]> git.sur5r.net Git - openocd/blob - src/target/target.c
[RFC] target: Move bulk_write_memory to arm7_9
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t size, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t size, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm3_target;
89 extern struct target_type cortexa8_target;
90 extern struct target_type cortexr4_target;
91 extern struct target_type arm11_target;
92 extern struct target_type mips_m4k_target;
93 extern struct target_type avr_target;
94 extern struct target_type dsp563xx_target;
95 extern struct target_type dsp5680xx_target;
96 extern struct target_type testee_target;
97 extern struct target_type avr32_ap7k_target;
98 extern struct target_type hla_target;
99 extern struct target_type nds32_v2_target;
100 extern struct target_type nds32_v3_target;
101 extern struct target_type nds32_v3m_target;
102
103 static struct target_type *target_types[] = {
104         &arm7tdmi_target,
105         &arm9tdmi_target,
106         &arm920t_target,
107         &arm720t_target,
108         &arm966e_target,
109         &arm946e_target,
110         &arm926ejs_target,
111         &fa526_target,
112         &feroceon_target,
113         &dragonite_target,
114         &xscale_target,
115         &cortexm3_target,
116         &cortexa8_target,
117         &cortexr4_target,
118         &arm11_target,
119         &mips_m4k_target,
120         &avr_target,
121         &dsp563xx_target,
122         &dsp5680xx_target,
123         &testee_target,
124         &avr32_ap7k_target,
125         &hla_target,
126         &nds32_v2_target,
127         &nds32_v3_target,
128         &nds32_v3m_target,
129         NULL,
130 };
131
132 struct target *all_targets;
133 static struct target_event_callback *target_event_callbacks;
134 static struct target_timer_callback *target_timer_callbacks;
135 static const int polling_interval = 100;
136
137 static const Jim_Nvp nvp_assert[] = {
138         { .name = "assert", NVP_ASSERT },
139         { .name = "deassert", NVP_DEASSERT },
140         { .name = "T", NVP_ASSERT },
141         { .name = "F", NVP_DEASSERT },
142         { .name = "t", NVP_ASSERT },
143         { .name = "f", NVP_DEASSERT },
144         { .name = NULL, .value = -1 }
145 };
146
147 static const Jim_Nvp nvp_error_target[] = {
148         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
149         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
150         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
151         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
152         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
153         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
154         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
155         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
156         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
157         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
158         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
159         { .value = -1, .name = NULL }
160 };
161
162 static const char *target_strerror_safe(int err)
163 {
164         const Jim_Nvp *n;
165
166         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
167         if (n->name == NULL)
168                 return "unknown";
169         else
170                 return n->name;
171 }
172
173 static const Jim_Nvp nvp_target_event[] = {
174
175         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
176         { .value = TARGET_EVENT_HALTED, .name = "halted" },
177         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
178         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
179         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
180
181         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
182         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
183
184         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
185         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
186         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
187         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
188         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
189         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
190         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
191         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
192         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
193         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
194         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
195         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
196
197         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
198         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
199
200         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
201         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
202
203         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
204         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
205
206         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
207         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
208
209         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
210         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
211
212         { .name = NULL, .value = -1 }
213 };
214
215 static const Jim_Nvp nvp_target_state[] = {
216         { .name = "unknown", .value = TARGET_UNKNOWN },
217         { .name = "running", .value = TARGET_RUNNING },
218         { .name = "halted",  .value = TARGET_HALTED },
219         { .name = "reset",   .value = TARGET_RESET },
220         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
221         { .name = NULL, .value = -1 },
222 };
223
224 static const Jim_Nvp nvp_target_debug_reason[] = {
225         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
226         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
227         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
228         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
229         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
230         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
231         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
232         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
233         { .name = NULL, .value = -1 },
234 };
235
236 static const Jim_Nvp nvp_target_endian[] = {
237         { .name = "big",    .value = TARGET_BIG_ENDIAN },
238         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
239         { .name = "be",     .value = TARGET_BIG_ENDIAN },
240         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
241         { .name = NULL,     .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_reset_modes[] = {
245         { .name = "unknown", .value = RESET_UNKNOWN },
246         { .name = "run"    , .value = RESET_RUN },
247         { .name = "halt"   , .value = RESET_HALT },
248         { .name = "init"   , .value = RESET_INIT },
249         { .name = NULL     , .value = -1 },
250 };
251
252 const char *debug_reason_name(struct target *t)
253 {
254         const char *cp;
255
256         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
257                         t->debug_reason)->name;
258         if (!cp) {
259                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
260                 cp = "(*BUG*unknown*BUG*)";
261         }
262         return cp;
263 }
264
265 const char *target_state_name(struct target *t)
266 {
267         const char *cp;
268         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
269         if (!cp) {
270                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
271                 cp = "(*BUG*unknown*BUG*)";
272         }
273         return cp;
274 }
275
276 /* determine the number of the new target */
277 static int new_target_number(void)
278 {
279         struct target *t;
280         int x;
281
282         /* number is 0 based */
283         x = -1;
284         t = all_targets;
285         while (t) {
286                 if (x < t->target_number)
287                         x = t->target_number;
288                 t = t->next;
289         }
290         return x + 1;
291 }
292
293 /* read a uint32_t from a buffer in target memory endianness */
294 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
295 {
296         if (target->endianness == TARGET_LITTLE_ENDIAN)
297                 return le_to_h_u32(buffer);
298         else
299                 return be_to_h_u32(buffer);
300 }
301
302 /* read a uint24_t from a buffer in target memory endianness */
303 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
304 {
305         if (target->endianness == TARGET_LITTLE_ENDIAN)
306                 return le_to_h_u24(buffer);
307         else
308                 return be_to_h_u24(buffer);
309 }
310
311 /* read a uint16_t from a buffer in target memory endianness */
312 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
313 {
314         if (target->endianness == TARGET_LITTLE_ENDIAN)
315                 return le_to_h_u16(buffer);
316         else
317                 return be_to_h_u16(buffer);
318 }
319
320 /* read a uint8_t from a buffer in target memory endianness */
321 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
322 {
323         return *buffer & 0x0ff;
324 }
325
326 /* write a uint32_t to a buffer in target memory endianness */
327 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
328 {
329         if (target->endianness == TARGET_LITTLE_ENDIAN)
330                 h_u32_to_le(buffer, value);
331         else
332                 h_u32_to_be(buffer, value);
333 }
334
335 /* write a uint24_t to a buffer in target memory endianness */
336 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
337 {
338         if (target->endianness == TARGET_LITTLE_ENDIAN)
339                 h_u24_to_le(buffer, value);
340         else
341                 h_u24_to_be(buffer, value);
342 }
343
344 /* write a uint16_t to a buffer in target memory endianness */
345 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
346 {
347         if (target->endianness == TARGET_LITTLE_ENDIAN)
348                 h_u16_to_le(buffer, value);
349         else
350                 h_u16_to_be(buffer, value);
351 }
352
353 /* write a uint8_t to a buffer in target memory endianness */
354 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
355 {
356         *buffer = value;
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
361 {
362         uint32_t i;
363         for (i = 0; i < count; i++)
364                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
369 {
370         uint32_t i;
371         for (i = 0; i < count; i++)
372                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
373 }
374
375 /* write a uint32_t array to a buffer in target memory endianness */
376 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
377 {
378         uint32_t i;
379         for (i = 0; i < count; i++)
380                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
381 }
382
383 /* write a uint16_t array to a buffer in target memory endianness */
384 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
385 {
386         uint32_t i;
387         for (i = 0; i < count; i++)
388                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
389 }
390
391 /* return a pointer to a configured target; id is name or number */
392 struct target *get_target(const char *id)
393 {
394         struct target *target;
395
396         /* try as tcltarget name */
397         for (target = all_targets; target; target = target->next) {
398                 if (target_name(target) == NULL)
399                         continue;
400                 if (strcmp(id, target_name(target)) == 0)
401                         return target;
402         }
403
404         /* It's OK to remove this fallback sometime after August 2010 or so */
405
406         /* no match, try as number */
407         unsigned num;
408         if (parse_uint(id, &num) != ERROR_OK)
409                 return NULL;
410
411         for (target = all_targets; target; target = target->next) {
412                 if (target->target_number == (int)num) {
413                         LOG_WARNING("use '%s' as target identifier, not '%u'",
414                                         target_name(target), num);
415                         return target;
416                 }
417         }
418
419         return NULL;
420 }
421
422 /* returns a pointer to the n-th configured target */
423 static struct target *get_target_by_num(int num)
424 {
425         struct target *target = all_targets;
426
427         while (target) {
428                 if (target->target_number == num)
429                         return target;
430                 target = target->next;
431         }
432
433         return NULL;
434 }
435
436 struct target *get_current_target(struct command_context *cmd_ctx)
437 {
438         struct target *target = get_target_by_num(cmd_ctx->current_target);
439
440         if (target == NULL) {
441                 LOG_ERROR("BUG: current_target out of bounds");
442                 exit(-1);
443         }
444
445         return target;
446 }
447
448 int target_poll(struct target *target)
449 {
450         int retval;
451
452         /* We can't poll until after examine */
453         if (!target_was_examined(target)) {
454                 /* Fail silently lest we pollute the log */
455                 return ERROR_FAIL;
456         }
457
458         retval = target->type->poll(target);
459         if (retval != ERROR_OK)
460                 return retval;
461
462         if (target->halt_issued) {
463                 if (target->state == TARGET_HALTED)
464                         target->halt_issued = false;
465                 else {
466                         long long t = timeval_ms() - target->halt_issued_time;
467                         if (t > DEFAULT_HALT_TIMEOUT) {
468                                 target->halt_issued = false;
469                                 LOG_INFO("Halt timed out, wake up GDB.");
470                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
471                         }
472                 }
473         }
474
475         return ERROR_OK;
476 }
477
478 int target_halt(struct target *target)
479 {
480         int retval;
481         /* We can't poll until after examine */
482         if (!target_was_examined(target)) {
483                 LOG_ERROR("Target not examined yet");
484                 return ERROR_FAIL;
485         }
486
487         retval = target->type->halt(target);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         target->halt_issued = true;
492         target->halt_issued_time = timeval_ms();
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Make the target (re)start executing using its saved execution
499  * context (possibly with some modifications).
500  *
501  * @param target Which target should start executing.
502  * @param current True to use the target's saved program counter instead
503  *      of the address parameter
504  * @param address Optionally used as the program counter.
505  * @param handle_breakpoints True iff breakpoints at the resumption PC
506  *      should be skipped.  (For example, maybe execution was stopped by
507  *      such a breakpoint, in which case it would be counterprodutive to
508  *      let it re-trigger.
509  * @param debug_execution False if all working areas allocated by OpenOCD
510  *      should be released and/or restored to their original contents.
511  *      (This would for example be true to run some downloaded "helper"
512  *      algorithm code, which resides in one such working buffer and uses
513  *      another for data storage.)
514  *
515  * @todo Resolve the ambiguity about what the "debug_execution" flag
516  * signifies.  For example, Target implementations don't agree on how
517  * it relates to invalidation of the register cache, or to whether
518  * breakpoints and watchpoints should be enabled.  (It would seem wrong
519  * to enable breakpoints when running downloaded "helper" algorithms
520  * (debug_execution true), since the breakpoints would be set to match
521  * target firmware being debugged, not the helper algorithm.... and
522  * enabling them could cause such helpers to malfunction (for example,
523  * by overwriting data with a breakpoint instruction.  On the other
524  * hand the infrastructure for running such helpers might use this
525  * procedure but rely on hardware breakpoint to detect termination.)
526  */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target)) {
533                 LOG_ERROR("Target not examined yet");
534                 return ERROR_FAIL;
535         }
536
537         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
538
539         /* note that resume *must* be asynchronous. The CPU can halt before
540          * we poll. The CPU can even halt at the current PC as a result of
541          * a software breakpoint being inserted by (a bug?) the application.
542          */
543         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
544         if (retval != ERROR_OK)
545                 return retval;
546
547         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
548
549         return retval;
550 }
551
552 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
553 {
554         char buf[100];
555         int retval;
556         Jim_Nvp *n;
557         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
558         if (n->name == NULL) {
559                 LOG_ERROR("invalid reset mode");
560                 return ERROR_FAIL;
561         }
562
563         /* disable polling during reset to make reset event scripts
564          * more predictable, i.e. dr/irscan & pathmove in events will
565          * not have JTAG operations injected into the middle of a sequence.
566          */
567         bool save_poll = jtag_poll_get_enabled();
568
569         jtag_poll_set_enabled(false);
570
571         sprintf(buf, "ocd_process_reset %s", n->name);
572         retval = Jim_Eval(cmd_ctx->interp, buf);
573
574         jtag_poll_set_enabled(save_poll);
575
576         if (retval != JIM_OK) {
577                 Jim_MakeErrorMessage(cmd_ctx->interp);
578                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
579                 return ERROR_FAIL;
580         }
581
582         /* We want any events to be processed before the prompt */
583         retval = target_call_timer_callbacks_now();
584
585         struct target *target;
586         for (target = all_targets; target; target = target->next) {
587                 target->type->check_reset(target);
588                 target->running_alg = false;
589         }
590
591         return retval;
592 }
593
594 static int identity_virt2phys(struct target *target,
595                 uint32_t virtual, uint32_t *physical)
596 {
597         *physical = virtual;
598         return ERROR_OK;
599 }
600
601 static int no_mmu(struct target *target, int *enabled)
602 {
603         *enabled = 0;
604         return ERROR_OK;
605 }
606
607 static int default_examine(struct target *target)
608 {
609         target_set_examined(target);
610         return ERROR_OK;
611 }
612
613 /* no check by default */
614 static int default_check_reset(struct target *target)
615 {
616         return ERROR_OK;
617 }
618
619 int target_examine_one(struct target *target)
620 {
621         return target->type->examine(target);
622 }
623
624 static int jtag_enable_callback(enum jtag_event event, void *priv)
625 {
626         struct target *target = priv;
627
628         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
629                 return ERROR_OK;
630
631         jtag_unregister_event_callback(jtag_enable_callback, target);
632
633         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
634
635         int retval = target_examine_one(target);
636         if (retval != ERROR_OK)
637                 return retval;
638
639         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
640
641         return retval;
642 }
643
644 /* Targets that correctly implement init + examine, i.e.
645  * no communication with target during init:
646  *
647  * XScale
648  */
649 int target_examine(void)
650 {
651         int retval = ERROR_OK;
652         struct target *target;
653
654         for (target = all_targets; target; target = target->next) {
655                 /* defer examination, but don't skip it */
656                 if (!target->tap->enabled) {
657                         jtag_register_event_callback(jtag_enable_callback,
658                                         target);
659                         continue;
660                 }
661
662                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
663
664                 retval = target_examine_one(target);
665                 if (retval != ERROR_OK)
666                         return retval;
667
668                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
669         }
670         return retval;
671 }
672
673 const char *target_type_name(struct target *target)
674 {
675         return target->type->name;
676 }
677
678 static int target_soft_reset_halt(struct target *target)
679 {
680         if (!target_was_examined(target)) {
681                 LOG_ERROR("Target not examined yet");
682                 return ERROR_FAIL;
683         }
684         if (!target->type->soft_reset_halt) {
685                 LOG_ERROR("Target %s does not support soft_reset_halt",
686                                 target_name(target));
687                 return ERROR_FAIL;
688         }
689         return target->type->soft_reset_halt(target);
690 }
691
692 /**
693  * Downloads a target-specific native code algorithm to the target,
694  * and executes it.  * Note that some targets may need to set up, enable,
695  * and tear down a breakpoint (hard or * soft) to detect algorithm
696  * termination, while others may support  lower overhead schemes where
697  * soft breakpoints embedded in the algorithm automatically terminate the
698  * algorithm.
699  *
700  * @param target used to run the algorithm
701  * @param arch_info target-specific description of the algorithm.
702  */
703 int target_run_algorithm(struct target *target,
704                 int num_mem_params, struct mem_param *mem_params,
705                 int num_reg_params, struct reg_param *reg_param,
706                 uint32_t entry_point, uint32_t exit_point,
707                 int timeout_ms, void *arch_info)
708 {
709         int retval = ERROR_FAIL;
710
711         if (!target_was_examined(target)) {
712                 LOG_ERROR("Target not examined yet");
713                 goto done;
714         }
715         if (!target->type->run_algorithm) {
716                 LOG_ERROR("Target type '%s' does not support %s",
717                                 target_type_name(target), __func__);
718                 goto done;
719         }
720
721         target->running_alg = true;
722         retval = target->type->run_algorithm(target,
723                         num_mem_params, mem_params,
724                         num_reg_params, reg_param,
725                         entry_point, exit_point, timeout_ms, arch_info);
726         target->running_alg = false;
727
728 done:
729         return retval;
730 }
731
732 /**
733  * Downloads a target-specific native code algorithm to the target,
734  * executes and leaves it running.
735  *
736  * @param target used to run the algorithm
737  * @param arch_info target-specific description of the algorithm.
738  */
739 int target_start_algorithm(struct target *target,
740                 int num_mem_params, struct mem_param *mem_params,
741                 int num_reg_params, struct reg_param *reg_params,
742                 uint32_t entry_point, uint32_t exit_point,
743                 void *arch_info)
744 {
745         int retval = ERROR_FAIL;
746
747         if (!target_was_examined(target)) {
748                 LOG_ERROR("Target not examined yet");
749                 goto done;
750         }
751         if (!target->type->start_algorithm) {
752                 LOG_ERROR("Target type '%s' does not support %s",
753                                 target_type_name(target), __func__);
754                 goto done;
755         }
756         if (target->running_alg) {
757                 LOG_ERROR("Target is already running an algorithm");
758                 goto done;
759         }
760
761         target->running_alg = true;
762         retval = target->type->start_algorithm(target,
763                         num_mem_params, mem_params,
764                         num_reg_params, reg_params,
765                         entry_point, exit_point, arch_info);
766
767 done:
768         return retval;
769 }
770
771 /**
772  * Waits for an algorithm started with target_start_algorithm() to complete.
773  *
774  * @param target used to run the algorithm
775  * @param arch_info target-specific description of the algorithm.
776  */
777 int target_wait_algorithm(struct target *target,
778                 int num_mem_params, struct mem_param *mem_params,
779                 int num_reg_params, struct reg_param *reg_params,
780                 uint32_t exit_point, int timeout_ms,
781                 void *arch_info)
782 {
783         int retval = ERROR_FAIL;
784
785         if (!target->type->wait_algorithm) {
786                 LOG_ERROR("Target type '%s' does not support %s",
787                                 target_type_name(target), __func__);
788                 goto done;
789         }
790         if (!target->running_alg) {
791                 LOG_ERROR("Target is not running an algorithm");
792                 goto done;
793         }
794
795         retval = target->type->wait_algorithm(target,
796                         num_mem_params, mem_params,
797                         num_reg_params, reg_params,
798                         exit_point, timeout_ms, arch_info);
799         if (retval != ERROR_TARGET_TIMEOUT)
800                 target->running_alg = false;
801
802 done:
803         return retval;
804 }
805
806 /**
807  * Executes a target-specific native code algorithm in the target.
808  * It differs from target_run_algorithm in that the algorithm is asynchronous.
809  * Because of this it requires an compliant algorithm:
810  * see contrib/loaders/flash/stm32f1x.S for example.
811  *
812  * @param target used to run the algorithm
813  */
814
815 int target_run_flash_async_algorithm(struct target *target,
816                 uint8_t *buffer, uint32_t count, int block_size,
817                 int num_mem_params, struct mem_param *mem_params,
818                 int num_reg_params, struct reg_param *reg_params,
819                 uint32_t buffer_start, uint32_t buffer_size,
820                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
821 {
822         int retval;
823         int timeout = 0;
824
825         /* Set up working area. First word is write pointer, second word is read pointer,
826          * rest is fifo data area. */
827         uint32_t wp_addr = buffer_start;
828         uint32_t rp_addr = buffer_start + 4;
829         uint32_t fifo_start_addr = buffer_start + 8;
830         uint32_t fifo_end_addr = buffer_start + buffer_size;
831
832         uint32_t wp = fifo_start_addr;
833         uint32_t rp = fifo_start_addr;
834
835         /* validate block_size is 2^n */
836         assert(!block_size || !(block_size & (block_size - 1)));
837
838         retval = target_write_u32(target, wp_addr, wp);
839         if (retval != ERROR_OK)
840                 return retval;
841         retval = target_write_u32(target, rp_addr, rp);
842         if (retval != ERROR_OK)
843                 return retval;
844
845         /* Start up algorithm on target and let it idle while writing the first chunk */
846         retval = target_start_algorithm(target, num_mem_params, mem_params,
847                         num_reg_params, reg_params,
848                         entry_point,
849                         exit_point,
850                         arch_info);
851
852         if (retval != ERROR_OK) {
853                 LOG_ERROR("error starting target flash write algorithm");
854                 return retval;
855         }
856
857         while (count > 0) {
858
859                 retval = target_read_u32(target, rp_addr, &rp);
860                 if (retval != ERROR_OK) {
861                         LOG_ERROR("failed to get read pointer");
862                         break;
863                 }
864
865                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
866
867                 if (rp == 0) {
868                         LOG_ERROR("flash write algorithm aborted by target");
869                         retval = ERROR_FLASH_OPERATION_FAILED;
870                         break;
871                 }
872
873                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
874                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
875                         break;
876                 }
877
878                 /* Count the number of bytes available in the fifo without
879                  * crossing the wrap around. Make sure to not fill it completely,
880                  * because that would make wp == rp and that's the empty condition. */
881                 uint32_t thisrun_bytes;
882                 if (rp > wp)
883                         thisrun_bytes = rp - wp - block_size;
884                 else if (rp > fifo_start_addr)
885                         thisrun_bytes = fifo_end_addr - wp;
886                 else
887                         thisrun_bytes = fifo_end_addr - wp - block_size;
888
889                 if (thisrun_bytes == 0) {
890                         /* Throttle polling a bit if transfer is (much) faster than flash
891                          * programming. The exact delay shouldn't matter as long as it's
892                          * less than buffer size / flash speed. This is very unlikely to
893                          * run when using high latency connections such as USB. */
894                         alive_sleep(10);
895
896                         /* to stop an infinite loop on some targets check and increment a timeout
897                          * this issue was observed on a stellaris using the new ICDI interface */
898                         if (timeout++ >= 500) {
899                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
900                                 return ERROR_FLASH_OPERATION_FAILED;
901                         }
902                         continue;
903                 }
904
905                 /* reset our timeout */
906                 timeout = 0;
907
908                 /* Limit to the amount of data we actually want to write */
909                 if (thisrun_bytes > count * block_size)
910                         thisrun_bytes = count * block_size;
911
912                 /* Write data to fifo */
913                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
914                 if (retval != ERROR_OK)
915                         break;
916
917                 /* Update counters and wrap write pointer */
918                 buffer += thisrun_bytes;
919                 count -= thisrun_bytes / block_size;
920                 wp += thisrun_bytes;
921                 if (wp >= fifo_end_addr)
922                         wp = fifo_start_addr;
923
924                 /* Store updated write pointer to target */
925                 retval = target_write_u32(target, wp_addr, wp);
926                 if (retval != ERROR_OK)
927                         break;
928         }
929
930         if (retval != ERROR_OK) {
931                 /* abort flash write algorithm on target */
932                 target_write_u32(target, wp_addr, 0);
933         }
934
935         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
936                         num_reg_params, reg_params,
937                         exit_point,
938                         10000,
939                         arch_info);
940
941         if (retval2 != ERROR_OK) {
942                 LOG_ERROR("error waiting for target flash write algorithm");
943                 retval = retval2;
944         }
945
946         return retval;
947 }
948
949 int target_read_memory(struct target *target,
950                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
951 {
952         if (!target_was_examined(target)) {
953                 LOG_ERROR("Target not examined yet");
954                 return ERROR_FAIL;
955         }
956         return target->type->read_memory(target, address, size, count, buffer);
957 }
958
959 int target_read_phys_memory(struct target *target,
960                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
961 {
962         if (!target_was_examined(target)) {
963                 LOG_ERROR("Target not examined yet");
964                 return ERROR_FAIL;
965         }
966         return target->type->read_phys_memory(target, address, size, count, buffer);
967 }
968
969 int target_write_memory(struct target *target,
970                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
971 {
972         if (!target_was_examined(target)) {
973                 LOG_ERROR("Target not examined yet");
974                 return ERROR_FAIL;
975         }
976         return target->type->write_memory(target, address, size, count, buffer);
977 }
978
979 int target_write_phys_memory(struct target *target,
980                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
981 {
982         if (!target_was_examined(target)) {
983                 LOG_ERROR("Target not examined yet");
984                 return ERROR_FAIL;
985         }
986         return target->type->write_phys_memory(target, address, size, count, buffer);
987 }
988
989 int target_add_breakpoint(struct target *target,
990                 struct breakpoint *breakpoint)
991 {
992         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
993                 LOG_WARNING("target %s is not halted", target_name(target));
994                 return ERROR_TARGET_NOT_HALTED;
995         }
996         return target->type->add_breakpoint(target, breakpoint);
997 }
998
999 int target_add_context_breakpoint(struct target *target,
1000                 struct breakpoint *breakpoint)
1001 {
1002         if (target->state != TARGET_HALTED) {
1003                 LOG_WARNING("target %s is not halted", target_name(target));
1004                 return ERROR_TARGET_NOT_HALTED;
1005         }
1006         return target->type->add_context_breakpoint(target, breakpoint);
1007 }
1008
1009 int target_add_hybrid_breakpoint(struct target *target,
1010                 struct breakpoint *breakpoint)
1011 {
1012         if (target->state != TARGET_HALTED) {
1013                 LOG_WARNING("target %s is not halted", target_name(target));
1014                 return ERROR_TARGET_NOT_HALTED;
1015         }
1016         return target->type->add_hybrid_breakpoint(target, breakpoint);
1017 }
1018
1019 int target_remove_breakpoint(struct target *target,
1020                 struct breakpoint *breakpoint)
1021 {
1022         return target->type->remove_breakpoint(target, breakpoint);
1023 }
1024
1025 int target_add_watchpoint(struct target *target,
1026                 struct watchpoint *watchpoint)
1027 {
1028         if (target->state != TARGET_HALTED) {
1029                 LOG_WARNING("target %s is not halted", target_name(target));
1030                 return ERROR_TARGET_NOT_HALTED;
1031         }
1032         return target->type->add_watchpoint(target, watchpoint);
1033 }
1034 int target_remove_watchpoint(struct target *target,
1035                 struct watchpoint *watchpoint)
1036 {
1037         return target->type->remove_watchpoint(target, watchpoint);
1038 }
1039 int target_hit_watchpoint(struct target *target,
1040                 struct watchpoint **hit_watchpoint)
1041 {
1042         if (target->state != TARGET_HALTED) {
1043                 LOG_WARNING("target %s is not halted", target->cmd_name);
1044                 return ERROR_TARGET_NOT_HALTED;
1045         }
1046
1047         if (target->type->hit_watchpoint == NULL) {
1048                 /* For backward compatible, if hit_watchpoint is not implemented,
1049                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1050                  * information. */
1051                 return ERROR_FAIL;
1052         }
1053
1054         return target->type->hit_watchpoint(target, hit_watchpoint);
1055 }
1056
1057 int target_get_gdb_reg_list(struct target *target,
1058                 struct reg **reg_list[], int *reg_list_size,
1059                 enum target_register_class reg_class)
1060 {
1061         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1062 }
1063 int target_step(struct target *target,
1064                 int current, uint32_t address, int handle_breakpoints)
1065 {
1066         return target->type->step(target, current, address, handle_breakpoints);
1067 }
1068
1069 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1070 {
1071         if (target->state != TARGET_HALTED) {
1072                 LOG_WARNING("target %s is not halted", target->cmd_name);
1073                 return ERROR_TARGET_NOT_HALTED;
1074         }
1075         return target->type->get_gdb_fileio_info(target, fileio_info);
1076 }
1077
1078 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1079 {
1080         if (target->state != TARGET_HALTED) {
1081                 LOG_WARNING("target %s is not halted", target->cmd_name);
1082                 return ERROR_TARGET_NOT_HALTED;
1083         }
1084         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1085 }
1086
1087 /**
1088  * Reset the @c examined flag for the given target.
1089  * Pure paranoia -- targets are zeroed on allocation.
1090  */
1091 static void target_reset_examined(struct target *target)
1092 {
1093         target->examined = false;
1094 }
1095
1096 static int err_read_phys_memory(struct target *target, uint32_t address,
1097                 uint32_t size, uint32_t count, uint8_t *buffer)
1098 {
1099         LOG_ERROR("Not implemented: %s", __func__);
1100         return ERROR_FAIL;
1101 }
1102
1103 static int err_write_phys_memory(struct target *target, uint32_t address,
1104                 uint32_t size, uint32_t count, const uint8_t *buffer)
1105 {
1106         LOG_ERROR("Not implemented: %s", __func__);
1107         return ERROR_FAIL;
1108 }
1109
1110 static int handle_target(void *priv);
1111
1112 static int target_init_one(struct command_context *cmd_ctx,
1113                 struct target *target)
1114 {
1115         target_reset_examined(target);
1116
1117         struct target_type *type = target->type;
1118         if (type->examine == NULL)
1119                 type->examine = default_examine;
1120
1121         if (type->check_reset == NULL)
1122                 type->check_reset = default_check_reset;
1123
1124         assert(type->init_target != NULL);
1125
1126         int retval = type->init_target(cmd_ctx, target);
1127         if (ERROR_OK != retval) {
1128                 LOG_ERROR("target '%s' init failed", target_name(target));
1129                 return retval;
1130         }
1131
1132         /* Sanity-check MMU support ... stub in what we must, to help
1133          * implement it in stages, but warn if we need to do so.
1134          */
1135         if (type->mmu) {
1136                 if (type->write_phys_memory == NULL) {
1137                         LOG_ERROR("type '%s' is missing write_phys_memory",
1138                                         type->name);
1139                         type->write_phys_memory = err_write_phys_memory;
1140                 }
1141                 if (type->read_phys_memory == NULL) {
1142                         LOG_ERROR("type '%s' is missing read_phys_memory",
1143                                         type->name);
1144                         type->read_phys_memory = err_read_phys_memory;
1145                 }
1146                 if (type->virt2phys == NULL) {
1147                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1148                         type->virt2phys = identity_virt2phys;
1149                 }
1150         } else {
1151                 /* Make sure no-MMU targets all behave the same:  make no
1152                  * distinction between physical and virtual addresses, and
1153                  * ensure that virt2phys() is always an identity mapping.
1154                  */
1155                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1156                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1157
1158                 type->mmu = no_mmu;
1159                 type->write_phys_memory = type->write_memory;
1160                 type->read_phys_memory = type->read_memory;
1161                 type->virt2phys = identity_virt2phys;
1162         }
1163
1164         if (target->type->read_buffer == NULL)
1165                 target->type->read_buffer = target_read_buffer_default;
1166
1167         if (target->type->write_buffer == NULL)
1168                 target->type->write_buffer = target_write_buffer_default;
1169
1170         if (target->type->get_gdb_fileio_info == NULL)
1171                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1172
1173         if (target->type->gdb_fileio_end == NULL)
1174                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1175
1176         return ERROR_OK;
1177 }
1178
1179 static int target_init(struct command_context *cmd_ctx)
1180 {
1181         struct target *target;
1182         int retval;
1183
1184         for (target = all_targets; target; target = target->next) {
1185                 retval = target_init_one(cmd_ctx, target);
1186                 if (ERROR_OK != retval)
1187                         return retval;
1188         }
1189
1190         if (!all_targets)
1191                 return ERROR_OK;
1192
1193         retval = target_register_user_commands(cmd_ctx);
1194         if (ERROR_OK != retval)
1195                 return retval;
1196
1197         retval = target_register_timer_callback(&handle_target,
1198                         polling_interval, 1, cmd_ctx->interp);
1199         if (ERROR_OK != retval)
1200                 return retval;
1201
1202         return ERROR_OK;
1203 }
1204
1205 COMMAND_HANDLER(handle_target_init_command)
1206 {
1207         int retval;
1208
1209         if (CMD_ARGC != 0)
1210                 return ERROR_COMMAND_SYNTAX_ERROR;
1211
1212         static bool target_initialized;
1213         if (target_initialized) {
1214                 LOG_INFO("'target init' has already been called");
1215                 return ERROR_OK;
1216         }
1217         target_initialized = true;
1218
1219         retval = command_run_line(CMD_CTX, "init_targets");
1220         if (ERROR_OK != retval)
1221                 return retval;
1222
1223         retval = command_run_line(CMD_CTX, "init_board");
1224         if (ERROR_OK != retval)
1225                 return retval;
1226
1227         LOG_DEBUG("Initializing targets...");
1228         return target_init(CMD_CTX);
1229 }
1230
1231 int target_register_event_callback(int (*callback)(struct target *target,
1232                 enum target_event event, void *priv), void *priv)
1233 {
1234         struct target_event_callback **callbacks_p = &target_event_callbacks;
1235
1236         if (callback == NULL)
1237                 return ERROR_COMMAND_SYNTAX_ERROR;
1238
1239         if (*callbacks_p) {
1240                 while ((*callbacks_p)->next)
1241                         callbacks_p = &((*callbacks_p)->next);
1242                 callbacks_p = &((*callbacks_p)->next);
1243         }
1244
1245         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1246         (*callbacks_p)->callback = callback;
1247         (*callbacks_p)->priv = priv;
1248         (*callbacks_p)->next = NULL;
1249
1250         return ERROR_OK;
1251 }
1252
1253 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1254 {
1255         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1256         struct timeval now;
1257
1258         if (callback == NULL)
1259                 return ERROR_COMMAND_SYNTAX_ERROR;
1260
1261         if (*callbacks_p) {
1262                 while ((*callbacks_p)->next)
1263                         callbacks_p = &((*callbacks_p)->next);
1264                 callbacks_p = &((*callbacks_p)->next);
1265         }
1266
1267         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1268         (*callbacks_p)->callback = callback;
1269         (*callbacks_p)->periodic = periodic;
1270         (*callbacks_p)->time_ms = time_ms;
1271
1272         gettimeofday(&now, NULL);
1273         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1274         time_ms -= (time_ms % 1000);
1275         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1276         if ((*callbacks_p)->when.tv_usec > 1000000) {
1277                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1278                 (*callbacks_p)->when.tv_sec += 1;
1279         }
1280
1281         (*callbacks_p)->priv = priv;
1282         (*callbacks_p)->next = NULL;
1283
1284         return ERROR_OK;
1285 }
1286
1287 int target_unregister_event_callback(int (*callback)(struct target *target,
1288                 enum target_event event, void *priv), void *priv)
1289 {
1290         struct target_event_callback **p = &target_event_callbacks;
1291         struct target_event_callback *c = target_event_callbacks;
1292
1293         if (callback == NULL)
1294                 return ERROR_COMMAND_SYNTAX_ERROR;
1295
1296         while (c) {
1297                 struct target_event_callback *next = c->next;
1298                 if ((c->callback == callback) && (c->priv == priv)) {
1299                         *p = next;
1300                         free(c);
1301                         return ERROR_OK;
1302                 } else
1303                         p = &(c->next);
1304                 c = next;
1305         }
1306
1307         return ERROR_OK;
1308 }
1309
1310 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1311 {
1312         struct target_timer_callback **p = &target_timer_callbacks;
1313         struct target_timer_callback *c = target_timer_callbacks;
1314
1315         if (callback == NULL)
1316                 return ERROR_COMMAND_SYNTAX_ERROR;
1317
1318         while (c) {
1319                 struct target_timer_callback *next = c->next;
1320                 if ((c->callback == callback) && (c->priv == priv)) {
1321                         *p = next;
1322                         free(c);
1323                         return ERROR_OK;
1324                 } else
1325                         p = &(c->next);
1326                 c = next;
1327         }
1328
1329         return ERROR_OK;
1330 }
1331
1332 int target_call_event_callbacks(struct target *target, enum target_event event)
1333 {
1334         struct target_event_callback *callback = target_event_callbacks;
1335         struct target_event_callback *next_callback;
1336
1337         if (event == TARGET_EVENT_HALTED) {
1338                 /* execute early halted first */
1339                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1340         }
1341
1342         LOG_DEBUG("target event %i (%s)", event,
1343                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1344
1345         target_handle_event(target, event);
1346
1347         while (callback) {
1348                 next_callback = callback->next;
1349                 callback->callback(target, event, callback->priv);
1350                 callback = next_callback;
1351         }
1352
1353         return ERROR_OK;
1354 }
1355
1356 static int target_timer_callback_periodic_restart(
1357                 struct target_timer_callback *cb, struct timeval *now)
1358 {
1359         int time_ms = cb->time_ms;
1360         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1361         time_ms -= (time_ms % 1000);
1362         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1363         if (cb->when.tv_usec > 1000000) {
1364                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1365                 cb->when.tv_sec += 1;
1366         }
1367         return ERROR_OK;
1368 }
1369
1370 static int target_call_timer_callback(struct target_timer_callback *cb,
1371                 struct timeval *now)
1372 {
1373         cb->callback(cb->priv);
1374
1375         if (cb->periodic)
1376                 return target_timer_callback_periodic_restart(cb, now);
1377
1378         return target_unregister_timer_callback(cb->callback, cb->priv);
1379 }
1380
1381 static int target_call_timer_callbacks_check_time(int checktime)
1382 {
1383         keep_alive();
1384
1385         struct timeval now;
1386         gettimeofday(&now, NULL);
1387
1388         struct target_timer_callback *callback = target_timer_callbacks;
1389         while (callback) {
1390                 /* cleaning up may unregister and free this callback */
1391                 struct target_timer_callback *next_callback = callback->next;
1392
1393                 bool call_it = callback->callback &&
1394                         ((!checktime && callback->periodic) ||
1395                           now.tv_sec > callback->when.tv_sec ||
1396                          (now.tv_sec == callback->when.tv_sec &&
1397                           now.tv_usec >= callback->when.tv_usec));
1398
1399                 if (call_it) {
1400                         int retval = target_call_timer_callback(callback, &now);
1401                         if (retval != ERROR_OK)
1402                                 return retval;
1403                 }
1404
1405                 callback = next_callback;
1406         }
1407
1408         return ERROR_OK;
1409 }
1410
1411 int target_call_timer_callbacks(void)
1412 {
1413         return target_call_timer_callbacks_check_time(1);
1414 }
1415
1416 /* invoke periodic callbacks immediately */
1417 int target_call_timer_callbacks_now(void)
1418 {
1419         return target_call_timer_callbacks_check_time(0);
1420 }
1421
1422 /* Prints the working area layout for debug purposes */
1423 static void print_wa_layout(struct target *target)
1424 {
1425         struct working_area *c = target->working_areas;
1426
1427         while (c) {
1428                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1429                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1430                         c->address, c->address + c->size - 1, c->size);
1431                 c = c->next;
1432         }
1433 }
1434
1435 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1436 static void target_split_working_area(struct working_area *area, uint32_t size)
1437 {
1438         assert(area->free); /* Shouldn't split an allocated area */
1439         assert(size <= area->size); /* Caller should guarantee this */
1440
1441         /* Split only if not already the right size */
1442         if (size < area->size) {
1443                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1444
1445                 if (new_wa == NULL)
1446                         return;
1447
1448                 new_wa->next = area->next;
1449                 new_wa->size = area->size - size;
1450                 new_wa->address = area->address + size;
1451                 new_wa->backup = NULL;
1452                 new_wa->user = NULL;
1453                 new_wa->free = true;
1454
1455                 area->next = new_wa;
1456                 area->size = size;
1457
1458                 /* If backup memory was allocated to this area, it has the wrong size
1459                  * now so free it and it will be reallocated if/when needed */
1460                 if (area->backup) {
1461                         free(area->backup);
1462                         area->backup = NULL;
1463                 }
1464         }
1465 }
1466
1467 /* Merge all adjacent free areas into one */
1468 static void target_merge_working_areas(struct target *target)
1469 {
1470         struct working_area *c = target->working_areas;
1471
1472         while (c && c->next) {
1473                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1474
1475                 /* Find two adjacent free areas */
1476                 if (c->free && c->next->free) {
1477                         /* Merge the last into the first */
1478                         c->size += c->next->size;
1479
1480                         /* Remove the last */
1481                         struct working_area *to_be_freed = c->next;
1482                         c->next = c->next->next;
1483                         if (to_be_freed->backup)
1484                                 free(to_be_freed->backup);
1485                         free(to_be_freed);
1486
1487                         /* If backup memory was allocated to the remaining area, it's has
1488                          * the wrong size now */
1489                         if (c->backup) {
1490                                 free(c->backup);
1491                                 c->backup = NULL;
1492                         }
1493                 } else {
1494                         c = c->next;
1495                 }
1496         }
1497 }
1498
1499 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1500 {
1501         /* Reevaluate working area address based on MMU state*/
1502         if (target->working_areas == NULL) {
1503                 int retval;
1504                 int enabled;
1505
1506                 retval = target->type->mmu(target, &enabled);
1507                 if (retval != ERROR_OK)
1508                         return retval;
1509
1510                 if (!enabled) {
1511                         if (target->working_area_phys_spec) {
1512                                 LOG_DEBUG("MMU disabled, using physical "
1513                                         "address for working memory 0x%08"PRIx32,
1514                                         target->working_area_phys);
1515                                 target->working_area = target->working_area_phys;
1516                         } else {
1517                                 LOG_ERROR("No working memory available. "
1518                                         "Specify -work-area-phys to target.");
1519                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1520                         }
1521                 } else {
1522                         if (target->working_area_virt_spec) {
1523                                 LOG_DEBUG("MMU enabled, using virtual "
1524                                         "address for working memory 0x%08"PRIx32,
1525                                         target->working_area_virt);
1526                                 target->working_area = target->working_area_virt;
1527                         } else {
1528                                 LOG_ERROR("No working memory available. "
1529                                         "Specify -work-area-virt to target.");
1530                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1531                         }
1532                 }
1533
1534                 /* Set up initial working area on first call */
1535                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1536                 if (new_wa) {
1537                         new_wa->next = NULL;
1538                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1539                         new_wa->address = target->working_area;
1540                         new_wa->backup = NULL;
1541                         new_wa->user = NULL;
1542                         new_wa->free = true;
1543                 }
1544
1545                 target->working_areas = new_wa;
1546         }
1547
1548         /* only allocate multiples of 4 byte */
1549         if (size % 4)
1550                 size = (size + 3) & (~3UL);
1551
1552         struct working_area *c = target->working_areas;
1553
1554         /* Find the first large enough working area */
1555         while (c) {
1556                 if (c->free && c->size >= size)
1557                         break;
1558                 c = c->next;
1559         }
1560
1561         if (c == NULL)
1562                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1563
1564         /* Split the working area into the requested size */
1565         target_split_working_area(c, size);
1566
1567         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1568
1569         if (target->backup_working_area) {
1570                 if (c->backup == NULL) {
1571                         c->backup = malloc(c->size);
1572                         if (c->backup == NULL)
1573                                 return ERROR_FAIL;
1574                 }
1575
1576                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1577                 if (retval != ERROR_OK)
1578                         return retval;
1579         }
1580
1581         /* mark as used, and return the new (reused) area */
1582         c->free = false;
1583         *area = c;
1584
1585         /* user pointer */
1586         c->user = area;
1587
1588         print_wa_layout(target);
1589
1590         return ERROR_OK;
1591 }
1592
1593 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1594 {
1595         int retval;
1596
1597         retval = target_alloc_working_area_try(target, size, area);
1598         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1599                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1600         return retval;
1601
1602 }
1603
1604 static int target_restore_working_area(struct target *target, struct working_area *area)
1605 {
1606         int retval = ERROR_OK;
1607
1608         if (target->backup_working_area && area->backup != NULL) {
1609                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1610                 if (retval != ERROR_OK)
1611                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1612                                         area->size, area->address);
1613         }
1614
1615         return retval;
1616 }
1617
1618 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1619 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1620 {
1621         int retval = ERROR_OK;
1622
1623         if (area->free)
1624                 return retval;
1625
1626         if (restore) {
1627                 retval = target_restore_working_area(target, area);
1628                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1629                 if (retval != ERROR_OK)
1630                         return retval;
1631         }
1632
1633         area->free = true;
1634
1635         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1636                         area->size, area->address);
1637
1638         /* mark user pointer invalid */
1639         /* TODO: Is this really safe? It points to some previous caller's memory.
1640          * How could we know that the area pointer is still in that place and not
1641          * some other vital data? What's the purpose of this, anyway? */
1642         *area->user = NULL;
1643         area->user = NULL;
1644
1645         target_merge_working_areas(target);
1646
1647         print_wa_layout(target);
1648
1649         return retval;
1650 }
1651
1652 int target_free_working_area(struct target *target, struct working_area *area)
1653 {
1654         return target_free_working_area_restore(target, area, 1);
1655 }
1656
1657 /* free resources and restore memory, if restoring memory fails,
1658  * free up resources anyway
1659  */
1660 static void target_free_all_working_areas_restore(struct target *target, int restore)
1661 {
1662         struct working_area *c = target->working_areas;
1663
1664         LOG_DEBUG("freeing all working areas");
1665
1666         /* Loop through all areas, restoring the allocated ones and marking them as free */
1667         while (c) {
1668                 if (!c->free) {
1669                         if (restore)
1670                                 target_restore_working_area(target, c);
1671                         c->free = true;
1672                         *c->user = NULL; /* Same as above */
1673                         c->user = NULL;
1674                 }
1675                 c = c->next;
1676         }
1677
1678         /* Run a merge pass to combine all areas into one */
1679         target_merge_working_areas(target);
1680
1681         print_wa_layout(target);
1682 }
1683
1684 void target_free_all_working_areas(struct target *target)
1685 {
1686         target_free_all_working_areas_restore(target, 1);
1687 }
1688
1689 /* Find the largest number of bytes that can be allocated */
1690 uint32_t target_get_working_area_avail(struct target *target)
1691 {
1692         struct working_area *c = target->working_areas;
1693         uint32_t max_size = 0;
1694
1695         if (c == NULL)
1696                 return target->working_area_size;
1697
1698         while (c) {
1699                 if (c->free && max_size < c->size)
1700                         max_size = c->size;
1701
1702                 c = c->next;
1703         }
1704
1705         return max_size;
1706 }
1707
1708 int target_arch_state(struct target *target)
1709 {
1710         int retval;
1711         if (target == NULL) {
1712                 LOG_USER("No target has been configured");
1713                 return ERROR_OK;
1714         }
1715
1716         LOG_USER("target state: %s", target_state_name(target));
1717
1718         if (target->state != TARGET_HALTED)
1719                 return ERROR_OK;
1720
1721         retval = target->type->arch_state(target);
1722         return retval;
1723 }
1724
1725 static int target_get_gdb_fileio_info_default(struct target *target,
1726                 struct gdb_fileio_info *fileio_info)
1727 {
1728         /* If target does not support semi-hosting function, target
1729            has no need to provide .get_gdb_fileio_info callback.
1730            It just return ERROR_FAIL and gdb_server will return "Txx"
1731            as target halted every time.  */
1732         return ERROR_FAIL;
1733 }
1734
1735 static int target_gdb_fileio_end_default(struct target *target,
1736                 int retcode, int fileio_errno, bool ctrl_c)
1737 {
1738         return ERROR_OK;
1739 }
1740
1741 /* Single aligned words are guaranteed to use 16 or 32 bit access
1742  * mode respectively, otherwise data is handled as quickly as
1743  * possible
1744  */
1745 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1746 {
1747         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1748                         (int)size, (unsigned)address);
1749
1750         if (!target_was_examined(target)) {
1751                 LOG_ERROR("Target not examined yet");
1752                 return ERROR_FAIL;
1753         }
1754
1755         if (size == 0)
1756                 return ERROR_OK;
1757
1758         if ((address + size - 1) < address) {
1759                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1760                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1761                                   (unsigned)address,
1762                                   (unsigned)size);
1763                 return ERROR_FAIL;
1764         }
1765
1766         return target->type->write_buffer(target, address, size, buffer);
1767 }
1768
1769 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1770 {
1771         int retval = ERROR_OK;
1772
1773         if (((address % 2) == 0) && (size == 2))
1774                 return target_write_memory(target, address, 2, 1, buffer);
1775
1776         /* handle unaligned head bytes */
1777         if (address % 4) {
1778                 uint32_t unaligned = 4 - (address % 4);
1779
1780                 if (unaligned > size)
1781                         unaligned = size;
1782
1783                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1784                 if (retval != ERROR_OK)
1785                         return retval;
1786
1787                 buffer += unaligned;
1788                 address += unaligned;
1789                 size -= unaligned;
1790         }
1791
1792         /* handle aligned words */
1793         if (size >= 4) {
1794                 int aligned = size - (size % 4);
1795
1796                 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1797                 if (retval != ERROR_OK)
1798                         return retval;
1799
1800                 buffer += aligned;
1801                 address += aligned;
1802                 size -= aligned;
1803         }
1804
1805         /* handle tail writes of less than 4 bytes */
1806         if (size > 0) {
1807                 retval = target_write_memory(target, address, 1, size, buffer);
1808                 if (retval != ERROR_OK)
1809                         return retval;
1810         }
1811
1812         return retval;
1813 }
1814
1815 /* Single aligned words are guaranteed to use 16 or 32 bit access
1816  * mode respectively, otherwise data is handled as quickly as
1817  * possible
1818  */
1819 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1820 {
1821         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1822                           (int)size, (unsigned)address);
1823
1824         if (!target_was_examined(target)) {
1825                 LOG_ERROR("Target not examined yet");
1826                 return ERROR_FAIL;
1827         }
1828
1829         if (size == 0)
1830                 return ERROR_OK;
1831
1832         if ((address + size - 1) < address) {
1833                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1834                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1835                                   address,
1836                                   size);
1837                 return ERROR_FAIL;
1838         }
1839
1840         return target->type->read_buffer(target, address, size, buffer);
1841 }
1842
1843 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1844 {
1845         int retval = ERROR_OK;
1846
1847         if (((address % 2) == 0) && (size == 2))
1848                 return target_read_memory(target, address, 2, 1, buffer);
1849
1850         /* handle unaligned head bytes */
1851         if (address % 4) {
1852                 uint32_t unaligned = 4 - (address % 4);
1853
1854                 if (unaligned > size)
1855                         unaligned = size;
1856
1857                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1858                 if (retval != ERROR_OK)
1859                         return retval;
1860
1861                 buffer += unaligned;
1862                 address += unaligned;
1863                 size -= unaligned;
1864         }
1865
1866         /* handle aligned words */
1867         if (size >= 4) {
1868                 int aligned = size - (size % 4);
1869
1870                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1871                 if (retval != ERROR_OK)
1872                         return retval;
1873
1874                 buffer += aligned;
1875                 address += aligned;
1876                 size -= aligned;
1877         }
1878
1879         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1880         if (size        >= 2) {
1881                 int aligned = size - (size % 2);
1882                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1883                 if (retval != ERROR_OK)
1884                         return retval;
1885
1886                 buffer += aligned;
1887                 address += aligned;
1888                 size -= aligned;
1889         }
1890         /* handle tail writes of less than 4 bytes */
1891         if (size > 0) {
1892                 retval = target_read_memory(target, address, 1, size, buffer);
1893                 if (retval != ERROR_OK)
1894                         return retval;
1895         }
1896
1897         return ERROR_OK;
1898 }
1899
1900 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1901 {
1902         uint8_t *buffer;
1903         int retval;
1904         uint32_t i;
1905         uint32_t checksum = 0;
1906         if (!target_was_examined(target)) {
1907                 LOG_ERROR("Target not examined yet");
1908                 return ERROR_FAIL;
1909         }
1910
1911         retval = target->type->checksum_memory(target, address, size, &checksum);
1912         if (retval != ERROR_OK) {
1913                 buffer = malloc(size);
1914                 if (buffer == NULL) {
1915                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1916                         return ERROR_COMMAND_SYNTAX_ERROR;
1917                 }
1918                 retval = target_read_buffer(target, address, size, buffer);
1919                 if (retval != ERROR_OK) {
1920                         free(buffer);
1921                         return retval;
1922                 }
1923
1924                 /* convert to target endianness */
1925                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1926                         uint32_t target_data;
1927                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1928                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1929                 }
1930
1931                 retval = image_calculate_checksum(buffer, size, &checksum);
1932                 free(buffer);
1933         }
1934
1935         *crc = checksum;
1936
1937         return retval;
1938 }
1939
1940 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1941 {
1942         int retval;
1943         if (!target_was_examined(target)) {
1944                 LOG_ERROR("Target not examined yet");
1945                 return ERROR_FAIL;
1946         }
1947
1948         if (target->type->blank_check_memory == 0)
1949                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1950
1951         retval = target->type->blank_check_memory(target, address, size, blank);
1952
1953         return retval;
1954 }
1955
1956 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1957 {
1958         uint8_t value_buf[4];
1959         if (!target_was_examined(target)) {
1960                 LOG_ERROR("Target not examined yet");
1961                 return ERROR_FAIL;
1962         }
1963
1964         int retval = target_read_memory(target, address, 4, 1, value_buf);
1965
1966         if (retval == ERROR_OK) {
1967                 *value = target_buffer_get_u32(target, value_buf);
1968                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1969                                   address,
1970                                   *value);
1971         } else {
1972                 *value = 0x0;
1973                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1974                                   address);
1975         }
1976
1977         return retval;
1978 }
1979
1980 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1981 {
1982         uint8_t value_buf[2];
1983         if (!target_was_examined(target)) {
1984                 LOG_ERROR("Target not examined yet");
1985                 return ERROR_FAIL;
1986         }
1987
1988         int retval = target_read_memory(target, address, 2, 1, value_buf);
1989
1990         if (retval == ERROR_OK) {
1991                 *value = target_buffer_get_u16(target, value_buf);
1992                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1993                                   address,
1994                                   *value);
1995         } else {
1996                 *value = 0x0;
1997                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1998                                   address);
1999         }
2000
2001         return retval;
2002 }
2003
2004 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2005 {
2006         int retval = target_read_memory(target, address, 1, 1, value);
2007         if (!target_was_examined(target)) {
2008                 LOG_ERROR("Target not examined yet");
2009                 return ERROR_FAIL;
2010         }
2011
2012         if (retval == ERROR_OK) {
2013                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2014                                   address,
2015                                   *value);
2016         } else {
2017                 *value = 0x0;
2018                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2019                                   address);
2020         }
2021
2022         return retval;
2023 }
2024
2025 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2026 {
2027         int retval;
2028         uint8_t value_buf[4];
2029         if (!target_was_examined(target)) {
2030                 LOG_ERROR("Target not examined yet");
2031                 return ERROR_FAIL;
2032         }
2033
2034         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2035                           address,
2036                           value);
2037
2038         target_buffer_set_u32(target, value_buf, value);
2039         retval = target_write_memory(target, address, 4, 1, value_buf);
2040         if (retval != ERROR_OK)
2041                 LOG_DEBUG("failed: %i", retval);
2042
2043         return retval;
2044 }
2045
2046 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2047 {
2048         int retval;
2049         uint8_t value_buf[2];
2050         if (!target_was_examined(target)) {
2051                 LOG_ERROR("Target not examined yet");
2052                 return ERROR_FAIL;
2053         }
2054
2055         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2056                           address,
2057                           value);
2058
2059         target_buffer_set_u16(target, value_buf, value);
2060         retval = target_write_memory(target, address, 2, 1, value_buf);
2061         if (retval != ERROR_OK)
2062                 LOG_DEBUG("failed: %i", retval);
2063
2064         return retval;
2065 }
2066
2067 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2068 {
2069         int retval;
2070         if (!target_was_examined(target)) {
2071                 LOG_ERROR("Target not examined yet");
2072                 return ERROR_FAIL;
2073         }
2074
2075         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2076                           address, value);
2077
2078         retval = target_write_memory(target, address, 1, 1, &value);
2079         if (retval != ERROR_OK)
2080                 LOG_DEBUG("failed: %i", retval);
2081
2082         return retval;
2083 }
2084
2085 static int find_target(struct command_context *cmd_ctx, const char *name)
2086 {
2087         struct target *target = get_target(name);
2088         if (target == NULL) {
2089                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2090                 return ERROR_FAIL;
2091         }
2092         if (!target->tap->enabled) {
2093                 LOG_USER("Target: TAP %s is disabled, "
2094                          "can't be the current target\n",
2095                          target->tap->dotted_name);
2096                 return ERROR_FAIL;
2097         }
2098
2099         cmd_ctx->current_target = target->target_number;
2100         return ERROR_OK;
2101 }
2102
2103
2104 COMMAND_HANDLER(handle_targets_command)
2105 {
2106         int retval = ERROR_OK;
2107         if (CMD_ARGC == 1) {
2108                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2109                 if (retval == ERROR_OK) {
2110                         /* we're done! */
2111                         return retval;
2112                 }
2113         }
2114
2115         struct target *target = all_targets;
2116         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2117         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2118         while (target) {
2119                 const char *state;
2120                 char marker = ' ';
2121
2122                 if (target->tap->enabled)
2123                         state = target_state_name(target);
2124                 else
2125                         state = "tap-disabled";
2126
2127                 if (CMD_CTX->current_target == target->target_number)
2128                         marker = '*';
2129
2130                 /* keep columns lined up to match the headers above */
2131                 command_print(CMD_CTX,
2132                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2133                                 target->target_number,
2134                                 marker,
2135                                 target_name(target),
2136                                 target_type_name(target),
2137                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2138                                         target->endianness)->name,
2139                                 target->tap->dotted_name,
2140                                 state);
2141                 target = target->next;
2142         }
2143
2144         return retval;
2145 }
2146
2147 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2148
2149 static int powerDropout;
2150 static int srstAsserted;
2151
2152 static int runPowerRestore;
2153 static int runPowerDropout;
2154 static int runSrstAsserted;
2155 static int runSrstDeasserted;
2156
2157 static int sense_handler(void)
2158 {
2159         static int prevSrstAsserted;
2160         static int prevPowerdropout;
2161
2162         int retval = jtag_power_dropout(&powerDropout);
2163         if (retval != ERROR_OK)
2164                 return retval;
2165
2166         int powerRestored;
2167         powerRestored = prevPowerdropout && !powerDropout;
2168         if (powerRestored)
2169                 runPowerRestore = 1;
2170
2171         long long current = timeval_ms();
2172         static long long lastPower;
2173         int waitMore = lastPower + 2000 > current;
2174         if (powerDropout && !waitMore) {
2175                 runPowerDropout = 1;
2176                 lastPower = current;
2177         }
2178
2179         retval = jtag_srst_asserted(&srstAsserted);
2180         if (retval != ERROR_OK)
2181                 return retval;
2182
2183         int srstDeasserted;
2184         srstDeasserted = prevSrstAsserted && !srstAsserted;
2185
2186         static long long lastSrst;
2187         waitMore = lastSrst + 2000 > current;
2188         if (srstDeasserted && !waitMore) {
2189                 runSrstDeasserted = 1;
2190                 lastSrst = current;
2191         }
2192
2193         if (!prevSrstAsserted && srstAsserted)
2194                 runSrstAsserted = 1;
2195
2196         prevSrstAsserted = srstAsserted;
2197         prevPowerdropout = powerDropout;
2198
2199         if (srstDeasserted || powerRestored) {
2200                 /* Other than logging the event we can't do anything here.
2201                  * Issuing a reset is a particularly bad idea as we might
2202                  * be inside a reset already.
2203                  */
2204         }
2205
2206         return ERROR_OK;
2207 }
2208
2209 /* process target state changes */
2210 static int handle_target(void *priv)
2211 {
2212         Jim_Interp *interp = (Jim_Interp *)priv;
2213         int retval = ERROR_OK;
2214
2215         if (!is_jtag_poll_safe()) {
2216                 /* polling is disabled currently */
2217                 return ERROR_OK;
2218         }
2219
2220         /* we do not want to recurse here... */
2221         static int recursive;
2222         if (!recursive) {
2223                 recursive = 1;
2224                 sense_handler();
2225                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2226                  * We need to avoid an infinite loop/recursion here and we do that by
2227                  * clearing the flags after running these events.
2228                  */
2229                 int did_something = 0;
2230                 if (runSrstAsserted) {
2231                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2232                         Jim_Eval(interp, "srst_asserted");
2233                         did_something = 1;
2234                 }
2235                 if (runSrstDeasserted) {
2236                         Jim_Eval(interp, "srst_deasserted");
2237                         did_something = 1;
2238                 }
2239                 if (runPowerDropout) {
2240                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2241                         Jim_Eval(interp, "power_dropout");
2242                         did_something = 1;
2243                 }
2244                 if (runPowerRestore) {
2245                         Jim_Eval(interp, "power_restore");
2246                         did_something = 1;
2247                 }
2248
2249                 if (did_something) {
2250                         /* clear detect flags */
2251                         sense_handler();
2252                 }
2253
2254                 /* clear action flags */
2255
2256                 runSrstAsserted = 0;
2257                 runSrstDeasserted = 0;
2258                 runPowerRestore = 0;
2259                 runPowerDropout = 0;
2260
2261                 recursive = 0;
2262         }
2263
2264         /* Poll targets for state changes unless that's globally disabled.
2265          * Skip targets that are currently disabled.
2266          */
2267         for (struct target *target = all_targets;
2268                         is_jtag_poll_safe() && target;
2269                         target = target->next) {
2270                 if (!target->tap->enabled)
2271                         continue;
2272
2273                 if (target->backoff.times > target->backoff.count) {
2274                         /* do not poll this time as we failed previously */
2275                         target->backoff.count++;
2276                         continue;
2277                 }
2278                 target->backoff.count = 0;
2279
2280                 /* only poll target if we've got power and srst isn't asserted */
2281                 if (!powerDropout && !srstAsserted) {
2282                         /* polling may fail silently until the target has been examined */
2283                         retval = target_poll(target);
2284                         if (retval != ERROR_OK) {
2285                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2286                                 if (target->backoff.times * polling_interval < 5000) {
2287                                         target->backoff.times *= 2;
2288                                         target->backoff.times++;
2289                                 }
2290                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2291                                                 target_name(target),
2292                                                 target->backoff.times * polling_interval);
2293
2294                                 /* Tell GDB to halt the debugger. This allows the user to
2295                                  * run monitor commands to handle the situation.
2296                                  */
2297                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2298                                 return retval;
2299                         }
2300                         /* Since we succeeded, we reset backoff count */
2301                         if (target->backoff.times > 0)
2302                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2303                         target->backoff.times = 0;
2304                 }
2305         }
2306
2307         return retval;
2308 }
2309
2310 COMMAND_HANDLER(handle_reg_command)
2311 {
2312         struct target *target;
2313         struct reg *reg = NULL;
2314         unsigned count = 0;
2315         char *value;
2316
2317         LOG_DEBUG("-");
2318
2319         target = get_current_target(CMD_CTX);
2320
2321         /* list all available registers for the current target */
2322         if (CMD_ARGC == 0) {
2323                 struct reg_cache *cache = target->reg_cache;
2324
2325                 count = 0;
2326                 while (cache) {
2327                         unsigned i;
2328
2329                         command_print(CMD_CTX, "===== %s", cache->name);
2330
2331                         for (i = 0, reg = cache->reg_list;
2332                                         i < cache->num_regs;
2333                                         i++, reg++, count++) {
2334                                 /* only print cached values if they are valid */
2335                                 if (reg->valid) {
2336                                         value = buf_to_str(reg->value,
2337                                                         reg->size, 16);
2338                                         command_print(CMD_CTX,
2339                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2340                                                         count, reg->name,
2341                                                         reg->size, value,
2342                                                         reg->dirty
2343                                                                 ? " (dirty)"
2344                                                                 : "");
2345                                         free(value);
2346                                 } else {
2347                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2348                                                           count, reg->name,
2349                                                           reg->size) ;
2350                                 }
2351                         }
2352                         cache = cache->next;
2353                 }
2354
2355                 return ERROR_OK;
2356         }
2357
2358         /* access a single register by its ordinal number */
2359         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2360                 unsigned num;
2361                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2362
2363                 struct reg_cache *cache = target->reg_cache;
2364                 count = 0;
2365                 while (cache) {
2366                         unsigned i;
2367                         for (i = 0; i < cache->num_regs; i++) {
2368                                 if (count++ == num) {
2369                                         reg = &cache->reg_list[i];
2370                                         break;
2371                                 }
2372                         }
2373                         if (reg)
2374                                 break;
2375                         cache = cache->next;
2376                 }
2377
2378                 if (!reg) {
2379                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2380                                         "has only %i registers (0 - %i)", num, count, count - 1);
2381                         return ERROR_OK;
2382                 }
2383         } else {
2384                 /* access a single register by its name */
2385                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2386
2387                 if (!reg) {
2388                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2389                         return ERROR_OK;
2390                 }
2391         }
2392
2393         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2394
2395         /* display a register */
2396         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2397                         && (CMD_ARGV[1][0] <= '9')))) {
2398                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2399                         reg->valid = 0;
2400
2401                 if (reg->valid == 0)
2402                         reg->type->get(reg);
2403                 value = buf_to_str(reg->value, reg->size, 16);
2404                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2405                 free(value);
2406                 return ERROR_OK;
2407         }
2408
2409         /* set register value */
2410         if (CMD_ARGC == 2) {
2411                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2412                 if (buf == NULL)
2413                         return ERROR_FAIL;
2414                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2415
2416                 reg->type->set(reg, buf);
2417
2418                 value = buf_to_str(reg->value, reg->size, 16);
2419                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2420                 free(value);
2421
2422                 free(buf);
2423
2424                 return ERROR_OK;
2425         }
2426
2427         return ERROR_COMMAND_SYNTAX_ERROR;
2428 }
2429
2430 COMMAND_HANDLER(handle_poll_command)
2431 {
2432         int retval = ERROR_OK;
2433         struct target *target = get_current_target(CMD_CTX);
2434
2435         if (CMD_ARGC == 0) {
2436                 command_print(CMD_CTX, "background polling: %s",
2437                                 jtag_poll_get_enabled() ? "on" : "off");
2438                 command_print(CMD_CTX, "TAP: %s (%s)",
2439                                 target->tap->dotted_name,
2440                                 target->tap->enabled ? "enabled" : "disabled");
2441                 if (!target->tap->enabled)
2442                         return ERROR_OK;
2443                 retval = target_poll(target);
2444                 if (retval != ERROR_OK)
2445                         return retval;
2446                 retval = target_arch_state(target);
2447                 if (retval != ERROR_OK)
2448                         return retval;
2449         } else if (CMD_ARGC == 1) {
2450                 bool enable;
2451                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2452                 jtag_poll_set_enabled(enable);
2453         } else
2454                 return ERROR_COMMAND_SYNTAX_ERROR;
2455
2456         return retval;
2457 }
2458
2459 COMMAND_HANDLER(handle_wait_halt_command)
2460 {
2461         if (CMD_ARGC > 1)
2462                 return ERROR_COMMAND_SYNTAX_ERROR;
2463
2464         unsigned ms = DEFAULT_HALT_TIMEOUT;
2465         if (1 == CMD_ARGC) {
2466                 int retval = parse_uint(CMD_ARGV[0], &ms);
2467                 if (ERROR_OK != retval)
2468                         return ERROR_COMMAND_SYNTAX_ERROR;
2469         }
2470
2471         struct target *target = get_current_target(CMD_CTX);
2472         return target_wait_state(target, TARGET_HALTED, ms);
2473 }
2474
2475 /* wait for target state to change. The trick here is to have a low
2476  * latency for short waits and not to suck up all the CPU time
2477  * on longer waits.
2478  *
2479  * After 500ms, keep_alive() is invoked
2480  */
2481 int target_wait_state(struct target *target, enum target_state state, int ms)
2482 {
2483         int retval;
2484         long long then = 0, cur;
2485         int once = 1;
2486
2487         for (;;) {
2488                 retval = target_poll(target);
2489                 if (retval != ERROR_OK)
2490                         return retval;
2491                 if (target->state == state)
2492                         break;
2493                 cur = timeval_ms();
2494                 if (once) {
2495                         once = 0;
2496                         then = timeval_ms();
2497                         LOG_DEBUG("waiting for target %s...",
2498                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2499                 }
2500
2501                 if (cur-then > 500)
2502                         keep_alive();
2503
2504                 if ((cur-then) > ms) {
2505                         LOG_ERROR("timed out while waiting for target %s",
2506                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2507                         return ERROR_FAIL;
2508                 }
2509         }
2510
2511         return ERROR_OK;
2512 }
2513
2514 COMMAND_HANDLER(handle_halt_command)
2515 {
2516         LOG_DEBUG("-");
2517
2518         struct target *target = get_current_target(CMD_CTX);
2519         int retval = target_halt(target);
2520         if (ERROR_OK != retval)
2521                 return retval;
2522
2523         if (CMD_ARGC == 1) {
2524                 unsigned wait_local;
2525                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2526                 if (ERROR_OK != retval)
2527                         return ERROR_COMMAND_SYNTAX_ERROR;
2528                 if (!wait_local)
2529                         return ERROR_OK;
2530         }
2531
2532         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2533 }
2534
2535 COMMAND_HANDLER(handle_soft_reset_halt_command)
2536 {
2537         struct target *target = get_current_target(CMD_CTX);
2538
2539         LOG_USER("requesting target halt and executing a soft reset");
2540
2541         target_soft_reset_halt(target);
2542
2543         return ERROR_OK;
2544 }
2545
2546 COMMAND_HANDLER(handle_reset_command)
2547 {
2548         if (CMD_ARGC > 1)
2549                 return ERROR_COMMAND_SYNTAX_ERROR;
2550
2551         enum target_reset_mode reset_mode = RESET_RUN;
2552         if (CMD_ARGC == 1) {
2553                 const Jim_Nvp *n;
2554                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2555                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2556                         return ERROR_COMMAND_SYNTAX_ERROR;
2557                 reset_mode = n->value;
2558         }
2559
2560         /* reset *all* targets */
2561         return target_process_reset(CMD_CTX, reset_mode);
2562 }
2563
2564
2565 COMMAND_HANDLER(handle_resume_command)
2566 {
2567         int current = 1;
2568         if (CMD_ARGC > 1)
2569                 return ERROR_COMMAND_SYNTAX_ERROR;
2570
2571         struct target *target = get_current_target(CMD_CTX);
2572
2573         /* with no CMD_ARGV, resume from current pc, addr = 0,
2574          * with one arguments, addr = CMD_ARGV[0],
2575          * handle breakpoints, not debugging */
2576         uint32_t addr = 0;
2577         if (CMD_ARGC == 1) {
2578                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2579                 current = 0;
2580         }
2581
2582         return target_resume(target, current, addr, 1, 0);
2583 }
2584
2585 COMMAND_HANDLER(handle_step_command)
2586 {
2587         if (CMD_ARGC > 1)
2588                 return ERROR_COMMAND_SYNTAX_ERROR;
2589
2590         LOG_DEBUG("-");
2591
2592         /* with no CMD_ARGV, step from current pc, addr = 0,
2593          * with one argument addr = CMD_ARGV[0],
2594          * handle breakpoints, debugging */
2595         uint32_t addr = 0;
2596         int current_pc = 1;
2597         if (CMD_ARGC == 1) {
2598                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2599                 current_pc = 0;
2600         }
2601
2602         struct target *target = get_current_target(CMD_CTX);
2603
2604         return target->type->step(target, current_pc, addr, 1);
2605 }
2606
2607 static void handle_md_output(struct command_context *cmd_ctx,
2608                 struct target *target, uint32_t address, unsigned size,
2609                 unsigned count, const uint8_t *buffer)
2610 {
2611         const unsigned line_bytecnt = 32;
2612         unsigned line_modulo = line_bytecnt / size;
2613
2614         char output[line_bytecnt * 4 + 1];
2615         unsigned output_len = 0;
2616
2617         const char *value_fmt;
2618         switch (size) {
2619         case 4:
2620                 value_fmt = "%8.8x ";
2621                 break;
2622         case 2:
2623                 value_fmt = "%4.4x ";
2624                 break;
2625         case 1:
2626                 value_fmt = "%2.2x ";
2627                 break;
2628         default:
2629                 /* "can't happen", caller checked */
2630                 LOG_ERROR("invalid memory read size: %u", size);
2631                 return;
2632         }
2633
2634         for (unsigned i = 0; i < count; i++) {
2635                 if (i % line_modulo == 0) {
2636                         output_len += snprintf(output + output_len,
2637                                         sizeof(output) - output_len,
2638                                         "0x%8.8x: ",
2639                                         (unsigned)(address + (i*size)));
2640                 }
2641
2642                 uint32_t value = 0;
2643                 const uint8_t *value_ptr = buffer + i * size;
2644                 switch (size) {
2645                 case 4:
2646                         value = target_buffer_get_u32(target, value_ptr);
2647                         break;
2648                 case 2:
2649                         value = target_buffer_get_u16(target, value_ptr);
2650                         break;
2651                 case 1:
2652                         value = *value_ptr;
2653                 }
2654                 output_len += snprintf(output + output_len,
2655                                 sizeof(output) - output_len,
2656                                 value_fmt, value);
2657
2658                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2659                         command_print(cmd_ctx, "%s", output);
2660                         output_len = 0;
2661                 }
2662         }
2663 }
2664
2665 COMMAND_HANDLER(handle_md_command)
2666 {
2667         if (CMD_ARGC < 1)
2668                 return ERROR_COMMAND_SYNTAX_ERROR;
2669
2670         unsigned size = 0;
2671         switch (CMD_NAME[2]) {
2672         case 'w':
2673                 size = 4;
2674                 break;
2675         case 'h':
2676                 size = 2;
2677                 break;
2678         case 'b':
2679                 size = 1;
2680                 break;
2681         default:
2682                 return ERROR_COMMAND_SYNTAX_ERROR;
2683         }
2684
2685         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2686         int (*fn)(struct target *target,
2687                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2688         if (physical) {
2689                 CMD_ARGC--;
2690                 CMD_ARGV++;
2691                 fn = target_read_phys_memory;
2692         } else
2693                 fn = target_read_memory;
2694         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2695                 return ERROR_COMMAND_SYNTAX_ERROR;
2696
2697         uint32_t address;
2698         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2699
2700         unsigned count = 1;
2701         if (CMD_ARGC == 2)
2702                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2703
2704         uint8_t *buffer = calloc(count, size);
2705
2706         struct target *target = get_current_target(CMD_CTX);
2707         int retval = fn(target, address, size, count, buffer);
2708         if (ERROR_OK == retval)
2709                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2710
2711         free(buffer);
2712
2713         return retval;
2714 }
2715
2716 typedef int (*target_write_fn)(struct target *target,
2717                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2718
2719 static int target_write_memory_fast(struct target *target,
2720                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2721 {
2722         return target_write_buffer(target, address, size * count, buffer);
2723 }
2724
2725 static int target_fill_mem(struct target *target,
2726                 uint32_t address,
2727                 target_write_fn fn,
2728                 unsigned data_size,
2729                 /* value */
2730                 uint32_t b,
2731                 /* count */
2732                 unsigned c)
2733 {
2734         /* We have to write in reasonably large chunks to be able
2735          * to fill large memory areas with any sane speed */
2736         const unsigned chunk_size = 16384;
2737         uint8_t *target_buf = malloc(chunk_size * data_size);
2738         if (target_buf == NULL) {
2739                 LOG_ERROR("Out of memory");
2740                 return ERROR_FAIL;
2741         }
2742
2743         for (unsigned i = 0; i < chunk_size; i++) {
2744                 switch (data_size) {
2745                 case 4:
2746                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2747                         break;
2748                 case 2:
2749                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2750                         break;
2751                 case 1:
2752                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2753                         break;
2754                 default:
2755                         exit(-1);
2756                 }
2757         }
2758
2759         int retval = ERROR_OK;
2760
2761         for (unsigned x = 0; x < c; x += chunk_size) {
2762                 unsigned current;
2763                 current = c - x;
2764                 if (current > chunk_size)
2765                         current = chunk_size;
2766                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2767                 if (retval != ERROR_OK)
2768                         break;
2769                 /* avoid GDB timeouts */
2770                 keep_alive();
2771         }
2772         free(target_buf);
2773
2774         return retval;
2775 }
2776
2777
2778 COMMAND_HANDLER(handle_mw_command)
2779 {
2780         if (CMD_ARGC < 2)
2781                 return ERROR_COMMAND_SYNTAX_ERROR;
2782         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2783         target_write_fn fn;
2784         if (physical) {
2785                 CMD_ARGC--;
2786                 CMD_ARGV++;
2787                 fn = target_write_phys_memory;
2788         } else
2789                 fn = target_write_memory_fast;
2790         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2791                 return ERROR_COMMAND_SYNTAX_ERROR;
2792
2793         uint32_t address;
2794         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2795
2796         uint32_t value;
2797         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2798
2799         unsigned count = 1;
2800         if (CMD_ARGC == 3)
2801                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2802
2803         struct target *target = get_current_target(CMD_CTX);
2804         unsigned wordsize;
2805         switch (CMD_NAME[2]) {
2806                 case 'w':
2807                         wordsize = 4;
2808                         break;
2809                 case 'h':
2810                         wordsize = 2;
2811                         break;
2812                 case 'b':
2813                         wordsize = 1;
2814                         break;
2815                 default:
2816                         return ERROR_COMMAND_SYNTAX_ERROR;
2817         }
2818
2819         return target_fill_mem(target, address, fn, wordsize, value, count);
2820 }
2821
2822 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2823                 uint32_t *min_address, uint32_t *max_address)
2824 {
2825         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2826                 return ERROR_COMMAND_SYNTAX_ERROR;
2827
2828         /* a base address isn't always necessary,
2829          * default to 0x0 (i.e. don't relocate) */
2830         if (CMD_ARGC >= 2) {
2831                 uint32_t addr;
2832                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2833                 image->base_address = addr;
2834                 image->base_address_set = 1;
2835         } else
2836                 image->base_address_set = 0;
2837
2838         image->start_address_set = 0;
2839
2840         if (CMD_ARGC >= 4)
2841                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2842         if (CMD_ARGC == 5) {
2843                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2844                 /* use size (given) to find max (required) */
2845                 *max_address += *min_address;
2846         }
2847
2848         if (*min_address > *max_address)
2849                 return ERROR_COMMAND_SYNTAX_ERROR;
2850
2851         return ERROR_OK;
2852 }
2853
2854 COMMAND_HANDLER(handle_load_image_command)
2855 {
2856         uint8_t *buffer;
2857         size_t buf_cnt;
2858         uint32_t image_size;
2859         uint32_t min_address = 0;
2860         uint32_t max_address = 0xffffffff;
2861         int i;
2862         struct image image;
2863
2864         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2865                         &image, &min_address, &max_address);
2866         if (ERROR_OK != retval)
2867                 return retval;
2868
2869         struct target *target = get_current_target(CMD_CTX);
2870
2871         struct duration bench;
2872         duration_start(&bench);
2873
2874         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2875                 return ERROR_OK;
2876
2877         image_size = 0x0;
2878         retval = ERROR_OK;
2879         for (i = 0; i < image.num_sections; i++) {
2880                 buffer = malloc(image.sections[i].size);
2881                 if (buffer == NULL) {
2882                         command_print(CMD_CTX,
2883                                                   "error allocating buffer for section (%d bytes)",
2884                                                   (int)(image.sections[i].size));
2885                         break;
2886                 }
2887
2888                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2889                 if (retval != ERROR_OK) {
2890                         free(buffer);
2891                         break;
2892                 }
2893
2894                 uint32_t offset = 0;
2895                 uint32_t length = buf_cnt;
2896
2897                 /* DANGER!!! beware of unsigned comparision here!!! */
2898
2899                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2900                                 (image.sections[i].base_address < max_address)) {
2901
2902                         if (image.sections[i].base_address < min_address) {
2903                                 /* clip addresses below */
2904                                 offset += min_address-image.sections[i].base_address;
2905                                 length -= offset;
2906                         }
2907
2908                         if (image.sections[i].base_address + buf_cnt > max_address)
2909                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2910
2911                         retval = target_write_buffer(target,
2912                                         image.sections[i].base_address + offset, length, buffer + offset);
2913                         if (retval != ERROR_OK) {
2914                                 free(buffer);
2915                                 break;
2916                         }
2917                         image_size += length;
2918                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2919                                         (unsigned int)length,
2920                                         image.sections[i].base_address + offset);
2921                 }
2922
2923                 free(buffer);
2924         }
2925
2926         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2927                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2928                                 "in %fs (%0.3f KiB/s)", image_size,
2929                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2930         }
2931
2932         image_close(&image);
2933
2934         return retval;
2935
2936 }
2937
2938 COMMAND_HANDLER(handle_dump_image_command)
2939 {
2940         struct fileio fileio;
2941         uint8_t *buffer;
2942         int retval, retvaltemp;
2943         uint32_t address, size;
2944         struct duration bench;
2945         struct target *target = get_current_target(CMD_CTX);
2946
2947         if (CMD_ARGC != 3)
2948                 return ERROR_COMMAND_SYNTAX_ERROR;
2949
2950         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2951         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2952
2953         uint32_t buf_size = (size > 4096) ? 4096 : size;
2954         buffer = malloc(buf_size);
2955         if (!buffer)
2956                 return ERROR_FAIL;
2957
2958         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2959         if (retval != ERROR_OK) {
2960                 free(buffer);
2961                 return retval;
2962         }
2963
2964         duration_start(&bench);
2965
2966         while (size > 0) {
2967                 size_t size_written;
2968                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2969                 retval = target_read_buffer(target, address, this_run_size, buffer);
2970                 if (retval != ERROR_OK)
2971                         break;
2972
2973                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2974                 if (retval != ERROR_OK)
2975                         break;
2976
2977                 size -= this_run_size;
2978                 address += this_run_size;
2979         }
2980
2981         free(buffer);
2982
2983         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2984                 int filesize;
2985                 retval = fileio_size(&fileio, &filesize);
2986                 if (retval != ERROR_OK)
2987                         return retval;
2988                 command_print(CMD_CTX,
2989                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2990                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2991         }
2992
2993         retvaltemp = fileio_close(&fileio);
2994         if (retvaltemp != ERROR_OK)
2995                 return retvaltemp;
2996
2997         return retval;
2998 }
2999
3000 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3001 {
3002         uint8_t *buffer;
3003         size_t buf_cnt;
3004         uint32_t image_size;
3005         int i;
3006         int retval;
3007         uint32_t checksum = 0;
3008         uint32_t mem_checksum = 0;
3009
3010         struct image image;
3011
3012         struct target *target = get_current_target(CMD_CTX);
3013
3014         if (CMD_ARGC < 1)
3015                 return ERROR_COMMAND_SYNTAX_ERROR;
3016
3017         if (!target) {
3018                 LOG_ERROR("no target selected");
3019                 return ERROR_FAIL;
3020         }
3021
3022         struct duration bench;
3023         duration_start(&bench);
3024
3025         if (CMD_ARGC >= 2) {
3026                 uint32_t addr;
3027                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3028                 image.base_address = addr;
3029                 image.base_address_set = 1;
3030         } else {
3031                 image.base_address_set = 0;
3032                 image.base_address = 0x0;
3033         }
3034
3035         image.start_address_set = 0;
3036
3037         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3038         if (retval != ERROR_OK)
3039                 return retval;
3040
3041         image_size = 0x0;
3042         int diffs = 0;
3043         retval = ERROR_OK;
3044         for (i = 0; i < image.num_sections; i++) {
3045                 buffer = malloc(image.sections[i].size);
3046                 if (buffer == NULL) {
3047                         command_print(CMD_CTX,
3048                                         "error allocating buffer for section (%d bytes)",
3049                                         (int)(image.sections[i].size));
3050                         break;
3051                 }
3052                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3053                 if (retval != ERROR_OK) {
3054                         free(buffer);
3055                         break;
3056                 }
3057
3058                 if (verify) {
3059                         /* calculate checksum of image */
3060                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3061                         if (retval != ERROR_OK) {
3062                                 free(buffer);
3063                                 break;
3064                         }
3065
3066                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3067                         if (retval != ERROR_OK) {
3068                                 free(buffer);
3069                                 break;
3070                         }
3071
3072                         if (checksum != mem_checksum) {
3073                                 /* failed crc checksum, fall back to a binary compare */
3074                                 uint8_t *data;
3075
3076                                 if (diffs == 0)
3077                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3078
3079                                 data = (uint8_t *)malloc(buf_cnt);
3080
3081                                 /* Can we use 32bit word accesses? */
3082                                 int size = 1;
3083                                 int count = buf_cnt;
3084                                 if ((count % 4) == 0) {
3085                                         size *= 4;
3086                                         count /= 4;
3087                                 }
3088                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3089                                 if (retval == ERROR_OK) {
3090                                         uint32_t t;
3091                                         for (t = 0; t < buf_cnt; t++) {
3092                                                 if (data[t] != buffer[t]) {
3093                                                         command_print(CMD_CTX,
3094                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3095                                                                                   diffs,
3096                                                                                   (unsigned)(t + image.sections[i].base_address),
3097                                                                                   data[t],
3098                                                                                   buffer[t]);
3099                                                         if (diffs++ >= 127) {
3100                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3101                                                                 free(data);
3102                                                                 free(buffer);
3103                                                                 goto done;
3104                                                         }
3105                                                 }
3106                                                 keep_alive();
3107                                         }
3108                                 }
3109                                 free(data);
3110                         }
3111                 } else {
3112                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3113                                                   image.sections[i].base_address,
3114                                                   buf_cnt);
3115                 }
3116
3117                 free(buffer);
3118                 image_size += buf_cnt;
3119         }
3120         if (diffs > 0)
3121                 command_print(CMD_CTX, "No more differences found.");
3122 done:
3123         if (diffs > 0)
3124                 retval = ERROR_FAIL;
3125         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3126                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3127                                 "in %fs (%0.3f KiB/s)", image_size,
3128                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3129         }
3130
3131         image_close(&image);
3132
3133         return retval;
3134 }
3135
3136 COMMAND_HANDLER(handle_verify_image_command)
3137 {
3138         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3139 }
3140
3141 COMMAND_HANDLER(handle_test_image_command)
3142 {
3143         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3144 }
3145
3146 static int handle_bp_command_list(struct command_context *cmd_ctx)
3147 {
3148         struct target *target = get_current_target(cmd_ctx);
3149         struct breakpoint *breakpoint = target->breakpoints;
3150         while (breakpoint) {
3151                 if (breakpoint->type == BKPT_SOFT) {
3152                         char *buf = buf_to_str(breakpoint->orig_instr,
3153                                         breakpoint->length, 16);
3154                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3155                                         breakpoint->address,
3156                                         breakpoint->length,
3157                                         breakpoint->set, buf);
3158                         free(buf);
3159                 } else {
3160                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3161                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3162                                                         breakpoint->asid,
3163                                                         breakpoint->length, breakpoint->set);
3164                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3165                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3166                                                         breakpoint->address,
3167                                                         breakpoint->length, breakpoint->set);
3168                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3169                                                         breakpoint->asid);
3170                         } else
3171                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3172                                                         breakpoint->address,
3173                                                         breakpoint->length, breakpoint->set);
3174                 }
3175
3176                 breakpoint = breakpoint->next;
3177         }
3178         return ERROR_OK;
3179 }
3180
3181 static int handle_bp_command_set(struct command_context *cmd_ctx,
3182                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3183 {
3184         struct target *target = get_current_target(cmd_ctx);
3185
3186         if (asid == 0) {
3187                 int retval = breakpoint_add(target, addr, length, hw);
3188                 if (ERROR_OK == retval)
3189                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3190                 else {
3191                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3192                         return retval;
3193                 }
3194         } else if (addr == 0) {
3195                 int retval = context_breakpoint_add(target, asid, length, hw);
3196                 if (ERROR_OK == retval)
3197                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3198                 else {
3199                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3200                         return retval;
3201                 }
3202         } else {
3203                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3204                 if (ERROR_OK == retval)
3205                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3206                 else {
3207                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3208                         return retval;
3209                 }
3210         }
3211         return ERROR_OK;
3212 }
3213
3214 COMMAND_HANDLER(handle_bp_command)
3215 {
3216         uint32_t addr;
3217         uint32_t asid;
3218         uint32_t length;
3219         int hw = BKPT_SOFT;
3220
3221         switch (CMD_ARGC) {
3222                 case 0:
3223                         return handle_bp_command_list(CMD_CTX);
3224
3225                 case 2:
3226                         asid = 0;
3227                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3228                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3229                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3230
3231                 case 3:
3232                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3233                                 hw = BKPT_HARD;
3234                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3235
3236                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3237
3238                                 asid = 0;
3239                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3240                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3241                                 hw = BKPT_HARD;
3242                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3243                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3244                                 addr = 0;
3245                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3246                         }
3247
3248                 case 4:
3249                         hw = BKPT_HARD;
3250                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3251                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3252                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3253                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3254
3255                 default:
3256                         return ERROR_COMMAND_SYNTAX_ERROR;
3257         }
3258 }
3259
3260 COMMAND_HANDLER(handle_rbp_command)
3261 {
3262         if (CMD_ARGC != 1)
3263                 return ERROR_COMMAND_SYNTAX_ERROR;
3264
3265         uint32_t addr;
3266         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3267
3268         struct target *target = get_current_target(CMD_CTX);
3269         breakpoint_remove(target, addr);
3270
3271         return ERROR_OK;
3272 }
3273
3274 COMMAND_HANDLER(handle_wp_command)
3275 {
3276         struct target *target = get_current_target(CMD_CTX);
3277
3278         if (CMD_ARGC == 0) {
3279                 struct watchpoint *watchpoint = target->watchpoints;
3280
3281                 while (watchpoint) {
3282                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3283                                         ", len: 0x%8.8" PRIx32
3284                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3285                                         ", mask: 0x%8.8" PRIx32,
3286                                         watchpoint->address,
3287                                         watchpoint->length,
3288                                         (int)watchpoint->rw,
3289                                         watchpoint->value,
3290                                         watchpoint->mask);
3291                         watchpoint = watchpoint->next;
3292                 }
3293                 return ERROR_OK;
3294         }
3295
3296         enum watchpoint_rw type = WPT_ACCESS;
3297         uint32_t addr = 0;
3298         uint32_t length = 0;
3299         uint32_t data_value = 0x0;
3300         uint32_t data_mask = 0xffffffff;
3301
3302         switch (CMD_ARGC) {
3303         case 5:
3304                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3305                 /* fall through */
3306         case 4:
3307                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3308                 /* fall through */
3309         case 3:
3310                 switch (CMD_ARGV[2][0]) {
3311                 case 'r':
3312                         type = WPT_READ;
3313                         break;
3314                 case 'w':
3315                         type = WPT_WRITE;
3316                         break;
3317                 case 'a':
3318                         type = WPT_ACCESS;
3319                         break;
3320                 default:
3321                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3322                         return ERROR_COMMAND_SYNTAX_ERROR;
3323                 }
3324                 /* fall through */
3325         case 2:
3326                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3327                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3328                 break;
3329
3330         default:
3331                 return ERROR_COMMAND_SYNTAX_ERROR;
3332         }
3333
3334         int retval = watchpoint_add(target, addr, length, type,
3335                         data_value, data_mask);
3336         if (ERROR_OK != retval)
3337                 LOG_ERROR("Failure setting watchpoints");
3338
3339         return retval;
3340 }
3341
3342 COMMAND_HANDLER(handle_rwp_command)
3343 {
3344         if (CMD_ARGC != 1)
3345                 return ERROR_COMMAND_SYNTAX_ERROR;
3346
3347         uint32_t addr;
3348         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3349
3350         struct target *target = get_current_target(CMD_CTX);
3351         watchpoint_remove(target, addr);
3352
3353         return ERROR_OK;
3354 }
3355
3356 /**
3357  * Translate a virtual address to a physical address.
3358  *
3359  * The low-level target implementation must have logged a detailed error
3360  * which is forwarded to telnet/GDB session.
3361  */
3362 COMMAND_HANDLER(handle_virt2phys_command)
3363 {
3364         if (CMD_ARGC != 1)
3365                 return ERROR_COMMAND_SYNTAX_ERROR;
3366
3367         uint32_t va;
3368         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3369         uint32_t pa;
3370
3371         struct target *target = get_current_target(CMD_CTX);
3372         int retval = target->type->virt2phys(target, va, &pa);
3373         if (retval == ERROR_OK)
3374                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3375
3376         return retval;
3377 }
3378
3379 static void writeData(FILE *f, const void *data, size_t len)
3380 {
3381         size_t written = fwrite(data, 1, len, f);
3382         if (written != len)
3383                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3384 }
3385
3386 static void writeLong(FILE *f, int l)
3387 {
3388         int i;
3389         for (i = 0; i < 4; i++) {
3390                 char c = (l >> (i*8))&0xff;
3391                 writeData(f, &c, 1);
3392         }
3393
3394 }
3395
3396 static void writeString(FILE *f, char *s)
3397 {
3398         writeData(f, s, strlen(s));
3399 }
3400
3401 /* Dump a gmon.out histogram file. */
3402 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3403 {
3404         uint32_t i;
3405         FILE *f = fopen(filename, "w");
3406         if (f == NULL)
3407                 return;
3408         writeString(f, "gmon");
3409         writeLong(f, 0x00000001); /* Version */
3410         writeLong(f, 0); /* padding */
3411         writeLong(f, 0); /* padding */
3412         writeLong(f, 0); /* padding */
3413
3414         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3415         writeData(f, &zero, 1);
3416
3417         /* figure out bucket size */
3418         uint32_t min = samples[0];
3419         uint32_t max = samples[0];
3420         for (i = 0; i < sampleNum; i++) {
3421                 if (min > samples[i])
3422                         min = samples[i];
3423                 if (max < samples[i])
3424                         max = samples[i];
3425         }
3426
3427         int addressSpace = (max - min + 1);
3428         assert(addressSpace >= 2);
3429
3430         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3431         uint32_t length = addressSpace;
3432         if (length > maxBuckets)
3433                 length = maxBuckets;
3434         int *buckets = malloc(sizeof(int)*length);
3435         if (buckets == NULL) {
3436                 fclose(f);
3437                 return;
3438         }
3439         memset(buckets, 0, sizeof(int) * length);
3440         for (i = 0; i < sampleNum; i++) {
3441                 uint32_t address = samples[i];
3442                 long long a = address - min;
3443                 long long b = length - 1;
3444                 long long c = addressSpace - 1;
3445                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3446                 buckets[index_t]++;
3447         }
3448
3449         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3450         writeLong(f, min);                      /* low_pc */
3451         writeLong(f, max);                      /* high_pc */
3452         writeLong(f, length);           /* # of samples */
3453         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3454         writeString(f, "seconds");
3455         for (i = 0; i < (15-strlen("seconds")); i++)
3456                 writeData(f, &zero, 1);
3457         writeString(f, "s");
3458
3459         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3460
3461         char *data = malloc(2 * length);
3462         if (data != NULL) {
3463                 for (i = 0; i < length; i++) {
3464                         int val;
3465                         val = buckets[i];
3466                         if (val > 65535)
3467                                 val = 65535;
3468                         data[i * 2] = val&0xff;
3469                         data[i * 2 + 1] = (val >> 8) & 0xff;
3470                 }
3471                 free(buckets);
3472                 writeData(f, data, length * 2);
3473                 free(data);
3474         } else
3475                 free(buckets);
3476
3477         fclose(f);
3478 }
3479
3480 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3481  * which will be used as a random sampling of PC */
3482 COMMAND_HANDLER(handle_profile_command)
3483 {
3484         struct target *target = get_current_target(CMD_CTX);
3485         struct timeval timeout, now;
3486
3487         gettimeofday(&timeout, NULL);
3488         if (CMD_ARGC != 2)
3489                 return ERROR_COMMAND_SYNTAX_ERROR;
3490         unsigned offset;
3491         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3492
3493         timeval_add_time(&timeout, offset, 0);
3494
3495         /**
3496          * @todo: Some cores let us sample the PC without the
3497          * annoying halt/resume step; for example, ARMv7 PCSR.
3498          * Provide a way to use that more efficient mechanism.
3499          */
3500
3501         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3502
3503         static const int maxSample = 10000;
3504         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3505         if (samples == NULL)
3506                 return ERROR_OK;
3507
3508         int numSamples = 0;
3509         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3510         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3511
3512         int retval = ERROR_OK;
3513         for (;;) {
3514                 target_poll(target);
3515                 if (target->state == TARGET_HALTED) {
3516                         uint32_t t = *((uint32_t *)reg->value);
3517                         samples[numSamples++] = t;
3518                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3519                         retval = target_resume(target, 1, 0, 0, 0);
3520                         target_poll(target);
3521                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3522                 } else if (target->state == TARGET_RUNNING) {
3523                         /* We want to quickly sample the PC. */
3524                         retval = target_halt(target);
3525                         if (retval != ERROR_OK) {
3526                                 free(samples);
3527                                 return retval;
3528                         }
3529                 } else {
3530                         command_print(CMD_CTX, "Target not halted or running");
3531                         retval = ERROR_OK;
3532                         break;
3533                 }
3534                 if (retval != ERROR_OK)
3535                         break;
3536
3537                 gettimeofday(&now, NULL);
3538                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3539                                 && (now.tv_usec >= timeout.tv_usec))) {
3540                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3541                         retval = target_poll(target);
3542                         if (retval != ERROR_OK) {
3543                                 free(samples);
3544                                 return retval;
3545                         }
3546                         if (target->state == TARGET_HALTED) {
3547                                 /* current pc, addr = 0, do not handle
3548                                  * breakpoints, not debugging */
3549                                 target_resume(target, 1, 0, 0, 0);
3550                         }
3551                         retval = target_poll(target);
3552                         if (retval != ERROR_OK) {
3553                                 free(samples);
3554                                 return retval;
3555                         }
3556                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3557                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3558                         break;
3559                 }
3560         }
3561         free(samples);
3562
3563         return retval;
3564 }
3565
3566 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3567 {
3568         char *namebuf;
3569         Jim_Obj *nameObjPtr, *valObjPtr;
3570         int result;
3571
3572         namebuf = alloc_printf("%s(%d)", varname, idx);
3573         if (!namebuf)
3574                 return JIM_ERR;
3575
3576         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3577         valObjPtr = Jim_NewIntObj(interp, val);
3578         if (!nameObjPtr || !valObjPtr) {
3579                 free(namebuf);
3580                 return JIM_ERR;
3581         }
3582
3583         Jim_IncrRefCount(nameObjPtr);
3584         Jim_IncrRefCount(valObjPtr);
3585         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3586         Jim_DecrRefCount(interp, nameObjPtr);
3587         Jim_DecrRefCount(interp, valObjPtr);
3588         free(namebuf);
3589         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3590         return result;
3591 }
3592
3593 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3594 {
3595         struct command_context *context;
3596         struct target *target;
3597
3598         context = current_command_context(interp);
3599         assert(context != NULL);
3600
3601         target = get_current_target(context);
3602         if (target == NULL) {
3603                 LOG_ERROR("mem2array: no current target");
3604                 return JIM_ERR;
3605         }
3606
3607         return target_mem2array(interp, target, argc - 1, argv + 1);
3608 }
3609
3610 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3611 {
3612         long l;
3613         uint32_t width;
3614         int len;
3615         uint32_t addr;
3616         uint32_t count;
3617         uint32_t v;
3618         const char *varname;
3619         int  n, e, retval;
3620         uint32_t i;
3621
3622         /* argv[1] = name of array to receive the data
3623          * argv[2] = desired width
3624          * argv[3] = memory address
3625          * argv[4] = count of times to read
3626          */
3627         if (argc != 4) {
3628                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3629                 return JIM_ERR;
3630         }
3631         varname = Jim_GetString(argv[0], &len);
3632         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3633
3634         e = Jim_GetLong(interp, argv[1], &l);
3635         width = l;
3636         if (e != JIM_OK)
3637                 return e;
3638
3639         e = Jim_GetLong(interp, argv[2], &l);
3640         addr = l;
3641         if (e != JIM_OK)
3642                 return e;
3643         e = Jim_GetLong(interp, argv[3], &l);
3644         len = l;
3645         if (e != JIM_OK)
3646                 return e;
3647         switch (width) {
3648                 case 8:
3649                         width = 1;
3650                         break;
3651                 case 16:
3652                         width = 2;
3653                         break;
3654                 case 32:
3655                         width = 4;
3656                         break;
3657                 default:
3658                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3659                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3660                         return JIM_ERR;
3661         }
3662         if (len == 0) {
3663                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3664                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3665                 return JIM_ERR;
3666         }
3667         if ((addr + (len * width)) < addr) {
3668                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3669                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3670                 return JIM_ERR;
3671         }
3672         /* absurd transfer size? */
3673         if (len > 65536) {
3674                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3675                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3676                 return JIM_ERR;
3677         }
3678
3679         if ((width == 1) ||
3680                 ((width == 2) && ((addr & 1) == 0)) ||
3681                 ((width == 4) && ((addr & 3) == 0))) {
3682                 /* all is well */
3683         } else {
3684                 char buf[100];
3685                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3686                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3687                                 addr,
3688                                 width);
3689                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3690                 return JIM_ERR;
3691         }
3692
3693         /* Transfer loop */
3694
3695         /* index counter */
3696         n = 0;
3697
3698         size_t buffersize = 4096;
3699         uint8_t *buffer = malloc(buffersize);
3700         if (buffer == NULL)
3701                 return JIM_ERR;
3702
3703         /* assume ok */
3704         e = JIM_OK;
3705         while (len) {
3706                 /* Slurp... in buffer size chunks */
3707
3708                 count = len; /* in objects.. */
3709                 if (count > (buffersize / width))
3710                         count = (buffersize / width);
3711
3712                 retval = target_read_memory(target, addr, width, count, buffer);
3713                 if (retval != ERROR_OK) {
3714                         /* BOO !*/
3715                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3716                                           (unsigned int)addr,
3717                                           (int)width,
3718                                           (int)count);
3719                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3720                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3721                         e = JIM_ERR;
3722                         break;
3723                 } else {
3724                         v = 0; /* shut up gcc */
3725                         for (i = 0; i < count ; i++, n++) {
3726                                 switch (width) {
3727                                         case 4:
3728                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3729                                                 break;
3730                                         case 2:
3731                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3732                                                 break;
3733                                         case 1:
3734                                                 v = buffer[i] & 0x0ff;
3735                                                 break;
3736                                 }
3737                                 new_int_array_element(interp, varname, n, v);
3738                         }
3739                         len -= count;
3740                 }
3741         }
3742
3743         free(buffer);
3744
3745         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3746
3747         return e;
3748 }
3749
3750 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3751 {
3752         char *namebuf;
3753         Jim_Obj *nameObjPtr, *valObjPtr;
3754         int result;
3755         long l;
3756
3757         namebuf = alloc_printf("%s(%d)", varname, idx);
3758         if (!namebuf)
3759                 return JIM_ERR;
3760
3761         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3762         if (!nameObjPtr) {
3763                 free(namebuf);
3764                 return JIM_ERR;
3765         }
3766
3767         Jim_IncrRefCount(nameObjPtr);
3768         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3769         Jim_DecrRefCount(interp, nameObjPtr);
3770         free(namebuf);
3771         if (valObjPtr == NULL)
3772                 return JIM_ERR;
3773
3774         result = Jim_GetLong(interp, valObjPtr, &l);
3775         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3776         *val = l;
3777         return result;
3778 }
3779
3780 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3781 {
3782         struct command_context *context;
3783         struct target *target;
3784
3785         context = current_command_context(interp);
3786         assert(context != NULL);
3787
3788         target = get_current_target(context);
3789         if (target == NULL) {
3790                 LOG_ERROR("array2mem: no current target");
3791                 return JIM_ERR;
3792         }
3793
3794         return target_array2mem(interp, target, argc-1, argv + 1);
3795 }
3796
3797 static int target_array2mem(Jim_Interp *interp, struct target *target,
3798                 int argc, Jim_Obj *const *argv)
3799 {
3800         long l;
3801         uint32_t width;
3802         int len;
3803         uint32_t addr;
3804         uint32_t count;
3805         uint32_t v;
3806         const char *varname;
3807         int  n, e, retval;
3808         uint32_t i;
3809
3810         /* argv[1] = name of array to get the data
3811          * argv[2] = desired width
3812          * argv[3] = memory address
3813          * argv[4] = count to write
3814          */
3815         if (argc != 4) {
3816                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3817                 return JIM_ERR;
3818         }
3819         varname = Jim_GetString(argv[0], &len);
3820         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3821
3822         e = Jim_GetLong(interp, argv[1], &l);
3823         width = l;
3824         if (e != JIM_OK)
3825                 return e;
3826
3827         e = Jim_GetLong(interp, argv[2], &l);
3828         addr = l;
3829         if (e != JIM_OK)
3830                 return e;
3831         e = Jim_GetLong(interp, argv[3], &l);
3832         len = l;
3833         if (e != JIM_OK)
3834                 return e;
3835         switch (width) {
3836                 case 8:
3837                         width = 1;
3838                         break;
3839                 case 16:
3840                         width = 2;
3841                         break;
3842                 case 32:
3843                         width = 4;
3844                         break;
3845                 default:
3846                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3847                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3848                                         "Invalid width param, must be 8/16/32", NULL);
3849                         return JIM_ERR;
3850         }
3851         if (len == 0) {
3852                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3853                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3854                                 "array2mem: zero width read?", NULL);
3855                 return JIM_ERR;
3856         }
3857         if ((addr + (len * width)) < addr) {
3858                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3859                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3860                                 "array2mem: addr + len - wraps to zero?", NULL);
3861                 return JIM_ERR;
3862         }
3863         /* absurd transfer size? */
3864         if (len > 65536) {
3865                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3866                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3867                                 "array2mem: absurd > 64K item request", NULL);
3868                 return JIM_ERR;
3869         }
3870
3871         if ((width == 1) ||
3872                 ((width == 2) && ((addr & 1) == 0)) ||
3873                 ((width == 4) && ((addr & 3) == 0))) {
3874                 /* all is well */
3875         } else {
3876                 char buf[100];
3877                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3878                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3879                                 (unsigned int)addr,
3880                                 (int)width);
3881                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3882                 return JIM_ERR;
3883         }
3884
3885         /* Transfer loop */
3886
3887         /* index counter */
3888         n = 0;
3889         /* assume ok */
3890         e = JIM_OK;
3891
3892         size_t buffersize = 4096;
3893         uint8_t *buffer = malloc(buffersize);
3894         if (buffer == NULL)
3895                 return JIM_ERR;
3896
3897         while (len) {
3898                 /* Slurp... in buffer size chunks */
3899
3900                 count = len; /* in objects.. */
3901                 if (count > (buffersize / width))
3902                         count = (buffersize / width);
3903
3904                 v = 0; /* shut up gcc */
3905                 for (i = 0; i < count; i++, n++) {
3906                         get_int_array_element(interp, varname, n, &v);
3907                         switch (width) {
3908                         case 4:
3909                                 target_buffer_set_u32(target, &buffer[i * width], v);
3910                                 break;
3911                         case 2:
3912                                 target_buffer_set_u16(target, &buffer[i * width], v);
3913                                 break;
3914                         case 1:
3915                                 buffer[i] = v & 0x0ff;
3916                                 break;
3917                         }
3918                 }
3919                 len -= count;
3920
3921                 retval = target_write_memory(target, addr, width, count, buffer);
3922                 if (retval != ERROR_OK) {
3923                         /* BOO !*/
3924                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3925                                           (unsigned int)addr,
3926                                           (int)width,
3927                                           (int)count);
3928                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3929                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3930                         e = JIM_ERR;
3931                         break;
3932                 }
3933         }
3934
3935         free(buffer);
3936
3937         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3938
3939         return e;
3940 }
3941
3942 /* FIX? should we propagate errors here rather than printing them
3943  * and continuing?
3944  */
3945 void target_handle_event(struct target *target, enum target_event e)
3946 {
3947         struct target_event_action *teap;
3948
3949         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3950                 if (teap->event == e) {
3951                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3952                                            target->target_number,
3953                                            target_name(target),
3954                                            target_type_name(target),
3955                                            e,
3956                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3957                                            Jim_GetString(teap->body, NULL));
3958                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3959                                 Jim_MakeErrorMessage(teap->interp);
3960                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3961                         }
3962                 }
3963         }
3964 }
3965
3966 /**
3967  * Returns true only if the target has a handler for the specified event.
3968  */
3969 bool target_has_event_action(struct target *target, enum target_event event)
3970 {
3971         struct target_event_action *teap;
3972
3973         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3974                 if (teap->event == event)
3975                         return true;
3976         }
3977         return false;
3978 }
3979
3980 enum target_cfg_param {
3981         TCFG_TYPE,
3982         TCFG_EVENT,
3983         TCFG_WORK_AREA_VIRT,
3984         TCFG_WORK_AREA_PHYS,
3985         TCFG_WORK_AREA_SIZE,
3986         TCFG_WORK_AREA_BACKUP,
3987         TCFG_ENDIAN,
3988         TCFG_VARIANT,
3989         TCFG_COREID,
3990         TCFG_CHAIN_POSITION,
3991         TCFG_DBGBASE,
3992         TCFG_RTOS,
3993 };
3994
3995 static Jim_Nvp nvp_config_opts[] = {
3996         { .name = "-type",             .value = TCFG_TYPE },
3997         { .name = "-event",            .value = TCFG_EVENT },
3998         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3999         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4000         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4001         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4002         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4003         { .name = "-variant",          .value = TCFG_VARIANT },
4004         { .name = "-coreid",           .value = TCFG_COREID },
4005         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4006         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4007         { .name = "-rtos",             .value = TCFG_RTOS },
4008         { .name = NULL, .value = -1 }
4009 };
4010
4011 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4012 {
4013         Jim_Nvp *n;
4014         Jim_Obj *o;
4015         jim_wide w;
4016         char *cp;
4017         int e;
4018
4019         /* parse config or cget options ... */
4020         while (goi->argc > 0) {
4021                 Jim_SetEmptyResult(goi->interp);
4022                 /* Jim_GetOpt_Debug(goi); */
4023
4024                 if (target->type->target_jim_configure) {
4025                         /* target defines a configure function */
4026                         /* target gets first dibs on parameters */
4027                         e = (*(target->type->target_jim_configure))(target, goi);
4028                         if (e == JIM_OK) {
4029                                 /* more? */
4030                                 continue;
4031                         }
4032                         if (e == JIM_ERR) {
4033                                 /* An error */
4034                                 return e;
4035                         }
4036                         /* otherwise we 'continue' below */
4037                 }
4038                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4039                 if (e != JIM_OK) {
4040                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4041                         return e;
4042                 }
4043                 switch (n->value) {
4044                 case TCFG_TYPE:
4045                         /* not setable */
4046                         if (goi->isconfigure) {
4047                                 Jim_SetResultFormatted(goi->interp,
4048                                                 "not settable: %s", n->name);
4049                                 return JIM_ERR;
4050                         } else {
4051 no_params:
4052                                 if (goi->argc != 0) {
4053                                         Jim_WrongNumArgs(goi->interp,
4054                                                         goi->argc, goi->argv,
4055                                                         "NO PARAMS");
4056                                         return JIM_ERR;
4057                                 }
4058                         }
4059                         Jim_SetResultString(goi->interp,
4060                                         target_type_name(target), -1);
4061                         /* loop for more */
4062                         break;
4063                 case TCFG_EVENT:
4064                         if (goi->argc == 0) {
4065                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4066                                 return JIM_ERR;
4067                         }
4068
4069                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4070                         if (e != JIM_OK) {
4071                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4072                                 return e;
4073                         }
4074
4075                         if (goi->isconfigure) {
4076                                 if (goi->argc != 1) {
4077                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4078                                         return JIM_ERR;
4079                                 }
4080                         } else {
4081                                 if (goi->argc != 0) {
4082                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4083                                         return JIM_ERR;
4084                                 }
4085                         }
4086
4087                         {
4088                                 struct target_event_action *teap;
4089
4090                                 teap = target->event_action;
4091                                 /* replace existing? */
4092                                 while (teap) {
4093                                         if (teap->event == (enum target_event)n->value)
4094                                                 break;
4095                                         teap = teap->next;
4096                                 }
4097
4098                                 if (goi->isconfigure) {
4099                                         bool replace = true;
4100                                         if (teap == NULL) {
4101                                                 /* create new */
4102                                                 teap = calloc(1, sizeof(*teap));
4103                                                 replace = false;
4104                                         }
4105                                         teap->event = n->value;
4106                                         teap->interp = goi->interp;
4107                                         Jim_GetOpt_Obj(goi, &o);
4108                                         if (teap->body)
4109                                                 Jim_DecrRefCount(teap->interp, teap->body);
4110                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4111                                         /*
4112                                          * FIXME:
4113                                          *     Tcl/TK - "tk events" have a nice feature.
4114                                          *     See the "BIND" command.
4115                                          *    We should support that here.
4116                                          *     You can specify %X and %Y in the event code.
4117                                          *     The idea is: %T - target name.
4118                                          *     The idea is: %N - target number
4119                                          *     The idea is: %E - event name.
4120                                          */
4121                                         Jim_IncrRefCount(teap->body);
4122
4123                                         if (!replace) {
4124                                                 /* add to head of event list */
4125                                                 teap->next = target->event_action;
4126                                                 target->event_action = teap;
4127                                         }
4128                                         Jim_SetEmptyResult(goi->interp);
4129                                 } else {
4130                                         /* get */
4131                                         if (teap == NULL)
4132                                                 Jim_SetEmptyResult(goi->interp);
4133                                         else
4134                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4135                                 }
4136                         }
4137                         /* loop for more */
4138                         break;
4139
4140                 case TCFG_WORK_AREA_VIRT:
4141                         if (goi->isconfigure) {
4142                                 target_free_all_working_areas(target);
4143                                 e = Jim_GetOpt_Wide(goi, &w);
4144                                 if (e != JIM_OK)
4145                                         return e;
4146                                 target->working_area_virt = w;
4147                                 target->working_area_virt_spec = true;
4148                         } else {
4149                                 if (goi->argc != 0)
4150                                         goto no_params;
4151                         }
4152                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4153                         /* loop for more */
4154                         break;
4155
4156                 case TCFG_WORK_AREA_PHYS:
4157                         if (goi->isconfigure) {
4158                                 target_free_all_working_areas(target);
4159                                 e = Jim_GetOpt_Wide(goi, &w);
4160                                 if (e != JIM_OK)
4161                                         return e;
4162                                 target->working_area_phys = w;
4163                                 target->working_area_phys_spec = true;
4164                         } else {
4165                                 if (goi->argc != 0)
4166                                         goto no_params;
4167                         }
4168                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4169                         /* loop for more */
4170                         break;
4171
4172                 case TCFG_WORK_AREA_SIZE:
4173                         if (goi->isconfigure) {
4174                                 target_free_all_working_areas(target);
4175                                 e = Jim_GetOpt_Wide(goi, &w);
4176                                 if (e != JIM_OK)
4177                                         return e;
4178                                 target->working_area_size = w;
4179                         } else {
4180                                 if (goi->argc != 0)
4181                                         goto no_params;
4182                         }
4183                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4184                         /* loop for more */
4185                         break;
4186
4187                 case TCFG_WORK_AREA_BACKUP:
4188                         if (goi->isconfigure) {
4189                                 target_free_all_working_areas(target);
4190                                 e = Jim_GetOpt_Wide(goi, &w);
4191                                 if (e != JIM_OK)
4192                                         return e;
4193                                 /* make this exactly 1 or 0 */
4194                                 target->backup_working_area = (!!w);
4195                         } else {
4196                                 if (goi->argc != 0)
4197                                         goto no_params;
4198                         }
4199                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4200                         /* loop for more e*/
4201                         break;
4202
4203
4204                 case TCFG_ENDIAN:
4205                         if (goi->isconfigure) {
4206                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4207                                 if (e != JIM_OK) {
4208                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4209                                         return e;
4210                                 }
4211                                 target->endianness = n->value;
4212                         } else {
4213                                 if (goi->argc != 0)
4214                                         goto no_params;
4215                         }
4216                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4217                         if (n->name == NULL) {
4218                                 target->endianness = TARGET_LITTLE_ENDIAN;
4219                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4220                         }
4221                         Jim_SetResultString(goi->interp, n->name, -1);
4222                         /* loop for more */
4223                         break;
4224
4225                 case TCFG_VARIANT:
4226                         if (goi->isconfigure) {
4227                                 if (goi->argc < 1) {
4228                                         Jim_SetResultFormatted(goi->interp,
4229                                                                                    "%s ?STRING?",
4230                                                                                    n->name);
4231                                         return JIM_ERR;
4232                                 }
4233                                 if (target->variant)
4234                                         free((void *)(target->variant));
4235                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4236                                 if (e != JIM_OK)
4237                                         return e;
4238                                 target->variant = strdup(cp);
4239                         } else {
4240                                 if (goi->argc != 0)
4241                                         goto no_params;
4242                         }
4243                         Jim_SetResultString(goi->interp, target->variant, -1);
4244                         /* loop for more */
4245                         break;
4246
4247                 case TCFG_COREID:
4248                         if (goi->isconfigure) {
4249                                 e = Jim_GetOpt_Wide(goi, &w);
4250                                 if (e != JIM_OK)
4251                                         return e;
4252                                 target->coreid = (int32_t)w;
4253                         } else {
4254                                 if (goi->argc != 0)
4255                                         goto no_params;
4256                         }
4257                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4258                         /* loop for more */
4259                         break;
4260
4261                 case TCFG_CHAIN_POSITION:
4262                         if (goi->isconfigure) {
4263                                 Jim_Obj *o_t;
4264                                 struct jtag_tap *tap;
4265                                 target_free_all_working_areas(target);
4266                                 e = Jim_GetOpt_Obj(goi, &o_t);
4267                                 if (e != JIM_OK)
4268                                         return e;
4269                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4270                                 if (tap == NULL)
4271                                         return JIM_ERR;
4272                                 /* make this exactly 1 or 0 */
4273                                 target->tap = tap;
4274                         } else {
4275                                 if (goi->argc != 0)
4276                                         goto no_params;
4277                         }
4278                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4279                         /* loop for more e*/
4280                         break;
4281                 case TCFG_DBGBASE:
4282                         if (goi->isconfigure) {
4283                                 e = Jim_GetOpt_Wide(goi, &w);
4284                                 if (e != JIM_OK)
4285                                         return e;
4286                                 target->dbgbase = (uint32_t)w;
4287                                 target->dbgbase_set = true;
4288                         } else {
4289                                 if (goi->argc != 0)
4290                                         goto no_params;
4291                         }
4292                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4293                         /* loop for more */
4294                         break;
4295
4296                 case TCFG_RTOS:
4297                         /* RTOS */
4298                         {
4299                                 int result = rtos_create(goi, target);
4300                                 if (result != JIM_OK)
4301                                         return result;
4302                         }
4303                         /* loop for more */
4304                         break;
4305                 }
4306         } /* while (goi->argc) */
4307
4308
4309                 /* done - we return */
4310         return JIM_OK;
4311 }
4312
4313 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4314 {
4315         Jim_GetOptInfo goi;
4316
4317         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4318         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4319         int need_args = 1 + goi.isconfigure;
4320         if (goi.argc < need_args) {
4321                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4322                         goi.isconfigure
4323                                 ? "missing: -option VALUE ..."
4324                                 : "missing: -option ...");
4325                 return JIM_ERR;
4326         }
4327         struct target *target = Jim_CmdPrivData(goi.interp);
4328         return target_configure(&goi, target);
4329 }
4330
4331 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4332 {
4333         const char *cmd_name = Jim_GetString(argv[0], NULL);
4334
4335         Jim_GetOptInfo goi;
4336         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4337
4338         if (goi.argc < 2 || goi.argc > 4) {
4339                 Jim_SetResultFormatted(goi.interp,
4340                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4341                 return JIM_ERR;
4342         }
4343
4344         target_write_fn fn;
4345         fn = target_write_memory_fast;
4346
4347         int e;
4348         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4349                 /* consume it */
4350                 struct Jim_Obj *obj;
4351                 e = Jim_GetOpt_Obj(&goi, &obj);
4352                 if (e != JIM_OK)
4353                         return e;
4354
4355                 fn = target_write_phys_memory;
4356         }
4357
4358         jim_wide a;
4359         e = Jim_GetOpt_Wide(&goi, &a);
4360         if (e != JIM_OK)
4361                 return e;
4362
4363         jim_wide b;
4364         e = Jim_GetOpt_Wide(&goi, &b);
4365         if (e != JIM_OK)
4366                 return e;
4367
4368         jim_wide c = 1;
4369         if (goi.argc == 1) {
4370                 e = Jim_GetOpt_Wide(&goi, &c);
4371                 if (e != JIM_OK)
4372                         return e;
4373         }
4374
4375         /* all args must be consumed */
4376         if (goi.argc != 0)
4377                 return JIM_ERR;
4378
4379         struct target *target = Jim_CmdPrivData(goi.interp);
4380         unsigned data_size;
4381         if (strcasecmp(cmd_name, "mww") == 0)
4382                 data_size = 4;
4383         else if (strcasecmp(cmd_name, "mwh") == 0)
4384                 data_size = 2;
4385         else if (strcasecmp(cmd_name, "mwb") == 0)
4386                 data_size = 1;
4387         else {
4388                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4389                 return JIM_ERR;
4390         }
4391
4392         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4393 }
4394
4395 /**
4396 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4397 *
4398 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4399 *         mdh [phys] <address> [<count>] - for 16 bit reads
4400 *         mdb [phys] <address> [<count>] - for  8 bit reads
4401 *
4402 *  Count defaults to 1.
4403 *
4404 *  Calls target_read_memory or target_read_phys_memory depending on
4405 *  the presence of the "phys" argument
4406 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4407 *  to int representation in base16.
4408 *  Also outputs read data in a human readable form using command_print
4409 *
4410 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4411 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4412 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4413 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4414 *  on success, with [<count>] number of elements.
4415 *
4416 *  In case of little endian target:
4417 *      Example1: "mdw 0x00000000"  returns "10123456"
4418 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4419 *      Example3: "mdb 0x00000000" returns "56"
4420 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4421 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4422 **/
4423 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4424 {
4425         const char *cmd_name = Jim_GetString(argv[0], NULL);
4426
4427         Jim_GetOptInfo goi;
4428         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4429
4430         if ((goi.argc < 1) || (goi.argc > 3)) {
4431                 Jim_SetResultFormatted(goi.interp,
4432                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4433                 return JIM_ERR;
4434         }
4435
4436         int (*fn)(struct target *target,
4437                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4438         fn = target_read_memory;
4439
4440         int e;
4441         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4442                 /* consume it */
4443                 struct Jim_Obj *obj;
4444                 e = Jim_GetOpt_Obj(&goi, &obj);
4445                 if (e != JIM_OK)
4446                         return e;
4447
4448                 fn = target_read_phys_memory;
4449         }
4450
4451         /* Read address parameter */
4452         jim_wide addr;
4453         e = Jim_GetOpt_Wide(&goi, &addr);
4454         if (e != JIM_OK)
4455                 return JIM_ERR;
4456
4457         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4458         jim_wide count;
4459         if (goi.argc == 1) {
4460                 e = Jim_GetOpt_Wide(&goi, &count);
4461                 if (e != JIM_OK)
4462                         return JIM_ERR;
4463         } else
4464                 count = 1;
4465
4466         /* all args must be consumed */
4467         if (goi.argc != 0)
4468                 return JIM_ERR;
4469
4470         jim_wide dwidth = 1; /* shut up gcc */
4471         if (strcasecmp(cmd_name, "mdw") == 0)
4472                 dwidth = 4;
4473         else if (strcasecmp(cmd_name, "mdh") == 0)
4474                 dwidth = 2;
4475         else if (strcasecmp(cmd_name, "mdb") == 0)
4476                 dwidth = 1;
4477         else {
4478                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4479                 return JIM_ERR;
4480         }
4481
4482         /* convert count to "bytes" */
4483         int bytes = count * dwidth;
4484
4485         struct target *target = Jim_CmdPrivData(goi.interp);
4486         uint8_t  target_buf[32];
4487         jim_wide x, y, z;
4488         while (bytes > 0) {
4489                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4490
4491                 /* Try to read out next block */
4492                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4493
4494                 if (e != ERROR_OK) {
4495                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4496                         return JIM_ERR;
4497                 }
4498
4499                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4500                 switch (dwidth) {
4501                 case 4:
4502                         for (x = 0; x < 16 && x < y; x += 4) {
4503                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4504                                 command_print_sameline(NULL, "%08x ", (int)(z));
4505                         }
4506                         for (; (x < 16) ; x += 4)
4507                                 command_print_sameline(NULL, "         ");
4508                         break;
4509                 case 2:
4510                         for (x = 0; x < 16 && x < y; x += 2) {
4511                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4512                                 command_print_sameline(NULL, "%04x ", (int)(z));
4513                         }
4514                         for (; (x < 16) ; x += 2)
4515                                 command_print_sameline(NULL, "     ");
4516                         break;
4517                 case 1:
4518                 default:
4519                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4520                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4521                                 command_print_sameline(NULL, "%02x ", (int)(z));
4522                         }
4523                         for (; (x < 16) ; x += 1)
4524                                 command_print_sameline(NULL, "   ");
4525                         break;
4526                 }
4527                 /* ascii-ify the bytes */
4528                 for (x = 0 ; x < y ; x++) {
4529                         if ((target_buf[x] >= 0x20) &&
4530                                 (target_buf[x] <= 0x7e)) {
4531                                 /* good */
4532                         } else {
4533                                 /* smack it */
4534                                 target_buf[x] = '.';
4535                         }
4536                 }
4537                 /* space pad  */
4538                 while (x < 16) {
4539                         target_buf[x] = ' ';
4540                         x++;
4541                 }
4542                 /* terminate */
4543                 target_buf[16] = 0;
4544                 /* print - with a newline */
4545                 command_print_sameline(NULL, "%s\n", target_buf);
4546                 /* NEXT... */
4547                 bytes -= 16;
4548                 addr += 16;
4549         }
4550         return JIM_OK;
4551 }
4552
4553 static int jim_target_mem2array(Jim_Interp *interp,
4554                 int argc, Jim_Obj *const *argv)
4555 {
4556         struct target *target = Jim_CmdPrivData(interp);
4557         return target_mem2array(interp, target, argc - 1, argv + 1);
4558 }
4559
4560 static int jim_target_array2mem(Jim_Interp *interp,
4561                 int argc, Jim_Obj *const *argv)
4562 {
4563         struct target *target = Jim_CmdPrivData(interp);
4564         return target_array2mem(interp, target, argc - 1, argv + 1);
4565 }
4566
4567 static int jim_target_tap_disabled(Jim_Interp *interp)
4568 {
4569         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4570         return JIM_ERR;
4571 }
4572
4573 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4574 {
4575         if (argc != 1) {
4576                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4577                 return JIM_ERR;
4578         }
4579         struct target *target = Jim_CmdPrivData(interp);
4580         if (!target->tap->enabled)
4581                 return jim_target_tap_disabled(interp);
4582
4583         int e = target->type->examine(target);
4584         if (e != ERROR_OK)
4585                 return JIM_ERR;
4586         return JIM_OK;
4587 }
4588
4589 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4590 {
4591         if (argc != 1) {
4592                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4593                 return JIM_ERR;
4594         }
4595         struct target *target = Jim_CmdPrivData(interp);
4596
4597         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4598                 return JIM_ERR;
4599
4600         return JIM_OK;
4601 }
4602
4603 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4604 {
4605         if (argc != 1) {
4606                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4607                 return JIM_ERR;
4608         }
4609         struct target *target = Jim_CmdPrivData(interp);
4610         if (!target->tap->enabled)
4611                 return jim_target_tap_disabled(interp);
4612
4613         int e;
4614         if (!(target_was_examined(target)))
4615                 e = ERROR_TARGET_NOT_EXAMINED;
4616         else
4617                 e = target->type->poll(target);
4618         if (e != ERROR_OK)
4619                 return JIM_ERR;
4620         return JIM_OK;
4621 }
4622
4623 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4624 {
4625         Jim_GetOptInfo goi;
4626         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4627
4628         if (goi.argc != 2) {
4629                 Jim_WrongNumArgs(interp, 0, argv,
4630                                 "([tT]|[fF]|assert|deassert) BOOL");
4631                 return JIM_ERR;
4632         }
4633
4634         Jim_Nvp *n;
4635         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4636         if (e != JIM_OK) {
4637                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4638                 return e;
4639         }
4640         /* the halt or not param */
4641         jim_wide a;
4642         e = Jim_GetOpt_Wide(&goi, &a);
4643         if (e != JIM_OK)
4644                 return e;
4645
4646         struct target *target = Jim_CmdPrivData(goi.interp);
4647         if (!target->tap->enabled)
4648                 return jim_target_tap_disabled(interp);
4649         if (!(target_was_examined(target))) {
4650                 LOG_ERROR("Target not examined yet");
4651                 return ERROR_TARGET_NOT_EXAMINED;
4652         }
4653         if (!target->type->assert_reset || !target->type->deassert_reset) {
4654                 Jim_SetResultFormatted(interp,
4655                                 "No target-specific reset for %s",
4656                                 target_name(target));
4657                 return JIM_ERR;
4658         }
4659         /* determine if we should halt or not. */
4660         target->reset_halt = !!a;
4661         /* When this happens - all workareas are invalid. */
4662         target_free_all_working_areas_restore(target, 0);
4663
4664         /* do the assert */
4665         if (n->value == NVP_ASSERT)
4666                 e = target->type->assert_reset(target);
4667         else
4668                 e = target->type->deassert_reset(target);
4669         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4670 }
4671
4672 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4673 {
4674         if (argc != 1) {
4675                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4676                 return JIM_ERR;
4677         }
4678         struct target *target = Jim_CmdPrivData(interp);
4679         if (!target->tap->enabled)
4680                 return jim_target_tap_disabled(interp);
4681         int e = target->type->halt(target);
4682         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4683 }
4684
4685 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4686 {
4687         Jim_GetOptInfo goi;
4688         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4689
4690         /* params:  <name>  statename timeoutmsecs */
4691         if (goi.argc != 2) {
4692                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4693                 Jim_SetResultFormatted(goi.interp,
4694                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4695                 return JIM_ERR;
4696         }
4697
4698         Jim_Nvp *n;
4699         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4700         if (e != JIM_OK) {
4701                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4702                 return e;
4703         }
4704         jim_wide a;
4705         e = Jim_GetOpt_Wide(&goi, &a);
4706         if (e != JIM_OK)
4707                 return e;
4708         struct target *target = Jim_CmdPrivData(interp);
4709         if (!target->tap->enabled)
4710                 return jim_target_tap_disabled(interp);
4711
4712         e = target_wait_state(target, n->value, a);
4713         if (e != ERROR_OK) {
4714                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4715                 Jim_SetResultFormatted(goi.interp,
4716                                 "target: %s wait %s fails (%#s) %s",
4717                                 target_name(target), n->name,
4718                                 eObj, target_strerror_safe(e));
4719                 Jim_FreeNewObj(interp, eObj);
4720                 return JIM_ERR;
4721         }
4722         return JIM_OK;
4723 }
4724 /* List for human, Events defined for this target.
4725  * scripts/programs should use 'name cget -event NAME'
4726  */
4727 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4728 {
4729         struct command_context *cmd_ctx = current_command_context(interp);
4730         assert(cmd_ctx != NULL);
4731
4732         struct target *target = Jim_CmdPrivData(interp);
4733         struct target_event_action *teap = target->event_action;
4734         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4735                                    target->target_number,
4736                                    target_name(target));
4737         command_print(cmd_ctx, "%-25s | Body", "Event");
4738         command_print(cmd_ctx, "------------------------- | "
4739                         "----------------------------------------");
4740         while (teap) {
4741                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4742                 command_print(cmd_ctx, "%-25s | %s",
4743                                 opt->name, Jim_GetString(teap->body, NULL));
4744                 teap = teap->next;
4745         }
4746         command_print(cmd_ctx, "***END***");
4747         return JIM_OK;
4748 }
4749 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4750 {
4751         if (argc != 1) {
4752                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4753                 return JIM_ERR;
4754         }
4755         struct target *target = Jim_CmdPrivData(interp);
4756         Jim_SetResultString(interp, target_state_name(target), -1);
4757         return JIM_OK;
4758 }
4759 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4760 {
4761         Jim_GetOptInfo goi;
4762         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4763         if (goi.argc != 1) {
4764                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4765                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4766                 return JIM_ERR;
4767         }
4768         Jim_Nvp *n;
4769         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4770         if (e != JIM_OK) {
4771                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4772                 return e;
4773         }
4774         struct target *target = Jim_CmdPrivData(interp);
4775         target_handle_event(target, n->value);
4776         return JIM_OK;
4777 }
4778
4779 static const struct command_registration target_instance_command_handlers[] = {
4780         {
4781                 .name = "configure",
4782                 .mode = COMMAND_CONFIG,
4783                 .jim_handler = jim_target_configure,
4784                 .help  = "configure a new target for use",
4785                 .usage = "[target_attribute ...]",
4786         },
4787         {
4788                 .name = "cget",
4789                 .mode = COMMAND_ANY,
4790                 .jim_handler = jim_target_configure,
4791                 .help  = "returns the specified target attribute",
4792                 .usage = "target_attribute",
4793         },
4794         {
4795                 .name = "mww",
4796                 .mode = COMMAND_EXEC,
4797                 .jim_handler = jim_target_mw,
4798                 .help = "Write 32-bit word(s) to target memory",
4799                 .usage = "address data [count]",
4800         },
4801         {
4802                 .name = "mwh",
4803                 .mode = COMMAND_EXEC,
4804                 .jim_handler = jim_target_mw,
4805                 .help = "Write 16-bit half-word(s) to target memory",
4806                 .usage = "address data [count]",
4807         },
4808         {
4809                 .name = "mwb",
4810                 .mode = COMMAND_EXEC,
4811                 .jim_handler = jim_target_mw,
4812                 .help = "Write byte(s) to target memory",
4813                 .usage = "address data [count]",
4814         },
4815         {
4816                 .name = "mdw",
4817                 .mode = COMMAND_EXEC,
4818                 .jim_handler = jim_target_md,
4819                 .help = "Display target memory as 32-bit words",
4820                 .usage = "address [count]",
4821         },
4822         {
4823                 .name = "mdh",
4824                 .mode = COMMAND_EXEC,
4825                 .jim_handler = jim_target_md,
4826                 .help = "Display target memory as 16-bit half-words",
4827                 .usage = "address [count]",
4828         },
4829         {
4830                 .name = "mdb",
4831                 .mode = COMMAND_EXEC,
4832                 .jim_handler = jim_target_md,
4833                 .help = "Display target memory as 8-bit bytes",
4834                 .usage = "address [count]",
4835         },
4836         {
4837                 .name = "array2mem",
4838                 .mode = COMMAND_EXEC,
4839                 .jim_handler = jim_target_array2mem,
4840                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4841                         "to target memory",
4842                 .usage = "arrayname bitwidth address count",
4843         },
4844         {
4845                 .name = "mem2array",
4846                 .mode = COMMAND_EXEC,
4847                 .jim_handler = jim_target_mem2array,
4848                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4849                         "from target memory",
4850                 .usage = "arrayname bitwidth address count",
4851         },
4852         {
4853                 .name = "eventlist",
4854                 .mode = COMMAND_EXEC,
4855                 .jim_handler = jim_target_event_list,
4856                 .help = "displays a table of events defined for this target",
4857         },
4858         {
4859                 .name = "curstate",
4860                 .mode = COMMAND_EXEC,
4861                 .jim_handler = jim_target_current_state,
4862                 .help = "displays the current state of this target",
4863         },
4864         {
4865                 .name = "arp_examine",
4866                 .mode = COMMAND_EXEC,
4867                 .jim_handler = jim_target_examine,
4868                 .help = "used internally for reset processing",
4869         },
4870         {
4871                 .name = "arp_halt_gdb",
4872                 .mode = COMMAND_EXEC,
4873                 .jim_handler = jim_target_halt_gdb,
4874                 .help = "used internally for reset processing to halt GDB",
4875         },
4876         {
4877                 .name = "arp_poll",
4878                 .mode = COMMAND_EXEC,
4879                 .jim_handler = jim_target_poll,
4880                 .help = "used internally for reset processing",
4881         },
4882         {
4883                 .name = "arp_reset",
4884                 .mode = COMMAND_EXEC,
4885                 .jim_handler = jim_target_reset,
4886                 .help = "used internally for reset processing",
4887         },
4888         {
4889                 .name = "arp_halt",
4890                 .mode = COMMAND_EXEC,
4891                 .jim_handler = jim_target_halt,
4892                 .help = "used internally for reset processing",
4893         },
4894         {
4895                 .name = "arp_waitstate",
4896                 .mode = COMMAND_EXEC,
4897                 .jim_handler = jim_target_wait_state,
4898                 .help = "used internally for reset processing",
4899         },
4900         {
4901                 .name = "invoke-event",
4902                 .mode = COMMAND_EXEC,
4903                 .jim_handler = jim_target_invoke_event,
4904                 .help = "invoke handler for specified event",
4905                 .usage = "event_name",
4906         },
4907         COMMAND_REGISTRATION_DONE
4908 };
4909
4910 static int target_create(Jim_GetOptInfo *goi)
4911 {
4912         Jim_Obj *new_cmd;
4913         Jim_Cmd *cmd;
4914         const char *cp;
4915         char *cp2;
4916         int e;
4917         int x;
4918         struct target *target;
4919         struct command_context *cmd_ctx;
4920
4921         cmd_ctx = current_command_context(goi->interp);
4922         assert(cmd_ctx != NULL);
4923
4924         if (goi->argc < 3) {
4925                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4926                 return JIM_ERR;
4927         }
4928
4929         /* COMMAND */
4930         Jim_GetOpt_Obj(goi, &new_cmd);
4931         /* does this command exist? */
4932         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4933         if (cmd) {
4934                 cp = Jim_GetString(new_cmd, NULL);
4935                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4936                 return JIM_ERR;
4937         }
4938
4939         /* TYPE */
4940         e = Jim_GetOpt_String(goi, &cp2, NULL);
4941         if (e != JIM_OK)
4942                 return e;
4943         cp = cp2;
4944         /* now does target type exist */
4945         for (x = 0 ; target_types[x] ; x++) {
4946                 if (0 == strcmp(cp, target_types[x]->name)) {
4947                         /* found */
4948                         break;
4949                 }
4950
4951                 /* check for deprecated name */
4952                 if (target_types[x]->deprecated_name) {
4953                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
4954                                 /* found */
4955                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
4956                                 break;
4957                         }
4958                 }
4959         }
4960         if (target_types[x] == NULL) {
4961                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4962                 for (x = 0 ; target_types[x] ; x++) {
4963                         if (target_types[x + 1]) {
4964                                 Jim_AppendStrings(goi->interp,
4965                                                                    Jim_GetResult(goi->interp),
4966                                                                    target_types[x]->name,
4967                                                                    ", ", NULL);
4968                         } else {
4969                                 Jim_AppendStrings(goi->interp,
4970                                                                    Jim_GetResult(goi->interp),
4971                                                                    " or ",
4972                                                                    target_types[x]->name, NULL);
4973                         }
4974                 }
4975                 return JIM_ERR;
4976         }
4977
4978         /* Create it */
4979         target = calloc(1, sizeof(struct target));
4980         /* set target number */
4981         target->target_number = new_target_number();
4982
4983         /* allocate memory for each unique target type */
4984         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4985
4986         memcpy(target->type, target_types[x], sizeof(struct target_type));
4987
4988         /* will be set by "-endian" */
4989         target->endianness = TARGET_ENDIAN_UNKNOWN;
4990
4991         /* default to first core, override with -coreid */
4992         target->coreid = 0;
4993
4994         target->working_area        = 0x0;
4995         target->working_area_size   = 0x0;
4996         target->working_areas       = NULL;
4997         target->backup_working_area = 0;
4998
4999         target->state               = TARGET_UNKNOWN;
5000         target->debug_reason        = DBG_REASON_UNDEFINED;
5001         target->reg_cache           = NULL;
5002         target->breakpoints         = NULL;
5003         target->watchpoints         = NULL;
5004         target->next                = NULL;
5005         target->arch_info           = NULL;
5006
5007         target->display             = 1;
5008
5009         target->halt_issued                     = false;
5010
5011         /* initialize trace information */
5012         target->trace_info = malloc(sizeof(struct trace));
5013         target->trace_info->num_trace_points         = 0;
5014         target->trace_info->trace_points_size        = 0;
5015         target->trace_info->trace_points             = NULL;
5016         target->trace_info->trace_history_size       = 0;
5017         target->trace_info->trace_history            = NULL;
5018         target->trace_info->trace_history_pos        = 0;
5019         target->trace_info->trace_history_overflowed = 0;
5020
5021         target->dbgmsg          = NULL;
5022         target->dbg_msg_enabled = 0;
5023
5024         target->endianness = TARGET_ENDIAN_UNKNOWN;
5025
5026         target->rtos = NULL;
5027         target->rtos_auto_detect = false;
5028
5029         /* Do the rest as "configure" options */
5030         goi->isconfigure = 1;
5031         e = target_configure(goi, target);
5032
5033         if (target->tap == NULL) {
5034                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5035                 e = JIM_ERR;
5036         }
5037
5038         if (e != JIM_OK) {
5039                 free(target->type);
5040                 free(target);
5041                 return e;
5042         }
5043
5044         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5045                 /* default endian to little if not specified */
5046                 target->endianness = TARGET_LITTLE_ENDIAN;
5047         }
5048
5049         /* incase variant is not set */
5050         if (!target->variant)
5051                 target->variant = strdup("");
5052
5053         cp = Jim_GetString(new_cmd, NULL);
5054         target->cmd_name = strdup(cp);
5055
5056         /* create the target specific commands */
5057         if (target->type->commands) {
5058                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5059                 if (ERROR_OK != e)
5060                         LOG_ERROR("unable to register '%s' commands", cp);
5061         }
5062         if (target->type->target_create)
5063                 (*(target->type->target_create))(target, goi->interp);
5064
5065         /* append to end of list */
5066         {
5067                 struct target **tpp;
5068                 tpp = &(all_targets);
5069                 while (*tpp)
5070                         tpp = &((*tpp)->next);
5071                 *tpp = target;
5072         }
5073
5074         /* now - create the new target name command */
5075         const struct command_registration target_subcommands[] = {
5076                 {
5077                         .chain = target_instance_command_handlers,
5078                 },
5079                 {
5080                         .chain = target->type->commands,
5081                 },
5082                 COMMAND_REGISTRATION_DONE
5083         };
5084         const struct command_registration target_commands[] = {
5085                 {
5086                         .name = cp,
5087                         .mode = COMMAND_ANY,
5088                         .help = "target command group",
5089                         .usage = "",
5090                         .chain = target_subcommands,
5091                 },
5092                 COMMAND_REGISTRATION_DONE
5093         };
5094         e = register_commands(cmd_ctx, NULL, target_commands);
5095         if (ERROR_OK != e)
5096                 return JIM_ERR;
5097
5098         struct command *c = command_find_in_context(cmd_ctx, cp);
5099         assert(c);
5100         command_set_handler_data(c, target);
5101
5102         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5103 }
5104
5105 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5106 {
5107         if (argc != 1) {
5108                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5109                 return JIM_ERR;
5110         }
5111         struct command_context *cmd_ctx = current_command_context(interp);
5112         assert(cmd_ctx != NULL);
5113
5114         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5115         return JIM_OK;
5116 }
5117
5118 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5119 {
5120         if (argc != 1) {
5121                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5122                 return JIM_ERR;
5123         }
5124         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5125         for (unsigned x = 0; NULL != target_types[x]; x++) {
5126                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5127                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5128         }
5129         return JIM_OK;
5130 }
5131
5132 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5133 {
5134         if (argc != 1) {
5135                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5136                 return JIM_ERR;
5137         }
5138         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5139         struct target *target = all_targets;
5140         while (target) {
5141                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5142                         Jim_NewStringObj(interp, target_name(target), -1));
5143                 target = target->next;
5144         }
5145         return JIM_OK;
5146 }
5147
5148 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5149 {
5150         int i;
5151         const char *targetname;
5152         int retval, len;
5153         struct target *target = (struct target *) NULL;
5154         struct target_list *head, *curr, *new;
5155         curr = (struct target_list *) NULL;
5156         head = (struct target_list *) NULL;
5157
5158         retval = 0;
5159         LOG_DEBUG("%d", argc);
5160         /* argv[1] = target to associate in smp
5161          * argv[2] = target to assoicate in smp
5162          * argv[3] ...
5163          */
5164
5165         for (i = 1; i < argc; i++) {
5166
5167                 targetname = Jim_GetString(argv[i], &len);
5168                 target = get_target(targetname);
5169                 LOG_DEBUG("%s ", targetname);
5170                 if (target) {
5171                         new = malloc(sizeof(struct target_list));
5172                         new->target = target;
5173                         new->next = (struct target_list *)NULL;
5174                         if (head == (struct target_list *)NULL) {
5175                                 head = new;
5176                                 curr = head;
5177                         } else {
5178                                 curr->next = new;
5179                                 curr = new;
5180                         }
5181                 }
5182         }
5183         /*  now parse the list of cpu and put the target in smp mode*/
5184         curr = head;
5185
5186         while (curr != (struct target_list *)NULL) {
5187                 target = curr->target;
5188                 target->smp = 1;
5189                 target->head = head;
5190                 curr = curr->next;
5191         }
5192
5193         if (target && target->rtos)
5194                 retval = rtos_smp_init(head->target);
5195
5196         return retval;
5197 }
5198
5199
5200 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5201 {
5202         Jim_GetOptInfo goi;
5203         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5204         if (goi.argc < 3) {
5205                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5206                         "<name> <target_type> [<target_options> ...]");
5207                 return JIM_ERR;
5208         }
5209         return target_create(&goi);
5210 }
5211
5212 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5213 {
5214         Jim_GetOptInfo goi;
5215         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5216
5217         /* It's OK to remove this mechanism sometime after August 2010 or so */
5218         LOG_WARNING("don't use numbers as target identifiers; use names");
5219         if (goi.argc != 1) {
5220                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5221                 return JIM_ERR;
5222         }
5223         jim_wide w;
5224         int e = Jim_GetOpt_Wide(&goi, &w);
5225         if (e != JIM_OK)
5226                 return JIM_ERR;
5227
5228         struct target *target;
5229         for (target = all_targets; NULL != target; target = target->next) {
5230                 if (target->target_number != w)
5231                         continue;
5232
5233                 Jim_SetResultString(goi.interp, target_name(target), -1);
5234                 return JIM_OK;
5235         }
5236         {
5237                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5238                 Jim_SetResultFormatted(goi.interp,
5239                         "Target: number %#s does not exist", wObj);
5240                 Jim_FreeNewObj(interp, wObj);
5241         }
5242         return JIM_ERR;
5243 }
5244
5245 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5246 {
5247         if (argc != 1) {
5248                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5249                 return JIM_ERR;
5250         }
5251         unsigned count = 0;
5252         struct target *target = all_targets;
5253         while (NULL != target) {
5254                 target = target->next;
5255                 count++;
5256         }
5257         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5258         return JIM_OK;
5259 }
5260
5261 static const struct command_registration target_subcommand_handlers[] = {
5262         {
5263                 .name = "init",
5264                 .mode = COMMAND_CONFIG,
5265                 .handler = handle_target_init_command,
5266                 .help = "initialize targets",
5267         },
5268         {
5269                 .name = "create",
5270                 /* REVISIT this should be COMMAND_CONFIG ... */
5271                 .mode = COMMAND_ANY,
5272                 .jim_handler = jim_target_create,
5273                 .usage = "name type '-chain-position' name [options ...]",
5274                 .help = "Creates and selects a new target",
5275         },
5276         {
5277                 .name = "current",
5278                 .mode = COMMAND_ANY,
5279                 .jim_handler = jim_target_current,
5280                 .help = "Returns the currently selected target",
5281         },
5282         {
5283                 .name = "types",
5284                 .mode = COMMAND_ANY,
5285                 .jim_handler = jim_target_types,
5286                 .help = "Returns the available target types as "
5287                                 "a list of strings",
5288         },
5289         {
5290                 .name = "names",
5291                 .mode = COMMAND_ANY,
5292                 .jim_handler = jim_target_names,
5293                 .help = "Returns the names of all targets as a list of strings",
5294         },
5295         {
5296                 .name = "number",
5297                 .mode = COMMAND_ANY,
5298                 .jim_handler = jim_target_number,
5299                 .usage = "number",
5300                 .help = "Returns the name of the numbered target "
5301                         "(DEPRECATED)",
5302         },
5303         {
5304                 .name = "count",
5305                 .mode = COMMAND_ANY,
5306                 .jim_handler = jim_target_count,
5307                 .help = "Returns the number of targets as an integer "
5308                         "(DEPRECATED)",
5309         },
5310         {
5311                 .name = "smp",
5312                 .mode = COMMAND_ANY,
5313                 .jim_handler = jim_target_smp,
5314                 .usage = "targetname1 targetname2 ...",
5315                 .help = "gather several target in a smp list"
5316         },
5317
5318         COMMAND_REGISTRATION_DONE
5319 };
5320
5321 struct FastLoad {
5322         uint32_t address;
5323         uint8_t *data;
5324         int length;
5325
5326 };
5327
5328 static int fastload_num;
5329 static struct FastLoad *fastload;
5330
5331 static void free_fastload(void)
5332 {
5333         if (fastload != NULL) {
5334                 int i;
5335                 for (i = 0; i < fastload_num; i++) {
5336                         if (fastload[i].data)
5337                                 free(fastload[i].data);
5338                 }
5339                 free(fastload);
5340                 fastload = NULL;
5341         }
5342 }
5343
5344 COMMAND_HANDLER(handle_fast_load_image_command)
5345 {
5346         uint8_t *buffer;
5347         size_t buf_cnt;
5348         uint32_t image_size;
5349         uint32_t min_address = 0;
5350         uint32_t max_address = 0xffffffff;
5351         int i;
5352
5353         struct image image;
5354
5355         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5356                         &image, &min_address, &max_address);
5357         if (ERROR_OK != retval)
5358                 return retval;
5359
5360         struct duration bench;
5361         duration_start(&bench);
5362
5363         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5364         if (retval != ERROR_OK)
5365                 return retval;
5366
5367         image_size = 0x0;
5368         retval = ERROR_OK;
5369         fastload_num = image.num_sections;
5370         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5371         if (fastload == NULL) {
5372                 command_print(CMD_CTX, "out of memory");
5373                 image_close(&image);
5374                 return ERROR_FAIL;
5375         }
5376         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5377         for (i = 0; i < image.num_sections; i++) {
5378                 buffer = malloc(image.sections[i].size);
5379                 if (buffer == NULL) {
5380                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5381                                                   (int)(image.sections[i].size));
5382                         retval = ERROR_FAIL;
5383                         break;
5384                 }
5385
5386                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5387                 if (retval != ERROR_OK) {
5388                         free(buffer);
5389                         break;
5390                 }
5391
5392                 uint32_t offset = 0;
5393                 uint32_t length = buf_cnt;
5394
5395                 /* DANGER!!! beware of unsigned comparision here!!! */
5396
5397                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5398                                 (image.sections[i].base_address < max_address)) {
5399                         if (image.sections[i].base_address < min_address) {
5400                                 /* clip addresses below */
5401                                 offset += min_address-image.sections[i].base_address;
5402                                 length -= offset;
5403                         }
5404
5405                         if (image.sections[i].base_address + buf_cnt > max_address)
5406                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5407
5408                         fastload[i].address = image.sections[i].base_address + offset;
5409                         fastload[i].data = malloc(length);
5410                         if (fastload[i].data == NULL) {
5411                                 free(buffer);
5412                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5413                                                           length);
5414                                 retval = ERROR_FAIL;
5415                                 break;
5416                         }
5417                         memcpy(fastload[i].data, buffer + offset, length);
5418                         fastload[i].length = length;
5419
5420                         image_size += length;
5421                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5422                                                   (unsigned int)length,
5423                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5424                 }
5425
5426                 free(buffer);
5427         }
5428
5429         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5430                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5431                                 "in %fs (%0.3f KiB/s)", image_size,
5432                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5433
5434                 command_print(CMD_CTX,
5435                                 "WARNING: image has not been loaded to target!"
5436                                 "You can issue a 'fast_load' to finish loading.");
5437         }
5438
5439         image_close(&image);
5440
5441         if (retval != ERROR_OK)
5442                 free_fastload();
5443
5444         return retval;
5445 }
5446
5447 COMMAND_HANDLER(handle_fast_load_command)
5448 {
5449         if (CMD_ARGC > 0)
5450                 return ERROR_COMMAND_SYNTAX_ERROR;
5451         if (fastload == NULL) {
5452                 LOG_ERROR("No image in memory");
5453                 return ERROR_FAIL;
5454         }
5455         int i;
5456         int ms = timeval_ms();
5457         int size = 0;
5458         int retval = ERROR_OK;
5459         for (i = 0; i < fastload_num; i++) {
5460                 struct target *target = get_current_target(CMD_CTX);
5461                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5462                                           (unsigned int)(fastload[i].address),
5463                                           (unsigned int)(fastload[i].length));
5464                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5465                 if (retval != ERROR_OK)
5466                         break;
5467                 size += fastload[i].length;
5468         }
5469         if (retval == ERROR_OK) {
5470                 int after = timeval_ms();
5471                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5472         }
5473         return retval;
5474 }
5475
5476 static const struct command_registration target_command_handlers[] = {
5477         {
5478                 .name = "targets",
5479                 .handler = handle_targets_command,
5480                 .mode = COMMAND_ANY,
5481                 .help = "change current default target (one parameter) "
5482                         "or prints table of all targets (no parameters)",
5483                 .usage = "[target]",
5484         },
5485         {
5486                 .name = "target",
5487                 .mode = COMMAND_CONFIG,
5488                 .help = "configure target",
5489
5490                 .chain = target_subcommand_handlers,
5491         },
5492         COMMAND_REGISTRATION_DONE
5493 };
5494
5495 int target_register_commands(struct command_context *cmd_ctx)
5496 {
5497         return register_commands(cmd_ctx, NULL, target_command_handlers);
5498 }
5499
5500 static bool target_reset_nag = true;
5501
5502 bool get_target_reset_nag(void)
5503 {
5504         return target_reset_nag;
5505 }
5506
5507 COMMAND_HANDLER(handle_target_reset_nag)
5508 {
5509         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5510                         &target_reset_nag, "Nag after each reset about options to improve "
5511                         "performance");
5512 }
5513
5514 COMMAND_HANDLER(handle_ps_command)
5515 {
5516         struct target *target = get_current_target(CMD_CTX);
5517         char *display;
5518         if (target->state != TARGET_HALTED) {
5519                 LOG_INFO("target not halted !!");
5520                 return ERROR_OK;
5521         }
5522
5523         if ((target->rtos) && (target->rtos->type)
5524                         && (target->rtos->type->ps_command)) {
5525                 display = target->rtos->type->ps_command(target);
5526                 command_print(CMD_CTX, "%s", display);
5527                 free(display);
5528                 return ERROR_OK;
5529         } else {
5530                 LOG_INFO("failed");
5531                 return ERROR_TARGET_FAILURE;
5532         }
5533 }
5534
5535 static const struct command_registration target_exec_command_handlers[] = {
5536         {
5537                 .name = "fast_load_image",
5538                 .handler = handle_fast_load_image_command,
5539                 .mode = COMMAND_ANY,
5540                 .help = "Load image into server memory for later use by "
5541                         "fast_load; primarily for profiling",
5542                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5543                         "[min_address [max_length]]",
5544         },
5545         {
5546                 .name = "fast_load",
5547                 .handler = handle_fast_load_command,
5548                 .mode = COMMAND_EXEC,
5549                 .help = "loads active fast load image to current target "
5550                         "- mainly for profiling purposes",
5551                 .usage = "",
5552         },
5553         {
5554                 .name = "profile",
5555                 .handler = handle_profile_command,
5556                 .mode = COMMAND_EXEC,
5557                 .usage = "seconds filename",
5558                 .help = "profiling samples the CPU PC",
5559         },
5560         /** @todo don't register virt2phys() unless target supports it */
5561         {
5562                 .name = "virt2phys",
5563                 .handler = handle_virt2phys_command,
5564                 .mode = COMMAND_ANY,
5565                 .help = "translate a virtual address into a physical address",
5566                 .usage = "virtual_address",
5567         },
5568         {
5569                 .name = "reg",
5570                 .handler = handle_reg_command,
5571                 .mode = COMMAND_EXEC,
5572                 .help = "display or set a register; with no arguments, "
5573                         "displays all registers and their values",
5574                 .usage = "[(register_name|register_number) [value]]",
5575         },
5576         {
5577                 .name = "poll",
5578                 .handler = handle_poll_command,
5579                 .mode = COMMAND_EXEC,
5580                 .help = "poll target state; or reconfigure background polling",
5581                 .usage = "['on'|'off']",
5582         },
5583         {
5584                 .name = "wait_halt",
5585                 .handler = handle_wait_halt_command,
5586                 .mode = COMMAND_EXEC,
5587                 .help = "wait up to the specified number of milliseconds "
5588                         "(default 5000) for a previously requested halt",
5589                 .usage = "[milliseconds]",
5590         },
5591         {
5592                 .name = "halt",
5593                 .handler = handle_halt_command,
5594                 .mode = COMMAND_EXEC,
5595                 .help = "request target to halt, then wait up to the specified"
5596                         "number of milliseconds (default 5000) for it to complete",
5597                 .usage = "[milliseconds]",
5598         },
5599         {
5600                 .name = "resume",
5601                 .handler = handle_resume_command,
5602                 .mode = COMMAND_EXEC,
5603                 .help = "resume target execution from current PC or address",
5604                 .usage = "[address]",
5605         },
5606         {
5607                 .name = "reset",
5608                 .handler = handle_reset_command,
5609                 .mode = COMMAND_EXEC,
5610                 .usage = "[run|halt|init]",
5611                 .help = "Reset all targets into the specified mode."
5612                         "Default reset mode is run, if not given.",
5613         },
5614         {
5615                 .name = "soft_reset_halt",
5616                 .handler = handle_soft_reset_halt_command,
5617                 .mode = COMMAND_EXEC,
5618                 .usage = "",
5619                 .help = "halt the target and do a soft reset",
5620         },
5621         {
5622                 .name = "step",
5623                 .handler = handle_step_command,
5624                 .mode = COMMAND_EXEC,
5625                 .help = "step one instruction from current PC or address",
5626                 .usage = "[address]",
5627         },
5628         {
5629                 .name = "mdw",
5630                 .handler = handle_md_command,
5631                 .mode = COMMAND_EXEC,
5632                 .help = "display memory words",
5633                 .usage = "['phys'] address [count]",
5634         },
5635         {
5636                 .name = "mdh",
5637                 .handler = handle_md_command,
5638                 .mode = COMMAND_EXEC,
5639                 .help = "display memory half-words",
5640                 .usage = "['phys'] address [count]",
5641         },
5642         {
5643                 .name = "mdb",
5644                 .handler = handle_md_command,
5645                 .mode = COMMAND_EXEC,
5646                 .help = "display memory bytes",
5647                 .usage = "['phys'] address [count]",
5648         },
5649         {
5650                 .name = "mww",
5651                 .handler = handle_mw_command,
5652                 .mode = COMMAND_EXEC,
5653                 .help = "write memory word",
5654                 .usage = "['phys'] address value [count]",
5655         },
5656         {
5657                 .name = "mwh",
5658                 .handler = handle_mw_command,
5659                 .mode = COMMAND_EXEC,
5660                 .help = "write memory half-word",
5661                 .usage = "['phys'] address value [count]",
5662         },
5663         {
5664                 .name = "mwb",
5665                 .handler = handle_mw_command,
5666                 .mode = COMMAND_EXEC,
5667                 .help = "write memory byte",
5668                 .usage = "['phys'] address value [count]",
5669         },
5670         {
5671                 .name = "bp",
5672                 .handler = handle_bp_command,
5673                 .mode = COMMAND_EXEC,
5674                 .help = "list or set hardware or software breakpoint",
5675                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5676         },
5677         {
5678                 .name = "rbp",
5679                 .handler = handle_rbp_command,
5680                 .mode = COMMAND_EXEC,
5681                 .help = "remove breakpoint",
5682                 .usage = "address",
5683         },
5684         {
5685                 .name = "wp",
5686                 .handler = handle_wp_command,
5687                 .mode = COMMAND_EXEC,
5688                 .help = "list (no params) or create watchpoints",
5689                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5690         },
5691         {
5692                 .name = "rwp",
5693                 .handler = handle_rwp_command,
5694                 .mode = COMMAND_EXEC,
5695                 .help = "remove watchpoint",
5696                 .usage = "address",
5697         },
5698         {
5699                 .name = "load_image",
5700                 .handler = handle_load_image_command,
5701                 .mode = COMMAND_EXEC,
5702                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5703                         "[min_address] [max_length]",
5704         },
5705         {
5706                 .name = "dump_image",
5707                 .handler = handle_dump_image_command,
5708                 .mode = COMMAND_EXEC,
5709                 .usage = "filename address size",
5710         },
5711         {
5712                 .name = "verify_image",
5713                 .handler = handle_verify_image_command,
5714                 .mode = COMMAND_EXEC,
5715                 .usage = "filename [offset [type]]",
5716         },
5717         {
5718                 .name = "test_image",
5719                 .handler = handle_test_image_command,
5720                 .mode = COMMAND_EXEC,
5721                 .usage = "filename [offset [type]]",
5722         },
5723         {
5724                 .name = "mem2array",
5725                 .mode = COMMAND_EXEC,
5726                 .jim_handler = jim_mem2array,
5727                 .help = "read 8/16/32 bit memory and return as a TCL array "
5728                         "for script processing",
5729                 .usage = "arrayname bitwidth address count",
5730         },
5731         {
5732                 .name = "array2mem",
5733                 .mode = COMMAND_EXEC,
5734                 .jim_handler = jim_array2mem,
5735                 .help = "convert a TCL array to memory locations "
5736                         "and write the 8/16/32 bit values",
5737                 .usage = "arrayname bitwidth address count",
5738         },
5739         {
5740                 .name = "reset_nag",
5741                 .handler = handle_target_reset_nag,
5742                 .mode = COMMAND_ANY,
5743                 .help = "Nag after each reset about options that could have been "
5744                                 "enabled to improve performance. ",
5745                 .usage = "['enable'|'disable']",
5746         },
5747         {
5748                 .name = "ps",
5749                 .handler = handle_ps_command,
5750                 .mode = COMMAND_EXEC,
5751                 .help = "list all tasks ",
5752                 .usage = " ",
5753         },
5754
5755         COMMAND_REGISTRATION_DONE
5756 };
5757 static int target_register_user_commands(struct command_context *cmd_ctx)
5758 {
5759         int retval = ERROR_OK;
5760         retval = target_request_register_commands(cmd_ctx);
5761         if (retval != ERROR_OK)
5762                 return retval;
5763
5764         retval = trace_register_commands(cmd_ctx);
5765         if (retval != ERROR_OK)
5766                 return retval;
5767
5768
5769         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5770 }