]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: Remove "-variant" argument
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66                 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70                 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73                 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75                 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &mips_m4k_target,
125         &avr_target,
126         &dsp563xx_target,
127         &dsp5680xx_target,
128         &testee_target,
129         &avr32_ap7k_target,
130         &hla_target,
131         &nds32_v2_target,
132         &nds32_v3_target,
133         &nds32_v3m_target,
134         &or1k_target,
135         &quark_x10xx_target,
136         NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 static const int polling_interval = 100;
143
144 static const Jim_Nvp nvp_assert[] = {
145         { .name = "assert", NVP_ASSERT },
146         { .name = "deassert", NVP_DEASSERT },
147         { .name = "T", NVP_ASSERT },
148         { .name = "F", NVP_DEASSERT },
149         { .name = "t", NVP_ASSERT },
150         { .name = "f", NVP_DEASSERT },
151         { .name = NULL, .value = -1 }
152 };
153
154 static const Jim_Nvp nvp_error_target[] = {
155         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
156         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
157         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
158         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
159         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
160         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
161         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
162         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
163         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
164         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
165         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
166         { .value = -1, .name = NULL }
167 };
168
169 static const char *target_strerror_safe(int err)
170 {
171         const Jim_Nvp *n;
172
173         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
174         if (n->name == NULL)
175                 return "unknown";
176         else
177                 return n->name;
178 }
179
180 static const Jim_Nvp nvp_target_event[] = {
181
182         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
183         { .value = TARGET_EVENT_HALTED, .name = "halted" },
184         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
185         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
186         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
187
188         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
189         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
190
191         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
192         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
193         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
194         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
195         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
196         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
197         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
198         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
199         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
200         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
201         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
202         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
203
204         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
205         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
206
207         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
208         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
209
210         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
211         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
212
213         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
214         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
215
216         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
217         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
218
219         { .name = NULL, .value = -1 }
220 };
221
222 static const Jim_Nvp nvp_target_state[] = {
223         { .name = "unknown", .value = TARGET_UNKNOWN },
224         { .name = "running", .value = TARGET_RUNNING },
225         { .name = "halted",  .value = TARGET_HALTED },
226         { .name = "reset",   .value = TARGET_RESET },
227         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
228         { .name = NULL, .value = -1 },
229 };
230
231 static const Jim_Nvp nvp_target_debug_reason[] = {
232         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
233         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
234         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
235         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
236         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
237         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
238         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
239         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
240         { .name = NULL, .value = -1 },
241 };
242
243 static const Jim_Nvp nvp_target_endian[] = {
244         { .name = "big",    .value = TARGET_BIG_ENDIAN },
245         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
246         { .name = "be",     .value = TARGET_BIG_ENDIAN },
247         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
248         { .name = NULL,     .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_reset_modes[] = {
252         { .name = "unknown", .value = RESET_UNKNOWN },
253         { .name = "run"    , .value = RESET_RUN },
254         { .name = "halt"   , .value = RESET_HALT },
255         { .name = "init"   , .value = RESET_INIT },
256         { .name = NULL     , .value = -1 },
257 };
258
259 const char *debug_reason_name(struct target *t)
260 {
261         const char *cp;
262
263         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
264                         t->debug_reason)->name;
265         if (!cp) {
266                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
267                 cp = "(*BUG*unknown*BUG*)";
268         }
269         return cp;
270 }
271
272 const char *target_state_name(struct target *t)
273 {
274         const char *cp;
275         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
276         if (!cp) {
277                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
278                 cp = "(*BUG*unknown*BUG*)";
279         }
280         return cp;
281 }
282
283 /* determine the number of the new target */
284 static int new_target_number(void)
285 {
286         struct target *t;
287         int x;
288
289         /* number is 0 based */
290         x = -1;
291         t = all_targets;
292         while (t) {
293                 if (x < t->target_number)
294                         x = t->target_number;
295                 t = t->next;
296         }
297         return x + 1;
298 }
299
300 /* read a uint64_t from a buffer in target memory endianness */
301 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 return le_to_h_u64(buffer);
305         else
306                 return be_to_h_u64(buffer);
307 }
308
309 /* read a uint32_t from a buffer in target memory endianness */
310 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
311 {
312         if (target->endianness == TARGET_LITTLE_ENDIAN)
313                 return le_to_h_u32(buffer);
314         else
315                 return be_to_h_u32(buffer);
316 }
317
318 /* read a uint24_t from a buffer in target memory endianness */
319 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
320 {
321         if (target->endianness == TARGET_LITTLE_ENDIAN)
322                 return le_to_h_u24(buffer);
323         else
324                 return be_to_h_u24(buffer);
325 }
326
327 /* read a uint16_t from a buffer in target memory endianness */
328 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
329 {
330         if (target->endianness == TARGET_LITTLE_ENDIAN)
331                 return le_to_h_u16(buffer);
332         else
333                 return be_to_h_u16(buffer);
334 }
335
336 /* read a uint8_t from a buffer in target memory endianness */
337 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
338 {
339         return *buffer & 0x0ff;
340 }
341
342 /* write a uint64_t to a buffer in target memory endianness */
343 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
344 {
345         if (target->endianness == TARGET_LITTLE_ENDIAN)
346                 h_u64_to_le(buffer, value);
347         else
348                 h_u64_to_be(buffer, value);
349 }
350
351 /* write a uint32_t to a buffer in target memory endianness */
352 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
353 {
354         if (target->endianness == TARGET_LITTLE_ENDIAN)
355                 h_u32_to_le(buffer, value);
356         else
357                 h_u32_to_be(buffer, value);
358 }
359
360 /* write a uint24_t to a buffer in target memory endianness */
361 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
362 {
363         if (target->endianness == TARGET_LITTLE_ENDIAN)
364                 h_u24_to_le(buffer, value);
365         else
366                 h_u24_to_be(buffer, value);
367 }
368
369 /* write a uint16_t to a buffer in target memory endianness */
370 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
371 {
372         if (target->endianness == TARGET_LITTLE_ENDIAN)
373                 h_u16_to_le(buffer, value);
374         else
375                 h_u16_to_be(buffer, value);
376 }
377
378 /* write a uint8_t to a buffer in target memory endianness */
379 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
380 {
381         *buffer = value;
382 }
383
384 /* write a uint64_t array to a buffer in target memory endianness */
385 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
386 {
387         uint32_t i;
388         for (i = 0; i < count; i++)
389                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
390 }
391
392 /* write a uint32_t array to a buffer in target memory endianness */
393 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
394 {
395         uint32_t i;
396         for (i = 0; i < count; i++)
397                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
398 }
399
400 /* write a uint16_t array to a buffer in target memory endianness */
401 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
402 {
403         uint32_t i;
404         for (i = 0; i < count; i++)
405                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
406 }
407
408 /* write a uint64_t array to a buffer in target memory endianness */
409 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
410 {
411         uint32_t i;
412         for (i = 0; i < count; i++)
413                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
414 }
415
416 /* write a uint32_t array to a buffer in target memory endianness */
417 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
418 {
419         uint32_t i;
420         for (i = 0; i < count; i++)
421                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
422 }
423
424 /* write a uint16_t array to a buffer in target memory endianness */
425 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
426 {
427         uint32_t i;
428         for (i = 0; i < count; i++)
429                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
430 }
431
432 /* return a pointer to a configured target; id is name or number */
433 struct target *get_target(const char *id)
434 {
435         struct target *target;
436
437         /* try as tcltarget name */
438         for (target = all_targets; target; target = target->next) {
439                 if (target_name(target) == NULL)
440                         continue;
441                 if (strcmp(id, target_name(target)) == 0)
442                         return target;
443         }
444
445         /* It's OK to remove this fallback sometime after August 2010 or so */
446
447         /* no match, try as number */
448         unsigned num;
449         if (parse_uint(id, &num) != ERROR_OK)
450                 return NULL;
451
452         for (target = all_targets; target; target = target->next) {
453                 if (target->target_number == (int)num) {
454                         LOG_WARNING("use '%s' as target identifier, not '%u'",
455                                         target_name(target), num);
456                         return target;
457                 }
458         }
459
460         return NULL;
461 }
462
463 /* returns a pointer to the n-th configured target */
464 static struct target *get_target_by_num(int num)
465 {
466         struct target *target = all_targets;
467
468         while (target) {
469                 if (target->target_number == num)
470                         return target;
471                 target = target->next;
472         }
473
474         return NULL;
475 }
476
477 struct target *get_current_target(struct command_context *cmd_ctx)
478 {
479         struct target *target = get_target_by_num(cmd_ctx->current_target);
480
481         if (target == NULL) {
482                 LOG_ERROR("BUG: current_target out of bounds");
483                 exit(-1);
484         }
485
486         return target;
487 }
488
489 int target_poll(struct target *target)
490 {
491         int retval;
492
493         /* We can't poll until after examine */
494         if (!target_was_examined(target)) {
495                 /* Fail silently lest we pollute the log */
496                 return ERROR_FAIL;
497         }
498
499         retval = target->type->poll(target);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         if (target->halt_issued) {
504                 if (target->state == TARGET_HALTED)
505                         target->halt_issued = false;
506                 else {
507                         long long t = timeval_ms() - target->halt_issued_time;
508                         if (t > DEFAULT_HALT_TIMEOUT) {
509                                 target->halt_issued = false;
510                                 LOG_INFO("Halt timed out, wake up GDB.");
511                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
512                         }
513                 }
514         }
515
516         return ERROR_OK;
517 }
518
519 int target_halt(struct target *target)
520 {
521         int retval;
522         /* We can't poll until after examine */
523         if (!target_was_examined(target)) {
524                 LOG_ERROR("Target not examined yet");
525                 return ERROR_FAIL;
526         }
527
528         retval = target->type->halt(target);
529         if (retval != ERROR_OK)
530                 return retval;
531
532         target->halt_issued = true;
533         target->halt_issued_time = timeval_ms();
534
535         return ERROR_OK;
536 }
537
538 /**
539  * Make the target (re)start executing using its saved execution
540  * context (possibly with some modifications).
541  *
542  * @param target Which target should start executing.
543  * @param current True to use the target's saved program counter instead
544  *      of the address parameter
545  * @param address Optionally used as the program counter.
546  * @param handle_breakpoints True iff breakpoints at the resumption PC
547  *      should be skipped.  (For example, maybe execution was stopped by
548  *      such a breakpoint, in which case it would be counterprodutive to
549  *      let it re-trigger.
550  * @param debug_execution False if all working areas allocated by OpenOCD
551  *      should be released and/or restored to their original contents.
552  *      (This would for example be true to run some downloaded "helper"
553  *      algorithm code, which resides in one such working buffer and uses
554  *      another for data storage.)
555  *
556  * @todo Resolve the ambiguity about what the "debug_execution" flag
557  * signifies.  For example, Target implementations don't agree on how
558  * it relates to invalidation of the register cache, or to whether
559  * breakpoints and watchpoints should be enabled.  (It would seem wrong
560  * to enable breakpoints when running downloaded "helper" algorithms
561  * (debug_execution true), since the breakpoints would be set to match
562  * target firmware being debugged, not the helper algorithm.... and
563  * enabling them could cause such helpers to malfunction (for example,
564  * by overwriting data with a breakpoint instruction.  On the other
565  * hand the infrastructure for running such helpers might use this
566  * procedure but rely on hardware breakpoint to detect termination.)
567  */
568 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
569 {
570         int retval;
571
572         /* We can't poll until after examine */
573         if (!target_was_examined(target)) {
574                 LOG_ERROR("Target not examined yet");
575                 return ERROR_FAIL;
576         }
577
578         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
579
580         /* note that resume *must* be asynchronous. The CPU can halt before
581          * we poll. The CPU can even halt at the current PC as a result of
582          * a software breakpoint being inserted by (a bug?) the application.
583          */
584         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
585         if (retval != ERROR_OK)
586                 return retval;
587
588         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
589
590         return retval;
591 }
592
593 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
594 {
595         char buf[100];
596         int retval;
597         Jim_Nvp *n;
598         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
599         if (n->name == NULL) {
600                 LOG_ERROR("invalid reset mode");
601                 return ERROR_FAIL;
602         }
603
604         /* disable polling during reset to make reset event scripts
605          * more predictable, i.e. dr/irscan & pathmove in events will
606          * not have JTAG operations injected into the middle of a sequence.
607          */
608         bool save_poll = jtag_poll_get_enabled();
609
610         jtag_poll_set_enabled(false);
611
612         sprintf(buf, "ocd_process_reset %s", n->name);
613         retval = Jim_Eval(cmd_ctx->interp, buf);
614
615         jtag_poll_set_enabled(save_poll);
616
617         if (retval != JIM_OK) {
618                 Jim_MakeErrorMessage(cmd_ctx->interp);
619                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
620                 return ERROR_FAIL;
621         }
622
623         /* We want any events to be processed before the prompt */
624         retval = target_call_timer_callbacks_now();
625
626         struct target *target;
627         for (target = all_targets; target; target = target->next) {
628                 target->type->check_reset(target);
629                 target->running_alg = false;
630         }
631
632         return retval;
633 }
634
635 static int identity_virt2phys(struct target *target,
636                 uint32_t virtual, uint32_t *physical)
637 {
638         *physical = virtual;
639         return ERROR_OK;
640 }
641
642 static int no_mmu(struct target *target, int *enabled)
643 {
644         *enabled = 0;
645         return ERROR_OK;
646 }
647
648 static int default_examine(struct target *target)
649 {
650         target_set_examined(target);
651         return ERROR_OK;
652 }
653
654 /* no check by default */
655 static int default_check_reset(struct target *target)
656 {
657         return ERROR_OK;
658 }
659
660 int target_examine_one(struct target *target)
661 {
662         return target->type->examine(target);
663 }
664
665 static int jtag_enable_callback(enum jtag_event event, void *priv)
666 {
667         struct target *target = priv;
668
669         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
670                 return ERROR_OK;
671
672         jtag_unregister_event_callback(jtag_enable_callback, target);
673
674         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
675
676         int retval = target_examine_one(target);
677         if (retval != ERROR_OK)
678                 return retval;
679
680         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
681
682         return retval;
683 }
684
685 /* Targets that correctly implement init + examine, i.e.
686  * no communication with target during init:
687  *
688  * XScale
689  */
690 int target_examine(void)
691 {
692         int retval = ERROR_OK;
693         struct target *target;
694
695         for (target = all_targets; target; target = target->next) {
696                 /* defer examination, but don't skip it */
697                 if (!target->tap->enabled) {
698                         jtag_register_event_callback(jtag_enable_callback,
699                                         target);
700                         continue;
701                 }
702
703                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704
705                 retval = target_examine_one(target);
706                 if (retval != ERROR_OK)
707                         return retval;
708
709                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710         }
711         return retval;
712 }
713
714 const char *target_type_name(struct target *target)
715 {
716         return target->type->name;
717 }
718
719 static int target_soft_reset_halt(struct target *target)
720 {
721         if (!target_was_examined(target)) {
722                 LOG_ERROR("Target not examined yet");
723                 return ERROR_FAIL;
724         }
725         if (!target->type->soft_reset_halt) {
726                 LOG_ERROR("Target %s does not support soft_reset_halt",
727                                 target_name(target));
728                 return ERROR_FAIL;
729         }
730         return target->type->soft_reset_halt(target);
731 }
732
733 /**
734  * Downloads a target-specific native code algorithm to the target,
735  * and executes it.  * Note that some targets may need to set up, enable,
736  * and tear down a breakpoint (hard or * soft) to detect algorithm
737  * termination, while others may support  lower overhead schemes where
738  * soft breakpoints embedded in the algorithm automatically terminate the
739  * algorithm.
740  *
741  * @param target used to run the algorithm
742  * @param arch_info target-specific description of the algorithm.
743  */
744 int target_run_algorithm(struct target *target,
745                 int num_mem_params, struct mem_param *mem_params,
746                 int num_reg_params, struct reg_param *reg_param,
747                 uint32_t entry_point, uint32_t exit_point,
748                 int timeout_ms, void *arch_info)
749 {
750         int retval = ERROR_FAIL;
751
752         if (!target_was_examined(target)) {
753                 LOG_ERROR("Target not examined yet");
754                 goto done;
755         }
756         if (!target->type->run_algorithm) {
757                 LOG_ERROR("Target type '%s' does not support %s",
758                                 target_type_name(target), __func__);
759                 goto done;
760         }
761
762         target->running_alg = true;
763         retval = target->type->run_algorithm(target,
764                         num_mem_params, mem_params,
765                         num_reg_params, reg_param,
766                         entry_point, exit_point, timeout_ms, arch_info);
767         target->running_alg = false;
768
769 done:
770         return retval;
771 }
772
773 /**
774  * Downloads a target-specific native code algorithm to the target,
775  * executes and leaves it running.
776  *
777  * @param target used to run the algorithm
778  * @param arch_info target-specific description of the algorithm.
779  */
780 int target_start_algorithm(struct target *target,
781                 int num_mem_params, struct mem_param *mem_params,
782                 int num_reg_params, struct reg_param *reg_params,
783                 uint32_t entry_point, uint32_t exit_point,
784                 void *arch_info)
785 {
786         int retval = ERROR_FAIL;
787
788         if (!target_was_examined(target)) {
789                 LOG_ERROR("Target not examined yet");
790                 goto done;
791         }
792         if (!target->type->start_algorithm) {
793                 LOG_ERROR("Target type '%s' does not support %s",
794                                 target_type_name(target), __func__);
795                 goto done;
796         }
797         if (target->running_alg) {
798                 LOG_ERROR("Target is already running an algorithm");
799                 goto done;
800         }
801
802         target->running_alg = true;
803         retval = target->type->start_algorithm(target,
804                         num_mem_params, mem_params,
805                         num_reg_params, reg_params,
806                         entry_point, exit_point, arch_info);
807
808 done:
809         return retval;
810 }
811
812 /**
813  * Waits for an algorithm started with target_start_algorithm() to complete.
814  *
815  * @param target used to run the algorithm
816  * @param arch_info target-specific description of the algorithm.
817  */
818 int target_wait_algorithm(struct target *target,
819                 int num_mem_params, struct mem_param *mem_params,
820                 int num_reg_params, struct reg_param *reg_params,
821                 uint32_t exit_point, int timeout_ms,
822                 void *arch_info)
823 {
824         int retval = ERROR_FAIL;
825
826         if (!target->type->wait_algorithm) {
827                 LOG_ERROR("Target type '%s' does not support %s",
828                                 target_type_name(target), __func__);
829                 goto done;
830         }
831         if (!target->running_alg) {
832                 LOG_ERROR("Target is not running an algorithm");
833                 goto done;
834         }
835
836         retval = target->type->wait_algorithm(target,
837                         num_mem_params, mem_params,
838                         num_reg_params, reg_params,
839                         exit_point, timeout_ms, arch_info);
840         if (retval != ERROR_TARGET_TIMEOUT)
841                 target->running_alg = false;
842
843 done:
844         return retval;
845 }
846
847 /**
848  * Executes a target-specific native code algorithm in the target.
849  * It differs from target_run_algorithm in that the algorithm is asynchronous.
850  * Because of this it requires an compliant algorithm:
851  * see contrib/loaders/flash/stm32f1x.S for example.
852  *
853  * @param target used to run the algorithm
854  */
855
856 int target_run_flash_async_algorithm(struct target *target,
857                 const uint8_t *buffer, uint32_t count, int block_size,
858                 int num_mem_params, struct mem_param *mem_params,
859                 int num_reg_params, struct reg_param *reg_params,
860                 uint32_t buffer_start, uint32_t buffer_size,
861                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
862 {
863         int retval;
864         int timeout = 0;
865
866         const uint8_t *buffer_orig = buffer;
867
868         /* Set up working area. First word is write pointer, second word is read pointer,
869          * rest is fifo data area. */
870         uint32_t wp_addr = buffer_start;
871         uint32_t rp_addr = buffer_start + 4;
872         uint32_t fifo_start_addr = buffer_start + 8;
873         uint32_t fifo_end_addr = buffer_start + buffer_size;
874
875         uint32_t wp = fifo_start_addr;
876         uint32_t rp = fifo_start_addr;
877
878         /* validate block_size is 2^n */
879         assert(!block_size || !(block_size & (block_size - 1)));
880
881         retval = target_write_u32(target, wp_addr, wp);
882         if (retval != ERROR_OK)
883                 return retval;
884         retval = target_write_u32(target, rp_addr, rp);
885         if (retval != ERROR_OK)
886                 return retval;
887
888         /* Start up algorithm on target and let it idle while writing the first chunk */
889         retval = target_start_algorithm(target, num_mem_params, mem_params,
890                         num_reg_params, reg_params,
891                         entry_point,
892                         exit_point,
893                         arch_info);
894
895         if (retval != ERROR_OK) {
896                 LOG_ERROR("error starting target flash write algorithm");
897                 return retval;
898         }
899
900         while (count > 0) {
901
902                 retval = target_read_u32(target, rp_addr, &rp);
903                 if (retval != ERROR_OK) {
904                         LOG_ERROR("failed to get read pointer");
905                         break;
906                 }
907
908                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
909                         (buffer - buffer_orig), count, wp, rp);
910
911                 if (rp == 0) {
912                         LOG_ERROR("flash write algorithm aborted by target");
913                         retval = ERROR_FLASH_OPERATION_FAILED;
914                         break;
915                 }
916
917                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
918                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
919                         break;
920                 }
921
922                 /* Count the number of bytes available in the fifo without
923                  * crossing the wrap around. Make sure to not fill it completely,
924                  * because that would make wp == rp and that's the empty condition. */
925                 uint32_t thisrun_bytes;
926                 if (rp > wp)
927                         thisrun_bytes = rp - wp - block_size;
928                 else if (rp > fifo_start_addr)
929                         thisrun_bytes = fifo_end_addr - wp;
930                 else
931                         thisrun_bytes = fifo_end_addr - wp - block_size;
932
933                 if (thisrun_bytes == 0) {
934                         /* Throttle polling a bit if transfer is (much) faster than flash
935                          * programming. The exact delay shouldn't matter as long as it's
936                          * less than buffer size / flash speed. This is very unlikely to
937                          * run when using high latency connections such as USB. */
938                         alive_sleep(10);
939
940                         /* to stop an infinite loop on some targets check and increment a timeout
941                          * this issue was observed on a stellaris using the new ICDI interface */
942                         if (timeout++ >= 500) {
943                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
944                                 return ERROR_FLASH_OPERATION_FAILED;
945                         }
946                         continue;
947                 }
948
949                 /* reset our timeout */
950                 timeout = 0;
951
952                 /* Limit to the amount of data we actually want to write */
953                 if (thisrun_bytes > count * block_size)
954                         thisrun_bytes = count * block_size;
955
956                 /* Write data to fifo */
957                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
958                 if (retval != ERROR_OK)
959                         break;
960
961                 /* Update counters and wrap write pointer */
962                 buffer += thisrun_bytes;
963                 count -= thisrun_bytes / block_size;
964                 wp += thisrun_bytes;
965                 if (wp >= fifo_end_addr)
966                         wp = fifo_start_addr;
967
968                 /* Store updated write pointer to target */
969                 retval = target_write_u32(target, wp_addr, wp);
970                 if (retval != ERROR_OK)
971                         break;
972         }
973
974         if (retval != ERROR_OK) {
975                 /* abort flash write algorithm on target */
976                 target_write_u32(target, wp_addr, 0);
977         }
978
979         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
980                         num_reg_params, reg_params,
981                         exit_point,
982                         10000,
983                         arch_info);
984
985         if (retval2 != ERROR_OK) {
986                 LOG_ERROR("error waiting for target flash write algorithm");
987                 retval = retval2;
988         }
989
990         return retval;
991 }
992
993 int target_read_memory(struct target *target,
994                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
995 {
996         if (!target_was_examined(target)) {
997                 LOG_ERROR("Target not examined yet");
998                 return ERROR_FAIL;
999         }
1000         return target->type->read_memory(target, address, size, count, buffer);
1001 }
1002
1003 int target_read_phys_memory(struct target *target,
1004                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1005 {
1006         if (!target_was_examined(target)) {
1007                 LOG_ERROR("Target not examined yet");
1008                 return ERROR_FAIL;
1009         }
1010         return target->type->read_phys_memory(target, address, size, count, buffer);
1011 }
1012
1013 int target_write_memory(struct target *target,
1014                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1015 {
1016         if (!target_was_examined(target)) {
1017                 LOG_ERROR("Target not examined yet");
1018                 return ERROR_FAIL;
1019         }
1020         return target->type->write_memory(target, address, size, count, buffer);
1021 }
1022
1023 int target_write_phys_memory(struct target *target,
1024                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1025 {
1026         if (!target_was_examined(target)) {
1027                 LOG_ERROR("Target not examined yet");
1028                 return ERROR_FAIL;
1029         }
1030         return target->type->write_phys_memory(target, address, size, count, buffer);
1031 }
1032
1033 int target_add_breakpoint(struct target *target,
1034                 struct breakpoint *breakpoint)
1035 {
1036         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1037                 LOG_WARNING("target %s is not halted", target_name(target));
1038                 return ERROR_TARGET_NOT_HALTED;
1039         }
1040         return target->type->add_breakpoint(target, breakpoint);
1041 }
1042
1043 int target_add_context_breakpoint(struct target *target,
1044                 struct breakpoint *breakpoint)
1045 {
1046         if (target->state != TARGET_HALTED) {
1047                 LOG_WARNING("target %s is not halted", target_name(target));
1048                 return ERROR_TARGET_NOT_HALTED;
1049         }
1050         return target->type->add_context_breakpoint(target, breakpoint);
1051 }
1052
1053 int target_add_hybrid_breakpoint(struct target *target,
1054                 struct breakpoint *breakpoint)
1055 {
1056         if (target->state != TARGET_HALTED) {
1057                 LOG_WARNING("target %s is not halted", target_name(target));
1058                 return ERROR_TARGET_NOT_HALTED;
1059         }
1060         return target->type->add_hybrid_breakpoint(target, breakpoint);
1061 }
1062
1063 int target_remove_breakpoint(struct target *target,
1064                 struct breakpoint *breakpoint)
1065 {
1066         return target->type->remove_breakpoint(target, breakpoint);
1067 }
1068
1069 int target_add_watchpoint(struct target *target,
1070                 struct watchpoint *watchpoint)
1071 {
1072         if (target->state != TARGET_HALTED) {
1073                 LOG_WARNING("target %s is not halted", target_name(target));
1074                 return ERROR_TARGET_NOT_HALTED;
1075         }
1076         return target->type->add_watchpoint(target, watchpoint);
1077 }
1078 int target_remove_watchpoint(struct target *target,
1079                 struct watchpoint *watchpoint)
1080 {
1081         return target->type->remove_watchpoint(target, watchpoint);
1082 }
1083 int target_hit_watchpoint(struct target *target,
1084                 struct watchpoint **hit_watchpoint)
1085 {
1086         if (target->state != TARGET_HALTED) {
1087                 LOG_WARNING("target %s is not halted", target->cmd_name);
1088                 return ERROR_TARGET_NOT_HALTED;
1089         }
1090
1091         if (target->type->hit_watchpoint == NULL) {
1092                 /* For backward compatible, if hit_watchpoint is not implemented,
1093                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1094                  * information. */
1095                 return ERROR_FAIL;
1096         }
1097
1098         return target->type->hit_watchpoint(target, hit_watchpoint);
1099 }
1100
1101 int target_get_gdb_reg_list(struct target *target,
1102                 struct reg **reg_list[], int *reg_list_size,
1103                 enum target_register_class reg_class)
1104 {
1105         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1106 }
1107 int target_step(struct target *target,
1108                 int current, uint32_t address, int handle_breakpoints)
1109 {
1110         return target->type->step(target, current, address, handle_breakpoints);
1111 }
1112
1113 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1114 {
1115         if (target->state != TARGET_HALTED) {
1116                 LOG_WARNING("target %s is not halted", target->cmd_name);
1117                 return ERROR_TARGET_NOT_HALTED;
1118         }
1119         return target->type->get_gdb_fileio_info(target, fileio_info);
1120 }
1121
1122 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1123 {
1124         if (target->state != TARGET_HALTED) {
1125                 LOG_WARNING("target %s is not halted", target->cmd_name);
1126                 return ERROR_TARGET_NOT_HALTED;
1127         }
1128         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1129 }
1130
1131 int target_profiling(struct target *target, uint32_t *samples,
1132                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1133 {
1134         if (target->state != TARGET_HALTED) {
1135                 LOG_WARNING("target %s is not halted", target->cmd_name);
1136                 return ERROR_TARGET_NOT_HALTED;
1137         }
1138         return target->type->profiling(target, samples, max_num_samples,
1139                         num_samples, seconds);
1140 }
1141
1142 /**
1143  * Reset the @c examined flag for the given target.
1144  * Pure paranoia -- targets are zeroed on allocation.
1145  */
1146 static void target_reset_examined(struct target *target)
1147 {
1148         target->examined = false;
1149 }
1150
1151 static int err_read_phys_memory(struct target *target, uint32_t address,
1152                 uint32_t size, uint32_t count, uint8_t *buffer)
1153 {
1154         LOG_ERROR("Not implemented: %s", __func__);
1155         return ERROR_FAIL;
1156 }
1157
1158 static int err_write_phys_memory(struct target *target, uint32_t address,
1159                 uint32_t size, uint32_t count, const uint8_t *buffer)
1160 {
1161         LOG_ERROR("Not implemented: %s", __func__);
1162         return ERROR_FAIL;
1163 }
1164
1165 static int handle_target(void *priv);
1166
1167 static int target_init_one(struct command_context *cmd_ctx,
1168                 struct target *target)
1169 {
1170         target_reset_examined(target);
1171
1172         struct target_type *type = target->type;
1173         if (type->examine == NULL)
1174                 type->examine = default_examine;
1175
1176         if (type->check_reset == NULL)
1177                 type->check_reset = default_check_reset;
1178
1179         assert(type->init_target != NULL);
1180
1181         int retval = type->init_target(cmd_ctx, target);
1182         if (ERROR_OK != retval) {
1183                 LOG_ERROR("target '%s' init failed", target_name(target));
1184                 return retval;
1185         }
1186
1187         /* Sanity-check MMU support ... stub in what we must, to help
1188          * implement it in stages, but warn if we need to do so.
1189          */
1190         if (type->mmu) {
1191                 if (type->write_phys_memory == NULL) {
1192                         LOG_ERROR("type '%s' is missing write_phys_memory",
1193                                         type->name);
1194                         type->write_phys_memory = err_write_phys_memory;
1195                 }
1196                 if (type->read_phys_memory == NULL) {
1197                         LOG_ERROR("type '%s' is missing read_phys_memory",
1198                                         type->name);
1199                         type->read_phys_memory = err_read_phys_memory;
1200                 }
1201                 if (type->virt2phys == NULL) {
1202                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1203                         type->virt2phys = identity_virt2phys;
1204                 }
1205         } else {
1206                 /* Make sure no-MMU targets all behave the same:  make no
1207                  * distinction between physical and virtual addresses, and
1208                  * ensure that virt2phys() is always an identity mapping.
1209                  */
1210                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1211                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1212
1213                 type->mmu = no_mmu;
1214                 type->write_phys_memory = type->write_memory;
1215                 type->read_phys_memory = type->read_memory;
1216                 type->virt2phys = identity_virt2phys;
1217         }
1218
1219         if (target->type->read_buffer == NULL)
1220                 target->type->read_buffer = target_read_buffer_default;
1221
1222         if (target->type->write_buffer == NULL)
1223                 target->type->write_buffer = target_write_buffer_default;
1224
1225         if (target->type->get_gdb_fileio_info == NULL)
1226                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1227
1228         if (target->type->gdb_fileio_end == NULL)
1229                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1230
1231         if (target->type->profiling == NULL)
1232                 target->type->profiling = target_profiling_default;
1233
1234         return ERROR_OK;
1235 }
1236
1237 static int target_init(struct command_context *cmd_ctx)
1238 {
1239         struct target *target;
1240         int retval;
1241
1242         for (target = all_targets; target; target = target->next) {
1243                 retval = target_init_one(cmd_ctx, target);
1244                 if (ERROR_OK != retval)
1245                         return retval;
1246         }
1247
1248         if (!all_targets)
1249                 return ERROR_OK;
1250
1251         retval = target_register_user_commands(cmd_ctx);
1252         if (ERROR_OK != retval)
1253                 return retval;
1254
1255         retval = target_register_timer_callback(&handle_target,
1256                         polling_interval, 1, cmd_ctx->interp);
1257         if (ERROR_OK != retval)
1258                 return retval;
1259
1260         return ERROR_OK;
1261 }
1262
1263 COMMAND_HANDLER(handle_target_init_command)
1264 {
1265         int retval;
1266
1267         if (CMD_ARGC != 0)
1268                 return ERROR_COMMAND_SYNTAX_ERROR;
1269
1270         static bool target_initialized;
1271         if (target_initialized) {
1272                 LOG_INFO("'target init' has already been called");
1273                 return ERROR_OK;
1274         }
1275         target_initialized = true;
1276
1277         retval = command_run_line(CMD_CTX, "init_targets");
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         retval = command_run_line(CMD_CTX, "init_target_events");
1282         if (ERROR_OK != retval)
1283                 return retval;
1284
1285         retval = command_run_line(CMD_CTX, "init_board");
1286         if (ERROR_OK != retval)
1287                 return retval;
1288
1289         LOG_DEBUG("Initializing targets...");
1290         return target_init(CMD_CTX);
1291 }
1292
1293 int target_register_event_callback(int (*callback)(struct target *target,
1294                 enum target_event event, void *priv), void *priv)
1295 {
1296         struct target_event_callback **callbacks_p = &target_event_callbacks;
1297
1298         if (callback == NULL)
1299                 return ERROR_COMMAND_SYNTAX_ERROR;
1300
1301         if (*callbacks_p) {
1302                 while ((*callbacks_p)->next)
1303                         callbacks_p = &((*callbacks_p)->next);
1304                 callbacks_p = &((*callbacks_p)->next);
1305         }
1306
1307         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1308         (*callbacks_p)->callback = callback;
1309         (*callbacks_p)->priv = priv;
1310         (*callbacks_p)->next = NULL;
1311
1312         return ERROR_OK;
1313 }
1314
1315 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1316 {
1317         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1318         struct timeval now;
1319
1320         if (callback == NULL)
1321                 return ERROR_COMMAND_SYNTAX_ERROR;
1322
1323         if (*callbacks_p) {
1324                 while ((*callbacks_p)->next)
1325                         callbacks_p = &((*callbacks_p)->next);
1326                 callbacks_p = &((*callbacks_p)->next);
1327         }
1328
1329         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1330         (*callbacks_p)->callback = callback;
1331         (*callbacks_p)->periodic = periodic;
1332         (*callbacks_p)->time_ms = time_ms;
1333
1334         gettimeofday(&now, NULL);
1335         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1336         time_ms -= (time_ms % 1000);
1337         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1338         if ((*callbacks_p)->when.tv_usec > 1000000) {
1339                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1340                 (*callbacks_p)->when.tv_sec += 1;
1341         }
1342
1343         (*callbacks_p)->priv = priv;
1344         (*callbacks_p)->next = NULL;
1345
1346         return ERROR_OK;
1347 }
1348
1349 int target_unregister_event_callback(int (*callback)(struct target *target,
1350                 enum target_event event, void *priv), void *priv)
1351 {
1352         struct target_event_callback **p = &target_event_callbacks;
1353         struct target_event_callback *c = target_event_callbacks;
1354
1355         if (callback == NULL)
1356                 return ERROR_COMMAND_SYNTAX_ERROR;
1357
1358         while (c) {
1359                 struct target_event_callback *next = c->next;
1360                 if ((c->callback == callback) && (c->priv == priv)) {
1361                         *p = next;
1362                         free(c);
1363                         return ERROR_OK;
1364                 } else
1365                         p = &(c->next);
1366                 c = next;
1367         }
1368
1369         return ERROR_OK;
1370 }
1371
1372 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1373 {
1374         struct target_timer_callback **p = &target_timer_callbacks;
1375         struct target_timer_callback *c = target_timer_callbacks;
1376
1377         if (callback == NULL)
1378                 return ERROR_COMMAND_SYNTAX_ERROR;
1379
1380         while (c) {
1381                 struct target_timer_callback *next = c->next;
1382                 if ((c->callback == callback) && (c->priv == priv)) {
1383                         *p = next;
1384                         free(c);
1385                         return ERROR_OK;
1386                 } else
1387                         p = &(c->next);
1388                 c = next;
1389         }
1390
1391         return ERROR_OK;
1392 }
1393
1394 int target_call_event_callbacks(struct target *target, enum target_event event)
1395 {
1396         struct target_event_callback *callback = target_event_callbacks;
1397         struct target_event_callback *next_callback;
1398
1399         if (event == TARGET_EVENT_HALTED) {
1400                 /* execute early halted first */
1401                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1402         }
1403
1404         LOG_DEBUG("target event %i (%s)", event,
1405                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1406
1407         target_handle_event(target, event);
1408
1409         while (callback) {
1410                 next_callback = callback->next;
1411                 callback->callback(target, event, callback->priv);
1412                 callback = next_callback;
1413         }
1414
1415         return ERROR_OK;
1416 }
1417
1418 static int target_timer_callback_periodic_restart(
1419                 struct target_timer_callback *cb, struct timeval *now)
1420 {
1421         int time_ms = cb->time_ms;
1422         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1423         time_ms -= (time_ms % 1000);
1424         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1425         if (cb->when.tv_usec > 1000000) {
1426                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1427                 cb->when.tv_sec += 1;
1428         }
1429         return ERROR_OK;
1430 }
1431
1432 static int target_call_timer_callback(struct target_timer_callback *cb,
1433                 struct timeval *now)
1434 {
1435         cb->callback(cb->priv);
1436
1437         if (cb->periodic)
1438                 return target_timer_callback_periodic_restart(cb, now);
1439
1440         return target_unregister_timer_callback(cb->callback, cb->priv);
1441 }
1442
1443 static int target_call_timer_callbacks_check_time(int checktime)
1444 {
1445         keep_alive();
1446
1447         struct timeval now;
1448         gettimeofday(&now, NULL);
1449
1450         struct target_timer_callback *callback = target_timer_callbacks;
1451         while (callback) {
1452                 /* cleaning up may unregister and free this callback */
1453                 struct target_timer_callback *next_callback = callback->next;
1454
1455                 bool call_it = callback->callback &&
1456                         ((!checktime && callback->periodic) ||
1457                           now.tv_sec > callback->when.tv_sec ||
1458                          (now.tv_sec == callback->when.tv_sec &&
1459                           now.tv_usec >= callback->when.tv_usec));
1460
1461                 if (call_it) {
1462                         int retval = target_call_timer_callback(callback, &now);
1463                         if (retval != ERROR_OK)
1464                                 return retval;
1465                 }
1466
1467                 callback = next_callback;
1468         }
1469
1470         return ERROR_OK;
1471 }
1472
1473 int target_call_timer_callbacks(void)
1474 {
1475         return target_call_timer_callbacks_check_time(1);
1476 }
1477
1478 /* invoke periodic callbacks immediately */
1479 int target_call_timer_callbacks_now(void)
1480 {
1481         return target_call_timer_callbacks_check_time(0);
1482 }
1483
1484 /* Prints the working area layout for debug purposes */
1485 static void print_wa_layout(struct target *target)
1486 {
1487         struct working_area *c = target->working_areas;
1488
1489         while (c) {
1490                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1491                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1492                         c->address, c->address + c->size - 1, c->size);
1493                 c = c->next;
1494         }
1495 }
1496
1497 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1498 static void target_split_working_area(struct working_area *area, uint32_t size)
1499 {
1500         assert(area->free); /* Shouldn't split an allocated area */
1501         assert(size <= area->size); /* Caller should guarantee this */
1502
1503         /* Split only if not already the right size */
1504         if (size < area->size) {
1505                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1506
1507                 if (new_wa == NULL)
1508                         return;
1509
1510                 new_wa->next = area->next;
1511                 new_wa->size = area->size - size;
1512                 new_wa->address = area->address + size;
1513                 new_wa->backup = NULL;
1514                 new_wa->user = NULL;
1515                 new_wa->free = true;
1516
1517                 area->next = new_wa;
1518                 area->size = size;
1519
1520                 /* If backup memory was allocated to this area, it has the wrong size
1521                  * now so free it and it will be reallocated if/when needed */
1522                 if (area->backup) {
1523                         free(area->backup);
1524                         area->backup = NULL;
1525                 }
1526         }
1527 }
1528
1529 /* Merge all adjacent free areas into one */
1530 static void target_merge_working_areas(struct target *target)
1531 {
1532         struct working_area *c = target->working_areas;
1533
1534         while (c && c->next) {
1535                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1536
1537                 /* Find two adjacent free areas */
1538                 if (c->free && c->next->free) {
1539                         /* Merge the last into the first */
1540                         c->size += c->next->size;
1541
1542                         /* Remove the last */
1543                         struct working_area *to_be_freed = c->next;
1544                         c->next = c->next->next;
1545                         if (to_be_freed->backup)
1546                                 free(to_be_freed->backup);
1547                         free(to_be_freed);
1548
1549                         /* If backup memory was allocated to the remaining area, it's has
1550                          * the wrong size now */
1551                         if (c->backup) {
1552                                 free(c->backup);
1553                                 c->backup = NULL;
1554                         }
1555                 } else {
1556                         c = c->next;
1557                 }
1558         }
1559 }
1560
1561 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1562 {
1563         /* Reevaluate working area address based on MMU state*/
1564         if (target->working_areas == NULL) {
1565                 int retval;
1566                 int enabled;
1567
1568                 retval = target->type->mmu(target, &enabled);
1569                 if (retval != ERROR_OK)
1570                         return retval;
1571
1572                 if (!enabled) {
1573                         if (target->working_area_phys_spec) {
1574                                 LOG_DEBUG("MMU disabled, using physical "
1575                                         "address for working memory 0x%08"PRIx32,
1576                                         target->working_area_phys);
1577                                 target->working_area = target->working_area_phys;
1578                         } else {
1579                                 LOG_ERROR("No working memory available. "
1580                                         "Specify -work-area-phys to target.");
1581                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1582                         }
1583                 } else {
1584                         if (target->working_area_virt_spec) {
1585                                 LOG_DEBUG("MMU enabled, using virtual "
1586                                         "address for working memory 0x%08"PRIx32,
1587                                         target->working_area_virt);
1588                                 target->working_area = target->working_area_virt;
1589                         } else {
1590                                 LOG_ERROR("No working memory available. "
1591                                         "Specify -work-area-virt to target.");
1592                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1593                         }
1594                 }
1595
1596                 /* Set up initial working area on first call */
1597                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1598                 if (new_wa) {
1599                         new_wa->next = NULL;
1600                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1601                         new_wa->address = target->working_area;
1602                         new_wa->backup = NULL;
1603                         new_wa->user = NULL;
1604                         new_wa->free = true;
1605                 }
1606
1607                 target->working_areas = new_wa;
1608         }
1609
1610         /* only allocate multiples of 4 byte */
1611         if (size % 4)
1612                 size = (size + 3) & (~3UL);
1613
1614         struct working_area *c = target->working_areas;
1615
1616         /* Find the first large enough working area */
1617         while (c) {
1618                 if (c->free && c->size >= size)
1619                         break;
1620                 c = c->next;
1621         }
1622
1623         if (c == NULL)
1624                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1625
1626         /* Split the working area into the requested size */
1627         target_split_working_area(c, size);
1628
1629         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1630
1631         if (target->backup_working_area) {
1632                 if (c->backup == NULL) {
1633                         c->backup = malloc(c->size);
1634                         if (c->backup == NULL)
1635                                 return ERROR_FAIL;
1636                 }
1637
1638                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1639                 if (retval != ERROR_OK)
1640                         return retval;
1641         }
1642
1643         /* mark as used, and return the new (reused) area */
1644         c->free = false;
1645         *area = c;
1646
1647         /* user pointer */
1648         c->user = area;
1649
1650         print_wa_layout(target);
1651
1652         return ERROR_OK;
1653 }
1654
1655 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1656 {
1657         int retval;
1658
1659         retval = target_alloc_working_area_try(target, size, area);
1660         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1661                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1662         return retval;
1663
1664 }
1665
1666 static int target_restore_working_area(struct target *target, struct working_area *area)
1667 {
1668         int retval = ERROR_OK;
1669
1670         if (target->backup_working_area && area->backup != NULL) {
1671                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1672                 if (retval != ERROR_OK)
1673                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1674                                         area->size, area->address);
1675         }
1676
1677         return retval;
1678 }
1679
1680 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1681 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1682 {
1683         int retval = ERROR_OK;
1684
1685         if (area->free)
1686                 return retval;
1687
1688         if (restore) {
1689                 retval = target_restore_working_area(target, area);
1690                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1691                 if (retval != ERROR_OK)
1692                         return retval;
1693         }
1694
1695         area->free = true;
1696
1697         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1698                         area->size, area->address);
1699
1700         /* mark user pointer invalid */
1701         /* TODO: Is this really safe? It points to some previous caller's memory.
1702          * How could we know that the area pointer is still in that place and not
1703          * some other vital data? What's the purpose of this, anyway? */
1704         *area->user = NULL;
1705         area->user = NULL;
1706
1707         target_merge_working_areas(target);
1708
1709         print_wa_layout(target);
1710
1711         return retval;
1712 }
1713
1714 int target_free_working_area(struct target *target, struct working_area *area)
1715 {
1716         return target_free_working_area_restore(target, area, 1);
1717 }
1718
1719 /* free resources and restore memory, if restoring memory fails,
1720  * free up resources anyway
1721  */
1722 static void target_free_all_working_areas_restore(struct target *target, int restore)
1723 {
1724         struct working_area *c = target->working_areas;
1725
1726         LOG_DEBUG("freeing all working areas");
1727
1728         /* Loop through all areas, restoring the allocated ones and marking them as free */
1729         while (c) {
1730                 if (!c->free) {
1731                         if (restore)
1732                                 target_restore_working_area(target, c);
1733                         c->free = true;
1734                         *c->user = NULL; /* Same as above */
1735                         c->user = NULL;
1736                 }
1737                 c = c->next;
1738         }
1739
1740         /* Run a merge pass to combine all areas into one */
1741         target_merge_working_areas(target);
1742
1743         print_wa_layout(target);
1744 }
1745
1746 void target_free_all_working_areas(struct target *target)
1747 {
1748         target_free_all_working_areas_restore(target, 1);
1749 }
1750
1751 /* Find the largest number of bytes that can be allocated */
1752 uint32_t target_get_working_area_avail(struct target *target)
1753 {
1754         struct working_area *c = target->working_areas;
1755         uint32_t max_size = 0;
1756
1757         if (c == NULL)
1758                 return target->working_area_size;
1759
1760         while (c) {
1761                 if (c->free && max_size < c->size)
1762                         max_size = c->size;
1763
1764                 c = c->next;
1765         }
1766
1767         return max_size;
1768 }
1769
1770 int target_arch_state(struct target *target)
1771 {
1772         int retval;
1773         if (target == NULL) {
1774                 LOG_USER("No target has been configured");
1775                 return ERROR_OK;
1776         }
1777
1778         LOG_USER("target state: %s", target_state_name(target));
1779
1780         if (target->state != TARGET_HALTED)
1781                 return ERROR_OK;
1782
1783         retval = target->type->arch_state(target);
1784         return retval;
1785 }
1786
1787 static int target_get_gdb_fileio_info_default(struct target *target,
1788                 struct gdb_fileio_info *fileio_info)
1789 {
1790         /* If target does not support semi-hosting function, target
1791            has no need to provide .get_gdb_fileio_info callback.
1792            It just return ERROR_FAIL and gdb_server will return "Txx"
1793            as target halted every time.  */
1794         return ERROR_FAIL;
1795 }
1796
1797 static int target_gdb_fileio_end_default(struct target *target,
1798                 int retcode, int fileio_errno, bool ctrl_c)
1799 {
1800         return ERROR_OK;
1801 }
1802
1803 static int target_profiling_default(struct target *target, uint32_t *samples,
1804                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1805 {
1806         struct timeval timeout, now;
1807
1808         gettimeofday(&timeout, NULL);
1809         timeval_add_time(&timeout, seconds, 0);
1810
1811         LOG_INFO("Starting profiling. Halting and resuming the"
1812                         " target as often as we can...");
1813
1814         uint32_t sample_count = 0;
1815         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1816         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1817
1818         int retval = ERROR_OK;
1819         for (;;) {
1820                 target_poll(target);
1821                 if (target->state == TARGET_HALTED) {
1822                         uint32_t t = *((uint32_t *)reg->value);
1823                         samples[sample_count++] = t;
1824                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1825                         retval = target_resume(target, 1, 0, 0, 0);
1826                         target_poll(target);
1827                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1828                 } else if (target->state == TARGET_RUNNING) {
1829                         /* We want to quickly sample the PC. */
1830                         retval = target_halt(target);
1831                 } else {
1832                         LOG_INFO("Target not halted or running");
1833                         retval = ERROR_OK;
1834                         break;
1835                 }
1836
1837                 if (retval != ERROR_OK)
1838                         break;
1839
1840                 gettimeofday(&now, NULL);
1841                 if ((sample_count >= max_num_samples) ||
1842                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1843                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1844                         break;
1845                 }
1846         }
1847
1848         *num_samples = sample_count;
1849         return retval;
1850 }
1851
1852 /* Single aligned words are guaranteed to use 16 or 32 bit access
1853  * mode respectively, otherwise data is handled as quickly as
1854  * possible
1855  */
1856 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1857 {
1858         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1859                         (int)size, (unsigned)address);
1860
1861         if (!target_was_examined(target)) {
1862                 LOG_ERROR("Target not examined yet");
1863                 return ERROR_FAIL;
1864         }
1865
1866         if (size == 0)
1867                 return ERROR_OK;
1868
1869         if ((address + size - 1) < address) {
1870                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1871                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1872                                   (unsigned)address,
1873                                   (unsigned)size);
1874                 return ERROR_FAIL;
1875         }
1876
1877         return target->type->write_buffer(target, address, size, buffer);
1878 }
1879
1880 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1881 {
1882         uint32_t size;
1883
1884         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1885          * will have something to do with the size we leave to it. */
1886         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1887                 if (address & size) {
1888                         int retval = target_write_memory(target, address, size, 1, buffer);
1889                         if (retval != ERROR_OK)
1890                                 return retval;
1891                         address += size;
1892                         count -= size;
1893                         buffer += size;
1894                 }
1895         }
1896
1897         /* Write the data with as large access size as possible. */
1898         for (; size > 0; size /= 2) {
1899                 uint32_t aligned = count - count % size;
1900                 if (aligned > 0) {
1901                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1902                         if (retval != ERROR_OK)
1903                                 return retval;
1904                         address += aligned;
1905                         count -= aligned;
1906                         buffer += aligned;
1907                 }
1908         }
1909
1910         return ERROR_OK;
1911 }
1912
1913 /* Single aligned words are guaranteed to use 16 or 32 bit access
1914  * mode respectively, otherwise data is handled as quickly as
1915  * possible
1916  */
1917 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1918 {
1919         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1920                           (int)size, (unsigned)address);
1921
1922         if (!target_was_examined(target)) {
1923                 LOG_ERROR("Target not examined yet");
1924                 return ERROR_FAIL;
1925         }
1926
1927         if (size == 0)
1928                 return ERROR_OK;
1929
1930         if ((address + size - 1) < address) {
1931                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1932                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1933                                   address,
1934                                   size);
1935                 return ERROR_FAIL;
1936         }
1937
1938         return target->type->read_buffer(target, address, size, buffer);
1939 }
1940
1941 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1942 {
1943         uint32_t size;
1944
1945         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1946          * will have something to do with the size we leave to it. */
1947         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1948                 if (address & size) {
1949                         int retval = target_read_memory(target, address, size, 1, buffer);
1950                         if (retval != ERROR_OK)
1951                                 return retval;
1952                         address += size;
1953                         count -= size;
1954                         buffer += size;
1955                 }
1956         }
1957
1958         /* Read the data with as large access size as possible. */
1959         for (; size > 0; size /= 2) {
1960                 uint32_t aligned = count - count % size;
1961                 if (aligned > 0) {
1962                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1963                         if (retval != ERROR_OK)
1964                                 return retval;
1965                         address += aligned;
1966                         count -= aligned;
1967                         buffer += aligned;
1968                 }
1969         }
1970
1971         return ERROR_OK;
1972 }
1973
1974 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1975 {
1976         uint8_t *buffer;
1977         int retval;
1978         uint32_t i;
1979         uint32_t checksum = 0;
1980         if (!target_was_examined(target)) {
1981                 LOG_ERROR("Target not examined yet");
1982                 return ERROR_FAIL;
1983         }
1984
1985         retval = target->type->checksum_memory(target, address, size, &checksum);
1986         if (retval != ERROR_OK) {
1987                 buffer = malloc(size);
1988                 if (buffer == NULL) {
1989                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1990                         return ERROR_COMMAND_SYNTAX_ERROR;
1991                 }
1992                 retval = target_read_buffer(target, address, size, buffer);
1993                 if (retval != ERROR_OK) {
1994                         free(buffer);
1995                         return retval;
1996                 }
1997
1998                 /* convert to target endianness */
1999                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2000                         uint32_t target_data;
2001                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2002                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2003                 }
2004
2005                 retval = image_calculate_checksum(buffer, size, &checksum);
2006                 free(buffer);
2007         }
2008
2009         *crc = checksum;
2010
2011         return retval;
2012 }
2013
2014 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2015 {
2016         int retval;
2017         if (!target_was_examined(target)) {
2018                 LOG_ERROR("Target not examined yet");
2019                 return ERROR_FAIL;
2020         }
2021
2022         if (target->type->blank_check_memory == 0)
2023                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2024
2025         retval = target->type->blank_check_memory(target, address, size, blank);
2026
2027         return retval;
2028 }
2029
2030 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2031 {
2032         uint8_t value_buf[8];
2033         if (!target_was_examined(target)) {
2034                 LOG_ERROR("Target not examined yet");
2035                 return ERROR_FAIL;
2036         }
2037
2038         int retval = target_read_memory(target, address, 8, 1, value_buf);
2039
2040         if (retval == ERROR_OK) {
2041                 *value = target_buffer_get_u64(target, value_buf);
2042                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2043                                   address,
2044                                   *value);
2045         } else {
2046                 *value = 0x0;
2047                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2048                                   address);
2049         }
2050
2051         return retval;
2052 }
2053
2054 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2055 {
2056         uint8_t value_buf[4];
2057         if (!target_was_examined(target)) {
2058                 LOG_ERROR("Target not examined yet");
2059                 return ERROR_FAIL;
2060         }
2061
2062         int retval = target_read_memory(target, address, 4, 1, value_buf);
2063
2064         if (retval == ERROR_OK) {
2065                 *value = target_buffer_get_u32(target, value_buf);
2066                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2067                                   address,
2068                                   *value);
2069         } else {
2070                 *value = 0x0;
2071                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2072                                   address);
2073         }
2074
2075         return retval;
2076 }
2077
2078 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2079 {
2080         uint8_t value_buf[2];
2081         if (!target_was_examined(target)) {
2082                 LOG_ERROR("Target not examined yet");
2083                 return ERROR_FAIL;
2084         }
2085
2086         int retval = target_read_memory(target, address, 2, 1, value_buf);
2087
2088         if (retval == ERROR_OK) {
2089                 *value = target_buffer_get_u16(target, value_buf);
2090                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2091                                   address,
2092                                   *value);
2093         } else {
2094                 *value = 0x0;
2095                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2096                                   address);
2097         }
2098
2099         return retval;
2100 }
2101
2102 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2103 {
2104         if (!target_was_examined(target)) {
2105                 LOG_ERROR("Target not examined yet");
2106                 return ERROR_FAIL;
2107         }
2108
2109         int retval = target_read_memory(target, address, 1, 1, value);
2110
2111         if (retval == ERROR_OK) {
2112                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2113                                   address,
2114                                   *value);
2115         } else {
2116                 *value = 0x0;
2117                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2118                                   address);
2119         }
2120
2121         return retval;
2122 }
2123
2124 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2125 {
2126         int retval;
2127         uint8_t value_buf[8];
2128         if (!target_was_examined(target)) {
2129                 LOG_ERROR("Target not examined yet");
2130                 return ERROR_FAIL;
2131         }
2132
2133         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2134                           address,
2135                           value);
2136
2137         target_buffer_set_u64(target, value_buf, value);
2138         retval = target_write_memory(target, address, 8, 1, value_buf);
2139         if (retval != ERROR_OK)
2140                 LOG_DEBUG("failed: %i", retval);
2141
2142         return retval;
2143 }
2144
2145 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2146 {
2147         int retval;
2148         uint8_t value_buf[4];
2149         if (!target_was_examined(target)) {
2150                 LOG_ERROR("Target not examined yet");
2151                 return ERROR_FAIL;
2152         }
2153
2154         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2155                           address,
2156                           value);
2157
2158         target_buffer_set_u32(target, value_buf, value);
2159         retval = target_write_memory(target, address, 4, 1, value_buf);
2160         if (retval != ERROR_OK)
2161                 LOG_DEBUG("failed: %i", retval);
2162
2163         return retval;
2164 }
2165
2166 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2167 {
2168         int retval;
2169         uint8_t value_buf[2];
2170         if (!target_was_examined(target)) {
2171                 LOG_ERROR("Target not examined yet");
2172                 return ERROR_FAIL;
2173         }
2174
2175         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2176                           address,
2177                           value);
2178
2179         target_buffer_set_u16(target, value_buf, value);
2180         retval = target_write_memory(target, address, 2, 1, value_buf);
2181         if (retval != ERROR_OK)
2182                 LOG_DEBUG("failed: %i", retval);
2183
2184         return retval;
2185 }
2186
2187 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2188 {
2189         int retval;
2190         if (!target_was_examined(target)) {
2191                 LOG_ERROR("Target not examined yet");
2192                 return ERROR_FAIL;
2193         }
2194
2195         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2196                           address, value);
2197
2198         retval = target_write_memory(target, address, 1, 1, &value);
2199         if (retval != ERROR_OK)
2200                 LOG_DEBUG("failed: %i", retval);
2201
2202         return retval;
2203 }
2204
2205 static int find_target(struct command_context *cmd_ctx, const char *name)
2206 {
2207         struct target *target = get_target(name);
2208         if (target == NULL) {
2209                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2210                 return ERROR_FAIL;
2211         }
2212         if (!target->tap->enabled) {
2213                 LOG_USER("Target: TAP %s is disabled, "
2214                          "can't be the current target\n",
2215                          target->tap->dotted_name);
2216                 return ERROR_FAIL;
2217         }
2218
2219         cmd_ctx->current_target = target->target_number;
2220         return ERROR_OK;
2221 }
2222
2223
2224 COMMAND_HANDLER(handle_targets_command)
2225 {
2226         int retval = ERROR_OK;
2227         if (CMD_ARGC == 1) {
2228                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2229                 if (retval == ERROR_OK) {
2230                         /* we're done! */
2231                         return retval;
2232                 }
2233         }
2234
2235         struct target *target = all_targets;
2236         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2237         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2238         while (target) {
2239                 const char *state;
2240                 char marker = ' ';
2241
2242                 if (target->tap->enabled)
2243                         state = target_state_name(target);
2244                 else
2245                         state = "tap-disabled";
2246
2247                 if (CMD_CTX->current_target == target->target_number)
2248                         marker = '*';
2249
2250                 /* keep columns lined up to match the headers above */
2251                 command_print(CMD_CTX,
2252                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2253                                 target->target_number,
2254                                 marker,
2255                                 target_name(target),
2256                                 target_type_name(target),
2257                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2258                                         target->endianness)->name,
2259                                 target->tap->dotted_name,
2260                                 state);
2261                 target = target->next;
2262         }
2263
2264         return retval;
2265 }
2266
2267 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2268
2269 static int powerDropout;
2270 static int srstAsserted;
2271
2272 static int runPowerRestore;
2273 static int runPowerDropout;
2274 static int runSrstAsserted;
2275 static int runSrstDeasserted;
2276
2277 static int sense_handler(void)
2278 {
2279         static int prevSrstAsserted;
2280         static int prevPowerdropout;
2281
2282         int retval = jtag_power_dropout(&powerDropout);
2283         if (retval != ERROR_OK)
2284                 return retval;
2285
2286         int powerRestored;
2287         powerRestored = prevPowerdropout && !powerDropout;
2288         if (powerRestored)
2289                 runPowerRestore = 1;
2290
2291         long long current = timeval_ms();
2292         static long long lastPower;
2293         int waitMore = lastPower + 2000 > current;
2294         if (powerDropout && !waitMore) {
2295                 runPowerDropout = 1;
2296                 lastPower = current;
2297         }
2298
2299         retval = jtag_srst_asserted(&srstAsserted);
2300         if (retval != ERROR_OK)
2301                 return retval;
2302
2303         int srstDeasserted;
2304         srstDeasserted = prevSrstAsserted && !srstAsserted;
2305
2306         static long long lastSrst;
2307         waitMore = lastSrst + 2000 > current;
2308         if (srstDeasserted && !waitMore) {
2309                 runSrstDeasserted = 1;
2310                 lastSrst = current;
2311         }
2312
2313         if (!prevSrstAsserted && srstAsserted)
2314                 runSrstAsserted = 1;
2315
2316         prevSrstAsserted = srstAsserted;
2317         prevPowerdropout = powerDropout;
2318
2319         if (srstDeasserted || powerRestored) {
2320                 /* Other than logging the event we can't do anything here.
2321                  * Issuing a reset is a particularly bad idea as we might
2322                  * be inside a reset already.
2323                  */
2324         }
2325
2326         return ERROR_OK;
2327 }
2328
2329 /* process target state changes */
2330 static int handle_target(void *priv)
2331 {
2332         Jim_Interp *interp = (Jim_Interp *)priv;
2333         int retval = ERROR_OK;
2334
2335         if (!is_jtag_poll_safe()) {
2336                 /* polling is disabled currently */
2337                 return ERROR_OK;
2338         }
2339
2340         /* we do not want to recurse here... */
2341         static int recursive;
2342         if (!recursive) {
2343                 recursive = 1;
2344                 sense_handler();
2345                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2346                  * We need to avoid an infinite loop/recursion here and we do that by
2347                  * clearing the flags after running these events.
2348                  */
2349                 int did_something = 0;
2350                 if (runSrstAsserted) {
2351                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2352                         Jim_Eval(interp, "srst_asserted");
2353                         did_something = 1;
2354                 }
2355                 if (runSrstDeasserted) {
2356                         Jim_Eval(interp, "srst_deasserted");
2357                         did_something = 1;
2358                 }
2359                 if (runPowerDropout) {
2360                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2361                         Jim_Eval(interp, "power_dropout");
2362                         did_something = 1;
2363                 }
2364                 if (runPowerRestore) {
2365                         Jim_Eval(interp, "power_restore");
2366                         did_something = 1;
2367                 }
2368
2369                 if (did_something) {
2370                         /* clear detect flags */
2371                         sense_handler();
2372                 }
2373
2374                 /* clear action flags */
2375
2376                 runSrstAsserted = 0;
2377                 runSrstDeasserted = 0;
2378                 runPowerRestore = 0;
2379                 runPowerDropout = 0;
2380
2381                 recursive = 0;
2382         }
2383
2384         /* Poll targets for state changes unless that's globally disabled.
2385          * Skip targets that are currently disabled.
2386          */
2387         for (struct target *target = all_targets;
2388                         is_jtag_poll_safe() && target;
2389                         target = target->next) {
2390
2391                 if (!target_was_examined(target))
2392                         continue;
2393
2394                 if (!target->tap->enabled)
2395                         continue;
2396
2397                 if (target->backoff.times > target->backoff.count) {
2398                         /* do not poll this time as we failed previously */
2399                         target->backoff.count++;
2400                         continue;
2401                 }
2402                 target->backoff.count = 0;
2403
2404                 /* only poll target if we've got power and srst isn't asserted */
2405                 if (!powerDropout && !srstAsserted) {
2406                         /* polling may fail silently until the target has been examined */
2407                         retval = target_poll(target);
2408                         if (retval != ERROR_OK) {
2409                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2410                                 if (target->backoff.times * polling_interval < 5000) {
2411                                         target->backoff.times *= 2;
2412                                         target->backoff.times++;
2413                                 }
2414                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2415                                                 target_name(target),
2416                                                 target->backoff.times * polling_interval);
2417
2418                                 /* Tell GDB to halt the debugger. This allows the user to
2419                                  * run monitor commands to handle the situation.
2420                                  */
2421                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2422                                 return retval;
2423                         }
2424                         /* Since we succeeded, we reset backoff count */
2425                         if (target->backoff.times > 0) {
2426                                 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2427                                 target_reset_examined(target);
2428                                 target_examine_one(target);
2429                         }
2430
2431                         target->backoff.times = 0;
2432                 }
2433         }
2434
2435         return retval;
2436 }
2437
2438 COMMAND_HANDLER(handle_reg_command)
2439 {
2440         struct target *target;
2441         struct reg *reg = NULL;
2442         unsigned count = 0;
2443         char *value;
2444
2445         LOG_DEBUG("-");
2446
2447         target = get_current_target(CMD_CTX);
2448
2449         /* list all available registers for the current target */
2450         if (CMD_ARGC == 0) {
2451                 struct reg_cache *cache = target->reg_cache;
2452
2453                 count = 0;
2454                 while (cache) {
2455                         unsigned i;
2456
2457                         command_print(CMD_CTX, "===== %s", cache->name);
2458
2459                         for (i = 0, reg = cache->reg_list;
2460                                         i < cache->num_regs;
2461                                         i++, reg++, count++) {
2462                                 /* only print cached values if they are valid */
2463                                 if (reg->valid) {
2464                                         value = buf_to_str(reg->value,
2465                                                         reg->size, 16);
2466                                         command_print(CMD_CTX,
2467                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2468                                                         count, reg->name,
2469                                                         reg->size, value,
2470                                                         reg->dirty
2471                                                                 ? " (dirty)"
2472                                                                 : "");
2473                                         free(value);
2474                                 } else {
2475                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2476                                                           count, reg->name,
2477                                                           reg->size) ;
2478                                 }
2479                         }
2480                         cache = cache->next;
2481                 }
2482
2483                 return ERROR_OK;
2484         }
2485
2486         /* access a single register by its ordinal number */
2487         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2488                 unsigned num;
2489                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2490
2491                 struct reg_cache *cache = target->reg_cache;
2492                 count = 0;
2493                 while (cache) {
2494                         unsigned i;
2495                         for (i = 0; i < cache->num_regs; i++) {
2496                                 if (count++ == num) {
2497                                         reg = &cache->reg_list[i];
2498                                         break;
2499                                 }
2500                         }
2501                         if (reg)
2502                                 break;
2503                         cache = cache->next;
2504                 }
2505
2506                 if (!reg) {
2507                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2508                                         "has only %i registers (0 - %i)", num, count, count - 1);
2509                         return ERROR_OK;
2510                 }
2511         } else {
2512                 /* access a single register by its name */
2513                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2514
2515                 if (!reg) {
2516                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2517                         return ERROR_OK;
2518                 }
2519         }
2520
2521         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2522
2523         /* display a register */
2524         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2525                         && (CMD_ARGV[1][0] <= '9')))) {
2526                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2527                         reg->valid = 0;
2528
2529                 if (reg->valid == 0)
2530                         reg->type->get(reg);
2531                 value = buf_to_str(reg->value, reg->size, 16);
2532                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2533                 free(value);
2534                 return ERROR_OK;
2535         }
2536
2537         /* set register value */
2538         if (CMD_ARGC == 2) {
2539                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2540                 if (buf == NULL)
2541                         return ERROR_FAIL;
2542                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2543
2544                 reg->type->set(reg, buf);
2545
2546                 value = buf_to_str(reg->value, reg->size, 16);
2547                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2548                 free(value);
2549
2550                 free(buf);
2551
2552                 return ERROR_OK;
2553         }
2554
2555         return ERROR_COMMAND_SYNTAX_ERROR;
2556 }
2557
2558 COMMAND_HANDLER(handle_poll_command)
2559 {
2560         int retval = ERROR_OK;
2561         struct target *target = get_current_target(CMD_CTX);
2562
2563         if (CMD_ARGC == 0) {
2564                 command_print(CMD_CTX, "background polling: %s",
2565                                 jtag_poll_get_enabled() ? "on" : "off");
2566                 command_print(CMD_CTX, "TAP: %s (%s)",
2567                                 target->tap->dotted_name,
2568                                 target->tap->enabled ? "enabled" : "disabled");
2569                 if (!target->tap->enabled)
2570                         return ERROR_OK;
2571                 retval = target_poll(target);
2572                 if (retval != ERROR_OK)
2573                         return retval;
2574                 retval = target_arch_state(target);
2575                 if (retval != ERROR_OK)
2576                         return retval;
2577         } else if (CMD_ARGC == 1) {
2578                 bool enable;
2579                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2580                 jtag_poll_set_enabled(enable);
2581         } else
2582                 return ERROR_COMMAND_SYNTAX_ERROR;
2583
2584         return retval;
2585 }
2586
2587 COMMAND_HANDLER(handle_wait_halt_command)
2588 {
2589         if (CMD_ARGC > 1)
2590                 return ERROR_COMMAND_SYNTAX_ERROR;
2591
2592         unsigned ms = DEFAULT_HALT_TIMEOUT;
2593         if (1 == CMD_ARGC) {
2594                 int retval = parse_uint(CMD_ARGV[0], &ms);
2595                 if (ERROR_OK != retval)
2596                         return ERROR_COMMAND_SYNTAX_ERROR;
2597         }
2598
2599         struct target *target = get_current_target(CMD_CTX);
2600         return target_wait_state(target, TARGET_HALTED, ms);
2601 }
2602
2603 /* wait for target state to change. The trick here is to have a low
2604  * latency for short waits and not to suck up all the CPU time
2605  * on longer waits.
2606  *
2607  * After 500ms, keep_alive() is invoked
2608  */
2609 int target_wait_state(struct target *target, enum target_state state, int ms)
2610 {
2611         int retval;
2612         long long then = 0, cur;
2613         int once = 1;
2614
2615         for (;;) {
2616                 retval = target_poll(target);
2617                 if (retval != ERROR_OK)
2618                         return retval;
2619                 if (target->state == state)
2620                         break;
2621                 cur = timeval_ms();
2622                 if (once) {
2623                         once = 0;
2624                         then = timeval_ms();
2625                         LOG_DEBUG("waiting for target %s...",
2626                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2627                 }
2628
2629                 if (cur-then > 500)
2630                         keep_alive();
2631
2632                 if ((cur-then) > ms) {
2633                         LOG_ERROR("timed out while waiting for target %s",
2634                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2635                         return ERROR_FAIL;
2636                 }
2637         }
2638
2639         return ERROR_OK;
2640 }
2641
2642 COMMAND_HANDLER(handle_halt_command)
2643 {
2644         LOG_DEBUG("-");
2645
2646         struct target *target = get_current_target(CMD_CTX);
2647         int retval = target_halt(target);
2648         if (ERROR_OK != retval)
2649                 return retval;
2650
2651         if (CMD_ARGC == 1) {
2652                 unsigned wait_local;
2653                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2654                 if (ERROR_OK != retval)
2655                         return ERROR_COMMAND_SYNTAX_ERROR;
2656                 if (!wait_local)
2657                         return ERROR_OK;
2658         }
2659
2660         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2661 }
2662
2663 COMMAND_HANDLER(handle_soft_reset_halt_command)
2664 {
2665         struct target *target = get_current_target(CMD_CTX);
2666
2667         LOG_USER("requesting target halt and executing a soft reset");
2668
2669         target_soft_reset_halt(target);
2670
2671         return ERROR_OK;
2672 }
2673
2674 COMMAND_HANDLER(handle_reset_command)
2675 {
2676         if (CMD_ARGC > 1)
2677                 return ERROR_COMMAND_SYNTAX_ERROR;
2678
2679         enum target_reset_mode reset_mode = RESET_RUN;
2680         if (CMD_ARGC == 1) {
2681                 const Jim_Nvp *n;
2682                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2683                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2684                         return ERROR_COMMAND_SYNTAX_ERROR;
2685                 reset_mode = n->value;
2686         }
2687
2688         /* reset *all* targets */
2689         return target_process_reset(CMD_CTX, reset_mode);
2690 }
2691
2692
2693 COMMAND_HANDLER(handle_resume_command)
2694 {
2695         int current = 1;
2696         if (CMD_ARGC > 1)
2697                 return ERROR_COMMAND_SYNTAX_ERROR;
2698
2699         struct target *target = get_current_target(CMD_CTX);
2700
2701         /* with no CMD_ARGV, resume from current pc, addr = 0,
2702          * with one arguments, addr = CMD_ARGV[0],
2703          * handle breakpoints, not debugging */
2704         uint32_t addr = 0;
2705         if (CMD_ARGC == 1) {
2706                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2707                 current = 0;
2708         }
2709
2710         return target_resume(target, current, addr, 1, 0);
2711 }
2712
2713 COMMAND_HANDLER(handle_step_command)
2714 {
2715         if (CMD_ARGC > 1)
2716                 return ERROR_COMMAND_SYNTAX_ERROR;
2717
2718         LOG_DEBUG("-");
2719
2720         /* with no CMD_ARGV, step from current pc, addr = 0,
2721          * with one argument addr = CMD_ARGV[0],
2722          * handle breakpoints, debugging */
2723         uint32_t addr = 0;
2724         int current_pc = 1;
2725         if (CMD_ARGC == 1) {
2726                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2727                 current_pc = 0;
2728         }
2729
2730         struct target *target = get_current_target(CMD_CTX);
2731
2732         return target->type->step(target, current_pc, addr, 1);
2733 }
2734
2735 static void handle_md_output(struct command_context *cmd_ctx,
2736                 struct target *target, uint32_t address, unsigned size,
2737                 unsigned count, const uint8_t *buffer)
2738 {
2739         const unsigned line_bytecnt = 32;
2740         unsigned line_modulo = line_bytecnt / size;
2741
2742         char output[line_bytecnt * 4 + 1];
2743         unsigned output_len = 0;
2744
2745         const char *value_fmt;
2746         switch (size) {
2747         case 4:
2748                 value_fmt = "%8.8x ";
2749                 break;
2750         case 2:
2751                 value_fmt = "%4.4x ";
2752                 break;
2753         case 1:
2754                 value_fmt = "%2.2x ";
2755                 break;
2756         default:
2757                 /* "can't happen", caller checked */
2758                 LOG_ERROR("invalid memory read size: %u", size);
2759                 return;
2760         }
2761
2762         for (unsigned i = 0; i < count; i++) {
2763                 if (i % line_modulo == 0) {
2764                         output_len += snprintf(output + output_len,
2765                                         sizeof(output) - output_len,
2766                                         "0x%8.8x: ",
2767                                         (unsigned)(address + (i*size)));
2768                 }
2769
2770                 uint32_t value = 0;
2771                 const uint8_t *value_ptr = buffer + i * size;
2772                 switch (size) {
2773                 case 4:
2774                         value = target_buffer_get_u32(target, value_ptr);
2775                         break;
2776                 case 2:
2777                         value = target_buffer_get_u16(target, value_ptr);
2778                         break;
2779                 case 1:
2780                         value = *value_ptr;
2781                 }
2782                 output_len += snprintf(output + output_len,
2783                                 sizeof(output) - output_len,
2784                                 value_fmt, value);
2785
2786                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2787                         command_print(cmd_ctx, "%s", output);
2788                         output_len = 0;
2789                 }
2790         }
2791 }
2792
2793 COMMAND_HANDLER(handle_md_command)
2794 {
2795         if (CMD_ARGC < 1)
2796                 return ERROR_COMMAND_SYNTAX_ERROR;
2797
2798         unsigned size = 0;
2799         switch (CMD_NAME[2]) {
2800         case 'w':
2801                 size = 4;
2802                 break;
2803         case 'h':
2804                 size = 2;
2805                 break;
2806         case 'b':
2807                 size = 1;
2808                 break;
2809         default:
2810                 return ERROR_COMMAND_SYNTAX_ERROR;
2811         }
2812
2813         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2814         int (*fn)(struct target *target,
2815                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2816         if (physical) {
2817                 CMD_ARGC--;
2818                 CMD_ARGV++;
2819                 fn = target_read_phys_memory;
2820         } else
2821                 fn = target_read_memory;
2822         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2823                 return ERROR_COMMAND_SYNTAX_ERROR;
2824
2825         uint32_t address;
2826         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2827
2828         unsigned count = 1;
2829         if (CMD_ARGC == 2)
2830                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2831
2832         uint8_t *buffer = calloc(count, size);
2833
2834         struct target *target = get_current_target(CMD_CTX);
2835         int retval = fn(target, address, size, count, buffer);
2836         if (ERROR_OK == retval)
2837                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2838
2839         free(buffer);
2840
2841         return retval;
2842 }
2843
2844 typedef int (*target_write_fn)(struct target *target,
2845                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2846
2847 static int target_fill_mem(struct target *target,
2848                 uint32_t address,
2849                 target_write_fn fn,
2850                 unsigned data_size,
2851                 /* value */
2852                 uint32_t b,
2853                 /* count */
2854                 unsigned c)
2855 {
2856         /* We have to write in reasonably large chunks to be able
2857          * to fill large memory areas with any sane speed */
2858         const unsigned chunk_size = 16384;
2859         uint8_t *target_buf = malloc(chunk_size * data_size);
2860         if (target_buf == NULL) {
2861                 LOG_ERROR("Out of memory");
2862                 return ERROR_FAIL;
2863         }
2864
2865         for (unsigned i = 0; i < chunk_size; i++) {
2866                 switch (data_size) {
2867                 case 4:
2868                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2869                         break;
2870                 case 2:
2871                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2872                         break;
2873                 case 1:
2874                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2875                         break;
2876                 default:
2877                         exit(-1);
2878                 }
2879         }
2880
2881         int retval = ERROR_OK;
2882
2883         for (unsigned x = 0; x < c; x += chunk_size) {
2884                 unsigned current;
2885                 current = c - x;
2886                 if (current > chunk_size)
2887                         current = chunk_size;
2888                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2889                 if (retval != ERROR_OK)
2890                         break;
2891                 /* avoid GDB timeouts */
2892                 keep_alive();
2893         }
2894         free(target_buf);
2895
2896         return retval;
2897 }
2898
2899
2900 COMMAND_HANDLER(handle_mw_command)
2901 {
2902         if (CMD_ARGC < 2)
2903                 return ERROR_COMMAND_SYNTAX_ERROR;
2904         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2905         target_write_fn fn;
2906         if (physical) {
2907                 CMD_ARGC--;
2908                 CMD_ARGV++;
2909                 fn = target_write_phys_memory;
2910         } else
2911                 fn = target_write_memory;
2912         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2913                 return ERROR_COMMAND_SYNTAX_ERROR;
2914
2915         uint32_t address;
2916         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2917
2918         uint32_t value;
2919         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2920
2921         unsigned count = 1;
2922         if (CMD_ARGC == 3)
2923                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2924
2925         struct target *target = get_current_target(CMD_CTX);
2926         unsigned wordsize;
2927         switch (CMD_NAME[2]) {
2928                 case 'w':
2929                         wordsize = 4;
2930                         break;
2931                 case 'h':
2932                         wordsize = 2;
2933                         break;
2934                 case 'b':
2935                         wordsize = 1;
2936                         break;
2937                 default:
2938                         return ERROR_COMMAND_SYNTAX_ERROR;
2939         }
2940
2941         return target_fill_mem(target, address, fn, wordsize, value, count);
2942 }
2943
2944 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2945                 uint32_t *min_address, uint32_t *max_address)
2946 {
2947         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2948                 return ERROR_COMMAND_SYNTAX_ERROR;
2949
2950         /* a base address isn't always necessary,
2951          * default to 0x0 (i.e. don't relocate) */
2952         if (CMD_ARGC >= 2) {
2953                 uint32_t addr;
2954                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2955                 image->base_address = addr;
2956                 image->base_address_set = 1;
2957         } else
2958                 image->base_address_set = 0;
2959
2960         image->start_address_set = 0;
2961
2962         if (CMD_ARGC >= 4)
2963                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2964         if (CMD_ARGC == 5) {
2965                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2966                 /* use size (given) to find max (required) */
2967                 *max_address += *min_address;
2968         }
2969
2970         if (*min_address > *max_address)
2971                 return ERROR_COMMAND_SYNTAX_ERROR;
2972
2973         return ERROR_OK;
2974 }
2975
2976 COMMAND_HANDLER(handle_load_image_command)
2977 {
2978         uint8_t *buffer;
2979         size_t buf_cnt;
2980         uint32_t image_size;
2981         uint32_t min_address = 0;
2982         uint32_t max_address = 0xffffffff;
2983         int i;
2984         struct image image;
2985
2986         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2987                         &image, &min_address, &max_address);
2988         if (ERROR_OK != retval)
2989                 return retval;
2990
2991         struct target *target = get_current_target(CMD_CTX);
2992
2993         struct duration bench;
2994         duration_start(&bench);
2995
2996         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2997                 return ERROR_OK;
2998
2999         image_size = 0x0;
3000         retval = ERROR_OK;
3001         for (i = 0; i < image.num_sections; i++) {
3002                 buffer = malloc(image.sections[i].size);
3003                 if (buffer == NULL) {
3004                         command_print(CMD_CTX,
3005                                                   "error allocating buffer for section (%d bytes)",
3006                                                   (int)(image.sections[i].size));
3007                         break;
3008                 }
3009
3010                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3011                 if (retval != ERROR_OK) {
3012                         free(buffer);
3013                         break;
3014                 }
3015
3016                 uint32_t offset = 0;
3017                 uint32_t length = buf_cnt;
3018
3019                 /* DANGER!!! beware of unsigned comparision here!!! */
3020
3021                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3022                                 (image.sections[i].base_address < max_address)) {
3023
3024                         if (image.sections[i].base_address < min_address) {
3025                                 /* clip addresses below */
3026                                 offset += min_address-image.sections[i].base_address;
3027                                 length -= offset;
3028                         }
3029
3030                         if (image.sections[i].base_address + buf_cnt > max_address)
3031                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3032
3033                         retval = target_write_buffer(target,
3034                                         image.sections[i].base_address + offset, length, buffer + offset);
3035                         if (retval != ERROR_OK) {
3036                                 free(buffer);
3037                                 break;
3038                         }
3039                         image_size += length;
3040                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3041                                         (unsigned int)length,
3042                                         image.sections[i].base_address + offset);
3043                 }
3044
3045                 free(buffer);
3046         }
3047
3048         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3049                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3050                                 "in %fs (%0.3f KiB/s)", image_size,
3051                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3052         }
3053
3054         image_close(&image);
3055
3056         return retval;
3057
3058 }
3059
3060 COMMAND_HANDLER(handle_dump_image_command)
3061 {
3062         struct fileio fileio;
3063         uint8_t *buffer;
3064         int retval, retvaltemp;
3065         uint32_t address, size;
3066         struct duration bench;
3067         struct target *target = get_current_target(CMD_CTX);
3068
3069         if (CMD_ARGC != 3)
3070                 return ERROR_COMMAND_SYNTAX_ERROR;
3071
3072         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3073         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3074
3075         uint32_t buf_size = (size > 4096) ? 4096 : size;
3076         buffer = malloc(buf_size);
3077         if (!buffer)
3078                 return ERROR_FAIL;
3079
3080         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3081         if (retval != ERROR_OK) {
3082                 free(buffer);
3083                 return retval;
3084         }
3085
3086         duration_start(&bench);
3087
3088         while (size > 0) {
3089                 size_t size_written;
3090                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3091                 retval = target_read_buffer(target, address, this_run_size, buffer);
3092                 if (retval != ERROR_OK)
3093                         break;
3094
3095                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3096                 if (retval != ERROR_OK)
3097                         break;
3098
3099                 size -= this_run_size;
3100                 address += this_run_size;
3101         }
3102
3103         free(buffer);
3104
3105         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3106                 int filesize;
3107                 retval = fileio_size(&fileio, &filesize);
3108                 if (retval != ERROR_OK)
3109                         return retval;
3110                 command_print(CMD_CTX,
3111                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3112                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3113         }
3114
3115         retvaltemp = fileio_close(&fileio);
3116         if (retvaltemp != ERROR_OK)
3117                 return retvaltemp;
3118
3119         return retval;
3120 }
3121
3122 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3123 {
3124         uint8_t *buffer;
3125         size_t buf_cnt;
3126         uint32_t image_size;
3127         int i;
3128         int retval;
3129         uint32_t checksum = 0;
3130         uint32_t mem_checksum = 0;
3131
3132         struct image image;
3133
3134         struct target *target = get_current_target(CMD_CTX);
3135
3136         if (CMD_ARGC < 1)
3137                 return ERROR_COMMAND_SYNTAX_ERROR;
3138
3139         if (!target) {
3140                 LOG_ERROR("no target selected");
3141                 return ERROR_FAIL;
3142         }
3143
3144         struct duration bench;
3145         duration_start(&bench);
3146
3147         if (CMD_ARGC >= 2) {
3148                 uint32_t addr;
3149                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3150                 image.base_address = addr;
3151                 image.base_address_set = 1;
3152         } else {
3153                 image.base_address_set = 0;
3154                 image.base_address = 0x0;
3155         }
3156
3157         image.start_address_set = 0;
3158
3159         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3160         if (retval != ERROR_OK)
3161                 return retval;
3162
3163         image_size = 0x0;
3164         int diffs = 0;
3165         retval = ERROR_OK;
3166         for (i = 0; i < image.num_sections; i++) {
3167                 buffer = malloc(image.sections[i].size);
3168                 if (buffer == NULL) {
3169                         command_print(CMD_CTX,
3170                                         "error allocating buffer for section (%d bytes)",
3171                                         (int)(image.sections[i].size));
3172                         break;
3173                 }
3174                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3175                 if (retval != ERROR_OK) {
3176                         free(buffer);
3177                         break;
3178                 }
3179
3180                 if (verify) {
3181                         /* calculate checksum of image */
3182                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3183                         if (retval != ERROR_OK) {
3184                                 free(buffer);
3185                                 break;
3186                         }
3187
3188                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3189                         if (retval != ERROR_OK) {
3190                                 free(buffer);
3191                                 break;
3192                         }
3193
3194                         if (checksum != mem_checksum) {
3195                                 /* failed crc checksum, fall back to a binary compare */
3196                                 uint8_t *data;
3197
3198                                 if (diffs == 0)
3199                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3200
3201                                 data = malloc(buf_cnt);
3202
3203                                 /* Can we use 32bit word accesses? */
3204                                 int size = 1;
3205                                 int count = buf_cnt;
3206                                 if ((count % 4) == 0) {
3207                                         size *= 4;
3208                                         count /= 4;
3209                                 }
3210                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3211                                 if (retval == ERROR_OK) {
3212                                         uint32_t t;
3213                                         for (t = 0; t < buf_cnt; t++) {
3214                                                 if (data[t] != buffer[t]) {
3215                                                         command_print(CMD_CTX,
3216                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3217                                                                                   diffs,
3218                                                                                   (unsigned)(t + image.sections[i].base_address),
3219                                                                                   data[t],
3220                                                                                   buffer[t]);
3221                                                         if (diffs++ >= 127) {
3222                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3223                                                                 free(data);
3224                                                                 free(buffer);
3225                                                                 goto done;
3226                                                         }
3227                                                 }
3228                                                 keep_alive();
3229                                         }
3230                                 }
3231                                 free(data);
3232                         }
3233                 } else {
3234                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3235                                                   image.sections[i].base_address,
3236                                                   buf_cnt);
3237                 }
3238
3239                 free(buffer);
3240                 image_size += buf_cnt;
3241         }
3242         if (diffs > 0)
3243                 command_print(CMD_CTX, "No more differences found.");
3244 done:
3245         if (diffs > 0)
3246                 retval = ERROR_FAIL;
3247         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3248                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3249                                 "in %fs (%0.3f KiB/s)", image_size,
3250                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3251         }
3252
3253         image_close(&image);
3254
3255         return retval;
3256 }
3257
3258 COMMAND_HANDLER(handle_verify_image_command)
3259 {
3260         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3261 }
3262
3263 COMMAND_HANDLER(handle_test_image_command)
3264 {
3265         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3266 }
3267
3268 static int handle_bp_command_list(struct command_context *cmd_ctx)
3269 {
3270         struct target *target = get_current_target(cmd_ctx);
3271         struct breakpoint *breakpoint = target->breakpoints;
3272         while (breakpoint) {
3273                 if (breakpoint->type == BKPT_SOFT) {
3274                         char *buf = buf_to_str(breakpoint->orig_instr,
3275                                         breakpoint->length, 16);
3276                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3277                                         breakpoint->address,
3278                                         breakpoint->length,
3279                                         breakpoint->set, buf);
3280                         free(buf);
3281                 } else {
3282                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3283                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3284                                                         breakpoint->asid,
3285                                                         breakpoint->length, breakpoint->set);
3286                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3287                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3288                                                         breakpoint->address,
3289                                                         breakpoint->length, breakpoint->set);
3290                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3291                                                         breakpoint->asid);
3292                         } else
3293                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3294                                                         breakpoint->address,
3295                                                         breakpoint->length, breakpoint->set);
3296                 }
3297
3298                 breakpoint = breakpoint->next;
3299         }
3300         return ERROR_OK;
3301 }
3302
3303 static int handle_bp_command_set(struct command_context *cmd_ctx,
3304                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3305 {
3306         struct target *target = get_current_target(cmd_ctx);
3307
3308         if (asid == 0) {
3309                 int retval = breakpoint_add(target, addr, length, hw);
3310                 if (ERROR_OK == retval)
3311                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3312                 else {
3313                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3314                         return retval;
3315                 }
3316         } else if (addr == 0) {
3317                 int retval = context_breakpoint_add(target, asid, length, hw);
3318                 if (ERROR_OK == retval)
3319                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3320                 else {
3321                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3322                         return retval;
3323                 }
3324         } else {
3325                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3326                 if (ERROR_OK == retval)
3327                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3328                 else {
3329                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3330                         return retval;
3331                 }
3332         }
3333         return ERROR_OK;
3334 }
3335
3336 COMMAND_HANDLER(handle_bp_command)
3337 {
3338         uint32_t addr;
3339         uint32_t asid;
3340         uint32_t length;
3341         int hw = BKPT_SOFT;
3342
3343         switch (CMD_ARGC) {
3344                 case 0:
3345                         return handle_bp_command_list(CMD_CTX);
3346
3347                 case 2:
3348                         asid = 0;
3349                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3350                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3351                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3352
3353                 case 3:
3354                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3355                                 hw = BKPT_HARD;
3356                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3357
3358                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3359
3360                                 asid = 0;
3361                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3362                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3363                                 hw = BKPT_HARD;
3364                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3365                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3366                                 addr = 0;
3367                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3368                         }
3369
3370                 case 4:
3371                         hw = BKPT_HARD;
3372                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3373                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3374                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3375                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3376
3377                 default:
3378                         return ERROR_COMMAND_SYNTAX_ERROR;
3379         }
3380 }
3381
3382 COMMAND_HANDLER(handle_rbp_command)
3383 {
3384         if (CMD_ARGC != 1)
3385                 return ERROR_COMMAND_SYNTAX_ERROR;
3386
3387         uint32_t addr;
3388         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3389
3390         struct target *target = get_current_target(CMD_CTX);
3391         breakpoint_remove(target, addr);
3392
3393         return ERROR_OK;
3394 }
3395
3396 COMMAND_HANDLER(handle_wp_command)
3397 {
3398         struct target *target = get_current_target(CMD_CTX);
3399
3400         if (CMD_ARGC == 0) {
3401                 struct watchpoint *watchpoint = target->watchpoints;
3402
3403                 while (watchpoint) {
3404                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3405                                         ", len: 0x%8.8" PRIx32
3406                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3407                                         ", mask: 0x%8.8" PRIx32,
3408                                         watchpoint->address,
3409                                         watchpoint->length,
3410                                         (int)watchpoint->rw,
3411                                         watchpoint->value,
3412                                         watchpoint->mask);
3413                         watchpoint = watchpoint->next;
3414                 }
3415                 return ERROR_OK;
3416         }
3417
3418         enum watchpoint_rw type = WPT_ACCESS;
3419         uint32_t addr = 0;
3420         uint32_t length = 0;
3421         uint32_t data_value = 0x0;
3422         uint32_t data_mask = 0xffffffff;
3423
3424         switch (CMD_ARGC) {
3425         case 5:
3426                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3427                 /* fall through */
3428         case 4:
3429                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3430                 /* fall through */
3431         case 3:
3432                 switch (CMD_ARGV[2][0]) {
3433                 case 'r':
3434                         type = WPT_READ;
3435                         break;
3436                 case 'w':
3437                         type = WPT_WRITE;
3438                         break;
3439                 case 'a':
3440                         type = WPT_ACCESS;
3441                         break;
3442                 default:
3443                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3444                         return ERROR_COMMAND_SYNTAX_ERROR;
3445                 }
3446                 /* fall through */
3447         case 2:
3448                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3449                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3450                 break;
3451
3452         default:
3453                 return ERROR_COMMAND_SYNTAX_ERROR;
3454         }
3455
3456         int retval = watchpoint_add(target, addr, length, type,
3457                         data_value, data_mask);
3458         if (ERROR_OK != retval)
3459                 LOG_ERROR("Failure setting watchpoints");
3460
3461         return retval;
3462 }
3463
3464 COMMAND_HANDLER(handle_rwp_command)
3465 {
3466         if (CMD_ARGC != 1)
3467                 return ERROR_COMMAND_SYNTAX_ERROR;
3468
3469         uint32_t addr;
3470         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3471
3472         struct target *target = get_current_target(CMD_CTX);
3473         watchpoint_remove(target, addr);
3474
3475         return ERROR_OK;
3476 }
3477
3478 /**
3479  * Translate a virtual address to a physical address.
3480  *
3481  * The low-level target implementation must have logged a detailed error
3482  * which is forwarded to telnet/GDB session.
3483  */
3484 COMMAND_HANDLER(handle_virt2phys_command)
3485 {
3486         if (CMD_ARGC != 1)
3487                 return ERROR_COMMAND_SYNTAX_ERROR;
3488
3489         uint32_t va;
3490         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3491         uint32_t pa;
3492
3493         struct target *target = get_current_target(CMD_CTX);
3494         int retval = target->type->virt2phys(target, va, &pa);
3495         if (retval == ERROR_OK)
3496                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3497
3498         return retval;
3499 }
3500
3501 static void writeData(FILE *f, const void *data, size_t len)
3502 {
3503         size_t written = fwrite(data, 1, len, f);
3504         if (written != len)
3505                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3506 }
3507
3508 static void writeLong(FILE *f, int l)
3509 {
3510         int i;
3511         for (i = 0; i < 4; i++) {
3512                 char c = (l >> (i*8))&0xff;
3513                 writeData(f, &c, 1);
3514         }
3515
3516 }
3517
3518 static void writeString(FILE *f, char *s)
3519 {
3520         writeData(f, s, strlen(s));
3521 }
3522
3523 typedef unsigned char UNIT[2];  /* unit of profiling */
3524
3525 /* Dump a gmon.out histogram file. */
3526 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3527                 bool with_range, uint32_t start_address, uint32_t end_address)
3528 {
3529         uint32_t i;
3530         FILE *f = fopen(filename, "w");
3531         if (f == NULL)
3532                 return;
3533         writeString(f, "gmon");
3534         writeLong(f, 0x00000001); /* Version */
3535         writeLong(f, 0); /* padding */
3536         writeLong(f, 0); /* padding */
3537         writeLong(f, 0); /* padding */
3538
3539         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3540         writeData(f, &zero, 1);
3541
3542         /* figure out bucket size */
3543         uint32_t min;
3544         uint32_t max;
3545         if (with_range) {
3546                 min = start_address;
3547                 max = end_address;
3548         } else {
3549                 min = samples[0];
3550                 max = samples[0];
3551                 for (i = 0; i < sampleNum; i++) {
3552                         if (min > samples[i])
3553                                 min = samples[i];
3554                         if (max < samples[i])
3555                                 max = samples[i];
3556                 }
3557
3558                 /* max should be (largest sample + 1)
3559                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3560                 max++;
3561         }
3562
3563         int addressSpace = max - min;
3564         assert(addressSpace >= 2);
3565
3566         /* FIXME: What is the reasonable number of buckets?
3567          * The profiling result will be more accurate if there are enough buckets. */
3568         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3569         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3570         if (numBuckets > maxBuckets)
3571                 numBuckets = maxBuckets;
3572         int *buckets = malloc(sizeof(int) * numBuckets);
3573         if (buckets == NULL) {
3574                 fclose(f);
3575                 return;
3576         }
3577         memset(buckets, 0, sizeof(int) * numBuckets);
3578         for (i = 0; i < sampleNum; i++) {
3579                 uint32_t address = samples[i];
3580
3581                 if ((address < min) || (max <= address))
3582                         continue;
3583
3584                 long long a = address - min;
3585                 long long b = numBuckets;
3586                 long long c = addressSpace;
3587                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3588                 buckets[index_t]++;
3589         }
3590
3591         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3592         writeLong(f, min);                      /* low_pc */
3593         writeLong(f, max);                      /* high_pc */
3594         writeLong(f, numBuckets);       /* # of buckets */
3595         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3596         writeString(f, "seconds");
3597         for (i = 0; i < (15-strlen("seconds")); i++)
3598                 writeData(f, &zero, 1);
3599         writeString(f, "s");
3600
3601         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3602
3603         char *data = malloc(2 * numBuckets);
3604         if (data != NULL) {
3605                 for (i = 0; i < numBuckets; i++) {
3606                         int val;
3607                         val = buckets[i];
3608                         if (val > 65535)
3609                                 val = 65535;
3610                         data[i * 2] = val&0xff;
3611                         data[i * 2 + 1] = (val >> 8) & 0xff;
3612                 }
3613                 free(buckets);
3614                 writeData(f, data, numBuckets * 2);
3615                 free(data);
3616         } else
3617                 free(buckets);
3618
3619         fclose(f);
3620 }
3621
3622 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3623  * which will be used as a random sampling of PC */
3624 COMMAND_HANDLER(handle_profile_command)
3625 {
3626         struct target *target = get_current_target(CMD_CTX);
3627
3628         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3629                 return ERROR_COMMAND_SYNTAX_ERROR;
3630
3631         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3632         uint32_t offset;
3633         uint32_t num_of_samples;
3634         int retval = ERROR_OK;
3635
3636         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3637
3638         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3639         if (samples == NULL) {
3640                 LOG_ERROR("No memory to store samples.");
3641                 return ERROR_FAIL;
3642         }
3643
3644         /**
3645          * Some cores let us sample the PC without the
3646          * annoying halt/resume step; for example, ARMv7 PCSR.
3647          * Provide a way to use that more efficient mechanism.
3648          */
3649         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3650                                 &num_of_samples, offset);
3651         if (retval != ERROR_OK) {
3652                 free(samples);
3653                 return retval;
3654         }
3655
3656         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3657
3658         retval = target_poll(target);
3659         if (retval != ERROR_OK) {
3660                 free(samples);
3661                 return retval;
3662         }
3663         if (target->state == TARGET_RUNNING) {
3664                 retval = target_halt(target);
3665                 if (retval != ERROR_OK) {
3666                         free(samples);
3667                         return retval;
3668                 }
3669         }
3670
3671         retval = target_poll(target);
3672         if (retval != ERROR_OK) {
3673                 free(samples);
3674                 return retval;
3675         }
3676
3677         uint32_t start_address = 0;
3678         uint32_t end_address = 0;
3679         bool with_range = false;
3680         if (CMD_ARGC == 4) {
3681                 with_range = true;
3682                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3683                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3684         }
3685
3686         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3687                         with_range, start_address, end_address);
3688         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3689
3690         free(samples);
3691         return retval;
3692 }
3693
3694 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3695 {
3696         char *namebuf;
3697         Jim_Obj *nameObjPtr, *valObjPtr;
3698         int result;
3699
3700         namebuf = alloc_printf("%s(%d)", varname, idx);
3701         if (!namebuf)
3702                 return JIM_ERR;
3703
3704         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3705         valObjPtr = Jim_NewIntObj(interp, val);
3706         if (!nameObjPtr || !valObjPtr) {
3707                 free(namebuf);
3708                 return JIM_ERR;
3709         }
3710
3711         Jim_IncrRefCount(nameObjPtr);
3712         Jim_IncrRefCount(valObjPtr);
3713         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3714         Jim_DecrRefCount(interp, nameObjPtr);
3715         Jim_DecrRefCount(interp, valObjPtr);
3716         free(namebuf);
3717         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3718         return result;
3719 }
3720
3721 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3722 {
3723         struct command_context *context;
3724         struct target *target;
3725
3726         context = current_command_context(interp);
3727         assert(context != NULL);
3728
3729         target = get_current_target(context);
3730         if (target == NULL) {
3731                 LOG_ERROR("mem2array: no current target");
3732                 return JIM_ERR;
3733         }
3734
3735         return target_mem2array(interp, target, argc - 1, argv + 1);
3736 }
3737
3738 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3739 {
3740         long l;
3741         uint32_t width;
3742         int len;
3743         uint32_t addr;
3744         uint32_t count;
3745         uint32_t v;
3746         const char *varname;
3747         int  n, e, retval;
3748         uint32_t i;
3749
3750         /* argv[1] = name of array to receive the data
3751          * argv[2] = desired width
3752          * argv[3] = memory address
3753          * argv[4] = count of times to read
3754          */
3755         if (argc != 4) {
3756                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3757                 return JIM_ERR;
3758         }
3759         varname = Jim_GetString(argv[0], &len);
3760         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3761
3762         e = Jim_GetLong(interp, argv[1], &l);
3763         width = l;
3764         if (e != JIM_OK)
3765                 return e;
3766
3767         e = Jim_GetLong(interp, argv[2], &l);
3768         addr = l;
3769         if (e != JIM_OK)
3770                 return e;
3771         e = Jim_GetLong(interp, argv[3], &l);
3772         len = l;
3773         if (e != JIM_OK)
3774                 return e;
3775         switch (width) {
3776                 case 8:
3777                         width = 1;
3778                         break;
3779                 case 16:
3780                         width = 2;
3781                         break;
3782                 case 32:
3783                         width = 4;
3784                         break;
3785                 default:
3786                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3787                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3788                         return JIM_ERR;
3789         }
3790         if (len == 0) {
3791                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3792                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3793                 return JIM_ERR;
3794         }
3795         if ((addr + (len * width)) < addr) {
3796                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3797                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3798                 return JIM_ERR;
3799         }
3800         /* absurd transfer size? */
3801         if (len > 65536) {
3802                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3803                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3804                 return JIM_ERR;
3805         }
3806
3807         if ((width == 1) ||
3808                 ((width == 2) && ((addr & 1) == 0)) ||
3809                 ((width == 4) && ((addr & 3) == 0))) {
3810                 /* all is well */
3811         } else {
3812                 char buf[100];
3813                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3814                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3815                                 addr,
3816                                 width);
3817                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3818                 return JIM_ERR;
3819         }
3820
3821         /* Transfer loop */
3822
3823         /* index counter */
3824         n = 0;
3825
3826         size_t buffersize = 4096;
3827         uint8_t *buffer = malloc(buffersize);
3828         if (buffer == NULL)
3829                 return JIM_ERR;
3830
3831         /* assume ok */
3832         e = JIM_OK;
3833         while (len) {
3834                 /* Slurp... in buffer size chunks */
3835
3836                 count = len; /* in objects.. */
3837                 if (count > (buffersize / width))
3838                         count = (buffersize / width);
3839
3840                 retval = target_read_memory(target, addr, width, count, buffer);
3841                 if (retval != ERROR_OK) {
3842                         /* BOO !*/
3843                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3844                                           (unsigned int)addr,
3845                                           (int)width,
3846                                           (int)count);
3847                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3848                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3849                         e = JIM_ERR;
3850                         break;
3851                 } else {
3852                         v = 0; /* shut up gcc */
3853                         for (i = 0; i < count ; i++, n++) {
3854                                 switch (width) {
3855                                         case 4:
3856                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3857                                                 break;
3858                                         case 2:
3859                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3860                                                 break;
3861                                         case 1:
3862                                                 v = buffer[i] & 0x0ff;
3863                                                 break;
3864                                 }
3865                                 new_int_array_element(interp, varname, n, v);
3866                         }
3867                         len -= count;
3868                         addr += count * width;
3869                 }
3870         }
3871
3872         free(buffer);
3873
3874         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3875
3876         return e;
3877 }
3878
3879 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3880 {
3881         char *namebuf;
3882         Jim_Obj *nameObjPtr, *valObjPtr;
3883         int result;
3884         long l;
3885
3886         namebuf = alloc_printf("%s(%d)", varname, idx);
3887         if (!namebuf)
3888                 return JIM_ERR;
3889
3890         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3891         if (!nameObjPtr) {
3892                 free(namebuf);
3893                 return JIM_ERR;
3894         }
3895
3896         Jim_IncrRefCount(nameObjPtr);
3897         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3898         Jim_DecrRefCount(interp, nameObjPtr);
3899         free(namebuf);
3900         if (valObjPtr == NULL)
3901                 return JIM_ERR;
3902
3903         result = Jim_GetLong(interp, valObjPtr, &l);
3904         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3905         *val = l;
3906         return result;
3907 }
3908
3909 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3910 {
3911         struct command_context *context;
3912         struct target *target;
3913
3914         context = current_command_context(interp);
3915         assert(context != NULL);
3916
3917         target = get_current_target(context);
3918         if (target == NULL) {
3919                 LOG_ERROR("array2mem: no current target");
3920                 return JIM_ERR;
3921         }
3922
3923         return target_array2mem(interp, target, argc-1, argv + 1);
3924 }
3925
3926 static int target_array2mem(Jim_Interp *interp, struct target *target,
3927                 int argc, Jim_Obj *const *argv)
3928 {
3929         long l;
3930         uint32_t width;
3931         int len;
3932         uint32_t addr;
3933         uint32_t count;
3934         uint32_t v;
3935         const char *varname;
3936         int  n, e, retval;
3937         uint32_t i;
3938
3939         /* argv[1] = name of array to get the data
3940          * argv[2] = desired width
3941          * argv[3] = memory address
3942          * argv[4] = count to write
3943          */
3944         if (argc != 4) {
3945                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3946                 return JIM_ERR;
3947         }
3948         varname = Jim_GetString(argv[0], &len);
3949         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3950
3951         e = Jim_GetLong(interp, argv[1], &l);
3952         width = l;
3953         if (e != JIM_OK)
3954                 return e;
3955
3956         e = Jim_GetLong(interp, argv[2], &l);
3957         addr = l;
3958         if (e != JIM_OK)
3959                 return e;
3960         e = Jim_GetLong(interp, argv[3], &l);
3961         len = l;
3962         if (e != JIM_OK)
3963                 return e;
3964         switch (width) {
3965                 case 8:
3966                         width = 1;
3967                         break;
3968                 case 16:
3969                         width = 2;
3970                         break;
3971                 case 32:
3972                         width = 4;
3973                         break;
3974                 default:
3975                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3976                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3977                                         "Invalid width param, must be 8/16/32", NULL);
3978                         return JIM_ERR;
3979         }
3980         if (len == 0) {
3981                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3982                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3983                                 "array2mem: zero width read?", NULL);
3984                 return JIM_ERR;
3985         }
3986         if ((addr + (len * width)) < addr) {
3987                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3988                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3989                                 "array2mem: addr + len - wraps to zero?", NULL);
3990                 return JIM_ERR;
3991         }
3992         /* absurd transfer size? */
3993         if (len > 65536) {
3994                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3995                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3996                                 "array2mem: absurd > 64K item request", NULL);
3997                 return JIM_ERR;
3998         }
3999
4000         if ((width == 1) ||
4001                 ((width == 2) && ((addr & 1) == 0)) ||
4002                 ((width == 4) && ((addr & 3) == 0))) {
4003                 /* all is well */
4004         } else {
4005                 char buf[100];
4006                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4007                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4008                                 (unsigned int)addr,
4009                                 (int)width);
4010                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4011                 return JIM_ERR;
4012         }
4013
4014         /* Transfer loop */
4015
4016         /* index counter */
4017         n = 0;
4018         /* assume ok */
4019         e = JIM_OK;
4020
4021         size_t buffersize = 4096;
4022         uint8_t *buffer = malloc(buffersize);
4023         if (buffer == NULL)
4024                 return JIM_ERR;
4025
4026         while (len) {
4027                 /* Slurp... in buffer size chunks */
4028
4029                 count = len; /* in objects.. */
4030                 if (count > (buffersize / width))
4031                         count = (buffersize / width);
4032
4033                 v = 0; /* shut up gcc */
4034                 for (i = 0; i < count; i++, n++) {
4035                         get_int_array_element(interp, varname, n, &v);
4036                         switch (width) {
4037                         case 4:
4038                                 target_buffer_set_u32(target, &buffer[i * width], v);
4039                                 break;
4040                         case 2:
4041                                 target_buffer_set_u16(target, &buffer[i * width], v);
4042                                 break;
4043                         case 1:
4044                                 buffer[i] = v & 0x0ff;
4045                                 break;
4046                         }
4047                 }
4048                 len -= count;
4049
4050                 retval = target_write_memory(target, addr, width, count, buffer);
4051                 if (retval != ERROR_OK) {
4052                         /* BOO !*/
4053                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4054                                           (unsigned int)addr,
4055                                           (int)width,
4056                                           (int)count);
4057                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4058                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4059                         e = JIM_ERR;
4060                         break;
4061                 }
4062                 addr += count * width;
4063         }
4064
4065         free(buffer);
4066
4067         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4068
4069         return e;
4070 }
4071
4072 /* FIX? should we propagate errors here rather than printing them
4073  * and continuing?
4074  */
4075 void target_handle_event(struct target *target, enum target_event e)
4076 {
4077         struct target_event_action *teap;
4078
4079         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4080                 if (teap->event == e) {
4081                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4082                                            target->target_number,
4083                                            target_name(target),
4084                                            target_type_name(target),
4085                                            e,
4086                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4087                                            Jim_GetString(teap->body, NULL));
4088                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4089                                 Jim_MakeErrorMessage(teap->interp);
4090                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4091                         }
4092                 }
4093         }
4094 }
4095
4096 /**
4097  * Returns true only if the target has a handler for the specified event.
4098  */
4099 bool target_has_event_action(struct target *target, enum target_event event)
4100 {
4101         struct target_event_action *teap;
4102
4103         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4104                 if (teap->event == event)
4105                         return true;
4106         }
4107         return false;
4108 }
4109
4110 enum target_cfg_param {
4111         TCFG_TYPE,
4112         TCFG_EVENT,
4113         TCFG_WORK_AREA_VIRT,
4114         TCFG_WORK_AREA_PHYS,
4115         TCFG_WORK_AREA_SIZE,
4116         TCFG_WORK_AREA_BACKUP,
4117         TCFG_ENDIAN,
4118         TCFG_COREID,
4119         TCFG_CHAIN_POSITION,
4120         TCFG_DBGBASE,
4121         TCFG_RTOS,
4122 };
4123
4124 static Jim_Nvp nvp_config_opts[] = {
4125         { .name = "-type",             .value = TCFG_TYPE },
4126         { .name = "-event",            .value = TCFG_EVENT },
4127         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4128         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4129         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4130         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4131         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4132         { .name = "-coreid",           .value = TCFG_COREID },
4133         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4134         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4135         { .name = "-rtos",             .value = TCFG_RTOS },
4136         { .name = NULL, .value = -1 }
4137 };
4138
4139 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4140 {
4141         Jim_Nvp *n;
4142         Jim_Obj *o;
4143         jim_wide w;
4144         int e;
4145
4146         /* parse config or cget options ... */
4147         while (goi->argc > 0) {
4148                 Jim_SetEmptyResult(goi->interp);
4149                 /* Jim_GetOpt_Debug(goi); */
4150
4151                 if (target->type->target_jim_configure) {
4152                         /* target defines a configure function */
4153                         /* target gets first dibs on parameters */
4154                         e = (*(target->type->target_jim_configure))(target, goi);
4155                         if (e == JIM_OK) {
4156                                 /* more? */
4157                                 continue;
4158                         }
4159                         if (e == JIM_ERR) {
4160                                 /* An error */
4161                                 return e;
4162                         }
4163                         /* otherwise we 'continue' below */
4164                 }
4165                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4166                 if (e != JIM_OK) {
4167                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4168                         return e;
4169                 }
4170                 switch (n->value) {
4171                 case TCFG_TYPE:
4172                         /* not setable */
4173                         if (goi->isconfigure) {
4174                                 Jim_SetResultFormatted(goi->interp,
4175                                                 "not settable: %s", n->name);
4176                                 return JIM_ERR;
4177                         } else {
4178 no_params:
4179                                 if (goi->argc != 0) {
4180                                         Jim_WrongNumArgs(goi->interp,
4181                                                         goi->argc, goi->argv,
4182                                                         "NO PARAMS");
4183                                         return JIM_ERR;
4184                                 }
4185                         }
4186                         Jim_SetResultString(goi->interp,
4187                                         target_type_name(target), -1);
4188                         /* loop for more */
4189                         break;
4190                 case TCFG_EVENT:
4191                         if (goi->argc == 0) {
4192                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4193                                 return JIM_ERR;
4194                         }
4195
4196                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4197                         if (e != JIM_OK) {
4198                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4199                                 return e;
4200                         }
4201
4202                         if (goi->isconfigure) {
4203                                 if (goi->argc != 1) {
4204                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4205                                         return JIM_ERR;
4206                                 }
4207                         } else {
4208                                 if (goi->argc != 0) {
4209                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4210                                         return JIM_ERR;
4211                                 }
4212                         }
4213
4214                         {
4215                                 struct target_event_action *teap;
4216
4217                                 teap = target->event_action;
4218                                 /* replace existing? */
4219                                 while (teap) {
4220                                         if (teap->event == (enum target_event)n->value)
4221                                                 break;
4222                                         teap = teap->next;
4223                                 }
4224
4225                                 if (goi->isconfigure) {
4226                                         bool replace = true;
4227                                         if (teap == NULL) {
4228                                                 /* create new */
4229                                                 teap = calloc(1, sizeof(*teap));
4230                                                 replace = false;
4231                                         }
4232                                         teap->event = n->value;
4233                                         teap->interp = goi->interp;
4234                                         Jim_GetOpt_Obj(goi, &o);
4235                                         if (teap->body)
4236                                                 Jim_DecrRefCount(teap->interp, teap->body);
4237                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4238                                         /*
4239                                          * FIXME:
4240                                          *     Tcl/TK - "tk events" have a nice feature.
4241                                          *     See the "BIND" command.
4242                                          *    We should support that here.
4243                                          *     You can specify %X and %Y in the event code.
4244                                          *     The idea is: %T - target name.
4245                                          *     The idea is: %N - target number
4246                                          *     The idea is: %E - event name.
4247                                          */
4248                                         Jim_IncrRefCount(teap->body);
4249
4250                                         if (!replace) {
4251                                                 /* add to head of event list */
4252                                                 teap->next = target->event_action;
4253                                                 target->event_action = teap;
4254                                         }
4255                                         Jim_SetEmptyResult(goi->interp);
4256                                 } else {
4257                                         /* get */
4258                                         if (teap == NULL)
4259                                                 Jim_SetEmptyResult(goi->interp);
4260                                         else
4261                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4262                                 }
4263                         }
4264                         /* loop for more */
4265                         break;
4266
4267                 case TCFG_WORK_AREA_VIRT:
4268                         if (goi->isconfigure) {
4269                                 target_free_all_working_areas(target);
4270                                 e = Jim_GetOpt_Wide(goi, &w);
4271                                 if (e != JIM_OK)
4272                                         return e;
4273                                 target->working_area_virt = w;
4274                                 target->working_area_virt_spec = true;
4275                         } else {
4276                                 if (goi->argc != 0)
4277                                         goto no_params;
4278                         }
4279                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4280                         /* loop for more */
4281                         break;
4282
4283                 case TCFG_WORK_AREA_PHYS:
4284                         if (goi->isconfigure) {
4285                                 target_free_all_working_areas(target);
4286                                 e = Jim_GetOpt_Wide(goi, &w);
4287                                 if (e != JIM_OK)
4288                                         return e;
4289                                 target->working_area_phys = w;
4290                                 target->working_area_phys_spec = true;
4291                         } else {
4292                                 if (goi->argc != 0)
4293                                         goto no_params;
4294                         }
4295                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4296                         /* loop for more */
4297                         break;
4298
4299                 case TCFG_WORK_AREA_SIZE:
4300                         if (goi->isconfigure) {
4301                                 target_free_all_working_areas(target);
4302                                 e = Jim_GetOpt_Wide(goi, &w);
4303                                 if (e != JIM_OK)
4304                                         return e;
4305                                 target->working_area_size = w;
4306                         } else {
4307                                 if (goi->argc != 0)
4308                                         goto no_params;
4309                         }
4310                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4311                         /* loop for more */
4312                         break;
4313
4314                 case TCFG_WORK_AREA_BACKUP:
4315                         if (goi->isconfigure) {
4316                                 target_free_all_working_areas(target);
4317                                 e = Jim_GetOpt_Wide(goi, &w);
4318                                 if (e != JIM_OK)
4319                                         return e;
4320                                 /* make this exactly 1 or 0 */
4321                                 target->backup_working_area = (!!w);
4322                         } else {
4323                                 if (goi->argc != 0)
4324                                         goto no_params;
4325                         }
4326                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4327                         /* loop for more e*/
4328                         break;
4329
4330
4331                 case TCFG_ENDIAN:
4332                         if (goi->isconfigure) {
4333                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4334                                 if (e != JIM_OK) {
4335                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4336                                         return e;
4337                                 }
4338                                 target->endianness = n->value;
4339                         } else {
4340                                 if (goi->argc != 0)
4341                                         goto no_params;
4342                         }
4343                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4344                         if (n->name == NULL) {
4345                                 target->endianness = TARGET_LITTLE_ENDIAN;
4346                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4347                         }
4348                         Jim_SetResultString(goi->interp, n->name, -1);
4349                         /* loop for more */
4350                         break;
4351
4352                 case TCFG_COREID:
4353                         if (goi->isconfigure) {
4354                                 e = Jim_GetOpt_Wide(goi, &w);
4355                                 if (e != JIM_OK)
4356                                         return e;
4357                                 target->coreid = (int32_t)w;
4358                         } else {
4359                                 if (goi->argc != 0)
4360                                         goto no_params;
4361                         }
4362                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4363                         /* loop for more */
4364                         break;
4365
4366                 case TCFG_CHAIN_POSITION:
4367                         if (goi->isconfigure) {
4368                                 Jim_Obj *o_t;
4369                                 struct jtag_tap *tap;
4370                                 target_free_all_working_areas(target);
4371                                 e = Jim_GetOpt_Obj(goi, &o_t);
4372                                 if (e != JIM_OK)
4373                                         return e;
4374                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4375                                 if (tap == NULL)
4376                                         return JIM_ERR;
4377                                 /* make this exactly 1 or 0 */
4378                                 target->tap = tap;
4379                         } else {
4380                                 if (goi->argc != 0)
4381                                         goto no_params;
4382                         }
4383                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4384                         /* loop for more e*/
4385                         break;
4386                 case TCFG_DBGBASE:
4387                         if (goi->isconfigure) {
4388                                 e = Jim_GetOpt_Wide(goi, &w);
4389                                 if (e != JIM_OK)
4390                                         return e;
4391                                 target->dbgbase = (uint32_t)w;
4392                                 target->dbgbase_set = true;
4393                         } else {
4394                                 if (goi->argc != 0)
4395                                         goto no_params;
4396                         }
4397                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4398                         /* loop for more */
4399                         break;
4400
4401                 case TCFG_RTOS:
4402                         /* RTOS */
4403                         {
4404                                 int result = rtos_create(goi, target);
4405                                 if (result != JIM_OK)
4406                                         return result;
4407                         }
4408                         /* loop for more */
4409                         break;
4410                 }
4411         } /* while (goi->argc) */
4412
4413
4414                 /* done - we return */
4415         return JIM_OK;
4416 }
4417
4418 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4419 {
4420         Jim_GetOptInfo goi;
4421
4422         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4423         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4424         int need_args = 1 + goi.isconfigure;
4425         if (goi.argc < need_args) {
4426                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4427                         goi.isconfigure
4428                                 ? "missing: -option VALUE ..."
4429                                 : "missing: -option ...");
4430                 return JIM_ERR;
4431         }
4432         struct target *target = Jim_CmdPrivData(goi.interp);
4433         return target_configure(&goi, target);
4434 }
4435
4436 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4437 {
4438         const char *cmd_name = Jim_GetString(argv[0], NULL);
4439
4440         Jim_GetOptInfo goi;
4441         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4442
4443         if (goi.argc < 2 || goi.argc > 4) {
4444                 Jim_SetResultFormatted(goi.interp,
4445                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4446                 return JIM_ERR;
4447         }
4448
4449         target_write_fn fn;
4450         fn = target_write_memory;
4451
4452         int e;
4453         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4454                 /* consume it */
4455                 struct Jim_Obj *obj;
4456                 e = Jim_GetOpt_Obj(&goi, &obj);
4457                 if (e != JIM_OK)
4458                         return e;
4459
4460                 fn = target_write_phys_memory;
4461         }
4462
4463         jim_wide a;
4464         e = Jim_GetOpt_Wide(&goi, &a);
4465         if (e != JIM_OK)
4466                 return e;
4467
4468         jim_wide b;
4469         e = Jim_GetOpt_Wide(&goi, &b);
4470         if (e != JIM_OK)
4471                 return e;
4472
4473         jim_wide c = 1;
4474         if (goi.argc == 1) {
4475                 e = Jim_GetOpt_Wide(&goi, &c);
4476                 if (e != JIM_OK)
4477                         return e;
4478         }
4479
4480         /* all args must be consumed */
4481         if (goi.argc != 0)
4482                 return JIM_ERR;
4483
4484         struct target *target = Jim_CmdPrivData(goi.interp);
4485         unsigned data_size;
4486         if (strcasecmp(cmd_name, "mww") == 0)
4487                 data_size = 4;
4488         else if (strcasecmp(cmd_name, "mwh") == 0)
4489                 data_size = 2;
4490         else if (strcasecmp(cmd_name, "mwb") == 0)
4491                 data_size = 1;
4492         else {
4493                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4494                 return JIM_ERR;
4495         }
4496
4497         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4498 }
4499
4500 /**
4501 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4502 *
4503 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4504 *         mdh [phys] <address> [<count>] - for 16 bit reads
4505 *         mdb [phys] <address> [<count>] - for  8 bit reads
4506 *
4507 *  Count defaults to 1.
4508 *
4509 *  Calls target_read_memory or target_read_phys_memory depending on
4510 *  the presence of the "phys" argument
4511 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4512 *  to int representation in base16.
4513 *  Also outputs read data in a human readable form using command_print
4514 *
4515 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4516 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4517 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4518 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4519 *  on success, with [<count>] number of elements.
4520 *
4521 *  In case of little endian target:
4522 *      Example1: "mdw 0x00000000"  returns "10123456"
4523 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4524 *      Example3: "mdb 0x00000000" returns "56"
4525 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4526 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4527 **/
4528 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4529 {
4530         const char *cmd_name = Jim_GetString(argv[0], NULL);
4531
4532         Jim_GetOptInfo goi;
4533         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4534
4535         if ((goi.argc < 1) || (goi.argc > 3)) {
4536                 Jim_SetResultFormatted(goi.interp,
4537                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4538                 return JIM_ERR;
4539         }
4540
4541         int (*fn)(struct target *target,
4542                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4543         fn = target_read_memory;
4544
4545         int e;
4546         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4547                 /* consume it */
4548                 struct Jim_Obj *obj;
4549                 e = Jim_GetOpt_Obj(&goi, &obj);
4550                 if (e != JIM_OK)
4551                         return e;
4552
4553                 fn = target_read_phys_memory;
4554         }
4555
4556         /* Read address parameter */
4557         jim_wide addr;
4558         e = Jim_GetOpt_Wide(&goi, &addr);
4559         if (e != JIM_OK)
4560                 return JIM_ERR;
4561
4562         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4563         jim_wide count;
4564         if (goi.argc == 1) {
4565                 e = Jim_GetOpt_Wide(&goi, &count);
4566                 if (e != JIM_OK)
4567                         return JIM_ERR;
4568         } else
4569                 count = 1;
4570
4571         /* all args must be consumed */
4572         if (goi.argc != 0)
4573                 return JIM_ERR;
4574
4575         jim_wide dwidth = 1; /* shut up gcc */
4576         if (strcasecmp(cmd_name, "mdw") == 0)
4577                 dwidth = 4;
4578         else if (strcasecmp(cmd_name, "mdh") == 0)
4579                 dwidth = 2;
4580         else if (strcasecmp(cmd_name, "mdb") == 0)
4581                 dwidth = 1;
4582         else {
4583                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4584                 return JIM_ERR;
4585         }
4586
4587         /* convert count to "bytes" */
4588         int bytes = count * dwidth;
4589
4590         struct target *target = Jim_CmdPrivData(goi.interp);
4591         uint8_t  target_buf[32];
4592         jim_wide x, y, z;
4593         while (bytes > 0) {
4594                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4595
4596                 /* Try to read out next block */
4597                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4598
4599                 if (e != ERROR_OK) {
4600                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4601                         return JIM_ERR;
4602                 }
4603
4604                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4605                 switch (dwidth) {
4606                 case 4:
4607                         for (x = 0; x < 16 && x < y; x += 4) {
4608                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4609                                 command_print_sameline(NULL, "%08x ", (int)(z));
4610                         }
4611                         for (; (x < 16) ; x += 4)
4612                                 command_print_sameline(NULL, "         ");
4613                         break;
4614                 case 2:
4615                         for (x = 0; x < 16 && x < y; x += 2) {
4616                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4617                                 command_print_sameline(NULL, "%04x ", (int)(z));
4618                         }
4619                         for (; (x < 16) ; x += 2)
4620                                 command_print_sameline(NULL, "     ");
4621                         break;
4622                 case 1:
4623                 default:
4624                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4625                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4626                                 command_print_sameline(NULL, "%02x ", (int)(z));
4627                         }
4628                         for (; (x < 16) ; x += 1)
4629                                 command_print_sameline(NULL, "   ");
4630                         break;
4631                 }
4632                 /* ascii-ify the bytes */
4633                 for (x = 0 ; x < y ; x++) {
4634                         if ((target_buf[x] >= 0x20) &&
4635                                 (target_buf[x] <= 0x7e)) {
4636                                 /* good */
4637                         } else {
4638                                 /* smack it */
4639                                 target_buf[x] = '.';
4640                         }
4641                 }
4642                 /* space pad  */
4643                 while (x < 16) {
4644                         target_buf[x] = ' ';
4645                         x++;
4646                 }
4647                 /* terminate */
4648                 target_buf[16] = 0;
4649                 /* print - with a newline */
4650                 command_print_sameline(NULL, "%s\n", target_buf);
4651                 /* NEXT... */
4652                 bytes -= 16;
4653                 addr += 16;
4654         }
4655         return JIM_OK;
4656 }
4657
4658 static int jim_target_mem2array(Jim_Interp *interp,
4659                 int argc, Jim_Obj *const *argv)
4660 {
4661         struct target *target = Jim_CmdPrivData(interp);
4662         return target_mem2array(interp, target, argc - 1, argv + 1);
4663 }
4664
4665 static int jim_target_array2mem(Jim_Interp *interp,
4666                 int argc, Jim_Obj *const *argv)
4667 {
4668         struct target *target = Jim_CmdPrivData(interp);
4669         return target_array2mem(interp, target, argc - 1, argv + 1);
4670 }
4671
4672 static int jim_target_tap_disabled(Jim_Interp *interp)
4673 {
4674         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4675         return JIM_ERR;
4676 }
4677
4678 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4679 {
4680         if (argc != 1) {
4681                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4682                 return JIM_ERR;
4683         }
4684         struct target *target = Jim_CmdPrivData(interp);
4685         if (!target->tap->enabled)
4686                 return jim_target_tap_disabled(interp);
4687
4688         int e = target->type->examine(target);
4689         if (e != ERROR_OK)
4690                 return JIM_ERR;
4691         return JIM_OK;
4692 }
4693
4694 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4695 {
4696         if (argc != 1) {
4697                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4698                 return JIM_ERR;
4699         }
4700         struct target *target = Jim_CmdPrivData(interp);
4701
4702         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4703                 return JIM_ERR;
4704
4705         return JIM_OK;
4706 }
4707
4708 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4709 {
4710         if (argc != 1) {
4711                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4712                 return JIM_ERR;
4713         }
4714         struct target *target = Jim_CmdPrivData(interp);
4715         if (!target->tap->enabled)
4716                 return jim_target_tap_disabled(interp);
4717
4718         int e;
4719         if (!(target_was_examined(target)))
4720                 e = ERROR_TARGET_NOT_EXAMINED;
4721         else
4722                 e = target->type->poll(target);
4723         if (e != ERROR_OK)
4724                 return JIM_ERR;
4725         return JIM_OK;
4726 }
4727
4728 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4729 {
4730         Jim_GetOptInfo goi;
4731         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4732
4733         if (goi.argc != 2) {
4734                 Jim_WrongNumArgs(interp, 0, argv,
4735                                 "([tT]|[fF]|assert|deassert) BOOL");
4736                 return JIM_ERR;
4737         }
4738
4739         Jim_Nvp *n;
4740         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4741         if (e != JIM_OK) {
4742                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4743                 return e;
4744         }
4745         /* the halt or not param */
4746         jim_wide a;
4747         e = Jim_GetOpt_Wide(&goi, &a);
4748         if (e != JIM_OK)
4749                 return e;
4750
4751         struct target *target = Jim_CmdPrivData(goi.interp);
4752         if (!target->tap->enabled)
4753                 return jim_target_tap_disabled(interp);
4754         if (!(target_was_examined(target))) {
4755                 LOG_ERROR("Target not examined yet");
4756                 return ERROR_TARGET_NOT_EXAMINED;
4757         }
4758         if (!target->type->assert_reset || !target->type->deassert_reset) {
4759                 Jim_SetResultFormatted(interp,
4760                                 "No target-specific reset for %s",
4761                                 target_name(target));
4762                 return JIM_ERR;
4763         }
4764         /* determine if we should halt or not. */
4765         target->reset_halt = !!a;
4766         /* When this happens - all workareas are invalid. */
4767         target_free_all_working_areas_restore(target, 0);
4768
4769         /* do the assert */
4770         if (n->value == NVP_ASSERT)
4771                 e = target->type->assert_reset(target);
4772         else
4773                 e = target->type->deassert_reset(target);
4774         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4775 }
4776
4777 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4778 {
4779         if (argc != 1) {
4780                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4781                 return JIM_ERR;
4782         }
4783         struct target *target = Jim_CmdPrivData(interp);
4784         if (!target->tap->enabled)
4785                 return jim_target_tap_disabled(interp);
4786         int e = target->type->halt(target);
4787         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4788 }
4789
4790 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4791 {
4792         Jim_GetOptInfo goi;
4793         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4794
4795         /* params:  <name>  statename timeoutmsecs */
4796         if (goi.argc != 2) {
4797                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4798                 Jim_SetResultFormatted(goi.interp,
4799                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4800                 return JIM_ERR;
4801         }
4802
4803         Jim_Nvp *n;
4804         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4805         if (e != JIM_OK) {
4806                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4807                 return e;
4808         }
4809         jim_wide a;
4810         e = Jim_GetOpt_Wide(&goi, &a);
4811         if (e != JIM_OK)
4812                 return e;
4813         struct target *target = Jim_CmdPrivData(interp);
4814         if (!target->tap->enabled)
4815                 return jim_target_tap_disabled(interp);
4816
4817         e = target_wait_state(target, n->value, a);
4818         if (e != ERROR_OK) {
4819                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4820                 Jim_SetResultFormatted(goi.interp,
4821                                 "target: %s wait %s fails (%#s) %s",
4822                                 target_name(target), n->name,
4823                                 eObj, target_strerror_safe(e));
4824                 Jim_FreeNewObj(interp, eObj);
4825                 return JIM_ERR;
4826         }
4827         return JIM_OK;
4828 }
4829 /* List for human, Events defined for this target.
4830  * scripts/programs should use 'name cget -event NAME'
4831  */
4832 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4833 {
4834         struct command_context *cmd_ctx = current_command_context(interp);
4835         assert(cmd_ctx != NULL);
4836
4837         struct target *target = Jim_CmdPrivData(interp);
4838         struct target_event_action *teap = target->event_action;
4839         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4840                                    target->target_number,
4841                                    target_name(target));
4842         command_print(cmd_ctx, "%-25s | Body", "Event");
4843         command_print(cmd_ctx, "------------------------- | "
4844                         "----------------------------------------");
4845         while (teap) {
4846                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4847                 command_print(cmd_ctx, "%-25s | %s",
4848                                 opt->name, Jim_GetString(teap->body, NULL));
4849                 teap = teap->next;
4850         }
4851         command_print(cmd_ctx, "***END***");
4852         return JIM_OK;
4853 }
4854 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4855 {
4856         if (argc != 1) {
4857                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4858                 return JIM_ERR;
4859         }
4860         struct target *target = Jim_CmdPrivData(interp);
4861         Jim_SetResultString(interp, target_state_name(target), -1);
4862         return JIM_OK;
4863 }
4864 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4865 {
4866         Jim_GetOptInfo goi;
4867         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4868         if (goi.argc != 1) {
4869                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4870                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4871                 return JIM_ERR;
4872         }
4873         Jim_Nvp *n;
4874         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4875         if (e != JIM_OK) {
4876                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4877                 return e;
4878         }
4879         struct target *target = Jim_CmdPrivData(interp);
4880         target_handle_event(target, n->value);
4881         return JIM_OK;
4882 }
4883
4884 static const struct command_registration target_instance_command_handlers[] = {
4885         {
4886                 .name = "configure",
4887                 .mode = COMMAND_CONFIG,
4888                 .jim_handler = jim_target_configure,
4889                 .help  = "configure a new target for use",
4890                 .usage = "[target_attribute ...]",
4891         },
4892         {
4893                 .name = "cget",
4894                 .mode = COMMAND_ANY,
4895                 .jim_handler = jim_target_configure,
4896                 .help  = "returns the specified target attribute",
4897                 .usage = "target_attribute",
4898         },
4899         {
4900                 .name = "mww",
4901                 .mode = COMMAND_EXEC,
4902                 .jim_handler = jim_target_mw,
4903                 .help = "Write 32-bit word(s) to target memory",
4904                 .usage = "address data [count]",
4905         },
4906         {
4907                 .name = "mwh",
4908                 .mode = COMMAND_EXEC,
4909                 .jim_handler = jim_target_mw,
4910                 .help = "Write 16-bit half-word(s) to target memory",
4911                 .usage = "address data [count]",
4912         },
4913         {
4914                 .name = "mwb",
4915                 .mode = COMMAND_EXEC,
4916                 .jim_handler = jim_target_mw,
4917                 .help = "Write byte(s) to target memory",
4918                 .usage = "address data [count]",
4919         },
4920         {
4921                 .name = "mdw",
4922                 .mode = COMMAND_EXEC,
4923                 .jim_handler = jim_target_md,
4924                 .help = "Display target memory as 32-bit words",
4925                 .usage = "address [count]",
4926         },
4927         {
4928                 .name = "mdh",
4929                 .mode = COMMAND_EXEC,
4930                 .jim_handler = jim_target_md,
4931                 .help = "Display target memory as 16-bit half-words",
4932                 .usage = "address [count]",
4933         },
4934         {
4935                 .name = "mdb",
4936                 .mode = COMMAND_EXEC,
4937                 .jim_handler = jim_target_md,
4938                 .help = "Display target memory as 8-bit bytes",
4939                 .usage = "address [count]",
4940         },
4941         {
4942                 .name = "array2mem",
4943                 .mode = COMMAND_EXEC,
4944                 .jim_handler = jim_target_array2mem,
4945                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4946                         "to target memory",
4947                 .usage = "arrayname bitwidth address count",
4948         },
4949         {
4950                 .name = "mem2array",
4951                 .mode = COMMAND_EXEC,
4952                 .jim_handler = jim_target_mem2array,
4953                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4954                         "from target memory",
4955                 .usage = "arrayname bitwidth address count",
4956         },
4957         {
4958                 .name = "eventlist",
4959                 .mode = COMMAND_EXEC,
4960                 .jim_handler = jim_target_event_list,
4961                 .help = "displays a table of events defined for this target",
4962         },
4963         {
4964                 .name = "curstate",
4965                 .mode = COMMAND_EXEC,
4966                 .jim_handler = jim_target_current_state,
4967                 .help = "displays the current state of this target",
4968         },
4969         {
4970                 .name = "arp_examine",
4971                 .mode = COMMAND_EXEC,
4972                 .jim_handler = jim_target_examine,
4973                 .help = "used internally for reset processing",
4974         },
4975         {
4976                 .name = "arp_halt_gdb",
4977                 .mode = COMMAND_EXEC,
4978                 .jim_handler = jim_target_halt_gdb,
4979                 .help = "used internally for reset processing to halt GDB",
4980         },
4981         {
4982                 .name = "arp_poll",
4983                 .mode = COMMAND_EXEC,
4984                 .jim_handler = jim_target_poll,
4985                 .help = "used internally for reset processing",
4986         },
4987         {
4988                 .name = "arp_reset",
4989                 .mode = COMMAND_EXEC,
4990                 .jim_handler = jim_target_reset,
4991                 .help = "used internally for reset processing",
4992         },
4993         {
4994                 .name = "arp_halt",
4995                 .mode = COMMAND_EXEC,
4996                 .jim_handler = jim_target_halt,
4997                 .help = "used internally for reset processing",
4998         },
4999         {
5000                 .name = "arp_waitstate",
5001                 .mode = COMMAND_EXEC,
5002                 .jim_handler = jim_target_wait_state,
5003                 .help = "used internally for reset processing",
5004         },
5005         {
5006                 .name = "invoke-event",
5007                 .mode = COMMAND_EXEC,
5008                 .jim_handler = jim_target_invoke_event,
5009                 .help = "invoke handler for specified event",
5010                 .usage = "event_name",
5011         },
5012         COMMAND_REGISTRATION_DONE
5013 };
5014
5015 static int target_create(Jim_GetOptInfo *goi)
5016 {
5017         Jim_Obj *new_cmd;
5018         Jim_Cmd *cmd;
5019         const char *cp;
5020         char *cp2;
5021         int e;
5022         int x;
5023         struct target *target;
5024         struct command_context *cmd_ctx;
5025
5026         cmd_ctx = current_command_context(goi->interp);
5027         assert(cmd_ctx != NULL);
5028
5029         if (goi->argc < 3) {
5030                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5031                 return JIM_ERR;
5032         }
5033
5034         /* COMMAND */
5035         Jim_GetOpt_Obj(goi, &new_cmd);
5036         /* does this command exist? */
5037         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5038         if (cmd) {
5039                 cp = Jim_GetString(new_cmd, NULL);
5040                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5041                 return JIM_ERR;
5042         }
5043
5044         /* TYPE */
5045         e = Jim_GetOpt_String(goi, &cp2, NULL);
5046         if (e != JIM_OK)
5047                 return e;
5048         cp = cp2;
5049         struct transport *tr = get_current_transport();
5050         if (tr->override_target) {
5051                 e = tr->override_target(&cp);
5052                 if (e != ERROR_OK) {
5053                         LOG_ERROR("The selected transport doesn't support this target");
5054                         return JIM_ERR;
5055                 }
5056                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5057         }
5058         /* now does target type exist */
5059         for (x = 0 ; target_types[x] ; x++) {
5060                 if (0 == strcmp(cp, target_types[x]->name)) {
5061                         /* found */
5062                         break;
5063                 }
5064
5065                 /* check for deprecated name */
5066                 if (target_types[x]->deprecated_name) {
5067                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5068                                 /* found */
5069                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5070                                 break;
5071                         }
5072                 }
5073         }
5074         if (target_types[x] == NULL) {
5075                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5076                 for (x = 0 ; target_types[x] ; x++) {
5077                         if (target_types[x + 1]) {
5078                                 Jim_AppendStrings(goi->interp,
5079                                                                    Jim_GetResult(goi->interp),
5080                                                                    target_types[x]->name,
5081                                                                    ", ", NULL);
5082                         } else {
5083                                 Jim_AppendStrings(goi->interp,
5084                                                                    Jim_GetResult(goi->interp),
5085                                                                    " or ",
5086                                                                    target_types[x]->name, NULL);
5087                         }
5088                 }
5089                 return JIM_ERR;
5090         }
5091
5092         /* Create it */
5093         target = calloc(1, sizeof(struct target));
5094         /* set target number */
5095         target->target_number = new_target_number();
5096         cmd_ctx->current_target = target->target_number;
5097
5098         /* allocate memory for each unique target type */
5099         target->type = calloc(1, sizeof(struct target_type));
5100
5101         memcpy(target->type, target_types[x], sizeof(struct target_type));
5102
5103         /* will be set by "-endian" */
5104         target->endianness = TARGET_ENDIAN_UNKNOWN;
5105
5106         /* default to first core, override with -coreid */
5107         target->coreid = 0;
5108
5109         target->working_area        = 0x0;
5110         target->working_area_size   = 0x0;
5111         target->working_areas       = NULL;
5112         target->backup_working_area = 0;
5113
5114         target->state               = TARGET_UNKNOWN;
5115         target->debug_reason        = DBG_REASON_UNDEFINED;
5116         target->reg_cache           = NULL;
5117         target->breakpoints         = NULL;
5118         target->watchpoints         = NULL;
5119         target->next                = NULL;
5120         target->arch_info           = NULL;
5121
5122         target->display             = 1;
5123
5124         target->halt_issued                     = false;
5125
5126         /* initialize trace information */
5127         target->trace_info = malloc(sizeof(struct trace));
5128         target->trace_info->num_trace_points         = 0;
5129         target->trace_info->trace_points_size        = 0;
5130         target->trace_info->trace_points             = NULL;
5131         target->trace_info->trace_history_size       = 0;
5132         target->trace_info->trace_history            = NULL;
5133         target->trace_info->trace_history_pos        = 0;
5134         target->trace_info->trace_history_overflowed = 0;
5135
5136         target->dbgmsg          = NULL;
5137         target->dbg_msg_enabled = 0;
5138
5139         target->endianness = TARGET_ENDIAN_UNKNOWN;
5140
5141         target->rtos = NULL;
5142         target->rtos_auto_detect = false;
5143
5144         /* Do the rest as "configure" options */
5145         goi->isconfigure = 1;
5146         e = target_configure(goi, target);
5147
5148         if (target->tap == NULL) {
5149                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5150                 e = JIM_ERR;
5151         }
5152
5153         if (e != JIM_OK) {
5154                 free(target->type);
5155                 free(target);
5156                 return e;
5157         }
5158
5159         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5160                 /* default endian to little if not specified */
5161                 target->endianness = TARGET_LITTLE_ENDIAN;
5162         }
5163
5164         cp = Jim_GetString(new_cmd, NULL);
5165         target->cmd_name = strdup(cp);
5166
5167         /* create the target specific commands */
5168         if (target->type->commands) {
5169                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5170                 if (ERROR_OK != e)
5171                         LOG_ERROR("unable to register '%s' commands", cp);
5172         }
5173         if (target->type->target_create)
5174                 (*(target->type->target_create))(target, goi->interp);
5175
5176         /* append to end of list */
5177         {
5178                 struct target **tpp;
5179                 tpp = &(all_targets);
5180                 while (*tpp)
5181                         tpp = &((*tpp)->next);
5182                 *tpp = target;
5183         }
5184
5185         /* now - create the new target name command */
5186         const struct command_registration target_subcommands[] = {
5187                 {
5188                         .chain = target_instance_command_handlers,
5189                 },
5190                 {
5191                         .chain = target->type->commands,
5192                 },
5193                 COMMAND_REGISTRATION_DONE
5194         };
5195         const struct command_registration target_commands[] = {
5196                 {
5197                         .name = cp,
5198                         .mode = COMMAND_ANY,
5199                         .help = "target command group",
5200                         .usage = "",
5201                         .chain = target_subcommands,
5202                 },
5203                 COMMAND_REGISTRATION_DONE
5204         };
5205         e = register_commands(cmd_ctx, NULL, target_commands);
5206         if (ERROR_OK != e)
5207                 return JIM_ERR;
5208
5209         struct command *c = command_find_in_context(cmd_ctx, cp);
5210         assert(c);
5211         command_set_handler_data(c, target);
5212
5213         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5214 }
5215
5216 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5217 {
5218         if (argc != 1) {
5219                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5220                 return JIM_ERR;
5221         }
5222         struct command_context *cmd_ctx = current_command_context(interp);
5223         assert(cmd_ctx != NULL);
5224
5225         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5226         return JIM_OK;
5227 }
5228
5229 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5230 {
5231         if (argc != 1) {
5232                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5233                 return JIM_ERR;
5234         }
5235         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5236         for (unsigned x = 0; NULL != target_types[x]; x++) {
5237                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5238                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5239         }
5240         return JIM_OK;
5241 }
5242
5243 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5244 {
5245         if (argc != 1) {
5246                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5247                 return JIM_ERR;
5248         }
5249         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5250         struct target *target = all_targets;
5251         while (target) {
5252                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5253                         Jim_NewStringObj(interp, target_name(target), -1));
5254                 target = target->next;
5255         }
5256         return JIM_OK;
5257 }
5258
5259 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5260 {
5261         int i;
5262         const char *targetname;
5263         int retval, len;
5264         struct target *target = (struct target *) NULL;
5265         struct target_list *head, *curr, *new;
5266         curr = (struct target_list *) NULL;
5267         head = (struct target_list *) NULL;
5268
5269         retval = 0;
5270         LOG_DEBUG("%d", argc);
5271         /* argv[1] = target to associate in smp
5272          * argv[2] = target to assoicate in smp
5273          * argv[3] ...
5274          */
5275
5276         for (i = 1; i < argc; i++) {
5277
5278                 targetname = Jim_GetString(argv[i], &len);
5279                 target = get_target(targetname);
5280                 LOG_DEBUG("%s ", targetname);
5281                 if (target) {
5282                         new = malloc(sizeof(struct target_list));
5283                         new->target = target;
5284                         new->next = (struct target_list *)NULL;
5285                         if (head == (struct target_list *)NULL) {
5286                                 head = new;
5287                                 curr = head;
5288                         } else {
5289                                 curr->next = new;
5290                                 curr = new;
5291                         }
5292                 }
5293         }
5294         /*  now parse the list of cpu and put the target in smp mode*/
5295         curr = head;
5296
5297         while (curr != (struct target_list *)NULL) {
5298                 target = curr->target;
5299                 target->smp = 1;
5300                 target->head = head;
5301                 curr = curr->next;
5302         }
5303
5304         if (target && target->rtos)
5305                 retval = rtos_smp_init(head->target);
5306
5307         return retval;
5308 }
5309
5310
5311 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5312 {
5313         Jim_GetOptInfo goi;
5314         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5315         if (goi.argc < 3) {
5316                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5317                         "<name> <target_type> [<target_options> ...]");
5318                 return JIM_ERR;
5319         }
5320         return target_create(&goi);
5321 }
5322
5323 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5324 {
5325         Jim_GetOptInfo goi;
5326         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5327
5328         /* It's OK to remove this mechanism sometime after August 2010 or so */
5329         LOG_WARNING("don't use numbers as target identifiers; use names");
5330         if (goi.argc != 1) {
5331                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5332                 return JIM_ERR;
5333         }
5334         jim_wide w;
5335         int e = Jim_GetOpt_Wide(&goi, &w);
5336         if (e != JIM_OK)
5337                 return JIM_ERR;
5338
5339         struct target *target;
5340         for (target = all_targets; NULL != target; target = target->next) {
5341                 if (target->target_number != w)
5342                         continue;
5343
5344                 Jim_SetResultString(goi.interp, target_name(target), -1);
5345                 return JIM_OK;
5346         }
5347         {
5348                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5349                 Jim_SetResultFormatted(goi.interp,
5350                         "Target: number %#s does not exist", wObj);
5351                 Jim_FreeNewObj(interp, wObj);
5352         }
5353         return JIM_ERR;
5354 }
5355
5356 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5357 {
5358         if (argc != 1) {
5359                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5360                 return JIM_ERR;
5361         }
5362         unsigned count = 0;
5363         struct target *target = all_targets;
5364         while (NULL != target) {
5365                 target = target->next;
5366                 count++;
5367         }
5368         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5369         return JIM_OK;
5370 }
5371
5372 static const struct command_registration target_subcommand_handlers[] = {
5373         {
5374                 .name = "init",
5375                 .mode = COMMAND_CONFIG,
5376                 .handler = handle_target_init_command,
5377                 .help = "initialize targets",
5378         },
5379         {
5380                 .name = "create",
5381                 /* REVISIT this should be COMMAND_CONFIG ... */
5382                 .mode = COMMAND_ANY,
5383                 .jim_handler = jim_target_create,
5384                 .usage = "name type '-chain-position' name [options ...]",
5385                 .help = "Creates and selects a new target",
5386         },
5387         {
5388                 .name = "current",
5389                 .mode = COMMAND_ANY,
5390                 .jim_handler = jim_target_current,
5391                 .help = "Returns the currently selected target",
5392         },
5393         {
5394                 .name = "types",
5395                 .mode = COMMAND_ANY,
5396                 .jim_handler = jim_target_types,
5397                 .help = "Returns the available target types as "
5398                                 "a list of strings",
5399         },
5400         {
5401                 .name = "names",
5402                 .mode = COMMAND_ANY,
5403                 .jim_handler = jim_target_names,
5404                 .help = "Returns the names of all targets as a list of strings",
5405         },
5406         {
5407                 .name = "number",
5408                 .mode = COMMAND_ANY,
5409                 .jim_handler = jim_target_number,
5410                 .usage = "number",
5411                 .help = "Returns the name of the numbered target "
5412                         "(DEPRECATED)",
5413         },
5414         {
5415                 .name = "count",
5416                 .mode = COMMAND_ANY,
5417                 .jim_handler = jim_target_count,
5418                 .help = "Returns the number of targets as an integer "
5419                         "(DEPRECATED)",
5420         },
5421         {
5422                 .name = "smp",
5423                 .mode = COMMAND_ANY,
5424                 .jim_handler = jim_target_smp,
5425                 .usage = "targetname1 targetname2 ...",
5426                 .help = "gather several target in a smp list"
5427         },
5428
5429         COMMAND_REGISTRATION_DONE
5430 };
5431
5432 struct FastLoad {
5433         uint32_t address;
5434         uint8_t *data;
5435         int length;
5436
5437 };
5438
5439 static int fastload_num;
5440 static struct FastLoad *fastload;
5441
5442 static void free_fastload(void)
5443 {
5444         if (fastload != NULL) {
5445                 int i;
5446                 for (i = 0; i < fastload_num; i++) {
5447                         if (fastload[i].data)
5448                                 free(fastload[i].data);
5449                 }
5450                 free(fastload);
5451                 fastload = NULL;
5452         }
5453 }
5454
5455 COMMAND_HANDLER(handle_fast_load_image_command)
5456 {
5457         uint8_t *buffer;
5458         size_t buf_cnt;
5459         uint32_t image_size;
5460         uint32_t min_address = 0;
5461         uint32_t max_address = 0xffffffff;
5462         int i;
5463
5464         struct image image;
5465
5466         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5467                         &image, &min_address, &max_address);
5468         if (ERROR_OK != retval)
5469                 return retval;
5470
5471         struct duration bench;
5472         duration_start(&bench);
5473
5474         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5475         if (retval != ERROR_OK)
5476                 return retval;
5477
5478         image_size = 0x0;
5479         retval = ERROR_OK;
5480         fastload_num = image.num_sections;
5481         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5482         if (fastload == NULL) {
5483                 command_print(CMD_CTX, "out of memory");
5484                 image_close(&image);
5485                 return ERROR_FAIL;
5486         }
5487         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5488         for (i = 0; i < image.num_sections; i++) {
5489                 buffer = malloc(image.sections[i].size);
5490                 if (buffer == NULL) {
5491                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5492                                                   (int)(image.sections[i].size));
5493                         retval = ERROR_FAIL;
5494                         break;
5495                 }
5496
5497                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5498                 if (retval != ERROR_OK) {
5499                         free(buffer);
5500                         break;
5501                 }
5502
5503                 uint32_t offset = 0;
5504                 uint32_t length = buf_cnt;
5505
5506                 /* DANGER!!! beware of unsigned comparision here!!! */
5507
5508                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5509                                 (image.sections[i].base_address < max_address)) {
5510                         if (image.sections[i].base_address < min_address) {
5511                                 /* clip addresses below */
5512                                 offset += min_address-image.sections[i].base_address;
5513                                 length -= offset;
5514                         }
5515
5516                         if (image.sections[i].base_address + buf_cnt > max_address)
5517                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5518
5519                         fastload[i].address = image.sections[i].base_address + offset;
5520                         fastload[i].data = malloc(length);
5521                         if (fastload[i].data == NULL) {
5522                                 free(buffer);
5523                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5524                                                           length);
5525                                 retval = ERROR_FAIL;
5526                                 break;
5527                         }
5528                         memcpy(fastload[i].data, buffer + offset, length);
5529                         fastload[i].length = length;
5530
5531                         image_size += length;
5532                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5533                                                   (unsigned int)length,
5534                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5535                 }
5536
5537                 free(buffer);
5538         }
5539
5540         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5541                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5542                                 "in %fs (%0.3f KiB/s)", image_size,
5543                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5544
5545                 command_print(CMD_CTX,
5546                                 "WARNING: image has not been loaded to target!"
5547                                 "You can issue a 'fast_load' to finish loading.");
5548         }
5549
5550         image_close(&image);
5551
5552         if (retval != ERROR_OK)
5553                 free_fastload();
5554
5555         return retval;
5556 }
5557
5558 COMMAND_HANDLER(handle_fast_load_command)
5559 {
5560         if (CMD_ARGC > 0)
5561                 return ERROR_COMMAND_SYNTAX_ERROR;
5562         if (fastload == NULL) {
5563                 LOG_ERROR("No image in memory");
5564                 return ERROR_FAIL;
5565         }
5566         int i;
5567         int ms = timeval_ms();
5568         int size = 0;
5569         int retval = ERROR_OK;
5570         for (i = 0; i < fastload_num; i++) {
5571                 struct target *target = get_current_target(CMD_CTX);
5572                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5573                                           (unsigned int)(fastload[i].address),
5574                                           (unsigned int)(fastload[i].length));
5575                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5576                 if (retval != ERROR_OK)
5577                         break;
5578                 size += fastload[i].length;
5579         }
5580         if (retval == ERROR_OK) {
5581                 int after = timeval_ms();
5582                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5583         }
5584         return retval;
5585 }
5586
5587 static const struct command_registration target_command_handlers[] = {
5588         {
5589                 .name = "targets",
5590                 .handler = handle_targets_command,
5591                 .mode = COMMAND_ANY,
5592                 .help = "change current default target (one parameter) "
5593                         "or prints table of all targets (no parameters)",
5594                 .usage = "[target]",
5595         },
5596         {
5597                 .name = "target",
5598                 .mode = COMMAND_CONFIG,
5599                 .help = "configure target",
5600
5601                 .chain = target_subcommand_handlers,
5602         },
5603         COMMAND_REGISTRATION_DONE
5604 };
5605
5606 int target_register_commands(struct command_context *cmd_ctx)
5607 {
5608         return register_commands(cmd_ctx, NULL, target_command_handlers);
5609 }
5610
5611 static bool target_reset_nag = true;
5612
5613 bool get_target_reset_nag(void)
5614 {
5615         return target_reset_nag;
5616 }
5617
5618 COMMAND_HANDLER(handle_target_reset_nag)
5619 {
5620         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5621                         &target_reset_nag, "Nag after each reset about options to improve "
5622                         "performance");
5623 }
5624
5625 COMMAND_HANDLER(handle_ps_command)
5626 {
5627         struct target *target = get_current_target(CMD_CTX);
5628         char *display;
5629         if (target->state != TARGET_HALTED) {
5630                 LOG_INFO("target not halted !!");
5631                 return ERROR_OK;
5632         }
5633
5634         if ((target->rtos) && (target->rtos->type)
5635                         && (target->rtos->type->ps_command)) {
5636                 display = target->rtos->type->ps_command(target);
5637                 command_print(CMD_CTX, "%s", display);
5638                 free(display);
5639                 return ERROR_OK;
5640         } else {
5641                 LOG_INFO("failed");
5642                 return ERROR_TARGET_FAILURE;
5643         }
5644 }
5645
5646 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5647 {
5648         if (text != NULL)
5649                 command_print_sameline(cmd_ctx, "%s", text);
5650         for (int i = 0; i < size; i++)
5651                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5652         command_print(cmd_ctx, " ");
5653 }
5654
5655 COMMAND_HANDLER(handle_test_mem_access_command)
5656 {
5657         struct target *target = get_current_target(CMD_CTX);
5658         uint32_t test_size;
5659         int retval = ERROR_OK;
5660
5661         if (target->state != TARGET_HALTED) {
5662                 LOG_INFO("target not halted !!");
5663                 return ERROR_FAIL;
5664         }
5665
5666         if (CMD_ARGC != 1)
5667                 return ERROR_COMMAND_SYNTAX_ERROR;
5668
5669         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5670
5671         /* Test reads */
5672         size_t num_bytes = test_size + 4;
5673
5674         struct working_area *wa = NULL;
5675         retval = target_alloc_working_area(target, num_bytes, &wa);
5676         if (retval != ERROR_OK) {
5677                 LOG_ERROR("Not enough working area");
5678                 return ERROR_FAIL;
5679         }
5680
5681         uint8_t *test_pattern = malloc(num_bytes);
5682
5683         for (size_t i = 0; i < num_bytes; i++)
5684                 test_pattern[i] = rand();
5685
5686         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5687         if (retval != ERROR_OK) {
5688                 LOG_ERROR("Test pattern write failed");
5689                 goto out;
5690         }
5691
5692         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5693                 for (int size = 1; size <= 4; size *= 2) {
5694                         for (int offset = 0; offset < 4; offset++) {
5695                                 uint32_t count = test_size / size;
5696                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5697                                 uint8_t *read_ref = malloc(host_bufsiz);
5698                                 uint8_t *read_buf = malloc(host_bufsiz);
5699
5700                                 for (size_t i = 0; i < host_bufsiz; i++) {
5701                                         read_ref[i] = rand();
5702                                         read_buf[i] = read_ref[i];
5703                                 }
5704                                 command_print_sameline(CMD_CTX,
5705                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5706                                                 size, offset, host_offset ? "un" : "");
5707
5708                                 struct duration bench;
5709                                 duration_start(&bench);
5710
5711                                 retval = target_read_memory(target, wa->address + offset, size, count,
5712                                                 read_buf + size + host_offset);
5713
5714                                 duration_measure(&bench);
5715
5716                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5717                                         command_print(CMD_CTX, "Unsupported alignment");
5718                                         goto next;
5719                                 } else if (retval != ERROR_OK) {
5720                                         command_print(CMD_CTX, "Memory read failed");
5721                                         goto next;
5722                                 }
5723
5724                                 /* replay on host */
5725                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5726
5727                                 /* check result */
5728                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5729                                 if (result == 0) {
5730                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5731                                                         duration_elapsed(&bench),
5732                                                         duration_kbps(&bench, count * size));
5733                                 } else {
5734                                         command_print(CMD_CTX, "Compare failed");
5735                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5736                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5737                                 }
5738 next:
5739                                 free(read_ref);
5740                                 free(read_buf);
5741                         }
5742                 }
5743         }
5744
5745 out:
5746         free(test_pattern);
5747
5748         if (wa != NULL)
5749                 target_free_working_area(target, wa);
5750
5751         /* Test writes */
5752         num_bytes = test_size + 4 + 4 + 4;
5753
5754         retval = target_alloc_working_area(target, num_bytes, &wa);
5755         if (retval != ERROR_OK) {
5756                 LOG_ERROR("Not enough working area");
5757                 return ERROR_FAIL;
5758         }
5759
5760         test_pattern = malloc(num_bytes);
5761
5762         for (size_t i = 0; i < num_bytes; i++)
5763                 test_pattern[i] = rand();
5764
5765         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5766                 for (int size = 1; size <= 4; size *= 2) {
5767                         for (int offset = 0; offset < 4; offset++) {
5768                                 uint32_t count = test_size / size;
5769                                 size_t host_bufsiz = count * size + host_offset;
5770                                 uint8_t *read_ref = malloc(num_bytes);
5771                                 uint8_t *read_buf = malloc(num_bytes);
5772                                 uint8_t *write_buf = malloc(host_bufsiz);
5773
5774                                 for (size_t i = 0; i < host_bufsiz; i++)
5775                                         write_buf[i] = rand();
5776                                 command_print_sameline(CMD_CTX,
5777                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5778                                                 size, offset, host_offset ? "un" : "");
5779
5780                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5781                                 if (retval != ERROR_OK) {
5782                                         command_print(CMD_CTX, "Test pattern write failed");
5783                                         goto nextw;
5784                                 }
5785
5786                                 /* replay on host */
5787                                 memcpy(read_ref, test_pattern, num_bytes);
5788                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5789
5790                                 struct duration bench;
5791                                 duration_start(&bench);
5792
5793                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5794                                                 write_buf + host_offset);
5795
5796                                 duration_measure(&bench);
5797
5798                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5799                                         command_print(CMD_CTX, "Unsupported alignment");
5800                                         goto nextw;
5801                                 } else if (retval != ERROR_OK) {
5802                                         command_print(CMD_CTX, "Memory write failed");
5803                                         goto nextw;
5804                                 }
5805
5806                                 /* read back */
5807                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5808                                 if (retval != ERROR_OK) {
5809                                         command_print(CMD_CTX, "Test pattern write failed");
5810                                         goto nextw;
5811                                 }
5812
5813                                 /* check result */
5814                                 int result = memcmp(read_ref, read_buf, num_bytes);
5815                                 if (result == 0) {
5816                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5817                                                         duration_elapsed(&bench),
5818                                                         duration_kbps(&bench, count * size));
5819                                 } else {
5820                                         command_print(CMD_CTX, "Compare failed");
5821                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5822                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5823                                 }
5824 nextw:
5825                                 free(read_ref);
5826                                 free(read_buf);
5827                         }
5828                 }
5829         }
5830
5831         free(test_pattern);
5832
5833         if (wa != NULL)
5834                 target_free_working_area(target, wa);
5835         return retval;
5836 }
5837
5838 static const struct command_registration target_exec_command_handlers[] = {
5839         {
5840                 .name = "fast_load_image",
5841                 .handler = handle_fast_load_image_command,
5842                 .mode = COMMAND_ANY,
5843                 .help = "Load image into server memory for later use by "
5844                         "fast_load; primarily for profiling",
5845                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5846                         "[min_address [max_length]]",
5847         },
5848         {
5849                 .name = "fast_load",
5850                 .handler = handle_fast_load_command,
5851                 .mode = COMMAND_EXEC,
5852                 .help = "loads active fast load image to current target "
5853                         "- mainly for profiling purposes",
5854                 .usage = "",
5855         },
5856         {
5857                 .name = "profile",
5858                 .handler = handle_profile_command,
5859                 .mode = COMMAND_EXEC,
5860                 .usage = "seconds filename [start end]",
5861                 .help = "profiling samples the CPU PC",
5862         },
5863         /** @todo don't register virt2phys() unless target supports it */
5864         {
5865                 .name = "virt2phys",
5866                 .handler = handle_virt2phys_command,
5867                 .mode = COMMAND_ANY,
5868                 .help = "translate a virtual address into a physical address",
5869                 .usage = "virtual_address",
5870         },
5871         {
5872                 .name = "reg",
5873                 .handler = handle_reg_command,
5874                 .mode = COMMAND_EXEC,
5875                 .help = "display (reread from target with \"force\") or set a register; "
5876                         "with no arguments, displays all registers and their values",
5877                 .usage = "[(register_number|register_name) [(value|'force')]]",
5878         },
5879         {
5880                 .name = "poll",
5881                 .handler = handle_poll_command,
5882                 .mode = COMMAND_EXEC,
5883                 .help = "poll target state; or reconfigure background polling",
5884                 .usage = "['on'|'off']",
5885         },
5886         {
5887                 .name = "wait_halt",
5888                 .handler = handle_wait_halt_command,
5889                 .mode = COMMAND_EXEC,
5890                 .help = "wait up to the specified number of milliseconds "
5891                         "(default 5000) for a previously requested halt",
5892                 .usage = "[milliseconds]",
5893         },
5894         {
5895                 .name = "halt",
5896                 .handler = handle_halt_command,
5897                 .mode = COMMAND_EXEC,
5898                 .help = "request target to halt, then wait up to the specified"
5899                         "number of milliseconds (default 5000) for it to complete",
5900                 .usage = "[milliseconds]",
5901         },
5902         {
5903                 .name = "resume",
5904                 .handler = handle_resume_command,
5905                 .mode = COMMAND_EXEC,
5906                 .help = "resume target execution from current PC or address",
5907                 .usage = "[address]",
5908         },
5909         {
5910                 .name = "reset",
5911                 .handler = handle_reset_command,
5912                 .mode = COMMAND_EXEC,
5913                 .usage = "[run|halt|init]",
5914                 .help = "Reset all targets into the specified mode."
5915                         "Default reset mode is run, if not given.",
5916         },
5917         {
5918                 .name = "soft_reset_halt",
5919                 .handler = handle_soft_reset_halt_command,
5920                 .mode = COMMAND_EXEC,
5921                 .usage = "",
5922                 .help = "halt the target and do a soft reset",
5923         },
5924         {
5925                 .name = "step",
5926                 .handler = handle_step_command,
5927                 .mode = COMMAND_EXEC,
5928                 .help = "step one instruction from current PC or address",
5929                 .usage = "[address]",
5930         },
5931         {
5932                 .name = "mdw",
5933                 .handler = handle_md_command,
5934                 .mode = COMMAND_EXEC,
5935                 .help = "display memory words",
5936                 .usage = "['phys'] address [count]",
5937         },
5938         {
5939                 .name = "mdh",
5940                 .handler = handle_md_command,
5941                 .mode = COMMAND_EXEC,
5942                 .help = "display memory half-words",
5943                 .usage = "['phys'] address [count]",
5944         },
5945         {
5946                 .name = "mdb",
5947                 .handler = handle_md_command,
5948                 .mode = COMMAND_EXEC,
5949                 .help = "display memory bytes",
5950                 .usage = "['phys'] address [count]",
5951         },
5952         {
5953                 .name = "mww",
5954                 .handler = handle_mw_command,
5955                 .mode = COMMAND_EXEC,
5956                 .help = "write memory word",
5957                 .usage = "['phys'] address value [count]",
5958         },
5959         {
5960                 .name = "mwh",
5961                 .handler = handle_mw_command,
5962                 .mode = COMMAND_EXEC,
5963                 .help = "write memory half-word",
5964                 .usage = "['phys'] address value [count]",
5965         },
5966         {
5967                 .name = "mwb",
5968                 .handler = handle_mw_command,
5969                 .mode = COMMAND_EXEC,
5970                 .help = "write memory byte",
5971                 .usage = "['phys'] address value [count]",
5972         },
5973         {
5974                 .name = "bp",
5975                 .handler = handle_bp_command,
5976                 .mode = COMMAND_EXEC,
5977                 .help = "list or set hardware or software breakpoint",
5978                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5979         },
5980         {
5981                 .name = "rbp",
5982                 .handler = handle_rbp_command,
5983                 .mode = COMMAND_EXEC,
5984                 .help = "remove breakpoint",
5985                 .usage = "address",
5986         },
5987         {
5988                 .name = "wp",
5989                 .handler = handle_wp_command,
5990                 .mode = COMMAND_EXEC,
5991                 .help = "list (no params) or create watchpoints",
5992                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5993         },
5994         {
5995                 .name = "rwp",
5996                 .handler = handle_rwp_command,
5997                 .mode = COMMAND_EXEC,
5998                 .help = "remove watchpoint",
5999                 .usage = "address",
6000         },
6001         {
6002                 .name = "load_image",
6003                 .handler = handle_load_image_command,
6004                 .mode = COMMAND_EXEC,
6005                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6006                         "[min_address] [max_length]",
6007         },
6008         {
6009                 .name = "dump_image",
6010                 .handler = handle_dump_image_command,
6011                 .mode = COMMAND_EXEC,
6012                 .usage = "filename address size",
6013         },
6014         {
6015                 .name = "verify_image",
6016                 .handler = handle_verify_image_command,
6017                 .mode = COMMAND_EXEC,
6018                 .usage = "filename [offset [type]]",
6019         },
6020         {
6021                 .name = "test_image",
6022                 .handler = handle_test_image_command,
6023                 .mode = COMMAND_EXEC,
6024                 .usage = "filename [offset [type]]",
6025         },
6026         {
6027                 .name = "mem2array",
6028                 .mode = COMMAND_EXEC,
6029                 .jim_handler = jim_mem2array,
6030                 .help = "read 8/16/32 bit memory and return as a TCL array "
6031                         "for script processing",
6032                 .usage = "arrayname bitwidth address count",
6033         },
6034         {
6035                 .name = "array2mem",
6036                 .mode = COMMAND_EXEC,
6037                 .jim_handler = jim_array2mem,
6038                 .help = "convert a TCL array to memory locations "
6039                         "and write the 8/16/32 bit values",
6040                 .usage = "arrayname bitwidth address count",
6041         },
6042         {
6043                 .name = "reset_nag",
6044                 .handler = handle_target_reset_nag,
6045                 .mode = COMMAND_ANY,
6046                 .help = "Nag after each reset about options that could have been "
6047                                 "enabled to improve performance. ",
6048                 .usage = "['enable'|'disable']",
6049         },
6050         {
6051                 .name = "ps",
6052                 .handler = handle_ps_command,
6053                 .mode = COMMAND_EXEC,
6054                 .help = "list all tasks ",
6055                 .usage = " ",
6056         },
6057         {
6058                 .name = "test_mem_access",
6059                 .handler = handle_test_mem_access_command,
6060                 .mode = COMMAND_EXEC,
6061                 .help = "Test the target's memory access functions",
6062                 .usage = "size",
6063         },
6064
6065         COMMAND_REGISTRATION_DONE
6066 };
6067 static int target_register_user_commands(struct command_context *cmd_ctx)
6068 {
6069         int retval = ERROR_OK;
6070         retval = target_request_register_commands(cmd_ctx);
6071         if (retval != ERROR_OK)
6072                 return retval;
6073
6074         retval = trace_register_commands(cmd_ctx);
6075         if (retval != ERROR_OK)
6076                 return retval;
6077
6078
6079         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6080 }