString(argv[0], &len);
3831         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3832
3833         e = Jim_GetLong(interp, argv[1], &l);
3834         width = l;
3835         if (e != JIM_OK)
3836                 return e;
3837
3838         e = Jim_GetLong(interp, argv[2], &l);
3839         addr = l;
3840         if (e != JIM_OK)
3841                 return e;
3842         e = Jim_GetLong(interp, argv[3], &l);
3843         len = l;
3844         if (e != JIM_OK)
3845                 return e;
3846         switch (width) {
3847                 case 8:
3848                         width = 1;
3849                         break;
3850                 case 16:
3851                         width = 2;
3852                         break;
3853                 case 32:
3854                         width = 4;
3855                         break;
3856                 default:
3857                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3858                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3859                                         "Invalid width param, must be 8/16/32", NULL);
3860                         return JIM_ERR;
3861         }
3862         if (len == 0) {
3863                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3864                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3865                                 "array2mem: zero width read?", NULL);
3866                 return JIM_ERR;
3867         }
3868         if ((addr + (len * width)) < addr) {
3869                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3870                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3871                                 "array2mem: addr + len - wraps to zero?", NULL);
3872                 return JIM_ERR;
3873         }
3874         /* absurd transfer size? */
3875         if (len > 65536) {
3876                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3877                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3878                                 "array2mem: absurd > 64K item request", NULL);
3879                 return JIM_ERR;
3880         }
3881
3882         if ((width == 1) ||
3883                 ((width == 2) && ((addr & 1) == 0)) ||
3884                 ((width == 4) && ((addr & 3) == 0))) {
3885                 /* all is well */
3886         } else {
3887                 char buf[100];
3888                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3889                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3890                                 (unsigned int)addr,
3891                                 (int)width);
3892                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3893                 return JIM_ERR;
3894         }
3895
3896         /* Transfer loop */
3897
3898         /* index counter */
3899         n = 0;
3900         /* assume ok */
3901         e = JIM_OK;
3902
3903         size_t buffersize = 4096;
3904         uint8_t *buffer = malloc(buffersize);
3905         if (buffer == NULL)
3906                 return JIM_ERR;
3907
3908         while (len) {
3909                 /* Slurp... in buffer size chunks */
3910
3911                 count = len; /* in objects.. */
3912                 if (count > (buffersize / width))
3913                         count = (buffersize / width);
3914
3915                 v = 0; /* shut up gcc */
3916                 for (i = 0; i < count; i++, n++) {
3917                         get_int_array_element(interp, varname, n, &v);
3918                         switch (width) {
3919                         case 4:
3920                                 target_buffer_set_u32(target, &buffer[i * width], v);
3921                                 break;
3922                         case 2:
3923                                 target_buffer_set_u16(target, &buffer[i * width], v);
3924                                 break;
3925                         case 1:
3926                                 buffer[i] = v & 0x0ff;
3927                                 break;
3928                         }
3929                 }
3930                 len -= count;
3931
3932                 retval = target_write_memory(target, addr, width, count, buffer);
3933                 if (retval != ERROR_OK) {
3934                         /* BOO !*/
3935                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3936                                           (unsigned int)addr,
3937                                           (int)width,
3938                                           (int)count);
3939                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3940                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3941                         e = JIM_ERR;
3942                         break;
3943                 }
3944         }
3945
3946         free(buffer);
3947
3948         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3949
3950         return e;
3951 }
3952
3953 /* FIX? should we propagate errors here rather than printing them
3954  * and continuing?
3955  */
3956 void target_handle_event(struct target *target, enum target_event e)
3957 {
3958         struct target_event_action *teap;
3959
3960         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3961                 if (teap->event == e) {
3962                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3963                                            target->target_number,
3964                                            target_name(target),
3965                                            target_type_name(target),
3966                                            e,
3967                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3968                                            Jim_GetString(teap->body, NULL));
3969                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3970                                 Jim_MakeErrorMessage(teap->interp);
3971                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3972                         }
3973                 }
3974         }
3975 }
3976
3977 /**
3978  * Returns true only if the target has a handler for the specified event.
3979  */
3980 bool target_has_event_action(struct target *target, enum target_event event)
3981 {
3982         struct target_event_action *teap;
3983
3984         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3985                 if (teap->event == event)
3986                         return true;
3987         }
3988         return false;
3989 }
3990
3991 enum target_cfg_param {
3992         TCFG_TYPE,
3993         TCFG_EVENT,
3994         TCFG_WORK_AREA_VIRT,
3995         TCFG_WORK_AREA_PHYS,
3996         TCFG_WORK_AREA_SIZE,
3997         TCFG_WORK_AREA_BACKUP,
3998         TCFG_ENDIAN,
3999         TCFG_VARIANT,
4000         TCFG_COREID,
4001         TCFG_CHAIN_POSITION,
4002         TCFG_DBGBASE,
4003         TCFG_RTOS,
4004 };
4005
4006 static Jim_Nvp nvp_config_opts[] = {
4007         { .name = "-type",             .value = TCFG_TYPE },
4008         { .name = "-event",            .value = TCFG_EVENT },
4009         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4010         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4011         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4012         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4013         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4014         { .name = "-variant",          .value = TCFG_VARIANT },
4015         { .name = "-coreid",           .value = TCFG_COREID },
4016         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4017         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4018         { .name = "-rtos",             .value = TCFG_RTOS },
4019         { .name = NULL, .value = -1 }
4020 };
4021
4022 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4023 {
4024         Jim_Nvp *n;
4025         Jim_Obj *o;
4026         jim_wide w;
4027         char *cp;
4028         int e;
4029
4030         /* parse config or cget options ... */
4031         while (goi->argc > 0) {
4032                 Jim_SetEmptyResult(goi->interp);
4033                 /* Jim_GetOpt_Debug(goi); */
4034
4035                 if (target->type->target_jim_configure) {
4036                         /* target defines a configure function */
4037                         /* target gets first dibs on parameters */
4038                         e = (*(target->type->target_jim_configure))(target, goi);
4039                         if (e == JIM_OK) {
4040                                 /* more? */
4041                                 continue;
4042                         }
4043                         if (e == JIM_ERR) {
4044                                 /* An error */
4045                                 return e;
4046                         }
4047                         /* otherwise we 'continue' below */
4048                 }
4049                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4050                 if (e != JIM_OK) {
4051                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4052                         return e;
4053                 }
4054                 switch (n->value) {
4055                 case TCFG_TYPE:
4056                         /* not setable */
4057                         if (goi->isconfigure) {
4058                                 Jim_SetResultFormatted(goi->interp,
4059                                                 "not settable: %s", n->name);
4060                                 return JIM_ERR;
4061                         } else {
4062 no_params:
4063                                 if (goi->argc != 0) {
4064                                         Jim_WrongNumArgs(goi->interp,
4065                                                         goi->argc, goi->argv,
4066                                                         "NO PARAMS");
4067                                         return JIM_ERR;
4068                                 }
4069                         }
4070                         Jim_SetResultString(goi->interp,
4071                                         target_type_name(target), -1);
4072                         /* loop for more */
4073                         break;
4074                 case TCFG_EVENT:
4075                         if (goi->argc == 0) {
4076                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4077                                 return JIM_ERR;
4078                         }
4079
4080                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4081                         if (e != JIM_OK) {
4082                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4083                                 return e;
4084                         }
4085
4086                         if (goi->isconfigure) {
4087                                 if (goi->argc != 1) {
4088                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4089                                         return JIM_ERR;
4090                                 }
4091                         } else {
4092                                 if (goi->argc != 0) {
4093                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4094                                         return JIM_ERR;
4095                                 }
4096                         }
4097
4098                         {
4099                                 struct target_event_action *teap;
4100
4101                                 teap = target->event_action;
4102                                 /* replace existing? */
4103                                 while (teap) {
4104                                         if (teap->event == (enum target_event)n->value)
4105                                                 break;
4106                                         teap = teap->next;
4107                                 }
4108
4109                                 if (goi->isconfigure) {
4110                                         bool replace = true;
4111                                         if (teap == NULL) {
4112                                                 /* create new */
4113                                                 teap = calloc(1, sizeof(*teap));
4114                                                 replace = false;
4115                                         }
4116                                         teap->event = n->value;
4117                                         teap->interp = goi->interp;
4118                                         Jim_GetOpt_Obj(goi, &o);
4119                                         if (teap->body)
4120                                                 Jim_DecrRefCount(teap->interp, teap->body);
4121                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4122                                         /*
4123                                          * FIXME:
4124                                          *     Tcl/TK - "tk events" have a nice feature.
4125                                          *     See the "BIND" command.
4126                                          *    We should support that here.
4127                                          *     You can specify %X and %Y in the event code.
4128                                          *     The idea is: %T - target name.
4129                                          *     The idea is: %N - target number
4130                                          *     The idea is: %E - event name.
4131                                          */
4132                                         Jim_IncrRefCount(teap->body);
4133
4134                                         if (!replace) {
4135                                                 /* add to head of event list */
4136                                                 teap->next = target->event_action;
4137                                                 target->event_action = teap;
4138                                         }
4139                                         Jim_SetEmptyResult(goi->interp);
4140                                 } else {
4141                                         /* get */
4142                                         if (teap == NULL)
4143                                                 Jim_SetEmptyResult(goi->interp);
4144                                         else
4145                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4146                                 }
4147                         }
4148                         /* loop for more */
4149                         break;
4150
4151                 case TCFG_WORK_AREA_VIRT:
4152                         if (goi->isconfigure) {
4153                                 target_free_all_working_areas(target);
4154                                 e = Jim_GetOpt_Wide(goi, &w);
4155                                 if (e != JIM_OK)
4156                                         return e;
4157                                 target->working_area_virt = w;
4158                                 target->working_area_virt_spec = true;
4159                         } else {
4160                                 if (goi->argc != 0)
4161                                         goto no_params;
4162                         }
4163                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4164                         /* loop for more */
4165                         break;
4166
4167                 case TCFG_WORK_AREA_PHYS:
4168                         if (goi->isconfigure) {
4169                                 target_free_all_working_areas(target);
4170                                 e = Jim_GetOpt_Wide(goi, &w);
4171                                 if (e != JIM_OK)
4172                                         return e;
4173                                 target->working_area_phys = w;
4174                                 target->working_area_phys_spec = true;
4175                         } else {
4176                                 if (goi->argc != 0)
4177                                         goto no_params;
4178                         }
4179                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4180                         /* loop for more */
4181                         break;
4182
4183                 case TCFG_WORK_AREA_SIZE:
4184                         if (goi->isconfigure) {
4185                                 target_free_all_working_areas(target);
4186                                 e = Jim_GetOpt_Wide(goi, &w);
4187                                 if (e != JIM_OK)
4188                                         return e;
4189                                 target->working_area_size = w;
4190                         } else {
4191                                 if (goi->argc != 0)
4192                                         goto no_params;
4193                         }
4194                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4195                         /* loop for more */
4196                         break;
4197
4198                 case TCFG_WORK_AREA_BACKUP:
4199                         if (goi->isconfigure) {
4200                                 target_free_all_working_areas(target);
4201                                 e = Jim_GetOpt_Wide(goi, &w);
4202                                 if (e != JIM_OK)
4203                                         return e;
4204                                 /* make this exactly 1 or 0 */
4205                                 target->backup_working_area = (!!w);
4206                         } else {
4207                                 if (goi->argc != 0)
4208                                         goto no_params;
4209                         }
4210                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4211                         /* loop for more e*/
4212                         break;
4213
4214
4215                 case TCFG_ENDIAN:
4216                         if (goi->isconfigure) {
4217                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4218                                 if (e != JIM_OK) {
4219                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4220                                         return e;
4221                                 }
4222                                 target->endianness = n->value;
4223                         } else {
4224                                 if (goi->argc != 0)
4225                                         goto no_params;
4226                         }
4227                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4228                         if (n->name == NULL) {
4229                                 target->endianness = TARGET_LITTLE_ENDIAN;
4230                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4231                         }
4232                         Jim_SetResultString(goi->interp, n->name, -1);
4233                         /* loop for more */
4234                         break;
4235
4236                 case TCFG_VARIANT:
4237                         if (goi->isconfigure) {
4238                                 if (goi->argc < 1) {
4239                                         Jim_SetResultFormatted(goi->interp,
4240                                                                                    "%s ?STRING?",
4241                                                                                    n->name);
4242                                         return JIM_ERR;
4243                                 }
4244                                 if (target->variant)
4245                                         free((void *)(target->variant));
4246                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4247                                 if (e != JIM_OK)
4248                                         return e;
4249                                 target->variant = strdup(cp);
4250                         } else {
4251                                 if (goi->argc != 0)
4252                                         goto no_params;
4253                         }
4254                         Jim_SetResultString(goi->interp, target->variant, -1);
4255                         /* loop for more */
4256                         break;
4257
4258                 case TCFG_COREID:
4259                         if (goi->isconfigure) {
4260                                 e = Jim_GetOpt_Wide(goi, &w);
4261                                 if (e != JIM_OK)
4262                                         return e;
4263                                 target->coreid = (int32_t)w;
4264                         } else {
4265                                 if (goi->argc != 0)
4266                                         goto no_params;
4267                         }
4268                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4269                         /* loop for more */
4270                         break;
4271
4272                 case TCFG_CHAIN_POSITION:
4273                         if (goi->isconfigure) {
4274                                 Jim_Obj *o_t;
4275                                 struct jtag_tap *tap;
4276                                 target_free_all_working_areas(target);
4277                                 e = Jim_GetOpt_Obj(goi, &o_t);
4278                                 if (e != JIM_OK)
4279                                         return e;
4280                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4281                                 if (tap == NULL)
4282                                         return JIM_ERR;
4283                                 /* make this exactly 1 or 0 */
4284                                 target->tap = tap;
4285                         } else {
4286                                 if (goi->argc != 0)
4287                                         goto no_params;
4288                         }
4289                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4290                         /* loop for more e*/
4291                         break;
4292                 case TCFG_DBGBASE:
4293                         if (goi->isconfigure) {
4294                                 e = Jim_GetOpt_Wide(goi, &w);
4295                                 if (e != JIM_OK)
4296                                         return e;
4297                                 target->dbgbase = (uint32_t)w;
4298                                 target->dbgbase_set = true;
4299                         } else {
4300                                 if (goi->argc != 0)
4301                                         goto no_params;
4302                         }
4303                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4304                         /* loop for more */
4305                         break;
4306
4307                 case TCFG_RTOS:
4308                         /* RTOS */
4309                         {
4310                                 int result = rtos_create(goi, target);
4311                                 if (result != JIM_OK)
4312                                         return result;
4313                         }
4314                         /* loop for more */
4315                         break;
4316                 }
4317         } /* while (goi->argc) */
4318
4319
4320                 /* done - we return */
4321         return JIM_OK;
4322 }
4323
4324 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4325 {
4326         Jim_GetOptInfo goi;
4327
4328         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4329         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4330         int need_args = 1 + goi.isconfigure;
4331         if (goi.argc < need_args) {
4332                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4333                         goi.isconfigure
4334                                 ? "missing: -option VALUE ..."
4335                                 : "missing: -option ...");
4336                 return JIM_ERR;
4337         }
4338         struct target *target = Jim_CmdPrivData(goi.interp);
4339         return target_configure(&goi, target);
4340 }
4341
4342 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4343 {
4344         const char *cmd_name = Jim_GetString(argv[0], NULL);
4345
4346         Jim_GetOptInfo goi;
4347         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4348
4349         if (goi.argc < 2 || goi.argc > 4) {
4350                 Jim_SetResultFormatted(goi.interp,
4351                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4352                 return JIM_ERR;
4353         }
4354
4355         target_write_fn fn;
4356         fn = target_write_memory_fast;
4357
4358         int e;
4359         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4360                 /* consume it */
4361                 struct Jim_Obj *obj;
4362                 e = Jim_GetOpt_Obj(&goi, &obj);
4363                 if (e != JIM_OK)
4364                         return e;
4365
4366                 fn = target_write_phys_memory;
4367         }
4368
4369         jim_wide a;
4370         e = Jim_GetOpt_Wide(&goi, &a);
4371         if (e != JIM_OK)
4372                 return e;
4373
4374         jim_wide b;
4375         e = Jim_GetOpt_Wide(&goi, &b);
4376         if (e != JIM_OK)
4377                 return e;
4378
4379         jim_wide c = 1;
4380         if (goi.argc == 1) {
4381                 e = Jim_GetOpt_Wide(&goi, &c);
4382                 if (e != JIM_OK)
4383                         return e;
4384         }
4385
4386         /* all args must be consumed */
4387         if (goi.argc != 0)
4388                 return JIM_ERR;
4389
4390         struct target *target = Jim_CmdPrivData(goi.interp);
4391         unsigned data_size;
4392         if (strcasecmp(cmd_name, "mww") == 0)
4393                 data_size = 4;
4394         else if (strcasecmp(cmd_name, "mwh") == 0)
4395                 data_size = 2;
4396         else if (strcasecmp(cmd_name, "mwb") == 0)
4397                 data_size = 1;
4398         else {
4399                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4400                 return JIM_ERR;
4401         }
4402
4403         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4404 }
4405
4406 /**
4407 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4408 *
4409 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4410 *         mdh [phys] <address> [<count>] - for 16 bit reads
4411 *         mdb [phys] <address> [<count>] - for  8 bit reads
4412 *
4413 *  Count defaults to 1.
4414 *
4415 *  Calls target_read_memory or target_read_phys_memory depending on
4416 *  the presence of the "phys" argument
4417 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4418 *  to int representation in base16.
4419 *  Also outputs read data in a human readable form using command_print
4420 *
4421 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4422 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4423 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4424 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4425 *  on success, with [<count>] number of elements.
4426 *
4427 *  In case of little endian target:
4428 *      Example1: "mdw 0x00000000"  returns "10123456"
4429 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4430 *      Example3: "mdb 0x00000000" returns "56"
4431 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4432 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4433 **/
4434 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4435 {
4436         const char *cmd_name = Jim_GetString(argv[0], NULL);
4437
4438         Jim_GetOptInfo goi;
4439         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4440
4441         if ((goi.argc < 1) || (goi.argc > 3)) {
4442                 Jim_SetResultFormatted(goi.interp,
4443                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4444                 return JIM_ERR;
4445         }
4446
4447         int (*fn)(struct target *target,
4448                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4449         fn = target_read_memory;
4450
4451         int e;
4452         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4453                 /* consume it */
4454                 struct Jim_Obj *obj;
4455                 e = Jim_GetOpt_Obj(&goi, &obj);
4456                 if (e != JIM_OK)
4457                         return e;
4458
4459                 fn = target_read_phys_memory;
4460         }
4461
4462         /* Read address parameter */
4463         jim_wide addr;
4464         e = Jim_GetOpt_Wide(&goi, &addr);
4465         if (e != JIM_OK)
4466                 return JIM_ERR;
4467
4468         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4469         jim_wide count;
4470         if (goi.argc == 1) {
4471                 e = Jim_GetOpt_Wide(&goi, &count);
4472                 if (e != JIM_OK)
4473                         return JIM_ERR;
4474         } else
4475                 count = 1;
4476
4477         /* all args must be consumed */
4478         if (goi.argc != 0)
4479                 return JIM_ERR;
4480
4481         jim_wide dwidth = 1; /* shut up gcc */
4482         if (strcasecmp(cmd_name, "mdw") == 0)
4483                 dwidth = 4;
4484         else if (strcasecmp(cmd_name, "mdh") == 0)
4485                 dwidth = 2;
4486         else if (strcasecmp(cmd_name, "mdb") == 0)
4487                 dwidth = 1;
4488         else {
4489                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4490                 return JIM_ERR;
4491         }
4492
4493         /* convert count to "bytes" */
4494         int bytes = count * dwidth;
4495
4496         struct target *target = Jim_CmdPrivData(goi.interp);
4497         uint8_t  target_buf[32];
4498         jim_wide x, y, z;
4499         while (bytes > 0) {
4500                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4501
4502                 /* Try to read out next block */
4503                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4504
4505                 if (e != ERROR_OK) {
4506                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4507                         return JIM_ERR;
4508                 }
4509
4510                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4511                 switch (dwidth) {
4512                 case 4:
4513                         for (x = 0; x < 16 && x < y; x += 4) {
4514                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4515                                 command_print_sameline(NULL, "%08x ", (int)(z));
4516                         }
4517                         for (; (x < 16) ; x += 4)
4518                                 command_print_sameline(NULL, "         ");
4519                         break;
4520                 case 2:
4521                         for (x = 0; x < 16 && x < y; x += 2) {
4522                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4523                                 command_print_sameline(NULL, "%04x ", (int)(z));
4524                         }
4525                         for (; (x < 16) ; x += 2)
4526                                 command_print_sameline(NULL, "     ");
4527                         break;
4528                 case 1:
4529                 default:
4530                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4531                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4532                                 command_print_sameline(NULL, "%02x ", (int)(z));
4533                         }
4534                         for (; (x < 16) ; x += 1)
4535                                 command_print_sameline(NULL, "   ");
4536                         break;
4537                 }
4538                 /* ascii-ify the bytes */
4539                 for (x = 0 ; x < y ; x++) {
4540                         if ((target_buf[x] >= 0x20) &&
4541                                 (target_buf[x] <= 0x7e)) {
4542                                 /* good */
4543                         } else {
4544                                 /* smack it */
4545                                 target_buf[x] = '.';
4546                         }
4547                 }
4548                 /* space pad  */
4549                 while (x < 16) {
4550                         target_buf[x] = ' ';
4551                         x++;
4552                 }
4553                 /* terminate */
4554                 target_buf[16] = 0;
4555                 /* print - with a newline */
4556                 command_print_sameline(NULL, "%s\n", target_buf);
4557                 /* NEXT... */
4558                 bytes -= 16;
4559                 addr += 16;
4560         }
4561         return JIM_OK;
4562 }
4563
4564 static int jim_target_mem2array(Jim_Interp *interp,
4565                 int argc, Jim_Obj *const *argv)
4566 {
4567         struct target *target = Jim_CmdPrivData(interp);
4568         return target_mem2array(interp, target, argc - 1, argv + 1);
4569 }
4570
4571 static int jim_target_array2mem(Jim_Interp *interp,
4572                 int argc, Jim_Obj *const *argv)
4573 {
4574         struct target *target = Jim_CmdPrivData(interp);
4575         return target_array2mem(interp, target, argc - 1, argv + 1);
4576 }
4577
4578 static int jim_target_tap_disabled(Jim_Interp *interp)
4579 {
4580         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4581         return JIM_ERR;
4582 }
4583
4584 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4585 {
4586         if (argc != 1) {
4587                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4588                 return JIM_ERR;
4589         }
4590         struct target *target = Jim_CmdPrivData(interp);
4591         if (!target->tap->enabled)
4592                 return jim_target_tap_disabled(interp);
4593
4594         int e = target->type->examine(target);
4595         if (e != ERROR_OK)
4596                 return JIM_ERR;
4597         return JIM_OK;
4598 }
4599
4600 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4601 {
4602         if (argc != 1) {
4603                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4604                 return JIM_ERR;
4605         }
4606         struct target *target = Jim_CmdPrivData(interp);
4607
4608         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4609                 return JIM_ERR;
4610
4611         return JIM_OK;
4612 }
4613
4614 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4615 {
4616         if (argc != 1) {
4617                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4618                 return JIM_ERR;
4619         }
4620         struct target *target = Jim_CmdPrivData(interp);
4621         if (!target->tap->enabled)
4622                 return jim_target_tap_disabled(interp);
4623
4624         int e;
4625         if (!(target_was_examined(target)))
4626                 e = ERROR_TARGET_NOT_EXAMINED;
4627         else
4628                 e = target->type->poll(target);
4629         if (e != ERROR_OK)
4630                 return JIM_ERR;
4631         return JIM_OK;
4632 }
4633
4634 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4635 {
4636         Jim_GetOptInfo goi;
4637         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4638
4639         if (goi.argc != 2) {
4640                 Jim_WrongNumArgs(interp, 0, argv,
4641                                 "([tT]|[fF]|assert|deassert) BOOL");
4642                 return JIM_ERR;
4643         }
4644
4645         Jim_Nvp *n;
4646         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4647         if (e != JIM_OK) {
4648                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4649                 return e;
4650         }
4651         /* the halt or not param */
4652         jim_wide a;
4653         e = Jim_GetOpt_Wide(&goi, &a);
4654         if (e != JIM_OK)
4655                 return e;
4656
4657         struct target *target = Jim_CmdPrivData(goi.interp);
4658         if (!target->tap->enabled)
4659                 return jim_target_tap_disabled(interp);
4660         if (!(target_was_examined(target))) {
4661                 LOG_ERROR("Target not examined yet");
4662                 return ERROR_TARGET_NOT_EXAMINED;
4663         }
4664         if (!target->type->assert_reset || !target->type->deassert_reset) {
4665                 Jim_SetResultFormatted(interp,
4666                                 "No target-specific reset for %s",
4667                                 target_name(target));
4668                 return JIM_ERR;
4669         }
4670         /* determine if we should halt or not. */
4671         target->reset_halt = !!a;
4672         /* When this happens - all workareas are invalid. */
4673         target_free_all_working_areas_restore(target, 0);
4674
4675         /* do the assert */
4676         if (n->value == NVP_ASSERT)
4677                 e = target->type->assert_reset(target);
4678         else
4679                 e = target->type->deassert_reset(target);
4680         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4681 }
4682
4683 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4684 {
4685         if (argc != 1) {
4686                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4687                 return JIM_ERR;
4688         }
4689         struct target *target = Jim_CmdPrivData(interp);
4690         if (!target->tap->enabled)
4691                 return jim_target_tap_disabled(interp);
4692         int e = target->type->halt(target);
4693         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4694 }
4695
4696 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4697 {
4698         Jim_GetOptInfo goi;
4699         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4700
4701         /* params:  <name>  statename timeoutmsecs */
4702         if (goi.argc != 2) {
4703                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4704                 Jim_SetResultFormatted(goi.interp,
4705                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4706                 return JIM_ERR;
4707         }
4708
4709         Jim_Nvp *n;
4710         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4711         if (e != JIM_OK) {
4712                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4713                 return e;
4714         }
4715         jim_wide a;
4716         e = Jim_GetOpt_Wide(&goi, &a);
4717         if (e != JIM_OK)
4718                 return e;
4719         struct target *target = Jim_CmdPrivData(interp);
4720         if (!target->tap->enabled)
4721                 return jim_target_tap_disabled(interp);
4722
4723         e = target_wait_state(target, n->value, a);
4724         if (e != ERROR_OK) {
4725                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4726                 Jim_SetResultFormatted(goi.interp,
4727                                 "target: %s wait %s fails (%#s) %s",
4728                                 target_name(target), n->name,
4729                                 eObj, target_strerror_safe(e));
4730                 Jim_FreeNewObj(interp, eObj);
4731                 return JIM_ERR;
4732         }
4733         return JIM_OK;
4734 }
4735 /* List for human, Events defined for this target.
4736  * scripts/programs should use 'name cget -event NAME'
4737  */
4738 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4739 {
4740         struct command_context *cmd_ctx = current_command_context(interp);
4741         assert(cmd_ctx != NULL);
4742
4743         struct target *target = Jim_CmdPrivData(interp);
4744         struct target_event_action *teap = target->event_action;
4745         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4746                                    target->target_number,
4747                                    target_name(target));
4748         command_print(cmd_ctx, "%-25s | Body", "Event");
4749         command_print(cmd_ctx, "------------------------- | "
4750                         "----------------------------------------");
4751         while (teap) {
4752                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4753                 command_print(cmd_ctx, "%-25s | %s",
4754                                 opt->name, Jim_GetString(teap->body, NULL));
4755                 teap = teap->next;
4756         }
4757         command_print(cmd_ctx, "***END***");
4758         return JIM_OK;
4759 }
4760 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4761 {
4762         if (argc != 1) {
4763                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4764                 return JIM_ERR;
4765         }
4766         struct target *target = Jim_CmdPrivData(interp);
4767         Jim_SetResultString(interp, target_state_name(target), -1);
4768         return JIM_OK;
4769 }
4770 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4771 {
4772         Jim_GetOptInfo goi;
4773         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4774         if (goi.argc != 1) {
4775                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4776                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4777                 return JIM_ERR;
4778         }
4779         Jim_Nvp *n;
4780         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4781         if (e != JIM_OK) {
4782                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4783                 return e;
4784         }
4785         struct target *target = Jim_CmdPrivData(interp);
4786         target_handle_event(target, n->value);
4787         return JIM_OK;
4788 }
4789
4790 static const struct command_registration target_instance_command_handlers[] = {
4791         {
4792                 .name = "configure",
4793                 .mode = COMMAND_CONFIG,
4794                 .jim_handler = jim_target_configure,
4795                 .help  = "configure a new target for use",
4796                 .usage = "[target_attribute ...]",
4797         },
4798         {
4799                 .name = "cget",
4800                 .mode = COMMAND_ANY,
4801                 .jim_handler = jim_target_configure,
4802                 .help  = "returns the specified target attribute",
4803                 .usage = "target_attribute",
4804         },
4805         {
4806                 .name = "mww",
4807                 .mode = COMMAND_EXEC,
4808                 .jim_handler = jim_target_mw,
4809                 .help = "Write 32-bit word(s) to target memory",
4810                 .usage = "address data [count]",
4811         },
4812         {
4813                 .name = "mwh",
4814                 .mode = COMMAND_EXEC,
4815                 .jim_handler = jim_target_mw,
4816                 .help = "Write 16-bit half-word(s) to target memory",
4817                 .usage = "address data [count]",
4818         },
4819         {
4820                 .name = "mwb",
4821                 .mode = COMMAND_EXEC,
4822                 .jim_handler = jim_target_mw,
4823                 .help = "Write byte(s) to target memory",
4824                 .usage = "address data [count]",
4825         },
4826         {
4827                 .name = "mdw",
4828                 .mode = COMMAND_EXEC,
4829                 .jim_handler = jim_target_md,
4830                 .help = "Display target memory as 32-bit words",
4831                 .usage = "address [count]",
4832         },
4833         {
4834                 .name = "mdh",
4835                 .mode = COMMAND_EXEC,
4836                 .jim_handler = jim_target_md,
4837                 .help = "Display target memory as 16-bit half-words",
4838                 .usage = "address [count]",
4839         },
4840         {
4841                 .name = "mdb",
4842                 .mode = COMMAND_EXEC,
4843                 .jim_handler = jim_target_md,
4844                 .help = "Display target memory as 8-bit bytes",
4845                 .usage = "address [count]",
4846         },
4847         {
4848                 .name = "array2mem",
4849                 .mode = COMMAND_EXEC,
4850                 .jim_handler = jim_target_array2mem,
4851                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4852                         "to target memory",
4853                 .usage = "arrayname bitwidth address count",
4854         },
4855         {
4856                 .name = "mem2array",
4857                 .mode = COMMAND_EXEC,
4858                 .jim_handler = jim_target_mem2array,
4859                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4860                         "from target memory",
4861                 .usage = "arrayname bitwidth address count",
4862         },
4863         {
4864                 .name = "eventlist",
4865                 .mode = COMMAND_EXEC,
4866                 .jim_handler = jim_target_event_list,
4867                 .help = "displays a table of events defined for this target",
4868         },
4869         {
4870                 .name = "curstate",
4871                 .mode = COMMAND_EXEC,
4872                 .jim_handler = jim_target_current_state,
4873                 .help = "displays the current state of this target",
4874         },
4875         {
4876                 .name = "arp_examine",
4877                 .mode = COMMAND_EXEC,
4878                 .jim_handler = jim_target_examine,
4879                 .help = "used internally for reset processing",
4880         },
4881         {
4882                 .name = "arp_halt_gdb",
4883                 .mode = COMMAND_EXEC,
4884                 .jim_handler = jim_target_halt_gdb,
4885                 .help = "used internally for reset processing to halt GDB",
4886         },
4887         {
4888                 .name = "arp_poll",
4889                 .mode = COMMAND_EXEC,
4890                 .jim_handler = jim_target_poll,
4891                 .help = "used internally for reset processing",
4892         },
4893         {
4894                 .name = "arp_reset",
4895                 .mode = COMMAND_EXEC,
4896                 .jim_handler = jim_target_reset,
4897                 .help = "used internally for reset processing",
4898         },
4899         {
4900                 .name = "arp_halt",
4901                 .mode = COMMAND_EXEC,
4902                 .jim_handler = jim_target_halt,
4903                 .help = "used internally for reset processing",
4904         },
4905         {
4906                 .name = "arp_waitstate",
4907                 .mode = COMMAND_EXEC,
4908                 .jim_handler = jim_target_wait_state,
4909                 .help = "used internally for reset processing",
4910         },
4911         {
4912                 .name = "invoke-event",
4913                 .mode = COMMAND_EXEC,
4914                 .jim_handler = jim_target_invoke_event,
4915                 .help = "invoke handler for specified event",
4916                 .usage = "event_name",
4917         },
4918         COMMAND_REGISTRATION_DONE
4919 };
4920
4921 static int target_create(Jim_GetOptInfo *goi)
4922 {
4923         Jim_Obj *new_cmd;
4924         Jim_Cmd *cmd;
4925         const char *cp;
4926         char *cp2;
4927         int e;
4928         int x;
4929         struct target *target;
4930         struct command_context *cmd_ctx;
4931
4932         cmd_ctx = current_command_context(goi->interp);
4933         assert(cmd_ctx != NULL);
4934
4935         if (goi->argc < 3) {
4936                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4937                 return JIM_ERR;
4938         }
4939
4940         /* COMMAND */
4941         Jim_GetOpt_Obj(goi, &new_cmd);
4942         /* does this command exist? */
4943         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4944         if (cmd) {
4945                 cp = Jim_GetString(new_cmd, NULL);
4946                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4947                 return JIM_ERR;
4948         }
4949
4950         /* TYPE */
4951         e = Jim_GetOpt_String(goi, &cp2, NULL);
4952         if (e != JIM_OK)
4953                 return e;
4954         cp = cp2;
4955         /* now does target type exist */
4956         for (x = 0 ; target_types[x] ; x++) {
4957                 if (0 == strcmp(cp, target_types[x]->name)) {
4958                         /* found */
4959                         break;
4960                 }
4961
4962                 /* check for deprecated name */
4963                 if (target_types[x]->deprecated_name) {
4964                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4965                                 /* found */
4966                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4967                                 break;
4968                         }
4969                 }
4970         }
4971         if (target_types[x] == NULL) {
4972                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4973                 for (x = 0 ; target_types[x] ; x++) {
4974                         if (target_types[x + 1]) {
4975                                 Jim_AppendStrings(goi->interp,
4976                                                                    Jim_GetResult(goi->interp),
4977                                                                    target_types[x]->name,
4978                                                                    ", ", NULL);
4979                         } else {
4980                                 Jim_AppendStrings(goi->interp,
4981                                                                    Jim_GetResult(goi->interp),
4982                                                                    " or ",
4983                                                                    target_types[x]->name, NULL);
4984                         }
4985                 }
4986                 return JIM_ERR;
4987         }
4988
4989         /* Create it */
4990         target = calloc(1, sizeof(struct target));
4991         /* set target number */
4992         target->target_number = new_target_number();
4993
4994         /* allocate memory for each unique target type */
4995         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4996
4997         memcpy(target->type, target_types[x], sizeof(struct target_type));
4998
4999         /* will be set by "-endian" */
5000         target->endianness = TARGET_ENDIAN_UNKNOWN;
5001
5002         /* default to first core, override with -coreid */
5003         target->coreid = 0;
5004
5005         target->working_area        = 0x0;
5006         target->working_area_size   = 0x0;
5007         target->working_areas       = NULL;
5008         target->backup_working_area = 0;
5009
5010         target->state               = TARGET_UNKNOWN;
5011         target->debug_reason        = DBG_REASON_UNDEFINED;
5012         target->reg_cache           = NULL;
5013         target->breakpoints         = NULL;
5014         target->watchpoints         = NULL;
5015         target->next                = NULL;
5016         target->arch_info           = NULL;
5017
5018         target->display             = 1;
5019
5020         target->halt_issued                     = false;
5021
5022         /* initialize trace information */
5023         target->trace_info = malloc(sizeof(struct trace));
5024         target->trace_info->num_trace_points         = 0;
5025         target->trace_info->trace_points_size        = 0;
5026         target->trace_info->trace_points             = NULL;
5027         target->trace_info->trace_history_size       = 0;
5028         target->trace_info->trace_history            = NULL;
5029         target->trace_info->trace_history_pos        = 0;
5030         target->trace_info->trace_history_overflowed = 0;
5031
5032         target->dbgmsg          = NULL;
5033         target->dbg_msg_enabled = 0;
5034
5035         target->endianness = TARGET_ENDIAN_UNKNOWN;
5036
5037         target->rtos = NULL;
5038         target->rtos_auto_detect = false;
5039
5040         /* Do the rest as "configure" options */
5041         goi->isconfigure = 1;
5042         e = target_configure(goi, target);
5043
5044         if (target->tap == NULL) {
5045                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5046                 e = JIM_ERR;
5047         }
5048
5049         if (e != JIM_OK) {
5050                 free(target->type);
5051                 free(target);
5052                 return e;
5053         }
5054
5055         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5056                 /* default endian to little if not specified */
5057                 target->endianness = TARGET_LITTLE_ENDIAN;
5058         }
5059
5060         /* incase variant is not set */
5061         if (!target->variant)
5062                 target->variant = strdup("");
5063
5064         cp = Jim_GetString(new_cmd, NULL);
5065         target->cmd_name = strdup(cp);
5066
5067         /* create the target specific commands */
5068         if (target->type->commands) {
5069                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5070                 if (ERROR_OK != e)
5071                         LOG_ERROR("unable to register '%s' commands", cp);
5072         }
5073         if (target->type->target_create)
5074                 (*(target->type->target_create))(target, goi->interp);
5075
5076         /* append to end of list */
5077         {
5078                 struct target **tpp;
5079                 tpp = &(all_targets);
5080                 while (*tpp)
5081                         tpp = &((*tpp)->next);
5082                 *tpp = target;
5083         }
5084
5085         /* now - create the new target name command */
5086         const struct command_registration target_subcommands[] = {
5087                 {
5088                         .chain = target_instance_command_handlers,
5089                 },
5090                 {
5091                         .chain = target->type->commands,
5092                 },
5093                 COMMAND_REGISTRATION_DONE
5094         };
5095         const struct command_registration target_commands[] = {
5096                 {
5097                         .name = cp,
5098                         .mode = COMMAND_ANY,
5099                         .help = "target command group",
5100                         .usage = "",
5101                         .chain = target_subcommands,
5102                 },
5103                 COMMAND_REGISTRATION_DONE
5104         };
5105         e = register_commands(cmd_ctx, NULL, target_commands);
5106         if (ERROR_OK != e)
5107                 return JIM_ERR;
5108
5109         struct command *c = command_find_in_context(cmd_ctx, cp);
5110         assert(c);
5111         command_set_handler_data(c, target);
5112
5113         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5114 }
5115
5116 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5117 {
5118         if (argc != 1) {
5119                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5120                 return JIM_ERR;
5121         }
5122         struct command_context *cmd_ctx = current_command_context(interp);
5123         assert(cmd_ctx != NULL);
5124
5125         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5126         return JIM_OK;
5127 }
5128
5129 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5130 {
5131         if (argc != 1) {
5132                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5133                 return JIM_ERR;
5134         }
5135         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5136         for (unsigned x = 0; NULL != target_types[x]; x++) {
5137                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5138                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5139         }
5140         return JIM_OK;
5141 }
5142
5143 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5144 {
5145         if (argc != 1) {
5146                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5147                 return JIM_ERR;
5148         }
5149         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5150         struct target *target = all_targets;
5151         while (target) {
5152                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5153                         Jim_NewStringObj(interp, target_name(target), -1));
5154                 target = target->next;
5155         }
5156         return JIM_OK;
5157 }
5158
5159 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5160 {
5161         int i;
5162         const char *targetname;
5163         int retval, len;
5164         struct target *target = (struct target *) NULL;
5165         struct target_list *head, *curr, *new;
5166         curr = (struct target_list *) NULL;
5167         head = (struct target_list *) NULL;
5168
5169         retval = 0;
5170         LOG_DEBUG("%d", argc);
5171         /* argv[1] = target to associate in smp
5172          * argv[2] = target to assoicate in smp
5173          * argv[3] ...
5174          */
5175
5176         for (i = 1; i < argc; i++) {
5177
5178                 targetname = Jim_GetString(argv[i], &len);
5179                 target = get_target(targetname);
5180                 LOG_DEBUG("%s ", targetname);
5181                 if (target) {
5182                         new = malloc(sizeof(struct target_list));
5183                         new->target = target;
5184                         new->next = (struct target_list *)NULL;
5185                         if (head == (struct target_list *)NULL) {
5186                                 head = new;
5187                                 curr = head;
5188                         } else {
5189                                 curr->next = new;
5190                                 curr = new;
5191                         }
5192                 }
5193         }
5194         /*  now parse the list of cpu and put the target in smp mode*/
5195         curr = head;
5196
5197         while (curr != (struct target_list *)NULL) {
5198                 target = curr->target;
5199                 target->smp = 1;
5200                 target->head = head;
5201                 curr = curr->next;
5202         }
5203
5204         if (target && target->rtos)
5205                 retval = rtos_smp_init(head->target);
5206
5207         return retval;
5208 }
5209
5210
5211 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5212 {
5213         Jim_GetOptInfo goi;
5214         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5215         if (goi.argc < 3) {
5216                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5217                         "<name> <target_type> [<target_options> ...]");
5218                 return JIM_ERR;
5219         }
5220         return target_create(&goi);
5221 }
5222
5223 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5224 {
5225         Jim_GetOptInfo goi;
5226         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5227
5228         /* It's OK to remove this mechanism sometime after August 2010 or so */
5229         LOG_WARNING("don't use numbers as target identifiers; use names");
5230         if (goi.argc != 1) {
5231                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5232                 return JIM_ERR;
5233         }
5234         jim_wide w;
5235         int e = Jim_GetOpt_Wide(&goi, &w);
5236         if (e != JIM_OK)
5237                 return JIM_ERR;
5238
5239         struct target *target;
5240         for (target = all_targets; NULL != target; target = target->next) {
5241                 if (target->target_number != w)
5242                         continue;
5243
5244                 Jim_SetResultString(goi.interp, target_name(target), -1);
5245                 return JIM_OK;
5246         }
5247         {
5248                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5249                 Jim_SetResultFormatted(goi.interp,
5250                         "Target: number %#s does not exist", wObj);
5251                 Jim_FreeNewObj(interp, wObj);
5252         }
5253         return JIM_ERR;
5254 }
5255
5256 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5257 {
5258         if (argc != 1) {
5259                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5260                 return JIM_ERR;
5261         }
5262         unsigned count = 0;
5263         struct target *target = all_targets;
5264         while (NULL != target) {
5265                 target = target->next;
5266                 count++;
5267         }
5268         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5269         return JIM_OK;
5270 }
5271
5272 static const struct command_registration target_subcommand_handlers[] = {
5273         {
5274                 .name = "init",
5275                 .mode = COMMAND_CONFIG,
5276                 .handler = handle_target_init_command,
5277                 .help = "initialize targets",
5278         },
5279         {
5280                 .name = "create",
5281                 /* REVISIT this should be COMMAND_CONFIG ... */
5282                 .mode = COMMAND_ANY,
5283                 .jim_handler = jim_target_create,
5284                 .usage = "name type '-chain-position' name [options ...]",
5285                 .help = "Creates and selects a new target",
5286         },
5287         {
5288                 .name = "current",
5289                 .mode = COMMAND_ANY,
5290                 .jim_handler = jim_target_current,
5291                 .help = "Returns the currently selected target",
5292         },
5293         {
5294                 .name = "types",
5295                 .mode = COMMAND_ANY,
5296                 .jim_handler = jim_target_types,
5297                 .help = "Returns the available target types as "
5298                                 "a list of strings",
5299         },
5300         {
5301                 .name = "names",
5302                 .mode = COMMAND_ANY,
5303                 .jim_handler = jim_target_names,
5304                 .help = "Returns the names of all targets as a list of strings",
5305         },
5306         {
5307                 .name = "number",
5308                 .mode = COMMAND_ANY,
5309                 .jim_handler = jim_target_number,
5310                 .usage = "number",
5311                 .help = "Returns the name of the numbered target "
5312                         "(DEPRECATED)",
5313         },
5314         {
5315                 .name = "count",
5316                 .mode = COMMAND_ANY,
5317                 .jim_handler = jim_target_count,
5318                 .help = "Returns the number of targets as an integer "
5319                         "(DEPRECATED)",
5320         },
5321         {
5322                 .name = "smp",
5323                 .mode = COMMAND_ANY,
5324                 .jim_handler = jim_target_smp,
5325                 .usage = "targetname1 targetname2 ...",
5326                 .help = "gather several target in a smp list"
5327         },
5328
5329         COMMAND_REGISTRATION_DONE
5330 };
5331
5332 struct FastLoad {
5333         uint32_t address;
5334         uint8_t *data;
5335         int length;
5336
5337 };
5338
5339 static int fastload_num;
5340 static struct FastLoad *fastload;
5341
5342 static void free_fastload(void)
5343 {
5344         if (fastload != NULL) {
5345                 int i;
5346                 for (i = 0; i < fastload_num; i++) {
5347                         if (fastload[i].data)
5348                                 free(fastload[i].data);
5349                 }
5350                 free(fastload);
5351                 fastload = NULL;
5352         }
5353 }
5354
5355 COMMAND_HANDLER(handle_fast_load_image_command)
5356 {
5357         uint8_t *buffer;
5358         size_t buf_cnt;
5359         uint32_t image_size;
5360         uint32_t min_address = 0;
5361         uint32_t max_address = 0xffffffff;
5362         int i;
5363
5364         struct image image;
5365
5366         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5367                         &image, &min_address, &max_address);
5368         if (ERROR_OK != retval)
5369                 return retval;
5370
5371         struct duration bench;
5372         duration_start(&bench);
5373
5374         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5375         if (retval != ERROR_OK)
5376                 return retval;
5377
5378         image_size = 0x0;
5379         retval = ERROR_OK;
5380         fastload_num = image.num_sections;
5381         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5382         if (fastload == NULL) {
5383                 command_print(CMD_CTX, "out of memory");
5384                 image_close(&image);
5385                 return ERROR_FAIL;
5386         }
5387         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5388         for (i = 0; i < image.num_sections; i++) {
5389                 buffer = malloc(image.sections[i].size);
5390                 if (buffer == NULL) {
5391                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5392                                                   (int)(image.sections[i].size));
5393                         retval = ERROR_FAIL;
5394                         break;
5395                 }
5396
5397                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5398                 if (retval != ERROR_OK) {
5399                         free(buffer);
5400                         break;
5401                 }
5402
5403                 uint32_t offset = 0;
5404                 uint32_t length = buf_cnt;
5405
5406                 /* DANGER!!! beware of unsigned comparision here!!! */
5407
5408                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5409                                 (image.sections[i].base_address < max_address)) {
5410                         if (image.sections[i].base_address < min_address) {
5411                                 /* clip addresses below */
5412                                 offset += min_address-image.sections[i].base_address;
5413                                 length -= offset;
5414                         }
5415
5416                         if (image.sections[i].base_address + buf_cnt > max_address)
5417                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5418
5419                         fastload[i].address = image.sections[i].base_address + offset;
5420                         fastload[i].data = malloc(length);
5421                         if (fastload[i].data == NULL) {
5422                                 free(buffer);
5423                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5424                                                           length);
5425                                 retval = ERROR_FAIL;
5426                                 break;
5427                         }
5428                         memcpy(fastload[i].data, buffer + offset, length);
5429                         fastload[i].length = length;
5430
5431                         image_size += length;
5432                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5433                                                   (unsigned int)length,
5434                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5435                 }
5436
5437                 free(buffer);
5438         }
5439
5440         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5441                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5442                                 "in %fs (%0.3f KiB/s)", image_size,
5443                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5444
5445                 command_print(CMD_CTX,
5446                                 "WARNING: image has not been loaded to target!"
5447                                 "You can issue a 'fast_load' to finish loading.");
5448         }
5449
5450         image_close(&image);
5451
5452         if (retval != ERROR_OK)
5453                 free_fastload();
5454
5455         return retval;
5456 }
5457
5458 COMMAND_HANDLER(handle_fast_load_command)
5459 {
5460         if (CMD_ARGC > 0)
5461                 return ERROR_COMMAND_SYNTAX_ERROR;
5462         if (fastload == NULL) {
5463                 LOG_ERROR("No image in memory");
5464                 return ERROR_FAIL;
5465         }
5466         int i;
5467         int ms = timeval_ms();
5468         int size = 0;
5469         int retval = ERROR_OK;
5470         for (i = 0; i < fastload_num; i++) {
5471                 struct target *target = get_current_target(CMD_CTX);
5472                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5473                                           (unsigned int)(fastload[i].address),
5474                                           (unsigned int)(fastload[i].length));
5475                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5476                 if (retval != ERROR_OK)
5477                         break;
5478                 size += fastload[i].length;
5479         }
5480         if (retval == ERROR_OK) {
5481                 int after = timeval_ms();
5482                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5483         }
5484         return retval;
5485 }
5486
5487 static const struct command_registration target_command_handlers[] = {
5488         {
5489                 .name = "targets",
5490                 .handler = handle_targets_command,
5491                 .mode = COMMAND_ANY,
5492                 .help = "change current default target (one parameter) "
5493                         "or prints table of all targets (no parameters)",
5494                 .usage = "[target]",
5495         },
5496         {
5497                 .name = "target",
5498                 .mode = COMMAND_CONFIG,
5499                 .help = "configure target",
5500
5501                 .chain = target_subcommand_handlers,
5502         },
5503         COMMAND_REGISTRATION_DONE
5504 };
5505
5506 int target_register_commands(struct command_context *cmd_ctx)
5507 {
5508         return register_commands(cmd_ctx, NULL, target_command_handlers);
5509 }
5510
5511 static bool target_reset_nag = true;
5512
5513 bool get_target_reset_nag(void)
5514 {
5515         return target_reset_nag;
5516 }
5517
5518 COMMAND_HANDLER(handle_target_reset_nag)
5519 {
5520         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5521                         &target_reset_nag, "Nag after each reset about options to improve "
5522                         "performance");
5523 }
5524
5525 COMMAND_HANDLER(handle_ps_command)
5526 {
5527         struct target *target = get_current_target(CMD_CTX);
5528         char *display;
5529         if (target->state != TARGET_HALTED) {
5530                 LOG_INFO("target not halted !!");
5531                 return ERROR_OK;
5532         }
5533
5534         if ((target->rtos) && (target->rtos->type)
5535                         && (target->rtos->type->ps_command)) {
5536                 display = target->rtos->type->ps_command(target);
5537                 command_print(CMD_CTX, "%s", display);
5538                 free(display);
5539                 return ERROR_OK;
5540         } else {
5541                 LOG_INFO("failed");
5542                 return ERROR_TARGET_FAILURE;
5543         }
5544 }
5545
5546 static const struct command_registration target_exec_command_handlers[] = {
5547         {
5548                 .name = "fast_load_image",
5549                 .handler = handle_fast_load_image_command,
5550                 .mode = COMMAND_ANY,
5551                 .help = "Load image into server memory for later use by "
5552                         "fast_load; primarily for profiling",
5553                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5554                         "[min_address [max_length]]",
5555         },
5556         {
5557                 .name = "fast_load",
5558                 .handler = handle_fast_load_command,
5559                 .mode = COMMAND_EXEC,
5560                 .help = "loads active fast load image to current target "
5561                         "- mainly for profiling purposes",
5562                 .usage = "",
5563         },
5564         {
5565                 .name = "profile",
5566                 .handler = handle_profile_command,
5567                 .mode = COMMAND_EXEC,
5568                 .usage = "seconds filename",
5569                 .help = "profiling samples the CPU PC",
5570         },
5571         /** @todo don't register virt2phys() unless target supports it */
5572         {
5573                 .name = "virt2phys",
5574                 .handler = handle_virt2phys_command,
5575                 .mode = COMMAND_ANY,
5576                 .help = "translate a virtual address into a physical address",
5577                 .usage = "virtual_address",
5578         },
5579         {
5580                 .name = "reg",
5581                 .handler = handle_reg_command,
5582                 .mode = COMMAND_EXEC,
5583                 .help = "display or set a register; with no arguments, "
5584                         "displays all registers and their values",
5585                 .usage = "[(register_name|register_number) [value]]",
5586         },
5587         {
5588                 .name = "poll",
5589                 .handler = handle_poll_command,
5590                 .mode = COMMAND_EXEC,
5591                 .help = "poll target state; or reconfigure background polling",
5592                 .usage = "['on'|'off']",
5593         },
5594         {
5595                 .name = "wait_halt",
5596                 .handler = handle_wait_halt_command,
5597                 .mode = COMMAND_EXEC,
5598                 .help = "wait up to the specified number of milliseconds "
5599                         "(default 5000) for a previously requested halt",
5600                 .usage = "[milliseconds]",
5601         },
5602         {
5603                 .name = "halt",
5604                 .handler = handle_halt_command,
5605                 .mode = COMMAND_EXEC,
5606                 .help = "request target to halt, then wait up to the specified"
5607                         "number of milliseconds (default 5000) for it to complete",
5608                 .usage = "[milliseconds]",
5609         },
5610         {
5611                 .name = "resume",
5612                 .handler = handle_resume_command,
5613                 .mode = COMMAND_EXEC,
5614                 .help = "resume target execution from current PC or address",
5615                 .usage = "[address]",
5616         },
5617         {
5618                 .name = "reset",
5619                 .handler = handle_reset_command,
5620                 .mode = COMMAND_EXEC,
5621                 .usage = "[run|halt|init]",
5622                 .help = "Reset all targets into the specified mode."
5623                         "Default reset mode is run, if not given.",
5624         },
5625         {
5626                 .name = "soft_reset_halt",
5627                 .handler = handle_soft_reset_halt_command,
5628                 .mode = COMMAND_EXEC,
5629                 .usage = "",
5630                 .help = "halt the target and do a soft reset",
5631         },
5632         {
5633                 .name = "step",
5634                 .handler = handle_step_command,
5635                 .mode = COMMAND_EXEC,
5636                 .help = "step one instruction from current PC or address",
5637                 .usage = "[address]",
5638         },
5639         {
5640                 .name = "mdw",
5641                 .handler = handle_md_command,
5642                 .mode = COMMAND_EXEC,
5643                 .help = "display memory words",
5644                 .usage = "['phys'] address [count]",
5645         },
5646         {
5647                 .name = "mdh",
5648                 .handler = handle_md_command,
5649                 .mode = COMMAND_EXEC,
5650                 .help = "display memory half-words",
5651                 .usage = "['phys'] address [count]",
5652         },
5653         {
5654                 .name = "mdb",
5655                 .handler = handle_md_command,
5656                 .mode = COMMAND_EXEC,
5657                 .help = "display memory bytes",
5658                 .usage = "['phys'] address [count]",
5659         },
5660         {
5661                 .name = "mww",
5662                 .handler = handle_mw_command,
5663                 .mode = COMMAND_EXEC,
5664                 .help = "write memory word",
5665                 .usage = "['phys'] address value [count]",
5666         },
5667         {
5668                 .name = "mwh",
5669                 .handler = handle_mw_command,
5670                 .mode = COMMAND_EXEC,
5671                 .help = "write memory half-word",
5672                 .usage = "['phys'] address value [count]",
5673         },
5674         {
5675                 .name = "mwb",
5676                 .handler = handle_mw_command,
5677                 .mode = COMMAND_EXEC,
5678                 .help = "write memory byte",
5679                 .usage = "['phys'] address value [count]",
5680         },
5681         {
5682                 .name = "bp",
5683                 .handler = handle_bp_command,
5684                 .mode = COMMAND_EXEC,
5685                 .help = "list or set hardware or software breakpoint",
5686                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5687         },
5688         {
5689                 .name = "rbp",
5690                 .handler = handle_rbp_command,
5691                 .mode = COMMAND_EXEC,
5692                 .help = "remove breakpoint",
5693                 .usage = "address",
5694         },
5695         {
5696                 .name = "wp",
5697                 .handler = handle_wp_command,
5698                 .mode = COMMAND_EXEC,
5699                 .help = "list (no params) or create watchpoints",
5700                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5701         },
5702         {
5703                 .name = "rwp",
5704                 .handler = handle_rwp_command,
5705                 .mode = COMMAND_EXEC,
5706                 .help = "remove watchpoint",
5707                 .usage = "address",
5708         },
5709         {
5710                 .name = "load_image",
5711                 .handler = handle_load_image_command,
5712                 .mode = COMMAND_EXEC,
5713                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5714                         "[min_address] [max_length]",
5715         },
5716         {
5717                 .name = "dump_image",
5718                 .handler = handle_dump_image_command,
5719                 .mode = COMMAND_EXEC,
5720                 .usage = "filename address size",
5721         },
5722         {
5723                 .name = "verify_image",
5724                 .handler = handle_verify_image_command,
5725                 .mode = COMMAND_EXEC,
5726                 .usage = "filename [offset [type]]",
5727         },
5728         {
5729                 .name = "test_image",
5730                 .handler = handle_test_image_command,
5731                 .mode = COMMAND_EXEC,
5732                 .usage = "filename [offset [type]]",
5733         },
5734         {
5735                 .name = "mem2array",
5736                 .mode = COMMAND_EXEC,
5737                 .jim_handler = jim_mem2array,
5738                 .help = "read 8/16/32 bit memory and return as a TCL array "
5739                         "for script processing",
5740                 .usage = "arrayname bitwidth address count",
5741         },
5742         {
5743                 .name = "array2mem",
5744                 .mode = COMMAND_EXEC,
5745                 .jim_handler = jim_array2mem,
5746                 .help = "convert a TCL array to memory locations "
5747                         "and write the 8/16/32 bit values",
5748                 .usage = "arrayname bitwidth address count",
5749         },
5750         {
5751                 .name = "reset_nag",
5752                 .handler = handle_target_reset_nag,
5753                 .mode = COMMAND_ANY,
5754                 .help = "Nag after each reset about options that could have been "
5755                                 "enabled to improve performance. ",
5756                 .usage = "['enable'|'disable']",
5757         },
5758         {
5759                 .name = "ps",
5760                 .handler = handle_ps_command,
5761                 .mode = COMMAND_EXEC,
5762                 .help = "list all tasks ",
5763                 .usage = " ",
5764         },
5765
5766         COMMAND_REGISTRATION_DONE
5767 };
5768 static int target_register_user_commands(struct command_context *cmd_ctx)
5769 {
5770         int retval = ERROR_OK;
5771         retval = target_request_register_commands(cmd_ctx);
5772         if (retval != ERROR_OK)
5773                 return retval;
5774
5775         retval = trace_register_commands(cmd_ctx);
5776         if (retval != ERROR_OK)
5777                 return retval;
5778
5779
5780         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5781 }