]> git.sur5r.net Git - openocd/blob - src/target/target.c
ARM7_9: Fix segfaults
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38
39 #include "target.h"
40 #include "target_type.h"
41 #include "target_request.h"
42 #include "breakpoints.h"
43 #include "register.h"
44 #include "trace.h"
45 #include "image.h"
46
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50
51 /* targets */
52 extern struct target_type arm7tdmi_target;
53 extern struct target_type arm720t_target;
54 extern struct target_type arm9tdmi_target;
55 extern struct target_type arm920t_target;
56 extern struct target_type arm966e_target;
57 extern struct target_type arm926ejs_target;
58 extern struct target_type fa526_target;
59 extern struct target_type feroceon_target;
60 extern struct target_type dragonite_target;
61 extern struct target_type xscale_target;
62 extern struct target_type cortexm3_target;
63 extern struct target_type cortexa8_target;
64 extern struct target_type arm11_target;
65 extern struct target_type mips_m4k_target;
66 extern struct target_type avr_target;
67 extern struct target_type dsp563xx_target;
68 extern struct target_type testee_target;
69
70 struct target_type *target_types[] =
71 {
72         &arm7tdmi_target,
73         &arm9tdmi_target,
74         &arm920t_target,
75         &arm720t_target,
76         &arm966e_target,
77         &arm926ejs_target,
78         &fa526_target,
79         &feroceon_target,
80         &dragonite_target,
81         &xscale_target,
82         &cortexm3_target,
83         &cortexa8_target,
84         &arm11_target,
85         &mips_m4k_target,
86         &avr_target,
87         &dsp563xx_target,
88         &testee_target,
89         NULL,
90 };
91
92 struct target *all_targets = NULL;
93 struct target_event_callback *target_event_callbacks = NULL;
94 struct target_timer_callback *target_timer_callbacks = NULL;
95
96 static const Jim_Nvp nvp_assert[] = {
97         { .name = "assert", NVP_ASSERT },
98         { .name = "deassert", NVP_DEASSERT },
99         { .name = "T", NVP_ASSERT },
100         { .name = "F", NVP_DEASSERT },
101         { .name = "t", NVP_ASSERT },
102         { .name = "f", NVP_DEASSERT },
103         { .name = NULL, .value = -1 }
104 };
105
106 static const Jim_Nvp nvp_error_target[] = {
107         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
108         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
109         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
110         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
111         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
112         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
113         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
114         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
115         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
116         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
117         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
118         { .value = -1, .name = NULL }
119 };
120
121 const char *target_strerror_safe(int err)
122 {
123         const Jim_Nvp *n;
124
125         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
126         if (n->name == NULL) {
127                 return "unknown";
128         } else {
129                 return n->name;
130         }
131 }
132
133 static const Jim_Nvp nvp_target_event[] = {
134         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
135         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
136
137         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
138         { .value = TARGET_EVENT_HALTED, .name = "halted" },
139         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
140         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
141         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
142
143         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
144         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
145
146         /* historical name */
147
148         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
149
150         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
151         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
152         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
153         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
154         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
155         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
156         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
157         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
158         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
159         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
160         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
161
162         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
163         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
164
165         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
166         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
167
168         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
169         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
170
171         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
172         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
173
174         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
175         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
176
177         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
178         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
179         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
180
181         { .name = NULL, .value = -1 }
182 };
183
184 static const Jim_Nvp nvp_target_state[] = {
185         { .name = "unknown", .value = TARGET_UNKNOWN },
186         { .name = "running", .value = TARGET_RUNNING },
187         { .name = "halted",  .value = TARGET_HALTED },
188         { .name = "reset",   .value = TARGET_RESET },
189         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
190         { .name = NULL, .value = -1 },
191 };
192
193 static const Jim_Nvp nvp_target_debug_reason [] = {
194         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
195         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
196         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
197         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
198         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
199         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
200         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
201         { .name = NULL, .value = -1 },
202 };
203
204 static const Jim_Nvp nvp_target_endian[] = {
205         { .name = "big",    .value = TARGET_BIG_ENDIAN },
206         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
207         { .name = "be",     .value = TARGET_BIG_ENDIAN },
208         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
209         { .name = NULL,     .value = -1 },
210 };
211
212 static const Jim_Nvp nvp_reset_modes[] = {
213         { .name = "unknown", .value = RESET_UNKNOWN },
214         { .name = "run"    , .value = RESET_RUN },
215         { .name = "halt"   , .value = RESET_HALT },
216         { .name = "init"   , .value = RESET_INIT },
217         { .name = NULL     , .value = -1 },
218 };
219
220 const char *debug_reason_name(struct target *t)
221 {
222         const char *cp;
223
224         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
225                         t->debug_reason)->name;
226         if (!cp) {
227                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
228                 cp = "(*BUG*unknown*BUG*)";
229         }
230         return cp;
231 }
232
233 const char *
234 target_state_name( struct target *t )
235 {
236         const char *cp;
237         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
238         if( !cp ){
239                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
240                 cp = "(*BUG*unknown*BUG*)";
241         }
242         return cp;
243 }
244
245 /* determine the number of the new target */
246 static int new_target_number(void)
247 {
248         struct target *t;
249         int x;
250
251         /* number is 0 based */
252         x = -1;
253         t = all_targets;
254         while (t) {
255                 if (x < t->target_number) {
256                         x = t->target_number;
257                 }
258                 t = t->next;
259         }
260         return x + 1;
261 }
262
263 /* read a uint32_t from a buffer in target memory endianness */
264 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
265 {
266         if (target->endianness == TARGET_LITTLE_ENDIAN)
267                 return le_to_h_u32(buffer);
268         else
269                 return be_to_h_u32(buffer);
270 }
271
272 /* read a uint16_t from a buffer in target memory endianness */
273 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
274 {
275         if (target->endianness == TARGET_LITTLE_ENDIAN)
276                 return le_to_h_u16(buffer);
277         else
278                 return be_to_h_u16(buffer);
279 }
280
281 /* read a uint8_t from a buffer in target memory endianness */
282 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
283 {
284         return *buffer & 0x0ff;
285 }
286
287 /* write a uint32_t to a buffer in target memory endianness */
288 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
289 {
290         if (target->endianness == TARGET_LITTLE_ENDIAN)
291                 h_u32_to_le(buffer, value);
292         else
293                 h_u32_to_be(buffer, value);
294 }
295
296 /* write a uint16_t to a buffer in target memory endianness */
297 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
298 {
299         if (target->endianness == TARGET_LITTLE_ENDIAN)
300                 h_u16_to_le(buffer, value);
301         else
302                 h_u16_to_be(buffer, value);
303 }
304
305 /* write a uint8_t to a buffer in target memory endianness */
306 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
307 {
308         *buffer = value;
309 }
310
311 /* return a pointer to a configured target; id is name or number */
312 struct target *get_target(const char *id)
313 {
314         struct target *target;
315
316         /* try as tcltarget name */
317         for (target = all_targets; target; target = target->next) {
318                 if (target->cmd_name == NULL)
319                         continue;
320                 if (strcmp(id, target->cmd_name) == 0)
321                         return target;
322         }
323
324         /* It's OK to remove this fallback sometime after August 2010 or so */
325
326         /* no match, try as number */
327         unsigned num;
328         if (parse_uint(id, &num) != ERROR_OK)
329                 return NULL;
330
331         for (target = all_targets; target; target = target->next) {
332                 if (target->target_number == (int)num) {
333                         LOG_WARNING("use '%s' as target identifier, not '%u'",
334                                         target->cmd_name, num);
335                         return target;
336                 }
337         }
338
339         return NULL;
340 }
341
342 /* returns a pointer to the n-th configured target */
343 static struct target *get_target_by_num(int num)
344 {
345         struct target *target = all_targets;
346
347         while (target) {
348                 if (target->target_number == num) {
349                         return target;
350                 }
351                 target = target->next;
352         }
353
354         return NULL;
355 }
356
357 struct target* get_current_target(struct command_context *cmd_ctx)
358 {
359         struct target *target = get_target_by_num(cmd_ctx->current_target);
360
361         if (target == NULL)
362         {
363                 LOG_ERROR("BUG: current_target out of bounds");
364                 exit(-1);
365         }
366
367         return target;
368 }
369
370 int target_poll(struct target *target)
371 {
372         int retval;
373
374         /* We can't poll until after examine */
375         if (!target_was_examined(target))
376         {
377                 /* Fail silently lest we pollute the log */
378                 return ERROR_FAIL;
379         }
380
381         retval = target->type->poll(target);
382         if (retval != ERROR_OK)
383                 return retval;
384
385         if (target->halt_issued)
386         {
387                 if (target->state == TARGET_HALTED)
388                 {
389                         target->halt_issued = false;
390                 } else
391                 {
392                         long long t = timeval_ms() - target->halt_issued_time;
393                         if (t>1000)
394                         {
395                                 target->halt_issued = false;
396                                 LOG_INFO("Halt timed out, wake up GDB.");
397                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
398                         }
399                 }
400         }
401
402         return ERROR_OK;
403 }
404
405 int target_halt(struct target *target)
406 {
407         int retval;
408         /* We can't poll until after examine */
409         if (!target_was_examined(target))
410         {
411                 LOG_ERROR("Target not examined yet");
412                 return ERROR_FAIL;
413         }
414
415         retval = target->type->halt(target);
416         if (retval != ERROR_OK)
417                 return retval;
418
419         target->halt_issued = true;
420         target->halt_issued_time = timeval_ms();
421
422         return ERROR_OK;
423 }
424
425 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
426 {
427         int retval;
428
429         /* We can't poll until after examine */
430         if (!target_was_examined(target))
431         {
432                 LOG_ERROR("Target not examined yet");
433                 return ERROR_FAIL;
434         }
435
436         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
437          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
438          * the application.
439          */
440         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
441                 return retval;
442
443         return retval;
444 }
445
446 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
447 {
448         char buf[100];
449         int retval;
450         Jim_Nvp *n;
451         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
452         if (n->name == NULL) {
453                 LOG_ERROR("invalid reset mode");
454                 return ERROR_FAIL;
455         }
456
457         /* disable polling during reset to make reset event scripts
458          * more predictable, i.e. dr/irscan & pathmove in events will
459          * not have JTAG operations injected into the middle of a sequence.
460          */
461         bool save_poll = jtag_poll_get_enabled();
462
463         jtag_poll_set_enabled(false);
464
465         sprintf(buf, "ocd_process_reset %s", n->name);
466         retval = Jim_Eval(cmd_ctx->interp, buf);
467
468         jtag_poll_set_enabled(save_poll);
469
470         if (retval != JIM_OK) {
471                 Jim_PrintErrorMessage(cmd_ctx->interp);
472                 return ERROR_FAIL;
473         }
474
475         /* We want any events to be processed before the prompt */
476         retval = target_call_timer_callbacks_now();
477
478         return retval;
479 }
480
481 static int identity_virt2phys(struct target *target,
482                 uint32_t virtual, uint32_t *physical)
483 {
484         *physical = virtual;
485         return ERROR_OK;
486 }
487
488 static int no_mmu(struct target *target, int *enabled)
489 {
490         *enabled = 0;
491         return ERROR_OK;
492 }
493
494 static int default_examine(struct target *target)
495 {
496         target_set_examined(target);
497         return ERROR_OK;
498 }
499
500 int target_examine_one(struct target *target)
501 {
502         return target->type->examine(target);
503 }
504
505 static int jtag_enable_callback(enum jtag_event event, void *priv)
506 {
507         struct target *target = priv;
508
509         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
510                 return ERROR_OK;
511
512         jtag_unregister_event_callback(jtag_enable_callback, target);
513         return target_examine_one(target);
514 }
515
516
517 /* Targets that correctly implement init + examine, i.e.
518  * no communication with target during init:
519  *
520  * XScale
521  */
522 int target_examine(void)
523 {
524         int retval = ERROR_OK;
525         struct target *target;
526
527         for (target = all_targets; target; target = target->next)
528         {
529                 /* defer examination, but don't skip it */
530                 if (!target->tap->enabled) {
531                         jtag_register_event_callback(jtag_enable_callback,
532                                         target);
533                         continue;
534                 }
535                 if ((retval = target_examine_one(target)) != ERROR_OK)
536                         return retval;
537         }
538         return retval;
539 }
540 const char *target_type_name(struct target *target)
541 {
542         return target->type->name;
543 }
544
545 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
546 {
547         if (!target_was_examined(target))
548         {
549                 LOG_ERROR("Target not examined yet");
550                 return ERROR_FAIL;
551         }
552         return target->type->write_memory_imp(target, address, size, count, buffer);
553 }
554
555 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
556 {
557         if (!target_was_examined(target))
558         {
559                 LOG_ERROR("Target not examined yet");
560                 return ERROR_FAIL;
561         }
562         return target->type->read_memory_imp(target, address, size, count, buffer);
563 }
564
565 static int target_soft_reset_halt_imp(struct target *target)
566 {
567         if (!target_was_examined(target))
568         {
569                 LOG_ERROR("Target not examined yet");
570                 return ERROR_FAIL;
571         }
572         if (!target->type->soft_reset_halt_imp) {
573                 LOG_ERROR("Target %s does not support soft_reset_halt",
574                                 target_name(target));
575                 return ERROR_FAIL;
576         }
577         return target->type->soft_reset_halt_imp(target);
578 }
579
580 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
581 {
582         if (!target_was_examined(target))
583         {
584                 LOG_ERROR("Target not examined yet");
585                 return ERROR_FAIL;
586         }
587         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
588 }
589
590 int target_read_memory(struct target *target,
591                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
592 {
593         return target->type->read_memory(target, address, size, count, buffer);
594 }
595
596 int target_read_phys_memory(struct target *target,
597                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
598 {
599         return target->type->read_phys_memory(target, address, size, count, buffer);
600 }
601
602 int target_write_memory(struct target *target,
603                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         return target->type->write_memory(target, address, size, count, buffer);
606 }
607
608 int target_write_phys_memory(struct target *target,
609                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
610 {
611         return target->type->write_phys_memory(target, address, size, count, buffer);
612 }
613
614 int target_bulk_write_memory(struct target *target,
615                 uint32_t address, uint32_t count, uint8_t *buffer)
616 {
617         return target->type->bulk_write_memory(target, address, count, buffer);
618 }
619
620 int target_add_breakpoint(struct target *target,
621                 struct breakpoint *breakpoint)
622 {
623         if (target->state != TARGET_HALTED) {
624                 LOG_WARNING("target %s is not halted", target->cmd_name);
625                 return ERROR_TARGET_NOT_HALTED;
626         }
627         return target->type->add_breakpoint(target, breakpoint);
628 }
629 int target_remove_breakpoint(struct target *target,
630                 struct breakpoint *breakpoint)
631 {
632         return target->type->remove_breakpoint(target, breakpoint);
633 }
634
635 int target_add_watchpoint(struct target *target,
636                 struct watchpoint *watchpoint)
637 {
638         if (target->state != TARGET_HALTED) {
639                 LOG_WARNING("target %s is not halted", target->cmd_name);
640                 return ERROR_TARGET_NOT_HALTED;
641         }
642         return target->type->add_watchpoint(target, watchpoint);
643 }
644 int target_remove_watchpoint(struct target *target,
645                 struct watchpoint *watchpoint)
646 {
647         return target->type->remove_watchpoint(target, watchpoint);
648 }
649
650 int target_get_gdb_reg_list(struct target *target,
651                 struct reg **reg_list[], int *reg_list_size)
652 {
653         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
654 }
655 int target_step(struct target *target,
656                 int current, uint32_t address, int handle_breakpoints)
657 {
658         return target->type->step(target, current, address, handle_breakpoints);
659 }
660
661
662 int target_run_algorithm(struct target *target,
663                 int num_mem_params, struct mem_param *mem_params,
664                 int num_reg_params, struct reg_param *reg_param,
665                 uint32_t entry_point, uint32_t exit_point,
666                 int timeout_ms, void *arch_info)
667 {
668         return target->type->run_algorithm(target,
669                         num_mem_params, mem_params, num_reg_params, reg_param,
670                         entry_point, exit_point, timeout_ms, arch_info);
671 }
672
673 /**
674  * Reset the @c examined flag for the given target.
675  * Pure paranoia -- targets are zeroed on allocation.
676  */
677 static void target_reset_examined(struct target *target)
678 {
679         target->examined = false;
680 }
681
682 static int
683 err_read_phys_memory(struct target *target, uint32_t address,
684                 uint32_t size, uint32_t count, uint8_t *buffer)
685 {
686         LOG_ERROR("Not implemented: %s", __func__);
687         return ERROR_FAIL;
688 }
689
690 static int
691 err_write_phys_memory(struct target *target, uint32_t address,
692                 uint32_t size, uint32_t count, uint8_t *buffer)
693 {
694         LOG_ERROR("Not implemented: %s", __func__);
695         return ERROR_FAIL;
696 }
697
698 static int handle_target(void *priv);
699
700 static int target_init_one(struct command_context *cmd_ctx,
701                 struct target *target)
702 {
703         target_reset_examined(target);
704
705         struct target_type *type = target->type;
706         if (type->examine == NULL)
707                 type->examine = default_examine;
708
709         int retval = type->init_target(cmd_ctx, target);
710         if (ERROR_OK != retval)
711         {
712                 LOG_ERROR("target '%s' init failed", target_name(target));
713                 return retval;
714         }
715
716         /**
717          * @todo get rid of those *memory_imp() methods, now that all
718          * callers are using target_*_memory() accessors ... and make
719          * sure the "physical" paths handle the same issues.
720          */
721         /* a non-invasive way(in terms of patches) to add some code that
722          * runs before the type->write/read_memory implementation
723          */
724         type->write_memory_imp = target->type->write_memory;
725         type->write_memory = target_write_memory_imp;
726
727         type->read_memory_imp = target->type->read_memory;
728         type->read_memory = target_read_memory_imp;
729
730         type->soft_reset_halt_imp = target->type->soft_reset_halt;
731         type->soft_reset_halt = target_soft_reset_halt_imp;
732
733         type->run_algorithm_imp = target->type->run_algorithm;
734         type->run_algorithm = target_run_algorithm_imp;
735
736         /* Sanity-check MMU support ... stub in what we must, to help
737          * implement it in stages, but warn if we need to do so.
738          */
739         if (type->mmu)
740         {
741                 if (type->write_phys_memory == NULL)
742                 {
743                         LOG_ERROR("type '%s' is missing write_phys_memory",
744                                         type->name);
745                         type->write_phys_memory = err_write_phys_memory;
746                 }
747                 if (type->read_phys_memory == NULL)
748                 {
749                         LOG_ERROR("type '%s' is missing read_phys_memory",
750                                         type->name);
751                         type->read_phys_memory = err_read_phys_memory;
752                 }
753                 if (type->virt2phys == NULL)
754                 {
755                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
756                         type->virt2phys = identity_virt2phys;
757                 }
758         }
759         else
760         {
761                 /* Make sure no-MMU targets all behave the same:  make no
762                  * distinction between physical and virtual addresses, and
763                  * ensure that virt2phys() is always an identity mapping.
764                  */
765                 if (type->write_phys_memory || type->read_phys_memory
766                                 || type->virt2phys)
767                 {
768                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
769                 }
770
771                 type->mmu = no_mmu;
772                 type->write_phys_memory = type->write_memory;
773                 type->read_phys_memory = type->read_memory;
774                 type->virt2phys = identity_virt2phys;
775         }
776         return ERROR_OK;
777 }
778
779 int target_init(struct command_context *cmd_ctx)
780 {
781         struct target *target;
782         int retval;
783
784         for (target = all_targets; target; target = target->next)
785         {
786                 retval = target_init_one(cmd_ctx, target);
787                 if (ERROR_OK != retval)
788                         return retval;
789         }
790
791         if (!all_targets)
792                 return ERROR_OK;
793
794         retval = target_register_user_commands(cmd_ctx);
795         if (ERROR_OK != retval)
796                 return retval;
797
798         retval = target_register_timer_callback(&handle_target,
799                         100, 1, cmd_ctx->interp);
800         if (ERROR_OK != retval)
801                 return retval;
802
803         return ERROR_OK;
804 }
805
806 COMMAND_HANDLER(handle_target_init_command)
807 {
808         if (CMD_ARGC != 0)
809                 return ERROR_COMMAND_SYNTAX_ERROR;
810
811         static bool target_initialized = false;
812         if (target_initialized)
813         {
814                 LOG_INFO("'target init' has already been called");
815                 return ERROR_OK;
816         }
817         target_initialized = true;
818
819         LOG_DEBUG("Initializing targets...");
820         return target_init(CMD_CTX);
821 }
822
823 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
824 {
825         struct target_event_callback **callbacks_p = &target_event_callbacks;
826
827         if (callback == NULL)
828         {
829                 return ERROR_INVALID_ARGUMENTS;
830         }
831
832         if (*callbacks_p)
833         {
834                 while ((*callbacks_p)->next)
835                         callbacks_p = &((*callbacks_p)->next);
836                 callbacks_p = &((*callbacks_p)->next);
837         }
838
839         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
840         (*callbacks_p)->callback = callback;
841         (*callbacks_p)->priv = priv;
842         (*callbacks_p)->next = NULL;
843
844         return ERROR_OK;
845 }
846
847 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
848 {
849         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
850         struct timeval now;
851
852         if (callback == NULL)
853         {
854                 return ERROR_INVALID_ARGUMENTS;
855         }
856
857         if (*callbacks_p)
858         {
859                 while ((*callbacks_p)->next)
860                         callbacks_p = &((*callbacks_p)->next);
861                 callbacks_p = &((*callbacks_p)->next);
862         }
863
864         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
865         (*callbacks_p)->callback = callback;
866         (*callbacks_p)->periodic = periodic;
867         (*callbacks_p)->time_ms = time_ms;
868
869         gettimeofday(&now, NULL);
870         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
871         time_ms -= (time_ms % 1000);
872         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
873         if ((*callbacks_p)->when.tv_usec > 1000000)
874         {
875                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
876                 (*callbacks_p)->when.tv_sec += 1;
877         }
878
879         (*callbacks_p)->priv = priv;
880         (*callbacks_p)->next = NULL;
881
882         return ERROR_OK;
883 }
884
885 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
886 {
887         struct target_event_callback **p = &target_event_callbacks;
888         struct target_event_callback *c = target_event_callbacks;
889
890         if (callback == NULL)
891         {
892                 return ERROR_INVALID_ARGUMENTS;
893         }
894
895         while (c)
896         {
897                 struct target_event_callback *next = c->next;
898                 if ((c->callback == callback) && (c->priv == priv))
899                 {
900                         *p = next;
901                         free(c);
902                         return ERROR_OK;
903                 }
904                 else
905                         p = &(c->next);
906                 c = next;
907         }
908
909         return ERROR_OK;
910 }
911
912 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
913 {
914         struct target_timer_callback **p = &target_timer_callbacks;
915         struct target_timer_callback *c = target_timer_callbacks;
916
917         if (callback == NULL)
918         {
919                 return ERROR_INVALID_ARGUMENTS;
920         }
921
922         while (c)
923         {
924                 struct target_timer_callback *next = c->next;
925                 if ((c->callback == callback) && (c->priv == priv))
926                 {
927                         *p = next;
928                         free(c);
929                         return ERROR_OK;
930                 }
931                 else
932                         p = &(c->next);
933                 c = next;
934         }
935
936         return ERROR_OK;
937 }
938
939 int target_call_event_callbacks(struct target *target, enum target_event event)
940 {
941         struct target_event_callback *callback = target_event_callbacks;
942         struct target_event_callback *next_callback;
943
944         if (event == TARGET_EVENT_HALTED)
945         {
946                 /* execute early halted first */
947                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
948         }
949
950         LOG_DEBUG("target event %i (%s)",
951                           event,
952                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
953
954         target_handle_event(target, event);
955
956         while (callback)
957         {
958                 next_callback = callback->next;
959                 callback->callback(target, event, callback->priv);
960                 callback = next_callback;
961         }
962
963         return ERROR_OK;
964 }
965
966 static int target_timer_callback_periodic_restart(
967                 struct target_timer_callback *cb, struct timeval *now)
968 {
969         int time_ms = cb->time_ms;
970         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
971         time_ms -= (time_ms % 1000);
972         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
973         if (cb->when.tv_usec > 1000000)
974         {
975                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
976                 cb->when.tv_sec += 1;
977         }
978         return ERROR_OK;
979 }
980
981 static int target_call_timer_callback(struct target_timer_callback *cb,
982                 struct timeval *now)
983 {
984         cb->callback(cb->priv);
985
986         if (cb->periodic)
987                 return target_timer_callback_periodic_restart(cb, now);
988
989         return target_unregister_timer_callback(cb->callback, cb->priv);
990 }
991
992 static int target_call_timer_callbacks_check_time(int checktime)
993 {
994         keep_alive();
995
996         struct timeval now;
997         gettimeofday(&now, NULL);
998
999         struct target_timer_callback *callback = target_timer_callbacks;
1000         while (callback)
1001         {
1002                 // cleaning up may unregister and free this callback
1003                 struct target_timer_callback *next_callback = callback->next;
1004
1005                 bool call_it = callback->callback &&
1006                         ((!checktime && callback->periodic) ||
1007                           now.tv_sec > callback->when.tv_sec ||
1008                          (now.tv_sec == callback->when.tv_sec &&
1009                           now.tv_usec >= callback->when.tv_usec));
1010
1011                 if (call_it)
1012                 {
1013                         int retval = target_call_timer_callback(callback, &now);
1014                         if (retval != ERROR_OK)
1015                                 return retval;
1016                 }
1017
1018                 callback = next_callback;
1019         }
1020
1021         return ERROR_OK;
1022 }
1023
1024 int target_call_timer_callbacks(void)
1025 {
1026         return target_call_timer_callbacks_check_time(1);
1027 }
1028
1029 /* invoke periodic callbacks immediately */
1030 int target_call_timer_callbacks_now(void)
1031 {
1032         return target_call_timer_callbacks_check_time(0);
1033 }
1034
1035 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1036 {
1037         struct working_area *c = target->working_areas;
1038         struct working_area *new_wa = NULL;
1039
1040         /* Reevaluate working area address based on MMU state*/
1041         if (target->working_areas == NULL)
1042         {
1043                 int retval;
1044                 int enabled;
1045
1046                 retval = target->type->mmu(target, &enabled);
1047                 if (retval != ERROR_OK)
1048                 {
1049                         return retval;
1050                 }
1051
1052                 if (!enabled) {
1053                         if (target->working_area_phys_spec) {
1054                                 LOG_DEBUG("MMU disabled, using physical "
1055                                         "address for working memory 0x%08x",
1056                                         (unsigned)target->working_area_phys);
1057                                 target->working_area = target->working_area_phys;
1058                         } else {
1059                                 LOG_ERROR("No working memory available. "
1060                                         "Specify -work-area-phys to target.");
1061                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1062                         }
1063                 } else {
1064                         if (target->working_area_virt_spec) {
1065                                 LOG_DEBUG("MMU enabled, using virtual "
1066                                         "address for working memory 0x%08x",
1067                                         (unsigned)target->working_area_virt);
1068                                 target->working_area = target->working_area_virt;
1069                         } else {
1070                                 LOG_ERROR("No working memory available. "
1071                                         "Specify -work-area-virt to target.");
1072                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1073                         }
1074                 }
1075         }
1076
1077         /* only allocate multiples of 4 byte */
1078         if (size % 4)
1079         {
1080                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1081                 size = (size + 3) & (~3);
1082         }
1083
1084         /* see if there's already a matching working area */
1085         while (c)
1086         {
1087                 if ((c->free) && (c->size == size))
1088                 {
1089                         new_wa = c;
1090                         break;
1091                 }
1092                 c = c->next;
1093         }
1094
1095         /* if not, allocate a new one */
1096         if (!new_wa)
1097         {
1098                 struct working_area **p = &target->working_areas;
1099                 uint32_t first_free = target->working_area;
1100                 uint32_t free_size = target->working_area_size;
1101
1102                 c = target->working_areas;
1103                 while (c)
1104                 {
1105                         first_free += c->size;
1106                         free_size -= c->size;
1107                         p = &c->next;
1108                         c = c->next;
1109                 }
1110
1111                 if (free_size < size)
1112                 {
1113                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1114                                     (unsigned)(size), (unsigned)(free_size));
1115                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1116                 }
1117
1118                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1119
1120                 new_wa = malloc(sizeof(struct working_area));
1121                 new_wa->next = NULL;
1122                 new_wa->size = size;
1123                 new_wa->address = first_free;
1124
1125                 if (target->backup_working_area)
1126                 {
1127                         int retval;
1128                         new_wa->backup = malloc(new_wa->size);
1129                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1130                         {
1131                                 free(new_wa->backup);
1132                                 free(new_wa);
1133                                 return retval;
1134                         }
1135                 }
1136                 else
1137                 {
1138                         new_wa->backup = NULL;
1139                 }
1140
1141                 /* put new entry in list */
1142                 *p = new_wa;
1143         }
1144
1145         /* mark as used, and return the new (reused) area */
1146         new_wa->free = 0;
1147         *area = new_wa;
1148
1149         /* user pointer */
1150         new_wa->user = area;
1151
1152         return ERROR_OK;
1153 }
1154
1155 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1156 {
1157         if (area->free)
1158                 return ERROR_OK;
1159
1160         if (restore && target->backup_working_area)
1161         {
1162                 int retval;
1163                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1164                         return retval;
1165         }
1166
1167         area->free = 1;
1168
1169         /* mark user pointer invalid */
1170         *area->user = NULL;
1171         area->user = NULL;
1172
1173         return ERROR_OK;
1174 }
1175
1176 int target_free_working_area(struct target *target, struct working_area *area)
1177 {
1178         return target_free_working_area_restore(target, area, 1);
1179 }
1180
1181 /* free resources and restore memory, if restoring memory fails,
1182  * free up resources anyway
1183  */
1184 void target_free_all_working_areas_restore(struct target *target, int restore)
1185 {
1186         struct working_area *c = target->working_areas;
1187
1188         while (c)
1189         {
1190                 struct working_area *next = c->next;
1191                 target_free_working_area_restore(target, c, restore);
1192
1193                 if (c->backup)
1194                         free(c->backup);
1195
1196                 free(c);
1197
1198                 c = next;
1199         }
1200
1201         target->working_areas = NULL;
1202 }
1203
1204 void target_free_all_working_areas(struct target *target)
1205 {
1206         target_free_all_working_areas_restore(target, 1);
1207 }
1208
1209 int target_arch_state(struct target *target)
1210 {
1211         int retval;
1212         if (target == NULL)
1213         {
1214                 LOG_USER("No target has been configured");
1215                 return ERROR_OK;
1216         }
1217
1218         LOG_USER("target state: %s", target_state_name( target ));
1219
1220         if (target->state != TARGET_HALTED)
1221                 return ERROR_OK;
1222
1223         retval = target->type->arch_state(target);
1224         return retval;
1225 }
1226
1227 /* Single aligned words are guaranteed to use 16 or 32 bit access
1228  * mode respectively, otherwise data is handled as quickly as
1229  * possible
1230  */
1231 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1232 {
1233         int retval;
1234         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1235                   (int)size, (unsigned)address);
1236
1237         if (!target_was_examined(target))
1238         {
1239                 LOG_ERROR("Target not examined yet");
1240                 return ERROR_FAIL;
1241         }
1242
1243         if (size == 0) {
1244                 return ERROR_OK;
1245         }
1246
1247         if ((address + size - 1) < address)
1248         {
1249                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1250                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1251                                   (unsigned)address,
1252                                   (unsigned)size);
1253                 return ERROR_FAIL;
1254         }
1255
1256         if (((address % 2) == 0) && (size == 2))
1257         {
1258                 return target_write_memory(target, address, 2, 1, buffer);
1259         }
1260
1261         /* handle unaligned head bytes */
1262         if (address % 4)
1263         {
1264                 uint32_t unaligned = 4 - (address % 4);
1265
1266                 if (unaligned > size)
1267                         unaligned = size;
1268
1269                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1270                         return retval;
1271
1272                 buffer += unaligned;
1273                 address += unaligned;
1274                 size -= unaligned;
1275         }
1276
1277         /* handle aligned words */
1278         if (size >= 4)
1279         {
1280                 int aligned = size - (size % 4);
1281
1282                 /* use bulk writes above a certain limit. This may have to be changed */
1283                 if (aligned > 128)
1284                 {
1285                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1286                                 return retval;
1287                 }
1288                 else
1289                 {
1290                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1291                                 return retval;
1292                 }
1293
1294                 buffer += aligned;
1295                 address += aligned;
1296                 size -= aligned;
1297         }
1298
1299         /* handle tail writes of less than 4 bytes */
1300         if (size > 0)
1301         {
1302                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1303                         return retval;
1304         }
1305
1306         return ERROR_OK;
1307 }
1308
1309 /* Single aligned words are guaranteed to use 16 or 32 bit access
1310  * mode respectively, otherwise data is handled as quickly as
1311  * possible
1312  */
1313 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1314 {
1315         int retval;
1316         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1317                           (int)size, (unsigned)address);
1318
1319         if (!target_was_examined(target))
1320         {
1321                 LOG_ERROR("Target not examined yet");
1322                 return ERROR_FAIL;
1323         }
1324
1325         if (size == 0) {
1326                 return ERROR_OK;
1327         }
1328
1329         if ((address + size - 1) < address)
1330         {
1331                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1332                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1333                                   address,
1334                                   size);
1335                 return ERROR_FAIL;
1336         }
1337
1338         if (((address % 2) == 0) && (size == 2))
1339         {
1340                 return target_read_memory(target, address, 2, 1, buffer);
1341         }
1342
1343         /* handle unaligned head bytes */
1344         if (address % 4)
1345         {
1346                 uint32_t unaligned = 4 - (address % 4);
1347
1348                 if (unaligned > size)
1349                         unaligned = size;
1350
1351                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1352                         return retval;
1353
1354                 buffer += unaligned;
1355                 address += unaligned;
1356                 size -= unaligned;
1357         }
1358
1359         /* handle aligned words */
1360         if (size >= 4)
1361         {
1362                 int aligned = size - (size % 4);
1363
1364                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1365                         return retval;
1366
1367                 buffer += aligned;
1368                 address += aligned;
1369                 size -= aligned;
1370         }
1371
1372         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1373         if(size >=2)
1374         {
1375                 int aligned = size - (size%2);
1376                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1377                 if (retval != ERROR_OK)
1378                         return retval;
1379
1380                 buffer += aligned;
1381                 address += aligned;
1382                 size -= aligned;
1383         }
1384         /* handle tail writes of less than 4 bytes */
1385         if (size > 0)
1386         {
1387                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1388                         return retval;
1389         }
1390
1391         return ERROR_OK;
1392 }
1393
1394 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1395 {
1396         uint8_t *buffer;
1397         int retval;
1398         uint32_t i;
1399         uint32_t checksum = 0;
1400         if (!target_was_examined(target))
1401         {
1402                 LOG_ERROR("Target not examined yet");
1403                 return ERROR_FAIL;
1404         }
1405
1406         if ((retval = target->type->checksum_memory(target, address,
1407                 size, &checksum)) != ERROR_OK)
1408         {
1409                 buffer = malloc(size);
1410                 if (buffer == NULL)
1411                 {
1412                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1413                         return ERROR_INVALID_ARGUMENTS;
1414                 }
1415                 retval = target_read_buffer(target, address, size, buffer);
1416                 if (retval != ERROR_OK)
1417                 {
1418                         free(buffer);
1419                         return retval;
1420                 }
1421
1422                 /* convert to target endianess */
1423                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1424                 {
1425                         uint32_t target_data;
1426                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1427                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1428                 }
1429
1430                 retval = image_calculate_checksum(buffer, size, &checksum);
1431                 free(buffer);
1432         }
1433
1434         *crc = checksum;
1435
1436         return retval;
1437 }
1438
1439 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1440 {
1441         int retval;
1442         if (!target_was_examined(target))
1443         {
1444                 LOG_ERROR("Target not examined yet");
1445                 return ERROR_FAIL;
1446         }
1447
1448         if (target->type->blank_check_memory == 0)
1449                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1450
1451         retval = target->type->blank_check_memory(target, address, size, blank);
1452
1453         return retval;
1454 }
1455
1456 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1457 {
1458         uint8_t value_buf[4];
1459         if (!target_was_examined(target))
1460         {
1461                 LOG_ERROR("Target not examined yet");
1462                 return ERROR_FAIL;
1463         }
1464
1465         int retval = target_read_memory(target, address, 4, 1, value_buf);
1466
1467         if (retval == ERROR_OK)
1468         {
1469                 *value = target_buffer_get_u32(target, value_buf);
1470                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1471                                   address,
1472                                   *value);
1473         }
1474         else
1475         {
1476                 *value = 0x0;
1477                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1478                                   address);
1479         }
1480
1481         return retval;
1482 }
1483
1484 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1485 {
1486         uint8_t value_buf[2];
1487         if (!target_was_examined(target))
1488         {
1489                 LOG_ERROR("Target not examined yet");
1490                 return ERROR_FAIL;
1491         }
1492
1493         int retval = target_read_memory(target, address, 2, 1, value_buf);
1494
1495         if (retval == ERROR_OK)
1496         {
1497                 *value = target_buffer_get_u16(target, value_buf);
1498                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1499                                   address,
1500                                   *value);
1501         }
1502         else
1503         {
1504                 *value = 0x0;
1505                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1506                                   address);
1507         }
1508
1509         return retval;
1510 }
1511
1512 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1513 {
1514         int retval = target_read_memory(target, address, 1, 1, value);
1515         if (!target_was_examined(target))
1516         {
1517                 LOG_ERROR("Target not examined yet");
1518                 return ERROR_FAIL;
1519         }
1520
1521         if (retval == ERROR_OK)
1522         {
1523                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1524                                   address,
1525                                   *value);
1526         }
1527         else
1528         {
1529                 *value = 0x0;
1530                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1531                                   address);
1532         }
1533
1534         return retval;
1535 }
1536
1537 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1538 {
1539         int retval;
1540         uint8_t value_buf[4];
1541         if (!target_was_examined(target))
1542         {
1543                 LOG_ERROR("Target not examined yet");
1544                 return ERROR_FAIL;
1545         }
1546
1547         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1548                           address,
1549                           value);
1550
1551         target_buffer_set_u32(target, value_buf, value);
1552         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1553         {
1554                 LOG_DEBUG("failed: %i", retval);
1555         }
1556
1557         return retval;
1558 }
1559
1560 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1561 {
1562         int retval;
1563         uint8_t value_buf[2];
1564         if (!target_was_examined(target))
1565         {
1566                 LOG_ERROR("Target not examined yet");
1567                 return ERROR_FAIL;
1568         }
1569
1570         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1571                           address,
1572                           value);
1573
1574         target_buffer_set_u16(target, value_buf, value);
1575         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1576         {
1577                 LOG_DEBUG("failed: %i", retval);
1578         }
1579
1580         return retval;
1581 }
1582
1583 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1584 {
1585         int retval;
1586         if (!target_was_examined(target))
1587         {
1588                 LOG_ERROR("Target not examined yet");
1589                 return ERROR_FAIL;
1590         }
1591
1592         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1593                           address, value);
1594
1595         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1596         {
1597                 LOG_DEBUG("failed: %i", retval);
1598         }
1599
1600         return retval;
1601 }
1602
1603 COMMAND_HANDLER(handle_targets_command)
1604 {
1605         struct target *target = all_targets;
1606
1607         if (CMD_ARGC == 1)
1608         {
1609                 target = get_target(CMD_ARGV[0]);
1610                 if (target == NULL) {
1611                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1612                         goto DumpTargets;
1613                 }
1614                 if (!target->tap->enabled) {
1615                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1616                                         "can't be the current target\n",
1617                                         target->tap->dotted_name);
1618                         return ERROR_FAIL;
1619                 }
1620
1621                 CMD_CTX->current_target = target->target_number;
1622                 return ERROR_OK;
1623         }
1624 DumpTargets:
1625
1626         target = all_targets;
1627         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1628         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1629         while (target)
1630         {
1631                 const char *state;
1632                 char marker = ' ';
1633
1634                 if (target->tap->enabled)
1635                         state = target_state_name( target );
1636                 else
1637                         state = "tap-disabled";
1638
1639                 if (CMD_CTX->current_target == target->target_number)
1640                         marker = '*';
1641
1642                 /* keep columns lined up to match the headers above */
1643                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1644                                           target->target_number,
1645                                           marker,
1646                                           target_name(target),
1647                                           target_type_name(target),
1648                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1649                                                                 target->endianness)->name,
1650                                           target->tap->dotted_name,
1651                                           state);
1652                 target = target->next;
1653         }
1654
1655         return ERROR_OK;
1656 }
1657
1658 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1659
1660 static int powerDropout;
1661 static int srstAsserted;
1662
1663 static int runPowerRestore;
1664 static int runPowerDropout;
1665 static int runSrstAsserted;
1666 static int runSrstDeasserted;
1667
1668 static int sense_handler(void)
1669 {
1670         static int prevSrstAsserted = 0;
1671         static int prevPowerdropout = 0;
1672
1673         int retval;
1674         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1675                 return retval;
1676
1677         int powerRestored;
1678         powerRestored = prevPowerdropout && !powerDropout;
1679         if (powerRestored)
1680         {
1681                 runPowerRestore = 1;
1682         }
1683
1684         long long current = timeval_ms();
1685         static long long lastPower = 0;
1686         int waitMore = lastPower + 2000 > current;
1687         if (powerDropout && !waitMore)
1688         {
1689                 runPowerDropout = 1;
1690                 lastPower = current;
1691         }
1692
1693         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1694                 return retval;
1695
1696         int srstDeasserted;
1697         srstDeasserted = prevSrstAsserted && !srstAsserted;
1698
1699         static long long lastSrst = 0;
1700         waitMore = lastSrst + 2000 > current;
1701         if (srstDeasserted && !waitMore)
1702         {
1703                 runSrstDeasserted = 1;
1704                 lastSrst = current;
1705         }
1706
1707         if (!prevSrstAsserted && srstAsserted)
1708         {
1709                 runSrstAsserted = 1;
1710         }
1711
1712         prevSrstAsserted = srstAsserted;
1713         prevPowerdropout = powerDropout;
1714
1715         if (srstDeasserted || powerRestored)
1716         {
1717                 /* Other than logging the event we can't do anything here.
1718                  * Issuing a reset is a particularly bad idea as we might
1719                  * be inside a reset already.
1720                  */
1721         }
1722
1723         return ERROR_OK;
1724 }
1725
1726 static void target_call_event_callbacks_all(enum target_event e) {
1727         struct target *target;
1728         target = all_targets;
1729         while (target) {
1730                 target_call_event_callbacks(target, e);
1731                 target = target->next;
1732         }
1733 }
1734
1735 /* process target state changes */
1736 static int handle_target(void *priv)
1737 {
1738         Jim_Interp *interp = (Jim_Interp *)priv;
1739         int retval = ERROR_OK;
1740
1741         /* we do not want to recurse here... */
1742         static int recursive = 0;
1743         if (! recursive)
1744         {
1745                 recursive = 1;
1746                 sense_handler();
1747                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1748                  * We need to avoid an infinite loop/recursion here and we do that by
1749                  * clearing the flags after running these events.
1750                  */
1751                 int did_something = 0;
1752                 if (runSrstAsserted)
1753                 {
1754                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1755                         Jim_Eval(interp, "srst_asserted");
1756                         did_something = 1;
1757                 }
1758                 if (runSrstDeasserted)
1759                 {
1760                         Jim_Eval(interp, "srst_deasserted");
1761                         did_something = 1;
1762                 }
1763                 if (runPowerDropout)
1764                 {
1765                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1766                         Jim_Eval(interp, "power_dropout");
1767                         did_something = 1;
1768                 }
1769                 if (runPowerRestore)
1770                 {
1771                         Jim_Eval(interp, "power_restore");
1772                         did_something = 1;
1773                 }
1774
1775                 if (did_something)
1776                 {
1777                         /* clear detect flags */
1778                         sense_handler();
1779                 }
1780
1781                 /* clear action flags */
1782
1783                 runSrstAsserted = 0;
1784                 runSrstDeasserted = 0;
1785                 runPowerRestore = 0;
1786                 runPowerDropout = 0;
1787
1788                 recursive = 0;
1789         }
1790
1791         /* Poll targets for state changes unless that's globally disabled.
1792          * Skip targets that are currently disabled.
1793          */
1794         for (struct target *target = all_targets;
1795                         is_jtag_poll_safe() && target;
1796                         target = target->next)
1797         {
1798                 if (!target->tap->enabled)
1799                         continue;
1800
1801                 /* only poll target if we've got power and srst isn't asserted */
1802                 if (!powerDropout && !srstAsserted)
1803                 {
1804                         /* polling may fail silently until the target has been examined */
1805                         if ((retval = target_poll(target)) != ERROR_OK)
1806                         {
1807                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1808                                 return retval;
1809                         }
1810                 }
1811         }
1812
1813         return retval;
1814 }
1815
1816 COMMAND_HANDLER(handle_reg_command)
1817 {
1818         struct target *target;
1819         struct reg *reg = NULL;
1820         unsigned count = 0;
1821         char *value;
1822
1823         LOG_DEBUG("-");
1824
1825         target = get_current_target(CMD_CTX);
1826
1827         /* list all available registers for the current target */
1828         if (CMD_ARGC == 0)
1829         {
1830                 struct reg_cache *cache = target->reg_cache;
1831
1832                 count = 0;
1833                 while (cache)
1834                 {
1835                         unsigned i;
1836
1837                         command_print(CMD_CTX, "===== %s", cache->name);
1838
1839                         for (i = 0, reg = cache->reg_list;
1840                                         i < cache->num_regs;
1841                                         i++, reg++, count++)
1842                         {
1843                                 /* only print cached values if they are valid */
1844                                 if (reg->valid) {
1845                                         value = buf_to_str(reg->value,
1846                                                         reg->size, 16);
1847                                         command_print(CMD_CTX,
1848                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1849                                                         count, reg->name,
1850                                                         reg->size, value,
1851                                                         reg->dirty
1852                                                                 ? " (dirty)"
1853                                                                 : "");
1854                                         free(value);
1855                                 } else {
1856                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1857                                                           count, reg->name,
1858                                                           reg->size) ;
1859                                 }
1860                         }
1861                         cache = cache->next;
1862                 }
1863
1864                 return ERROR_OK;
1865         }
1866
1867         /* access a single register by its ordinal number */
1868         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1869         {
1870                 unsigned num;
1871                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1872
1873                 struct reg_cache *cache = target->reg_cache;
1874                 count = 0;
1875                 while (cache)
1876                 {
1877                         unsigned i;
1878                         for (i = 0; i < cache->num_regs; i++)
1879                         {
1880                                 if (count++ == num)
1881                                 {
1882                                         reg = &cache->reg_list[i];
1883                                         break;
1884                                 }
1885                         }
1886                         if (reg)
1887                                 break;
1888                         cache = cache->next;
1889                 }
1890
1891                 if (!reg)
1892                 {
1893                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1894                         return ERROR_OK;
1895                 }
1896         } else /* access a single register by its name */
1897         {
1898                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1899
1900                 if (!reg)
1901                 {
1902                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1903                         return ERROR_OK;
1904                 }
1905         }
1906
1907         /* display a register */
1908         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1909         {
1910                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1911                         reg->valid = 0;
1912
1913                 if (reg->valid == 0)
1914                 {
1915                         reg->type->get(reg);
1916                 }
1917                 value = buf_to_str(reg->value, reg->size, 16);
1918                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1919                 free(value);
1920                 return ERROR_OK;
1921         }
1922
1923         /* set register value */
1924         if (CMD_ARGC == 2)
1925         {
1926                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1927                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1928
1929                 reg->type->set(reg, buf);
1930
1931                 value = buf_to_str(reg->value, reg->size, 16);
1932                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1933                 free(value);
1934
1935                 free(buf);
1936
1937                 return ERROR_OK;
1938         }
1939
1940         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1941
1942         return ERROR_OK;
1943 }
1944
1945 COMMAND_HANDLER(handle_poll_command)
1946 {
1947         int retval = ERROR_OK;
1948         struct target *target = get_current_target(CMD_CTX);
1949
1950         if (CMD_ARGC == 0)
1951         {
1952                 command_print(CMD_CTX, "background polling: %s",
1953                                 jtag_poll_get_enabled() ? "on" : "off");
1954                 command_print(CMD_CTX, "TAP: %s (%s)",
1955                                 target->tap->dotted_name,
1956                                 target->tap->enabled ? "enabled" : "disabled");
1957                 if (!target->tap->enabled)
1958                         return ERROR_OK;
1959                 if ((retval = target_poll(target)) != ERROR_OK)
1960                         return retval;
1961                 if ((retval = target_arch_state(target)) != ERROR_OK)
1962                         return retval;
1963         }
1964         else if (CMD_ARGC == 1)
1965         {
1966                 bool enable;
1967                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1968                 jtag_poll_set_enabled(enable);
1969         }
1970         else
1971         {
1972                 return ERROR_COMMAND_SYNTAX_ERROR;
1973         }
1974
1975         return retval;
1976 }
1977
1978 COMMAND_HANDLER(handle_wait_halt_command)
1979 {
1980         if (CMD_ARGC > 1)
1981                 return ERROR_COMMAND_SYNTAX_ERROR;
1982
1983         unsigned ms = 5000;
1984         if (1 == CMD_ARGC)
1985         {
1986                 int retval = parse_uint(CMD_ARGV[0], &ms);
1987                 if (ERROR_OK != retval)
1988                 {
1989                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
1990                         return ERROR_COMMAND_SYNTAX_ERROR;
1991                 }
1992                 // convert seconds (given) to milliseconds (needed)
1993                 ms *= 1000;
1994         }
1995
1996         struct target *target = get_current_target(CMD_CTX);
1997         return target_wait_state(target, TARGET_HALTED, ms);
1998 }
1999
2000 /* wait for target state to change. The trick here is to have a low
2001  * latency for short waits and not to suck up all the CPU time
2002  * on longer waits.
2003  *
2004  * After 500ms, keep_alive() is invoked
2005  */
2006 int target_wait_state(struct target *target, enum target_state state, int ms)
2007 {
2008         int retval;
2009         long long then = 0, cur;
2010         int once = 1;
2011
2012         for (;;)
2013         {
2014                 if ((retval = target_poll(target)) != ERROR_OK)
2015                         return retval;
2016                 if (target->state == state)
2017                 {
2018                         break;
2019                 }
2020                 cur = timeval_ms();
2021                 if (once)
2022                 {
2023                         once = 0;
2024                         then = timeval_ms();
2025                         LOG_DEBUG("waiting for target %s...",
2026                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2027                 }
2028
2029                 if (cur-then > 500)
2030                 {
2031                         keep_alive();
2032                 }
2033
2034                 if ((cur-then) > ms)
2035                 {
2036                         LOG_ERROR("timed out while waiting for target %s",
2037                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2038                         return ERROR_FAIL;
2039                 }
2040         }
2041
2042         return ERROR_OK;
2043 }
2044
2045 COMMAND_HANDLER(handle_halt_command)
2046 {
2047         LOG_DEBUG("-");
2048
2049         struct target *target = get_current_target(CMD_CTX);
2050         int retval = target_halt(target);
2051         if (ERROR_OK != retval)
2052                 return retval;
2053
2054         if (CMD_ARGC == 1)
2055         {
2056                 unsigned wait;
2057                 retval = parse_uint(CMD_ARGV[0], &wait);
2058                 if (ERROR_OK != retval)
2059                         return ERROR_COMMAND_SYNTAX_ERROR;
2060                 if (!wait)
2061                         return ERROR_OK;
2062         }
2063
2064         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2065 }
2066
2067 COMMAND_HANDLER(handle_soft_reset_halt_command)
2068 {
2069         struct target *target = get_current_target(CMD_CTX);
2070
2071         LOG_USER("requesting target halt and executing a soft reset");
2072
2073         target->type->soft_reset_halt(target);
2074
2075         return ERROR_OK;
2076 }
2077
2078 COMMAND_HANDLER(handle_reset_command)
2079 {
2080         if (CMD_ARGC > 1)
2081                 return ERROR_COMMAND_SYNTAX_ERROR;
2082
2083         enum target_reset_mode reset_mode = RESET_RUN;
2084         if (CMD_ARGC == 1)
2085         {
2086                 const Jim_Nvp *n;
2087                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2088                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2089                         return ERROR_COMMAND_SYNTAX_ERROR;
2090                 }
2091                 reset_mode = n->value;
2092         }
2093
2094         /* reset *all* targets */
2095         return target_process_reset(CMD_CTX, reset_mode);
2096 }
2097
2098
2099 COMMAND_HANDLER(handle_resume_command)
2100 {
2101         int current = 1;
2102         if (CMD_ARGC > 1)
2103                 return ERROR_COMMAND_SYNTAX_ERROR;
2104
2105         struct target *target = get_current_target(CMD_CTX);
2106         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2107
2108         /* with no CMD_ARGV, resume from current pc, addr = 0,
2109          * with one arguments, addr = CMD_ARGV[0],
2110          * handle breakpoints, not debugging */
2111         uint32_t addr = 0;
2112         if (CMD_ARGC == 1)
2113         {
2114                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2115                 current = 0;
2116         }
2117
2118         return target_resume(target, current, addr, 1, 0);
2119 }
2120
2121 COMMAND_HANDLER(handle_step_command)
2122 {
2123         if (CMD_ARGC > 1)
2124                 return ERROR_COMMAND_SYNTAX_ERROR;
2125
2126         LOG_DEBUG("-");
2127
2128         /* with no CMD_ARGV, step from current pc, addr = 0,
2129          * with one argument addr = CMD_ARGV[0],
2130          * handle breakpoints, debugging */
2131         uint32_t addr = 0;
2132         int current_pc = 1;
2133         if (CMD_ARGC == 1)
2134         {
2135                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2136                 current_pc = 0;
2137         }
2138
2139         struct target *target = get_current_target(CMD_CTX);
2140
2141         return target->type->step(target, current_pc, addr, 1);
2142 }
2143
2144 static void handle_md_output(struct command_context *cmd_ctx,
2145                 struct target *target, uint32_t address, unsigned size,
2146                 unsigned count, const uint8_t *buffer)
2147 {
2148         const unsigned line_bytecnt = 32;
2149         unsigned line_modulo = line_bytecnt / size;
2150
2151         char output[line_bytecnt * 4 + 1];
2152         unsigned output_len = 0;
2153
2154         const char *value_fmt;
2155         switch (size) {
2156         case 4: value_fmt = "%8.8x "; break;
2157         case 2: value_fmt = "%4.2x "; break;
2158         case 1: value_fmt = "%2.2x "; break;
2159         default:
2160                 /* "can't happen", caller checked */
2161                 LOG_ERROR("invalid memory read size: %u", size);
2162                 return;
2163         }
2164
2165         for (unsigned i = 0; i < count; i++)
2166         {
2167                 if (i % line_modulo == 0)
2168                 {
2169                         output_len += snprintf(output + output_len,
2170                                         sizeof(output) - output_len,
2171                                         "0x%8.8x: ",
2172                                         (unsigned)(address + (i*size)));
2173                 }
2174
2175                 uint32_t value = 0;
2176                 const uint8_t *value_ptr = buffer + i * size;
2177                 switch (size) {
2178                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2179                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2180                 case 1: value = *value_ptr;
2181                 }
2182                 output_len += snprintf(output + output_len,
2183                                 sizeof(output) - output_len,
2184                                 value_fmt, value);
2185
2186                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2187                 {
2188                         command_print(cmd_ctx, "%s", output);
2189                         output_len = 0;
2190                 }
2191         }
2192 }
2193
2194 COMMAND_HANDLER(handle_md_command)
2195 {
2196         if (CMD_ARGC < 1)
2197                 return ERROR_COMMAND_SYNTAX_ERROR;
2198
2199         unsigned size = 0;
2200         switch (CMD_NAME[2]) {
2201         case 'w': size = 4; break;
2202         case 'h': size = 2; break;
2203         case 'b': size = 1; break;
2204         default: return ERROR_COMMAND_SYNTAX_ERROR;
2205         }
2206
2207         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2208         int (*fn)(struct target *target,
2209                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2210         if (physical)
2211         {
2212                 CMD_ARGC--;
2213                 CMD_ARGV++;
2214                 fn=target_read_phys_memory;
2215         } else
2216         {
2217                 fn=target_read_memory;
2218         }
2219         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2220         {
2221                 return ERROR_COMMAND_SYNTAX_ERROR;
2222         }
2223
2224         uint32_t address;
2225         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2226
2227         unsigned count = 1;
2228         if (CMD_ARGC == 2)
2229                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2230
2231         uint8_t *buffer = calloc(count, size);
2232
2233         struct target *target = get_current_target(CMD_CTX);
2234         int retval = fn(target, address, size, count, buffer);
2235         if (ERROR_OK == retval)
2236                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2237
2238         free(buffer);
2239
2240         return retval;
2241 }
2242
2243 COMMAND_HANDLER(handle_mw_command)
2244 {
2245         if (CMD_ARGC < 2)
2246         {
2247                 return ERROR_COMMAND_SYNTAX_ERROR;
2248         }
2249         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2250         int (*fn)(struct target *target,
2251                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2252         if (physical)
2253         {
2254                 CMD_ARGC--;
2255                 CMD_ARGV++;
2256                 fn=target_write_phys_memory;
2257         } else
2258         {
2259                 fn=target_write_memory;
2260         }
2261         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2262                 return ERROR_COMMAND_SYNTAX_ERROR;
2263
2264         uint32_t address;
2265         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2266
2267         uint32_t value;
2268         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2269
2270         unsigned count = 1;
2271         if (CMD_ARGC == 3)
2272                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2273
2274         struct target *target = get_current_target(CMD_CTX);
2275         unsigned wordsize;
2276         uint8_t value_buf[4];
2277         switch (CMD_NAME[2])
2278         {
2279                 case 'w':
2280                         wordsize = 4;
2281                         target_buffer_set_u32(target, value_buf, value);
2282                         break;
2283                 case 'h':
2284                         wordsize = 2;
2285                         target_buffer_set_u16(target, value_buf, value);
2286                         break;
2287                 case 'b':
2288                         wordsize = 1;
2289                         value_buf[0] = value;
2290                         break;
2291                 default:
2292                         return ERROR_COMMAND_SYNTAX_ERROR;
2293         }
2294         for (unsigned i = 0; i < count; i++)
2295         {
2296                 int retval = fn(target,
2297                                 address + i * wordsize, wordsize, 1, value_buf);
2298                 if (ERROR_OK != retval)
2299                         return retval;
2300                 keep_alive();
2301         }
2302
2303         return ERROR_OK;
2304
2305 }
2306
2307 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2308                 uint32_t *min_address, uint32_t *max_address)
2309 {
2310         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2311                 return ERROR_COMMAND_SYNTAX_ERROR;
2312
2313         /* a base address isn't always necessary,
2314          * default to 0x0 (i.e. don't relocate) */
2315         if (CMD_ARGC >= 2)
2316         {
2317                 uint32_t addr;
2318                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2319                 image->base_address = addr;
2320                 image->base_address_set = 1;
2321         }
2322         else
2323                 image->base_address_set = 0;
2324
2325         image->start_address_set = 0;
2326
2327         if (CMD_ARGC >= 4)
2328         {
2329                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2330         }
2331         if (CMD_ARGC == 5)
2332         {
2333                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2334                 // use size (given) to find max (required)
2335                 *max_address += *min_address;
2336         }
2337
2338         if (*min_address > *max_address)
2339                 return ERROR_COMMAND_SYNTAX_ERROR;
2340
2341         return ERROR_OK;
2342 }
2343
2344 COMMAND_HANDLER(handle_load_image_command)
2345 {
2346         uint8_t *buffer;
2347         size_t buf_cnt;
2348         uint32_t image_size;
2349         uint32_t min_address = 0;
2350         uint32_t max_address = 0xffffffff;
2351         int i;
2352         struct image image;
2353
2354         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2355                         &image, &min_address, &max_address);
2356         if (ERROR_OK != retval)
2357                 return retval;
2358
2359         struct target *target = get_current_target(CMD_CTX);
2360
2361         struct duration bench;
2362         duration_start(&bench);
2363
2364         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2365         {
2366                 return ERROR_OK;
2367         }
2368
2369         image_size = 0x0;
2370         retval = ERROR_OK;
2371         for (i = 0; i < image.num_sections; i++)
2372         {
2373                 buffer = malloc(image.sections[i].size);
2374                 if (buffer == NULL)
2375                 {
2376                         command_print(CMD_CTX,
2377                                                   "error allocating buffer for section (%d bytes)",
2378                                                   (int)(image.sections[i].size));
2379                         break;
2380                 }
2381
2382                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2383                 {
2384                         free(buffer);
2385                         break;
2386                 }
2387
2388                 uint32_t offset = 0;
2389                 uint32_t length = buf_cnt;
2390
2391                 /* DANGER!!! beware of unsigned comparision here!!! */
2392
2393                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2394                                 (image.sections[i].base_address < max_address))
2395                 {
2396                         if (image.sections[i].base_address < min_address)
2397                         {
2398                                 /* clip addresses below */
2399                                 offset += min_address-image.sections[i].base_address;
2400                                 length -= offset;
2401                         }
2402
2403                         if (image.sections[i].base_address + buf_cnt > max_address)
2404                         {
2405                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2406                         }
2407
2408                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2409                         {
2410                                 free(buffer);
2411                                 break;
2412                         }
2413                         image_size += length;
2414                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2415                                                   (unsigned int)length,
2416                                                   image.sections[i].base_address + offset);
2417                 }
2418
2419                 free(buffer);
2420         }
2421
2422         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2423         {
2424                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2425                                 "in %fs (%0.3f kb/s)", image_size,
2426                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2427         }
2428
2429         image_close(&image);
2430
2431         return retval;
2432
2433 }
2434
2435 COMMAND_HANDLER(handle_dump_image_command)
2436 {
2437         struct fileio fileio;
2438
2439         uint8_t buffer[560];
2440         int retvaltemp;
2441
2442
2443         struct target *target = get_current_target(CMD_CTX);
2444
2445         if (CMD_ARGC != 3)
2446         {
2447                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2448                 return ERROR_OK;
2449         }
2450
2451         uint32_t address;
2452         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2453         uint32_t size;
2454         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2455
2456         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2457         {
2458                 return ERROR_OK;
2459         }
2460
2461         struct duration bench;
2462         duration_start(&bench);
2463
2464         int retval = ERROR_OK;
2465         while (size > 0)
2466         {
2467                 size_t size_written;
2468                 uint32_t this_run_size = (size > 560) ? 560 : size;
2469                 retval = target_read_buffer(target, address, this_run_size, buffer);
2470                 if (retval != ERROR_OK)
2471                 {
2472                         break;
2473                 }
2474
2475                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2476                 if (retval != ERROR_OK)
2477                 {
2478                         break;
2479                 }
2480
2481                 size -= this_run_size;
2482                 address += this_run_size;
2483         }
2484
2485         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2486                 return retvaltemp;
2487
2488         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2489         {
2490                 command_print(CMD_CTX,
2491                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2492                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2493         }
2494
2495         return retval;
2496 }
2497
2498 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2499 {
2500         uint8_t *buffer;
2501         size_t buf_cnt;
2502         uint32_t image_size;
2503         int i;
2504         int retval;
2505         uint32_t checksum = 0;
2506         uint32_t mem_checksum = 0;
2507
2508         struct image image;
2509
2510         struct target *target = get_current_target(CMD_CTX);
2511
2512         if (CMD_ARGC < 1)
2513         {
2514                 return ERROR_COMMAND_SYNTAX_ERROR;
2515         }
2516
2517         if (!target)
2518         {
2519                 LOG_ERROR("no target selected");
2520                 return ERROR_FAIL;
2521         }
2522
2523         struct duration bench;
2524         duration_start(&bench);
2525
2526         if (CMD_ARGC >= 2)
2527         {
2528                 uint32_t addr;
2529                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2530                 image.base_address = addr;
2531                 image.base_address_set = 1;
2532         }
2533         else
2534         {
2535                 image.base_address_set = 0;
2536                 image.base_address = 0x0;
2537         }
2538
2539         image.start_address_set = 0;
2540
2541         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2542         {
2543                 return retval;
2544         }
2545
2546         image_size = 0x0;
2547         retval = ERROR_OK;
2548         for (i = 0; i < image.num_sections; i++)
2549         {
2550                 buffer = malloc(image.sections[i].size);
2551                 if (buffer == NULL)
2552                 {
2553                         command_print(CMD_CTX,
2554                                                   "error allocating buffer for section (%d bytes)",
2555                                                   (int)(image.sections[i].size));
2556                         break;
2557                 }
2558                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2559                 {
2560                         free(buffer);
2561                         break;
2562                 }
2563
2564                 if (verify)
2565                 {
2566                         /* calculate checksum of image */
2567                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2568
2569                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2570                         if (retval != ERROR_OK)
2571                         {
2572                                 free(buffer);
2573                                 break;
2574                         }
2575
2576                         if (checksum != mem_checksum)
2577                         {
2578                                 /* failed crc checksum, fall back to a binary compare */
2579                                 uint8_t *data;
2580
2581                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2582
2583                                 data = (uint8_t*)malloc(buf_cnt);
2584
2585                                 /* Can we use 32bit word accesses? */
2586                                 int size = 1;
2587                                 int count = buf_cnt;
2588                                 if ((count % 4) == 0)
2589                                 {
2590                                         size *= 4;
2591                                         count /= 4;
2592                                 }
2593                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2594                                 if (retval == ERROR_OK)
2595                                 {
2596                                         uint32_t t;
2597                                         for (t = 0; t < buf_cnt; t++)
2598                                         {
2599                                                 if (data[t] != buffer[t])
2600                                                 {
2601                                                         command_print(CMD_CTX,
2602                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2603                                                                                   (unsigned)(t + image.sections[i].base_address),
2604                                                                                   data[t],
2605                                                                                   buffer[t]);
2606                                                         free(data);
2607                                                         free(buffer);
2608                                                         retval = ERROR_FAIL;
2609                                                         goto done;
2610                                                 }
2611                                                 if ((t%16384) == 0)
2612                                                 {
2613                                                         keep_alive();
2614                                                 }
2615                                         }
2616                                 }
2617
2618                                 free(data);
2619                         }
2620                 } else
2621                 {
2622                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2623                                                   image.sections[i].base_address,
2624                                                   buf_cnt);
2625                 }
2626
2627                 free(buffer);
2628                 image_size += buf_cnt;
2629         }
2630 done:
2631         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2632         {
2633                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2634                                 "in %fs (%0.3f kb/s)", image_size,
2635                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2636         }
2637
2638         image_close(&image);
2639
2640         return retval;
2641 }
2642
2643 COMMAND_HANDLER(handle_verify_image_command)
2644 {
2645         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2646 }
2647
2648 COMMAND_HANDLER(handle_test_image_command)
2649 {
2650         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2651 }
2652
2653 static int handle_bp_command_list(struct command_context *cmd_ctx)
2654 {
2655         struct target *target = get_current_target(cmd_ctx);
2656         struct breakpoint *breakpoint = target->breakpoints;
2657         while (breakpoint)
2658         {
2659                 if (breakpoint->type == BKPT_SOFT)
2660                 {
2661                         char* buf = buf_to_str(breakpoint->orig_instr,
2662                                         breakpoint->length, 16);
2663                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2664                                         breakpoint->address,
2665                                         breakpoint->length,
2666                                         breakpoint->set, buf);
2667                         free(buf);
2668                 }
2669                 else
2670                 {
2671                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2672                                                   breakpoint->address,
2673                                                   breakpoint->length, breakpoint->set);
2674                 }
2675
2676                 breakpoint = breakpoint->next;
2677         }
2678         return ERROR_OK;
2679 }
2680
2681 static int handle_bp_command_set(struct command_context *cmd_ctx,
2682                 uint32_t addr, uint32_t length, int hw)
2683 {
2684         struct target *target = get_current_target(cmd_ctx);
2685         int retval = breakpoint_add(target, addr, length, hw);
2686         if (ERROR_OK == retval)
2687                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2688         else
2689                 LOG_ERROR("Failure setting breakpoint");
2690         return retval;
2691 }
2692
2693 COMMAND_HANDLER(handle_bp_command)
2694 {
2695         if (CMD_ARGC == 0)
2696                 return handle_bp_command_list(CMD_CTX);
2697
2698         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2699         {
2700                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2701                 return ERROR_COMMAND_SYNTAX_ERROR;
2702         }
2703
2704         uint32_t addr;
2705         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2706         uint32_t length;
2707         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2708
2709         int hw = BKPT_SOFT;
2710         if (CMD_ARGC == 3)
2711         {
2712                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2713                         hw = BKPT_HARD;
2714                 else
2715                         return ERROR_COMMAND_SYNTAX_ERROR;
2716         }
2717
2718         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2719 }
2720
2721 COMMAND_HANDLER(handle_rbp_command)
2722 {
2723         if (CMD_ARGC != 1)
2724                 return ERROR_COMMAND_SYNTAX_ERROR;
2725
2726         uint32_t addr;
2727         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2728
2729         struct target *target = get_current_target(CMD_CTX);
2730         breakpoint_remove(target, addr);
2731
2732         return ERROR_OK;
2733 }
2734
2735 COMMAND_HANDLER(handle_wp_command)
2736 {
2737         struct target *target = get_current_target(CMD_CTX);
2738
2739         if (CMD_ARGC == 0)
2740         {
2741                 struct watchpoint *watchpoint = target->watchpoints;
2742
2743                 while (watchpoint)
2744                 {
2745                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2746                                         ", len: 0x%8.8" PRIx32
2747                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2748                                         ", mask: 0x%8.8" PRIx32,
2749                                         watchpoint->address,
2750                                         watchpoint->length,
2751                                         (int)watchpoint->rw,
2752                                         watchpoint->value,
2753                                         watchpoint->mask);
2754                         watchpoint = watchpoint->next;
2755                 }
2756                 return ERROR_OK;
2757         }
2758
2759         enum watchpoint_rw type = WPT_ACCESS;
2760         uint32_t addr = 0;
2761         uint32_t length = 0;
2762         uint32_t data_value = 0x0;
2763         uint32_t data_mask = 0xffffffff;
2764
2765         switch (CMD_ARGC)
2766         {
2767         case 5:
2768                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2769                 // fall through
2770         case 4:
2771                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2772                 // fall through
2773         case 3:
2774                 switch (CMD_ARGV[2][0])
2775                 {
2776                 case 'r':
2777                         type = WPT_READ;
2778                         break;
2779                 case 'w':
2780                         type = WPT_WRITE;
2781                         break;
2782                 case 'a':
2783                         type = WPT_ACCESS;
2784                         break;
2785                 default:
2786                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2787                         return ERROR_COMMAND_SYNTAX_ERROR;
2788                 }
2789                 // fall through
2790         case 2:
2791                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2792                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2793                 break;
2794
2795         default:
2796                 command_print(CMD_CTX, "usage: wp [address length "
2797                                 "[(r|w|a) [value [mask]]]]");
2798                 return ERROR_COMMAND_SYNTAX_ERROR;
2799         }
2800
2801         int retval = watchpoint_add(target, addr, length, type,
2802                         data_value, data_mask);
2803         if (ERROR_OK != retval)
2804                 LOG_ERROR("Failure setting watchpoints");
2805
2806         return retval;
2807 }
2808
2809 COMMAND_HANDLER(handle_rwp_command)
2810 {
2811         if (CMD_ARGC != 1)
2812                 return ERROR_COMMAND_SYNTAX_ERROR;
2813
2814         uint32_t addr;
2815         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2816
2817         struct target *target = get_current_target(CMD_CTX);
2818         watchpoint_remove(target, addr);
2819
2820         return ERROR_OK;
2821 }
2822
2823
2824 /**
2825  * Translate a virtual address to a physical address.
2826  *
2827  * The low-level target implementation must have logged a detailed error
2828  * which is forwarded to telnet/GDB session.
2829  */
2830 COMMAND_HANDLER(handle_virt2phys_command)
2831 {
2832         if (CMD_ARGC != 1)
2833                 return ERROR_COMMAND_SYNTAX_ERROR;
2834
2835         uint32_t va;
2836         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2837         uint32_t pa;
2838
2839         struct target *target = get_current_target(CMD_CTX);
2840         int retval = target->type->virt2phys(target, va, &pa);
2841         if (retval == ERROR_OK)
2842                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2843
2844         return retval;
2845 }
2846
2847 static void writeData(FILE *f, const void *data, size_t len)
2848 {
2849         size_t written = fwrite(data, 1, len, f);
2850         if (written != len)
2851                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2852 }
2853
2854 static void writeLong(FILE *f, int l)
2855 {
2856         int i;
2857         for (i = 0; i < 4; i++)
2858         {
2859                 char c = (l >> (i*8))&0xff;
2860                 writeData(f, &c, 1);
2861         }
2862
2863 }
2864
2865 static void writeString(FILE *f, char *s)
2866 {
2867         writeData(f, s, strlen(s));
2868 }
2869
2870 /* Dump a gmon.out histogram file. */
2871 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2872 {
2873         uint32_t i;
2874         FILE *f = fopen(filename, "w");
2875         if (f == NULL)
2876                 return;
2877         writeString(f, "gmon");
2878         writeLong(f, 0x00000001); /* Version */
2879         writeLong(f, 0); /* padding */
2880         writeLong(f, 0); /* padding */
2881         writeLong(f, 0); /* padding */
2882
2883         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2884         writeData(f, &zero, 1);
2885
2886         /* figure out bucket size */
2887         uint32_t min = samples[0];
2888         uint32_t max = samples[0];
2889         for (i = 0; i < sampleNum; i++)
2890         {
2891                 if (min > samples[i])
2892                 {
2893                         min = samples[i];
2894                 }
2895                 if (max < samples[i])
2896                 {
2897                         max = samples[i];
2898                 }
2899         }
2900
2901         int addressSpace = (max-min + 1);
2902
2903         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2904         uint32_t length = addressSpace;
2905         if (length > maxBuckets)
2906         {
2907                 length = maxBuckets;
2908         }
2909         int *buckets = malloc(sizeof(int)*length);
2910         if (buckets == NULL)
2911         {
2912                 fclose(f);
2913                 return;
2914         }
2915         memset(buckets, 0, sizeof(int)*length);
2916         for (i = 0; i < sampleNum;i++)
2917         {
2918                 uint32_t address = samples[i];
2919                 long long a = address-min;
2920                 long long b = length-1;
2921                 long long c = addressSpace-1;
2922                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2923                 buckets[index]++;
2924         }
2925
2926         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2927         writeLong(f, min);                      /* low_pc */
2928         writeLong(f, max);                      /* high_pc */
2929         writeLong(f, length);           /* # of samples */
2930         writeLong(f, 64000000);         /* 64MHz */
2931         writeString(f, "seconds");
2932         for (i = 0; i < (15-strlen("seconds")); i++)
2933                 writeData(f, &zero, 1);
2934         writeString(f, "s");
2935
2936         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2937
2938         char *data = malloc(2*length);
2939         if (data != NULL)
2940         {
2941                 for (i = 0; i < length;i++)
2942                 {
2943                         int val;
2944                         val = buckets[i];
2945                         if (val > 65535)
2946                         {
2947                                 val = 65535;
2948                         }
2949                         data[i*2]=val&0xff;
2950                         data[i*2 + 1]=(val >> 8)&0xff;
2951                 }
2952                 free(buckets);
2953                 writeData(f, data, length * 2);
2954                 free(data);
2955         } else
2956         {
2957                 free(buckets);
2958         }
2959
2960         fclose(f);
2961 }
2962
2963 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2964 COMMAND_HANDLER(handle_profile_command)
2965 {
2966         struct target *target = get_current_target(CMD_CTX);
2967         struct timeval timeout, now;
2968
2969         gettimeofday(&timeout, NULL);
2970         if (CMD_ARGC != 2)
2971         {
2972                 return ERROR_COMMAND_SYNTAX_ERROR;
2973         }
2974         unsigned offset;
2975         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2976
2977         timeval_add_time(&timeout, offset, 0);
2978
2979         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
2980
2981         static const int maxSample = 10000;
2982         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2983         if (samples == NULL)
2984                 return ERROR_OK;
2985
2986         int numSamples = 0;
2987         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2988         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2989
2990         for (;;)
2991         {
2992                 int retval;
2993                 target_poll(target);
2994                 if (target->state == TARGET_HALTED)
2995                 {
2996                         uint32_t t=*((uint32_t *)reg->value);
2997                         samples[numSamples++]=t;
2998                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2999                         target_poll(target);
3000                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3001                 } else if (target->state == TARGET_RUNNING)
3002                 {
3003                         /* We want to quickly sample the PC. */
3004                         if ((retval = target_halt(target)) != ERROR_OK)
3005                         {
3006                                 free(samples);
3007                                 return retval;
3008                         }
3009                 } else
3010                 {
3011                         command_print(CMD_CTX, "Target not halted or running");
3012                         retval = ERROR_OK;
3013                         break;
3014                 }
3015                 if (retval != ERROR_OK)
3016                 {
3017                         break;
3018                 }
3019
3020                 gettimeofday(&now, NULL);
3021                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3022                 {
3023                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3024                         if ((retval = target_poll(target)) != ERROR_OK)
3025                         {
3026                                 free(samples);
3027                                 return retval;
3028                         }
3029                         if (target->state == TARGET_HALTED)
3030                         {
3031                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3032                         }
3033                         if ((retval = target_poll(target)) != ERROR_OK)
3034                         {
3035                                 free(samples);
3036                                 return retval;
3037                         }
3038                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3039                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3040                         break;
3041                 }
3042         }
3043         free(samples);
3044
3045         return ERROR_OK;
3046 }
3047
3048 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3049 {
3050         char *namebuf;
3051         Jim_Obj *nameObjPtr, *valObjPtr;
3052         int result;
3053
3054         namebuf = alloc_printf("%s(%d)", varname, idx);
3055         if (!namebuf)
3056                 return JIM_ERR;
3057
3058         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3059         valObjPtr = Jim_NewIntObj(interp, val);
3060         if (!nameObjPtr || !valObjPtr)
3061         {
3062                 free(namebuf);
3063                 return JIM_ERR;
3064         }
3065
3066         Jim_IncrRefCount(nameObjPtr);
3067         Jim_IncrRefCount(valObjPtr);
3068         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3069         Jim_DecrRefCount(interp, nameObjPtr);
3070         Jim_DecrRefCount(interp, valObjPtr);
3071         free(namebuf);
3072         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3073         return result;
3074 }
3075
3076 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3077 {
3078         struct command_context *context;
3079         struct target *target;
3080
3081         context = Jim_GetAssocData(interp, "context");
3082         if (context == NULL)
3083         {
3084                 LOG_ERROR("mem2array: no command context");
3085                 return JIM_ERR;
3086         }
3087         target = get_current_target(context);
3088         if (target == NULL)
3089         {
3090                 LOG_ERROR("mem2array: no current target");
3091                 return JIM_ERR;
3092         }
3093
3094         return  target_mem2array(interp, target, argc-1, argv + 1);
3095 }
3096
3097 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3098 {
3099         long l;
3100         uint32_t width;
3101         int len;
3102         uint32_t addr;
3103         uint32_t count;
3104         uint32_t v;
3105         const char *varname;
3106         int  n, e, retval;
3107         uint32_t i;
3108
3109         /* argv[1] = name of array to receive the data
3110          * argv[2] = desired width
3111          * argv[3] = memory address
3112          * argv[4] = count of times to read
3113          */
3114         if (argc != 4) {
3115                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3116                 return JIM_ERR;
3117         }
3118         varname = Jim_GetString(argv[0], &len);
3119         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3120
3121         e = Jim_GetLong(interp, argv[1], &l);
3122         width = l;
3123         if (e != JIM_OK) {
3124                 return e;
3125         }
3126
3127         e = Jim_GetLong(interp, argv[2], &l);
3128         addr = l;
3129         if (e != JIM_OK) {
3130                 return e;
3131         }
3132         e = Jim_GetLong(interp, argv[3], &l);
3133         len = l;
3134         if (e != JIM_OK) {
3135                 return e;
3136         }
3137         switch (width) {
3138                 case 8:
3139                         width = 1;
3140                         break;
3141                 case 16:
3142                         width = 2;
3143                         break;
3144                 case 32:
3145                         width = 4;
3146                         break;
3147                 default:
3148                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3149                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3150                         return JIM_ERR;
3151         }
3152         if (len == 0) {
3153                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3154                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3155                 return JIM_ERR;
3156         }
3157         if ((addr + (len * width)) < addr) {
3158                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3159                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3160                 return JIM_ERR;
3161         }
3162         /* absurd transfer size? */
3163         if (len > 65536) {
3164                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3165                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3166                 return JIM_ERR;
3167         }
3168
3169         if ((width == 1) ||
3170                 ((width == 2) && ((addr & 1) == 0)) ||
3171                 ((width == 4) && ((addr & 3) == 0))) {
3172                 /* all is well */
3173         } else {
3174                 char buf[100];
3175                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3176                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3177                                 addr,
3178                                 width);
3179                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3180                 return JIM_ERR;
3181         }
3182
3183         /* Transfer loop */
3184
3185         /* index counter */
3186         n = 0;
3187
3188         size_t buffersize = 4096;
3189         uint8_t *buffer = malloc(buffersize);
3190         if (buffer == NULL)
3191                 return JIM_ERR;
3192
3193         /* assume ok */
3194         e = JIM_OK;
3195         while (len) {
3196                 /* Slurp... in buffer size chunks */
3197
3198                 count = len; /* in objects.. */
3199                 if (count > (buffersize/width)) {
3200                         count = (buffersize/width);
3201                 }
3202
3203                 retval = target_read_memory(target, addr, width, count, buffer);
3204                 if (retval != ERROR_OK) {
3205                         /* BOO !*/
3206                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3207                                           (unsigned int)addr,
3208                                           (int)width,
3209                                           (int)count);
3210                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3211                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3212                         e = JIM_ERR;
3213                         len = 0;
3214                 } else {
3215                         v = 0; /* shut up gcc */
3216                         for (i = 0 ;i < count ;i++, n++) {
3217                                 switch (width) {
3218                                         case 4:
3219                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3220                                                 break;
3221                                         case 2:
3222                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3223                                                 break;
3224                                         case 1:
3225                                                 v = buffer[i] & 0x0ff;
3226                                                 break;
3227                                 }
3228                                 new_int_array_element(interp, varname, n, v);
3229                         }
3230                         len -= count;
3231                 }
3232         }
3233
3234         free(buffer);
3235
3236         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3237
3238         return JIM_OK;
3239 }
3240
3241 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3242 {
3243         char *namebuf;
3244         Jim_Obj *nameObjPtr, *valObjPtr;
3245         int result;
3246         long l;
3247
3248         namebuf = alloc_printf("%s(%d)", varname, idx);
3249         if (!namebuf)
3250                 return JIM_ERR;
3251
3252         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3253         if (!nameObjPtr)
3254         {
3255                 free(namebuf);
3256                 return JIM_ERR;
3257         }
3258
3259         Jim_IncrRefCount(nameObjPtr);
3260         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3261         Jim_DecrRefCount(interp, nameObjPtr);
3262         free(namebuf);
3263         if (valObjPtr == NULL)
3264                 return JIM_ERR;
3265
3266         result = Jim_GetLong(interp, valObjPtr, &l);
3267         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3268         *val = l;
3269         return result;
3270 }
3271
3272 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3273 {
3274         struct command_context *context;
3275         struct target *target;
3276
3277         context = Jim_GetAssocData(interp, "context");
3278         if (context == NULL) {
3279                 LOG_ERROR("array2mem: no command context");
3280                 return JIM_ERR;
3281         }
3282         target = get_current_target(context);
3283         if (target == NULL) {
3284                 LOG_ERROR("array2mem: no current target");
3285                 return JIM_ERR;
3286         }
3287
3288         return target_array2mem(interp,target, argc-1, argv + 1);
3289 }
3290 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3291 {
3292         long l;
3293         uint32_t width;
3294         int len;
3295         uint32_t addr;
3296         uint32_t count;
3297         uint32_t v;
3298         const char *varname;
3299         int  n, e, retval;
3300         uint32_t i;
3301
3302         /* argv[1] = name of array to get the data
3303          * argv[2] = desired width
3304          * argv[3] = memory address
3305          * argv[4] = count to write
3306          */
3307         if (argc != 4) {
3308                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3309                 return JIM_ERR;
3310         }
3311         varname = Jim_GetString(argv[0], &len);
3312         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3313
3314         e = Jim_GetLong(interp, argv[1], &l);
3315         width = l;
3316         if (e != JIM_OK) {
3317                 return e;
3318         }
3319
3320         e = Jim_GetLong(interp, argv[2], &l);
3321         addr = l;
3322         if (e != JIM_OK) {
3323                 return e;
3324         }
3325         e = Jim_GetLong(interp, argv[3], &l);
3326         len = l;
3327         if (e != JIM_OK) {
3328                 return e;
3329         }
3330         switch (width) {
3331                 case 8:
3332                         width = 1;
3333                         break;
3334                 case 16:
3335                         width = 2;
3336                         break;
3337                 case 32:
3338                         width = 4;
3339                         break;
3340                 default:
3341                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3342                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3343                         return JIM_ERR;
3344         }
3345         if (len == 0) {
3346                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3347                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3348                 return JIM_ERR;
3349         }
3350         if ((addr + (len * width)) < addr) {
3351                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3352                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3353                 return JIM_ERR;
3354         }
3355         /* absurd transfer size? */
3356         if (len > 65536) {
3357                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3358                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3359                 return JIM_ERR;
3360         }
3361
3362         if ((width == 1) ||
3363                 ((width == 2) && ((addr & 1) == 0)) ||
3364                 ((width == 4) && ((addr & 3) == 0))) {
3365                 /* all is well */
3366         } else {
3367                 char buf[100];
3368                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3369                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3370                                 (unsigned int)addr,
3371                                 (int)width);
3372                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3373                 return JIM_ERR;
3374         }
3375
3376         /* Transfer loop */
3377
3378         /* index counter */
3379         n = 0;
3380         /* assume ok */
3381         e = JIM_OK;
3382
3383         size_t buffersize = 4096;
3384         uint8_t *buffer = malloc(buffersize);
3385         if (buffer == NULL)
3386                 return JIM_ERR;
3387
3388         while (len) {
3389                 /* Slurp... in buffer size chunks */
3390
3391                 count = len; /* in objects.. */
3392                 if (count > (buffersize/width)) {
3393                         count = (buffersize/width);
3394                 }
3395
3396                 v = 0; /* shut up gcc */
3397                 for (i = 0 ;i < count ;i++, n++) {
3398                         get_int_array_element(interp, varname, n, &v);
3399                         switch (width) {
3400                         case 4:
3401                                 target_buffer_set_u32(target, &buffer[i*width], v);
3402                                 break;
3403                         case 2:
3404                                 target_buffer_set_u16(target, &buffer[i*width], v);
3405                                 break;
3406                         case 1:
3407                                 buffer[i] = v & 0x0ff;
3408                                 break;
3409                         }
3410                 }
3411                 len -= count;
3412
3413                 retval = target_write_memory(target, addr, width, count, buffer);
3414                 if (retval != ERROR_OK) {
3415                         /* BOO !*/
3416                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3417                                           (unsigned int)addr,
3418                                           (int)width,
3419                                           (int)count);
3420                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3421                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3422                         e = JIM_ERR;
3423                         len = 0;
3424                 }
3425         }
3426
3427         free(buffer);
3428
3429         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3430
3431         return JIM_OK;
3432 }
3433
3434 void target_all_handle_event(enum target_event e)
3435 {
3436         struct target *target;
3437
3438         LOG_DEBUG("**all*targets: event: %d, %s",
3439                            (int)e,
3440                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3441
3442         target = all_targets;
3443         while (target) {
3444                 target_handle_event(target, e);
3445                 target = target->next;
3446         }
3447 }
3448
3449
3450 /* FIX? should we propagate errors here rather than printing them
3451  * and continuing?
3452  */
3453 void target_handle_event(struct target *target, enum target_event e)
3454 {
3455         struct target_event_action *teap;
3456
3457         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3458                 if (teap->event == e) {
3459                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3460                                            target->target_number,
3461                                            target_name(target),
3462                                            target_type_name(target),
3463                                            e,
3464                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3465                                            Jim_GetString(teap->body, NULL));
3466                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3467                         {
3468                                 Jim_PrintErrorMessage(teap->interp);
3469                         }
3470                 }
3471         }
3472 }
3473
3474 /**
3475  * Returns true only if the target has a handler for the specified event.
3476  */
3477 bool target_has_event_action(struct target *target, enum target_event event)
3478 {
3479         struct target_event_action *teap;
3480
3481         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3482                 if (teap->event == event)
3483                         return true;
3484         }
3485         return false;
3486 }
3487
3488 enum target_cfg_param {
3489         TCFG_TYPE,
3490         TCFG_EVENT,
3491         TCFG_WORK_AREA_VIRT,
3492         TCFG_WORK_AREA_PHYS,
3493         TCFG_WORK_AREA_SIZE,
3494         TCFG_WORK_AREA_BACKUP,
3495         TCFG_ENDIAN,
3496         TCFG_VARIANT,
3497         TCFG_CHAIN_POSITION,
3498 };
3499
3500 static Jim_Nvp nvp_config_opts[] = {
3501         { .name = "-type",             .value = TCFG_TYPE },
3502         { .name = "-event",            .value = TCFG_EVENT },
3503         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3504         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3505         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3506         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3507         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3508         { .name = "-variant",          .value = TCFG_VARIANT },
3509         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3510
3511         { .name = NULL, .value = -1 }
3512 };
3513
3514 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3515 {
3516         Jim_Nvp *n;
3517         Jim_Obj *o;
3518         jim_wide w;
3519         char *cp;
3520         int e;
3521
3522         /* parse config or cget options ... */
3523         while (goi->argc > 0) {
3524                 Jim_SetEmptyResult(goi->interp);
3525                 /* Jim_GetOpt_Debug(goi); */
3526
3527                 if (target->type->target_jim_configure) {
3528                         /* target defines a configure function */
3529                         /* target gets first dibs on parameters */
3530                         e = (*(target->type->target_jim_configure))(target, goi);
3531                         if (e == JIM_OK) {
3532                                 /* more? */
3533                                 continue;
3534                         }
3535                         if (e == JIM_ERR) {
3536                                 /* An error */
3537                                 return e;
3538                         }
3539                         /* otherwise we 'continue' below */
3540                 }
3541                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3542                 if (e != JIM_OK) {
3543                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3544                         return e;
3545                 }
3546                 switch (n->value) {
3547                 case TCFG_TYPE:
3548                         /* not setable */
3549                         if (goi->isconfigure) {
3550                                 Jim_SetResult_sprintf(goi->interp,
3551                                                 "not settable: %s", n->name);
3552                                 return JIM_ERR;
3553                         } else {
3554                         no_params:
3555                                 if (goi->argc != 0) {
3556                                         Jim_WrongNumArgs(goi->interp,
3557                                                         goi->argc, goi->argv,
3558                                                         "NO PARAMS");
3559                                         return JIM_ERR;
3560                                 }
3561                         }
3562                         Jim_SetResultString(goi->interp,
3563                                         target_type_name(target), -1);
3564                         /* loop for more */
3565                         break;
3566                 case TCFG_EVENT:
3567                         if (goi->argc == 0) {
3568                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3569                                 return JIM_ERR;
3570                         }
3571
3572                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3573                         if (e != JIM_OK) {
3574                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3575                                 return e;
3576                         }
3577
3578                         if (goi->isconfigure) {
3579                                 if (goi->argc != 1) {
3580                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3581                                         return JIM_ERR;
3582                                 }
3583                         } else {
3584                                 if (goi->argc != 0) {
3585                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3586                                         return JIM_ERR;
3587                                 }
3588                         }
3589
3590                         {
3591                                 struct target_event_action *teap;
3592
3593                                 teap = target->event_action;
3594                                 /* replace existing? */
3595                                 while (teap) {
3596                                         if (teap->event == (enum target_event)n->value) {
3597                                                 break;
3598                                         }
3599                                         teap = teap->next;
3600                                 }
3601
3602                                 if (goi->isconfigure) {
3603                                         bool replace = true;
3604                                         if (teap == NULL) {
3605                                                 /* create new */
3606                                                 teap = calloc(1, sizeof(*teap));
3607                                                 replace = false;
3608                                         }
3609                                         teap->event = n->value;
3610                                         teap->interp = goi->interp;
3611                                         Jim_GetOpt_Obj(goi, &o);
3612                                         if (teap->body) {
3613                                                 Jim_DecrRefCount(teap->interp, teap->body);
3614                                         }
3615                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3616                                         /*
3617                                          * FIXME:
3618                                          *     Tcl/TK - "tk events" have a nice feature.
3619                                          *     See the "BIND" command.
3620                                          *    We should support that here.
3621                                          *     You can specify %X and %Y in the event code.
3622                                          *     The idea is: %T - target name.
3623                                          *     The idea is: %N - target number
3624                                          *     The idea is: %E - event name.
3625                                          */
3626                                         Jim_IncrRefCount(teap->body);
3627
3628                                         if (!replace)
3629                                         {
3630                                                 /* add to head of event list */
3631                                                 teap->next = target->event_action;
3632                                                 target->event_action = teap;
3633                                         }
3634                                         Jim_SetEmptyResult(goi->interp);
3635                                 } else {
3636                                         /* get */
3637                                         if (teap == NULL) {
3638                                                 Jim_SetEmptyResult(goi->interp);
3639                                         } else {
3640                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3641                                         }
3642                                 }
3643                         }
3644                         /* loop for more */
3645                         break;
3646
3647                 case TCFG_WORK_AREA_VIRT:
3648                         if (goi->isconfigure) {
3649                                 target_free_all_working_areas(target);
3650                                 e = Jim_GetOpt_Wide(goi, &w);
3651                                 if (e != JIM_OK) {
3652                                         return e;
3653                                 }
3654                                 target->working_area_virt = w;
3655                                 target->working_area_virt_spec = true;
3656                         } else {
3657                                 if (goi->argc != 0) {
3658                                         goto no_params;
3659                                 }
3660                         }
3661                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3662                         /* loop for more */
3663                         break;
3664
3665                 case TCFG_WORK_AREA_PHYS:
3666                         if (goi->isconfigure) {
3667                                 target_free_all_working_areas(target);
3668                                 e = Jim_GetOpt_Wide(goi, &w);
3669                                 if (e != JIM_OK) {
3670                                         return e;
3671                                 }
3672                                 target->working_area_phys = w;
3673                                 target->working_area_phys_spec = true;
3674                         } else {
3675                                 if (goi->argc != 0) {
3676                                         goto no_params;
3677                                 }
3678                         }
3679                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3680                         /* loop for more */
3681                         break;
3682
3683                 case TCFG_WORK_AREA_SIZE:
3684                         if (goi->isconfigure) {
3685                                 target_free_all_working_areas(target);
3686                                 e = Jim_GetOpt_Wide(goi, &w);
3687                                 if (e != JIM_OK) {
3688                                         return e;
3689                                 }
3690                                 target->working_area_size = w;
3691                         } else {
3692                                 if (goi->argc != 0) {
3693                                         goto no_params;
3694                                 }
3695                         }
3696                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3697                         /* loop for more */
3698                         break;
3699
3700                 case TCFG_WORK_AREA_BACKUP:
3701                         if (goi->isconfigure) {
3702                                 target_free_all_working_areas(target);
3703                                 e = Jim_GetOpt_Wide(goi, &w);
3704                                 if (e != JIM_OK) {
3705                                         return e;
3706                                 }
3707                                 /* make this exactly 1 or 0 */
3708                                 target->backup_working_area = (!!w);
3709                         } else {
3710                                 if (goi->argc != 0) {
3711                                         goto no_params;
3712                                 }
3713                         }
3714                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3715                         /* loop for more e*/
3716                         break;
3717
3718                 case TCFG_ENDIAN:
3719                         if (goi->isconfigure) {
3720                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3721                                 if (e != JIM_OK) {
3722                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3723                                         return e;
3724                                 }
3725                                 target->endianness = n->value;
3726                         } else {
3727                                 if (goi->argc != 0) {
3728                                         goto no_params;
3729                                 }
3730                         }
3731                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3732                         if (n->name == NULL) {
3733                                 target->endianness = TARGET_LITTLE_ENDIAN;
3734                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3735                         }
3736                         Jim_SetResultString(goi->interp, n->name, -1);
3737                         /* loop for more */
3738                         break;
3739
3740                 case TCFG_VARIANT:
3741                         if (goi->isconfigure) {
3742                                 if (goi->argc < 1) {
3743                                         Jim_SetResult_sprintf(goi->interp,
3744                                                                                    "%s ?STRING?",
3745                                                                                    n->name);
3746                                         return JIM_ERR;
3747                                 }
3748                                 if (target->variant) {
3749                                         free((void *)(target->variant));
3750                                 }
3751                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3752                                 target->variant = strdup(cp);
3753                         } else {
3754                                 if (goi->argc != 0) {
3755                                         goto no_params;
3756                                 }
3757                         }
3758                         Jim_SetResultString(goi->interp, target->variant,-1);
3759                         /* loop for more */
3760                         break;
3761                 case TCFG_CHAIN_POSITION:
3762                         if (goi->isconfigure) {
3763                                 Jim_Obj *o;
3764                                 struct jtag_tap *tap;
3765                                 target_free_all_working_areas(target);
3766                                 e = Jim_GetOpt_Obj(goi, &o);
3767                                 if (e != JIM_OK) {
3768                                         return e;
3769                                 }
3770                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3771                                 if (tap == NULL) {
3772                                         return JIM_ERR;
3773                                 }
3774                                 /* make this exactly 1 or 0 */
3775                                 target->tap = tap;
3776                         } else {
3777                                 if (goi->argc != 0) {
3778                                         goto no_params;
3779                                 }
3780                         }
3781                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3782                         /* loop for more e*/
3783                         break;
3784                 }
3785         } /* while (goi->argc) */
3786
3787
3788                 /* done - we return */
3789         return JIM_OK;
3790 }
3791
3792 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3793 {
3794         Jim_GetOptInfo goi;
3795         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3796         goi.isconfigure = strcmp(Jim_GetString(argv[0], NULL), "configure") == 0;
3797         int need_args = 1 + goi.isconfigure;
3798         if (goi.argc < need_args)
3799         {
3800                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3801                         goi.isconfigure
3802                                 ? "missing: -option VALUE ..."
3803                                 : "missing: -option ...");
3804                 return JIM_ERR;
3805         }
3806         struct target *target = Jim_CmdPrivData(goi.interp);
3807         return target_configure(&goi, target);
3808 }
3809
3810 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3811 {
3812         const char *cmd_name = Jim_GetString(argv[0], NULL);
3813
3814         Jim_GetOptInfo goi;
3815         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3816
3817         if (goi.argc != 2 && goi.argc != 3)
3818         {
3819                 Jim_SetResult_sprintf(goi.interp,
3820                                 "usage: %s <address> <data> [<count>]", cmd_name);
3821                 return JIM_ERR;
3822         }
3823
3824         jim_wide a;
3825         int e = Jim_GetOpt_Wide(&goi, &a);
3826         if (e != JIM_OK)
3827                 return e;
3828
3829         jim_wide b;
3830         e = Jim_GetOpt_Wide(&goi, &b);
3831         if (e != JIM_OK)
3832                 return e;
3833
3834         jim_wide c = 1;
3835         if (goi.argc == 3)
3836         {
3837                 e = Jim_GetOpt_Wide(&goi, &c);
3838                 if (e != JIM_OK)
3839                         return e;
3840         }
3841
3842         struct target *target = Jim_CmdPrivData(goi.interp);
3843         uint8_t  target_buf[32];
3844         if (strcasecmp(cmd_name, "mww") == 0) {
3845                 target_buffer_set_u32(target, target_buf, b);
3846                 b = 4;
3847         }
3848         else if (strcasecmp(cmd_name, "mwh") == 0) {
3849                 target_buffer_set_u16(target, target_buf, b);
3850                 b = 2;
3851         }
3852         else if (strcasecmp(cmd_name, "mwb") == 0) {
3853                 target_buffer_set_u8(target, target_buf, b);
3854                 b = 1;
3855         } else {
3856                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3857                 return JIM_ERR;
3858         }
3859
3860         for (jim_wide x = 0; x < c; x++)
3861         {
3862                 e = target_write_memory(target, a, b, 1, target_buf);
3863                 if (e != ERROR_OK)
3864                 {
3865                         Jim_SetResult_sprintf(interp,
3866                                         "Error writing @ 0x%08x: %d\n", (int)(a), e);
3867                         return JIM_ERR;
3868                 }
3869                 /* b = width */
3870                 a = a + b;
3871         }
3872         return JIM_OK;
3873 }
3874
3875 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3876 {
3877         const char *cmd_name = Jim_GetString(argv[0], NULL);
3878
3879         Jim_GetOptInfo goi;
3880         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3881
3882         if ((goi.argc == 2) || (goi.argc == 3))
3883         {
3884                 Jim_SetResult_sprintf(goi.interp,
3885                                 "usage: %s <address> [<count>]", cmd_name);
3886                 return JIM_ERR;
3887         }
3888
3889         jim_wide a;
3890         int e = Jim_GetOpt_Wide(&goi, &a);
3891         if (e != JIM_OK) {
3892                 return JIM_ERR;
3893         }
3894         jim_wide c;
3895         if (goi.argc) {
3896                 e = Jim_GetOpt_Wide(&goi, &c);
3897                 if (e != JIM_OK) {
3898                         return JIM_ERR;
3899                 }
3900         } else {
3901                 c = 1;
3902         }
3903         jim_wide b = 1; /* shut up gcc */
3904         if (strcasecmp(cmd_name, "mdw") == 0)
3905                 b = 4;
3906         else if (strcasecmp(cmd_name, "mdh") == 0)
3907                 b = 2;
3908         else if (strcasecmp(cmd_name, "mdb") == 0)
3909                 b = 1;
3910         else {
3911                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3912                 return JIM_ERR;
3913         }
3914
3915         /* convert count to "bytes" */
3916         c = c * b;
3917
3918         struct target *target = Jim_CmdPrivData(goi.interp);
3919         uint8_t  target_buf[32];
3920         jim_wide x, y, z;
3921         while (c > 0) {
3922                 y = c;
3923                 if (y > 16) {
3924                         y = 16;
3925                 }
3926                 e = target_read_memory(target, a, b, y / b, target_buf);
3927                 if (e != ERROR_OK) {
3928                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3929                         return JIM_ERR;
3930                 }
3931
3932                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3933                 switch (b) {
3934                 case 4:
3935                         for (x = 0; x < 16 && x < y; x += 4)
3936                         {
3937                                 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3938                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3939                         }
3940                         for (; (x < 16) ; x += 4) {
3941                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
3942                         }
3943                         break;
3944                 case 2:
3945                         for (x = 0; x < 16 && x < y; x += 2)
3946                         {
3947                                 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3948                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3949                         }
3950                         for (; (x < 16) ; x += 2) {
3951                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
3952                         }
3953                         break;
3954                 case 1:
3955                 default:
3956                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3957                                 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3958                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3959                         }
3960                         for (; (x < 16) ; x += 1) {
3961                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
3962                         }
3963                         break;
3964                 }
3965                 /* ascii-ify the bytes */
3966                 for (x = 0 ; x < y ; x++) {
3967                         if ((target_buf[x] >= 0x20) &&
3968                                 (target_buf[x] <= 0x7e)) {
3969                                 /* good */
3970                         } else {
3971                                 /* smack it */
3972                                 target_buf[x] = '.';
3973                         }
3974                 }
3975                 /* space pad  */
3976                 while (x < 16) {
3977                         target_buf[x] = ' ';
3978                         x++;
3979                 }
3980                 /* terminate */
3981                 target_buf[16] = 0;
3982                 /* print - with a newline */
3983                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
3984                 /* NEXT... */
3985                 c -= 16;
3986                 a += 16;
3987         }
3988         return JIM_OK;
3989 }
3990
3991 static int jim_target_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3992 {
3993         struct target *target = Jim_CmdPrivData(interp);
3994         return target_mem2array(interp, target, argc - 1, argv + 1);
3995 }
3996
3997 static int jim_target_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3998 {
3999         struct target *target = Jim_CmdPrivData(interp);
4000         return target_array2mem(interp, target, argc - 1, argv + 1);
4001 }
4002
4003 static int jim_target_tap_disabled(Jim_Interp *interp)
4004 {
4005         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4006         return JIM_ERR;
4007 }
4008
4009 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4010 {
4011         if (argc != 1)
4012         {
4013                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4014                 return JIM_ERR;
4015         }
4016         struct target *target = Jim_CmdPrivData(interp);
4017         if (!target->tap->enabled)
4018                 return jim_target_tap_disabled(interp);
4019
4020         int e = target->type->examine(target);
4021         if (e != ERROR_OK)
4022         {
4023                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4024                 return JIM_ERR;
4025         }
4026         return JIM_OK;
4027 }
4028
4029 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4030 {
4031         if (argc != 1)
4032         {
4033                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4034                 return JIM_ERR;
4035         }
4036         struct target *target = Jim_CmdPrivData(interp);
4037         if (!target->tap->enabled)
4038                 return jim_target_tap_disabled(interp);
4039
4040         int e;
4041         if (!(target_was_examined(target))) {
4042                 e = ERROR_TARGET_NOT_EXAMINED;
4043         } else {
4044                 e = target->type->poll(target);
4045         }
4046         if (e != ERROR_OK)
4047         {
4048                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4049                 return JIM_ERR;
4050         }
4051         return JIM_OK;
4052 }
4053
4054 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4055 {
4056         Jim_GetOptInfo goi;
4057         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4058
4059         if (goi.argc != 2)
4060         {
4061                 Jim_WrongNumArgs(interp, 0, argv,
4062                                 "([tT]|[fF]|assert|deassert) BOOL");
4063                 return JIM_ERR;
4064         }
4065
4066         Jim_Nvp *n;
4067         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4068         if (e != JIM_OK)
4069         {
4070                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4071                 return e;
4072         }
4073         /* the halt or not param */
4074         jim_wide a;
4075         e = Jim_GetOpt_Wide(&goi, &a);
4076         if (e != JIM_OK)
4077                 return e;
4078
4079         struct target *target = Jim_CmdPrivData(goi.interp);
4080         if (!target->tap->enabled)
4081                 return jim_target_tap_disabled(interp);
4082         if (!(target_was_examined(target)))
4083         {
4084                 LOG_ERROR("Target not examined yet");
4085                 return ERROR_TARGET_NOT_EXAMINED;
4086         }
4087         if (!target->type->assert_reset || !target->type->deassert_reset)
4088         {
4089                 Jim_SetResult_sprintf(interp,
4090                                 "No target-specific reset for %s",
4091                                 target_name(target));
4092                 return JIM_ERR;
4093         }
4094         /* determine if we should halt or not. */
4095         target->reset_halt = !!a;
4096         /* When this happens - all workareas are invalid. */
4097         target_free_all_working_areas_restore(target, 0);
4098
4099         /* do the assert */
4100         if (n->value == NVP_ASSERT) {
4101                 e = target->type->assert_reset(target);
4102         } else {
4103                 e = target->type->deassert_reset(target);
4104         }
4105         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4106 }
4107
4108 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4109 {
4110         if (argc != 1) {
4111                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4112                 return JIM_ERR;
4113         }
4114         struct target *target = Jim_CmdPrivData(interp);
4115         if (!target->tap->enabled)
4116                 return jim_target_tap_disabled(interp);
4117         int e = target->type->halt(target);
4118         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4119 }
4120
4121 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4122 {
4123         Jim_GetOptInfo goi;
4124         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4125
4126         /* params:  <name>  statename timeoutmsecs */
4127         if (goi.argc != 2)
4128         {
4129                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4130                 Jim_SetResult_sprintf(goi.interp,
4131                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4132                 return JIM_ERR;
4133         }
4134
4135         Jim_Nvp *n;
4136         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4137         if (e != JIM_OK) {
4138                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4139                 return e;
4140         }
4141         jim_wide a;
4142         e = Jim_GetOpt_Wide(&goi, &a);
4143         if (e != JIM_OK) {
4144                 return e;
4145         }
4146         struct target *target = Jim_CmdPrivData(interp);
4147         if (!target->tap->enabled)
4148                 return jim_target_tap_disabled(interp);
4149
4150         e = target_wait_state(target, n->value, a);
4151         if (e != ERROR_OK)
4152         {
4153                 Jim_SetResult_sprintf(goi.interp,
4154                                 "target: %s wait %s fails (%d) %s",
4155                                 target_name(target), n->name,
4156                                 e, target_strerror_safe(e));
4157                 return JIM_ERR;
4158         }
4159         return JIM_OK;
4160 }
4161 /* List for human, Events defined for this target.
4162  * scripts/programs should use 'name cget -event NAME'
4163  */
4164 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4165 {
4166         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4167         struct target *target = Jim_CmdPrivData(interp);
4168         struct target_event_action *teap = target->event_action;
4169         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4170                                    target->target_number,
4171                                    target_name(target));
4172         command_print(cmd_ctx, "%-25s | Body", "Event");
4173         command_print(cmd_ctx, "------------------------- | "
4174                         "----------------------------------------");
4175         while (teap)
4176         {
4177                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4178                 command_print(cmd_ctx, "%-25s | %s",
4179                                 opt->name, Jim_GetString(teap->body, NULL));
4180                 teap = teap->next;
4181         }
4182         command_print(cmd_ctx, "***END***");
4183         return JIM_OK;
4184 }
4185 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4186 {
4187         if (argc != 1)
4188         {
4189                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4190                 return JIM_ERR;
4191         }
4192         struct target *target = Jim_CmdPrivData(interp);
4193         Jim_SetResultString(interp, target_state_name(target), -1);
4194         return JIM_OK;
4195 }
4196 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4197 {
4198         Jim_GetOptInfo goi;
4199         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4200         if (goi.argc != 1)
4201         {
4202                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4203                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4204                 return JIM_ERR;
4205         }
4206         Jim_Nvp *n;
4207         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4208         if (e != JIM_OK)
4209         {
4210                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4211                 return e;
4212         }
4213         struct target *target = Jim_CmdPrivData(interp);
4214         target_handle_event(target, n->value);
4215         return JIM_OK;
4216 }
4217
4218 static const struct command_registration target_instance_command_handlers[] = {
4219         {
4220                 .name = "configure",
4221                 .mode = COMMAND_CONFIG,
4222                 .jim_handler = &jim_target_configure,
4223                 .usage = "[<target_options> ...]",
4224                 .help  = "configure a new target for use",
4225         },
4226         {
4227                 .name = "cget",
4228                 .mode = COMMAND_ANY,
4229                 .jim_handler = &jim_target_configure,
4230                 .usage = "<target_type> [<target_options> ...]",
4231                 .help  = "configure a new target for use",
4232         },
4233         {
4234                 .name = "mww",
4235                 .mode = COMMAND_EXEC,
4236                 .jim_handler = &jim_target_mw,
4237                 .usage = "<address> <data> [<count>]",
4238                 .help = "Write 32-bit word(s) to target memory",
4239         },
4240         {
4241                 .name = "mwh",
4242                 .mode = COMMAND_EXEC,
4243                 .jim_handler = &jim_target_mw,
4244                 .usage = "<address> <data> [<count>]",
4245                 .help = "Write 16-bit half-word(s) to target memory",
4246         },
4247         {
4248                 .name = "mwb",
4249                 .mode = COMMAND_EXEC,
4250                 .jim_handler = &jim_target_mw,
4251                 .usage = "<address> <data> [<count>]",
4252                 .help = "Write byte(s) to target memory",
4253         },
4254         {
4255                 .name = "mdw",
4256                 .mode = COMMAND_EXEC,
4257                 .jim_handler = &jim_target_md,
4258                 .usage = "<address> [<count>]",
4259                 .help = "Display target memory as 32-bit words",
4260         },
4261         {
4262                 .name = "mdh",
4263                 .mode = COMMAND_EXEC,
4264                 .jim_handler = &jim_target_md,
4265                 .usage = "<address> [<count>]",
4266                 .help = "Display target memory as 16-bit half-words",
4267         },
4268         {
4269                 .name = "mdb",
4270                 .mode = COMMAND_EXEC,
4271                 .jim_handler = &jim_target_md,
4272                 .usage = "<address> [<count>]",
4273                 .help = "Display target memory as 8-bit bytes",
4274         },
4275         {
4276                 .name = "array2mem",
4277                 .mode = COMMAND_EXEC,
4278                 .jim_handler = &jim_target_array2mem,
4279         },
4280         {
4281                 .name = "mem2array",
4282                 .mode = COMMAND_EXEC,
4283                 .jim_handler = &jim_target_mem2array,
4284         },
4285         {
4286                 .name = "eventlist",
4287                 .mode = COMMAND_EXEC,
4288                 .jim_handler = &jim_target_event_list,
4289         },
4290         {
4291                 .name = "curstate",
4292                 .mode = COMMAND_EXEC,
4293                 .jim_handler = &jim_target_current_state,
4294         },
4295         {
4296                 .name = "arp_examine",
4297                 .mode = COMMAND_EXEC,
4298                 .jim_handler = &jim_target_examine,
4299         },
4300         {
4301                 .name = "arp_poll",
4302                 .mode = COMMAND_EXEC,
4303                 .jim_handler = &jim_target_poll,
4304         },
4305         {
4306                 .name = "arp_reset",
4307                 .mode = COMMAND_EXEC,
4308                 .jim_handler = &jim_target_reset,
4309         },
4310         {
4311                 .name = "arp_halt",
4312                 .mode = COMMAND_EXEC,
4313                 .jim_handler = &jim_target_halt,
4314         },
4315         {
4316                 .name = "arp_waitstate",
4317                 .mode = COMMAND_EXEC,
4318                 .jim_handler = &jim_target_wait_state,
4319         },
4320         {
4321                 .name = "invoke-event",
4322                 .mode = COMMAND_EXEC,
4323                 .jim_handler = &jim_target_invoke_event,
4324         },
4325         COMMAND_REGISTRATION_DONE
4326 };
4327
4328 static int target_create(Jim_GetOptInfo *goi)
4329 {
4330         Jim_Obj *new_cmd;
4331         Jim_Cmd *cmd;
4332         const char *cp;
4333         char *cp2;
4334         int e;
4335         int x;
4336         struct target *target;
4337         struct command_context *cmd_ctx;
4338
4339         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4340         if (goi->argc < 3) {
4341                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4342                 return JIM_ERR;
4343         }
4344
4345         /* COMMAND */
4346         Jim_GetOpt_Obj(goi, &new_cmd);
4347         /* does this command exist? */
4348         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4349         if (cmd) {
4350                 cp = Jim_GetString(new_cmd, NULL);
4351                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4352                 return JIM_ERR;
4353         }
4354
4355         /* TYPE */
4356         e = Jim_GetOpt_String(goi, &cp2, NULL);
4357         cp = cp2;
4358         /* now does target type exist */
4359         for (x = 0 ; target_types[x] ; x++) {
4360                 if (0 == strcmp(cp, target_types[x]->name)) {
4361                         /* found */
4362                         break;
4363                 }
4364         }
4365         if (target_types[x] == NULL) {
4366                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4367                 for (x = 0 ; target_types[x] ; x++) {
4368                         if (target_types[x + 1]) {
4369                                 Jim_AppendStrings(goi->interp,
4370                                                                    Jim_GetResult(goi->interp),
4371                                                                    target_types[x]->name,
4372                                                                    ", ", NULL);
4373                         } else {
4374                                 Jim_AppendStrings(goi->interp,
4375                                                                    Jim_GetResult(goi->interp),
4376                                                                    " or ",
4377                                                                    target_types[x]->name,NULL);
4378                         }
4379                 }
4380                 return JIM_ERR;
4381         }
4382
4383         /* Create it */
4384         target = calloc(1,sizeof(struct target));
4385         /* set target number */
4386         target->target_number = new_target_number();
4387
4388         /* allocate memory for each unique target type */
4389         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4390
4391         memcpy(target->type, target_types[x], sizeof(struct target_type));
4392
4393         /* will be set by "-endian" */
4394         target->endianness = TARGET_ENDIAN_UNKNOWN;
4395
4396         target->working_area        = 0x0;
4397         target->working_area_size   = 0x0;
4398         target->working_areas       = NULL;
4399         target->backup_working_area = 0;
4400
4401         target->state               = TARGET_UNKNOWN;
4402         target->debug_reason        = DBG_REASON_UNDEFINED;
4403         target->reg_cache           = NULL;
4404         target->breakpoints         = NULL;
4405         target->watchpoints         = NULL;
4406         target->next                = NULL;
4407         target->arch_info           = NULL;
4408
4409         target->display             = 1;
4410
4411         target->halt_issued                     = false;
4412
4413         /* initialize trace information */
4414         target->trace_info = malloc(sizeof(struct trace));
4415         target->trace_info->num_trace_points         = 0;
4416         target->trace_info->trace_points_size        = 0;
4417         target->trace_info->trace_points             = NULL;
4418         target->trace_info->trace_history_size       = 0;
4419         target->trace_info->trace_history            = NULL;
4420         target->trace_info->trace_history_pos        = 0;
4421         target->trace_info->trace_history_overflowed = 0;
4422
4423         target->dbgmsg          = NULL;
4424         target->dbg_msg_enabled = 0;
4425
4426         target->endianness = TARGET_ENDIAN_UNKNOWN;
4427
4428         /* Do the rest as "configure" options */
4429         goi->isconfigure = 1;
4430         e = target_configure(goi, target);
4431
4432         if (target->tap == NULL)
4433         {
4434                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4435                 e = JIM_ERR;
4436         }
4437
4438         if (e != JIM_OK) {
4439                 free(target->type);
4440                 free(target);
4441                 return e;
4442         }
4443
4444         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4445                 /* default endian to little if not specified */
4446                 target->endianness = TARGET_LITTLE_ENDIAN;
4447         }
4448
4449         /* incase variant is not set */
4450         if (!target->variant)
4451                 target->variant = strdup("");
4452
4453         cp = Jim_GetString(new_cmd, NULL);
4454         target->cmd_name = strdup(cp);
4455
4456         /* create the target specific commands */
4457         if (target->type->commands) {
4458                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4459                 if (ERROR_OK != e)
4460                         LOG_ERROR("unable to register '%s' commands", cp);
4461         }
4462         if (target->type->target_create) {
4463                 (*(target->type->target_create))(target, goi->interp);
4464         }
4465
4466         /* append to end of list */
4467         {
4468                 struct target **tpp;
4469                 tpp = &(all_targets);
4470                 while (*tpp) {
4471                         tpp = &((*tpp)->next);
4472                 }
4473                 *tpp = target;
4474         }
4475         
4476         /* now - create the new target name command */
4477         const const struct command_registration target_subcommands[] = {
4478                 {
4479                         .chain = target_instance_command_handlers,
4480                 },
4481                 {
4482                         .chain = target->type->commands,
4483                 },
4484                 COMMAND_REGISTRATION_DONE
4485         };
4486         const const struct command_registration target_commands[] = {
4487                 {
4488                         .name = cp,
4489                         .mode = COMMAND_ANY,
4490                         .help = "target command group",
4491                         .chain = target_subcommands,
4492                 },
4493                 COMMAND_REGISTRATION_DONE
4494         };
4495         e = register_commands(cmd_ctx, NULL, target_commands);
4496         if (ERROR_OK != e)
4497                 return JIM_ERR;
4498
4499         struct command *c = command_find_in_context(cmd_ctx, cp);
4500         assert(c);
4501         command_set_handler_data(c, target);
4502
4503         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4504 }
4505
4506 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4507 {
4508         if (argc != 1)
4509         {
4510                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4511                 return JIM_ERR;
4512         }
4513         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4514         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4515         return JIM_OK;
4516 }
4517
4518 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4519 {
4520         if (argc != 1)
4521         {
4522                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4523                 return JIM_ERR;
4524         }
4525         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4526         for (unsigned x = 0; NULL != target_types[x]; x++)
4527         {
4528                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4529                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4530         }
4531         return JIM_OK;
4532 }
4533
4534 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4535 {
4536         if (argc != 1)
4537         {
4538                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4539                 return JIM_ERR;
4540         }
4541         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4542         struct target *target = all_targets;
4543         while (target)
4544         {
4545                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4546                         Jim_NewStringObj(interp, target_name(target), -1));
4547                 target = target->next;
4548         }
4549         return JIM_OK;
4550 }
4551
4552 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4553 {
4554         Jim_GetOptInfo goi;
4555         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4556         if (goi.argc < 3)
4557         {
4558                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4559                         "<name> <target_type> [<target_options> ...]");
4560                 return JIM_ERR;
4561         }
4562         return target_create(&goi);
4563 }
4564
4565 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4566 {
4567         Jim_GetOptInfo goi;
4568         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4569
4570         /* It's OK to remove this mechanism sometime after August 2010 or so */
4571         LOG_WARNING("don't use numbers as target identifiers; use names");
4572         if (goi.argc != 1)
4573         {
4574                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4575                 return JIM_ERR;
4576         }
4577         jim_wide w;
4578         int e = Jim_GetOpt_Wide(&goi, &w);
4579         if (e != JIM_OK)
4580                 return JIM_ERR;
4581
4582         struct target *target;
4583         for (target = all_targets; NULL != target; target = target->next)
4584         {
4585                 if (target->target_number != w)
4586                         continue;
4587
4588                 Jim_SetResultString(goi.interp, target_name(target), -1);
4589                 return JIM_OK;
4590         }
4591         Jim_SetResult_sprintf(goi.interp,
4592                         "Target: number %d does not exist", (int)(w));
4593         return JIM_ERR;
4594 }
4595
4596 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4597 {
4598         if (argc != 1)
4599         {
4600                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4601                 return JIM_ERR;
4602         }
4603         unsigned count = 0;
4604         struct target *target = all_targets;
4605         while (NULL != target)
4606         {
4607                 target = target->next;
4608                 count++;
4609         }
4610         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4611         return JIM_OK;
4612 }
4613
4614 static const struct command_registration target_subcommand_handlers[] = {
4615         {
4616                 .name = "init",
4617                 .mode = COMMAND_CONFIG,
4618                 .handler = &handle_target_init_command,
4619                 .help = "initialize targets",
4620         },
4621         {
4622                 .name = "create",
4623                 .mode = COMMAND_ANY,
4624                 .jim_handler = &jim_target_create,
4625                 .usage = "<name> <type> ...",
4626                 .help = "Returns the currently selected target",
4627         },
4628         {
4629                 .name = "current",
4630                 .mode = COMMAND_ANY,
4631                 .jim_handler = &jim_target_current,
4632                 .help = "Returns the currently selected target",
4633         },
4634         {
4635                 .name = "types",
4636                 .mode = COMMAND_ANY,
4637                 .jim_handler = &jim_target_types,
4638                 .help = "Returns the available target types as a list of strings",
4639         },
4640         {
4641                 .name = "names",
4642                 .mode = COMMAND_ANY,
4643                 .jim_handler = &jim_target_names,
4644                 .help = "Returns the names of all targets as a list of strings",
4645         },
4646         {
4647                 .name = "number",
4648                 .mode = COMMAND_ANY,
4649                 .jim_handler = &jim_target_number,
4650                 .usage = "<number>",
4651                 .help = "Returns the name of target <n>",
4652         },
4653         {
4654                 .name = "count",
4655                 .mode = COMMAND_ANY,
4656                 .jim_handler = &jim_target_count,
4657                 .help = "Returns the number of targets as an integer",
4658         },
4659         COMMAND_REGISTRATION_DONE
4660 };
4661
4662
4663 struct FastLoad
4664 {
4665         uint32_t address;
4666         uint8_t *data;
4667         int length;
4668
4669 };
4670
4671 static int fastload_num;
4672 static struct FastLoad *fastload;
4673
4674 static void free_fastload(void)
4675 {
4676         if (fastload != NULL)
4677         {
4678                 int i;
4679                 for (i = 0; i < fastload_num; i++)
4680                 {
4681                         if (fastload[i].data)
4682                                 free(fastload[i].data);
4683                 }
4684                 free(fastload);
4685                 fastload = NULL;
4686         }
4687 }
4688
4689
4690
4691
4692 COMMAND_HANDLER(handle_fast_load_image_command)
4693 {
4694         uint8_t *buffer;
4695         size_t buf_cnt;
4696         uint32_t image_size;
4697         uint32_t min_address = 0;
4698         uint32_t max_address = 0xffffffff;
4699         int i;
4700
4701         struct image image;
4702
4703         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4704                         &image, &min_address, &max_address);
4705         if (ERROR_OK != retval)
4706                 return retval;
4707
4708         struct duration bench;
4709         duration_start(&bench);
4710
4711         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4712         {
4713                 return ERROR_OK;
4714         }
4715
4716         image_size = 0x0;
4717         retval = ERROR_OK;
4718         fastload_num = image.num_sections;
4719         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4720         if (fastload == NULL)
4721         {
4722                 image_close(&image);
4723                 return ERROR_FAIL;
4724         }
4725         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4726         for (i = 0; i < image.num_sections; i++)
4727         {
4728                 buffer = malloc(image.sections[i].size);
4729                 if (buffer == NULL)
4730                 {
4731                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4732                                                   (int)(image.sections[i].size));
4733                         break;
4734                 }
4735
4736                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4737                 {
4738                         free(buffer);
4739                         break;
4740                 }
4741
4742                 uint32_t offset = 0;
4743                 uint32_t length = buf_cnt;
4744
4745
4746                 /* DANGER!!! beware of unsigned comparision here!!! */
4747
4748                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4749                                 (image.sections[i].base_address < max_address))
4750                 {
4751                         if (image.sections[i].base_address < min_address)
4752                         {
4753                                 /* clip addresses below */
4754                                 offset += min_address-image.sections[i].base_address;
4755                                 length -= offset;
4756                         }
4757
4758                         if (image.sections[i].base_address + buf_cnt > max_address)
4759                         {
4760                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4761                         }
4762
4763                         fastload[i].address = image.sections[i].base_address + offset;
4764                         fastload[i].data = malloc(length);
4765                         if (fastload[i].data == NULL)
4766                         {
4767                                 free(buffer);
4768                                 break;
4769                         }
4770                         memcpy(fastload[i].data, buffer + offset, length);
4771                         fastload[i].length = length;
4772
4773                         image_size += length;
4774                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4775                                                   (unsigned int)length,
4776                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4777                 }
4778
4779                 free(buffer);
4780         }
4781
4782         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4783         {
4784                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4785                                 "in %fs (%0.3f kb/s)", image_size, 
4786                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4787
4788                 command_print(CMD_CTX,
4789                                 "WARNING: image has not been loaded to target!"
4790                                 "You can issue a 'fast_load' to finish loading.");
4791         }
4792
4793         image_close(&image);
4794
4795         if (retval != ERROR_OK)
4796         {
4797                 free_fastload();
4798         }
4799
4800         return retval;
4801 }
4802
4803 COMMAND_HANDLER(handle_fast_load_command)
4804 {
4805         if (CMD_ARGC > 0)
4806                 return ERROR_COMMAND_SYNTAX_ERROR;
4807         if (fastload == NULL)
4808         {
4809                 LOG_ERROR("No image in memory");
4810                 return ERROR_FAIL;
4811         }
4812         int i;
4813         int ms = timeval_ms();
4814         int size = 0;
4815         int retval = ERROR_OK;
4816         for (i = 0; i < fastload_num;i++)
4817         {
4818                 struct target *target = get_current_target(CMD_CTX);
4819                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4820                                           (unsigned int)(fastload[i].address),
4821                                           (unsigned int)(fastload[i].length));
4822                 if (retval == ERROR_OK)
4823                 {
4824                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4825                 }
4826                 size += fastload[i].length;
4827         }
4828         int after = timeval_ms();
4829         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4830         return retval;
4831 }
4832
4833 static const struct command_registration target_command_handlers[] = {
4834         {
4835                 .name = "targets",
4836                 .handler = &handle_targets_command,
4837                 .mode = COMMAND_ANY,
4838                 .help = "change current command line target (one parameter) "
4839                         "or list targets (no parameters)",
4840                 .usage = "[<new_current_target>]",
4841         },
4842         {
4843                 .name = "target",
4844                 .mode = COMMAND_CONFIG,
4845                 .help = "configure target",
4846
4847                 .chain = target_subcommand_handlers,
4848         },
4849         COMMAND_REGISTRATION_DONE
4850 };
4851
4852 int target_register_commands(struct command_context *cmd_ctx)
4853 {
4854         return register_commands(cmd_ctx, NULL, target_command_handlers);
4855 }
4856
4857 static const struct command_registration target_exec_command_handlers[] = {
4858         {
4859                 .name = "fast_load_image",
4860                 .handler = &handle_fast_load_image_command,
4861                 .mode = COMMAND_ANY,
4862                 .help = "Load image into memory, mainly for profiling purposes",
4863                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4864                         "[min_address] [max_length]",
4865         },
4866         {
4867                 .name = "fast_load",
4868                 .handler = &handle_fast_load_command,
4869                 .mode = COMMAND_ANY,
4870                 .help = "loads active fast load image to current target "
4871                         "- mainly for profiling purposes",
4872         },
4873         {
4874                 .name = "profile",
4875                 .handler = &handle_profile_command,
4876                 .mode = COMMAND_EXEC,
4877                 .help = "profiling samples the CPU PC",
4878         },
4879         /** @todo don't register virt2phys() unless target supports it */
4880         {
4881                 .name = "virt2phys",
4882                 .handler = &handle_virt2phys_command,
4883                 .mode = COMMAND_ANY,
4884                 .help = "translate a virtual address into a physical address",
4885         },
4886
4887         {
4888                 .name = "reg",
4889                 .handler = &handle_reg_command,
4890                 .mode = COMMAND_EXEC,
4891                 .help = "display or set a register",
4892         },
4893
4894         {
4895                 .name = "poll",
4896                 .handler = &handle_poll_command,
4897                 .mode = COMMAND_EXEC,
4898                 .help = "poll target state",
4899         },
4900         {
4901                 .name = "wait_halt",
4902                 .handler = &handle_wait_halt_command,
4903                 .mode = COMMAND_EXEC,
4904                 .help = "wait for target halt",
4905                 .usage = "[time (s)]",
4906         },
4907         {
4908                 .name = "halt",
4909                 .handler = &handle_halt_command,
4910                 .mode = COMMAND_EXEC,
4911                 .help = "halt target",
4912         },
4913         {
4914                 .name = "resume",
4915                 .handler = &handle_resume_command,
4916                 .mode = COMMAND_EXEC,
4917                 .help = "resume target",
4918                 .usage = "[<address>]",
4919         },
4920         {
4921                 .name = "reset",
4922                 .handler = &handle_reset_command,
4923                 .mode = COMMAND_EXEC,
4924                 .usage = "[run|halt|init]",
4925                 .help = "Reset all targets into the specified mode."
4926                         "Default reset mode is run, if not given.",
4927         },
4928         {
4929                 .name = "soft_reset_halt",
4930                 .handler = &handle_soft_reset_halt_command,
4931                 .mode = COMMAND_EXEC,
4932                 .help = "halt the target and do a soft reset",
4933         },
4934         {
4935
4936                 .name = "step",
4937                 .handler = &handle_step_command,
4938                 .mode = COMMAND_EXEC,
4939                 .help = "step one instruction from current PC or [addr]",
4940                 .usage = "[<address>]",
4941         },
4942         {
4943
4944                 .name = "mdw",
4945                 .handler = &handle_md_command,
4946                 .mode = COMMAND_EXEC,
4947                 .help = "display memory words",
4948                 .usage = "[phys] <addr> [count]",
4949         },
4950         {
4951                 .name = "mdh",
4952                 .handler = &handle_md_command,
4953                 .mode = COMMAND_EXEC,
4954                 .help = "display memory half-words",
4955                 .usage = "[phys] <addr> [count]",
4956         },
4957         {
4958                 .name = "mdb",
4959                 .handler = &handle_md_command,
4960                 .mode = COMMAND_EXEC,
4961                 .help = "display memory bytes",
4962                 .usage = "[phys] <addr> [count]",
4963         },
4964         {
4965
4966                 .name = "mww",
4967                 .handler = &handle_mw_command,
4968                 .mode = COMMAND_EXEC,
4969                 .help = "write memory word",
4970                 .usage = "[phys]  <addr> <value> [count]",
4971         },
4972         {
4973                 .name = "mwh",
4974                 .handler = &handle_mw_command,
4975                 .mode = COMMAND_EXEC,
4976                 .help = "write memory half-word",
4977                 .usage = "[phys] <addr> <value> [count]",
4978         },
4979         {
4980                 .name = "mwb",
4981                 .handler = &handle_mw_command,
4982                 .mode = COMMAND_EXEC,
4983                 .help = "write memory byte",
4984                 .usage = "[phys] <addr> <value> [count]",
4985         },
4986         {
4987
4988                 .name = "bp",
4989                 .handler = &handle_bp_command,
4990                 .mode = COMMAND_EXEC,
4991                 .help = "list or set breakpoint",
4992                 .usage = "[<address> <length> [hw]]",
4993         },
4994         {
4995                 .name = "rbp",
4996                 .handler = &handle_rbp_command,
4997                 .mode = COMMAND_EXEC,
4998                 .help = "remove breakpoint",
4999                 .usage = "<address>",
5000         },
5001         {
5002
5003                 .name = "wp",
5004                 .handler = &handle_wp_command,
5005                 .mode = COMMAND_EXEC,
5006                 .help = "list or set watchpoint",
5007                 .usage = "[<address> <length> <r/w/a> [value] [mask]]",
5008         },
5009         {
5010                 .name = "rwp",
5011                 .handler = &handle_rwp_command,
5012                 .mode = COMMAND_EXEC,
5013                 .help = "remove watchpoint",
5014                 .usage = "<address>",
5015
5016         },
5017         {
5018                 .name = "load_image",
5019                 .handler = &handle_load_image_command,
5020                 .mode = COMMAND_EXEC,
5021                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
5022                         "[min_address] [max_length]",
5023         },
5024         {
5025                 .name = "dump_image",
5026                 .handler = &handle_dump_image_command,
5027                 .mode = COMMAND_EXEC,
5028                 .usage = "<file> <address> <size>",
5029         },
5030         {
5031                 .name = "verify_image",
5032                 .handler = &handle_verify_image_command,
5033                 .mode = COMMAND_EXEC,
5034                 .usage = "<file> [offset] [type]",
5035         },
5036         {
5037                 .name = "test_image",
5038                 .handler = &handle_test_image_command,
5039                 .mode = COMMAND_EXEC,
5040                 .usage = "<file> [offset] [type]",
5041         },
5042         {
5043                 .name = "ocd_mem2array",
5044                 .mode = COMMAND_EXEC,
5045                 .jim_handler = &jim_mem2array,
5046                 .help = "read memory and return as a TCL array "
5047                         "for script processing",
5048                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5049         },
5050         {
5051                 .name = "ocd_array2mem",
5052                 .mode = COMMAND_EXEC,
5053                 .jim_handler = &jim_array2mem,
5054                 .help = "convert a TCL array to memory locations "
5055                         "and write the values",
5056                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5057         },
5058         COMMAND_REGISTRATION_DONE
5059 };
5060 int target_register_user_commands(struct command_context *cmd_ctx)
5061 {
5062         int retval = ERROR_OK;
5063         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5064                 return retval;
5065
5066         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5067                 return retval;
5068
5069
5070         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5071 }