]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: write gmon.out according to target endianness
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66                 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70                 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73                 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75                 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &mips_m4k_target,
125         &avr_target,
126         &dsp563xx_target,
127         &dsp5680xx_target,
128         &testee_target,
129         &avr32_ap7k_target,
130         &hla_target,
131         &nds32_v2_target,
132         &nds32_v3_target,
133         &nds32_v3m_target,
134         &or1k_target,
135         &quark_x10xx_target,
136         NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 static const int polling_interval = 100;
143
144 static const Jim_Nvp nvp_assert[] = {
145         { .name = "assert", NVP_ASSERT },
146         { .name = "deassert", NVP_DEASSERT },
147         { .name = "T", NVP_ASSERT },
148         { .name = "F", NVP_DEASSERT },
149         { .name = "t", NVP_ASSERT },
150         { .name = "f", NVP_DEASSERT },
151         { .name = NULL, .value = -1 }
152 };
153
154 static const Jim_Nvp nvp_error_target[] = {
155         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
156         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
157         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
158         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
159         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
160         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
161         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
162         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
163         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
164         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
165         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
166         { .value = -1, .name = NULL }
167 };
168
169 static const char *target_strerror_safe(int err)
170 {
171         const Jim_Nvp *n;
172
173         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
174         if (n->name == NULL)
175                 return "unknown";
176         else
177                 return n->name;
178 }
179
180 static const Jim_Nvp nvp_target_event[] = {
181
182         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
183         { .value = TARGET_EVENT_HALTED, .name = "halted" },
184         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
185         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
186         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
187
188         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
189         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
190
191         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
192         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
193         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
194         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
195         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
196         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
197         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
198         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
199         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
200         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
201         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
202         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
203
204         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
205         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
206
207         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
208         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
209
210         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
211         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
212
213         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
214         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
215
216         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
217         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
218
219         { .name = NULL, .value = -1 }
220 };
221
222 static const Jim_Nvp nvp_target_state[] = {
223         { .name = "unknown", .value = TARGET_UNKNOWN },
224         { .name = "running", .value = TARGET_RUNNING },
225         { .name = "halted",  .value = TARGET_HALTED },
226         { .name = "reset",   .value = TARGET_RESET },
227         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
228         { .name = NULL, .value = -1 },
229 };
230
231 static const Jim_Nvp nvp_target_debug_reason[] = {
232         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
233         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
234         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
235         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
236         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
237         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
238         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
239         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
240         { .name = NULL, .value = -1 },
241 };
242
243 static const Jim_Nvp nvp_target_endian[] = {
244         { .name = "big",    .value = TARGET_BIG_ENDIAN },
245         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
246         { .name = "be",     .value = TARGET_BIG_ENDIAN },
247         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
248         { .name = NULL,     .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_reset_modes[] = {
252         { .name = "unknown", .value = RESET_UNKNOWN },
253         { .name = "run"    , .value = RESET_RUN },
254         { .name = "halt"   , .value = RESET_HALT },
255         { .name = "init"   , .value = RESET_INIT },
256         { .name = NULL     , .value = -1 },
257 };
258
259 const char *debug_reason_name(struct target *t)
260 {
261         const char *cp;
262
263         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
264                         t->debug_reason)->name;
265         if (!cp) {
266                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
267                 cp = "(*BUG*unknown*BUG*)";
268         }
269         return cp;
270 }
271
272 const char *target_state_name(struct target *t)
273 {
274         const char *cp;
275         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
276         if (!cp) {
277                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
278                 cp = "(*BUG*unknown*BUG*)";
279         }
280         return cp;
281 }
282
283 /* determine the number of the new target */
284 static int new_target_number(void)
285 {
286         struct target *t;
287         int x;
288
289         /* number is 0 based */
290         x = -1;
291         t = all_targets;
292         while (t) {
293                 if (x < t->target_number)
294                         x = t->target_number;
295                 t = t->next;
296         }
297         return x + 1;
298 }
299
300 /* read a uint64_t from a buffer in target memory endianness */
301 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 return le_to_h_u64(buffer);
305         else
306                 return be_to_h_u64(buffer);
307 }
308
309 /* read a uint32_t from a buffer in target memory endianness */
310 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
311 {
312         if (target->endianness == TARGET_LITTLE_ENDIAN)
313                 return le_to_h_u32(buffer);
314         else
315                 return be_to_h_u32(buffer);
316 }
317
318 /* read a uint24_t from a buffer in target memory endianness */
319 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
320 {
321         if (target->endianness == TARGET_LITTLE_ENDIAN)
322                 return le_to_h_u24(buffer);
323         else
324                 return be_to_h_u24(buffer);
325 }
326
327 /* read a uint16_t from a buffer in target memory endianness */
328 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
329 {
330         if (target->endianness == TARGET_LITTLE_ENDIAN)
331                 return le_to_h_u16(buffer);
332         else
333                 return be_to_h_u16(buffer);
334 }
335
336 /* read a uint8_t from a buffer in target memory endianness */
337 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
338 {
339         return *buffer & 0x0ff;
340 }
341
342 /* write a uint64_t to a buffer in target memory endianness */
343 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
344 {
345         if (target->endianness == TARGET_LITTLE_ENDIAN)
346                 h_u64_to_le(buffer, value);
347         else
348                 h_u64_to_be(buffer, value);
349 }
350
351 /* write a uint32_t to a buffer in target memory endianness */
352 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
353 {
354         if (target->endianness == TARGET_LITTLE_ENDIAN)
355                 h_u32_to_le(buffer, value);
356         else
357                 h_u32_to_be(buffer, value);
358 }
359
360 /* write a uint24_t to a buffer in target memory endianness */
361 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
362 {
363         if (target->endianness == TARGET_LITTLE_ENDIAN)
364                 h_u24_to_le(buffer, value);
365         else
366                 h_u24_to_be(buffer, value);
367 }
368
369 /* write a uint16_t to a buffer in target memory endianness */
370 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
371 {
372         if (target->endianness == TARGET_LITTLE_ENDIAN)
373                 h_u16_to_le(buffer, value);
374         else
375                 h_u16_to_be(buffer, value);
376 }
377
378 /* write a uint8_t to a buffer in target memory endianness */
379 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
380 {
381         *buffer = value;
382 }
383
384 /* write a uint64_t array to a buffer in target memory endianness */
385 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
386 {
387         uint32_t i;
388         for (i = 0; i < count; i++)
389                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
390 }
391
392 /* write a uint32_t array to a buffer in target memory endianness */
393 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
394 {
395         uint32_t i;
396         for (i = 0; i < count; i++)
397                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
398 }
399
400 /* write a uint16_t array to a buffer in target memory endianness */
401 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
402 {
403         uint32_t i;
404         for (i = 0; i < count; i++)
405                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
406 }
407
408 /* write a uint64_t array to a buffer in target memory endianness */
409 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
410 {
411         uint32_t i;
412         for (i = 0; i < count; i++)
413                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
414 }
415
416 /* write a uint32_t array to a buffer in target memory endianness */
417 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
418 {
419         uint32_t i;
420         for (i = 0; i < count; i++)
421                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
422 }
423
424 /* write a uint16_t array to a buffer in target memory endianness */
425 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
426 {
427         uint32_t i;
428         for (i = 0; i < count; i++)
429                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
430 }
431
432 /* return a pointer to a configured target; id is name or number */
433 struct target *get_target(const char *id)
434 {
435         struct target *target;
436
437         /* try as tcltarget name */
438         for (target = all_targets; target; target = target->next) {
439                 if (target_name(target) == NULL)
440                         continue;
441                 if (strcmp(id, target_name(target)) == 0)
442                         return target;
443         }
444
445         /* It's OK to remove this fallback sometime after August 2010 or so */
446
447         /* no match, try as number */
448         unsigned num;
449         if (parse_uint(id, &num) != ERROR_OK)
450                 return NULL;
451
452         for (target = all_targets; target; target = target->next) {
453                 if (target->target_number == (int)num) {
454                         LOG_WARNING("use '%s' as target identifier, not '%u'",
455                                         target_name(target), num);
456                         return target;
457                 }
458         }
459
460         return NULL;
461 }
462
463 /* returns a pointer to the n-th configured target */
464 static struct target *get_target_by_num(int num)
465 {
466         struct target *target = all_targets;
467
468         while (target) {
469                 if (target->target_number == num)
470                         return target;
471                 target = target->next;
472         }
473
474         return NULL;
475 }
476
477 struct target *get_current_target(struct command_context *cmd_ctx)
478 {
479         struct target *target = get_target_by_num(cmd_ctx->current_target);
480
481         if (target == NULL) {
482                 LOG_ERROR("BUG: current_target out of bounds");
483                 exit(-1);
484         }
485
486         return target;
487 }
488
489 int target_poll(struct target *target)
490 {
491         int retval;
492
493         /* We can't poll until after examine */
494         if (!target_was_examined(target)) {
495                 /* Fail silently lest we pollute the log */
496                 return ERROR_FAIL;
497         }
498
499         retval = target->type->poll(target);
500         if (retval != ERROR_OK)
501                 return retval;
502
503         if (target->halt_issued) {
504                 if (target->state == TARGET_HALTED)
505                         target->halt_issued = false;
506                 else {
507                         long long t = timeval_ms() - target->halt_issued_time;
508                         if (t > DEFAULT_HALT_TIMEOUT) {
509                                 target->halt_issued = false;
510                                 LOG_INFO("Halt timed out, wake up GDB.");
511                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
512                         }
513                 }
514         }
515
516         return ERROR_OK;
517 }
518
519 int target_halt(struct target *target)
520 {
521         int retval;
522         /* We can't poll until after examine */
523         if (!target_was_examined(target)) {
524                 LOG_ERROR("Target not examined yet");
525                 return ERROR_FAIL;
526         }
527
528         retval = target->type->halt(target);
529         if (retval != ERROR_OK)
530                 return retval;
531
532         target->halt_issued = true;
533         target->halt_issued_time = timeval_ms();
534
535         return ERROR_OK;
536 }
537
538 /**
539  * Make the target (re)start executing using its saved execution
540  * context (possibly with some modifications).
541  *
542  * @param target Which target should start executing.
543  * @param current True to use the target's saved program counter instead
544  *      of the address parameter
545  * @param address Optionally used as the program counter.
546  * @param handle_breakpoints True iff breakpoints at the resumption PC
547  *      should be skipped.  (For example, maybe execution was stopped by
548  *      such a breakpoint, in which case it would be counterprodutive to
549  *      let it re-trigger.
550  * @param debug_execution False if all working areas allocated by OpenOCD
551  *      should be released and/or restored to their original contents.
552  *      (This would for example be true to run some downloaded "helper"
553  *      algorithm code, which resides in one such working buffer and uses
554  *      another for data storage.)
555  *
556  * @todo Resolve the ambiguity about what the "debug_execution" flag
557  * signifies.  For example, Target implementations don't agree on how
558  * it relates to invalidation of the register cache, or to whether
559  * breakpoints and watchpoints should be enabled.  (It would seem wrong
560  * to enable breakpoints when running downloaded "helper" algorithms
561  * (debug_execution true), since the breakpoints would be set to match
562  * target firmware being debugged, not the helper algorithm.... and
563  * enabling them could cause such helpers to malfunction (for example,
564  * by overwriting data with a breakpoint instruction.  On the other
565  * hand the infrastructure for running such helpers might use this
566  * procedure but rely on hardware breakpoint to detect termination.)
567  */
568 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
569 {
570         int retval;
571
572         /* We can't poll until after examine */
573         if (!target_was_examined(target)) {
574                 LOG_ERROR("Target not examined yet");
575                 return ERROR_FAIL;
576         }
577
578         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
579
580         /* note that resume *must* be asynchronous. The CPU can halt before
581          * we poll. The CPU can even halt at the current PC as a result of
582          * a software breakpoint being inserted by (a bug?) the application.
583          */
584         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
585         if (retval != ERROR_OK)
586                 return retval;
587
588         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
589
590         return retval;
591 }
592
593 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
594 {
595         char buf[100];
596         int retval;
597         Jim_Nvp *n;
598         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
599         if (n->name == NULL) {
600                 LOG_ERROR("invalid reset mode");
601                 return ERROR_FAIL;
602         }
603
604         /* disable polling during reset to make reset event scripts
605          * more predictable, i.e. dr/irscan & pathmove in events will
606          * not have JTAG operations injected into the middle of a sequence.
607          */
608         bool save_poll = jtag_poll_get_enabled();
609
610         jtag_poll_set_enabled(false);
611
612         sprintf(buf, "ocd_process_reset %s", n->name);
613         retval = Jim_Eval(cmd_ctx->interp, buf);
614
615         jtag_poll_set_enabled(save_poll);
616
617         if (retval != JIM_OK) {
618                 Jim_MakeErrorMessage(cmd_ctx->interp);
619                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
620                 return ERROR_FAIL;
621         }
622
623         /* We want any events to be processed before the prompt */
624         retval = target_call_timer_callbacks_now();
625
626         struct target *target;
627         for (target = all_targets; target; target = target->next) {
628                 target->type->check_reset(target);
629                 target->running_alg = false;
630         }
631
632         return retval;
633 }
634
635 static int identity_virt2phys(struct target *target,
636                 uint32_t virtual, uint32_t *physical)
637 {
638         *physical = virtual;
639         return ERROR_OK;
640 }
641
642 static int no_mmu(struct target *target, int *enabled)
643 {
644         *enabled = 0;
645         return ERROR_OK;
646 }
647
648 static int default_examine(struct target *target)
649 {
650         target_set_examined(target);
651         return ERROR_OK;
652 }
653
654 /* no check by default */
655 static int default_check_reset(struct target *target)
656 {
657         return ERROR_OK;
658 }
659
660 int target_examine_one(struct target *target)
661 {
662         return target->type->examine(target);
663 }
664
665 static int jtag_enable_callback(enum jtag_event event, void *priv)
666 {
667         struct target *target = priv;
668
669         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
670                 return ERROR_OK;
671
672         jtag_unregister_event_callback(jtag_enable_callback, target);
673
674         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
675
676         int retval = target_examine_one(target);
677         if (retval != ERROR_OK)
678                 return retval;
679
680         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
681
682         return retval;
683 }
684
685 /* Targets that correctly implement init + examine, i.e.
686  * no communication with target during init:
687  *
688  * XScale
689  */
690 int target_examine(void)
691 {
692         int retval = ERROR_OK;
693         struct target *target;
694
695         for (target = all_targets; target; target = target->next) {
696                 /* defer examination, but don't skip it */
697                 if (!target->tap->enabled) {
698                         jtag_register_event_callback(jtag_enable_callback,
699                                         target);
700                         continue;
701                 }
702
703                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704
705                 retval = target_examine_one(target);
706                 if (retval != ERROR_OK)
707                         return retval;
708
709                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710         }
711         return retval;
712 }
713
714 const char *target_type_name(struct target *target)
715 {
716         return target->type->name;
717 }
718
719 static int target_soft_reset_halt(struct target *target)
720 {
721         if (!target_was_examined(target)) {
722                 LOG_ERROR("Target not examined yet");
723                 return ERROR_FAIL;
724         }
725         if (!target->type->soft_reset_halt) {
726                 LOG_ERROR("Target %s does not support soft_reset_halt",
727                                 target_name(target));
728                 return ERROR_FAIL;
729         }
730         return target->type->soft_reset_halt(target);
731 }
732
733 /**
734  * Downloads a target-specific native code algorithm to the target,
735  * and executes it.  * Note that some targets may need to set up, enable,
736  * and tear down a breakpoint (hard or * soft) to detect algorithm
737  * termination, while others may support  lower overhead schemes where
738  * soft breakpoints embedded in the algorithm automatically terminate the
739  * algorithm.
740  *
741  * @param target used to run the algorithm
742  * @param arch_info target-specific description of the algorithm.
743  */
744 int target_run_algorithm(struct target *target,
745                 int num_mem_params, struct mem_param *mem_params,
746                 int num_reg_params, struct reg_param *reg_param,
747                 uint32_t entry_point, uint32_t exit_point,
748                 int timeout_ms, void *arch_info)
749 {
750         int retval = ERROR_FAIL;
751
752         if (!target_was_examined(target)) {
753                 LOG_ERROR("Target not examined yet");
754                 goto done;
755         }
756         if (!target->type->run_algorithm) {
757                 LOG_ERROR("Target type '%s' does not support %s",
758                                 target_type_name(target), __func__);
759                 goto done;
760         }
761
762         target->running_alg = true;
763         retval = target->type->run_algorithm(target,
764                         num_mem_params, mem_params,
765                         num_reg_params, reg_param,
766                         entry_point, exit_point, timeout_ms, arch_info);
767         target->running_alg = false;
768
769 done:
770         return retval;
771 }
772
773 /**
774  * Downloads a target-specific native code algorithm to the target,
775  * executes and leaves it running.
776  *
777  * @param target used to run the algorithm
778  * @param arch_info target-specific description of the algorithm.
779  */
780 int target_start_algorithm(struct target *target,
781                 int num_mem_params, struct mem_param *mem_params,
782                 int num_reg_params, struct reg_param *reg_params,
783                 uint32_t entry_point, uint32_t exit_point,
784                 void *arch_info)
785 {
786         int retval = ERROR_FAIL;
787
788         if (!target_was_examined(target)) {
789                 LOG_ERROR("Target not examined yet");
790                 goto done;
791         }
792         if (!target->type->start_algorithm) {
793                 LOG_ERROR("Target type '%s' does not support %s",
794                                 target_type_name(target), __func__);
795                 goto done;
796         }
797         if (target->running_alg) {
798                 LOG_ERROR("Target is already running an algorithm");
799                 goto done;
800         }
801
802         target->running_alg = true;
803         retval = target->type->start_algorithm(target,
804                         num_mem_params, mem_params,
805                         num_reg_params, reg_params,
806                         entry_point, exit_point, arch_info);
807
808 done:
809         return retval;
810 }
811
812 /**
813  * Waits for an algorithm started with target_start_algorithm() to complete.
814  *
815  * @param target used to run the algorithm
816  * @param arch_info target-specific description of the algorithm.
817  */
818 int target_wait_algorithm(struct target *target,
819                 int num_mem_params, struct mem_param *mem_params,
820                 int num_reg_params, struct reg_param *reg_params,
821                 uint32_t exit_point, int timeout_ms,
822                 void *arch_info)
823 {
824         int retval = ERROR_FAIL;
825
826         if (!target->type->wait_algorithm) {
827                 LOG_ERROR("Target type '%s' does not support %s",
828                                 target_type_name(target), __func__);
829                 goto done;
830         }
831         if (!target->running_alg) {
832                 LOG_ERROR("Target is not running an algorithm");
833                 goto done;
834         }
835
836         retval = target->type->wait_algorithm(target,
837                         num_mem_params, mem_params,
838                         num_reg_params, reg_params,
839                         exit_point, timeout_ms, arch_info);
840         if (retval != ERROR_TARGET_TIMEOUT)
841                 target->running_alg = false;
842
843 done:
844         return retval;
845 }
846
847 /**
848  * Executes a target-specific native code algorithm in the target.
849  * It differs from target_run_algorithm in that the algorithm is asynchronous.
850  * Because of this it requires an compliant algorithm:
851  * see contrib/loaders/flash/stm32f1x.S for example.
852  *
853  * @param target used to run the algorithm
854  */
855
856 int target_run_flash_async_algorithm(struct target *target,
857                 const uint8_t *buffer, uint32_t count, int block_size,
858                 int num_mem_params, struct mem_param *mem_params,
859                 int num_reg_params, struct reg_param *reg_params,
860                 uint32_t buffer_start, uint32_t buffer_size,
861                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
862 {
863         int retval;
864         int timeout = 0;
865
866         const uint8_t *buffer_orig = buffer;
867
868         /* Set up working area. First word is write pointer, second word is read pointer,
869          * rest is fifo data area. */
870         uint32_t wp_addr = buffer_start;
871         uint32_t rp_addr = buffer_start + 4;
872         uint32_t fifo_start_addr = buffer_start + 8;
873         uint32_t fifo_end_addr = buffer_start + buffer_size;
874
875         uint32_t wp = fifo_start_addr;
876         uint32_t rp = fifo_start_addr;
877
878         /* validate block_size is 2^n */
879         assert(!block_size || !(block_size & (block_size - 1)));
880
881         retval = target_write_u32(target, wp_addr, wp);
882         if (retval != ERROR_OK)
883                 return retval;
884         retval = target_write_u32(target, rp_addr, rp);
885         if (retval != ERROR_OK)
886                 return retval;
887
888         /* Start up algorithm on target and let it idle while writing the first chunk */
889         retval = target_start_algorithm(target, num_mem_params, mem_params,
890                         num_reg_params, reg_params,
891                         entry_point,
892                         exit_point,
893                         arch_info);
894
895         if (retval != ERROR_OK) {
896                 LOG_ERROR("error starting target flash write algorithm");
897                 return retval;
898         }
899
900         while (count > 0) {
901
902                 retval = target_read_u32(target, rp_addr, &rp);
903                 if (retval != ERROR_OK) {
904                         LOG_ERROR("failed to get read pointer");
905                         break;
906                 }
907
908                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
909                         (size_t) (buffer - buffer_orig), count, wp, rp);
910
911                 if (rp == 0) {
912                         LOG_ERROR("flash write algorithm aborted by target");
913                         retval = ERROR_FLASH_OPERATION_FAILED;
914                         break;
915                 }
916
917                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
918                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
919                         break;
920                 }
921
922                 /* Count the number of bytes available in the fifo without
923                  * crossing the wrap around. Make sure to not fill it completely,
924                  * because that would make wp == rp and that's the empty condition. */
925                 uint32_t thisrun_bytes;
926                 if (rp > wp)
927                         thisrun_bytes = rp - wp - block_size;
928                 else if (rp > fifo_start_addr)
929                         thisrun_bytes = fifo_end_addr - wp;
930                 else
931                         thisrun_bytes = fifo_end_addr - wp - block_size;
932
933                 if (thisrun_bytes == 0) {
934                         /* Throttle polling a bit if transfer is (much) faster than flash
935                          * programming. The exact delay shouldn't matter as long as it's
936                          * less than buffer size / flash speed. This is very unlikely to
937                          * run when using high latency connections such as USB. */
938                         alive_sleep(10);
939
940                         /* to stop an infinite loop on some targets check and increment a timeout
941                          * this issue was observed on a stellaris using the new ICDI interface */
942                         if (timeout++ >= 500) {
943                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
944                                 return ERROR_FLASH_OPERATION_FAILED;
945                         }
946                         continue;
947                 }
948
949                 /* reset our timeout */
950                 timeout = 0;
951
952                 /* Limit to the amount of data we actually want to write */
953                 if (thisrun_bytes > count * block_size)
954                         thisrun_bytes = count * block_size;
955
956                 /* Write data to fifo */
957                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
958                 if (retval != ERROR_OK)
959                         break;
960
961                 /* Update counters and wrap write pointer */
962                 buffer += thisrun_bytes;
963                 count -= thisrun_bytes / block_size;
964                 wp += thisrun_bytes;
965                 if (wp >= fifo_end_addr)
966                         wp = fifo_start_addr;
967
968                 /* Store updated write pointer to target */
969                 retval = target_write_u32(target, wp_addr, wp);
970                 if (retval != ERROR_OK)
971                         break;
972         }
973
974         if (retval != ERROR_OK) {
975                 /* abort flash write algorithm on target */
976                 target_write_u32(target, wp_addr, 0);
977         }
978
979         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
980                         num_reg_params, reg_params,
981                         exit_point,
982                         10000,
983                         arch_info);
984
985         if (retval2 != ERROR_OK) {
986                 LOG_ERROR("error waiting for target flash write algorithm");
987                 retval = retval2;
988         }
989
990         return retval;
991 }
992
993 int target_read_memory(struct target *target,
994                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
995 {
996         if (!target_was_examined(target)) {
997                 LOG_ERROR("Target not examined yet");
998                 return ERROR_FAIL;
999         }
1000         return target->type->read_memory(target, address, size, count, buffer);
1001 }
1002
1003 int target_read_phys_memory(struct target *target,
1004                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1005 {
1006         if (!target_was_examined(target)) {
1007                 LOG_ERROR("Target not examined yet");
1008                 return ERROR_FAIL;
1009         }
1010         return target->type->read_phys_memory(target, address, size, count, buffer);
1011 }
1012
1013 int target_write_memory(struct target *target,
1014                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1015 {
1016         if (!target_was_examined(target)) {
1017                 LOG_ERROR("Target not examined yet");
1018                 return ERROR_FAIL;
1019         }
1020         return target->type->write_memory(target, address, size, count, buffer);
1021 }
1022
1023 int target_write_phys_memory(struct target *target,
1024                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1025 {
1026         if (!target_was_examined(target)) {
1027                 LOG_ERROR("Target not examined yet");
1028                 return ERROR_FAIL;
1029         }
1030         return target->type->write_phys_memory(target, address, size, count, buffer);
1031 }
1032
1033 int target_add_breakpoint(struct target *target,
1034                 struct breakpoint *breakpoint)
1035 {
1036         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1037                 LOG_WARNING("target %s is not halted", target_name(target));
1038                 return ERROR_TARGET_NOT_HALTED;
1039         }
1040         return target->type->add_breakpoint(target, breakpoint);
1041 }
1042
1043 int target_add_context_breakpoint(struct target *target,
1044                 struct breakpoint *breakpoint)
1045 {
1046         if (target->state != TARGET_HALTED) {
1047                 LOG_WARNING("target %s is not halted", target_name(target));
1048                 return ERROR_TARGET_NOT_HALTED;
1049         }
1050         return target->type->add_context_breakpoint(target, breakpoint);
1051 }
1052
1053 int target_add_hybrid_breakpoint(struct target *target,
1054                 struct breakpoint *breakpoint)
1055 {
1056         if (target->state != TARGET_HALTED) {
1057                 LOG_WARNING("target %s is not halted", target_name(target));
1058                 return ERROR_TARGET_NOT_HALTED;
1059         }
1060         return target->type->add_hybrid_breakpoint(target, breakpoint);
1061 }
1062
1063 int target_remove_breakpoint(struct target *target,
1064                 struct breakpoint *breakpoint)
1065 {
1066         return target->type->remove_breakpoint(target, breakpoint);
1067 }
1068
1069 int target_add_watchpoint(struct target *target,
1070                 struct watchpoint *watchpoint)
1071 {
1072         if (target->state != TARGET_HALTED) {
1073                 LOG_WARNING("target %s is not halted", target_name(target));
1074                 return ERROR_TARGET_NOT_HALTED;
1075         }
1076         return target->type->add_watchpoint(target, watchpoint);
1077 }
1078 int target_remove_watchpoint(struct target *target,
1079                 struct watchpoint *watchpoint)
1080 {
1081         return target->type->remove_watchpoint(target, watchpoint);
1082 }
1083 int target_hit_watchpoint(struct target *target,
1084                 struct watchpoint **hit_watchpoint)
1085 {
1086         if (target->state != TARGET_HALTED) {
1087                 LOG_WARNING("target %s is not halted", target->cmd_name);
1088                 return ERROR_TARGET_NOT_HALTED;
1089         }
1090
1091         if (target->type->hit_watchpoint == NULL) {
1092                 /* For backward compatible, if hit_watchpoint is not implemented,
1093                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1094                  * information. */
1095                 return ERROR_FAIL;
1096         }
1097
1098         return target->type->hit_watchpoint(target, hit_watchpoint);
1099 }
1100
1101 int target_get_gdb_reg_list(struct target *target,
1102                 struct reg **reg_list[], int *reg_list_size,
1103                 enum target_register_class reg_class)
1104 {
1105         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1106 }
1107 int target_step(struct target *target,
1108                 int current, uint32_t address, int handle_breakpoints)
1109 {
1110         return target->type->step(target, current, address, handle_breakpoints);
1111 }
1112
1113 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1114 {
1115         if (target->state != TARGET_HALTED) {
1116                 LOG_WARNING("target %s is not halted", target->cmd_name);
1117                 return ERROR_TARGET_NOT_HALTED;
1118         }
1119         return target->type->get_gdb_fileio_info(target, fileio_info);
1120 }
1121
1122 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1123 {
1124         if (target->state != TARGET_HALTED) {
1125                 LOG_WARNING("target %s is not halted", target->cmd_name);
1126                 return ERROR_TARGET_NOT_HALTED;
1127         }
1128         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1129 }
1130
1131 int target_profiling(struct target *target, uint32_t *samples,
1132                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1133 {
1134         if (target->state != TARGET_HALTED) {
1135                 LOG_WARNING("target %s is not halted", target->cmd_name);
1136                 return ERROR_TARGET_NOT_HALTED;
1137         }
1138         return target->type->profiling(target, samples, max_num_samples,
1139                         num_samples, seconds);
1140 }
1141
1142 /**
1143  * Reset the @c examined flag for the given target.
1144  * Pure paranoia -- targets are zeroed on allocation.
1145  */
1146 static void target_reset_examined(struct target *target)
1147 {
1148         target->examined = false;
1149 }
1150
1151 static int err_read_phys_memory(struct target *target, uint32_t address,
1152                 uint32_t size, uint32_t count, uint8_t *buffer)
1153 {
1154         LOG_ERROR("Not implemented: %s", __func__);
1155         return ERROR_FAIL;
1156 }
1157
1158 static int err_write_phys_memory(struct target *target, uint32_t address,
1159                 uint32_t size, uint32_t count, const uint8_t *buffer)
1160 {
1161         LOG_ERROR("Not implemented: %s", __func__);
1162         return ERROR_FAIL;
1163 }
1164
1165 static int handle_target(void *priv);
1166
1167 static int target_init_one(struct command_context *cmd_ctx,
1168                 struct target *target)
1169 {
1170         target_reset_examined(target);
1171
1172         struct target_type *type = target->type;
1173         if (type->examine == NULL)
1174                 type->examine = default_examine;
1175
1176         if (type->check_reset == NULL)
1177                 type->check_reset = default_check_reset;
1178
1179         assert(type->init_target != NULL);
1180
1181         int retval = type->init_target(cmd_ctx, target);
1182         if (ERROR_OK != retval) {
1183                 LOG_ERROR("target '%s' init failed", target_name(target));
1184                 return retval;
1185         }
1186
1187         /* Sanity-check MMU support ... stub in what we must, to help
1188          * implement it in stages, but warn if we need to do so.
1189          */
1190         if (type->mmu) {
1191                 if (type->write_phys_memory == NULL) {
1192                         LOG_ERROR("type '%s' is missing write_phys_memory",
1193                                         type->name);
1194                         type->write_phys_memory = err_write_phys_memory;
1195                 }
1196                 if (type->read_phys_memory == NULL) {
1197                         LOG_ERROR("type '%s' is missing read_phys_memory",
1198                                         type->name);
1199                         type->read_phys_memory = err_read_phys_memory;
1200                 }
1201                 if (type->virt2phys == NULL) {
1202                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1203                         type->virt2phys = identity_virt2phys;
1204                 }
1205         } else {
1206                 /* Make sure no-MMU targets all behave the same:  make no
1207                  * distinction between physical and virtual addresses, and
1208                  * ensure that virt2phys() is always an identity mapping.
1209                  */
1210                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1211                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1212
1213                 type->mmu = no_mmu;
1214                 type->write_phys_memory = type->write_memory;
1215                 type->read_phys_memory = type->read_memory;
1216                 type->virt2phys = identity_virt2phys;
1217         }
1218
1219         if (target->type->read_buffer == NULL)
1220                 target->type->read_buffer = target_read_buffer_default;
1221
1222         if (target->type->write_buffer == NULL)
1223                 target->type->write_buffer = target_write_buffer_default;
1224
1225         if (target->type->get_gdb_fileio_info == NULL)
1226                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1227
1228         if (target->type->gdb_fileio_end == NULL)
1229                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1230
1231         if (target->type->profiling == NULL)
1232                 target->type->profiling = target_profiling_default;
1233
1234         return ERROR_OK;
1235 }
1236
1237 static int target_init(struct command_context *cmd_ctx)
1238 {
1239         struct target *target;
1240         int retval;
1241
1242         for (target = all_targets; target; target = target->next) {
1243                 retval = target_init_one(cmd_ctx, target);
1244                 if (ERROR_OK != retval)
1245                         return retval;
1246         }
1247
1248         if (!all_targets)
1249                 return ERROR_OK;
1250
1251         retval = target_register_user_commands(cmd_ctx);
1252         if (ERROR_OK != retval)
1253                 return retval;
1254
1255         retval = target_register_timer_callback(&handle_target,
1256                         polling_interval, 1, cmd_ctx->interp);
1257         if (ERROR_OK != retval)
1258                 return retval;
1259
1260         return ERROR_OK;
1261 }
1262
1263 COMMAND_HANDLER(handle_target_init_command)
1264 {
1265         int retval;
1266
1267         if (CMD_ARGC != 0)
1268                 return ERROR_COMMAND_SYNTAX_ERROR;
1269
1270         static bool target_initialized;
1271         if (target_initialized) {
1272                 LOG_INFO("'target init' has already been called");
1273                 return ERROR_OK;
1274         }
1275         target_initialized = true;
1276
1277         retval = command_run_line(CMD_CTX, "init_targets");
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         retval = command_run_line(CMD_CTX, "init_target_events");
1282         if (ERROR_OK != retval)
1283                 return retval;
1284
1285         retval = command_run_line(CMD_CTX, "init_board");
1286         if (ERROR_OK != retval)
1287                 return retval;
1288
1289         LOG_DEBUG("Initializing targets...");
1290         return target_init(CMD_CTX);
1291 }
1292
1293 int target_register_event_callback(int (*callback)(struct target *target,
1294                 enum target_event event, void *priv), void *priv)
1295 {
1296         struct target_event_callback **callbacks_p = &target_event_callbacks;
1297
1298         if (callback == NULL)
1299                 return ERROR_COMMAND_SYNTAX_ERROR;
1300
1301         if (*callbacks_p) {
1302                 while ((*callbacks_p)->next)
1303                         callbacks_p = &((*callbacks_p)->next);
1304                 callbacks_p = &((*callbacks_p)->next);
1305         }
1306
1307         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1308         (*callbacks_p)->callback = callback;
1309         (*callbacks_p)->priv = priv;
1310         (*callbacks_p)->next = NULL;
1311
1312         return ERROR_OK;
1313 }
1314
1315 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1316 {
1317         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1318         struct timeval now;
1319
1320         if (callback == NULL)
1321                 return ERROR_COMMAND_SYNTAX_ERROR;
1322
1323         if (*callbacks_p) {
1324                 while ((*callbacks_p)->next)
1325                         callbacks_p = &((*callbacks_p)->next);
1326                 callbacks_p = &((*callbacks_p)->next);
1327         }
1328
1329         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1330         (*callbacks_p)->callback = callback;
1331         (*callbacks_p)->periodic = periodic;
1332         (*callbacks_p)->time_ms = time_ms;
1333
1334         gettimeofday(&now, NULL);
1335         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1336         time_ms -= (time_ms % 1000);
1337         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1338         if ((*callbacks_p)->when.tv_usec > 1000000) {
1339                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1340                 (*callbacks_p)->when.tv_sec += 1;
1341         }
1342
1343         (*callbacks_p)->priv = priv;
1344         (*callbacks_p)->next = NULL;
1345
1346         return ERROR_OK;
1347 }
1348
1349 int target_unregister_event_callback(int (*callback)(struct target *target,
1350                 enum target_event event, void *priv), void *priv)
1351 {
1352         struct target_event_callback **p = &target_event_callbacks;
1353         struct target_event_callback *c = target_event_callbacks;
1354
1355         if (callback == NULL)
1356                 return ERROR_COMMAND_SYNTAX_ERROR;
1357
1358         while (c) {
1359                 struct target_event_callback *next = c->next;
1360                 if ((c->callback == callback) && (c->priv == priv)) {
1361                         *p = next;
1362                         free(c);
1363                         return ERROR_OK;
1364                 } else
1365                         p = &(c->next);
1366                 c = next;
1367         }
1368
1369         return ERROR_OK;
1370 }
1371
1372 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1373 {
1374         struct target_timer_callback **p = &target_timer_callbacks;
1375         struct target_timer_callback *c = target_timer_callbacks;
1376
1377         if (callback == NULL)
1378                 return ERROR_COMMAND_SYNTAX_ERROR;
1379
1380         while (c) {
1381                 struct target_timer_callback *next = c->next;
1382                 if ((c->callback == callback) && (c->priv == priv)) {
1383                         *p = next;
1384                         free(c);
1385                         return ERROR_OK;
1386                 } else
1387                         p = &(c->next);
1388                 c = next;
1389         }
1390
1391         return ERROR_OK;
1392 }
1393
1394 int target_call_event_callbacks(struct target *target, enum target_event event)
1395 {
1396         struct target_event_callback *callback = target_event_callbacks;
1397         struct target_event_callback *next_callback;
1398
1399         if (event == TARGET_EVENT_HALTED) {
1400                 /* execute early halted first */
1401                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1402         }
1403
1404         LOG_DEBUG("target event %i (%s)", event,
1405                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1406
1407         target_handle_event(target, event);
1408
1409         while (callback) {
1410                 next_callback = callback->next;
1411                 callback->callback(target, event, callback->priv);
1412                 callback = next_callback;
1413         }
1414
1415         return ERROR_OK;
1416 }
1417
1418 static int target_timer_callback_periodic_restart(
1419                 struct target_timer_callback *cb, struct timeval *now)
1420 {
1421         int time_ms = cb->time_ms;
1422         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1423         time_ms -= (time_ms % 1000);
1424         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1425         if (cb->when.tv_usec > 1000000) {
1426                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1427                 cb->when.tv_sec += 1;
1428         }
1429         return ERROR_OK;
1430 }
1431
1432 static int target_call_timer_callback(struct target_timer_callback *cb,
1433                 struct timeval *now)
1434 {
1435         cb->callback(cb->priv);
1436
1437         if (cb->periodic)
1438                 return target_timer_callback_periodic_restart(cb, now);
1439
1440         return target_unregister_timer_callback(cb->callback, cb->priv);
1441 }
1442
1443 static int target_call_timer_callbacks_check_time(int checktime)
1444 {
1445         keep_alive();
1446
1447         struct timeval now;
1448         gettimeofday(&now, NULL);
1449
1450         struct target_timer_callback *callback = target_timer_callbacks;
1451         while (callback) {
1452                 /* cleaning up may unregister and free this callback */
1453                 struct target_timer_callback *next_callback = callback->next;
1454
1455                 bool call_it = callback->callback &&
1456                         ((!checktime && callback->periodic) ||
1457                           now.tv_sec > callback->when.tv_sec ||
1458                          (now.tv_sec == callback->when.tv_sec &&
1459                           now.tv_usec >= callback->when.tv_usec));
1460
1461                 if (call_it) {
1462                         int retval = target_call_timer_callback(callback, &now);
1463                         if (retval != ERROR_OK)
1464                                 return retval;
1465                 }
1466
1467                 callback = next_callback;
1468         }
1469
1470         return ERROR_OK;
1471 }
1472
1473 int target_call_timer_callbacks(void)
1474 {
1475         return target_call_timer_callbacks_check_time(1);
1476 }
1477
1478 /* invoke periodic callbacks immediately */
1479 int target_call_timer_callbacks_now(void)
1480 {
1481         return target_call_timer_callbacks_check_time(0);
1482 }
1483
1484 /* Prints the working area layout for debug purposes */
1485 static void print_wa_layout(struct target *target)
1486 {
1487         struct working_area *c = target->working_areas;
1488
1489         while (c) {
1490                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1491                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1492                         c->address, c->address + c->size - 1, c->size);
1493                 c = c->next;
1494         }
1495 }
1496
1497 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1498 static void target_split_working_area(struct working_area *area, uint32_t size)
1499 {
1500         assert(area->free); /* Shouldn't split an allocated area */
1501         assert(size <= area->size); /* Caller should guarantee this */
1502
1503         /* Split only if not already the right size */
1504         if (size < area->size) {
1505                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1506
1507                 if (new_wa == NULL)
1508                         return;
1509
1510                 new_wa->next = area->next;
1511                 new_wa->size = area->size - size;
1512                 new_wa->address = area->address + size;
1513                 new_wa->backup = NULL;
1514                 new_wa->user = NULL;
1515                 new_wa->free = true;
1516
1517                 area->next = new_wa;
1518                 area->size = size;
1519
1520                 /* If backup memory was allocated to this area, it has the wrong size
1521                  * now so free it and it will be reallocated if/when needed */
1522                 if (area->backup) {
1523                         free(area->backup);
1524                         area->backup = NULL;
1525                 }
1526         }
1527 }
1528
1529 /* Merge all adjacent free areas into one */
1530 static void target_merge_working_areas(struct target *target)
1531 {
1532         struct working_area *c = target->working_areas;
1533
1534         while (c && c->next) {
1535                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1536
1537                 /* Find two adjacent free areas */
1538                 if (c->free && c->next->free) {
1539                         /* Merge the last into the first */
1540                         c->size += c->next->size;
1541
1542                         /* Remove the last */
1543                         struct working_area *to_be_freed = c->next;
1544                         c->next = c->next->next;
1545                         if (to_be_freed->backup)
1546                                 free(to_be_freed->backup);
1547                         free(to_be_freed);
1548
1549                         /* If backup memory was allocated to the remaining area, it's has
1550                          * the wrong size now */
1551                         if (c->backup) {
1552                                 free(c->backup);
1553                                 c->backup = NULL;
1554                         }
1555                 } else {
1556                         c = c->next;
1557                 }
1558         }
1559 }
1560
1561 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1562 {
1563         /* Reevaluate working area address based on MMU state*/
1564         if (target->working_areas == NULL) {
1565                 int retval;
1566                 int enabled;
1567
1568                 retval = target->type->mmu(target, &enabled);
1569                 if (retval != ERROR_OK)
1570                         return retval;
1571
1572                 if (!enabled) {
1573                         if (target->working_area_phys_spec) {
1574                                 LOG_DEBUG("MMU disabled, using physical "
1575                                         "address for working memory 0x%08"PRIx32,
1576                                         target->working_area_phys);
1577                                 target->working_area = target->working_area_phys;
1578                         } else {
1579                                 LOG_ERROR("No working memory available. "
1580                                         "Specify -work-area-phys to target.");
1581                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1582                         }
1583                 } else {
1584                         if (target->working_area_virt_spec) {
1585                                 LOG_DEBUG("MMU enabled, using virtual "
1586                                         "address for working memory 0x%08"PRIx32,
1587                                         target->working_area_virt);
1588                                 target->working_area = target->working_area_virt;
1589                         } else {
1590                                 LOG_ERROR("No working memory available. "
1591                                         "Specify -work-area-virt to target.");
1592                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1593                         }
1594                 }
1595
1596                 /* Set up initial working area on first call */
1597                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1598                 if (new_wa) {
1599                         new_wa->next = NULL;
1600                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1601                         new_wa->address = target->working_area;
1602                         new_wa->backup = NULL;
1603                         new_wa->user = NULL;
1604                         new_wa->free = true;
1605                 }
1606
1607                 target->working_areas = new_wa;
1608         }
1609
1610         /* only allocate multiples of 4 byte */
1611         if (size % 4)
1612                 size = (size + 3) & (~3UL);
1613
1614         struct working_area *c = target->working_areas;
1615
1616         /* Find the first large enough working area */
1617         while (c) {
1618                 if (c->free && c->size >= size)
1619                         break;
1620                 c = c->next;
1621         }
1622
1623         if (c == NULL)
1624                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1625
1626         /* Split the working area into the requested size */
1627         target_split_working_area(c, size);
1628
1629         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1630
1631         if (target->backup_working_area) {
1632                 if (c->backup == NULL) {
1633                         c->backup = malloc(c->size);
1634                         if (c->backup == NULL)
1635                                 return ERROR_FAIL;
1636                 }
1637
1638                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1639                 if (retval != ERROR_OK)
1640                         return retval;
1641         }
1642
1643         /* mark as used, and return the new (reused) area */
1644         c->free = false;
1645         *area = c;
1646
1647         /* user pointer */
1648         c->user = area;
1649
1650         print_wa_layout(target);
1651
1652         return ERROR_OK;
1653 }
1654
1655 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1656 {
1657         int retval;
1658
1659         retval = target_alloc_working_area_try(target, size, area);
1660         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1661                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1662         return retval;
1663
1664 }
1665
1666 static int target_restore_working_area(struct target *target, struct working_area *area)
1667 {
1668         int retval = ERROR_OK;
1669
1670         if (target->backup_working_area && area->backup != NULL) {
1671                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1672                 if (retval != ERROR_OK)
1673                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1674                                         area->size, area->address);
1675         }
1676
1677         return retval;
1678 }
1679
1680 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1681 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1682 {
1683         int retval = ERROR_OK;
1684
1685         if (area->free)
1686                 return retval;
1687
1688         if (restore) {
1689                 retval = target_restore_working_area(target, area);
1690                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1691                 if (retval != ERROR_OK)
1692                         return retval;
1693         }
1694
1695         area->free = true;
1696
1697         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1698                         area->size, area->address);
1699
1700         /* mark user pointer invalid */
1701         /* TODO: Is this really safe? It points to some previous caller's memory.
1702          * How could we know that the area pointer is still in that place and not
1703          * some other vital data? What's the purpose of this, anyway? */
1704         *area->user = NULL;
1705         area->user = NULL;
1706
1707         target_merge_working_areas(target);
1708
1709         print_wa_layout(target);
1710
1711         return retval;
1712 }
1713
1714 int target_free_working_area(struct target *target, struct working_area *area)
1715 {
1716         return target_free_working_area_restore(target, area, 1);
1717 }
1718
1719 /* free resources and restore memory, if restoring memory fails,
1720  * free up resources anyway
1721  */
1722 static void target_free_all_working_areas_restore(struct target *target, int restore)
1723 {
1724         struct working_area *c = target->working_areas;
1725
1726         LOG_DEBUG("freeing all working areas");
1727
1728         /* Loop through all areas, restoring the allocated ones and marking them as free */
1729         while (c) {
1730                 if (!c->free) {
1731                         if (restore)
1732                                 target_restore_working_area(target, c);
1733                         c->free = true;
1734                         *c->user = NULL; /* Same as above */
1735                         c->user = NULL;
1736                 }
1737                 c = c->next;
1738         }
1739
1740         /* Run a merge pass to combine all areas into one */
1741         target_merge_working_areas(target);
1742
1743         print_wa_layout(target);
1744 }
1745
1746 void target_free_all_working_areas(struct target *target)
1747 {
1748         target_free_all_working_areas_restore(target, 1);
1749 }
1750
1751 /* Find the largest number of bytes that can be allocated */
1752 uint32_t target_get_working_area_avail(struct target *target)
1753 {
1754         struct working_area *c = target->working_areas;
1755         uint32_t max_size = 0;
1756
1757         if (c == NULL)
1758                 return target->working_area_size;
1759
1760         while (c) {
1761                 if (c->free && max_size < c->size)
1762                         max_size = c->size;
1763
1764                 c = c->next;
1765         }
1766
1767         return max_size;
1768 }
1769
1770 int target_arch_state(struct target *target)
1771 {
1772         int retval;
1773         if (target == NULL) {
1774                 LOG_USER("No target has been configured");
1775                 return ERROR_OK;
1776         }
1777
1778         LOG_USER("target state: %s", target_state_name(target));
1779
1780         if (target->state != TARGET_HALTED)
1781                 return ERROR_OK;
1782
1783         retval = target->type->arch_state(target);
1784         return retval;
1785 }
1786
1787 static int target_get_gdb_fileio_info_default(struct target *target,
1788                 struct gdb_fileio_info *fileio_info)
1789 {
1790         /* If target does not support semi-hosting function, target
1791            has no need to provide .get_gdb_fileio_info callback.
1792            It just return ERROR_FAIL and gdb_server will return "Txx"
1793            as target halted every time.  */
1794         return ERROR_FAIL;
1795 }
1796
1797 static int target_gdb_fileio_end_default(struct target *target,
1798                 int retcode, int fileio_errno, bool ctrl_c)
1799 {
1800         return ERROR_OK;
1801 }
1802
1803 static int target_profiling_default(struct target *target, uint32_t *samples,
1804                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1805 {
1806         struct timeval timeout, now;
1807
1808         gettimeofday(&timeout, NULL);
1809         timeval_add_time(&timeout, seconds, 0);
1810
1811         LOG_INFO("Starting profiling. Halting and resuming the"
1812                         " target as often as we can...");
1813
1814         uint32_t sample_count = 0;
1815         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1816         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1817
1818         int retval = ERROR_OK;
1819         for (;;) {
1820                 target_poll(target);
1821                 if (target->state == TARGET_HALTED) {
1822                         uint32_t t = *((uint32_t *)reg->value);
1823                         samples[sample_count++] = t;
1824                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1825                         retval = target_resume(target, 1, 0, 0, 0);
1826                         target_poll(target);
1827                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1828                 } else if (target->state == TARGET_RUNNING) {
1829                         /* We want to quickly sample the PC. */
1830                         retval = target_halt(target);
1831                 } else {
1832                         LOG_INFO("Target not halted or running");
1833                         retval = ERROR_OK;
1834                         break;
1835                 }
1836
1837                 if (retval != ERROR_OK)
1838                         break;
1839
1840                 gettimeofday(&now, NULL);
1841                 if ((sample_count >= max_num_samples) ||
1842                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1843                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1844                         break;
1845                 }
1846         }
1847
1848         *num_samples = sample_count;
1849         return retval;
1850 }
1851
1852 /* Single aligned words are guaranteed to use 16 or 32 bit access
1853  * mode respectively, otherwise data is handled as quickly as
1854  * possible
1855  */
1856 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1857 {
1858         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1859                         (int)size, (unsigned)address);
1860
1861         if (!target_was_examined(target)) {
1862                 LOG_ERROR("Target not examined yet");
1863                 return ERROR_FAIL;
1864         }
1865
1866         if (size == 0)
1867                 return ERROR_OK;
1868
1869         if ((address + size - 1) < address) {
1870                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1871                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1872                                   (unsigned)address,
1873                                   (unsigned)size);
1874                 return ERROR_FAIL;
1875         }
1876
1877         return target->type->write_buffer(target, address, size, buffer);
1878 }
1879
1880 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1881 {
1882         uint32_t size;
1883
1884         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1885          * will have something to do with the size we leave to it. */
1886         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1887                 if (address & size) {
1888                         int retval = target_write_memory(target, address, size, 1, buffer);
1889                         if (retval != ERROR_OK)
1890                                 return retval;
1891                         address += size;
1892                         count -= size;
1893                         buffer += size;
1894                 }
1895         }
1896
1897         /* Write the data with as large access size as possible. */
1898         for (; size > 0; size /= 2) {
1899                 uint32_t aligned = count - count % size;
1900                 if (aligned > 0) {
1901                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1902                         if (retval != ERROR_OK)
1903                                 return retval;
1904                         address += aligned;
1905                         count -= aligned;
1906                         buffer += aligned;
1907                 }
1908         }
1909
1910         return ERROR_OK;
1911 }
1912
1913 /* Single aligned words are guaranteed to use 16 or 32 bit access
1914  * mode respectively, otherwise data is handled as quickly as
1915  * possible
1916  */
1917 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1918 {
1919         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1920                           (int)size, (unsigned)address);
1921
1922         if (!target_was_examined(target)) {
1923                 LOG_ERROR("Target not examined yet");
1924                 return ERROR_FAIL;
1925         }
1926
1927         if (size == 0)
1928                 return ERROR_OK;
1929
1930         if ((address + size - 1) < address) {
1931                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1932                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1933                                   address,
1934                                   size);
1935                 return ERROR_FAIL;
1936         }
1937
1938         return target->type->read_buffer(target, address, size, buffer);
1939 }
1940
1941 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1942 {
1943         uint32_t size;
1944
1945         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1946          * will have something to do with the size we leave to it. */
1947         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1948                 if (address & size) {
1949                         int retval = target_read_memory(target, address, size, 1, buffer);
1950                         if (retval != ERROR_OK)
1951                                 return retval;
1952                         address += size;
1953                         count -= size;
1954                         buffer += size;
1955                 }
1956         }
1957
1958         /* Read the data with as large access size as possible. */
1959         for (; size > 0; size /= 2) {
1960                 uint32_t aligned = count - count % size;
1961                 if (aligned > 0) {
1962                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1963                         if (retval != ERROR_OK)
1964                                 return retval;
1965                         address += aligned;
1966                         count -= aligned;
1967                         buffer += aligned;
1968                 }
1969         }
1970
1971         return ERROR_OK;
1972 }
1973
1974 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1975 {
1976         uint8_t *buffer;
1977         int retval;
1978         uint32_t i;
1979         uint32_t checksum = 0;
1980         if (!target_was_examined(target)) {
1981                 LOG_ERROR("Target not examined yet");
1982                 return ERROR_FAIL;
1983         }
1984
1985         retval = target->type->checksum_memory(target, address, size, &checksum);
1986         if (retval != ERROR_OK) {
1987                 buffer = malloc(size);
1988                 if (buffer == NULL) {
1989                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1990                         return ERROR_COMMAND_SYNTAX_ERROR;
1991                 }
1992                 retval = target_read_buffer(target, address, size, buffer);
1993                 if (retval != ERROR_OK) {
1994                         free(buffer);
1995                         return retval;
1996                 }
1997
1998                 /* convert to target endianness */
1999                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2000                         uint32_t target_data;
2001                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2002                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2003                 }
2004
2005                 retval = image_calculate_checksum(buffer, size, &checksum);
2006                 free(buffer);
2007         }
2008
2009         *crc = checksum;
2010
2011         return retval;
2012 }
2013
2014 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2015 {
2016         int retval;
2017         if (!target_was_examined(target)) {
2018                 LOG_ERROR("Target not examined yet");
2019                 return ERROR_FAIL;
2020         }
2021
2022         if (target->type->blank_check_memory == 0)
2023                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2024
2025         retval = target->type->blank_check_memory(target, address, size, blank);
2026
2027         return retval;
2028 }
2029
2030 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2031 {
2032         uint8_t value_buf[8];
2033         if (!target_was_examined(target)) {
2034                 LOG_ERROR("Target not examined yet");
2035                 return ERROR_FAIL;
2036         }
2037
2038         int retval = target_read_memory(target, address, 8, 1, value_buf);
2039
2040         if (retval == ERROR_OK) {
2041                 *value = target_buffer_get_u64(target, value_buf);
2042                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2043                                   address,
2044                                   *value);
2045         } else {
2046                 *value = 0x0;
2047                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2048                                   address);
2049         }
2050
2051         return retval;
2052 }
2053
2054 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2055 {
2056         uint8_t value_buf[4];
2057         if (!target_was_examined(target)) {
2058                 LOG_ERROR("Target not examined yet");
2059                 return ERROR_FAIL;
2060         }
2061
2062         int retval = target_read_memory(target, address, 4, 1, value_buf);
2063
2064         if (retval == ERROR_OK) {
2065                 *value = target_buffer_get_u32(target, value_buf);
2066                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2067                                   address,
2068                                   *value);
2069         } else {
2070                 *value = 0x0;
2071                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2072                                   address);
2073         }
2074
2075         return retval;
2076 }
2077
2078 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2079 {
2080         uint8_t value_buf[2];
2081         if (!target_was_examined(target)) {
2082                 LOG_ERROR("Target not examined yet");
2083                 return ERROR_FAIL;
2084         }
2085
2086         int retval = target_read_memory(target, address, 2, 1, value_buf);
2087
2088         if (retval == ERROR_OK) {
2089                 *value = target_buffer_get_u16(target, value_buf);
2090                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2091                                   address,
2092                                   *value);
2093         } else {
2094                 *value = 0x0;
2095                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2096                                   address);
2097         }
2098
2099         return retval;
2100 }
2101
2102 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2103 {
2104         if (!target_was_examined(target)) {
2105                 LOG_ERROR("Target not examined yet");
2106                 return ERROR_FAIL;
2107         }
2108
2109         int retval = target_read_memory(target, address, 1, 1, value);
2110
2111         if (retval == ERROR_OK) {
2112                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2113                                   address,
2114                                   *value);
2115         } else {
2116                 *value = 0x0;
2117                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2118                                   address);
2119         }
2120
2121         return retval;
2122 }
2123
2124 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2125 {
2126         int retval;
2127         uint8_t value_buf[8];
2128         if (!target_was_examined(target)) {
2129                 LOG_ERROR("Target not examined yet");
2130                 return ERROR_FAIL;
2131         }
2132
2133         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2134                           address,
2135                           value);
2136
2137         target_buffer_set_u64(target, value_buf, value);
2138         retval = target_write_memory(target, address, 8, 1, value_buf);
2139         if (retval != ERROR_OK)
2140                 LOG_DEBUG("failed: %i", retval);
2141
2142         return retval;
2143 }
2144
2145 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2146 {
2147         int retval;
2148         uint8_t value_buf[4];
2149         if (!target_was_examined(target)) {
2150                 LOG_ERROR("Target not examined yet");
2151                 return ERROR_FAIL;
2152         }
2153
2154         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2155                           address,
2156                           value);
2157
2158         target_buffer_set_u32(target, value_buf, value);
2159         retval = target_write_memory(target, address, 4, 1, value_buf);
2160         if (retval != ERROR_OK)
2161                 LOG_DEBUG("failed: %i", retval);
2162
2163         return retval;
2164 }
2165
2166 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2167 {
2168         int retval;
2169         uint8_t value_buf[2];
2170         if (!target_was_examined(target)) {
2171                 LOG_ERROR("Target not examined yet");
2172                 return ERROR_FAIL;
2173         }
2174
2175         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2176                           address,
2177                           value);
2178
2179         target_buffer_set_u16(target, value_buf, value);
2180         retval = target_write_memory(target, address, 2, 1, value_buf);
2181         if (retval != ERROR_OK)
2182                 LOG_DEBUG("failed: %i", retval);
2183
2184         return retval;
2185 }
2186
2187 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2188 {
2189         int retval;
2190         if (!target_was_examined(target)) {
2191                 LOG_ERROR("Target not examined yet");
2192                 return ERROR_FAIL;
2193         }
2194
2195         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2196                           address, value);
2197
2198         retval = target_write_memory(target, address, 1, 1, &value);
2199         if (retval != ERROR_OK)
2200                 LOG_DEBUG("failed: %i", retval);
2201
2202         return retval;
2203 }
2204
2205 static int find_target(struct command_context *cmd_ctx, const char *name)
2206 {
2207         struct target *target = get_target(name);
2208         if (target == NULL) {
2209                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2210                 return ERROR_FAIL;
2211         }
2212         if (!target->tap->enabled) {
2213                 LOG_USER("Target: TAP %s is disabled, "
2214                          "can't be the current target\n",
2215                          target->tap->dotted_name);
2216                 return ERROR_FAIL;
2217         }
2218
2219         cmd_ctx->current_target = target->target_number;
2220         return ERROR_OK;
2221 }
2222
2223
2224 COMMAND_HANDLER(handle_targets_command)
2225 {
2226         int retval = ERROR_OK;
2227         if (CMD_ARGC == 1) {
2228                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2229                 if (retval == ERROR_OK) {
2230                         /* we're done! */
2231                         return retval;
2232                 }
2233         }
2234
2235         struct target *target = all_targets;
2236         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2237         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2238         while (target) {
2239                 const char *state;
2240                 char marker = ' ';
2241
2242                 if (target->tap->enabled)
2243                         state = target_state_name(target);
2244                 else
2245                         state = "tap-disabled";
2246
2247                 if (CMD_CTX->current_target == target->target_number)
2248                         marker = '*';
2249
2250                 /* keep columns lined up to match the headers above */
2251                 command_print(CMD_CTX,
2252                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2253                                 target->target_number,
2254                                 marker,
2255                                 target_name(target),
2256                                 target_type_name(target),
2257                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2258                                         target->endianness)->name,
2259                                 target->tap->dotted_name,
2260                                 state);
2261                 target = target->next;
2262         }
2263
2264         return retval;
2265 }
2266
2267 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2268
2269 static int powerDropout;
2270 static int srstAsserted;
2271
2272 static int runPowerRestore;
2273 static int runPowerDropout;
2274 static int runSrstAsserted;
2275 static int runSrstDeasserted;
2276
2277 static int sense_handler(void)
2278 {
2279         static int prevSrstAsserted;
2280         static int prevPowerdropout;
2281
2282         int retval = jtag_power_dropout(&powerDropout);
2283         if (retval != ERROR_OK)
2284                 return retval;
2285
2286         int powerRestored;
2287         powerRestored = prevPowerdropout && !powerDropout;
2288         if (powerRestored)
2289                 runPowerRestore = 1;
2290
2291         long long current = timeval_ms();
2292         static long long lastPower;
2293         int waitMore = lastPower + 2000 > current;
2294         if (powerDropout && !waitMore) {
2295                 runPowerDropout = 1;
2296                 lastPower = current;
2297         }
2298
2299         retval = jtag_srst_asserted(&srstAsserted);
2300         if (retval != ERROR_OK)
2301                 return retval;
2302
2303         int srstDeasserted;
2304         srstDeasserted = prevSrstAsserted && !srstAsserted;
2305
2306         static long long lastSrst;
2307         waitMore = lastSrst + 2000 > current;
2308         if (srstDeasserted && !waitMore) {
2309                 runSrstDeasserted = 1;
2310                 lastSrst = current;
2311         }
2312
2313         if (!prevSrstAsserted && srstAsserted)
2314                 runSrstAsserted = 1;
2315
2316         prevSrstAsserted = srstAsserted;
2317         prevPowerdropout = powerDropout;
2318
2319         if (srstDeasserted || powerRestored) {
2320                 /* Other than logging the event we can't do anything here.
2321                  * Issuing a reset is a particularly bad idea as we might
2322                  * be inside a reset already.
2323                  */
2324         }
2325
2326         return ERROR_OK;
2327 }
2328
2329 /* process target state changes */
2330 static int handle_target(void *priv)
2331 {
2332         Jim_Interp *interp = (Jim_Interp *)priv;
2333         int retval = ERROR_OK;
2334
2335         if (!is_jtag_poll_safe()) {
2336                 /* polling is disabled currently */
2337                 return ERROR_OK;
2338         }
2339
2340         /* we do not want to recurse here... */
2341         static int recursive;
2342         if (!recursive) {
2343                 recursive = 1;
2344                 sense_handler();
2345                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2346                  * We need to avoid an infinite loop/recursion here and we do that by
2347                  * clearing the flags after running these events.
2348                  */
2349                 int did_something = 0;
2350                 if (runSrstAsserted) {
2351                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2352                         Jim_Eval(interp, "srst_asserted");
2353                         did_something = 1;
2354                 }
2355                 if (runSrstDeasserted) {
2356                         Jim_Eval(interp, "srst_deasserted");
2357                         did_something = 1;
2358                 }
2359                 if (runPowerDropout) {
2360                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2361                         Jim_Eval(interp, "power_dropout");
2362                         did_something = 1;
2363                 }
2364                 if (runPowerRestore) {
2365                         Jim_Eval(interp, "power_restore");
2366                         did_something = 1;
2367                 }
2368
2369                 if (did_something) {
2370                         /* clear detect flags */
2371                         sense_handler();
2372                 }
2373
2374                 /* clear action flags */
2375
2376                 runSrstAsserted = 0;
2377                 runSrstDeasserted = 0;
2378                 runPowerRestore = 0;
2379                 runPowerDropout = 0;
2380
2381                 recursive = 0;
2382         }
2383
2384         /* Poll targets for state changes unless that's globally disabled.
2385          * Skip targets that are currently disabled.
2386          */
2387         for (struct target *target = all_targets;
2388                         is_jtag_poll_safe() && target;
2389                         target = target->next) {
2390
2391                 if (!target_was_examined(target))
2392                         continue;
2393
2394                 if (!target->tap->enabled)
2395                         continue;
2396
2397                 if (target->backoff.times > target->backoff.count) {
2398                         /* do not poll this time as we failed previously */
2399                         target->backoff.count++;
2400                         continue;
2401                 }
2402                 target->backoff.count = 0;
2403
2404                 /* only poll target if we've got power and srst isn't asserted */
2405                 if (!powerDropout && !srstAsserted) {
2406                         /* polling may fail silently until the target has been examined */
2407                         retval = target_poll(target);
2408                         if (retval != ERROR_OK) {
2409                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2410                                 if (target->backoff.times * polling_interval < 5000) {
2411                                         target->backoff.times *= 2;
2412                                         target->backoff.times++;
2413                                 }
2414                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2415                                                 target_name(target),
2416                                                 target->backoff.times * polling_interval);
2417
2418                                 /* Tell GDB to halt the debugger. This allows the user to
2419                                  * run monitor commands to handle the situation.
2420                                  */
2421                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2422                                 return retval;
2423                         }
2424                         /* Since we succeeded, we reset backoff count */
2425                         if (target->backoff.times > 0) {
2426                                 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2427                                 target_reset_examined(target);
2428                                 retval = target_examine_one(target);
2429                                 /* Target examination could have failed due to unstable connection,
2430                                  * but we set the examined flag anyway to repoll it later */
2431                                 if (retval != ERROR_OK) {
2432                                         target->examined = true;
2433                                         return retval;
2434                                 }
2435                         }
2436
2437                         target->backoff.times = 0;
2438                 }
2439         }
2440
2441         return retval;
2442 }
2443
2444 COMMAND_HANDLER(handle_reg_command)
2445 {
2446         struct target *target;
2447         struct reg *reg = NULL;
2448         unsigned count = 0;
2449         char *value;
2450
2451         LOG_DEBUG("-");
2452
2453         target = get_current_target(CMD_CTX);
2454
2455         /* list all available registers for the current target */
2456         if (CMD_ARGC == 0) {
2457                 struct reg_cache *cache = target->reg_cache;
2458
2459                 count = 0;
2460                 while (cache) {
2461                         unsigned i;
2462
2463                         command_print(CMD_CTX, "===== %s", cache->name);
2464
2465                         for (i = 0, reg = cache->reg_list;
2466                                         i < cache->num_regs;
2467                                         i++, reg++, count++) {
2468                                 /* only print cached values if they are valid */
2469                                 if (reg->valid) {
2470                                         value = buf_to_str(reg->value,
2471                                                         reg->size, 16);
2472                                         command_print(CMD_CTX,
2473                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2474                                                         count, reg->name,
2475                                                         reg->size, value,
2476                                                         reg->dirty
2477                                                                 ? " (dirty)"
2478                                                                 : "");
2479                                         free(value);
2480                                 } else {
2481                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2482                                                           count, reg->name,
2483                                                           reg->size) ;
2484                                 }
2485                         }
2486                         cache = cache->next;
2487                 }
2488
2489                 return ERROR_OK;
2490         }
2491
2492         /* access a single register by its ordinal number */
2493         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2494                 unsigned num;
2495                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2496
2497                 struct reg_cache *cache = target->reg_cache;
2498                 count = 0;
2499                 while (cache) {
2500                         unsigned i;
2501                         for (i = 0; i < cache->num_regs; i++) {
2502                                 if (count++ == num) {
2503                                         reg = &cache->reg_list[i];
2504                                         break;
2505                                 }
2506                         }
2507                         if (reg)
2508                                 break;
2509                         cache = cache->next;
2510                 }
2511
2512                 if (!reg) {
2513                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2514                                         "has only %i registers (0 - %i)", num, count, count - 1);
2515                         return ERROR_OK;
2516                 }
2517         } else {
2518                 /* access a single register by its name */
2519                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2520
2521                 if (!reg) {
2522                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2523                         return ERROR_OK;
2524                 }
2525         }
2526
2527         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2528
2529         /* display a register */
2530         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2531                         && (CMD_ARGV[1][0] <= '9')))) {
2532                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2533                         reg->valid = 0;
2534
2535                 if (reg->valid == 0)
2536                         reg->type->get(reg);
2537                 value = buf_to_str(reg->value, reg->size, 16);
2538                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2539                 free(value);
2540                 return ERROR_OK;
2541         }
2542
2543         /* set register value */
2544         if (CMD_ARGC == 2) {
2545                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2546                 if (buf == NULL)
2547                         return ERROR_FAIL;
2548                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2549
2550                 reg->type->set(reg, buf);
2551
2552                 value = buf_to_str(reg->value, reg->size, 16);
2553                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2554                 free(value);
2555
2556                 free(buf);
2557
2558                 return ERROR_OK;
2559         }
2560
2561         return ERROR_COMMAND_SYNTAX_ERROR;
2562 }
2563
2564 COMMAND_HANDLER(handle_poll_command)
2565 {
2566         int retval = ERROR_OK;
2567         struct target *target = get_current_target(CMD_CTX);
2568
2569         if (CMD_ARGC == 0) {
2570                 command_print(CMD_CTX, "background polling: %s",
2571                                 jtag_poll_get_enabled() ? "on" : "off");
2572                 command_print(CMD_CTX, "TAP: %s (%s)",
2573                                 target->tap->dotted_name,
2574                                 target->tap->enabled ? "enabled" : "disabled");
2575                 if (!target->tap->enabled)
2576                         return ERROR_OK;
2577                 retval = target_poll(target);
2578                 if (retval != ERROR_OK)
2579                         return retval;
2580                 retval = target_arch_state(target);
2581                 if (retval != ERROR_OK)
2582                         return retval;
2583         } else if (CMD_ARGC == 1) {
2584                 bool enable;
2585                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2586                 jtag_poll_set_enabled(enable);
2587         } else
2588                 return ERROR_COMMAND_SYNTAX_ERROR;
2589
2590         return retval;
2591 }
2592
2593 COMMAND_HANDLER(handle_wait_halt_command)
2594 {
2595         if (CMD_ARGC > 1)
2596                 return ERROR_COMMAND_SYNTAX_ERROR;
2597
2598         unsigned ms = DEFAULT_HALT_TIMEOUT;
2599         if (1 == CMD_ARGC) {
2600                 int retval = parse_uint(CMD_ARGV[0], &ms);
2601                 if (ERROR_OK != retval)
2602                         return ERROR_COMMAND_SYNTAX_ERROR;
2603         }
2604
2605         struct target *target = get_current_target(CMD_CTX);
2606         return target_wait_state(target, TARGET_HALTED, ms);
2607 }
2608
2609 /* wait for target state to change. The trick here is to have a low
2610  * latency for short waits and not to suck up all the CPU time
2611  * on longer waits.
2612  *
2613  * After 500ms, keep_alive() is invoked
2614  */
2615 int target_wait_state(struct target *target, enum target_state state, int ms)
2616 {
2617         int retval;
2618         long long then = 0, cur;
2619         int once = 1;
2620
2621         for (;;) {
2622                 retval = target_poll(target);
2623                 if (retval != ERROR_OK)
2624                         return retval;
2625                 if (target->state == state)
2626                         break;
2627                 cur = timeval_ms();
2628                 if (once) {
2629                         once = 0;
2630                         then = timeval_ms();
2631                         LOG_DEBUG("waiting for target %s...",
2632                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2633                 }
2634
2635                 if (cur-then > 500)
2636                         keep_alive();
2637
2638                 if ((cur-then) > ms) {
2639                         LOG_ERROR("timed out while waiting for target %s",
2640                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2641                         return ERROR_FAIL;
2642                 }
2643         }
2644
2645         return ERROR_OK;
2646 }
2647
2648 COMMAND_HANDLER(handle_halt_command)
2649 {
2650         LOG_DEBUG("-");
2651
2652         struct target *target = get_current_target(CMD_CTX);
2653         int retval = target_halt(target);
2654         if (ERROR_OK != retval)
2655                 return retval;
2656
2657         if (CMD_ARGC == 1) {
2658                 unsigned wait_local;
2659                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2660                 if (ERROR_OK != retval)
2661                         return ERROR_COMMAND_SYNTAX_ERROR;
2662                 if (!wait_local)
2663                         return ERROR_OK;
2664         }
2665
2666         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2667 }
2668
2669 COMMAND_HANDLER(handle_soft_reset_halt_command)
2670 {
2671         struct target *target = get_current_target(CMD_CTX);
2672
2673         LOG_USER("requesting target halt and executing a soft reset");
2674
2675         target_soft_reset_halt(target);
2676
2677         return ERROR_OK;
2678 }
2679
2680 COMMAND_HANDLER(handle_reset_command)
2681 {
2682         if (CMD_ARGC > 1)
2683                 return ERROR_COMMAND_SYNTAX_ERROR;
2684
2685         enum target_reset_mode reset_mode = RESET_RUN;
2686         if (CMD_ARGC == 1) {
2687                 const Jim_Nvp *n;
2688                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2689                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2690                         return ERROR_COMMAND_SYNTAX_ERROR;
2691                 reset_mode = n->value;
2692         }
2693
2694         /* reset *all* targets */
2695         return target_process_reset(CMD_CTX, reset_mode);
2696 }
2697
2698
2699 COMMAND_HANDLER(handle_resume_command)
2700 {
2701         int current = 1;
2702         if (CMD_ARGC > 1)
2703                 return ERROR_COMMAND_SYNTAX_ERROR;
2704
2705         struct target *target = get_current_target(CMD_CTX);
2706
2707         /* with no CMD_ARGV, resume from current pc, addr = 0,
2708          * with one arguments, addr = CMD_ARGV[0],
2709          * handle breakpoints, not debugging */
2710         uint32_t addr = 0;
2711         if (CMD_ARGC == 1) {
2712                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2713                 current = 0;
2714         }
2715
2716         return target_resume(target, current, addr, 1, 0);
2717 }
2718
2719 COMMAND_HANDLER(handle_step_command)
2720 {
2721         if (CMD_ARGC > 1)
2722                 return ERROR_COMMAND_SYNTAX_ERROR;
2723
2724         LOG_DEBUG("-");
2725
2726         /* with no CMD_ARGV, step from current pc, addr = 0,
2727          * with one argument addr = CMD_ARGV[0],
2728          * handle breakpoints, debugging */
2729         uint32_t addr = 0;
2730         int current_pc = 1;
2731         if (CMD_ARGC == 1) {
2732                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2733                 current_pc = 0;
2734         }
2735
2736         struct target *target = get_current_target(CMD_CTX);
2737
2738         return target->type->step(target, current_pc, addr, 1);
2739 }
2740
2741 static void handle_md_output(struct command_context *cmd_ctx,
2742                 struct target *target, uint32_t address, unsigned size,
2743                 unsigned count, const uint8_t *buffer)
2744 {
2745         const unsigned line_bytecnt = 32;
2746         unsigned line_modulo = line_bytecnt / size;
2747
2748         char output[line_bytecnt * 4 + 1];
2749         unsigned output_len = 0;
2750
2751         const char *value_fmt;
2752         switch (size) {
2753         case 4:
2754                 value_fmt = "%8.8x ";
2755                 break;
2756         case 2:
2757                 value_fmt = "%4.4x ";
2758                 break;
2759         case 1:
2760                 value_fmt = "%2.2x ";
2761                 break;
2762         default:
2763                 /* "can't happen", caller checked */
2764                 LOG_ERROR("invalid memory read size: %u", size);
2765                 return;
2766         }
2767
2768         for (unsigned i = 0; i < count; i++) {
2769                 if (i % line_modulo == 0) {
2770                         output_len += snprintf(output + output_len,
2771                                         sizeof(output) - output_len,
2772                                         "0x%8.8x: ",
2773                                         (unsigned)(address + (i*size)));
2774                 }
2775
2776                 uint32_t value = 0;
2777                 const uint8_t *value_ptr = buffer + i * size;
2778                 switch (size) {
2779                 case 4:
2780                         value = target_buffer_get_u32(target, value_ptr);
2781                         break;
2782                 case 2:
2783                         value = target_buffer_get_u16(target, value_ptr);
2784                         break;
2785                 case 1:
2786                         value = *value_ptr;
2787                 }
2788                 output_len += snprintf(output + output_len,
2789                                 sizeof(output) - output_len,
2790                                 value_fmt, value);
2791
2792                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2793                         command_print(cmd_ctx, "%s", output);
2794                         output_len = 0;
2795                 }
2796         }
2797 }
2798
2799 COMMAND_HANDLER(handle_md_command)
2800 {
2801         if (CMD_ARGC < 1)
2802                 return ERROR_COMMAND_SYNTAX_ERROR;
2803
2804         unsigned size = 0;
2805         switch (CMD_NAME[2]) {
2806         case 'w':
2807                 size = 4;
2808                 break;
2809         case 'h':
2810                 size = 2;
2811                 break;
2812         case 'b':
2813                 size = 1;
2814                 break;
2815         default:
2816                 return ERROR_COMMAND_SYNTAX_ERROR;
2817         }
2818
2819         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2820         int (*fn)(struct target *target,
2821                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2822         if (physical) {
2823                 CMD_ARGC--;
2824                 CMD_ARGV++;
2825                 fn = target_read_phys_memory;
2826         } else
2827                 fn = target_read_memory;
2828         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2829                 return ERROR_COMMAND_SYNTAX_ERROR;
2830
2831         uint32_t address;
2832         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2833
2834         unsigned count = 1;
2835         if (CMD_ARGC == 2)
2836                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2837
2838         uint8_t *buffer = calloc(count, size);
2839
2840         struct target *target = get_current_target(CMD_CTX);
2841         int retval = fn(target, address, size, count, buffer);
2842         if (ERROR_OK == retval)
2843                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2844
2845         free(buffer);
2846
2847         return retval;
2848 }
2849
2850 typedef int (*target_write_fn)(struct target *target,
2851                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2852
2853 static int target_fill_mem(struct target *target,
2854                 uint32_t address,
2855                 target_write_fn fn,
2856                 unsigned data_size,
2857                 /* value */
2858                 uint32_t b,
2859                 /* count */
2860                 unsigned c)
2861 {
2862         /* We have to write in reasonably large chunks to be able
2863          * to fill large memory areas with any sane speed */
2864         const unsigned chunk_size = 16384;
2865         uint8_t *target_buf = malloc(chunk_size * data_size);
2866         if (target_buf == NULL) {
2867                 LOG_ERROR("Out of memory");
2868                 return ERROR_FAIL;
2869         }
2870
2871         for (unsigned i = 0; i < chunk_size; i++) {
2872                 switch (data_size) {
2873                 case 4:
2874                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2875                         break;
2876                 case 2:
2877                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2878                         break;
2879                 case 1:
2880                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2881                         break;
2882                 default:
2883                         exit(-1);
2884                 }
2885         }
2886
2887         int retval = ERROR_OK;
2888
2889         for (unsigned x = 0; x < c; x += chunk_size) {
2890                 unsigned current;
2891                 current = c - x;
2892                 if (current > chunk_size)
2893                         current = chunk_size;
2894                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2895                 if (retval != ERROR_OK)
2896                         break;
2897                 /* avoid GDB timeouts */
2898                 keep_alive();
2899         }
2900         free(target_buf);
2901
2902         return retval;
2903 }
2904
2905
2906 COMMAND_HANDLER(handle_mw_command)
2907 {
2908         if (CMD_ARGC < 2)
2909                 return ERROR_COMMAND_SYNTAX_ERROR;
2910         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2911         target_write_fn fn;
2912         if (physical) {
2913                 CMD_ARGC--;
2914                 CMD_ARGV++;
2915                 fn = target_write_phys_memory;
2916         } else
2917                 fn = target_write_memory;
2918         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2919                 return ERROR_COMMAND_SYNTAX_ERROR;
2920
2921         uint32_t address;
2922         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2923
2924         uint32_t value;
2925         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2926
2927         unsigned count = 1;
2928         if (CMD_ARGC == 3)
2929                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2930
2931         struct target *target = get_current_target(CMD_CTX);
2932         unsigned wordsize;
2933         switch (CMD_NAME[2]) {
2934                 case 'w':
2935                         wordsize = 4;
2936                         break;
2937                 case 'h':
2938                         wordsize = 2;
2939                         break;
2940                 case 'b':
2941                         wordsize = 1;
2942                         break;
2943                 default:
2944                         return ERROR_COMMAND_SYNTAX_ERROR;
2945         }
2946
2947         return target_fill_mem(target, address, fn, wordsize, value, count);
2948 }
2949
2950 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2951                 uint32_t *min_address, uint32_t *max_address)
2952 {
2953         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2954                 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956         /* a base address isn't always necessary,
2957          * default to 0x0 (i.e. don't relocate) */
2958         if (CMD_ARGC >= 2) {
2959                 uint32_t addr;
2960                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2961                 image->base_address = addr;
2962                 image->base_address_set = 1;
2963         } else
2964                 image->base_address_set = 0;
2965
2966         image->start_address_set = 0;
2967
2968         if (CMD_ARGC >= 4)
2969                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2970         if (CMD_ARGC == 5) {
2971                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2972                 /* use size (given) to find max (required) */
2973                 *max_address += *min_address;
2974         }
2975
2976         if (*min_address > *max_address)
2977                 return ERROR_COMMAND_SYNTAX_ERROR;
2978
2979         return ERROR_OK;
2980 }
2981
2982 COMMAND_HANDLER(handle_load_image_command)
2983 {
2984         uint8_t *buffer;
2985         size_t buf_cnt;
2986         uint32_t image_size;
2987         uint32_t min_address = 0;
2988         uint32_t max_address = 0xffffffff;
2989         int i;
2990         struct image image;
2991
2992         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2993                         &image, &min_address, &max_address);
2994         if (ERROR_OK != retval)
2995                 return retval;
2996
2997         struct target *target = get_current_target(CMD_CTX);
2998
2999         struct duration bench;
3000         duration_start(&bench);
3001
3002         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3003                 return ERROR_OK;
3004
3005         image_size = 0x0;
3006         retval = ERROR_OK;
3007         for (i = 0; i < image.num_sections; i++) {
3008                 buffer = malloc(image.sections[i].size);
3009                 if (buffer == NULL) {
3010                         command_print(CMD_CTX,
3011                                                   "error allocating buffer for section (%d bytes)",
3012                                                   (int)(image.sections[i].size));
3013                         break;
3014                 }
3015
3016                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3017                 if (retval != ERROR_OK) {
3018                         free(buffer);
3019                         break;
3020                 }
3021
3022                 uint32_t offset = 0;
3023                 uint32_t length = buf_cnt;
3024
3025                 /* DANGER!!! beware of unsigned comparision here!!! */
3026
3027                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3028                                 (image.sections[i].base_address < max_address)) {
3029
3030                         if (image.sections[i].base_address < min_address) {
3031                                 /* clip addresses below */
3032                                 offset += min_address-image.sections[i].base_address;
3033                                 length -= offset;
3034                         }
3035
3036                         if (image.sections[i].base_address + buf_cnt > max_address)
3037                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3038
3039                         retval = target_write_buffer(target,
3040                                         image.sections[i].base_address + offset, length, buffer + offset);
3041                         if (retval != ERROR_OK) {
3042                                 free(buffer);
3043                                 break;
3044                         }
3045                         image_size += length;
3046                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3047                                         (unsigned int)length,
3048                                         image.sections[i].base_address + offset);
3049                 }
3050
3051                 free(buffer);
3052         }
3053
3054         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3055                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3056                                 "in %fs (%0.3f KiB/s)", image_size,
3057                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3058         }
3059
3060         image_close(&image);
3061
3062         return retval;
3063
3064 }
3065
3066 COMMAND_HANDLER(handle_dump_image_command)
3067 {
3068         struct fileio fileio;
3069         uint8_t *buffer;
3070         int retval, retvaltemp;
3071         uint32_t address, size;
3072         struct duration bench;
3073         struct target *target = get_current_target(CMD_CTX);
3074
3075         if (CMD_ARGC != 3)
3076                 return ERROR_COMMAND_SYNTAX_ERROR;
3077
3078         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3079         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3080
3081         uint32_t buf_size = (size > 4096) ? 4096 : size;
3082         buffer = malloc(buf_size);
3083         if (!buffer)
3084                 return ERROR_FAIL;
3085
3086         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3087         if (retval != ERROR_OK) {
3088                 free(buffer);
3089                 return retval;
3090         }
3091
3092         duration_start(&bench);
3093
3094         while (size > 0) {
3095                 size_t size_written;
3096                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3097                 retval = target_read_buffer(target, address, this_run_size, buffer);
3098                 if (retval != ERROR_OK)
3099                         break;
3100
3101                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3102                 if (retval != ERROR_OK)
3103                         break;
3104
3105                 size -= this_run_size;
3106                 address += this_run_size;
3107         }
3108
3109         free(buffer);
3110
3111         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3112                 int filesize;
3113                 retval = fileio_size(&fileio, &filesize);
3114                 if (retval != ERROR_OK)
3115                         return retval;
3116                 command_print(CMD_CTX,
3117                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3118                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3119         }
3120
3121         retvaltemp = fileio_close(&fileio);
3122         if (retvaltemp != ERROR_OK)
3123                 return retvaltemp;
3124
3125         return retval;
3126 }
3127
3128 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3129 {
3130         uint8_t *buffer;
3131         size_t buf_cnt;
3132         uint32_t image_size;
3133         int i;
3134         int retval;
3135         uint32_t checksum = 0;
3136         uint32_t mem_checksum = 0;
3137
3138         struct image image;
3139
3140         struct target *target = get_current_target(CMD_CTX);
3141
3142         if (CMD_ARGC < 1)
3143                 return ERROR_COMMAND_SYNTAX_ERROR;
3144
3145         if (!target) {
3146                 LOG_ERROR("no target selected");
3147                 return ERROR_FAIL;
3148         }
3149
3150         struct duration bench;
3151         duration_start(&bench);
3152
3153         if (CMD_ARGC >= 2) {
3154                 uint32_t addr;
3155                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3156                 image.base_address = addr;
3157                 image.base_address_set = 1;
3158         } else {
3159                 image.base_address_set = 0;
3160                 image.base_address = 0x0;
3161         }
3162
3163         image.start_address_set = 0;
3164
3165         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3166         if (retval != ERROR_OK)
3167                 return retval;
3168
3169         image_size = 0x0;
3170         int diffs = 0;
3171         retval = ERROR_OK;
3172         for (i = 0; i < image.num_sections; i++) {
3173                 buffer = malloc(image.sections[i].size);
3174                 if (buffer == NULL) {
3175                         command_print(CMD_CTX,
3176                                         "error allocating buffer for section (%d bytes)",
3177                                         (int)(image.sections[i].size));
3178                         break;
3179                 }
3180                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3181                 if (retval != ERROR_OK) {
3182                         free(buffer);
3183                         break;
3184                 }
3185
3186                 if (verify) {
3187                         /* calculate checksum of image */
3188                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3189                         if (retval != ERROR_OK) {
3190                                 free(buffer);
3191                                 break;
3192                         }
3193
3194                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3195                         if (retval != ERROR_OK) {
3196                                 free(buffer);
3197                                 break;
3198                         }
3199
3200                         if (checksum != mem_checksum) {
3201                                 /* failed crc checksum, fall back to a binary compare */
3202                                 uint8_t *data;
3203
3204                                 if (diffs == 0)
3205                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3206
3207                                 data = malloc(buf_cnt);
3208
3209                                 /* Can we use 32bit word accesses? */
3210                                 int size = 1;
3211                                 int count = buf_cnt;
3212                                 if ((count % 4) == 0) {
3213                                         size *= 4;
3214                                         count /= 4;
3215                                 }
3216                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3217                                 if (retval == ERROR_OK) {
3218                                         uint32_t t;
3219                                         for (t = 0; t < buf_cnt; t++) {
3220                                                 if (data[t] != buffer[t]) {
3221                                                         command_print(CMD_CTX,
3222                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3223                                                                                   diffs,
3224                                                                                   (unsigned)(t + image.sections[i].base_address),
3225                                                                                   data[t],
3226                                                                                   buffer[t]);
3227                                                         if (diffs++ >= 127) {
3228                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3229                                                                 free(data);
3230                                                                 free(buffer);
3231                                                                 goto done;
3232                                                         }
3233                                                 }
3234                                                 keep_alive();
3235                                         }
3236                                 }
3237                                 free(data);
3238                         }
3239                 } else {
3240                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3241                                                   image.sections[i].base_address,
3242                                                   buf_cnt);
3243                 }
3244
3245                 free(buffer);
3246                 image_size += buf_cnt;
3247         }
3248         if (diffs > 0)
3249                 command_print(CMD_CTX, "No more differences found.");
3250 done:
3251         if (diffs > 0)
3252                 retval = ERROR_FAIL;
3253         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3254                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3255                                 "in %fs (%0.3f KiB/s)", image_size,
3256                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3257         }
3258
3259         image_close(&image);
3260
3261         return retval;
3262 }
3263
3264 COMMAND_HANDLER(handle_verify_image_command)
3265 {
3266         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3267 }
3268
3269 COMMAND_HANDLER(handle_test_image_command)
3270 {
3271         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3272 }
3273
3274 static int handle_bp_command_list(struct command_context *cmd_ctx)
3275 {
3276         struct target *target = get_current_target(cmd_ctx);
3277         struct breakpoint *breakpoint = target->breakpoints;
3278         while (breakpoint) {
3279                 if (breakpoint->type == BKPT_SOFT) {
3280                         char *buf = buf_to_str(breakpoint->orig_instr,
3281                                         breakpoint->length, 16);
3282                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3283                                         breakpoint->address,
3284                                         breakpoint->length,
3285                                         breakpoint->set, buf);
3286                         free(buf);
3287                 } else {
3288                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3289                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3290                                                         breakpoint->asid,
3291                                                         breakpoint->length, breakpoint->set);
3292                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3293                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3294                                                         breakpoint->address,
3295                                                         breakpoint->length, breakpoint->set);
3296                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3297                                                         breakpoint->asid);
3298                         } else
3299                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3300                                                         breakpoint->address,
3301                                                         breakpoint->length, breakpoint->set);
3302                 }
3303
3304                 breakpoint = breakpoint->next;
3305         }
3306         return ERROR_OK;
3307 }
3308
3309 static int handle_bp_command_set(struct command_context *cmd_ctx,
3310                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3311 {
3312         struct target *target = get_current_target(cmd_ctx);
3313         int retval;
3314
3315         if (asid == 0) {
3316                 retval = breakpoint_add(target, addr, length, hw);
3317                 if (ERROR_OK == retval)
3318                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3319                 else {
3320                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3321                         return retval;
3322                 }
3323         } else if (addr == 0) {
3324                 if (target->type->add_context_breakpoint == NULL) {
3325                         LOG_WARNING("Context breakpoint not available");
3326                         return ERROR_OK;
3327                 }
3328                 retval = context_breakpoint_add(target, asid, length, hw);
3329                 if (ERROR_OK == retval)
3330                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3331                 else {
3332                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3333                         return retval;
3334                 }
3335         } else {
3336                 if (target->type->add_hybrid_breakpoint == NULL) {
3337                         LOG_WARNING("Hybrid breakpoint not available");
3338                         return ERROR_OK;
3339                 }
3340                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3341                 if (ERROR_OK == retval)
3342                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3343                 else {
3344                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3345                         return retval;
3346                 }
3347         }
3348         return ERROR_OK;
3349 }
3350
3351 COMMAND_HANDLER(handle_bp_command)
3352 {
3353         uint32_t addr;
3354         uint32_t asid;
3355         uint32_t length;
3356         int hw = BKPT_SOFT;
3357
3358         switch (CMD_ARGC) {
3359                 case 0:
3360                         return handle_bp_command_list(CMD_CTX);
3361
3362                 case 2:
3363                         asid = 0;
3364                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3365                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3366                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3367
3368                 case 3:
3369                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3370                                 hw = BKPT_HARD;
3371                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3372
3373                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3374
3375                                 asid = 0;
3376                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3377                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3378                                 hw = BKPT_HARD;
3379                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3380                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3381                                 addr = 0;
3382                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3383                         }
3384
3385                 case 4:
3386                         hw = BKPT_HARD;
3387                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3388                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3389                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3390                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3391
3392                 default:
3393                         return ERROR_COMMAND_SYNTAX_ERROR;
3394         }
3395 }
3396
3397 COMMAND_HANDLER(handle_rbp_command)
3398 {
3399         if (CMD_ARGC != 1)
3400                 return ERROR_COMMAND_SYNTAX_ERROR;
3401
3402         uint32_t addr;
3403         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3404
3405         struct target *target = get_current_target(CMD_CTX);
3406         breakpoint_remove(target, addr);
3407
3408         return ERROR_OK;
3409 }
3410
3411 COMMAND_HANDLER(handle_wp_command)
3412 {
3413         struct target *target = get_current_target(CMD_CTX);
3414
3415         if (CMD_ARGC == 0) {
3416                 struct watchpoint *watchpoint = target->watchpoints;
3417
3418                 while (watchpoint) {
3419                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3420                                         ", len: 0x%8.8" PRIx32
3421                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3422                                         ", mask: 0x%8.8" PRIx32,
3423                                         watchpoint->address,
3424                                         watchpoint->length,
3425                                         (int)watchpoint->rw,
3426                                         watchpoint->value,
3427                                         watchpoint->mask);
3428                         watchpoint = watchpoint->next;
3429                 }
3430                 return ERROR_OK;
3431         }
3432
3433         enum watchpoint_rw type = WPT_ACCESS;
3434         uint32_t addr = 0;
3435         uint32_t length = 0;
3436         uint32_t data_value = 0x0;
3437         uint32_t data_mask = 0xffffffff;
3438
3439         switch (CMD_ARGC) {
3440         case 5:
3441                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3442                 /* fall through */
3443         case 4:
3444                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3445                 /* fall through */
3446         case 3:
3447                 switch (CMD_ARGV[2][0]) {
3448                 case 'r':
3449                         type = WPT_READ;
3450                         break;
3451                 case 'w':
3452                         type = WPT_WRITE;
3453                         break;
3454                 case 'a':
3455                         type = WPT_ACCESS;
3456                         break;
3457                 default:
3458                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3459                         return ERROR_COMMAND_SYNTAX_ERROR;
3460                 }
3461                 /* fall through */
3462         case 2:
3463                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3464                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3465                 break;
3466
3467         default:
3468                 return ERROR_COMMAND_SYNTAX_ERROR;
3469         }
3470
3471         int retval = watchpoint_add(target, addr, length, type,
3472                         data_value, data_mask);
3473         if (ERROR_OK != retval)
3474                 LOG_ERROR("Failure setting watchpoints");
3475
3476         return retval;
3477 }
3478
3479 COMMAND_HANDLER(handle_rwp_command)
3480 {
3481         if (CMD_ARGC != 1)
3482                 return ERROR_COMMAND_SYNTAX_ERROR;
3483
3484         uint32_t addr;
3485         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3486
3487         struct target *target = get_current_target(CMD_CTX);
3488         watchpoint_remove(target, addr);
3489
3490         return ERROR_OK;
3491 }
3492
3493 /**
3494  * Translate a virtual address to a physical address.
3495  *
3496  * The low-level target implementation must have logged a detailed error
3497  * which is forwarded to telnet/GDB session.
3498  */
3499 COMMAND_HANDLER(handle_virt2phys_command)
3500 {
3501         if (CMD_ARGC != 1)
3502                 return ERROR_COMMAND_SYNTAX_ERROR;
3503
3504         uint32_t va;
3505         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3506         uint32_t pa;
3507
3508         struct target *target = get_current_target(CMD_CTX);
3509         int retval = target->type->virt2phys(target, va, &pa);
3510         if (retval == ERROR_OK)
3511                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3512
3513         return retval;
3514 }
3515
3516 static void writeData(FILE *f, const void *data, size_t len)
3517 {
3518         size_t written = fwrite(data, 1, len, f);
3519         if (written != len)
3520                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3521 }
3522
3523 static void writeLong(FILE *f, int l, struct target *target)
3524 {
3525         uint8_t val[4];
3526
3527         target_buffer_set_u32(target, val, l);
3528         writeData(f, val, 4);
3529 }
3530
3531 static void writeString(FILE *f, char *s)
3532 {
3533         writeData(f, s, strlen(s));
3534 }
3535
3536 typedef unsigned char UNIT[2];  /* unit of profiling */
3537
3538 /* Dump a gmon.out histogram file. */
3539 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3540                         uint32_t start_address, uint32_t end_address, struct target *target)
3541 {
3542         uint32_t i;
3543         FILE *f = fopen(filename, "w");
3544         if (f == NULL)
3545                 return;
3546         writeString(f, "gmon");
3547         writeLong(f, 0x00000001, target); /* Version */
3548         writeLong(f, 0, target); /* padding */
3549         writeLong(f, 0, target); /* padding */
3550         writeLong(f, 0, target); /* padding */
3551
3552         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3553         writeData(f, &zero, 1);
3554
3555         /* figure out bucket size */
3556         uint32_t min;
3557         uint32_t max;
3558         if (with_range) {
3559                 min = start_address;
3560                 max = end_address;
3561         } else {
3562                 min = samples[0];
3563                 max = samples[0];
3564                 for (i = 0; i < sampleNum; i++) {
3565                         if (min > samples[i])
3566                                 min = samples[i];
3567                         if (max < samples[i])
3568                                 max = samples[i];
3569                 }
3570
3571                 /* max should be (largest sample + 1)
3572                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3573                 max++;
3574         }
3575
3576         int addressSpace = max - min;
3577         assert(addressSpace >= 2);
3578
3579         /* FIXME: What is the reasonable number of buckets?
3580          * The profiling result will be more accurate if there are enough buckets. */
3581         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3582         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3583         if (numBuckets > maxBuckets)
3584                 numBuckets = maxBuckets;
3585         int *buckets = malloc(sizeof(int) * numBuckets);
3586         if (buckets == NULL) {
3587                 fclose(f);
3588                 return;
3589         }
3590         memset(buckets, 0, sizeof(int) * numBuckets);
3591         for (i = 0; i < sampleNum; i++) {
3592                 uint32_t address = samples[i];
3593
3594                 if ((address < min) || (max <= address))
3595                         continue;
3596
3597                 long long a = address - min;
3598                 long long b = numBuckets;
3599                 long long c = addressSpace;
3600                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3601                 buckets[index_t]++;
3602         }
3603
3604         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3605         writeLong(f, min, target);                      /* low_pc */
3606         writeLong(f, max, target);                      /* high_pc */
3607         writeLong(f, numBuckets, target);       /* # of buckets */
3608         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3609         writeString(f, "seconds");
3610         for (i = 0; i < (15-strlen("seconds")); i++)
3611                 writeData(f, &zero, 1);
3612         writeString(f, "s");
3613
3614         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3615
3616         char *data = malloc(2 * numBuckets);
3617         if (data != NULL) {
3618                 for (i = 0; i < numBuckets; i++) {
3619                         int val;
3620                         val = buckets[i];
3621                         if (val > 65535)
3622                                 val = 65535;
3623                         data[i * 2] = val&0xff;
3624                         data[i * 2 + 1] = (val >> 8) & 0xff;
3625                 }
3626                 free(buckets);
3627                 writeData(f, data, numBuckets * 2);
3628                 free(data);
3629         } else
3630                 free(buckets);
3631
3632         fclose(f);
3633 }
3634
3635 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3636  * which will be used as a random sampling of PC */
3637 COMMAND_HANDLER(handle_profile_command)
3638 {
3639         struct target *target = get_current_target(CMD_CTX);
3640
3641         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3642                 return ERROR_COMMAND_SYNTAX_ERROR;
3643
3644         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3645         uint32_t offset;
3646         uint32_t num_of_samples;
3647         int retval = ERROR_OK;
3648
3649         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3650
3651         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3652         if (samples == NULL) {
3653                 LOG_ERROR("No memory to store samples.");
3654                 return ERROR_FAIL;
3655         }
3656
3657         /**
3658          * Some cores let us sample the PC without the
3659          * annoying halt/resume step; for example, ARMv7 PCSR.
3660          * Provide a way to use that more efficient mechanism.
3661          */
3662         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3663                                 &num_of_samples, offset);
3664         if (retval != ERROR_OK) {
3665                 free(samples);
3666                 return retval;
3667         }
3668
3669         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3670
3671         retval = target_poll(target);
3672         if (retval != ERROR_OK) {
3673                 free(samples);
3674                 return retval;
3675         }
3676         if (target->state == TARGET_RUNNING) {
3677                 retval = target_halt(target);
3678                 if (retval != ERROR_OK) {
3679                         free(samples);
3680                         return retval;
3681                 }
3682         }
3683
3684         retval = target_poll(target);
3685         if (retval != ERROR_OK) {
3686                 free(samples);
3687                 return retval;
3688         }
3689
3690         uint32_t start_address = 0;
3691         uint32_t end_address = 0;
3692         bool with_range = false;
3693         if (CMD_ARGC == 4) {
3694                 with_range = true;
3695                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3696                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3697         }
3698
3699         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3700                    with_range, start_address, end_address, target);
3701         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3702
3703         free(samples);
3704         return retval;
3705 }
3706
3707 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3708 {
3709         char *namebuf;
3710         Jim_Obj *nameObjPtr, *valObjPtr;
3711         int result;
3712
3713         namebuf = alloc_printf("%s(%d)", varname, idx);
3714         if (!namebuf)
3715                 return JIM_ERR;
3716
3717         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3718         valObjPtr = Jim_NewIntObj(interp, val);
3719         if (!nameObjPtr || !valObjPtr) {
3720                 free(namebuf);
3721                 return JIM_ERR;
3722         }
3723
3724         Jim_IncrRefCount(nameObjPtr);
3725         Jim_IncrRefCount(valObjPtr);
3726         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3727         Jim_DecrRefCount(interp, nameObjPtr);
3728         Jim_DecrRefCount(interp, valObjPtr);
3729         free(namebuf);
3730         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3731         return result;
3732 }
3733
3734 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3735 {
3736         struct command_context *context;
3737         struct target *target;
3738
3739         context = current_command_context(interp);
3740         assert(context != NULL);
3741
3742         target = get_current_target(context);
3743         if (target == NULL) {
3744                 LOG_ERROR("mem2array: no current target");
3745                 return JIM_ERR;
3746         }
3747
3748         return target_mem2array(interp, target, argc - 1, argv + 1);
3749 }
3750
3751 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3752 {
3753         long l;
3754         uint32_t width;
3755         int len;
3756         uint32_t addr;
3757         uint32_t count;
3758         uint32_t v;
3759         const char *varname;
3760         int  n, e, retval;
3761         uint32_t i;
3762
3763         /* argv[1] = name of array to receive the data
3764          * argv[2] = desired width
3765          * argv[3] = memory address
3766          * argv[4] = count of times to read
3767          */
3768         if (argc != 4) {
3769                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3770                 return JIM_ERR;
3771         }
3772         varname = Jim_GetString(argv[0], &len);
3773         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3774
3775         e = Jim_GetLong(interp, argv[1], &l);
3776         width = l;
3777         if (e != JIM_OK)
3778                 return e;
3779
3780         e = Jim_GetLong(interp, argv[2], &l);
3781         addr = l;
3782         if (e != JIM_OK)
3783                 return e;
3784         e = Jim_GetLong(interp, argv[3], &l);
3785         len = l;
3786         if (e != JIM_OK)
3787                 return e;
3788         switch (width) {
3789                 case 8:
3790                         width = 1;
3791                         break;
3792                 case 16:
3793                         width = 2;
3794                         break;
3795                 case 32:
3796                         width = 4;
3797                         break;
3798                 default:
3799                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3800                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3801                         return JIM_ERR;
3802         }
3803         if (len == 0) {
3804                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3805                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3806                 return JIM_ERR;
3807         }
3808         if ((addr + (len * width)) < addr) {
3809                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3810                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3811                 return JIM_ERR;
3812         }
3813         /* absurd transfer size? */
3814         if (len > 65536) {
3815                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3816                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3817                 return JIM_ERR;
3818         }
3819
3820         if ((width == 1) ||
3821                 ((width == 2) && ((addr & 1) == 0)) ||
3822                 ((width == 4) && ((addr & 3) == 0))) {
3823                 /* all is well */
3824         } else {
3825                 char buf[100];
3826                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3827                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3828                                 addr,
3829                                 width);
3830                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3831                 return JIM_ERR;
3832         }
3833
3834         /* Transfer loop */
3835
3836         /* index counter */
3837         n = 0;
3838
3839         size_t buffersize = 4096;
3840         uint8_t *buffer = malloc(buffersize);
3841         if (buffer == NULL)
3842                 return JIM_ERR;
3843
3844         /* assume ok */
3845         e = JIM_OK;
3846         while (len) {
3847                 /* Slurp... in buffer size chunks */
3848
3849                 count = len; /* in objects.. */
3850                 if (count > (buffersize / width))
3851                         count = (buffersize / width);
3852
3853                 retval = target_read_memory(target, addr, width, count, buffer);
3854                 if (retval != ERROR_OK) {
3855                         /* BOO !*/
3856                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3857                                           (unsigned int)addr,
3858                                           (int)width,
3859                                           (int)count);
3860                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3861                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3862                         e = JIM_ERR;
3863                         break;
3864                 } else {
3865                         v = 0; /* shut up gcc */
3866                         for (i = 0; i < count ; i++, n++) {
3867                                 switch (width) {
3868                                         case 4:
3869                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3870                                                 break;
3871                                         case 2:
3872                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3873                                                 break;
3874                                         case 1:
3875                                                 v = buffer[i] & 0x0ff;
3876                                                 break;
3877                                 }
3878                                 new_int_array_element(interp, varname, n, v);
3879                         }
3880                         len -= count;
3881                         addr += count * width;
3882                 }
3883         }
3884
3885         free(buffer);
3886
3887         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3888
3889         return e;
3890 }
3891
3892 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3893 {
3894         char *namebuf;
3895         Jim_Obj *nameObjPtr, *valObjPtr;
3896         int result;
3897         long l;
3898
3899         namebuf = alloc_printf("%s(%d)", varname, idx);
3900         if (!namebuf)
3901                 return JIM_ERR;
3902
3903         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3904         if (!nameObjPtr) {
3905                 free(namebuf);
3906                 return JIM_ERR;
3907         }
3908
3909         Jim_IncrRefCount(nameObjPtr);
3910         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3911         Jim_DecrRefCount(interp, nameObjPtr);
3912         free(namebuf);
3913         if (valObjPtr == NULL)
3914                 return JIM_ERR;
3915
3916         result = Jim_GetLong(interp, valObjPtr, &l);
3917         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3918         *val = l;
3919         return result;
3920 }
3921
3922 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3923 {
3924         struct command_context *context;
3925         struct target *target;
3926
3927         context = current_command_context(interp);
3928         assert(context != NULL);
3929
3930         target = get_current_target(context);
3931         if (target == NULL) {
3932                 LOG_ERROR("array2mem: no current target");
3933                 return JIM_ERR;
3934         }
3935
3936         return target_array2mem(interp, target, argc-1, argv + 1);
3937 }
3938
3939 static int target_array2mem(Jim_Interp *interp, struct target *target,
3940                 int argc, Jim_Obj *const *argv)
3941 {
3942         long l;
3943         uint32_t width;
3944         int len;
3945         uint32_t addr;
3946         uint32_t count;
3947         uint32_t v;
3948         const char *varname;
3949         int  n, e, retval;
3950         uint32_t i;
3951
3952         /* argv[1] = name of array to get the data
3953          * argv[2] = desired width
3954          * argv[3] = memory address
3955          * argv[4] = count to write
3956          */
3957         if (argc != 4) {
3958                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3959                 return JIM_ERR;
3960         }
3961         varname = Jim_GetString(argv[0], &len);
3962         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3963
3964         e = Jim_GetLong(interp, argv[1], &l);
3965         width = l;
3966         if (e != JIM_OK)
3967                 return e;
3968
3969         e = Jim_GetLong(interp, argv[2], &l);
3970         addr = l;
3971         if (e != JIM_OK)
3972                 return e;
3973         e = Jim_GetLong(interp, argv[3], &l);
3974         len = l;
3975         if (e != JIM_OK)
3976                 return e;
3977         switch (width) {
3978                 case 8:
3979                         width = 1;
3980                         break;
3981                 case 16:
3982                         width = 2;
3983                         break;
3984                 case 32:
3985                         width = 4;
3986                         break;
3987                 default:
3988                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3989                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3990                                         "Invalid width param, must be 8/16/32", NULL);
3991                         return JIM_ERR;
3992         }
3993         if (len == 0) {
3994                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3995                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3996                                 "array2mem: zero width read?", NULL);
3997                 return JIM_ERR;
3998         }
3999         if ((addr + (len * width)) < addr) {
4000                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4001                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4002                                 "array2mem: addr + len - wraps to zero?", NULL);
4003                 return JIM_ERR;
4004         }
4005         /* absurd transfer size? */
4006         if (len > 65536) {
4007                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4008                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4009                                 "array2mem: absurd > 64K item request", NULL);
4010                 return JIM_ERR;
4011         }
4012
4013         if ((width == 1) ||
4014                 ((width == 2) && ((addr & 1) == 0)) ||
4015                 ((width == 4) && ((addr & 3) == 0))) {
4016                 /* all is well */
4017         } else {
4018                 char buf[100];
4019                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4020                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4021                                 (unsigned int)addr,
4022                                 (int)width);
4023                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4024                 return JIM_ERR;
4025         }
4026
4027         /* Transfer loop */
4028
4029         /* index counter */
4030         n = 0;
4031         /* assume ok */
4032         e = JIM_OK;
4033
4034         size_t buffersize = 4096;
4035         uint8_t *buffer = malloc(buffersize);
4036         if (buffer == NULL)
4037                 return JIM_ERR;
4038
4039         while (len) {
4040                 /* Slurp... in buffer size chunks */
4041
4042                 count = len; /* in objects.. */
4043                 if (count > (buffersize / width))
4044                         count = (buffersize / width);
4045
4046                 v = 0; /* shut up gcc */
4047                 for (i = 0; i < count; i++, n++) {
4048                         get_int_array_element(interp, varname, n, &v);
4049                         switch (width) {
4050                         case 4:
4051                                 target_buffer_set_u32(target, &buffer[i * width], v);
4052                                 break;
4053                         case 2:
4054                                 target_buffer_set_u16(target, &buffer[i * width], v);
4055                                 break;
4056                         case 1:
4057                                 buffer[i] = v & 0x0ff;
4058                                 break;
4059                         }
4060                 }
4061                 len -= count;
4062
4063                 retval = target_write_memory(target, addr, width, count, buffer);
4064                 if (retval != ERROR_OK) {
4065                         /* BOO !*/
4066                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4067                                           (unsigned int)addr,
4068                                           (int)width,
4069                                           (int)count);
4070                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4071                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4072                         e = JIM_ERR;
4073                         break;
4074                 }
4075                 addr += count * width;
4076         }
4077
4078         free(buffer);
4079
4080         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4081
4082         return e;
4083 }
4084
4085 /* FIX? should we propagate errors here rather than printing them
4086  * and continuing?
4087  */
4088 void target_handle_event(struct target *target, enum target_event e)
4089 {
4090         struct target_event_action *teap;
4091
4092         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4093                 if (teap->event == e) {
4094                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4095                                            target->target_number,
4096                                            target_name(target),
4097                                            target_type_name(target),
4098                                            e,
4099                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4100                                            Jim_GetString(teap->body, NULL));
4101                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4102                                 Jim_MakeErrorMessage(teap->interp);
4103                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4104                         }
4105                 }
4106         }
4107 }
4108
4109 /**
4110  * Returns true only if the target has a handler for the specified event.
4111  */
4112 bool target_has_event_action(struct target *target, enum target_event event)
4113 {
4114         struct target_event_action *teap;
4115
4116         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4117                 if (teap->event == event)
4118                         return true;
4119         }
4120         return false;
4121 }
4122
4123 enum target_cfg_param {
4124         TCFG_TYPE,
4125         TCFG_EVENT,
4126         TCFG_WORK_AREA_VIRT,
4127         TCFG_WORK_AREA_PHYS,
4128         TCFG_WORK_AREA_SIZE,
4129         TCFG_WORK_AREA_BACKUP,
4130         TCFG_ENDIAN,
4131         TCFG_COREID,
4132         TCFG_CHAIN_POSITION,
4133         TCFG_DBGBASE,
4134         TCFG_RTOS,
4135 };
4136
4137 static Jim_Nvp nvp_config_opts[] = {
4138         { .name = "-type",             .value = TCFG_TYPE },
4139         { .name = "-event",            .value = TCFG_EVENT },
4140         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4141         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4142         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4143         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4144         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4145         { .name = "-coreid",           .value = TCFG_COREID },
4146         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4147         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4148         { .name = "-rtos",             .value = TCFG_RTOS },
4149         { .name = NULL, .value = -1 }
4150 };
4151
4152 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4153 {
4154         Jim_Nvp *n;
4155         Jim_Obj *o;
4156         jim_wide w;
4157         int e;
4158
4159         /* parse config or cget options ... */
4160         while (goi->argc > 0) {
4161                 Jim_SetEmptyResult(goi->interp);
4162                 /* Jim_GetOpt_Debug(goi); */
4163
4164                 if (target->type->target_jim_configure) {
4165                         /* target defines a configure function */
4166                         /* target gets first dibs on parameters */
4167                         e = (*(target->type->target_jim_configure))(target, goi);
4168                         if (e == JIM_OK) {
4169                                 /* more? */
4170                                 continue;
4171                         }
4172                         if (e == JIM_ERR) {
4173                                 /* An error */
4174                                 return e;
4175                         }
4176                         /* otherwise we 'continue' below */
4177                 }
4178                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4179                 if (e != JIM_OK) {
4180                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4181                         return e;
4182                 }
4183                 switch (n->value) {
4184                 case TCFG_TYPE:
4185                         /* not setable */
4186                         if (goi->isconfigure) {
4187                                 Jim_SetResultFormatted(goi->interp,
4188                                                 "not settable: %s", n->name);
4189                                 return JIM_ERR;
4190                         } else {
4191 no_params:
4192                                 if (goi->argc != 0) {
4193                                         Jim_WrongNumArgs(goi->interp,
4194                                                         goi->argc, goi->argv,
4195                                                         "NO PARAMS");
4196                                         return JIM_ERR;
4197                                 }
4198                         }
4199                         Jim_SetResultString(goi->interp,
4200                                         target_type_name(target), -1);
4201                         /* loop for more */
4202                         break;
4203                 case TCFG_EVENT:
4204                         if (goi->argc == 0) {
4205                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4206                                 return JIM_ERR;
4207                         }
4208
4209                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4210                         if (e != JIM_OK) {
4211                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4212                                 return e;
4213                         }
4214
4215                         if (goi->isconfigure) {
4216                                 if (goi->argc != 1) {
4217                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4218                                         return JIM_ERR;
4219                                 }
4220                         } else {
4221                                 if (goi->argc != 0) {
4222                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4223                                         return JIM_ERR;
4224                                 }
4225                         }
4226
4227                         {
4228                                 struct target_event_action *teap;
4229
4230                                 teap = target->event_action;
4231                                 /* replace existing? */
4232                                 while (teap) {
4233                                         if (teap->event == (enum target_event)n->value)
4234                                                 break;
4235                                         teap = teap->next;
4236                                 }
4237
4238                                 if (goi->isconfigure) {
4239                                         bool replace = true;
4240                                         if (teap == NULL) {
4241                                                 /* create new */
4242                                                 teap = calloc(1, sizeof(*teap));
4243                                                 replace = false;
4244                                         }
4245                                         teap->event = n->value;
4246                                         teap->interp = goi->interp;
4247                                         Jim_GetOpt_Obj(goi, &o);
4248                                         if (teap->body)
4249                                                 Jim_DecrRefCount(teap->interp, teap->body);
4250                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4251                                         /*
4252                                          * FIXME:
4253                                          *     Tcl/TK - "tk events" have a nice feature.
4254                                          *     See the "BIND" command.
4255                                          *    We should support that here.
4256                                          *     You can specify %X and %Y in the event code.
4257                                          *     The idea is: %T - target name.
4258                                          *     The idea is: %N - target number
4259                                          *     The idea is: %E - event name.
4260                                          */
4261                                         Jim_IncrRefCount(teap->body);
4262
4263                                         if (!replace) {
4264                                                 /* add to head of event list */
4265                                                 teap->next = target->event_action;
4266                                                 target->event_action = teap;
4267                                         }
4268                                         Jim_SetEmptyResult(goi->interp);
4269                                 } else {
4270                                         /* get */
4271                                         if (teap == NULL)
4272                                                 Jim_SetEmptyResult(goi->interp);
4273                                         else
4274                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4275                                 }
4276                         }
4277                         /* loop for more */
4278                         break;
4279
4280                 case TCFG_WORK_AREA_VIRT:
4281                         if (goi->isconfigure) {
4282                                 target_free_all_working_areas(target);
4283                                 e = Jim_GetOpt_Wide(goi, &w);
4284                                 if (e != JIM_OK)
4285                                         return e;
4286                                 target->working_area_virt = w;
4287                                 target->working_area_virt_spec = true;
4288                         } else {
4289                                 if (goi->argc != 0)
4290                                         goto no_params;
4291                         }
4292                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4293                         /* loop for more */
4294                         break;
4295
4296                 case TCFG_WORK_AREA_PHYS:
4297                         if (goi->isconfigure) {
4298                                 target_free_all_working_areas(target);
4299                                 e = Jim_GetOpt_Wide(goi, &w);
4300                                 if (e != JIM_OK)
4301                                         return e;
4302                                 target->working_area_phys = w;
4303                                 target->working_area_phys_spec = true;
4304                         } else {
4305                                 if (goi->argc != 0)
4306                                         goto no_params;
4307                         }
4308                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4309                         /* loop for more */
4310                         break;
4311
4312                 case TCFG_WORK_AREA_SIZE:
4313                         if (goi->isconfigure) {
4314                                 target_free_all_working_areas(target);
4315                                 e = Jim_GetOpt_Wide(goi, &w);
4316                                 if (e != JIM_OK)
4317                                         return e;
4318                                 target->working_area_size = w;
4319                         } else {
4320                                 if (goi->argc != 0)
4321                                         goto no_params;
4322                         }
4323                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4324                         /* loop for more */
4325                         break;
4326
4327                 case TCFG_WORK_AREA_BACKUP:
4328                         if (goi->isconfigure) {
4329                                 target_free_all_working_areas(target);
4330                                 e = Jim_GetOpt_Wide(goi, &w);
4331                                 if (e != JIM_OK)
4332                                         return e;
4333                                 /* make this exactly 1 or 0 */
4334                                 target->backup_working_area = (!!w);
4335                         } else {
4336                                 if (goi->argc != 0)
4337                                         goto no_params;
4338                         }
4339                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4340                         /* loop for more e*/
4341                         break;
4342
4343
4344                 case TCFG_ENDIAN:
4345                         if (goi->isconfigure) {
4346                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4347                                 if (e != JIM_OK) {
4348                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4349                                         return e;
4350                                 }
4351                                 target->endianness = n->value;
4352                         } else {
4353                                 if (goi->argc != 0)
4354                                         goto no_params;
4355                         }
4356                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4357                         if (n->name == NULL) {
4358                                 target->endianness = TARGET_LITTLE_ENDIAN;
4359                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4360                         }
4361                         Jim_SetResultString(goi->interp, n->name, -1);
4362                         /* loop for more */
4363                         break;
4364
4365                 case TCFG_COREID:
4366                         if (goi->isconfigure) {
4367                                 e = Jim_GetOpt_Wide(goi, &w);
4368                                 if (e != JIM_OK)
4369                                         return e;
4370                                 target->coreid = (int32_t)w;
4371                         } else {
4372                                 if (goi->argc != 0)
4373                                         goto no_params;
4374                         }
4375                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4376                         /* loop for more */
4377                         break;
4378
4379                 case TCFG_CHAIN_POSITION:
4380                         if (goi->isconfigure) {
4381                                 Jim_Obj *o_t;
4382                                 struct jtag_tap *tap;
4383                                 target_free_all_working_areas(target);
4384                                 e = Jim_GetOpt_Obj(goi, &o_t);
4385                                 if (e != JIM_OK)
4386                                         return e;
4387                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4388                                 if (tap == NULL)
4389                                         return JIM_ERR;
4390                                 /* make this exactly 1 or 0 */
4391                                 target->tap = tap;
4392                         } else {
4393                                 if (goi->argc != 0)
4394                                         goto no_params;
4395                         }
4396                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4397                         /* loop for more e*/
4398                         break;
4399                 case TCFG_DBGBASE:
4400                         if (goi->isconfigure) {
4401                                 e = Jim_GetOpt_Wide(goi, &w);
4402                                 if (e != JIM_OK)
4403                                         return e;
4404                                 target->dbgbase = (uint32_t)w;
4405                                 target->dbgbase_set = true;
4406                         } else {
4407                                 if (goi->argc != 0)
4408                                         goto no_params;
4409                         }
4410                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4411                         /* loop for more */
4412                         break;
4413
4414                 case TCFG_RTOS:
4415                         /* RTOS */
4416                         {
4417                                 int result = rtos_create(goi, target);
4418                                 if (result != JIM_OK)
4419                                         return result;
4420                         }
4421                         /* loop for more */
4422                         break;
4423                 }
4424         } /* while (goi->argc) */
4425
4426
4427                 /* done - we return */
4428         return JIM_OK;
4429 }
4430
4431 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4432 {
4433         Jim_GetOptInfo goi;
4434
4435         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4436         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4437         int need_args = 1 + goi.isconfigure;
4438         if (goi.argc < need_args) {
4439                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4440                         goi.isconfigure
4441                                 ? "missing: -option VALUE ..."
4442                                 : "missing: -option ...");
4443                 return JIM_ERR;
4444         }
4445         struct target *target = Jim_CmdPrivData(goi.interp);
4446         return target_configure(&goi, target);
4447 }
4448
4449 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4450 {
4451         const char *cmd_name = Jim_GetString(argv[0], NULL);
4452
4453         Jim_GetOptInfo goi;
4454         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4455
4456         if (goi.argc < 2 || goi.argc > 4) {
4457                 Jim_SetResultFormatted(goi.interp,
4458                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4459                 return JIM_ERR;
4460         }
4461
4462         target_write_fn fn;
4463         fn = target_write_memory;
4464
4465         int e;
4466         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4467                 /* consume it */
4468                 struct Jim_Obj *obj;
4469                 e = Jim_GetOpt_Obj(&goi, &obj);
4470                 if (e != JIM_OK)
4471                         return e;
4472
4473                 fn = target_write_phys_memory;
4474         }
4475
4476         jim_wide a;
4477         e = Jim_GetOpt_Wide(&goi, &a);
4478         if (e != JIM_OK)
4479                 return e;
4480
4481         jim_wide b;
4482         e = Jim_GetOpt_Wide(&goi, &b);
4483         if (e != JIM_OK)
4484                 return e;
4485
4486         jim_wide c = 1;
4487         if (goi.argc == 1) {
4488                 e = Jim_GetOpt_Wide(&goi, &c);
4489                 if (e != JIM_OK)
4490                         return e;
4491         }
4492
4493         /* all args must be consumed */
4494         if (goi.argc != 0)
4495                 return JIM_ERR;
4496
4497         struct target *target = Jim_CmdPrivData(goi.interp);
4498         unsigned data_size;
4499         if (strcasecmp(cmd_name, "mww") == 0)
4500                 data_size = 4;
4501         else if (strcasecmp(cmd_name, "mwh") == 0)
4502                 data_size = 2;
4503         else if (strcasecmp(cmd_name, "mwb") == 0)
4504                 data_size = 1;
4505         else {
4506                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4507                 return JIM_ERR;
4508         }
4509
4510         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4511 }
4512
4513 /**
4514 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4515 *
4516 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4517 *         mdh [phys] <address> [<count>] - for 16 bit reads
4518 *         mdb [phys] <address> [<count>] - for  8 bit reads
4519 *
4520 *  Count defaults to 1.
4521 *
4522 *  Calls target_read_memory or target_read_phys_memory depending on
4523 *  the presence of the "phys" argument
4524 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4525 *  to int representation in base16.
4526 *  Also outputs read data in a human readable form using command_print
4527 *
4528 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4529 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4530 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4531 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4532 *  on success, with [<count>] number of elements.
4533 *
4534 *  In case of little endian target:
4535 *      Example1: "mdw 0x00000000"  returns "10123456"
4536 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4537 *      Example3: "mdb 0x00000000" returns "56"
4538 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4539 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4540 **/
4541 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4542 {
4543         const char *cmd_name = Jim_GetString(argv[0], NULL);
4544
4545         Jim_GetOptInfo goi;
4546         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4547
4548         if ((goi.argc < 1) || (goi.argc > 3)) {
4549                 Jim_SetResultFormatted(goi.interp,
4550                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4551                 return JIM_ERR;
4552         }
4553
4554         int (*fn)(struct target *target,
4555                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4556         fn = target_read_memory;
4557
4558         int e;
4559         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4560                 /* consume it */
4561                 struct Jim_Obj *obj;
4562                 e = Jim_GetOpt_Obj(&goi, &obj);
4563                 if (e != JIM_OK)
4564                         return e;
4565
4566                 fn = target_read_phys_memory;
4567         }
4568
4569         /* Read address parameter */
4570         jim_wide addr;
4571         e = Jim_GetOpt_Wide(&goi, &addr);
4572         if (e != JIM_OK)
4573                 return JIM_ERR;
4574
4575         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4576         jim_wide count;
4577         if (goi.argc == 1) {
4578                 e = Jim_GetOpt_Wide(&goi, &count);
4579                 if (e != JIM_OK)
4580                         return JIM_ERR;
4581         } else
4582                 count = 1;
4583
4584         /* all args must be consumed */
4585         if (goi.argc != 0)
4586                 return JIM_ERR;
4587
4588         jim_wide dwidth = 1; /* shut up gcc */
4589         if (strcasecmp(cmd_name, "mdw") == 0)
4590                 dwidth = 4;
4591         else if (strcasecmp(cmd_name, "mdh") == 0)
4592                 dwidth = 2;
4593         else if (strcasecmp(cmd_name, "mdb") == 0)
4594                 dwidth = 1;
4595         else {
4596                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4597                 return JIM_ERR;
4598         }
4599
4600         /* convert count to "bytes" */
4601         int bytes = count * dwidth;
4602
4603         struct target *target = Jim_CmdPrivData(goi.interp);
4604         uint8_t  target_buf[32];
4605         jim_wide x, y, z;
4606         while (bytes > 0) {
4607                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4608
4609                 /* Try to read out next block */
4610                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4611
4612                 if (e != ERROR_OK) {
4613                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4614                         return JIM_ERR;
4615                 }
4616
4617                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4618                 switch (dwidth) {
4619                 case 4:
4620                         for (x = 0; x < 16 && x < y; x += 4) {
4621                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4622                                 command_print_sameline(NULL, "%08x ", (int)(z));
4623                         }
4624                         for (; (x < 16) ; x += 4)
4625                                 command_print_sameline(NULL, "         ");
4626                         break;
4627                 case 2:
4628                         for (x = 0; x < 16 && x < y; x += 2) {
4629                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4630                                 command_print_sameline(NULL, "%04x ", (int)(z));
4631                         }
4632                         for (; (x < 16) ; x += 2)
4633                                 command_print_sameline(NULL, "     ");
4634                         break;
4635                 case 1:
4636                 default:
4637                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4638                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4639                                 command_print_sameline(NULL, "%02x ", (int)(z));
4640                         }
4641                         for (; (x < 16) ; x += 1)
4642                                 command_print_sameline(NULL, "   ");
4643                         break;
4644                 }
4645                 /* ascii-ify the bytes */
4646                 for (x = 0 ; x < y ; x++) {
4647                         if ((target_buf[x] >= 0x20) &&
4648                                 (target_buf[x] <= 0x7e)) {
4649                                 /* good */
4650                         } else {
4651                                 /* smack it */
4652                                 target_buf[x] = '.';
4653                         }
4654                 }
4655                 /* space pad  */
4656                 while (x < 16) {
4657                         target_buf[x] = ' ';
4658                         x++;
4659                 }
4660                 /* terminate */
4661                 target_buf[16] = 0;
4662                 /* print - with a newline */
4663                 command_print_sameline(NULL, "%s\n", target_buf);
4664                 /* NEXT... */
4665                 bytes -= 16;
4666                 addr += 16;
4667         }
4668         return JIM_OK;
4669 }
4670
4671 static int jim_target_mem2array(Jim_Interp *interp,
4672                 int argc, Jim_Obj *const *argv)
4673 {
4674         struct target *target = Jim_CmdPrivData(interp);
4675         return target_mem2array(interp, target, argc - 1, argv + 1);
4676 }
4677
4678 static int jim_target_array2mem(Jim_Interp *interp,
4679                 int argc, Jim_Obj *const *argv)
4680 {
4681         struct target *target = Jim_CmdPrivData(interp);
4682         return target_array2mem(interp, target, argc - 1, argv + 1);
4683 }
4684
4685 static int jim_target_tap_disabled(Jim_Interp *interp)
4686 {
4687         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4688         return JIM_ERR;
4689 }
4690
4691 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4692 {
4693         if (argc != 1) {
4694                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4695                 return JIM_ERR;
4696         }
4697         struct target *target = Jim_CmdPrivData(interp);
4698         if (!target->tap->enabled)
4699                 return jim_target_tap_disabled(interp);
4700
4701         int e = target->type->examine(target);
4702         if (e != ERROR_OK)
4703                 return JIM_ERR;
4704         return JIM_OK;
4705 }
4706
4707 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4708 {
4709         if (argc != 1) {
4710                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4711                 return JIM_ERR;
4712         }
4713         struct target *target = Jim_CmdPrivData(interp);
4714
4715         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4716                 return JIM_ERR;
4717
4718         return JIM_OK;
4719 }
4720
4721 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4722 {
4723         if (argc != 1) {
4724                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4725                 return JIM_ERR;
4726         }
4727         struct target *target = Jim_CmdPrivData(interp);
4728         if (!target->tap->enabled)
4729                 return jim_target_tap_disabled(interp);
4730
4731         int e;
4732         if (!(target_was_examined(target)))
4733                 e = ERROR_TARGET_NOT_EXAMINED;
4734         else
4735                 e = target->type->poll(target);
4736         if (e != ERROR_OK)
4737                 return JIM_ERR;
4738         return JIM_OK;
4739 }
4740
4741 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4742 {
4743         Jim_GetOptInfo goi;
4744         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4745
4746         if (goi.argc != 2) {
4747                 Jim_WrongNumArgs(interp, 0, argv,
4748                                 "([tT]|[fF]|assert|deassert) BOOL");
4749                 return JIM_ERR;
4750         }
4751
4752         Jim_Nvp *n;
4753         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4754         if (e != JIM_OK) {
4755                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4756                 return e;
4757         }
4758         /* the halt or not param */
4759         jim_wide a;
4760         e = Jim_GetOpt_Wide(&goi, &a);
4761         if (e != JIM_OK)
4762                 return e;
4763
4764         struct target *target = Jim_CmdPrivData(goi.interp);
4765         if (!target->tap->enabled)
4766                 return jim_target_tap_disabled(interp);
4767         if (!(target_was_examined(target))) {
4768                 LOG_ERROR("Target not examined yet");
4769                 return ERROR_TARGET_NOT_EXAMINED;
4770         }
4771         if (!target->type->assert_reset || !target->type->deassert_reset) {
4772                 Jim_SetResultFormatted(interp,
4773                                 "No target-specific reset for %s",
4774                                 target_name(target));
4775                 return JIM_ERR;
4776         }
4777         /* determine if we should halt or not. */
4778         target->reset_halt = !!a;
4779         /* When this happens - all workareas are invalid. */
4780         target_free_all_working_areas_restore(target, 0);
4781
4782         /* do the assert */
4783         if (n->value == NVP_ASSERT)
4784                 e = target->type->assert_reset(target);
4785         else
4786                 e = target->type->deassert_reset(target);
4787         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4788 }
4789
4790 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4791 {
4792         if (argc != 1) {
4793                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4794                 return JIM_ERR;
4795         }
4796         struct target *target = Jim_CmdPrivData(interp);
4797         if (!target->tap->enabled)
4798                 return jim_target_tap_disabled(interp);
4799         int e = target->type->halt(target);
4800         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4801 }
4802
4803 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4804 {
4805         Jim_GetOptInfo goi;
4806         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4807
4808         /* params:  <name>  statename timeoutmsecs */
4809         if (goi.argc != 2) {
4810                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4811                 Jim_SetResultFormatted(goi.interp,
4812                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4813                 return JIM_ERR;
4814         }
4815
4816         Jim_Nvp *n;
4817         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4818         if (e != JIM_OK) {
4819                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4820                 return e;
4821         }
4822         jim_wide a;
4823         e = Jim_GetOpt_Wide(&goi, &a);
4824         if (e != JIM_OK)
4825                 return e;
4826         struct target *target = Jim_CmdPrivData(interp);
4827         if (!target->tap->enabled)
4828                 return jim_target_tap_disabled(interp);
4829
4830         e = target_wait_state(target, n->value, a);
4831         if (e != ERROR_OK) {
4832                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4833                 Jim_SetResultFormatted(goi.interp,
4834                                 "target: %s wait %s fails (%#s) %s",
4835                                 target_name(target), n->name,
4836                                 eObj, target_strerror_safe(e));
4837                 Jim_FreeNewObj(interp, eObj);
4838                 return JIM_ERR;
4839         }
4840         return JIM_OK;
4841 }
4842 /* List for human, Events defined for this target.
4843  * scripts/programs should use 'name cget -event NAME'
4844  */
4845 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4846 {
4847         struct command_context *cmd_ctx = current_command_context(interp);
4848         assert(cmd_ctx != NULL);
4849
4850         struct target *target = Jim_CmdPrivData(interp);
4851         struct target_event_action *teap = target->event_action;
4852         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4853                                    target->target_number,
4854                                    target_name(target));
4855         command_print(cmd_ctx, "%-25s | Body", "Event");
4856         command_print(cmd_ctx, "------------------------- | "
4857                         "----------------------------------------");
4858         while (teap) {
4859                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4860                 command_print(cmd_ctx, "%-25s | %s",
4861                                 opt->name, Jim_GetString(teap->body, NULL));
4862                 teap = teap->next;
4863         }
4864         command_print(cmd_ctx, "***END***");
4865         return JIM_OK;
4866 }
4867 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4868 {
4869         if (argc != 1) {
4870                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4871                 return JIM_ERR;
4872         }
4873         struct target *target = Jim_CmdPrivData(interp);
4874         Jim_SetResultString(interp, target_state_name(target), -1);
4875         return JIM_OK;
4876 }
4877 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4878 {
4879         Jim_GetOptInfo goi;
4880         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4881         if (goi.argc != 1) {
4882                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4883                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4884                 return JIM_ERR;
4885         }
4886         Jim_Nvp *n;
4887         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4888         if (e != JIM_OK) {
4889                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4890                 return e;
4891         }
4892         struct target *target = Jim_CmdPrivData(interp);
4893         target_handle_event(target, n->value);
4894         return JIM_OK;
4895 }
4896
4897 static const struct command_registration target_instance_command_handlers[] = {
4898         {
4899                 .name = "configure",
4900                 .mode = COMMAND_CONFIG,
4901                 .jim_handler = jim_target_configure,
4902                 .help  = "configure a new target for use",
4903                 .usage = "[target_attribute ...]",
4904         },
4905         {
4906                 .name = "cget",
4907                 .mode = COMMAND_ANY,
4908                 .jim_handler = jim_target_configure,
4909                 .help  = "returns the specified target attribute",
4910                 .usage = "target_attribute",
4911         },
4912         {
4913                 .name = "mww",
4914                 .mode = COMMAND_EXEC,
4915                 .jim_handler = jim_target_mw,
4916                 .help = "Write 32-bit word(s) to target memory",
4917                 .usage = "address data [count]",
4918         },
4919         {
4920                 .name = "mwh",
4921                 .mode = COMMAND_EXEC,
4922                 .jim_handler = jim_target_mw,
4923                 .help = "Write 16-bit half-word(s) to target memory",
4924                 .usage = "address data [count]",
4925         },
4926         {
4927                 .name = "mwb",
4928                 .mode = COMMAND_EXEC,
4929                 .jim_handler = jim_target_mw,
4930                 .help = "Write byte(s) to target memory",
4931                 .usage = "address data [count]",
4932         },
4933         {
4934                 .name = "mdw",
4935                 .mode = COMMAND_EXEC,
4936                 .jim_handler = jim_target_md,
4937                 .help = "Display target memory as 32-bit words",
4938                 .usage = "address [count]",
4939         },
4940         {
4941                 .name = "mdh",
4942                 .mode = COMMAND_EXEC,
4943                 .jim_handler = jim_target_md,
4944                 .help = "Display target memory as 16-bit half-words",
4945                 .usage = "address [count]",
4946         },
4947         {
4948                 .name = "mdb",
4949                 .mode = COMMAND_EXEC,
4950                 .jim_handler = jim_target_md,
4951                 .help = "Display target memory as 8-bit bytes",
4952                 .usage = "address [count]",
4953         },
4954         {
4955                 .name = "array2mem",
4956                 .mode = COMMAND_EXEC,
4957                 .jim_handler = jim_target_array2mem,
4958                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4959                         "to target memory",
4960                 .usage = "arrayname bitwidth address count",
4961         },
4962         {
4963                 .name = "mem2array",
4964                 .mode = COMMAND_EXEC,
4965                 .jim_handler = jim_target_mem2array,
4966                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4967                         "from target memory",
4968                 .usage = "arrayname bitwidth address count",
4969         },
4970         {
4971                 .name = "eventlist",
4972                 .mode = COMMAND_EXEC,
4973                 .jim_handler = jim_target_event_list,
4974                 .help = "displays a table of events defined for this target",
4975         },
4976         {
4977                 .name = "curstate",
4978                 .mode = COMMAND_EXEC,
4979                 .jim_handler = jim_target_current_state,
4980                 .help = "displays the current state of this target",
4981         },
4982         {
4983                 .name = "arp_examine",
4984                 .mode = COMMAND_EXEC,
4985                 .jim_handler = jim_target_examine,
4986                 .help = "used internally for reset processing",
4987         },
4988         {
4989                 .name = "arp_halt_gdb",
4990                 .mode = COMMAND_EXEC,
4991                 .jim_handler = jim_target_halt_gdb,
4992                 .help = "used internally for reset processing to halt GDB",
4993         },
4994         {
4995                 .name = "arp_poll",
4996                 .mode = COMMAND_EXEC,
4997                 .jim_handler = jim_target_poll,
4998                 .help = "used internally for reset processing",
4999         },
5000         {
5001                 .name = "arp_reset",
5002                 .mode = COMMAND_EXEC,
5003                 .jim_handler = jim_target_reset,
5004                 .help = "used internally for reset processing",
5005         },
5006         {
5007                 .name = "arp_halt",
5008                 .mode = COMMAND_EXEC,
5009                 .jim_handler = jim_target_halt,
5010                 .help = "used internally for reset processing",
5011         },
5012         {
5013                 .name = "arp_waitstate",
5014                 .mode = COMMAND_EXEC,
5015                 .jim_handler = jim_target_wait_state,
5016                 .help = "used internally for reset processing",
5017         },
5018         {
5019                 .name = "invoke-event",
5020                 .mode = COMMAND_EXEC,
5021                 .jim_handler = jim_target_invoke_event,
5022                 .help = "invoke handler for specified event",
5023                 .usage = "event_name",
5024         },
5025         COMMAND_REGISTRATION_DONE
5026 };
5027
5028 static int target_create(Jim_GetOptInfo *goi)
5029 {
5030         Jim_Obj *new_cmd;
5031         Jim_Cmd *cmd;
5032         const char *cp;
5033         char *cp2;
5034         int e;
5035         int x;
5036         struct target *target;
5037         struct command_context *cmd_ctx;
5038
5039         cmd_ctx = current_command_context(goi->interp);
5040         assert(cmd_ctx != NULL);
5041
5042         if (goi->argc < 3) {
5043                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5044                 return JIM_ERR;
5045         }
5046
5047         /* COMMAND */
5048         Jim_GetOpt_Obj(goi, &new_cmd);
5049         /* does this command exist? */
5050         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5051         if (cmd) {
5052                 cp = Jim_GetString(new_cmd, NULL);
5053                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5054                 return JIM_ERR;
5055         }
5056
5057         /* TYPE */
5058         e = Jim_GetOpt_String(goi, &cp2, NULL);
5059         if (e != JIM_OK)
5060                 return e;
5061         cp = cp2;
5062         struct transport *tr = get_current_transport();
5063         if (tr->override_target) {
5064                 e = tr->override_target(&cp);
5065                 if (e != ERROR_OK) {
5066                         LOG_ERROR("The selected transport doesn't support this target");
5067                         return JIM_ERR;
5068                 }
5069                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5070         }
5071         /* now does target type exist */
5072         for (x = 0 ; target_types[x] ; x++) {
5073                 if (0 == strcmp(cp, target_types[x]->name)) {
5074                         /* found */
5075                         break;
5076                 }
5077
5078                 /* check for deprecated name */
5079                 if (target_types[x]->deprecated_name) {
5080                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5081                                 /* found */
5082                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5083                                 break;
5084                         }
5085                 }
5086         }
5087         if (target_types[x] == NULL) {
5088                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5089                 for (x = 0 ; target_types[x] ; x++) {
5090                         if (target_types[x + 1]) {
5091                                 Jim_AppendStrings(goi->interp,
5092                                                                    Jim_GetResult(goi->interp),
5093                                                                    target_types[x]->name,
5094                                                                    ", ", NULL);
5095                         } else {
5096                                 Jim_AppendStrings(goi->interp,
5097                                                                    Jim_GetResult(goi->interp),
5098                                                                    " or ",
5099                                                                    target_types[x]->name, NULL);
5100                         }
5101                 }
5102                 return JIM_ERR;
5103         }
5104
5105         /* Create it */
5106         target = calloc(1, sizeof(struct target));
5107         /* set target number */
5108         target->target_number = new_target_number();
5109         cmd_ctx->current_target = target->target_number;
5110
5111         /* allocate memory for each unique target type */
5112         target->type = calloc(1, sizeof(struct target_type));
5113
5114         memcpy(target->type, target_types[x], sizeof(struct target_type));
5115
5116         /* will be set by "-endian" */
5117         target->endianness = TARGET_ENDIAN_UNKNOWN;
5118
5119         /* default to first core, override with -coreid */
5120         target->coreid = 0;
5121
5122         target->working_area        = 0x0;
5123         target->working_area_size   = 0x0;
5124         target->working_areas       = NULL;
5125         target->backup_working_area = 0;
5126
5127         target->state               = TARGET_UNKNOWN;
5128         target->debug_reason        = DBG_REASON_UNDEFINED;
5129         target->reg_cache           = NULL;
5130         target->breakpoints         = NULL;
5131         target->watchpoints         = NULL;
5132         target->next                = NULL;
5133         target->arch_info           = NULL;
5134
5135         target->display             = 1;
5136
5137         target->halt_issued                     = false;
5138
5139         /* initialize trace information */
5140         target->trace_info = malloc(sizeof(struct trace));
5141         target->trace_info->num_trace_points         = 0;
5142         target->trace_info->trace_points_size        = 0;
5143         target->trace_info->trace_points             = NULL;
5144         target->trace_info->trace_history_size       = 0;
5145         target->trace_info->trace_history            = NULL;
5146         target->trace_info->trace_history_pos        = 0;
5147         target->trace_info->trace_history_overflowed = 0;
5148
5149         target->dbgmsg          = NULL;
5150         target->dbg_msg_enabled = 0;
5151
5152         target->endianness = TARGET_ENDIAN_UNKNOWN;
5153
5154         target->rtos = NULL;
5155         target->rtos_auto_detect = false;
5156
5157         /* Do the rest as "configure" options */
5158         goi->isconfigure = 1;
5159         e = target_configure(goi, target);
5160
5161         if (target->tap == NULL) {
5162                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5163                 e = JIM_ERR;
5164         }
5165
5166         if (e != JIM_OK) {
5167                 free(target->type);
5168                 free(target);
5169                 return e;
5170         }
5171
5172         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5173                 /* default endian to little if not specified */
5174                 target->endianness = TARGET_LITTLE_ENDIAN;
5175         }
5176
5177         cp = Jim_GetString(new_cmd, NULL);
5178         target->cmd_name = strdup(cp);
5179
5180         /* create the target specific commands */
5181         if (target->type->commands) {
5182                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5183                 if (ERROR_OK != e)
5184                         LOG_ERROR("unable to register '%s' commands", cp);
5185         }
5186         if (target->type->target_create)
5187                 (*(target->type->target_create))(target, goi->interp);
5188
5189         /* append to end of list */
5190         {
5191                 struct target **tpp;
5192                 tpp = &(all_targets);
5193                 while (*tpp)
5194                         tpp = &((*tpp)->next);
5195                 *tpp = target;
5196         }
5197
5198         /* now - create the new target name command */
5199         const struct command_registration target_subcommands[] = {
5200                 {
5201                         .chain = target_instance_command_handlers,
5202                 },
5203                 {
5204                         .chain = target->type->commands,
5205                 },
5206                 COMMAND_REGISTRATION_DONE
5207         };
5208         const struct command_registration target_commands[] = {
5209                 {
5210                         .name = cp,
5211                         .mode = COMMAND_ANY,
5212                         .help = "target command group",
5213                         .usage = "",
5214                         .chain = target_subcommands,
5215                 },
5216                 COMMAND_REGISTRATION_DONE
5217         };
5218         e = register_commands(cmd_ctx, NULL, target_commands);
5219         if (ERROR_OK != e)
5220                 return JIM_ERR;
5221
5222         struct command *c = command_find_in_context(cmd_ctx, cp);
5223         assert(c);
5224         command_set_handler_data(c, target);
5225
5226         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5227 }
5228
5229 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5230 {
5231         if (argc != 1) {
5232                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5233                 return JIM_ERR;
5234         }
5235         struct command_context *cmd_ctx = current_command_context(interp);
5236         assert(cmd_ctx != NULL);
5237
5238         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5239         return JIM_OK;
5240 }
5241
5242 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5243 {
5244         if (argc != 1) {
5245                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5246                 return JIM_ERR;
5247         }
5248         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5249         for (unsigned x = 0; NULL != target_types[x]; x++) {
5250                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5251                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5252         }
5253         return JIM_OK;
5254 }
5255
5256 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5257 {
5258         if (argc != 1) {
5259                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5260                 return JIM_ERR;
5261         }
5262         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5263         struct target *target = all_targets;
5264         while (target) {
5265                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5266                         Jim_NewStringObj(interp, target_name(target), -1));
5267                 target = target->next;
5268         }
5269         return JIM_OK;
5270 }
5271
5272 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5273 {
5274         int i;
5275         const char *targetname;
5276         int retval, len;
5277         struct target *target = (struct target *) NULL;
5278         struct target_list *head, *curr, *new;
5279         curr = (struct target_list *) NULL;
5280         head = (struct target_list *) NULL;
5281
5282         retval = 0;
5283         LOG_DEBUG("%d", argc);
5284         /* argv[1] = target to associate in smp
5285          * argv[2] = target to assoicate in smp
5286          * argv[3] ...
5287          */
5288
5289         for (i = 1; i < argc; i++) {
5290
5291                 targetname = Jim_GetString(argv[i], &len);
5292                 target = get_target(targetname);
5293                 LOG_DEBUG("%s ", targetname);
5294                 if (target) {
5295                         new = malloc(sizeof(struct target_list));
5296                         new->target = target;
5297                         new->next = (struct target_list *)NULL;
5298                         if (head == (struct target_list *)NULL) {
5299                                 head = new;
5300                                 curr = head;
5301                         } else {
5302                                 curr->next = new;
5303                                 curr = new;
5304                         }
5305                 }
5306         }
5307         /*  now parse the list of cpu and put the target in smp mode*/
5308         curr = head;
5309
5310         while (curr != (struct target_list *)NULL) {
5311                 target = curr->target;
5312                 target->smp = 1;
5313                 target->head = head;
5314                 curr = curr->next;
5315         }
5316
5317         if (target && target->rtos)
5318                 retval = rtos_smp_init(head->target);
5319
5320         return retval;
5321 }
5322
5323
5324 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5325 {
5326         Jim_GetOptInfo goi;
5327         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5328         if (goi.argc < 3) {
5329                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5330                         "<name> <target_type> [<target_options> ...]");
5331                 return JIM_ERR;
5332         }
5333         return target_create(&goi);
5334 }
5335
5336 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5337 {
5338         Jim_GetOptInfo goi;
5339         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5340
5341         /* It's OK to remove this mechanism sometime after August 2010 or so */
5342         LOG_WARNING("don't use numbers as target identifiers; use names");
5343         if (goi.argc != 1) {
5344                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5345                 return JIM_ERR;
5346         }
5347         jim_wide w;
5348         int e = Jim_GetOpt_Wide(&goi, &w);
5349         if (e != JIM_OK)
5350                 return JIM_ERR;
5351
5352         struct target *target;
5353         for (target = all_targets; NULL != target; target = target->next) {
5354                 if (target->target_number != w)
5355                         continue;
5356
5357                 Jim_SetResultString(goi.interp, target_name(target), -1);
5358                 return JIM_OK;
5359         }
5360         {
5361                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5362                 Jim_SetResultFormatted(goi.interp,
5363                         "Target: number %#s does not exist", wObj);
5364                 Jim_FreeNewObj(interp, wObj);
5365         }
5366         return JIM_ERR;
5367 }
5368
5369 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5370 {
5371         if (argc != 1) {
5372                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5373                 return JIM_ERR;
5374         }
5375         unsigned count = 0;
5376         struct target *target = all_targets;
5377         while (NULL != target) {
5378                 target = target->next;
5379                 count++;
5380         }
5381         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5382         return JIM_OK;
5383 }
5384
5385 static const struct command_registration target_subcommand_handlers[] = {
5386         {
5387                 .name = "init",
5388                 .mode = COMMAND_CONFIG,
5389                 .handler = handle_target_init_command,
5390                 .help = "initialize targets",
5391         },
5392         {
5393                 .name = "create",
5394                 /* REVISIT this should be COMMAND_CONFIG ... */
5395                 .mode = COMMAND_ANY,
5396                 .jim_handler = jim_target_create,
5397                 .usage = "name type '-chain-position' name [options ...]",
5398                 .help = "Creates and selects a new target",
5399         },
5400         {
5401                 .name = "current",
5402                 .mode = COMMAND_ANY,
5403                 .jim_handler = jim_target_current,
5404                 .help = "Returns the currently selected target",
5405         },
5406         {
5407                 .name = "types",
5408                 .mode = COMMAND_ANY,
5409                 .jim_handler = jim_target_types,
5410                 .help = "Returns the available target types as "
5411                                 "a list of strings",
5412         },
5413         {
5414                 .name = "names",
5415                 .mode = COMMAND_ANY,
5416                 .jim_handler = jim_target_names,
5417                 .help = "Returns the names of all targets as a list of strings",
5418         },
5419         {
5420                 .name = "number",
5421                 .mode = COMMAND_ANY,
5422                 .jim_handler = jim_target_number,
5423                 .usage = "number",
5424                 .help = "Returns the name of the numbered target "
5425                         "(DEPRECATED)",
5426         },
5427         {
5428                 .name = "count",
5429                 .mode = COMMAND_ANY,
5430                 .jim_handler = jim_target_count,
5431                 .help = "Returns the number of targets as an integer "
5432                         "(DEPRECATED)",
5433         },
5434         {
5435                 .name = "smp",
5436                 .mode = COMMAND_ANY,
5437                 .jim_handler = jim_target_smp,
5438                 .usage = "targetname1 targetname2 ...",
5439                 .help = "gather several target in a smp list"
5440         },
5441
5442         COMMAND_REGISTRATION_DONE
5443 };
5444
5445 struct FastLoad {
5446         uint32_t address;
5447         uint8_t *data;
5448         int length;
5449
5450 };
5451
5452 static int fastload_num;
5453 static struct FastLoad *fastload;
5454
5455 static void free_fastload(void)
5456 {
5457         if (fastload != NULL) {
5458                 int i;
5459                 for (i = 0; i < fastload_num; i++) {
5460                         if (fastload[i].data)
5461                                 free(fastload[i].data);
5462                 }
5463                 free(fastload);
5464                 fastload = NULL;
5465         }
5466 }
5467
5468 COMMAND_HANDLER(handle_fast_load_image_command)
5469 {
5470         uint8_t *buffer;
5471         size_t buf_cnt;
5472         uint32_t image_size;
5473         uint32_t min_address = 0;
5474         uint32_t max_address = 0xffffffff;
5475         int i;
5476
5477         struct image image;
5478
5479         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5480                         &image, &min_address, &max_address);
5481         if (ERROR_OK != retval)
5482                 return retval;
5483
5484         struct duration bench;
5485         duration_start(&bench);
5486
5487         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5488         if (retval != ERROR_OK)
5489                 return retval;
5490
5491         image_size = 0x0;
5492         retval = ERROR_OK;
5493         fastload_num = image.num_sections;
5494         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5495         if (fastload == NULL) {
5496                 command_print(CMD_CTX, "out of memory");
5497                 image_close(&image);
5498                 return ERROR_FAIL;
5499         }
5500         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5501         for (i = 0; i < image.num_sections; i++) {
5502                 buffer = malloc(image.sections[i].size);
5503                 if (buffer == NULL) {
5504                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5505                                                   (int)(image.sections[i].size));
5506                         retval = ERROR_FAIL;
5507                         break;
5508                 }
5509
5510                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5511                 if (retval != ERROR_OK) {
5512                         free(buffer);
5513                         break;
5514                 }
5515
5516                 uint32_t offset = 0;
5517                 uint32_t length = buf_cnt;
5518
5519                 /* DANGER!!! beware of unsigned comparision here!!! */
5520
5521                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5522                                 (image.sections[i].base_address < max_address)) {
5523                         if (image.sections[i].base_address < min_address) {
5524                                 /* clip addresses below */
5525                                 offset += min_address-image.sections[i].base_address;
5526                                 length -= offset;
5527                         }
5528
5529                         if (image.sections[i].base_address + buf_cnt > max_address)
5530                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5531
5532                         fastload[i].address = image.sections[i].base_address + offset;
5533                         fastload[i].data = malloc(length);
5534                         if (fastload[i].data == NULL) {
5535                                 free(buffer);
5536                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5537                                                           length);
5538                                 retval = ERROR_FAIL;
5539                                 break;
5540                         }
5541                         memcpy(fastload[i].data, buffer + offset, length);
5542                         fastload[i].length = length;
5543
5544                         image_size += length;
5545                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5546                                                   (unsigned int)length,
5547                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5548                 }
5549
5550                 free(buffer);
5551         }
5552
5553         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5554                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5555                                 "in %fs (%0.3f KiB/s)", image_size,
5556                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5557
5558                 command_print(CMD_CTX,
5559                                 "WARNING: image has not been loaded to target!"
5560                                 "You can issue a 'fast_load' to finish loading.");
5561         }
5562
5563         image_close(&image);
5564
5565         if (retval != ERROR_OK)
5566                 free_fastload();
5567
5568         return retval;
5569 }
5570
5571 COMMAND_HANDLER(handle_fast_load_command)
5572 {
5573         if (CMD_ARGC > 0)
5574                 return ERROR_COMMAND_SYNTAX_ERROR;
5575         if (fastload == NULL) {
5576                 LOG_ERROR("No image in memory");
5577                 return ERROR_FAIL;
5578         }
5579         int i;
5580         int ms = timeval_ms();
5581         int size = 0;
5582         int retval = ERROR_OK;
5583         for (i = 0; i < fastload_num; i++) {
5584                 struct target *target = get_current_target(CMD_CTX);
5585                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5586                                           (unsigned int)(fastload[i].address),
5587                                           (unsigned int)(fastload[i].length));
5588                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5589                 if (retval != ERROR_OK)
5590                         break;
5591                 size += fastload[i].length;
5592         }
5593         if (retval == ERROR_OK) {
5594                 int after = timeval_ms();
5595                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5596         }
5597         return retval;
5598 }
5599
5600 static const struct command_registration target_command_handlers[] = {
5601         {
5602                 .name = "targets",
5603                 .handler = handle_targets_command,
5604                 .mode = COMMAND_ANY,
5605                 .help = "change current default target (one parameter) "
5606                         "or prints table of all targets (no parameters)",
5607                 .usage = "[target]",
5608         },
5609         {
5610                 .name = "target",
5611                 .mode = COMMAND_CONFIG,
5612                 .help = "configure target",
5613
5614                 .chain = target_subcommand_handlers,
5615         },
5616         COMMAND_REGISTRATION_DONE
5617 };
5618
5619 int target_register_commands(struct command_context *cmd_ctx)
5620 {
5621         return register_commands(cmd_ctx, NULL, target_command_handlers);
5622 }
5623
5624 static bool target_reset_nag = true;
5625
5626 bool get_target_reset_nag(void)
5627 {
5628         return target_reset_nag;
5629 }
5630
5631 COMMAND_HANDLER(handle_target_reset_nag)
5632 {
5633         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5634                         &target_reset_nag, "Nag after each reset about options to improve "
5635                         "performance");
5636 }
5637
5638 COMMAND_HANDLER(handle_ps_command)
5639 {
5640         struct target *target = get_current_target(CMD_CTX);
5641         char *display;
5642         if (target->state != TARGET_HALTED) {
5643                 LOG_INFO("target not halted !!");
5644                 return ERROR_OK;
5645         }
5646
5647         if ((target->rtos) && (target->rtos->type)
5648                         && (target->rtos->type->ps_command)) {
5649                 display = target->rtos->type->ps_command(target);
5650                 command_print(CMD_CTX, "%s", display);
5651                 free(display);
5652                 return ERROR_OK;
5653         } else {
5654                 LOG_INFO("failed");
5655                 return ERROR_TARGET_FAILURE;
5656         }
5657 }
5658
5659 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5660 {
5661         if (text != NULL)
5662                 command_print_sameline(cmd_ctx, "%s", text);
5663         for (int i = 0; i < size; i++)
5664                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5665         command_print(cmd_ctx, " ");
5666 }
5667
5668 COMMAND_HANDLER(handle_test_mem_access_command)
5669 {
5670         struct target *target = get_current_target(CMD_CTX);
5671         uint32_t test_size;
5672         int retval = ERROR_OK;
5673
5674         if (target->state != TARGET_HALTED) {
5675                 LOG_INFO("target not halted !!");
5676                 return ERROR_FAIL;
5677         }
5678
5679         if (CMD_ARGC != 1)
5680                 return ERROR_COMMAND_SYNTAX_ERROR;
5681
5682         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5683
5684         /* Test reads */
5685         size_t num_bytes = test_size + 4;
5686
5687         struct working_area *wa = NULL;
5688         retval = target_alloc_working_area(target, num_bytes, &wa);
5689         if (retval != ERROR_OK) {
5690                 LOG_ERROR("Not enough working area");
5691                 return ERROR_FAIL;
5692         }
5693
5694         uint8_t *test_pattern = malloc(num_bytes);
5695
5696         for (size_t i = 0; i < num_bytes; i++)
5697                 test_pattern[i] = rand();
5698
5699         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5700         if (retval != ERROR_OK) {
5701                 LOG_ERROR("Test pattern write failed");
5702                 goto out;
5703         }
5704
5705         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5706                 for (int size = 1; size <= 4; size *= 2) {
5707                         for (int offset = 0; offset < 4; offset++) {
5708                                 uint32_t count = test_size / size;
5709                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5710                                 uint8_t *read_ref = malloc(host_bufsiz);
5711                                 uint8_t *read_buf = malloc(host_bufsiz);
5712
5713                                 for (size_t i = 0; i < host_bufsiz; i++) {
5714                                         read_ref[i] = rand();
5715                                         read_buf[i] = read_ref[i];
5716                                 }
5717                                 command_print_sameline(CMD_CTX,
5718                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5719                                                 size, offset, host_offset ? "un" : "");
5720
5721                                 struct duration bench;
5722                                 duration_start(&bench);
5723
5724                                 retval = target_read_memory(target, wa->address + offset, size, count,
5725                                                 read_buf + size + host_offset);
5726
5727                                 duration_measure(&bench);
5728
5729                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5730                                         command_print(CMD_CTX, "Unsupported alignment");
5731                                         goto next;
5732                                 } else if (retval != ERROR_OK) {
5733                                         command_print(CMD_CTX, "Memory read failed");
5734                                         goto next;
5735                                 }
5736
5737                                 /* replay on host */
5738                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5739
5740                                 /* check result */
5741                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5742                                 if (result == 0) {
5743                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5744                                                         duration_elapsed(&bench),
5745                                                         duration_kbps(&bench, count * size));
5746                                 } else {
5747                                         command_print(CMD_CTX, "Compare failed");
5748                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5749                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5750                                 }
5751 next:
5752                                 free(read_ref);
5753                                 free(read_buf);
5754                         }
5755                 }
5756         }
5757
5758 out:
5759         free(test_pattern);
5760
5761         if (wa != NULL)
5762                 target_free_working_area(target, wa);
5763
5764         /* Test writes */
5765         num_bytes = test_size + 4 + 4 + 4;
5766
5767         retval = target_alloc_working_area(target, num_bytes, &wa);
5768         if (retval != ERROR_OK) {
5769                 LOG_ERROR("Not enough working area");
5770                 return ERROR_FAIL;
5771         }
5772
5773         test_pattern = malloc(num_bytes);
5774
5775         for (size_t i = 0; i < num_bytes; i++)
5776                 test_pattern[i] = rand();
5777
5778         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5779                 for (int size = 1; size <= 4; size *= 2) {
5780                         for (int offset = 0; offset < 4; offset++) {
5781                                 uint32_t count = test_size / size;
5782                                 size_t host_bufsiz = count * size + host_offset;
5783                                 uint8_t *read_ref = malloc(num_bytes);
5784                                 uint8_t *read_buf = malloc(num_bytes);
5785                                 uint8_t *write_buf = malloc(host_bufsiz);
5786
5787                                 for (size_t i = 0; i < host_bufsiz; i++)
5788                                         write_buf[i] = rand();
5789                                 command_print_sameline(CMD_CTX,
5790                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5791                                                 size, offset, host_offset ? "un" : "");
5792
5793                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5794                                 if (retval != ERROR_OK) {
5795                                         command_print(CMD_CTX, "Test pattern write failed");
5796                                         goto nextw;
5797                                 }
5798
5799                                 /* replay on host */
5800                                 memcpy(read_ref, test_pattern, num_bytes);
5801                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5802
5803                                 struct duration bench;
5804                                 duration_start(&bench);
5805
5806                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5807                                                 write_buf + host_offset);
5808
5809                                 duration_measure(&bench);
5810
5811                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5812                                         command_print(CMD_CTX, "Unsupported alignment");
5813                                         goto nextw;
5814                                 } else if (retval != ERROR_OK) {
5815                                         command_print(CMD_CTX, "Memory write failed");
5816                                         goto nextw;
5817                                 }
5818
5819                                 /* read back */
5820                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5821                                 if (retval != ERROR_OK) {
5822                                         command_print(CMD_CTX, "Test pattern write failed");
5823                                         goto nextw;
5824                                 }
5825
5826                                 /* check result */
5827                                 int result = memcmp(read_ref, read_buf, num_bytes);
5828                                 if (result == 0) {
5829                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5830                                                         duration_elapsed(&bench),
5831                                                         duration_kbps(&bench, count * size));
5832                                 } else {
5833                                         command_print(CMD_CTX, "Compare failed");
5834                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5835                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5836                                 }
5837 nextw:
5838                                 free(read_ref);
5839                                 free(read_buf);
5840                         }
5841                 }
5842         }
5843
5844         free(test_pattern);
5845
5846         if (wa != NULL)
5847                 target_free_working_area(target, wa);
5848         return retval;
5849 }
5850
5851 static const struct command_registration target_exec_command_handlers[] = {
5852         {
5853                 .name = "fast_load_image",
5854                 .handler = handle_fast_load_image_command,
5855                 .mode = COMMAND_ANY,
5856                 .help = "Load image into server memory for later use by "
5857                         "fast_load; primarily for profiling",
5858                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5859                         "[min_address [max_length]]",
5860         },
5861         {
5862                 .name = "fast_load",
5863                 .handler = handle_fast_load_command,
5864                 .mode = COMMAND_EXEC,
5865                 .help = "loads active fast load image to current target "
5866                         "- mainly for profiling purposes",
5867                 .usage = "",
5868         },
5869         {
5870                 .name = "profile",
5871                 .handler = handle_profile_command,
5872                 .mode = COMMAND_EXEC,
5873                 .usage = "seconds filename [start end]",
5874                 .help = "profiling samples the CPU PC",
5875         },
5876         /** @todo don't register virt2phys() unless target supports it */
5877         {
5878                 .name = "virt2phys",
5879                 .handler = handle_virt2phys_command,
5880                 .mode = COMMAND_ANY,
5881                 .help = "translate a virtual address into a physical address",
5882                 .usage = "virtual_address",
5883         },
5884         {
5885                 .name = "reg",
5886                 .handler = handle_reg_command,
5887                 .mode = COMMAND_EXEC,
5888                 .help = "display (reread from target with \"force\") or set a register; "
5889                         "with no arguments, displays all registers and their values",
5890                 .usage = "[(register_number|register_name) [(value|'force')]]",
5891         },
5892         {
5893                 .name = "poll",
5894                 .handler = handle_poll_command,
5895                 .mode = COMMAND_EXEC,
5896                 .help = "poll target state; or reconfigure background polling",
5897                 .usage = "['on'|'off']",
5898         },
5899         {
5900                 .name = "wait_halt",
5901                 .handler = handle_wait_halt_command,
5902                 .mode = COMMAND_EXEC,
5903                 .help = "wait up to the specified number of milliseconds "
5904                         "(default 5000) for a previously requested halt",
5905                 .usage = "[milliseconds]",
5906         },
5907         {
5908                 .name = "halt",
5909                 .handler = handle_halt_command,
5910                 .mode = COMMAND_EXEC,
5911                 .help = "request target to halt, then wait up to the specified"
5912                         "number of milliseconds (default 5000) for it to complete",
5913                 .usage = "[milliseconds]",
5914         },
5915         {
5916                 .name = "resume",
5917                 .handler = handle_resume_command,
5918                 .mode = COMMAND_EXEC,
5919                 .help = "resume target execution from current PC or address",
5920                 .usage = "[address]",
5921         },
5922         {
5923                 .name = "reset",
5924                 .handler = handle_reset_command,
5925                 .mode = COMMAND_EXEC,
5926                 .usage = "[run|halt|init]",
5927                 .help = "Reset all targets into the specified mode."
5928                         "Default reset mode is run, if not given.",
5929         },
5930         {
5931                 .name = "soft_reset_halt",
5932                 .handler = handle_soft_reset_halt_command,
5933                 .mode = COMMAND_EXEC,
5934                 .usage = "",
5935                 .help = "halt the target and do a soft reset",
5936         },
5937         {
5938                 .name = "step",
5939                 .handler = handle_step_command,
5940                 .mode = COMMAND_EXEC,
5941                 .help = "step one instruction from current PC or address",
5942                 .usage = "[address]",
5943         },
5944         {
5945                 .name = "mdw",
5946                 .handler = handle_md_command,
5947                 .mode = COMMAND_EXEC,
5948                 .help = "display memory words",
5949                 .usage = "['phys'] address [count]",
5950         },
5951         {
5952                 .name = "mdh",
5953                 .handler = handle_md_command,
5954                 .mode = COMMAND_EXEC,
5955                 .help = "display memory half-words",
5956                 .usage = "['phys'] address [count]",
5957         },
5958         {
5959                 .name = "mdb",
5960                 .handler = handle_md_command,
5961                 .mode = COMMAND_EXEC,
5962                 .help = "display memory bytes",
5963                 .usage = "['phys'] address [count]",
5964         },
5965         {
5966                 .name = "mww",
5967                 .handler = handle_mw_command,
5968                 .mode = COMMAND_EXEC,
5969                 .help = "write memory word",
5970                 .usage = "['phys'] address value [count]",
5971         },
5972         {
5973                 .name = "mwh",
5974                 .handler = handle_mw_command,
5975                 .mode = COMMAND_EXEC,
5976                 .help = "write memory half-word",
5977                 .usage = "['phys'] address value [count]",
5978         },
5979         {
5980                 .name = "mwb",
5981                 .handler = handle_mw_command,
5982                 .mode = COMMAND_EXEC,
5983                 .help = "write memory byte",
5984                 .usage = "['phys'] address value [count]",
5985         },
5986         {
5987                 .name = "bp",
5988                 .handler = handle_bp_command,
5989                 .mode = COMMAND_EXEC,
5990                 .help = "list or set hardware or software breakpoint",
5991                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5992         },
5993         {
5994                 .name = "rbp",
5995                 .handler = handle_rbp_command,
5996                 .mode = COMMAND_EXEC,
5997                 .help = "remove breakpoint",
5998                 .usage = "address",
5999         },
6000         {
6001                 .name = "wp",
6002                 .handler = handle_wp_command,
6003                 .mode = COMMAND_EXEC,
6004                 .help = "list (no params) or create watchpoints",
6005                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6006         },
6007         {
6008                 .name = "rwp",
6009                 .handler = handle_rwp_command,
6010                 .mode = COMMAND_EXEC,
6011                 .help = "remove watchpoint",
6012                 .usage = "address",
6013         },
6014         {
6015                 .name = "load_image",
6016                 .handler = handle_load_image_command,
6017                 .mode = COMMAND_EXEC,
6018                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6019                         "[min_address] [max_length]",
6020         },
6021         {
6022                 .name = "dump_image",
6023                 .handler = handle_dump_image_command,
6024                 .mode = COMMAND_EXEC,
6025                 .usage = "filename address size",
6026         },
6027         {
6028                 .name = "verify_image",
6029                 .handler = handle_verify_image_command,
6030                 .mode = COMMAND_EXEC,
6031                 .usage = "filename [offset [type]]",
6032         },
6033         {
6034                 .name = "test_image",
6035                 .handler = handle_test_image_command,
6036                 .mode = COMMAND_EXEC,
6037                 .usage = "filename [offset [type]]",
6038         },
6039         {
6040                 .name = "mem2array",
6041                 .mode = COMMAND_EXEC,
6042                 .jim_handler = jim_mem2array,
6043                 .help = "read 8/16/32 bit memory and return as a TCL array "
6044                         "for script processing",
6045                 .usage = "arrayname bitwidth address count",
6046         },
6047         {
6048                 .name = "array2mem",
6049                 .mode = COMMAND_EXEC,
6050                 .jim_handler = jim_array2mem,
6051                 .help = "convert a TCL array to memory locations "
6052                         "and write the 8/16/32 bit values",
6053                 .usage = "arrayname bitwidth address count",
6054         },
6055         {
6056                 .name = "reset_nag",
6057                 .handler = handle_target_reset_nag,
6058                 .mode = COMMAND_ANY,
6059                 .help = "Nag after each reset about options that could have been "
6060                                 "enabled to improve performance. ",
6061                 .usage = "['enable'|'disable']",
6062         },
6063         {
6064                 .name = "ps",
6065                 .handler = handle_ps_command,
6066                 .mode = COMMAND_EXEC,
6067                 .help = "list all tasks ",
6068                 .usage = " ",
6069         },
6070         {
6071                 .name = "test_mem_access",
6072                 .handler = handle_test_mem_access_command,
6073                 .mode = COMMAND_EXEC,
6074                 .help = "Test the target's memory access functions",
6075                 .usage = "size",
6076         },
6077
6078         COMMAND_REGISTRATION_DONE
6079 };
6080 static int target_register_user_commands(struct command_context *cmd_ctx)
6081 {
6082         int retval = ERROR_OK;
6083         retval = target_request_register_commands(cmd_ctx);
6084         if (retval != ERROR_OK)
6085                 return retval;
6086
6087         retval = trace_register_commands(cmd_ctx);
6088         if (retval != ERROR_OK)
6089                 return retval;
6090
6091
6092         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6093 }