]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: -Wshdaow warning fix
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73
74 static struct target_type *target_types[] =
75 {
76         &arm7tdmi_target,
77         &arm9tdmi_target,
78         &arm920t_target,
79         &arm720t_target,
80         &arm966e_target,
81         &arm926ejs_target,
82         &fa526_target,
83         &feroceon_target,
84         &dragonite_target,
85         &xscale_target,
86         &cortexm3_target,
87         &cortexa8_target,
88         &arm11_target,
89         &mips_m4k_target,
90         &avr_target,
91         &dsp563xx_target,
92         &testee_target,
93         NULL,
94 };
95
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
99
100 static const Jim_Nvp nvp_assert[] = {
101         { .name = "assert", NVP_ASSERT },
102         { .name = "deassert", NVP_DEASSERT },
103         { .name = "T", NVP_ASSERT },
104         { .name = "F", NVP_DEASSERT },
105         { .name = "t", NVP_ASSERT },
106         { .name = "f", NVP_DEASSERT },
107         { .name = NULL, .value = -1 }
108 };
109
110 static const Jim_Nvp nvp_error_target[] = {
111         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
117         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
120         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122         { .value = -1, .name = NULL }
123 };
124
125 static const char *target_strerror_safe(int err)
126 {
127         const Jim_Nvp *n;
128
129         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130         if (n->name == NULL) {
131                 return "unknown";
132         } else {
133                 return n->name;
134         }
135 }
136
137 static const Jim_Nvp nvp_target_event[] = {
138         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
140
141         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142         { .value = TARGET_EVENT_HALTED, .name = "halted" },
143         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
146
147         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
149
150         /* historical name */
151
152         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
153
154         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
155         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
156         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
157         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
158         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
160         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
161         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
162         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
163         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
164         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
165
166         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
168
169         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
171
172         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
174
175         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
177
178         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
180
181         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
183         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
184
185         { .name = NULL, .value = -1 }
186 };
187
188 static const Jim_Nvp nvp_target_state[] = {
189         { .name = "unknown", .value = TARGET_UNKNOWN },
190         { .name = "running", .value = TARGET_RUNNING },
191         { .name = "halted",  .value = TARGET_HALTED },
192         { .name = "reset",   .value = TARGET_RESET },
193         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194         { .name = NULL, .value = -1 },
195 };
196
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
199         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
200         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
201         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
203         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
204         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
205         { .name = NULL, .value = -1 },
206 };
207
208 static const Jim_Nvp nvp_target_endian[] = {
209         { .name = "big",    .value = TARGET_BIG_ENDIAN },
210         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211         { .name = "be",     .value = TARGET_BIG_ENDIAN },
212         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
213         { .name = NULL,     .value = -1 },
214 };
215
216 static const Jim_Nvp nvp_reset_modes[] = {
217         { .name = "unknown", .value = RESET_UNKNOWN },
218         { .name = "run"    , .value = RESET_RUN },
219         { .name = "halt"   , .value = RESET_HALT },
220         { .name = "init"   , .value = RESET_INIT },
221         { .name = NULL     , .value = -1 },
222 };
223
224 const char *debug_reason_name(struct target *t)
225 {
226         const char *cp;
227
228         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229                         t->debug_reason)->name;
230         if (!cp) {
231                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232                 cp = "(*BUG*unknown*BUG*)";
233         }
234         return cp;
235 }
236
237 const char *
238 target_state_name( struct target *t )
239 {
240         const char *cp;
241         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242         if( !cp ){
243                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244                 cp = "(*BUG*unknown*BUG*)";
245         }
246         return cp;
247 }
248
249 /* determine the number of the new target */
250 static int new_target_number(void)
251 {
252         struct target *t;
253         int x;
254
255         /* number is 0 based */
256         x = -1;
257         t = all_targets;
258         while (t) {
259                 if (x < t->target_number) {
260                         x = t->target_number;
261                 }
262                 t = t->next;
263         }
264         return x + 1;
265 }
266
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
269 {
270         if (target->endianness == TARGET_LITTLE_ENDIAN)
271                 return le_to_h_u32(buffer);
272         else
273                 return be_to_h_u32(buffer);
274 }
275
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
278 {
279         if (target->endianness == TARGET_LITTLE_ENDIAN)
280                 return le_to_h_u16(buffer);
281         else
282                 return be_to_h_u16(buffer);
283 }
284
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
287 {
288         return *buffer & 0x0ff;
289 }
290
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
293 {
294         if (target->endianness == TARGET_LITTLE_ENDIAN)
295                 h_u32_to_le(buffer, value);
296         else
297                 h_u32_to_be(buffer, value);
298 }
299
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 h_u16_to_le(buffer, value);
305         else
306                 h_u16_to_be(buffer, value);
307 }
308
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
311 {
312         *buffer = value;
313 }
314
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
317 {
318         struct target *target;
319
320         /* try as tcltarget name */
321         for (target = all_targets; target; target = target->next) {
322                 if (target->cmd_name == NULL)
323                         continue;
324                 if (strcmp(id, target->cmd_name) == 0)
325                         return target;
326         }
327
328         /* It's OK to remove this fallback sometime after August 2010 or so */
329
330         /* no match, try as number */
331         unsigned num;
332         if (parse_uint(id, &num) != ERROR_OK)
333                 return NULL;
334
335         for (target = all_targets; target; target = target->next) {
336                 if (target->target_number == (int)num) {
337                         LOG_WARNING("use '%s' as target identifier, not '%u'",
338                                         target->cmd_name, num);
339                         return target;
340                 }
341         }
342
343         return NULL;
344 }
345
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
348 {
349         struct target *target = all_targets;
350
351         while (target) {
352                 if (target->target_number == num) {
353                         return target;
354                 }
355                 target = target->next;
356         }
357
358         return NULL;
359 }
360
361 struct target* get_current_target(struct command_context *cmd_ctx)
362 {
363         struct target *target = get_target_by_num(cmd_ctx->current_target);
364
365         if (target == NULL)
366         {
367                 LOG_ERROR("BUG: current_target out of bounds");
368                 exit(-1);
369         }
370
371         return target;
372 }
373
374 int target_poll(struct target *target)
375 {
376         int retval;
377
378         /* We can't poll until after examine */
379         if (!target_was_examined(target))
380         {
381                 /* Fail silently lest we pollute the log */
382                 return ERROR_FAIL;
383         }
384
385         retval = target->type->poll(target);
386         if (retval != ERROR_OK)
387                 return retval;
388
389         if (target->halt_issued)
390         {
391                 if (target->state == TARGET_HALTED)
392                 {
393                         target->halt_issued = false;
394                 } else
395                 {
396                         long long t = timeval_ms() - target->halt_issued_time;
397                         if (t>1000)
398                         {
399                                 target->halt_issued = false;
400                                 LOG_INFO("Halt timed out, wake up GDB.");
401                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
402                         }
403                 }
404         }
405
406         return ERROR_OK;
407 }
408
409 int target_halt(struct target *target)
410 {
411         int retval;
412         /* We can't poll until after examine */
413         if (!target_was_examined(target))
414         {
415                 LOG_ERROR("Target not examined yet");
416                 return ERROR_FAIL;
417         }
418
419         retval = target->type->halt(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         target->halt_issued = true;
424         target->halt_issued_time = timeval_ms();
425
426         return ERROR_OK;
427 }
428
429 /**
430  * Make the target (re)start executing using its saved execution
431  * context (possibly with some modifications).
432  *
433  * @param target Which target should start executing.
434  * @param current True to use the target's saved program counter instead
435  *      of the address parameter
436  * @param address Optionally used as the program counter.
437  * @param handle_breakpoints True iff breakpoints at the resumption PC
438  *      should be skipped.  (For example, maybe execution was stopped by
439  *      such a breakpoint, in which case it would be counterprodutive to
440  *      let it re-trigger.
441  * @param debug_execution False if all working areas allocated by OpenOCD
442  *      should be released and/or restored to their original contents.
443  *      (This would for example be true to run some downloaded "helper"
444  *      algorithm code, which resides in one such working buffer and uses
445  *      another for data storage.)
446  *
447  * @todo Resolve the ambiguity about what the "debug_execution" flag
448  * signifies.  For example, Target implementations don't agree on how
449  * it relates to invalidation of the register cache, or to whether
450  * breakpoints and watchpoints should be enabled.  (It would seem wrong
451  * to enable breakpoints when running downloaded "helper" algorithms
452  * (debug_execution true), since the breakpoints would be set to match
453  * target firmware being debugged, not the helper algorithm.... and
454  * enabling them could cause such helpers to malfunction (for example,
455  * by overwriting data with a breakpoint instruction.  On the other
456  * hand the infrastructure for running such helpers might use this
457  * procedure but rely on hardware breakpoint to detect termination.)
458  */
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
460 {
461         int retval;
462
463         /* We can't poll until after examine */
464         if (!target_was_examined(target))
465         {
466                 LOG_ERROR("Target not examined yet");
467                 return ERROR_FAIL;
468         }
469
470         /* note that resume *must* be asynchronous. The CPU can halt before
471          * we poll. The CPU can even halt at the current PC as a result of
472          * a software breakpoint being inserted by (a bug?) the application.
473          */
474         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475                 return retval;
476
477         return retval;
478 }
479
480 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
481 {
482         char buf[100];
483         int retval;
484         Jim_Nvp *n;
485         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
486         if (n->name == NULL) {
487                 LOG_ERROR("invalid reset mode");
488                 return ERROR_FAIL;
489         }
490
491         /* disable polling during reset to make reset event scripts
492          * more predictable, i.e. dr/irscan & pathmove in events will
493          * not have JTAG operations injected into the middle of a sequence.
494          */
495         bool save_poll = jtag_poll_get_enabled();
496
497         jtag_poll_set_enabled(false);
498
499         sprintf(buf, "ocd_process_reset %s", n->name);
500         retval = Jim_Eval(cmd_ctx->interp, buf);
501
502         jtag_poll_set_enabled(save_poll);
503
504         if (retval != JIM_OK) {
505                 Jim_PrintErrorMessage(cmd_ctx->interp);
506                 return ERROR_FAIL;
507         }
508
509         /* We want any events to be processed before the prompt */
510         retval = target_call_timer_callbacks_now();
511
512         struct target *target;
513         for (target = all_targets; target; target = target->next) {
514                 target->type->check_reset(target);
515         }
516
517         return retval;
518 }
519
520 static int identity_virt2phys(struct target *target,
521                 uint32_t virtual, uint32_t *physical)
522 {
523         *physical = virtual;
524         return ERROR_OK;
525 }
526
527 static int no_mmu(struct target *target, int *enabled)
528 {
529         *enabled = 0;
530         return ERROR_OK;
531 }
532
533 static int default_examine(struct target *target)
534 {
535         target_set_examined(target);
536         return ERROR_OK;
537 }
538
539 /* no check by default */
540 static int default_check_reset(struct target *target)
541 {
542         return ERROR_OK;
543 }
544
545 int target_examine_one(struct target *target)
546 {
547         return target->type->examine(target);
548 }
549
550 static int jtag_enable_callback(enum jtag_event event, void *priv)
551 {
552         struct target *target = priv;
553
554         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
555                 return ERROR_OK;
556
557         jtag_unregister_event_callback(jtag_enable_callback, target);
558         return target_examine_one(target);
559 }
560
561
562 /* Targets that correctly implement init + examine, i.e.
563  * no communication with target during init:
564  *
565  * XScale
566  */
567 int target_examine(void)
568 {
569         int retval = ERROR_OK;
570         struct target *target;
571
572         for (target = all_targets; target; target = target->next)
573         {
574                 /* defer examination, but don't skip it */
575                 if (!target->tap->enabled) {
576                         jtag_register_event_callback(jtag_enable_callback,
577                                         target);
578                         continue;
579                 }
580                 if ((retval = target_examine_one(target)) != ERROR_OK)
581                         return retval;
582         }
583         return retval;
584 }
585 const char *target_type_name(struct target *target)
586 {
587         return target->type->name;
588 }
589
590 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
591 {
592         if (!target_was_examined(target))
593         {
594                 LOG_ERROR("Target not examined yet");
595                 return ERROR_FAIL;
596         }
597         return target->type->write_memory_imp(target, address, size, count, buffer);
598 }
599
600 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
601 {
602         if (!target_was_examined(target))
603         {
604                 LOG_ERROR("Target not examined yet");
605                 return ERROR_FAIL;
606         }
607         return target->type->read_memory_imp(target, address, size, count, buffer);
608 }
609
610 static int target_soft_reset_halt_imp(struct target *target)
611 {
612         if (!target_was_examined(target))
613         {
614                 LOG_ERROR("Target not examined yet");
615                 return ERROR_FAIL;
616         }
617         if (!target->type->soft_reset_halt_imp) {
618                 LOG_ERROR("Target %s does not support soft_reset_halt",
619                                 target_name(target));
620                 return ERROR_FAIL;
621         }
622         return target->type->soft_reset_halt_imp(target);
623 }
624
625 /**
626  * Downloads a target-specific native code algorithm to the target,
627  * and executes it.  * Note that some targets may need to set up, enable,
628  * and tear down a breakpoint (hard or * soft) to detect algorithm
629  * termination, while others may support  lower overhead schemes where
630  * soft breakpoints embedded in the algorithm automatically terminate the
631  * algorithm.
632  *
633  * @param target used to run the algorithm
634  * @param arch_info target-specific description of the algorithm.
635  */
636 int target_run_algorithm(struct target *target,
637                 int num_mem_params, struct mem_param *mem_params,
638                 int num_reg_params, struct reg_param *reg_param,
639                 uint32_t entry_point, uint32_t exit_point,
640                 int timeout_ms, void *arch_info)
641 {
642         int retval = ERROR_FAIL;
643
644         if (!target_was_examined(target))
645         {
646                 LOG_ERROR("Target not examined yet");
647                 goto done;
648         }
649         if (!target->type->run_algorithm) {
650                 LOG_ERROR("Target type '%s' does not support %s",
651                                 target_type_name(target), __func__);
652                 goto done;
653         }
654
655         target->running_alg = true;
656         retval = target->type->run_algorithm(target,
657                         num_mem_params, mem_params,
658                         num_reg_params, reg_param,
659                         entry_point, exit_point, timeout_ms, arch_info);
660         target->running_alg = false;
661
662 done:
663         return retval;
664 }
665
666
667 int target_read_memory(struct target *target,
668                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
669 {
670         return target->type->read_memory(target, address, size, count, buffer);
671 }
672
673 static int target_read_phys_memory(struct target *target,
674                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
675 {
676         return target->type->read_phys_memory(target, address, size, count, buffer);
677 }
678
679 int target_write_memory(struct target *target,
680                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
681 {
682         return target->type->write_memory(target, address, size, count, buffer);
683 }
684
685 static int target_write_phys_memory(struct target *target,
686                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
687 {
688         return target->type->write_phys_memory(target, address, size, count, buffer);
689 }
690
691 int target_bulk_write_memory(struct target *target,
692                 uint32_t address, uint32_t count, uint8_t *buffer)
693 {
694         return target->type->bulk_write_memory(target, address, count, buffer);
695 }
696
697 int target_add_breakpoint(struct target *target,
698                 struct breakpoint *breakpoint)
699 {
700         if (target->state != TARGET_HALTED) {
701                 LOG_WARNING("target %s is not halted", target->cmd_name);
702                 return ERROR_TARGET_NOT_HALTED;
703         }
704         return target->type->add_breakpoint(target, breakpoint);
705 }
706 int target_remove_breakpoint(struct target *target,
707                 struct breakpoint *breakpoint)
708 {
709         return target->type->remove_breakpoint(target, breakpoint);
710 }
711
712 int target_add_watchpoint(struct target *target,
713                 struct watchpoint *watchpoint)
714 {
715         if (target->state != TARGET_HALTED) {
716                 LOG_WARNING("target %s is not halted", target->cmd_name);
717                 return ERROR_TARGET_NOT_HALTED;
718         }
719         return target->type->add_watchpoint(target, watchpoint);
720 }
721 int target_remove_watchpoint(struct target *target,
722                 struct watchpoint *watchpoint)
723 {
724         return target->type->remove_watchpoint(target, watchpoint);
725 }
726
727 int target_get_gdb_reg_list(struct target *target,
728                 struct reg **reg_list[], int *reg_list_size)
729 {
730         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
731 }
732 int target_step(struct target *target,
733                 int current, uint32_t address, int handle_breakpoints)
734 {
735         return target->type->step(target, current, address, handle_breakpoints);
736 }
737
738
739 /**
740  * Reset the @c examined flag for the given target.
741  * Pure paranoia -- targets are zeroed on allocation.
742  */
743 static void target_reset_examined(struct target *target)
744 {
745         target->examined = false;
746 }
747
748 static int
749 err_read_phys_memory(struct target *target, uint32_t address,
750                 uint32_t size, uint32_t count, uint8_t *buffer)
751 {
752         LOG_ERROR("Not implemented: %s", __func__);
753         return ERROR_FAIL;
754 }
755
756 static int
757 err_write_phys_memory(struct target *target, uint32_t address,
758                 uint32_t size, uint32_t count, uint8_t *buffer)
759 {
760         LOG_ERROR("Not implemented: %s", __func__);
761         return ERROR_FAIL;
762 }
763
764 static int handle_target(void *priv);
765
766 static int target_init_one(struct command_context *cmd_ctx,
767                 struct target *target)
768 {
769         target_reset_examined(target);
770
771         struct target_type *type = target->type;
772         if (type->examine == NULL)
773                 type->examine = default_examine;
774
775         if (type->check_reset== NULL)
776                 type->check_reset = default_check_reset;
777
778         int retval = type->init_target(cmd_ctx, target);
779         if (ERROR_OK != retval)
780         {
781                 LOG_ERROR("target '%s' init failed", target_name(target));
782                 return retval;
783         }
784
785         /**
786          * @todo get rid of those *memory_imp() methods, now that all
787          * callers are using target_*_memory() accessors ... and make
788          * sure the "physical" paths handle the same issues.
789          */
790         /* a non-invasive way(in terms of patches) to add some code that
791          * runs before the type->write/read_memory implementation
792          */
793         type->write_memory_imp = target->type->write_memory;
794         type->write_memory = target_write_memory_imp;
795
796         type->read_memory_imp = target->type->read_memory;
797         type->read_memory = target_read_memory_imp;
798
799         type->soft_reset_halt_imp = target->type->soft_reset_halt;
800         type->soft_reset_halt = target_soft_reset_halt_imp;
801
802         /* Sanity-check MMU support ... stub in what we must, to help
803          * implement it in stages, but warn if we need to do so.
804          */
805         if (type->mmu)
806         {
807                 if (type->write_phys_memory == NULL)
808                 {
809                         LOG_ERROR("type '%s' is missing write_phys_memory",
810                                         type->name);
811                         type->write_phys_memory = err_write_phys_memory;
812                 }
813                 if (type->read_phys_memory == NULL)
814                 {
815                         LOG_ERROR("type '%s' is missing read_phys_memory",
816                                         type->name);
817                         type->read_phys_memory = err_read_phys_memory;
818                 }
819                 if (type->virt2phys == NULL)
820                 {
821                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
822                         type->virt2phys = identity_virt2phys;
823                 }
824         }
825         else
826         {
827                 /* Make sure no-MMU targets all behave the same:  make no
828                  * distinction between physical and virtual addresses, and
829                  * ensure that virt2phys() is always an identity mapping.
830                  */
831                 if (type->write_phys_memory || type->read_phys_memory
832                                 || type->virt2phys)
833                 {
834                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
835                 }
836
837                 type->mmu = no_mmu;
838                 type->write_phys_memory = type->write_memory;
839                 type->read_phys_memory = type->read_memory;
840                 type->virt2phys = identity_virt2phys;
841         }
842         return ERROR_OK;
843 }
844
845 static int target_init(struct command_context *cmd_ctx)
846 {
847         struct target *target;
848         int retval;
849
850         for (target = all_targets; target; target = target->next)
851         {
852                 retval = target_init_one(cmd_ctx, target);
853                 if (ERROR_OK != retval)
854                         return retval;
855         }
856
857         if (!all_targets)
858                 return ERROR_OK;
859
860         retval = target_register_user_commands(cmd_ctx);
861         if (ERROR_OK != retval)
862                 return retval;
863
864         retval = target_register_timer_callback(&handle_target,
865                         100, 1, cmd_ctx->interp);
866         if (ERROR_OK != retval)
867                 return retval;
868
869         return ERROR_OK;
870 }
871
872 COMMAND_HANDLER(handle_target_init_command)
873 {
874         if (CMD_ARGC != 0)
875                 return ERROR_COMMAND_SYNTAX_ERROR;
876
877         static bool target_initialized = false;
878         if (target_initialized)
879         {
880                 LOG_INFO("'target init' has already been called");
881                 return ERROR_OK;
882         }
883         target_initialized = true;
884
885         LOG_DEBUG("Initializing targets...");
886         return target_init(CMD_CTX);
887 }
888
889 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
890 {
891         struct target_event_callback **callbacks_p = &target_event_callbacks;
892
893         if (callback == NULL)
894         {
895                 return ERROR_INVALID_ARGUMENTS;
896         }
897
898         if (*callbacks_p)
899         {
900                 while ((*callbacks_p)->next)
901                         callbacks_p = &((*callbacks_p)->next);
902                 callbacks_p = &((*callbacks_p)->next);
903         }
904
905         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
906         (*callbacks_p)->callback = callback;
907         (*callbacks_p)->priv = priv;
908         (*callbacks_p)->next = NULL;
909
910         return ERROR_OK;
911 }
912
913 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
914 {
915         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
916         struct timeval now;
917
918         if (callback == NULL)
919         {
920                 return ERROR_INVALID_ARGUMENTS;
921         }
922
923         if (*callbacks_p)
924         {
925                 while ((*callbacks_p)->next)
926                         callbacks_p = &((*callbacks_p)->next);
927                 callbacks_p = &((*callbacks_p)->next);
928         }
929
930         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
931         (*callbacks_p)->callback = callback;
932         (*callbacks_p)->periodic = periodic;
933         (*callbacks_p)->time_ms = time_ms;
934
935         gettimeofday(&now, NULL);
936         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
937         time_ms -= (time_ms % 1000);
938         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
939         if ((*callbacks_p)->when.tv_usec > 1000000)
940         {
941                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
942                 (*callbacks_p)->when.tv_sec += 1;
943         }
944
945         (*callbacks_p)->priv = priv;
946         (*callbacks_p)->next = NULL;
947
948         return ERROR_OK;
949 }
950
951 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
952 {
953         struct target_event_callback **p = &target_event_callbacks;
954         struct target_event_callback *c = target_event_callbacks;
955
956         if (callback == NULL)
957         {
958                 return ERROR_INVALID_ARGUMENTS;
959         }
960
961         while (c)
962         {
963                 struct target_event_callback *next = c->next;
964                 if ((c->callback == callback) && (c->priv == priv))
965                 {
966                         *p = next;
967                         free(c);
968                         return ERROR_OK;
969                 }
970                 else
971                         p = &(c->next);
972                 c = next;
973         }
974
975         return ERROR_OK;
976 }
977
978 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
979 {
980         struct target_timer_callback **p = &target_timer_callbacks;
981         struct target_timer_callback *c = target_timer_callbacks;
982
983         if (callback == NULL)
984         {
985                 return ERROR_INVALID_ARGUMENTS;
986         }
987
988         while (c)
989         {
990                 struct target_timer_callback *next = c->next;
991                 if ((c->callback == callback) && (c->priv == priv))
992                 {
993                         *p = next;
994                         free(c);
995                         return ERROR_OK;
996                 }
997                 else
998                         p = &(c->next);
999                 c = next;
1000         }
1001
1002         return ERROR_OK;
1003 }
1004
1005 int target_call_event_callbacks(struct target *target, enum target_event event)
1006 {
1007         struct target_event_callback *callback = target_event_callbacks;
1008         struct target_event_callback *next_callback;
1009
1010         if (event == TARGET_EVENT_HALTED)
1011         {
1012                 /* execute early halted first */
1013                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1014         }
1015
1016         LOG_DEBUG("target event %i (%s)",
1017                           event,
1018                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1019
1020         target_handle_event(target, event);
1021
1022         while (callback)
1023         {
1024                 next_callback = callback->next;
1025                 callback->callback(target, event, callback->priv);
1026                 callback = next_callback;
1027         }
1028
1029         return ERROR_OK;
1030 }
1031
1032 static int target_timer_callback_periodic_restart(
1033                 struct target_timer_callback *cb, struct timeval *now)
1034 {
1035         int time_ms = cb->time_ms;
1036         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1037         time_ms -= (time_ms % 1000);
1038         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1039         if (cb->when.tv_usec > 1000000)
1040         {
1041                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1042                 cb->when.tv_sec += 1;
1043         }
1044         return ERROR_OK;
1045 }
1046
1047 static int target_call_timer_callback(struct target_timer_callback *cb,
1048                 struct timeval *now)
1049 {
1050         cb->callback(cb->priv);
1051
1052         if (cb->periodic)
1053                 return target_timer_callback_periodic_restart(cb, now);
1054
1055         return target_unregister_timer_callback(cb->callback, cb->priv);
1056 }
1057
1058 static int target_call_timer_callbacks_check_time(int checktime)
1059 {
1060         keep_alive();
1061
1062         struct timeval now;
1063         gettimeofday(&now, NULL);
1064
1065         struct target_timer_callback *callback = target_timer_callbacks;
1066         while (callback)
1067         {
1068                 // cleaning up may unregister and free this callback
1069                 struct target_timer_callback *next_callback = callback->next;
1070
1071                 bool call_it = callback->callback &&
1072                         ((!checktime && callback->periodic) ||
1073                           now.tv_sec > callback->when.tv_sec ||
1074                          (now.tv_sec == callback->when.tv_sec &&
1075                           now.tv_usec >= callback->when.tv_usec));
1076
1077                 if (call_it)
1078                 {
1079                         int retval = target_call_timer_callback(callback, &now);
1080                         if (retval != ERROR_OK)
1081                                 return retval;
1082                 }
1083
1084                 callback = next_callback;
1085         }
1086
1087         return ERROR_OK;
1088 }
1089
1090 int target_call_timer_callbacks(void)
1091 {
1092         return target_call_timer_callbacks_check_time(1);
1093 }
1094
1095 /* invoke periodic callbacks immediately */
1096 int target_call_timer_callbacks_now(void)
1097 {
1098         return target_call_timer_callbacks_check_time(0);
1099 }
1100
1101 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1102 {
1103         struct working_area *c = target->working_areas;
1104         struct working_area *new_wa = NULL;
1105
1106         /* Reevaluate working area address based on MMU state*/
1107         if (target->working_areas == NULL)
1108         {
1109                 int retval;
1110                 int enabled;
1111
1112                 retval = target->type->mmu(target, &enabled);
1113                 if (retval != ERROR_OK)
1114                 {
1115                         return retval;
1116                 }
1117
1118                 if (!enabled) {
1119                         if (target->working_area_phys_spec) {
1120                                 LOG_DEBUG("MMU disabled, using physical "
1121                                         "address for working memory 0x%08x",
1122                                         (unsigned)target->working_area_phys);
1123                                 target->working_area = target->working_area_phys;
1124                         } else {
1125                                 LOG_ERROR("No working memory available. "
1126                                         "Specify -work-area-phys to target.");
1127                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1128                         }
1129                 } else {
1130                         if (target->working_area_virt_spec) {
1131                                 LOG_DEBUG("MMU enabled, using virtual "
1132                                         "address for working memory 0x%08x",
1133                                         (unsigned)target->working_area_virt);
1134                                 target->working_area = target->working_area_virt;
1135                         } else {
1136                                 LOG_ERROR("No working memory available. "
1137                                         "Specify -work-area-virt to target.");
1138                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1139                         }
1140                 }
1141         }
1142
1143         /* only allocate multiples of 4 byte */
1144         if (size % 4)
1145         {
1146                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1147                 size = (size + 3) & (~3);
1148         }
1149
1150         /* see if there's already a matching working area */
1151         while (c)
1152         {
1153                 if ((c->free) && (c->size == size))
1154                 {
1155                         new_wa = c;
1156                         break;
1157                 }
1158                 c = c->next;
1159         }
1160
1161         /* if not, allocate a new one */
1162         if (!new_wa)
1163         {
1164                 struct working_area **p = &target->working_areas;
1165                 uint32_t first_free = target->working_area;
1166                 uint32_t free_size = target->working_area_size;
1167
1168                 c = target->working_areas;
1169                 while (c)
1170                 {
1171                         first_free += c->size;
1172                         free_size -= c->size;
1173                         p = &c->next;
1174                         c = c->next;
1175                 }
1176
1177                 if (free_size < size)
1178                 {
1179                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1180                 }
1181
1182                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1183
1184                 new_wa = malloc(sizeof(struct working_area));
1185                 new_wa->next = NULL;
1186                 new_wa->size = size;
1187                 new_wa->address = first_free;
1188
1189                 if (target->backup_working_area)
1190                 {
1191                         int retval;
1192                         new_wa->backup = malloc(new_wa->size);
1193                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1194                         {
1195                                 free(new_wa->backup);
1196                                 free(new_wa);
1197                                 return retval;
1198                         }
1199                 }
1200                 else
1201                 {
1202                         new_wa->backup = NULL;
1203                 }
1204
1205                 /* put new entry in list */
1206                 *p = new_wa;
1207         }
1208
1209         /* mark as used, and return the new (reused) area */
1210         new_wa->free = 0;
1211         *area = new_wa;
1212
1213         /* user pointer */
1214         new_wa->user = area;
1215
1216         return ERROR_OK;
1217 }
1218
1219 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1220 {
1221         int retval;
1222
1223         retval = target_alloc_working_area_try(target, size, area);
1224         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1225         {
1226                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1227         }
1228         return retval;
1229
1230 }
1231
1232 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1233 {
1234         if (area->free)
1235                 return ERROR_OK;
1236
1237         if (restore && target->backup_working_area)
1238         {
1239                 int retval;
1240                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1241                         return retval;
1242         }
1243
1244         area->free = 1;
1245
1246         /* mark user pointer invalid */
1247         *area->user = NULL;
1248         area->user = NULL;
1249
1250         return ERROR_OK;
1251 }
1252
1253 int target_free_working_area(struct target *target, struct working_area *area)
1254 {
1255         return target_free_working_area_restore(target, area, 1);
1256 }
1257
1258 /* free resources and restore memory, if restoring memory fails,
1259  * free up resources anyway
1260  */
1261 static void target_free_all_working_areas_restore(struct target *target, int restore)
1262 {
1263         struct working_area *c = target->working_areas;
1264
1265         while (c)
1266         {
1267                 struct working_area *next = c->next;
1268                 target_free_working_area_restore(target, c, restore);
1269
1270                 if (c->backup)
1271                         free(c->backup);
1272
1273                 free(c);
1274
1275                 c = next;
1276         }
1277
1278         target->working_areas = NULL;
1279 }
1280
1281 void target_free_all_working_areas(struct target *target)
1282 {
1283         target_free_all_working_areas_restore(target, 1);
1284 }
1285
1286 int target_arch_state(struct target *target)
1287 {
1288         int retval;
1289         if (target == NULL)
1290         {
1291                 LOG_USER("No target has been configured");
1292                 return ERROR_OK;
1293         }
1294
1295         LOG_USER("target state: %s", target_state_name( target ));
1296
1297         if (target->state != TARGET_HALTED)
1298                 return ERROR_OK;
1299
1300         retval = target->type->arch_state(target);
1301         return retval;
1302 }
1303
1304 /* Single aligned words are guaranteed to use 16 or 32 bit access
1305  * mode respectively, otherwise data is handled as quickly as
1306  * possible
1307  */
1308 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1309 {
1310         int retval;
1311         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1312                   (int)size, (unsigned)address);
1313
1314         if (!target_was_examined(target))
1315         {
1316                 LOG_ERROR("Target not examined yet");
1317                 return ERROR_FAIL;
1318         }
1319
1320         if (size == 0) {
1321                 return ERROR_OK;
1322         }
1323
1324         if ((address + size - 1) < address)
1325         {
1326                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1327                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1328                                   (unsigned)address,
1329                                   (unsigned)size);
1330                 return ERROR_FAIL;
1331         }
1332
1333         if (((address % 2) == 0) && (size == 2))
1334         {
1335                 return target_write_memory(target, address, 2, 1, buffer);
1336         }
1337
1338         /* handle unaligned head bytes */
1339         if (address % 4)
1340         {
1341                 uint32_t unaligned = 4 - (address % 4);
1342
1343                 if (unaligned > size)
1344                         unaligned = size;
1345
1346                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1347                         return retval;
1348
1349                 buffer += unaligned;
1350                 address += unaligned;
1351                 size -= unaligned;
1352         }
1353
1354         /* handle aligned words */
1355         if (size >= 4)
1356         {
1357                 int aligned = size - (size % 4);
1358
1359                 /* use bulk writes above a certain limit. This may have to be changed */
1360                 if (aligned > 128)
1361                 {
1362                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1363                                 return retval;
1364                 }
1365                 else
1366                 {
1367                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1368                                 return retval;
1369                 }
1370
1371                 buffer += aligned;
1372                 address += aligned;
1373                 size -= aligned;
1374         }
1375
1376         /* handle tail writes of less than 4 bytes */
1377         if (size > 0)
1378         {
1379                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1380                         return retval;
1381         }
1382
1383         return ERROR_OK;
1384 }
1385
1386 /* Single aligned words are guaranteed to use 16 or 32 bit access
1387  * mode respectively, otherwise data is handled as quickly as
1388  * possible
1389  */
1390 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1391 {
1392         int retval;
1393         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1394                           (int)size, (unsigned)address);
1395
1396         if (!target_was_examined(target))
1397         {
1398                 LOG_ERROR("Target not examined yet");
1399                 return ERROR_FAIL;
1400         }
1401
1402         if (size == 0) {
1403                 return ERROR_OK;
1404         }
1405
1406         if ((address + size - 1) < address)
1407         {
1408                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1409                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1410                                   address,
1411                                   size);
1412                 return ERROR_FAIL;
1413         }
1414
1415         if (((address % 2) == 0) && (size == 2))
1416         {
1417                 return target_read_memory(target, address, 2, 1, buffer);
1418         }
1419
1420         /* handle unaligned head bytes */
1421         if (address % 4)
1422         {
1423                 uint32_t unaligned = 4 - (address % 4);
1424
1425                 if (unaligned > size)
1426                         unaligned = size;
1427
1428                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1429                         return retval;
1430
1431                 buffer += unaligned;
1432                 address += unaligned;
1433                 size -= unaligned;
1434         }
1435
1436         /* handle aligned words */
1437         if (size >= 4)
1438         {
1439                 int aligned = size - (size % 4);
1440
1441                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1442                         return retval;
1443
1444                 buffer += aligned;
1445                 address += aligned;
1446                 size -= aligned;
1447         }
1448
1449         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1450         if(size >=2)
1451         {
1452                 int aligned = size - (size%2);
1453                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1454                 if (retval != ERROR_OK)
1455                         return retval;
1456
1457                 buffer += aligned;
1458                 address += aligned;
1459                 size -= aligned;
1460         }
1461         /* handle tail writes of less than 4 bytes */
1462         if (size > 0)
1463         {
1464                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1465                         return retval;
1466         }
1467
1468         return ERROR_OK;
1469 }
1470
1471 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1472 {
1473         uint8_t *buffer;
1474         int retval;
1475         uint32_t i;
1476         uint32_t checksum = 0;
1477         if (!target_was_examined(target))
1478         {
1479                 LOG_ERROR("Target not examined yet");
1480                 return ERROR_FAIL;
1481         }
1482
1483         if ((retval = target->type->checksum_memory(target, address,
1484                 size, &checksum)) != ERROR_OK)
1485         {
1486                 buffer = malloc(size);
1487                 if (buffer == NULL)
1488                 {
1489                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1490                         return ERROR_INVALID_ARGUMENTS;
1491                 }
1492                 retval = target_read_buffer(target, address, size, buffer);
1493                 if (retval != ERROR_OK)
1494                 {
1495                         free(buffer);
1496                         return retval;
1497                 }
1498
1499                 /* convert to target endianess */
1500                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1501                 {
1502                         uint32_t target_data;
1503                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1504                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1505                 }
1506
1507                 retval = image_calculate_checksum(buffer, size, &checksum);
1508                 free(buffer);
1509         }
1510
1511         *crc = checksum;
1512
1513         return retval;
1514 }
1515
1516 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1517 {
1518         int retval;
1519         if (!target_was_examined(target))
1520         {
1521                 LOG_ERROR("Target not examined yet");
1522                 return ERROR_FAIL;
1523         }
1524
1525         if (target->type->blank_check_memory == 0)
1526                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1527
1528         retval = target->type->blank_check_memory(target, address, size, blank);
1529
1530         return retval;
1531 }
1532
1533 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1534 {
1535         uint8_t value_buf[4];
1536         if (!target_was_examined(target))
1537         {
1538                 LOG_ERROR("Target not examined yet");
1539                 return ERROR_FAIL;
1540         }
1541
1542         int retval = target_read_memory(target, address, 4, 1, value_buf);
1543
1544         if (retval == ERROR_OK)
1545         {
1546                 *value = target_buffer_get_u32(target, value_buf);
1547                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1548                                   address,
1549                                   *value);
1550         }
1551         else
1552         {
1553                 *value = 0x0;
1554                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1555                                   address);
1556         }
1557
1558         return retval;
1559 }
1560
1561 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1562 {
1563         uint8_t value_buf[2];
1564         if (!target_was_examined(target))
1565         {
1566                 LOG_ERROR("Target not examined yet");
1567                 return ERROR_FAIL;
1568         }
1569
1570         int retval = target_read_memory(target, address, 2, 1, value_buf);
1571
1572         if (retval == ERROR_OK)
1573         {
1574                 *value = target_buffer_get_u16(target, value_buf);
1575                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1576                                   address,
1577                                   *value);
1578         }
1579         else
1580         {
1581                 *value = 0x0;
1582                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1583                                   address);
1584         }
1585
1586         return retval;
1587 }
1588
1589 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1590 {
1591         int retval = target_read_memory(target, address, 1, 1, value);
1592         if (!target_was_examined(target))
1593         {
1594                 LOG_ERROR("Target not examined yet");
1595                 return ERROR_FAIL;
1596         }
1597
1598         if (retval == ERROR_OK)
1599         {
1600                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1601                                   address,
1602                                   *value);
1603         }
1604         else
1605         {
1606                 *value = 0x0;
1607                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1608                                   address);
1609         }
1610
1611         return retval;
1612 }
1613
1614 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1615 {
1616         int retval;
1617         uint8_t value_buf[4];
1618         if (!target_was_examined(target))
1619         {
1620                 LOG_ERROR("Target not examined yet");
1621                 return ERROR_FAIL;
1622         }
1623
1624         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1625                           address,
1626                           value);
1627
1628         target_buffer_set_u32(target, value_buf, value);
1629         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1630         {
1631                 LOG_DEBUG("failed: %i", retval);
1632         }
1633
1634         return retval;
1635 }
1636
1637 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1638 {
1639         int retval;
1640         uint8_t value_buf[2];
1641         if (!target_was_examined(target))
1642         {
1643                 LOG_ERROR("Target not examined yet");
1644                 return ERROR_FAIL;
1645         }
1646
1647         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1648                           address,
1649                           value);
1650
1651         target_buffer_set_u16(target, value_buf, value);
1652         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1653         {
1654                 LOG_DEBUG("failed: %i", retval);
1655         }
1656
1657         return retval;
1658 }
1659
1660 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1661 {
1662         int retval;
1663         if (!target_was_examined(target))
1664         {
1665                 LOG_ERROR("Target not examined yet");
1666                 return ERROR_FAIL;
1667         }
1668
1669         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1670                           address, value);
1671
1672         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1673         {
1674                 LOG_DEBUG("failed: %i", retval);
1675         }
1676
1677         return retval;
1678 }
1679
1680 COMMAND_HANDLER(handle_targets_command)
1681 {
1682         struct target *target = all_targets;
1683
1684         if (CMD_ARGC == 1)
1685         {
1686                 target = get_target(CMD_ARGV[0]);
1687                 if (target == NULL) {
1688                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1689                         goto DumpTargets;
1690                 }
1691                 if (!target->tap->enabled) {
1692                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1693                                         "can't be the current target\n",
1694                                         target->tap->dotted_name);
1695                         return ERROR_FAIL;
1696                 }
1697
1698                 CMD_CTX->current_target = target->target_number;
1699                 return ERROR_OK;
1700         }
1701 DumpTargets:
1702
1703         target = all_targets;
1704         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1705         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1706         while (target)
1707         {
1708                 const char *state;
1709                 char marker = ' ';
1710
1711                 if (target->tap->enabled)
1712                         state = target_state_name( target );
1713                 else
1714                         state = "tap-disabled";
1715
1716                 if (CMD_CTX->current_target == target->target_number)
1717                         marker = '*';
1718
1719                 /* keep columns lined up to match the headers above */
1720                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1721                                           target->target_number,
1722                                           marker,
1723                                           target_name(target),
1724                                           target_type_name(target),
1725                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1726                                                                 target->endianness)->name,
1727                                           target->tap->dotted_name,
1728                                           state);
1729                 target = target->next;
1730         }
1731
1732         return ERROR_OK;
1733 }
1734
1735 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1736
1737 static int powerDropout;
1738 static int srstAsserted;
1739
1740 static int runPowerRestore;
1741 static int runPowerDropout;
1742 static int runSrstAsserted;
1743 static int runSrstDeasserted;
1744
1745 static int sense_handler(void)
1746 {
1747         static int prevSrstAsserted = 0;
1748         static int prevPowerdropout = 0;
1749
1750         int retval;
1751         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1752                 return retval;
1753
1754         int powerRestored;
1755         powerRestored = prevPowerdropout && !powerDropout;
1756         if (powerRestored)
1757         {
1758                 runPowerRestore = 1;
1759         }
1760
1761         long long current = timeval_ms();
1762         static long long lastPower = 0;
1763         int waitMore = lastPower + 2000 > current;
1764         if (powerDropout && !waitMore)
1765         {
1766                 runPowerDropout = 1;
1767                 lastPower = current;
1768         }
1769
1770         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1771                 return retval;
1772
1773         int srstDeasserted;
1774         srstDeasserted = prevSrstAsserted && !srstAsserted;
1775
1776         static long long lastSrst = 0;
1777         waitMore = lastSrst + 2000 > current;
1778         if (srstDeasserted && !waitMore)
1779         {
1780                 runSrstDeasserted = 1;
1781                 lastSrst = current;
1782         }
1783
1784         if (!prevSrstAsserted && srstAsserted)
1785         {
1786                 runSrstAsserted = 1;
1787         }
1788
1789         prevSrstAsserted = srstAsserted;
1790         prevPowerdropout = powerDropout;
1791
1792         if (srstDeasserted || powerRestored)
1793         {
1794                 /* Other than logging the event we can't do anything here.
1795                  * Issuing a reset is a particularly bad idea as we might
1796                  * be inside a reset already.
1797                  */
1798         }
1799
1800         return ERROR_OK;
1801 }
1802
1803 /* process target state changes */
1804 static int handle_target(void *priv)
1805 {
1806         Jim_Interp *interp = (Jim_Interp *)priv;
1807         int retval = ERROR_OK;
1808
1809         if (!is_jtag_poll_safe())
1810         {
1811                 /* polling is disabled currently */
1812                 return ERROR_OK;
1813         }
1814
1815         /* we do not want to recurse here... */
1816         static int recursive = 0;
1817         if (! recursive)
1818         {
1819                 recursive = 1;
1820                 sense_handler();
1821                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1822                  * We need to avoid an infinite loop/recursion here and we do that by
1823                  * clearing the flags after running these events.
1824                  */
1825                 int did_something = 0;
1826                 if (runSrstAsserted)
1827                 {
1828                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1829                         Jim_Eval(interp, "srst_asserted");
1830                         did_something = 1;
1831                 }
1832                 if (runSrstDeasserted)
1833                 {
1834                         Jim_Eval(interp, "srst_deasserted");
1835                         did_something = 1;
1836                 }
1837                 if (runPowerDropout)
1838                 {
1839                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1840                         Jim_Eval(interp, "power_dropout");
1841                         did_something = 1;
1842                 }
1843                 if (runPowerRestore)
1844                 {
1845                         Jim_Eval(interp, "power_restore");
1846                         did_something = 1;
1847                 }
1848
1849                 if (did_something)
1850                 {
1851                         /* clear detect flags */
1852                         sense_handler();
1853                 }
1854
1855                 /* clear action flags */
1856
1857                 runSrstAsserted = 0;
1858                 runSrstDeasserted = 0;
1859                 runPowerRestore = 0;
1860                 runPowerDropout = 0;
1861
1862                 recursive = 0;
1863         }
1864
1865         /* Poll targets for state changes unless that's globally disabled.
1866          * Skip targets that are currently disabled.
1867          */
1868         for (struct target *target = all_targets;
1869                         is_jtag_poll_safe() && target;
1870                         target = target->next)
1871         {
1872                 if (!target->tap->enabled)
1873                         continue;
1874
1875                 /* only poll target if we've got power and srst isn't asserted */
1876                 if (!powerDropout && !srstAsserted)
1877                 {
1878                         /* polling may fail silently until the target has been examined */
1879                         if ((retval = target_poll(target)) != ERROR_OK)
1880                         {
1881                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1882                                  * *why* we are aborting GDB, then we'll spam telnet when the
1883                                  * poll is failing persistently.
1884                                  *
1885                                  * If we could implement an event that detected the
1886                                  * target going from non-pollable to pollable, we could issue
1887                                  * an error only upon the transition.
1888                                  */
1889                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1890                                 return retval;
1891                         }
1892                 }
1893         }
1894
1895         return retval;
1896 }
1897
1898 COMMAND_HANDLER(handle_reg_command)
1899 {
1900         struct target *target;
1901         struct reg *reg = NULL;
1902         unsigned count = 0;
1903         char *value;
1904
1905         LOG_DEBUG("-");
1906
1907         target = get_current_target(CMD_CTX);
1908
1909         /* list all available registers for the current target */
1910         if (CMD_ARGC == 0)
1911         {
1912                 struct reg_cache *cache = target->reg_cache;
1913
1914                 count = 0;
1915                 while (cache)
1916                 {
1917                         unsigned i;
1918
1919                         command_print(CMD_CTX, "===== %s", cache->name);
1920
1921                         for (i = 0, reg = cache->reg_list;
1922                                         i < cache->num_regs;
1923                                         i++, reg++, count++)
1924                         {
1925                                 /* only print cached values if they are valid */
1926                                 if (reg->valid) {
1927                                         value = buf_to_str(reg->value,
1928                                                         reg->size, 16);
1929                                         command_print(CMD_CTX,
1930                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1931                                                         count, reg->name,
1932                                                         reg->size, value,
1933                                                         reg->dirty
1934                                                                 ? " (dirty)"
1935                                                                 : "");
1936                                         free(value);
1937                                 } else {
1938                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1939                                                           count, reg->name,
1940                                                           reg->size) ;
1941                                 }
1942                         }
1943                         cache = cache->next;
1944                 }
1945
1946                 return ERROR_OK;
1947         }
1948
1949         /* access a single register by its ordinal number */
1950         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1951         {
1952                 unsigned num;
1953                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1954
1955                 struct reg_cache *cache = target->reg_cache;
1956                 count = 0;
1957                 while (cache)
1958                 {
1959                         unsigned i;
1960                         for (i = 0; i < cache->num_regs; i++)
1961                         {
1962                                 if (count++ == num)
1963                                 {
1964                                         reg = &cache->reg_list[i];
1965                                         break;
1966                                 }
1967                         }
1968                         if (reg)
1969                                 break;
1970                         cache = cache->next;
1971                 }
1972
1973                 if (!reg)
1974                 {
1975                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1976                         return ERROR_OK;
1977                 }
1978         } else /* access a single register by its name */
1979         {
1980                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1981
1982                 if (!reg)
1983                 {
1984                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1985                         return ERROR_OK;
1986                 }
1987         }
1988
1989         /* display a register */
1990         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1991         {
1992                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1993                         reg->valid = 0;
1994
1995                 if (reg->valid == 0)
1996                 {
1997                         reg->type->get(reg);
1998                 }
1999                 value = buf_to_str(reg->value, reg->size, 16);
2000                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2001                 free(value);
2002                 return ERROR_OK;
2003         }
2004
2005         /* set register value */
2006         if (CMD_ARGC == 2)
2007         {
2008                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2009                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2010
2011                 reg->type->set(reg, buf);
2012
2013                 value = buf_to_str(reg->value, reg->size, 16);
2014                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2015                 free(value);
2016
2017                 free(buf);
2018
2019                 return ERROR_OK;
2020         }
2021
2022         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2023
2024         return ERROR_OK;
2025 }
2026
2027 COMMAND_HANDLER(handle_poll_command)
2028 {
2029         int retval = ERROR_OK;
2030         struct target *target = get_current_target(CMD_CTX);
2031
2032         if (CMD_ARGC == 0)
2033         {
2034                 command_print(CMD_CTX, "background polling: %s",
2035                                 jtag_poll_get_enabled() ? "on" : "off");
2036                 command_print(CMD_CTX, "TAP: %s (%s)",
2037                                 target->tap->dotted_name,
2038                                 target->tap->enabled ? "enabled" : "disabled");
2039                 if (!target->tap->enabled)
2040                         return ERROR_OK;
2041                 if ((retval = target_poll(target)) != ERROR_OK)
2042                         return retval;
2043                 if ((retval = target_arch_state(target)) != ERROR_OK)
2044                         return retval;
2045         }
2046         else if (CMD_ARGC == 1)
2047         {
2048                 bool enable;
2049                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2050                 jtag_poll_set_enabled(enable);
2051         }
2052         else
2053         {
2054                 return ERROR_COMMAND_SYNTAX_ERROR;
2055         }
2056
2057         return retval;
2058 }
2059
2060 COMMAND_HANDLER(handle_wait_halt_command)
2061 {
2062         if (CMD_ARGC > 1)
2063                 return ERROR_COMMAND_SYNTAX_ERROR;
2064
2065         unsigned ms = 5000;
2066         if (1 == CMD_ARGC)
2067         {
2068                 int retval = parse_uint(CMD_ARGV[0], &ms);
2069                 if (ERROR_OK != retval)
2070                 {
2071                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2072                         return ERROR_COMMAND_SYNTAX_ERROR;
2073                 }
2074                 // convert seconds (given) to milliseconds (needed)
2075                 ms *= 1000;
2076         }
2077
2078         struct target *target = get_current_target(CMD_CTX);
2079         return target_wait_state(target, TARGET_HALTED, ms);
2080 }
2081
2082 /* wait for target state to change. The trick here is to have a low
2083  * latency for short waits and not to suck up all the CPU time
2084  * on longer waits.
2085  *
2086  * After 500ms, keep_alive() is invoked
2087  */
2088 int target_wait_state(struct target *target, enum target_state state, int ms)
2089 {
2090         int retval;
2091         long long then = 0, cur;
2092         int once = 1;
2093
2094         for (;;)
2095         {
2096                 if ((retval = target_poll(target)) != ERROR_OK)
2097                         return retval;
2098                 if (target->state == state)
2099                 {
2100                         break;
2101                 }
2102                 cur = timeval_ms();
2103                 if (once)
2104                 {
2105                         once = 0;
2106                         then = timeval_ms();
2107                         LOG_DEBUG("waiting for target %s...",
2108                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2109                 }
2110
2111                 if (cur-then > 500)
2112                 {
2113                         keep_alive();
2114                 }
2115
2116                 if ((cur-then) > ms)
2117                 {
2118                         LOG_ERROR("timed out while waiting for target %s",
2119                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2120                         return ERROR_FAIL;
2121                 }
2122         }
2123
2124         return ERROR_OK;
2125 }
2126
2127 COMMAND_HANDLER(handle_halt_command)
2128 {
2129         LOG_DEBUG("-");
2130
2131         struct target *target = get_current_target(CMD_CTX);
2132         int retval = target_halt(target);
2133         if (ERROR_OK != retval)
2134                 return retval;
2135
2136         if (CMD_ARGC == 1)
2137         {
2138                 unsigned wait;
2139                 retval = parse_uint(CMD_ARGV[0], &wait);
2140                 if (ERROR_OK != retval)
2141                         return ERROR_COMMAND_SYNTAX_ERROR;
2142                 if (!wait)
2143                         return ERROR_OK;
2144         }
2145
2146         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2147 }
2148
2149 COMMAND_HANDLER(handle_soft_reset_halt_command)
2150 {
2151         struct target *target = get_current_target(CMD_CTX);
2152
2153         LOG_USER("requesting target halt and executing a soft reset");
2154
2155         target->type->soft_reset_halt(target);
2156
2157         return ERROR_OK;
2158 }
2159
2160 COMMAND_HANDLER(handle_reset_command)
2161 {
2162         if (CMD_ARGC > 1)
2163                 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165         enum target_reset_mode reset_mode = RESET_RUN;
2166         if (CMD_ARGC == 1)
2167         {
2168                 const Jim_Nvp *n;
2169                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2170                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2171                         return ERROR_COMMAND_SYNTAX_ERROR;
2172                 }
2173                 reset_mode = n->value;
2174         }
2175
2176         /* reset *all* targets */
2177         return target_process_reset(CMD_CTX, reset_mode);
2178 }
2179
2180
2181 COMMAND_HANDLER(handle_resume_command)
2182 {
2183         int current = 1;
2184         if (CMD_ARGC > 1)
2185                 return ERROR_COMMAND_SYNTAX_ERROR;
2186
2187         struct target *target = get_current_target(CMD_CTX);
2188         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2189
2190         /* with no CMD_ARGV, resume from current pc, addr = 0,
2191          * with one arguments, addr = CMD_ARGV[0],
2192          * handle breakpoints, not debugging */
2193         uint32_t addr = 0;
2194         if (CMD_ARGC == 1)
2195         {
2196                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2197                 current = 0;
2198         }
2199
2200         return target_resume(target, current, addr, 1, 0);
2201 }
2202
2203 COMMAND_HANDLER(handle_step_command)
2204 {
2205         if (CMD_ARGC > 1)
2206                 return ERROR_COMMAND_SYNTAX_ERROR;
2207
2208         LOG_DEBUG("-");
2209
2210         /* with no CMD_ARGV, step from current pc, addr = 0,
2211          * with one argument addr = CMD_ARGV[0],
2212          * handle breakpoints, debugging */
2213         uint32_t addr = 0;
2214         int current_pc = 1;
2215         if (CMD_ARGC == 1)
2216         {
2217                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2218                 current_pc = 0;
2219         }
2220
2221         struct target *target = get_current_target(CMD_CTX);
2222
2223         return target->type->step(target, current_pc, addr, 1);
2224 }
2225
2226 static void handle_md_output(struct command_context *cmd_ctx,
2227                 struct target *target, uint32_t address, unsigned size,
2228                 unsigned count, const uint8_t *buffer)
2229 {
2230         const unsigned line_bytecnt = 32;
2231         unsigned line_modulo = line_bytecnt / size;
2232
2233         char output[line_bytecnt * 4 + 1];
2234         unsigned output_len = 0;
2235
2236         const char *value_fmt;
2237         switch (size) {
2238         case 4: value_fmt = "%8.8x "; break;
2239         case 2: value_fmt = "%4.4x "; break;
2240         case 1: value_fmt = "%2.2x "; break;
2241         default:
2242                 /* "can't happen", caller checked */
2243                 LOG_ERROR("invalid memory read size: %u", size);
2244                 return;
2245         }
2246
2247         for (unsigned i = 0; i < count; i++)
2248         {
2249                 if (i % line_modulo == 0)
2250                 {
2251                         output_len += snprintf(output + output_len,
2252                                         sizeof(output) - output_len,
2253                                         "0x%8.8x: ",
2254                                         (unsigned)(address + (i*size)));
2255                 }
2256
2257                 uint32_t value = 0;
2258                 const uint8_t *value_ptr = buffer + i * size;
2259                 switch (size) {
2260                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2261                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2262                 case 1: value = *value_ptr;
2263                 }
2264                 output_len += snprintf(output + output_len,
2265                                 sizeof(output) - output_len,
2266                                 value_fmt, value);
2267
2268                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2269                 {
2270                         command_print(cmd_ctx, "%s", output);
2271                         output_len = 0;
2272                 }
2273         }
2274 }
2275
2276 COMMAND_HANDLER(handle_md_command)
2277 {
2278         if (CMD_ARGC < 1)
2279                 return ERROR_COMMAND_SYNTAX_ERROR;
2280
2281         unsigned size = 0;
2282         switch (CMD_NAME[2]) {
2283         case 'w': size = 4; break;
2284         case 'h': size = 2; break;
2285         case 'b': size = 1; break;
2286         default: return ERROR_COMMAND_SYNTAX_ERROR;
2287         }
2288
2289         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2290         int (*fn)(struct target *target,
2291                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2292         if (physical)
2293         {
2294                 CMD_ARGC--;
2295                 CMD_ARGV++;
2296                 fn=target_read_phys_memory;
2297         } else
2298         {
2299                 fn=target_read_memory;
2300         }
2301         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2302         {
2303                 return ERROR_COMMAND_SYNTAX_ERROR;
2304         }
2305
2306         uint32_t address;
2307         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2308
2309         unsigned count = 1;
2310         if (CMD_ARGC == 2)
2311                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2312
2313         uint8_t *buffer = calloc(count, size);
2314
2315         struct target *target = get_current_target(CMD_CTX);
2316         int retval = fn(target, address, size, count, buffer);
2317         if (ERROR_OK == retval)
2318                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2319
2320         free(buffer);
2321
2322         return retval;
2323 }
2324
2325 typedef int (*target_write_fn)(struct target *target,
2326                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2327
2328 static int target_write_memory_fast(struct target *target,
2329                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2330 {
2331         return target_write_buffer(target, address, size * count, buffer);
2332 }
2333
2334 static int target_fill_mem(struct target *target,
2335                 uint32_t address,
2336                 target_write_fn fn,
2337                 unsigned data_size,
2338                 /* value */
2339                 uint32_t b,
2340                 /* count */
2341                 unsigned c)
2342 {
2343         /* We have to write in reasonably large chunks to be able
2344          * to fill large memory areas with any sane speed */
2345         const unsigned chunk_size = 16384;
2346         uint8_t *target_buf = malloc(chunk_size * data_size);
2347         if (target_buf == NULL)
2348         {
2349                 LOG_ERROR("Out of memory");
2350                 return ERROR_FAIL;
2351         }
2352
2353         for (unsigned i = 0; i < chunk_size; i ++)
2354         {
2355                 switch (data_size)
2356                 {
2357                 case 4:
2358                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2359                         break;
2360                 case 2:
2361                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2362                         break;
2363                 case 1:
2364                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2365                         break;
2366                 default:
2367                         exit(-1);
2368                 }
2369         }
2370
2371         int retval = ERROR_OK;
2372
2373         for (unsigned x = 0; x < c; x += chunk_size)
2374         {
2375                 unsigned current;
2376                 current = c - x;
2377                 if (current > chunk_size)
2378                 {
2379                         current = chunk_size;
2380                 }
2381                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2382                 if (retval != ERROR_OK)
2383                 {
2384                         break;
2385                 }
2386                 /* avoid GDB timeouts */
2387                 keep_alive();
2388         }
2389         free(target_buf);
2390
2391         return retval;
2392 }
2393
2394
2395 COMMAND_HANDLER(handle_mw_command)
2396 {
2397         if (CMD_ARGC < 2)
2398         {
2399                 return ERROR_COMMAND_SYNTAX_ERROR;
2400         }
2401         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2402         target_write_fn fn;
2403         if (physical)
2404         {
2405                 CMD_ARGC--;
2406                 CMD_ARGV++;
2407                 fn=target_write_phys_memory;
2408         } else
2409         {
2410                 fn = target_write_memory_fast;
2411         }
2412         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2413                 return ERROR_COMMAND_SYNTAX_ERROR;
2414
2415         uint32_t address;
2416         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2417
2418         uint32_t value;
2419         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2420
2421         unsigned count = 1;
2422         if (CMD_ARGC == 3)
2423                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2424
2425         struct target *target = get_current_target(CMD_CTX);
2426         unsigned wordsize;
2427         switch (CMD_NAME[2])
2428         {
2429                 case 'w':
2430                         wordsize = 4;
2431                         break;
2432                 case 'h':
2433                         wordsize = 2;
2434                         break;
2435                 case 'b':
2436                         wordsize = 1;
2437                         break;
2438                 default:
2439                         return ERROR_COMMAND_SYNTAX_ERROR;
2440         }
2441
2442         return target_fill_mem(target, address, fn, wordsize, value, count);
2443 }
2444
2445 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2446                 uint32_t *min_address, uint32_t *max_address)
2447 {
2448         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2449                 return ERROR_COMMAND_SYNTAX_ERROR;
2450
2451         /* a base address isn't always necessary,
2452          * default to 0x0 (i.e. don't relocate) */
2453         if (CMD_ARGC >= 2)
2454         {
2455                 uint32_t addr;
2456                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2457                 image->base_address = addr;
2458                 image->base_address_set = 1;
2459         }
2460         else
2461                 image->base_address_set = 0;
2462
2463         image->start_address_set = 0;
2464
2465         if (CMD_ARGC >= 4)
2466         {
2467                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2468         }
2469         if (CMD_ARGC == 5)
2470         {
2471                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2472                 // use size (given) to find max (required)
2473                 *max_address += *min_address;
2474         }
2475
2476         if (*min_address > *max_address)
2477                 return ERROR_COMMAND_SYNTAX_ERROR;
2478
2479         return ERROR_OK;
2480 }
2481
2482 COMMAND_HANDLER(handle_load_image_command)
2483 {
2484         uint8_t *buffer;
2485         size_t buf_cnt;
2486         uint32_t image_size;
2487         uint32_t min_address = 0;
2488         uint32_t max_address = 0xffffffff;
2489         int i;
2490         struct image image;
2491
2492         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2493                         &image, &min_address, &max_address);
2494         if (ERROR_OK != retval)
2495                 return retval;
2496
2497         struct target *target = get_current_target(CMD_CTX);
2498
2499         struct duration bench;
2500         duration_start(&bench);
2501
2502         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2503         {
2504                 return ERROR_OK;
2505         }
2506
2507         image_size = 0x0;
2508         retval = ERROR_OK;
2509         for (i = 0; i < image.num_sections; i++)
2510         {
2511                 buffer = malloc(image.sections[i].size);
2512                 if (buffer == NULL)
2513                 {
2514                         command_print(CMD_CTX,
2515                                                   "error allocating buffer for section (%d bytes)",
2516                                                   (int)(image.sections[i].size));
2517                         break;
2518                 }
2519
2520                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2521                 {
2522                         free(buffer);
2523                         break;
2524                 }
2525
2526                 uint32_t offset = 0;
2527                 uint32_t length = buf_cnt;
2528
2529                 /* DANGER!!! beware of unsigned comparision here!!! */
2530
2531                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2532                                 (image.sections[i].base_address < max_address))
2533                 {
2534                         if (image.sections[i].base_address < min_address)
2535                         {
2536                                 /* clip addresses below */
2537                                 offset += min_address-image.sections[i].base_address;
2538                                 length -= offset;
2539                         }
2540
2541                         if (image.sections[i].base_address + buf_cnt > max_address)
2542                         {
2543                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2544                         }
2545
2546                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2547                         {
2548                                 free(buffer);
2549                                 break;
2550                         }
2551                         image_size += length;
2552                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2553                                                   (unsigned int)length,
2554                                                   image.sections[i].base_address + offset);
2555                 }
2556
2557                 free(buffer);
2558         }
2559
2560         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2561         {
2562                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2563                                 "in %fs (%0.3f KiB/s)", image_size,
2564                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2565         }
2566
2567         image_close(&image);
2568
2569         return retval;
2570
2571 }
2572
2573 COMMAND_HANDLER(handle_dump_image_command)
2574 {
2575         struct fileio fileio;
2576
2577         uint8_t buffer[560];
2578         int retvaltemp;
2579
2580
2581         struct target *target = get_current_target(CMD_CTX);
2582
2583         if (CMD_ARGC != 3)
2584         {
2585                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2586                 return ERROR_OK;
2587         }
2588
2589         uint32_t address;
2590         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2591         uint32_t size;
2592         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2593
2594         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2595         {
2596                 return ERROR_OK;
2597         }
2598
2599         struct duration bench;
2600         duration_start(&bench);
2601
2602         int retval = ERROR_OK;
2603         while (size > 0)
2604         {
2605                 size_t size_written;
2606                 uint32_t this_run_size = (size > 560) ? 560 : size;
2607                 retval = target_read_buffer(target, address, this_run_size, buffer);
2608                 if (retval != ERROR_OK)
2609                 {
2610                         break;
2611                 }
2612
2613                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2614                 if (retval != ERROR_OK)
2615                 {
2616                         break;
2617                 }
2618
2619                 size -= this_run_size;
2620                 address += this_run_size;
2621         }
2622
2623         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2624                 return retvaltemp;
2625
2626         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2627         {
2628                 command_print(CMD_CTX,
2629                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)fileio.size,
2630                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2631         }
2632
2633         return retval;
2634 }
2635
2636 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2637 {
2638         uint8_t *buffer;
2639         size_t buf_cnt;
2640         uint32_t image_size;
2641         int i;
2642         int retval;
2643         uint32_t checksum = 0;
2644         uint32_t mem_checksum = 0;
2645
2646         struct image image;
2647
2648         struct target *target = get_current_target(CMD_CTX);
2649
2650         if (CMD_ARGC < 1)
2651         {
2652                 return ERROR_COMMAND_SYNTAX_ERROR;
2653         }
2654
2655         if (!target)
2656         {
2657                 LOG_ERROR("no target selected");
2658                 return ERROR_FAIL;
2659         }
2660
2661         struct duration bench;
2662         duration_start(&bench);
2663
2664         if (CMD_ARGC >= 2)
2665         {
2666                 uint32_t addr;
2667                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2668                 image.base_address = addr;
2669                 image.base_address_set = 1;
2670         }
2671         else
2672         {
2673                 image.base_address_set = 0;
2674                 image.base_address = 0x0;
2675         }
2676
2677         image.start_address_set = 0;
2678
2679         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2680         {
2681                 return retval;
2682         }
2683
2684         image_size = 0x0;
2685         int diffs = 0;
2686         retval = ERROR_OK;
2687         for (i = 0; i < image.num_sections; i++)
2688         {
2689                 buffer = malloc(image.sections[i].size);
2690                 if (buffer == NULL)
2691                 {
2692                         command_print(CMD_CTX,
2693                                                   "error allocating buffer for section (%d bytes)",
2694                                                   (int)(image.sections[i].size));
2695                         break;
2696                 }
2697                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2698                 {
2699                         free(buffer);
2700                         break;
2701                 }
2702
2703                 if (verify)
2704                 {
2705                         /* calculate checksum of image */
2706                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2707
2708                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2709                         if (retval != ERROR_OK)
2710                         {
2711                                 free(buffer);
2712                                 break;
2713                         }
2714
2715                         if (checksum != mem_checksum)
2716                         {
2717                                 /* failed crc checksum, fall back to a binary compare */
2718                                 uint8_t *data;
2719
2720                                 if (diffs == 0)
2721                                 {
2722                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2723                                 }
2724
2725                                 data = (uint8_t*)malloc(buf_cnt);
2726
2727                                 /* Can we use 32bit word accesses? */
2728                                 int size = 1;
2729                                 int count = buf_cnt;
2730                                 if ((count % 4) == 0)
2731                                 {
2732                                         size *= 4;
2733                                         count /= 4;
2734                                 }
2735                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2736                                 if (retval == ERROR_OK)
2737                                 {
2738                                         uint32_t t;
2739                                         for (t = 0; t < buf_cnt; t++)
2740                                         {
2741                                                 if (data[t] != buffer[t])
2742                                                 {
2743                                                         command_print(CMD_CTX,
2744                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2745                                                                                   diffs,
2746                                                                                   (unsigned)(t + image.sections[i].base_address),
2747                                                                                   data[t],
2748                                                                                   buffer[t]);
2749                                                         if (diffs++ >= 127)
2750                                                         {
2751                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2752                                                                 free(data);
2753                                                                 free(buffer);
2754                                                                 goto done;
2755                                                         }
2756                                                 }
2757                                                 keep_alive();
2758                                         }
2759                                 }
2760                                 free(data);
2761                         }
2762                 } else
2763                 {
2764                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2765                                                   image.sections[i].base_address,
2766                                                   buf_cnt);
2767                 }
2768
2769                 free(buffer);
2770                 image_size += buf_cnt;
2771         }
2772 done:
2773         if (diffs > 0)
2774         {
2775                 retval = ERROR_FAIL;
2776         }
2777         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2778         {
2779                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2780                                 "in %fs (%0.3f KiB/s)", image_size,
2781                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2782         }
2783
2784         image_close(&image);
2785
2786         return retval;
2787 }
2788
2789 COMMAND_HANDLER(handle_verify_image_command)
2790 {
2791         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2792 }
2793
2794 COMMAND_HANDLER(handle_test_image_command)
2795 {
2796         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2797 }
2798
2799 static int handle_bp_command_list(struct command_context *cmd_ctx)
2800 {
2801         struct target *target = get_current_target(cmd_ctx);
2802         struct breakpoint *breakpoint = target->breakpoints;
2803         while (breakpoint)
2804         {
2805                 if (breakpoint->type == BKPT_SOFT)
2806                 {
2807                         char* buf = buf_to_str(breakpoint->orig_instr,
2808                                         breakpoint->length, 16);
2809                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2810                                         breakpoint->address,
2811                                         breakpoint->length,
2812                                         breakpoint->set, buf);
2813                         free(buf);
2814                 }
2815                 else
2816                 {
2817                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2818                                                   breakpoint->address,
2819                                                   breakpoint->length, breakpoint->set);
2820                 }
2821
2822                 breakpoint = breakpoint->next;
2823         }
2824         return ERROR_OK;
2825 }
2826
2827 static int handle_bp_command_set(struct command_context *cmd_ctx,
2828                 uint32_t addr, uint32_t length, int hw)
2829 {
2830         struct target *target = get_current_target(cmd_ctx);
2831         int retval = breakpoint_add(target, addr, length, hw);
2832         if (ERROR_OK == retval)
2833                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2834         else
2835                 LOG_ERROR("Failure setting breakpoint");
2836         return retval;
2837 }
2838
2839 COMMAND_HANDLER(handle_bp_command)
2840 {
2841         if (CMD_ARGC == 0)
2842                 return handle_bp_command_list(CMD_CTX);
2843
2844         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2845         {
2846                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2847                 return ERROR_COMMAND_SYNTAX_ERROR;
2848         }
2849
2850         uint32_t addr;
2851         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2852         uint32_t length;
2853         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2854
2855         int hw = BKPT_SOFT;
2856         if (CMD_ARGC == 3)
2857         {
2858                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2859                         hw = BKPT_HARD;
2860                 else
2861                         return ERROR_COMMAND_SYNTAX_ERROR;
2862         }
2863
2864         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2865 }
2866
2867 COMMAND_HANDLER(handle_rbp_command)
2868 {
2869         if (CMD_ARGC != 1)
2870                 return ERROR_COMMAND_SYNTAX_ERROR;
2871
2872         uint32_t addr;
2873         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2874
2875         struct target *target = get_current_target(CMD_CTX);
2876         breakpoint_remove(target, addr);
2877
2878         return ERROR_OK;
2879 }
2880
2881 COMMAND_HANDLER(handle_wp_command)
2882 {
2883         struct target *target = get_current_target(CMD_CTX);
2884
2885         if (CMD_ARGC == 0)
2886         {
2887                 struct watchpoint *watchpoint = target->watchpoints;
2888
2889                 while (watchpoint)
2890                 {
2891                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2892                                         ", len: 0x%8.8" PRIx32
2893                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2894                                         ", mask: 0x%8.8" PRIx32,
2895                                         watchpoint->address,
2896                                         watchpoint->length,
2897                                         (int)watchpoint->rw,
2898                                         watchpoint->value,
2899                                         watchpoint->mask);
2900                         watchpoint = watchpoint->next;
2901                 }
2902                 return ERROR_OK;
2903         }
2904
2905         enum watchpoint_rw type = WPT_ACCESS;
2906         uint32_t addr = 0;
2907         uint32_t length = 0;
2908         uint32_t data_value = 0x0;
2909         uint32_t data_mask = 0xffffffff;
2910
2911         switch (CMD_ARGC)
2912         {
2913         case 5:
2914                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2915                 // fall through
2916         case 4:
2917                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2918                 // fall through
2919         case 3:
2920                 switch (CMD_ARGV[2][0])
2921                 {
2922                 case 'r':
2923                         type = WPT_READ;
2924                         break;
2925                 case 'w':
2926                         type = WPT_WRITE;
2927                         break;
2928                 case 'a':
2929                         type = WPT_ACCESS;
2930                         break;
2931                 default:
2932                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2933                         return ERROR_COMMAND_SYNTAX_ERROR;
2934                 }
2935                 // fall through
2936         case 2:
2937                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2938                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2939                 break;
2940
2941         default:
2942                 command_print(CMD_CTX, "usage: wp [address length "
2943                                 "[(r|w|a) [value [mask]]]]");
2944                 return ERROR_COMMAND_SYNTAX_ERROR;
2945         }
2946
2947         int retval = watchpoint_add(target, addr, length, type,
2948                         data_value, data_mask);
2949         if (ERROR_OK != retval)
2950                 LOG_ERROR("Failure setting watchpoints");
2951
2952         return retval;
2953 }
2954
2955 COMMAND_HANDLER(handle_rwp_command)
2956 {
2957         if (CMD_ARGC != 1)
2958                 return ERROR_COMMAND_SYNTAX_ERROR;
2959
2960         uint32_t addr;
2961         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2962
2963         struct target *target = get_current_target(CMD_CTX);
2964         watchpoint_remove(target, addr);
2965
2966         return ERROR_OK;
2967 }
2968
2969
2970 /**
2971  * Translate a virtual address to a physical address.
2972  *
2973  * The low-level target implementation must have logged a detailed error
2974  * which is forwarded to telnet/GDB session.
2975  */
2976 COMMAND_HANDLER(handle_virt2phys_command)
2977 {
2978         if (CMD_ARGC != 1)
2979                 return ERROR_COMMAND_SYNTAX_ERROR;
2980
2981         uint32_t va;
2982         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2983         uint32_t pa;
2984
2985         struct target *target = get_current_target(CMD_CTX);
2986         int retval = target->type->virt2phys(target, va, &pa);
2987         if (retval == ERROR_OK)
2988                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2989
2990         return retval;
2991 }
2992
2993 static void writeData(FILE *f, const void *data, size_t len)
2994 {
2995         size_t written = fwrite(data, 1, len, f);
2996         if (written != len)
2997                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2998 }
2999
3000 static void writeLong(FILE *f, int l)
3001 {
3002         int i;
3003         for (i = 0; i < 4; i++)
3004         {
3005                 char c = (l >> (i*8))&0xff;
3006                 writeData(f, &c, 1);
3007         }
3008
3009 }
3010
3011 static void writeString(FILE *f, char *s)
3012 {
3013         writeData(f, s, strlen(s));
3014 }
3015
3016 /* Dump a gmon.out histogram file. */
3017 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3018 {
3019         uint32_t i;
3020         FILE *f = fopen(filename, "w");
3021         if (f == NULL)
3022                 return;
3023         writeString(f, "gmon");
3024         writeLong(f, 0x00000001); /* Version */
3025         writeLong(f, 0); /* padding */
3026         writeLong(f, 0); /* padding */
3027         writeLong(f, 0); /* padding */
3028
3029         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3030         writeData(f, &zero, 1);
3031
3032         /* figure out bucket size */
3033         uint32_t min = samples[0];
3034         uint32_t max = samples[0];
3035         for (i = 0; i < sampleNum; i++)
3036         {
3037                 if (min > samples[i])
3038                 {
3039                         min = samples[i];
3040                 }
3041                 if (max < samples[i])
3042                 {
3043                         max = samples[i];
3044                 }
3045         }
3046
3047         int addressSpace = (max-min + 1);
3048
3049         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3050         uint32_t length = addressSpace;
3051         if (length > maxBuckets)
3052         {
3053                 length = maxBuckets;
3054         }
3055         int *buckets = malloc(sizeof(int)*length);
3056         if (buckets == NULL)
3057         {
3058                 fclose(f);
3059                 return;
3060         }
3061         memset(buckets, 0, sizeof(int)*length);
3062         for (i = 0; i < sampleNum;i++)
3063         {
3064                 uint32_t address = samples[i];
3065                 long long a = address-min;
3066                 long long b = length-1;
3067                 long long c = addressSpace-1;
3068                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3069                 buckets[index_t]++;
3070         }
3071
3072         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3073         writeLong(f, min);                      /* low_pc */
3074         writeLong(f, max);                      /* high_pc */
3075         writeLong(f, length);           /* # of samples */
3076         writeLong(f, 64000000);         /* 64MHz */
3077         writeString(f, "seconds");
3078         for (i = 0; i < (15-strlen("seconds")); i++)
3079                 writeData(f, &zero, 1);
3080         writeString(f, "s");
3081
3082         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3083
3084         char *data = malloc(2*length);
3085         if (data != NULL)
3086         {
3087                 for (i = 0; i < length;i++)
3088                 {
3089                         int val;
3090                         val = buckets[i];
3091                         if (val > 65535)
3092                         {
3093                                 val = 65535;
3094                         }
3095                         data[i*2]=val&0xff;
3096                         data[i*2 + 1]=(val >> 8)&0xff;
3097                 }
3098                 free(buckets);
3099                 writeData(f, data, length * 2);
3100                 free(data);
3101         } else
3102         {
3103                 free(buckets);
3104         }
3105
3106         fclose(f);
3107 }
3108
3109 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3110  * which will be used as a random sampling of PC */
3111 COMMAND_HANDLER(handle_profile_command)
3112 {
3113         struct target *target = get_current_target(CMD_CTX);
3114         struct timeval timeout, now;
3115
3116         gettimeofday(&timeout, NULL);
3117         if (CMD_ARGC != 2)
3118         {
3119                 return ERROR_COMMAND_SYNTAX_ERROR;
3120         }
3121         unsigned offset;
3122         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3123
3124         timeval_add_time(&timeout, offset, 0);
3125
3126         /**
3127          * @todo: Some cores let us sample the PC without the
3128          * annoying halt/resume step; for example, ARMv7 PCSR.
3129          * Provide a way to use that more efficient mechanism.
3130          */
3131
3132         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3133
3134         static const int maxSample = 10000;
3135         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3136         if (samples == NULL)
3137                 return ERROR_OK;
3138
3139         int numSamples = 0;
3140         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3141         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3142
3143         for (;;)
3144         {
3145                 int retval;
3146                 target_poll(target);
3147                 if (target->state == TARGET_HALTED)
3148                 {
3149                         uint32_t t=*((uint32_t *)reg->value);
3150                         samples[numSamples++]=t;
3151                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3152                         target_poll(target);
3153                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3154                 } else if (target->state == TARGET_RUNNING)
3155                 {
3156                         /* We want to quickly sample the PC. */
3157                         if ((retval = target_halt(target)) != ERROR_OK)
3158                         {
3159                                 free(samples);
3160                                 return retval;
3161                         }
3162                 } else
3163                 {
3164                         command_print(CMD_CTX, "Target not halted or running");
3165                         retval = ERROR_OK;
3166                         break;
3167                 }
3168                 if (retval != ERROR_OK)
3169                 {
3170                         break;
3171                 }
3172
3173                 gettimeofday(&now, NULL);
3174                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3175                 {
3176                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3177                         if ((retval = target_poll(target)) != ERROR_OK)
3178                         {
3179                                 free(samples);
3180                                 return retval;
3181                         }
3182                         if (target->state == TARGET_HALTED)
3183                         {
3184                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3185                         }
3186                         if ((retval = target_poll(target)) != ERROR_OK)
3187                         {
3188                                 free(samples);
3189                                 return retval;
3190                         }
3191                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3192                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3193                         break;
3194                 }
3195         }
3196         free(samples);
3197
3198         return ERROR_OK;
3199 }
3200
3201 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3202 {
3203         char *namebuf;
3204         Jim_Obj *nameObjPtr, *valObjPtr;
3205         int result;
3206
3207         namebuf = alloc_printf("%s(%d)", varname, idx);
3208         if (!namebuf)
3209                 return JIM_ERR;
3210
3211         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3212         valObjPtr = Jim_NewIntObj(interp, val);
3213         if (!nameObjPtr || !valObjPtr)
3214         {
3215                 free(namebuf);
3216                 return JIM_ERR;
3217         }
3218
3219         Jim_IncrRefCount(nameObjPtr);
3220         Jim_IncrRefCount(valObjPtr);
3221         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3222         Jim_DecrRefCount(interp, nameObjPtr);
3223         Jim_DecrRefCount(interp, valObjPtr);
3224         free(namebuf);
3225         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3226         return result;
3227 }
3228
3229 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3230 {
3231         struct command_context *context;
3232         struct target *target;
3233
3234         context = current_command_context(interp);
3235         assert (context != NULL);
3236
3237         target = get_current_target(context);
3238         if (target == NULL)
3239         {
3240                 LOG_ERROR("mem2array: no current target");
3241                 return JIM_ERR;
3242         }
3243
3244         return  target_mem2array(interp, target, argc-1, argv + 1);
3245 }
3246
3247 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3248 {
3249         long l;
3250         uint32_t width;
3251         int len;
3252         uint32_t addr;
3253         uint32_t count;
3254         uint32_t v;
3255         const char *varname;
3256         int  n, e, retval;
3257         uint32_t i;
3258
3259         /* argv[1] = name of array to receive the data
3260          * argv[2] = desired width
3261          * argv[3] = memory address
3262          * argv[4] = count of times to read
3263          */
3264         if (argc != 4) {
3265                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3266                 return JIM_ERR;
3267         }
3268         varname = Jim_GetString(argv[0], &len);
3269         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3270
3271         e = Jim_GetLong(interp, argv[1], &l);
3272         width = l;
3273         if (e != JIM_OK) {
3274                 return e;
3275         }
3276
3277         e = Jim_GetLong(interp, argv[2], &l);
3278         addr = l;
3279         if (e != JIM_OK) {
3280                 return e;
3281         }
3282         e = Jim_GetLong(interp, argv[3], &l);
3283         len = l;
3284         if (e != JIM_OK) {
3285                 return e;
3286         }
3287         switch (width) {
3288                 case 8:
3289                         width = 1;
3290                         break;
3291                 case 16:
3292                         width = 2;
3293                         break;
3294                 case 32:
3295                         width = 4;
3296                         break;
3297                 default:
3298                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3299                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3300                         return JIM_ERR;
3301         }
3302         if (len == 0) {
3303                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3304                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3305                 return JIM_ERR;
3306         }
3307         if ((addr + (len * width)) < addr) {
3308                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3309                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3310                 return JIM_ERR;
3311         }
3312         /* absurd transfer size? */
3313         if (len > 65536) {
3314                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3315                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3316                 return JIM_ERR;
3317         }
3318
3319         if ((width == 1) ||
3320                 ((width == 2) && ((addr & 1) == 0)) ||
3321                 ((width == 4) && ((addr & 3) == 0))) {
3322                 /* all is well */
3323         } else {
3324                 char buf[100];
3325                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3326                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3327                                 addr,
3328                                 width);
3329                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3330                 return JIM_ERR;
3331         }
3332
3333         /* Transfer loop */
3334
3335         /* index counter */
3336         n = 0;
3337
3338         size_t buffersize = 4096;
3339         uint8_t *buffer = malloc(buffersize);
3340         if (buffer == NULL)
3341                 return JIM_ERR;
3342
3343         /* assume ok */
3344         e = JIM_OK;
3345         while (len) {
3346                 /* Slurp... in buffer size chunks */
3347
3348                 count = len; /* in objects.. */
3349                 if (count > (buffersize/width)) {
3350                         count = (buffersize/width);
3351                 }
3352
3353                 retval = target_read_memory(target, addr, width, count, buffer);
3354                 if (retval != ERROR_OK) {
3355                         /* BOO !*/
3356                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3357                                           (unsigned int)addr,
3358                                           (int)width,
3359                                           (int)count);
3360                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3361                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3362                         e = JIM_ERR;
3363                         len = 0;
3364                 } else {
3365                         v = 0; /* shut up gcc */
3366                         for (i = 0 ;i < count ;i++, n++) {
3367                                 switch (width) {
3368                                         case 4:
3369                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3370                                                 break;
3371                                         case 2:
3372                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3373                                                 break;
3374                                         case 1:
3375                                                 v = buffer[i] & 0x0ff;
3376                                                 break;
3377                                 }
3378                                 new_int_array_element(interp, varname, n, v);
3379                         }
3380                         len -= count;
3381                 }
3382         }
3383
3384         free(buffer);
3385
3386         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3387
3388         return JIM_OK;
3389 }
3390
3391 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3392 {
3393         char *namebuf;
3394         Jim_Obj *nameObjPtr, *valObjPtr;
3395         int result;
3396         long l;
3397
3398         namebuf = alloc_printf("%s(%d)", varname, idx);
3399         if (!namebuf)
3400                 return JIM_ERR;
3401
3402         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3403         if (!nameObjPtr)
3404         {
3405                 free(namebuf);
3406                 return JIM_ERR;
3407         }
3408
3409         Jim_IncrRefCount(nameObjPtr);
3410         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3411         Jim_DecrRefCount(interp, nameObjPtr);
3412         free(namebuf);
3413         if (valObjPtr == NULL)
3414                 return JIM_ERR;
3415
3416         result = Jim_GetLong(interp, valObjPtr, &l);
3417         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3418         *val = l;
3419         return result;
3420 }
3421
3422 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3423 {
3424         struct command_context *context;
3425         struct target *target;
3426
3427         context = current_command_context(interp);
3428         assert (context != NULL);
3429
3430         target = get_current_target(context);
3431         if (target == NULL) {
3432                 LOG_ERROR("array2mem: no current target");
3433                 return JIM_ERR;
3434         }
3435
3436         return target_array2mem(interp,target, argc-1, argv + 1);
3437 }
3438
3439 static int target_array2mem(Jim_Interp *interp, struct target *target,
3440                 int argc, Jim_Obj *const *argv)
3441 {
3442         long l;
3443         uint32_t width;
3444         int len;
3445         uint32_t addr;
3446         uint32_t count;
3447         uint32_t v;
3448         const char *varname;
3449         int  n, e, retval;
3450         uint32_t i;
3451
3452         /* argv[1] = name of array to get the data
3453          * argv[2] = desired width
3454          * argv[3] = memory address
3455          * argv[4] = count to write
3456          */
3457         if (argc != 4) {
3458                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3459                 return JIM_ERR;
3460         }
3461         varname = Jim_GetString(argv[0], &len);
3462         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3463
3464         e = Jim_GetLong(interp, argv[1], &l);
3465         width = l;
3466         if (e != JIM_OK) {
3467                 return e;
3468         }
3469
3470         e = Jim_GetLong(interp, argv[2], &l);
3471         addr = l;
3472         if (e != JIM_OK) {
3473                 return e;
3474         }
3475         e = Jim_GetLong(interp, argv[3], &l);
3476         len = l;
3477         if (e != JIM_OK) {
3478                 return e;
3479         }
3480         switch (width) {
3481                 case 8:
3482                         width = 1;
3483                         break;
3484                 case 16:
3485                         width = 2;
3486                         break;
3487                 case 32:
3488                         width = 4;
3489                         break;
3490                 default:
3491                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3492                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3493                         return JIM_ERR;
3494         }
3495         if (len == 0) {
3496                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3497                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3498                 return JIM_ERR;
3499         }
3500         if ((addr + (len * width)) < addr) {
3501                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3502                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3503                 return JIM_ERR;
3504         }
3505         /* absurd transfer size? */
3506         if (len > 65536) {
3507                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3508                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3509                 return JIM_ERR;
3510         }
3511
3512         if ((width == 1) ||
3513                 ((width == 2) && ((addr & 1) == 0)) ||
3514                 ((width == 4) && ((addr & 3) == 0))) {
3515                 /* all is well */
3516         } else {
3517                 char buf[100];
3518                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3519                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3520                                 (unsigned int)addr,
3521                                 (int)width);
3522                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3523                 return JIM_ERR;
3524         }
3525
3526         /* Transfer loop */
3527
3528         /* index counter */
3529         n = 0;
3530         /* assume ok */
3531         e = JIM_OK;
3532
3533         size_t buffersize = 4096;
3534         uint8_t *buffer = malloc(buffersize);
3535         if (buffer == NULL)
3536                 return JIM_ERR;
3537
3538         while (len) {
3539                 /* Slurp... in buffer size chunks */
3540
3541                 count = len; /* in objects.. */
3542                 if (count > (buffersize/width)) {
3543                         count = (buffersize/width);
3544                 }
3545
3546                 v = 0; /* shut up gcc */
3547                 for (i = 0 ;i < count ;i++, n++) {
3548                         get_int_array_element(interp, varname, n, &v);
3549                         switch (width) {
3550                         case 4:
3551                                 target_buffer_set_u32(target, &buffer[i*width], v);
3552                                 break;
3553                         case 2:
3554                                 target_buffer_set_u16(target, &buffer[i*width], v);
3555                                 break;
3556                         case 1:
3557                                 buffer[i] = v & 0x0ff;
3558                                 break;
3559                         }
3560                 }
3561                 len -= count;
3562
3563                 retval = target_write_memory(target, addr, width, count, buffer);
3564                 if (retval != ERROR_OK) {
3565                         /* BOO !*/
3566                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3567                                           (unsigned int)addr,
3568                                           (int)width,
3569                                           (int)count);
3570                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3571                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3572                         e = JIM_ERR;
3573                         len = 0;
3574                 }
3575         }
3576
3577         free(buffer);
3578
3579         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3580
3581         return JIM_OK;
3582 }
3583
3584 /* FIX? should we propagate errors here rather than printing them
3585  * and continuing?
3586  */
3587 void target_handle_event(struct target *target, enum target_event e)
3588 {
3589         struct target_event_action *teap;
3590
3591         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3592                 if (teap->event == e) {
3593                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3594                                            target->target_number,
3595                                            target_name(target),
3596                                            target_type_name(target),
3597                                            e,
3598                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3599                                            Jim_GetString(teap->body, NULL));
3600                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3601                         {
3602                                 Jim_PrintErrorMessage(teap->interp);
3603                         }
3604                 }
3605         }
3606 }
3607
3608 /**
3609  * Returns true only if the target has a handler for the specified event.
3610  */
3611 bool target_has_event_action(struct target *target, enum target_event event)
3612 {
3613         struct target_event_action *teap;
3614
3615         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3616                 if (teap->event == event)
3617                         return true;
3618         }
3619         return false;
3620 }
3621
3622 enum target_cfg_param {
3623         TCFG_TYPE,
3624         TCFG_EVENT,
3625         TCFG_WORK_AREA_VIRT,
3626         TCFG_WORK_AREA_PHYS,
3627         TCFG_WORK_AREA_SIZE,
3628         TCFG_WORK_AREA_BACKUP,
3629         TCFG_ENDIAN,
3630         TCFG_VARIANT,
3631         TCFG_CHAIN_POSITION,
3632 };
3633
3634 static Jim_Nvp nvp_config_opts[] = {
3635         { .name = "-type",             .value = TCFG_TYPE },
3636         { .name = "-event",            .value = TCFG_EVENT },
3637         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3638         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3639         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3640         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3641         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3642         { .name = "-variant",          .value = TCFG_VARIANT },
3643         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3644
3645         { .name = NULL, .value = -1 }
3646 };
3647
3648 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3649 {
3650         Jim_Nvp *n;
3651         Jim_Obj *o;
3652         jim_wide w;
3653         char *cp;
3654         int e;
3655
3656         /* parse config or cget options ... */
3657         while (goi->argc > 0) {
3658                 Jim_SetEmptyResult(goi->interp);
3659                 /* Jim_GetOpt_Debug(goi); */
3660
3661                 if (target->type->target_jim_configure) {
3662                         /* target defines a configure function */
3663                         /* target gets first dibs on parameters */
3664                         e = (*(target->type->target_jim_configure))(target, goi);
3665                         if (e == JIM_OK) {
3666                                 /* more? */
3667                                 continue;
3668                         }
3669                         if (e == JIM_ERR) {
3670                                 /* An error */
3671                                 return e;
3672                         }
3673                         /* otherwise we 'continue' below */
3674                 }
3675                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3676                 if (e != JIM_OK) {
3677                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3678                         return e;
3679                 }
3680                 switch (n->value) {
3681                 case TCFG_TYPE:
3682                         /* not setable */
3683                         if (goi->isconfigure) {
3684                                 Jim_SetResult_sprintf(goi->interp,
3685                                                 "not settable: %s", n->name);
3686                                 return JIM_ERR;
3687                         } else {
3688                         no_params:
3689                                 if (goi->argc != 0) {
3690                                         Jim_WrongNumArgs(goi->interp,
3691                                                         goi->argc, goi->argv,
3692                                                         "NO PARAMS");
3693                                         return JIM_ERR;
3694                                 }
3695                         }
3696                         Jim_SetResultString(goi->interp,
3697                                         target_type_name(target), -1);
3698                         /* loop for more */
3699                         break;
3700                 case TCFG_EVENT:
3701                         if (goi->argc == 0) {
3702                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3703                                 return JIM_ERR;
3704                         }
3705
3706                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3707                         if (e != JIM_OK) {
3708                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3709                                 return e;
3710                         }
3711
3712                         if (goi->isconfigure) {
3713                                 if (goi->argc != 1) {
3714                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3715                                         return JIM_ERR;
3716                                 }
3717                         } else {
3718                                 if (goi->argc != 0) {
3719                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3720                                         return JIM_ERR;
3721                                 }
3722                         }
3723
3724                         {
3725                                 struct target_event_action *teap;
3726
3727                                 teap = target->event_action;
3728                                 /* replace existing? */
3729                                 while (teap) {
3730                                         if (teap->event == (enum target_event)n->value) {
3731                                                 break;
3732                                         }
3733                                         teap = teap->next;
3734                                 }
3735
3736                                 if (goi->isconfigure) {
3737                                         bool replace = true;
3738                                         if (teap == NULL) {
3739                                                 /* create new */
3740                                                 teap = calloc(1, sizeof(*teap));
3741                                                 replace = false;
3742                                         }
3743                                         teap->event = n->value;
3744                                         teap->interp = goi->interp;
3745                                         Jim_GetOpt_Obj(goi, &o);
3746                                         if (teap->body) {
3747                                                 Jim_DecrRefCount(teap->interp, teap->body);
3748                                         }
3749                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3750                                         /*
3751                                          * FIXME:
3752                                          *     Tcl/TK - "tk events" have a nice feature.
3753                                          *     See the "BIND" command.
3754                                          *    We should support that here.
3755                                          *     You can specify %X and %Y in the event code.
3756                                          *     The idea is: %T - target name.
3757                                          *     The idea is: %N - target number
3758                                          *     The idea is: %E - event name.
3759                                          */
3760                                         Jim_IncrRefCount(teap->body);
3761
3762                                         if (!replace)
3763                                         {
3764                                                 /* add to head of event list */
3765                                                 teap->next = target->event_action;
3766                                                 target->event_action = teap;
3767                                         }
3768                                         Jim_SetEmptyResult(goi->interp);
3769                                 } else {
3770                                         /* get */
3771                                         if (teap == NULL) {
3772                                                 Jim_SetEmptyResult(goi->interp);
3773                                         } else {
3774                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3775                                         }
3776                                 }
3777                         }
3778                         /* loop for more */
3779                         break;
3780
3781                 case TCFG_WORK_AREA_VIRT:
3782                         if (goi->isconfigure) {
3783                                 target_free_all_working_areas(target);
3784                                 e = Jim_GetOpt_Wide(goi, &w);
3785                                 if (e != JIM_OK) {
3786                                         return e;
3787                                 }
3788                                 target->working_area_virt = w;
3789                                 target->working_area_virt_spec = true;
3790                         } else {
3791                                 if (goi->argc != 0) {
3792                                         goto no_params;
3793                                 }
3794                         }
3795                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3796                         /* loop for more */
3797                         break;
3798
3799                 case TCFG_WORK_AREA_PHYS:
3800                         if (goi->isconfigure) {
3801                                 target_free_all_working_areas(target);
3802                                 e = Jim_GetOpt_Wide(goi, &w);
3803                                 if (e != JIM_OK) {
3804                                         return e;
3805                                 }
3806                                 target->working_area_phys = w;
3807                                 target->working_area_phys_spec = true;
3808                         } else {
3809                                 if (goi->argc != 0) {
3810                                         goto no_params;
3811                                 }
3812                         }
3813                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3814                         /* loop for more */
3815                         break;
3816
3817                 case TCFG_WORK_AREA_SIZE:
3818                         if (goi->isconfigure) {
3819                                 target_free_all_working_areas(target);
3820                                 e = Jim_GetOpt_Wide(goi, &w);
3821                                 if (e != JIM_OK) {
3822                                         return e;
3823                                 }
3824                                 target->working_area_size = w;
3825                         } else {
3826                                 if (goi->argc != 0) {
3827                                         goto no_params;
3828                                 }
3829                         }
3830                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3831                         /* loop for more */
3832                         break;
3833
3834                 case TCFG_WORK_AREA_BACKUP:
3835                         if (goi->isconfigure) {
3836                                 target_free_all_working_areas(target);
3837                                 e = Jim_GetOpt_Wide(goi, &w);
3838                                 if (e != JIM_OK) {
3839                                         return e;
3840                                 }
3841                                 /* make this exactly 1 or 0 */
3842                                 target->backup_working_area = (!!w);
3843                         } else {
3844                                 if (goi->argc != 0) {
3845                                         goto no_params;
3846                                 }
3847                         }
3848                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3849                         /* loop for more e*/
3850                         break;
3851
3852                 case TCFG_ENDIAN:
3853                         if (goi->isconfigure) {
3854                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3855                                 if (e != JIM_OK) {
3856                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3857                                         return e;
3858                                 }
3859                                 target->endianness = n->value;
3860                         } else {
3861                                 if (goi->argc != 0) {
3862                                         goto no_params;
3863                                 }
3864                         }
3865                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3866                         if (n->name == NULL) {
3867                                 target->endianness = TARGET_LITTLE_ENDIAN;
3868                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3869                         }
3870                         Jim_SetResultString(goi->interp, n->name, -1);
3871                         /* loop for more */
3872                         break;
3873
3874                 case TCFG_VARIANT:
3875                         if (goi->isconfigure) {
3876                                 if (goi->argc < 1) {
3877                                         Jim_SetResult_sprintf(goi->interp,
3878                                                                                    "%s ?STRING?",
3879                                                                                    n->name);
3880                                         return JIM_ERR;
3881                                 }
3882                                 if (target->variant) {
3883                                         free((void *)(target->variant));
3884                                 }
3885                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3886                                 target->variant = strdup(cp);
3887                         } else {
3888                                 if (goi->argc != 0) {
3889                                         goto no_params;
3890                                 }
3891                         }
3892                         Jim_SetResultString(goi->interp, target->variant,-1);
3893                         /* loop for more */
3894                         break;
3895                 case TCFG_CHAIN_POSITION:
3896                         if (goi->isconfigure) {
3897                                 Jim_Obj *o_t;
3898                                 struct jtag_tap *tap;
3899                                 target_free_all_working_areas(target);
3900                                 e = Jim_GetOpt_Obj(goi, &o_t);
3901                                 if (e != JIM_OK) {
3902                                         return e;
3903                                 }
3904                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3905                                 if (tap == NULL) {
3906                                         return JIM_ERR;
3907                                 }
3908                                 /* make this exactly 1 or 0 */
3909                                 target->tap = tap;
3910                         } else {
3911                                 if (goi->argc != 0) {
3912                                         goto no_params;
3913                                 }
3914                         }
3915                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3916                         /* loop for more e*/
3917                         break;
3918                 }
3919         } /* while (goi->argc) */
3920
3921
3922                 /* done - we return */
3923         return JIM_OK;
3924 }
3925
3926 static int
3927 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3928 {
3929         Jim_GetOptInfo goi;
3930
3931         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3932         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3933         int need_args = 1 + goi.isconfigure;
3934         if (goi.argc < need_args)
3935         {
3936                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3937                         goi.isconfigure
3938                                 ? "missing: -option VALUE ..."
3939                                 : "missing: -option ...");
3940                 return JIM_ERR;
3941         }
3942         struct target *target = Jim_CmdPrivData(goi.interp);
3943         return target_configure(&goi, target);
3944 }
3945
3946 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3947 {
3948         const char *cmd_name = Jim_GetString(argv[0], NULL);
3949
3950         Jim_GetOptInfo goi;
3951         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3952
3953         /* danger! goi.argc will be modified below! */
3954         argc = goi.argc;
3955
3956         if (argc != 2 && argc != 3)
3957         {
3958                 Jim_SetResult_sprintf(goi.interp,
3959                                 "usage: %s <address> <data> [<count>]", cmd_name);
3960                 return JIM_ERR;
3961         }
3962
3963
3964         jim_wide a;
3965         int e = Jim_GetOpt_Wide(&goi, &a);
3966         if (e != JIM_OK)
3967                 return e;
3968
3969         jim_wide b;
3970         e = Jim_GetOpt_Wide(&goi, &b);
3971         if (e != JIM_OK)
3972                 return e;
3973
3974         jim_wide c = 1;
3975         if (argc == 3)
3976         {
3977                 e = Jim_GetOpt_Wide(&goi, &c);
3978                 if (e != JIM_OK)
3979                         return e;
3980         }
3981
3982         struct target *target = Jim_CmdPrivData(goi.interp);
3983         unsigned data_size;
3984         if (strcasecmp(cmd_name, "mww") == 0) {
3985                 data_size = 4;
3986         }
3987         else if (strcasecmp(cmd_name, "mwh") == 0) {
3988                 data_size = 2;
3989         }
3990         else if (strcasecmp(cmd_name, "mwb") == 0) {
3991                 data_size = 1;
3992         } else {
3993                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3994                 return JIM_ERR;
3995         }
3996
3997         return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
3998 }
3999
4000 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4001 {
4002         const char *cmd_name = Jim_GetString(argv[0], NULL);
4003
4004         Jim_GetOptInfo goi;
4005         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4006
4007         /* danger! goi.argc will be modified below! */
4008         argc = goi.argc;
4009
4010         if ((argc != 1) && (argc != 2))
4011         {
4012                 Jim_SetResult_sprintf(goi.interp,
4013                                 "usage: %s <address> [<count>]", cmd_name);
4014                 return JIM_ERR;
4015         }
4016
4017         jim_wide a;
4018         int e = Jim_GetOpt_Wide(&goi, &a);
4019         if (e != JIM_OK) {
4020                 return JIM_ERR;
4021         }
4022         jim_wide c;
4023         if (argc == 2) {
4024                 e = Jim_GetOpt_Wide(&goi, &c);
4025                 if (e != JIM_OK) {
4026                         return JIM_ERR;
4027                 }
4028         } else {
4029                 c = 1;
4030         }
4031         jim_wide b = 1; /* shut up gcc */
4032         if (strcasecmp(cmd_name, "mdw") == 0)
4033                 b = 4;
4034         else if (strcasecmp(cmd_name, "mdh") == 0)
4035                 b = 2;
4036         else if (strcasecmp(cmd_name, "mdb") == 0)
4037                 b = 1;
4038         else {
4039                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4040                 return JIM_ERR;
4041         }
4042
4043         /* convert count to "bytes" */
4044         c = c * b;
4045
4046         struct target *target = Jim_CmdPrivData(goi.interp);
4047         uint8_t  target_buf[32];
4048         jim_wide x, y, z;
4049         while (c > 0) {
4050                 y = c;
4051                 if (y > 16) {
4052                         y = 16;
4053                 }
4054                 e = target_read_memory(target, a, b, y / b, target_buf);
4055                 if (e != ERROR_OK) {
4056                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4057                         return JIM_ERR;
4058                 }
4059
4060                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4061                 switch (b) {
4062                 case 4:
4063                         for (x = 0; x < 16 && x < y; x += 4)
4064                         {
4065                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4066                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4067                         }
4068                         for (; (x < 16) ; x += 4) {
4069                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4070                         }
4071                         break;
4072                 case 2:
4073                         for (x = 0; x < 16 && x < y; x += 2)
4074                         {
4075                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4076                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4077                         }
4078                         for (; (x < 16) ; x += 2) {
4079                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4080                         }
4081                         break;
4082                 case 1:
4083                 default:
4084                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4085                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4086                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4087                         }
4088                         for (; (x < 16) ; x += 1) {
4089                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4090                         }
4091                         break;
4092                 }
4093                 /* ascii-ify the bytes */
4094                 for (x = 0 ; x < y ; x++) {
4095                         if ((target_buf[x] >= 0x20) &&
4096                                 (target_buf[x] <= 0x7e)) {
4097                                 /* good */
4098                         } else {
4099                                 /* smack it */
4100                                 target_buf[x] = '.';
4101                         }
4102                 }
4103                 /* space pad  */
4104                 while (x < 16) {
4105                         target_buf[x] = ' ';
4106                         x++;
4107                 }
4108                 /* terminate */
4109                 target_buf[16] = 0;
4110                 /* print - with a newline */
4111                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4112                 /* NEXT... */
4113                 c -= 16;
4114                 a += 16;
4115         }
4116         return JIM_OK;
4117 }
4118
4119 static int jim_target_mem2array(Jim_Interp *interp,
4120                 int argc, Jim_Obj *const *argv)
4121 {
4122         struct target *target = Jim_CmdPrivData(interp);
4123         return target_mem2array(interp, target, argc - 1, argv + 1);
4124 }
4125
4126 static int jim_target_array2mem(Jim_Interp *interp,
4127                 int argc, Jim_Obj *const *argv)
4128 {
4129         struct target *target = Jim_CmdPrivData(interp);
4130         return target_array2mem(interp, target, argc - 1, argv + 1);
4131 }
4132
4133 static int jim_target_tap_disabled(Jim_Interp *interp)
4134 {
4135         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4136         return JIM_ERR;
4137 }
4138
4139 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4140 {
4141         if (argc != 1)
4142         {
4143                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4144                 return JIM_ERR;
4145         }
4146         struct target *target = Jim_CmdPrivData(interp);
4147         if (!target->tap->enabled)
4148                 return jim_target_tap_disabled(interp);
4149
4150         int e = target->type->examine(target);
4151         if (e != ERROR_OK)
4152         {
4153                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4154                 return JIM_ERR;
4155         }
4156         return JIM_OK;
4157 }
4158
4159 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4160 {
4161         if (argc != 1)
4162         {
4163                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4164                 return JIM_ERR;
4165         }
4166         struct target *target = Jim_CmdPrivData(interp);
4167
4168         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4169                 return JIM_ERR;
4170
4171         return JIM_OK;
4172 }
4173
4174 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4175 {
4176         if (argc != 1)
4177         {
4178                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4179                 return JIM_ERR;
4180         }
4181         struct target *target = Jim_CmdPrivData(interp);
4182         if (!target->tap->enabled)
4183                 return jim_target_tap_disabled(interp);
4184
4185         int e;
4186         if (!(target_was_examined(target))) {
4187                 e = ERROR_TARGET_NOT_EXAMINED;
4188         } else {
4189                 e = target->type->poll(target);
4190         }
4191         if (e != ERROR_OK)
4192         {
4193                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4194                 return JIM_ERR;
4195         }
4196         return JIM_OK;
4197 }
4198
4199 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4200 {
4201         Jim_GetOptInfo goi;
4202         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4203
4204         if (goi.argc != 2)
4205         {
4206                 Jim_WrongNumArgs(interp, 0, argv,
4207                                 "([tT]|[fF]|assert|deassert) BOOL");
4208                 return JIM_ERR;
4209         }
4210
4211         Jim_Nvp *n;
4212         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4213         if (e != JIM_OK)
4214         {
4215                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4216                 return e;
4217         }
4218         /* the halt or not param */
4219         jim_wide a;
4220         e = Jim_GetOpt_Wide(&goi, &a);
4221         if (e != JIM_OK)
4222                 return e;
4223
4224         struct target *target = Jim_CmdPrivData(goi.interp);
4225         if (!target->tap->enabled)
4226                 return jim_target_tap_disabled(interp);
4227         if (!(target_was_examined(target)))
4228         {
4229                 LOG_ERROR("Target not examined yet");
4230                 return ERROR_TARGET_NOT_EXAMINED;
4231         }
4232         if (!target->type->assert_reset || !target->type->deassert_reset)
4233         {
4234                 Jim_SetResult_sprintf(interp,
4235                                 "No target-specific reset for %s",
4236                                 target_name(target));
4237                 return JIM_ERR;
4238         }
4239         /* determine if we should halt or not. */
4240         target->reset_halt = !!a;
4241         /* When this happens - all workareas are invalid. */
4242         target_free_all_working_areas_restore(target, 0);
4243
4244         /* do the assert */
4245         if (n->value == NVP_ASSERT) {
4246                 e = target->type->assert_reset(target);
4247         } else {
4248                 e = target->type->deassert_reset(target);
4249         }
4250         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4251 }
4252
4253 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4254 {
4255         if (argc != 1) {
4256                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4257                 return JIM_ERR;
4258         }
4259         struct target *target = Jim_CmdPrivData(interp);
4260         if (!target->tap->enabled)
4261                 return jim_target_tap_disabled(interp);
4262         int e = target->type->halt(target);
4263         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4264 }
4265
4266 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4267 {
4268         Jim_GetOptInfo goi;
4269         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4270
4271         /* params:  <name>  statename timeoutmsecs */
4272         if (goi.argc != 2)
4273         {
4274                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4275                 Jim_SetResult_sprintf(goi.interp,
4276                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4277                 return JIM_ERR;
4278         }
4279
4280         Jim_Nvp *n;
4281         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4282         if (e != JIM_OK) {
4283                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4284                 return e;
4285         }
4286         jim_wide a;
4287         e = Jim_GetOpt_Wide(&goi, &a);
4288         if (e != JIM_OK) {
4289                 return e;
4290         }
4291         struct target *target = Jim_CmdPrivData(interp);
4292         if (!target->tap->enabled)
4293                 return jim_target_tap_disabled(interp);
4294
4295         e = target_wait_state(target, n->value, a);
4296         if (e != ERROR_OK)
4297         {
4298                 Jim_SetResult_sprintf(goi.interp,
4299                                 "target: %s wait %s fails (%d) %s",
4300                                 target_name(target), n->name,
4301                                 e, target_strerror_safe(e));
4302                 return JIM_ERR;
4303         }
4304         return JIM_OK;
4305 }
4306 /* List for human, Events defined for this target.
4307  * scripts/programs should use 'name cget -event NAME'
4308  */
4309 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4310 {
4311         struct command_context *cmd_ctx = current_command_context(interp);
4312         assert (cmd_ctx != NULL);
4313
4314         struct target *target = Jim_CmdPrivData(interp);
4315         struct target_event_action *teap = target->event_action;
4316         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4317                                    target->target_number,
4318                                    target_name(target));
4319         command_print(cmd_ctx, "%-25s | Body", "Event");
4320         command_print(cmd_ctx, "------------------------- | "
4321                         "----------------------------------------");
4322         while (teap)
4323         {
4324                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4325                 command_print(cmd_ctx, "%-25s | %s",
4326                                 opt->name, Jim_GetString(teap->body, NULL));
4327                 teap = teap->next;
4328         }
4329         command_print(cmd_ctx, "***END***");
4330         return JIM_OK;
4331 }
4332 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4333 {
4334         if (argc != 1)
4335         {
4336                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4337                 return JIM_ERR;
4338         }
4339         struct target *target = Jim_CmdPrivData(interp);
4340         Jim_SetResultString(interp, target_state_name(target), -1);
4341         return JIM_OK;
4342 }
4343 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4344 {
4345         Jim_GetOptInfo goi;
4346         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4347         if (goi.argc != 1)
4348         {
4349                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4350                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4351                 return JIM_ERR;
4352         }
4353         Jim_Nvp *n;
4354         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4355         if (e != JIM_OK)
4356         {
4357                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4358                 return e;
4359         }
4360         struct target *target = Jim_CmdPrivData(interp);
4361         target_handle_event(target, n->value);
4362         return JIM_OK;
4363 }
4364
4365 static const struct command_registration target_instance_command_handlers[] = {
4366         {
4367                 .name = "configure",
4368                 .mode = COMMAND_CONFIG,
4369                 .jim_handler = jim_target_configure,
4370                 .help  = "configure a new target for use",
4371                 .usage = "[target_attribute ...]",
4372         },
4373         {
4374                 .name = "cget",
4375                 .mode = COMMAND_ANY,
4376                 .jim_handler = jim_target_configure,
4377                 .help  = "returns the specified target attribute",
4378                 .usage = "target_attribute",
4379         },
4380         {
4381                 .name = "mww",
4382                 .mode = COMMAND_EXEC,
4383                 .jim_handler = jim_target_mw,
4384                 .help = "Write 32-bit word(s) to target memory",
4385                 .usage = "address data [count]",
4386         },
4387         {
4388                 .name = "mwh",
4389                 .mode = COMMAND_EXEC,
4390                 .jim_handler = jim_target_mw,
4391                 .help = "Write 16-bit half-word(s) to target memory",
4392                 .usage = "address data [count]",
4393         },
4394         {
4395                 .name = "mwb",
4396                 .mode = COMMAND_EXEC,
4397                 .jim_handler = jim_target_mw,
4398                 .help = "Write byte(s) to target memory",
4399                 .usage = "address data [count]",
4400         },
4401         {
4402                 .name = "mdw",
4403                 .mode = COMMAND_EXEC,
4404                 .jim_handler = jim_target_md,
4405                 .help = "Display target memory as 32-bit words",
4406                 .usage = "address [count]",
4407         },
4408         {
4409                 .name = "mdh",
4410                 .mode = COMMAND_EXEC,
4411                 .jim_handler = jim_target_md,
4412                 .help = "Display target memory as 16-bit half-words",
4413                 .usage = "address [count]",
4414         },
4415         {
4416                 .name = "mdb",
4417                 .mode = COMMAND_EXEC,
4418                 .jim_handler = jim_target_md,
4419                 .help = "Display target memory as 8-bit bytes",
4420                 .usage = "address [count]",
4421         },
4422         {
4423                 .name = "array2mem",
4424                 .mode = COMMAND_EXEC,
4425                 .jim_handler = jim_target_array2mem,
4426                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4427                         "to target memory",
4428                 .usage = "arrayname bitwidth address count",
4429         },
4430         {
4431                 .name = "mem2array",
4432                 .mode = COMMAND_EXEC,
4433                 .jim_handler = jim_target_mem2array,
4434                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4435                         "from target memory",
4436                 .usage = "arrayname bitwidth address count",
4437         },
4438         {
4439                 .name = "eventlist",
4440                 .mode = COMMAND_EXEC,
4441                 .jim_handler = jim_target_event_list,
4442                 .help = "displays a table of events defined for this target",
4443         },
4444         {
4445                 .name = "curstate",
4446                 .mode = COMMAND_EXEC,
4447                 .jim_handler = jim_target_current_state,
4448                 .help = "displays the current state of this target",
4449         },
4450         {
4451                 .name = "arp_examine",
4452                 .mode = COMMAND_EXEC,
4453                 .jim_handler = jim_target_examine,
4454                 .help = "used internally for reset processing",
4455         },
4456         {
4457                 .name = "arp_halt_gdb",
4458                 .mode = COMMAND_EXEC,
4459                 .jim_handler = jim_target_halt_gdb,
4460                 .help = "used internally for reset processing to halt GDB",
4461         },
4462         {
4463                 .name = "arp_poll",
4464                 .mode = COMMAND_EXEC,
4465                 .jim_handler = jim_target_poll,
4466                 .help = "used internally for reset processing",
4467         },
4468         {
4469                 .name = "arp_reset",
4470                 .mode = COMMAND_EXEC,
4471                 .jim_handler = jim_target_reset,
4472                 .help = "used internally for reset processing",
4473         },
4474         {
4475                 .name = "arp_halt",
4476                 .mode = COMMAND_EXEC,
4477                 .jim_handler = jim_target_halt,
4478                 .help = "used internally for reset processing",
4479         },
4480         {
4481                 .name = "arp_waitstate",
4482                 .mode = COMMAND_EXEC,
4483                 .jim_handler = jim_target_wait_state,
4484                 .help = "used internally for reset processing",
4485         },
4486         {
4487                 .name = "invoke-event",
4488                 .mode = COMMAND_EXEC,
4489                 .jim_handler = jim_target_invoke_event,
4490                 .help = "invoke handler for specified event",
4491                 .usage = "event_name",
4492         },
4493         COMMAND_REGISTRATION_DONE
4494 };
4495
4496 static int target_create(Jim_GetOptInfo *goi)
4497 {
4498         Jim_Obj *new_cmd;
4499         Jim_Cmd *cmd;
4500         const char *cp;
4501         char *cp2;
4502         int e;
4503         int x;
4504         struct target *target;
4505         struct command_context *cmd_ctx;
4506
4507         cmd_ctx = current_command_context(goi->interp);
4508         assert (cmd_ctx != NULL);
4509
4510         if (goi->argc < 3) {
4511                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4512                 return JIM_ERR;
4513         }
4514
4515         /* COMMAND */
4516         Jim_GetOpt_Obj(goi, &new_cmd);
4517         /* does this command exist? */
4518         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4519         if (cmd) {
4520                 cp = Jim_GetString(new_cmd, NULL);
4521                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4522                 return JIM_ERR;
4523         }
4524
4525         /* TYPE */
4526         e = Jim_GetOpt_String(goi, &cp2, NULL);
4527         cp = cp2;
4528         /* now does target type exist */
4529         for (x = 0 ; target_types[x] ; x++) {
4530                 if (0 == strcmp(cp, target_types[x]->name)) {
4531                         /* found */
4532                         break;
4533                 }
4534         }
4535         if (target_types[x] == NULL) {
4536                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4537                 for (x = 0 ; target_types[x] ; x++) {
4538                         if (target_types[x + 1]) {
4539                                 Jim_AppendStrings(goi->interp,
4540                                                                    Jim_GetResult(goi->interp),
4541                                                                    target_types[x]->name,
4542                                                                    ", ", NULL);
4543                         } else {
4544                                 Jim_AppendStrings(goi->interp,
4545                                                                    Jim_GetResult(goi->interp),
4546                                                                    " or ",
4547                                                                    target_types[x]->name,NULL);
4548                         }
4549                 }
4550                 return JIM_ERR;
4551         }
4552
4553         /* Create it */
4554         target = calloc(1,sizeof(struct target));
4555         /* set target number */
4556         target->target_number = new_target_number();
4557
4558         /* allocate memory for each unique target type */
4559         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4560
4561         memcpy(target->type, target_types[x], sizeof(struct target_type));
4562
4563         /* will be set by "-endian" */
4564         target->endianness = TARGET_ENDIAN_UNKNOWN;
4565
4566         target->working_area        = 0x0;
4567         target->working_area_size   = 0x0;
4568         target->working_areas       = NULL;
4569         target->backup_working_area = 0;
4570
4571         target->state               = TARGET_UNKNOWN;
4572         target->debug_reason        = DBG_REASON_UNDEFINED;
4573         target->reg_cache           = NULL;
4574         target->breakpoints         = NULL;
4575         target->watchpoints         = NULL;
4576         target->next                = NULL;
4577         target->arch_info           = NULL;
4578
4579         target->display             = 1;
4580
4581         target->halt_issued                     = false;
4582
4583         /* initialize trace information */
4584         target->trace_info = malloc(sizeof(struct trace));
4585         target->trace_info->num_trace_points         = 0;
4586         target->trace_info->trace_points_size        = 0;
4587         target->trace_info->trace_points             = NULL;
4588         target->trace_info->trace_history_size       = 0;
4589         target->trace_info->trace_history            = NULL;
4590         target->trace_info->trace_history_pos        = 0;
4591         target->trace_info->trace_history_overflowed = 0;
4592
4593         target->dbgmsg          = NULL;
4594         target->dbg_msg_enabled = 0;
4595
4596         target->endianness = TARGET_ENDIAN_UNKNOWN;
4597
4598         /* Do the rest as "configure" options */
4599         goi->isconfigure = 1;
4600         e = target_configure(goi, target);
4601
4602         if (target->tap == NULL)
4603         {
4604                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4605                 e = JIM_ERR;
4606         }
4607
4608         if (e != JIM_OK) {
4609                 free(target->type);
4610                 free(target);
4611                 return e;
4612         }
4613
4614         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4615                 /* default endian to little if not specified */
4616                 target->endianness = TARGET_LITTLE_ENDIAN;
4617         }
4618
4619         /* incase variant is not set */
4620         if (!target->variant)
4621                 target->variant = strdup("");
4622
4623         cp = Jim_GetString(new_cmd, NULL);
4624         target->cmd_name = strdup(cp);
4625
4626         /* create the target specific commands */
4627         if (target->type->commands) {
4628                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4629                 if (ERROR_OK != e)
4630                         LOG_ERROR("unable to register '%s' commands", cp);
4631         }
4632         if (target->type->target_create) {
4633                 (*(target->type->target_create))(target, goi->interp);
4634         }
4635
4636         /* append to end of list */
4637         {
4638                 struct target **tpp;
4639                 tpp = &(all_targets);
4640                 while (*tpp) {
4641                         tpp = &((*tpp)->next);
4642                 }
4643                 *tpp = target;
4644         }
4645
4646         /* now - create the new target name command */
4647         const const struct command_registration target_subcommands[] = {
4648                 {
4649                         .chain = target_instance_command_handlers,
4650                 },
4651                 {
4652                         .chain = target->type->commands,
4653                 },
4654                 COMMAND_REGISTRATION_DONE
4655         };
4656         const const struct command_registration target_commands[] = {
4657                 {
4658                         .name = cp,
4659                         .mode = COMMAND_ANY,
4660                         .help = "target command group",
4661                         .chain = target_subcommands,
4662                 },
4663                 COMMAND_REGISTRATION_DONE
4664         };
4665         e = register_commands(cmd_ctx, NULL, target_commands);
4666         if (ERROR_OK != e)
4667                 return JIM_ERR;
4668
4669         struct command *c = command_find_in_context(cmd_ctx, cp);
4670         assert(c);
4671         command_set_handler_data(c, target);
4672
4673         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4674 }
4675
4676 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4677 {
4678         if (argc != 1)
4679         {
4680                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4681                 return JIM_ERR;
4682         }
4683         struct command_context *cmd_ctx = current_command_context(interp);
4684         assert (cmd_ctx != NULL);
4685
4686         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4687         return JIM_OK;
4688 }
4689
4690 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4691 {
4692         if (argc != 1)
4693         {
4694                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4695                 return JIM_ERR;
4696         }
4697         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4698         for (unsigned x = 0; NULL != target_types[x]; x++)
4699         {
4700                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4701                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4702         }
4703         return JIM_OK;
4704 }
4705
4706 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4707 {
4708         if (argc != 1)
4709         {
4710                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4711                 return JIM_ERR;
4712         }
4713         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4714         struct target *target = all_targets;
4715         while (target)
4716         {
4717                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4718                         Jim_NewStringObj(interp, target_name(target), -1));
4719                 target = target->next;
4720         }
4721         return JIM_OK;
4722 }
4723
4724 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4725 {
4726         Jim_GetOptInfo goi;
4727         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4728         if (goi.argc < 3)
4729         {
4730                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4731                         "<name> <target_type> [<target_options> ...]");
4732                 return JIM_ERR;
4733         }
4734         return target_create(&goi);
4735 }
4736
4737 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4738 {
4739         Jim_GetOptInfo goi;
4740         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4741
4742         /* It's OK to remove this mechanism sometime after August 2010 or so */
4743         LOG_WARNING("don't use numbers as target identifiers; use names");
4744         if (goi.argc != 1)
4745         {
4746                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4747                 return JIM_ERR;
4748         }
4749         jim_wide w;
4750         int e = Jim_GetOpt_Wide(&goi, &w);
4751         if (e != JIM_OK)
4752                 return JIM_ERR;
4753
4754         struct target *target;
4755         for (target = all_targets; NULL != target; target = target->next)
4756         {
4757                 if (target->target_number != w)
4758                         continue;
4759
4760                 Jim_SetResultString(goi.interp, target_name(target), -1);
4761                 return JIM_OK;
4762         }
4763         Jim_SetResult_sprintf(goi.interp,
4764                         "Target: number %d does not exist", (int)(w));
4765         return JIM_ERR;
4766 }
4767
4768 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4769 {
4770         if (argc != 1)
4771         {
4772                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4773                 return JIM_ERR;
4774         }
4775         unsigned count = 0;
4776         struct target *target = all_targets;
4777         while (NULL != target)
4778         {
4779                 target = target->next;
4780                 count++;
4781         }
4782         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4783         return JIM_OK;
4784 }
4785
4786 static const struct command_registration target_subcommand_handlers[] = {
4787         {
4788                 .name = "init",
4789                 .mode = COMMAND_CONFIG,
4790                 .handler = handle_target_init_command,
4791                 .help = "initialize targets",
4792         },
4793         {
4794                 .name = "create",
4795                 /* REVISIT this should be COMMAND_CONFIG ... */
4796                 .mode = COMMAND_ANY,
4797                 .jim_handler = jim_target_create,
4798                 .usage = "name type '-chain-position' name [options ...]",
4799                 .help = "Creates and selects a new target",
4800         },
4801         {
4802                 .name = "current",
4803                 .mode = COMMAND_ANY,
4804                 .jim_handler = jim_target_current,
4805                 .help = "Returns the currently selected target",
4806         },
4807         {
4808                 .name = "types",
4809                 .mode = COMMAND_ANY,
4810                 .jim_handler = jim_target_types,
4811                 .help = "Returns the available target types as "
4812                                 "a list of strings",
4813         },
4814         {
4815                 .name = "names",
4816                 .mode = COMMAND_ANY,
4817                 .jim_handler = jim_target_names,
4818                 .help = "Returns the names of all targets as a list of strings",
4819         },
4820         {
4821                 .name = "number",
4822                 .mode = COMMAND_ANY,
4823                 .jim_handler = jim_target_number,
4824                 .usage = "number",
4825                 .help = "Returns the name of the numbered target "
4826                         "(DEPRECATED)",
4827         },
4828         {
4829                 .name = "count",
4830                 .mode = COMMAND_ANY,
4831                 .jim_handler = jim_target_count,
4832                 .help = "Returns the number of targets as an integer "
4833                         "(DEPRECATED)",
4834         },
4835         COMMAND_REGISTRATION_DONE
4836 };
4837
4838 struct FastLoad
4839 {
4840         uint32_t address;
4841         uint8_t *data;
4842         int length;
4843
4844 };
4845
4846 static int fastload_num;
4847 static struct FastLoad *fastload;
4848
4849 static void free_fastload(void)
4850 {
4851         if (fastload != NULL)
4852         {
4853                 int i;
4854                 for (i = 0; i < fastload_num; i++)
4855                 {
4856                         if (fastload[i].data)
4857                                 free(fastload[i].data);
4858                 }
4859                 free(fastload);
4860                 fastload = NULL;
4861         }
4862 }
4863
4864
4865
4866
4867 COMMAND_HANDLER(handle_fast_load_image_command)
4868 {
4869         uint8_t *buffer;
4870         size_t buf_cnt;
4871         uint32_t image_size;
4872         uint32_t min_address = 0;
4873         uint32_t max_address = 0xffffffff;
4874         int i;
4875
4876         struct image image;
4877
4878         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4879                         &image, &min_address, &max_address);
4880         if (ERROR_OK != retval)
4881                 return retval;
4882
4883         struct duration bench;
4884         duration_start(&bench);
4885
4886         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4887         {
4888                 return ERROR_OK;
4889         }
4890
4891         image_size = 0x0;
4892         retval = ERROR_OK;
4893         fastload_num = image.num_sections;
4894         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4895         if (fastload == NULL)
4896         {
4897                 image_close(&image);
4898                 return ERROR_FAIL;
4899         }
4900         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4901         for (i = 0; i < image.num_sections; i++)
4902         {
4903                 buffer = malloc(image.sections[i].size);
4904                 if (buffer == NULL)
4905                 {
4906                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4907                                                   (int)(image.sections[i].size));
4908                         break;
4909                 }
4910
4911                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4912                 {
4913                         free(buffer);
4914                         break;
4915                 }
4916
4917                 uint32_t offset = 0;
4918                 uint32_t length = buf_cnt;
4919
4920
4921                 /* DANGER!!! beware of unsigned comparision here!!! */
4922
4923                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4924                                 (image.sections[i].base_address < max_address))
4925                 {
4926                         if (image.sections[i].base_address < min_address)
4927                         {
4928                                 /* clip addresses below */
4929                                 offset += min_address-image.sections[i].base_address;
4930                                 length -= offset;
4931                         }
4932
4933                         if (image.sections[i].base_address + buf_cnt > max_address)
4934                         {
4935                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4936                         }
4937
4938                         fastload[i].address = image.sections[i].base_address + offset;
4939                         fastload[i].data = malloc(length);
4940                         if (fastload[i].data == NULL)
4941                         {
4942                                 free(buffer);
4943                                 break;
4944                         }
4945                         memcpy(fastload[i].data, buffer + offset, length);
4946                         fastload[i].length = length;
4947
4948                         image_size += length;
4949                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4950                                                   (unsigned int)length,
4951                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4952                 }
4953
4954                 free(buffer);
4955         }
4956
4957         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4958         {
4959                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4960                                 "in %fs (%0.3f KiB/s)", image_size,
4961                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4962
4963                 command_print(CMD_CTX,
4964                                 "WARNING: image has not been loaded to target!"
4965                                 "You can issue a 'fast_load' to finish loading.");
4966         }
4967
4968         image_close(&image);
4969
4970         if (retval != ERROR_OK)
4971         {
4972                 free_fastload();
4973         }
4974
4975         return retval;
4976 }
4977
4978 COMMAND_HANDLER(handle_fast_load_command)
4979 {
4980         if (CMD_ARGC > 0)
4981                 return ERROR_COMMAND_SYNTAX_ERROR;
4982         if (fastload == NULL)
4983         {
4984                 LOG_ERROR("No image in memory");
4985                 return ERROR_FAIL;
4986         }
4987         int i;
4988         int ms = timeval_ms();
4989         int size = 0;
4990         int retval = ERROR_OK;
4991         for (i = 0; i < fastload_num;i++)
4992         {
4993                 struct target *target = get_current_target(CMD_CTX);
4994                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4995                                           (unsigned int)(fastload[i].address),
4996                                           (unsigned int)(fastload[i].length));
4997                 if (retval == ERROR_OK)
4998                 {
4999                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5000                 }
5001                 size += fastload[i].length;
5002         }
5003         int after = timeval_ms();
5004         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5005         return retval;
5006 }
5007
5008 static const struct command_registration target_command_handlers[] = {
5009         {
5010                 .name = "targets",
5011                 .handler = handle_targets_command,
5012                 .mode = COMMAND_ANY,
5013                 .help = "change current default target (one parameter) "
5014                         "or prints table of all targets (no parameters)",
5015                 .usage = "[target]",
5016         },
5017         {
5018                 .name = "target",
5019                 .mode = COMMAND_CONFIG,
5020                 .help = "configure target",
5021
5022                 .chain = target_subcommand_handlers,
5023         },
5024         COMMAND_REGISTRATION_DONE
5025 };
5026
5027 int target_register_commands(struct command_context *cmd_ctx)
5028 {
5029         return register_commands(cmd_ctx, NULL, target_command_handlers);
5030 }
5031
5032 static bool target_reset_nag = true;
5033
5034 bool get_target_reset_nag(void)
5035 {
5036         return target_reset_nag;
5037 }
5038
5039 COMMAND_HANDLER(handle_target_reset_nag)
5040 {
5041         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5042                         &target_reset_nag, "Nag after each reset about options to improve "
5043                         "performance");
5044 }
5045
5046 static const struct command_registration target_exec_command_handlers[] = {
5047         {
5048                 .name = "fast_load_image",
5049                 .handler = handle_fast_load_image_command,
5050                 .mode = COMMAND_ANY,
5051                 .help = "Load image into server memory for later use by "
5052                         "fast_load; primarily for profiling",
5053                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5054                         "[min_address [max_length]]",
5055         },
5056         {
5057                 .name = "fast_load",
5058                 .handler = handle_fast_load_command,
5059                 .mode = COMMAND_EXEC,
5060                 .help = "loads active fast load image to current target "
5061                         "- mainly for profiling purposes",
5062         },
5063         {
5064                 .name = "profile",
5065                 .handler = handle_profile_command,
5066                 .mode = COMMAND_EXEC,
5067                 .help = "profiling samples the CPU PC",
5068         },
5069         /** @todo don't register virt2phys() unless target supports it */
5070         {
5071                 .name = "virt2phys",
5072                 .handler = handle_virt2phys_command,
5073                 .mode = COMMAND_ANY,
5074                 .help = "translate a virtual address into a physical address",
5075                 .usage = "virtual_address",
5076         },
5077         {
5078                 .name = "reg",
5079                 .handler = handle_reg_command,
5080                 .mode = COMMAND_EXEC,
5081                 .help = "display or set a register; with no arguments, "
5082                         "displays all registers and their values",
5083                 .usage = "[(register_name|register_number) [value]]",
5084         },
5085         {
5086                 .name = "poll",
5087                 .handler = handle_poll_command,
5088                 .mode = COMMAND_EXEC,
5089                 .help = "poll target state; or reconfigure background polling",
5090                 .usage = "['on'|'off']",
5091         },
5092         {
5093                 .name = "wait_halt",
5094                 .handler = handle_wait_halt_command,
5095                 .mode = COMMAND_EXEC,
5096                 .help = "wait up to the specified number of milliseconds "
5097                         "(default 5) for a previously requested halt",
5098                 .usage = "[milliseconds]",
5099         },
5100         {
5101                 .name = "halt",
5102                 .handler = handle_halt_command,
5103                 .mode = COMMAND_EXEC,
5104                 .help = "request target to halt, then wait up to the specified"
5105                         "number of milliseconds (default 5) for it to complete",
5106                 .usage = "[milliseconds]",
5107         },
5108         {
5109                 .name = "resume",
5110                 .handler = handle_resume_command,
5111                 .mode = COMMAND_EXEC,
5112                 .help = "resume target execution from current PC or address",
5113                 .usage = "[address]",
5114         },
5115         {
5116                 .name = "reset",
5117                 .handler = handle_reset_command,
5118                 .mode = COMMAND_EXEC,
5119                 .usage = "[run|halt|init]",
5120                 .help = "Reset all targets into the specified mode."
5121                         "Default reset mode is run, if not given.",
5122         },
5123         {
5124                 .name = "soft_reset_halt",
5125                 .handler = handle_soft_reset_halt_command,
5126                 .mode = COMMAND_EXEC,
5127                 .help = "halt the target and do a soft reset",
5128         },
5129         {
5130                 .name = "step",
5131                 .handler = handle_step_command,
5132                 .mode = COMMAND_EXEC,
5133                 .help = "step one instruction from current PC or address",
5134                 .usage = "[address]",
5135         },
5136         {
5137                 .name = "mdw",
5138                 .handler = handle_md_command,
5139                 .mode = COMMAND_EXEC,
5140                 .help = "display memory words",
5141                 .usage = "['phys'] address [count]",
5142         },
5143         {
5144                 .name = "mdh",
5145                 .handler = handle_md_command,
5146                 .mode = COMMAND_EXEC,
5147                 .help = "display memory half-words",
5148                 .usage = "['phys'] address [count]",
5149         },
5150         {
5151                 .name = "mdb",
5152                 .handler = handle_md_command,
5153                 .mode = COMMAND_EXEC,
5154                 .help = "display memory bytes",
5155                 .usage = "['phys'] address [count]",
5156         },
5157         {
5158                 .name = "mww",
5159                 .handler = handle_mw_command,
5160                 .mode = COMMAND_EXEC,
5161                 .help = "write memory word",
5162                 .usage = "['phys'] address value [count]",
5163         },
5164         {
5165                 .name = "mwh",
5166                 .handler = handle_mw_command,
5167                 .mode = COMMAND_EXEC,
5168                 .help = "write memory half-word",
5169                 .usage = "['phys'] address value [count]",
5170         },
5171         {
5172                 .name = "mwb",
5173                 .handler = handle_mw_command,
5174                 .mode = COMMAND_EXEC,
5175                 .help = "write memory byte",
5176                 .usage = "['phys'] address value [count]",
5177         },
5178         {
5179                 .name = "bp",
5180                 .handler = handle_bp_command,
5181                 .mode = COMMAND_EXEC,
5182                 .help = "list or set hardware or software breakpoint",
5183                 .usage = "[address length ['hw']]",
5184         },
5185         {
5186                 .name = "rbp",
5187                 .handler = handle_rbp_command,
5188                 .mode = COMMAND_EXEC,
5189                 .help = "remove breakpoint",
5190                 .usage = "address",
5191         },
5192         {
5193                 .name = "wp",
5194                 .handler = handle_wp_command,
5195                 .mode = COMMAND_EXEC,
5196                 .help = "list (no params) or create watchpoints",
5197                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5198         },
5199         {
5200                 .name = "rwp",
5201                 .handler = handle_rwp_command,
5202                 .mode = COMMAND_EXEC,
5203                 .help = "remove watchpoint",
5204                 .usage = "address",
5205         },
5206         {
5207                 .name = "load_image",
5208                 .handler = handle_load_image_command,
5209                 .mode = COMMAND_EXEC,
5210                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5211                         "[min_address] [max_length]",
5212         },
5213         {
5214                 .name = "dump_image",
5215                 .handler = handle_dump_image_command,
5216                 .mode = COMMAND_EXEC,
5217                 .usage = "filename address size",
5218         },
5219         {
5220                 .name = "verify_image",
5221                 .handler = handle_verify_image_command,
5222                 .mode = COMMAND_EXEC,
5223                 .usage = "filename [offset [type]]",
5224         },
5225         {
5226                 .name = "test_image",
5227                 .handler = handle_test_image_command,
5228                 .mode = COMMAND_EXEC,
5229                 .usage = "filename [offset [type]]",
5230         },
5231         {
5232                 .name = "ocd_mem2array",
5233                 .mode = COMMAND_EXEC,
5234                 .jim_handler = jim_mem2array,
5235                 .help = "read 8/16/32 bit memory and return as a TCL array "
5236                         "for script processing",
5237                 .usage = "arrayname bitwidth address count",
5238         },
5239         {
5240                 .name = "ocd_array2mem",
5241                 .mode = COMMAND_EXEC,
5242                 .jim_handler = jim_array2mem,
5243                 .help = "convert a TCL array to memory locations "
5244                         "and write the 8/16/32 bit values",
5245                 .usage = "arrayname bitwidth address count",
5246         },
5247         {
5248                 .name = "reset_nag",
5249                 .handler = handle_target_reset_nag,
5250                 .mode = COMMAND_ANY,
5251                 .help = "Nag after each reset about options that could have been "
5252                                 "enabled to improve performance. ",
5253                 .usage = "['enable'|'disable']",
5254         },
5255         COMMAND_REGISTRATION_DONE
5256 };
5257 static int target_register_user_commands(struct command_context *cmd_ctx)
5258 {
5259         int retval = ERROR_OK;
5260         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5261                 return retval;
5262
5263         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5264                 return retval;
5265
5266
5267         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5268 }