]> git.sur5r.net Git - openocd/blob - src/target/target.c
command context: fix errors when running certain commands on startup
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73
74 static struct target_type *target_types[] =
75 {
76         &arm7tdmi_target,
77         &arm9tdmi_target,
78         &arm920t_target,
79         &arm720t_target,
80         &arm966e_target,
81         &arm926ejs_target,
82         &fa526_target,
83         &feroceon_target,
84         &dragonite_target,
85         &xscale_target,
86         &cortexm3_target,
87         &cortexa8_target,
88         &arm11_target,
89         &mips_m4k_target,
90         &avr_target,
91         &dsp563xx_target,
92         &testee_target,
93         NULL,
94 };
95
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
99
100 static const Jim_Nvp nvp_assert[] = {
101         { .name = "assert", NVP_ASSERT },
102         { .name = "deassert", NVP_DEASSERT },
103         { .name = "T", NVP_ASSERT },
104         { .name = "F", NVP_DEASSERT },
105         { .name = "t", NVP_ASSERT },
106         { .name = "f", NVP_DEASSERT },
107         { .name = NULL, .value = -1 }
108 };
109
110 static const Jim_Nvp nvp_error_target[] = {
111         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
117         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
120         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122         { .value = -1, .name = NULL }
123 };
124
125 static const char *target_strerror_safe(int err)
126 {
127         const Jim_Nvp *n;
128
129         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130         if (n->name == NULL) {
131                 return "unknown";
132         } else {
133                 return n->name;
134         }
135 }
136
137 static const Jim_Nvp nvp_target_event[] = {
138         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
140
141         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142         { .value = TARGET_EVENT_HALTED, .name = "halted" },
143         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
146
147         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
149
150         /* historical name */
151
152         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
153
154         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
155         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
156         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
157         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
158         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
160         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
161         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
162         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
163         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
164         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
165
166         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
168
169         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
171
172         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
174
175         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
177
178         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
180
181         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
183         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
184
185         { .name = NULL, .value = -1 }
186 };
187
188 static const Jim_Nvp nvp_target_state[] = {
189         { .name = "unknown", .value = TARGET_UNKNOWN },
190         { .name = "running", .value = TARGET_RUNNING },
191         { .name = "halted",  .value = TARGET_HALTED },
192         { .name = "reset",   .value = TARGET_RESET },
193         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194         { .name = NULL, .value = -1 },
195 };
196
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
199         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
200         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
201         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
203         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
204         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
205         { .name = NULL, .value = -1 },
206 };
207
208 static const Jim_Nvp nvp_target_endian[] = {
209         { .name = "big",    .value = TARGET_BIG_ENDIAN },
210         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211         { .name = "be",     .value = TARGET_BIG_ENDIAN },
212         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
213         { .name = NULL,     .value = -1 },
214 };
215
216 static const Jim_Nvp nvp_reset_modes[] = {
217         { .name = "unknown", .value = RESET_UNKNOWN },
218         { .name = "run"    , .value = RESET_RUN },
219         { .name = "halt"   , .value = RESET_HALT },
220         { .name = "init"   , .value = RESET_INIT },
221         { .name = NULL     , .value = -1 },
222 };
223
224 const char *debug_reason_name(struct target *t)
225 {
226         const char *cp;
227
228         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229                         t->debug_reason)->name;
230         if (!cp) {
231                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232                 cp = "(*BUG*unknown*BUG*)";
233         }
234         return cp;
235 }
236
237 const char *
238 target_state_name( struct target *t )
239 {
240         const char *cp;
241         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242         if( !cp ){
243                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244                 cp = "(*BUG*unknown*BUG*)";
245         }
246         return cp;
247 }
248
249 /* determine the number of the new target */
250 static int new_target_number(void)
251 {
252         struct target *t;
253         int x;
254
255         /* number is 0 based */
256         x = -1;
257         t = all_targets;
258         while (t) {
259                 if (x < t->target_number) {
260                         x = t->target_number;
261                 }
262                 t = t->next;
263         }
264         return x + 1;
265 }
266
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
269 {
270         if (target->endianness == TARGET_LITTLE_ENDIAN)
271                 return le_to_h_u32(buffer);
272         else
273                 return be_to_h_u32(buffer);
274 }
275
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
278 {
279         if (target->endianness == TARGET_LITTLE_ENDIAN)
280                 return le_to_h_u16(buffer);
281         else
282                 return be_to_h_u16(buffer);
283 }
284
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
287 {
288         return *buffer & 0x0ff;
289 }
290
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
293 {
294         if (target->endianness == TARGET_LITTLE_ENDIAN)
295                 h_u32_to_le(buffer, value);
296         else
297                 h_u32_to_be(buffer, value);
298 }
299
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 h_u16_to_le(buffer, value);
305         else
306                 h_u16_to_be(buffer, value);
307 }
308
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
311 {
312         *buffer = value;
313 }
314
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
317 {
318         struct target *target;
319
320         /* try as tcltarget name */
321         for (target = all_targets; target; target = target->next) {
322                 if (target->cmd_name == NULL)
323                         continue;
324                 if (strcmp(id, target->cmd_name) == 0)
325                         return target;
326         }
327
328         /* It's OK to remove this fallback sometime after August 2010 or so */
329
330         /* no match, try as number */
331         unsigned num;
332         if (parse_uint(id, &num) != ERROR_OK)
333                 return NULL;
334
335         for (target = all_targets; target; target = target->next) {
336                 if (target->target_number == (int)num) {
337                         LOG_WARNING("use '%s' as target identifier, not '%u'",
338                                         target->cmd_name, num);
339                         return target;
340                 }
341         }
342
343         return NULL;
344 }
345
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
348 {
349         struct target *target = all_targets;
350
351         while (target) {
352                 if (target->target_number == num) {
353                         return target;
354                 }
355                 target = target->next;
356         }
357
358         return NULL;
359 }
360
361 struct target* get_current_target(struct command_context *cmd_ctx)
362 {
363         struct target *target = get_target_by_num(cmd_ctx->current_target);
364
365         if (target == NULL)
366         {
367                 LOG_ERROR("BUG: current_target out of bounds");
368                 exit(-1);
369         }
370
371         return target;
372 }
373
374 int target_poll(struct target *target)
375 {
376         int retval;
377
378         /* We can't poll until after examine */
379         if (!target_was_examined(target))
380         {
381                 /* Fail silently lest we pollute the log */
382                 return ERROR_FAIL;
383         }
384
385         retval = target->type->poll(target);
386         if (retval != ERROR_OK)
387                 return retval;
388
389         if (target->halt_issued)
390         {
391                 if (target->state == TARGET_HALTED)
392                 {
393                         target->halt_issued = false;
394                 } else
395                 {
396                         long long t = timeval_ms() - target->halt_issued_time;
397                         if (t>1000)
398                         {
399                                 target->halt_issued = false;
400                                 LOG_INFO("Halt timed out, wake up GDB.");
401                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
402                         }
403                 }
404         }
405
406         return ERROR_OK;
407 }
408
409 int target_halt(struct target *target)
410 {
411         int retval;
412         /* We can't poll until after examine */
413         if (!target_was_examined(target))
414         {
415                 LOG_ERROR("Target not examined yet");
416                 return ERROR_FAIL;
417         }
418
419         retval = target->type->halt(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         target->halt_issued = true;
424         target->halt_issued_time = timeval_ms();
425
426         return ERROR_OK;
427 }
428
429 /**
430  * Make the target (re)start executing using its saved execution
431  * context (possibly with some modifications).
432  *
433  * @param target Which target should start executing.
434  * @param current True to use the target's saved program counter instead
435  *      of the address parameter
436  * @param address Optionally used as the program counter.
437  * @param handle_breakpoints True iff breakpoints at the resumption PC
438  *      should be skipped.  (For example, maybe execution was stopped by
439  *      such a breakpoint, in which case it would be counterprodutive to
440  *      let it re-trigger.
441  * @param debug_execution False if all working areas allocated by OpenOCD
442  *      should be released and/or restored to their original contents.
443  *      (This would for example be true to run some downloaded "helper"
444  *      algorithm code, which resides in one such working buffer and uses
445  *      another for data storage.)
446  *
447  * @todo Resolve the ambiguity about what the "debug_execution" flag
448  * signifies.  For example, Target implementations don't agree on how
449  * it relates to invalidation of the register cache, or to whether
450  * breakpoints and watchpoints should be enabled.  (It would seem wrong
451  * to enable breakpoints when running downloaded "helper" algorithms
452  * (debug_execution true), since the breakpoints would be set to match
453  * target firmware being debugged, not the helper algorithm.... and
454  * enabling them could cause such helpers to malfunction (for example,
455  * by overwriting data with a breakpoint instruction.  On the other
456  * hand the infrastructure for running such helpers might use this
457  * procedure but rely on hardware breakpoint to detect termination.)
458  */
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
460 {
461         int retval;
462
463         /* We can't poll until after examine */
464         if (!target_was_examined(target))
465         {
466                 LOG_ERROR("Target not examined yet");
467                 return ERROR_FAIL;
468         }
469
470         /* note that resume *must* be asynchronous. The CPU can halt before
471          * we poll. The CPU can even halt at the current PC as a result of
472          * a software breakpoint being inserted by (a bug?) the application.
473          */
474         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475                 return retval;
476
477         /* Invalidate any cached protect/erase/... flash status, since
478          * almost all targets will now be able modify the flash by
479          * themselves.  We want flash drivers and infrastructure to
480          * be able to rely on (non-invalidated) cached state.
481          *
482          * For now we require that algorithms provided by OpenOCD are
483          * used only by code which properly maintains that  cached state.
484          * state
485          *
486          * REVISIT do the same for NAND ; maybe other flash flavors too...
487          */
488                 if (!target->running_alg)
489                 nor_resume(target);
490         return retval;
491 }
492
493 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
494 {
495         char buf[100];
496         int retval;
497         Jim_Nvp *n;
498         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
499         if (n->name == NULL) {
500                 LOG_ERROR("invalid reset mode");
501                 return ERROR_FAIL;
502         }
503
504         /* disable polling during reset to make reset event scripts
505          * more predictable, i.e. dr/irscan & pathmove in events will
506          * not have JTAG operations injected into the middle of a sequence.
507          */
508         bool save_poll = jtag_poll_get_enabled();
509
510         jtag_poll_set_enabled(false);
511
512         sprintf(buf, "ocd_process_reset %s", n->name);
513         retval = Jim_Eval(cmd_ctx->interp, buf);
514
515         jtag_poll_set_enabled(save_poll);
516
517         if (retval != JIM_OK) {
518                 Jim_PrintErrorMessage(cmd_ctx->interp);
519                 return ERROR_FAIL;
520         }
521
522         /* We want any events to be processed before the prompt */
523         retval = target_call_timer_callbacks_now();
524
525         struct target *target;
526         for (target = all_targets; target; target = target->next) {
527                 target->type->check_reset(target);
528         }
529
530         return retval;
531 }
532
533 static int identity_virt2phys(struct target *target,
534                 uint32_t virtual, uint32_t *physical)
535 {
536         *physical = virtual;
537         return ERROR_OK;
538 }
539
540 static int no_mmu(struct target *target, int *enabled)
541 {
542         *enabled = 0;
543         return ERROR_OK;
544 }
545
546 static int default_examine(struct target *target)
547 {
548         target_set_examined(target);
549         return ERROR_OK;
550 }
551
552 /* no check by default */
553 static int default_check_reset(struct target *target)
554 {
555         return ERROR_OK;
556 }
557
558 int target_examine_one(struct target *target)
559 {
560         return target->type->examine(target);
561 }
562
563 static int jtag_enable_callback(enum jtag_event event, void *priv)
564 {
565         struct target *target = priv;
566
567         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
568                 return ERROR_OK;
569
570         jtag_unregister_event_callback(jtag_enable_callback, target);
571         return target_examine_one(target);
572 }
573
574
575 /* Targets that correctly implement init + examine, i.e.
576  * no communication with target during init:
577  *
578  * XScale
579  */
580 int target_examine(void)
581 {
582         int retval = ERROR_OK;
583         struct target *target;
584
585         for (target = all_targets; target; target = target->next)
586         {
587                 /* defer examination, but don't skip it */
588                 if (!target->tap->enabled) {
589                         jtag_register_event_callback(jtag_enable_callback,
590                                         target);
591                         continue;
592                 }
593                 if ((retval = target_examine_one(target)) != ERROR_OK)
594                         return retval;
595         }
596         return retval;
597 }
598 const char *target_type_name(struct target *target)
599 {
600         return target->type->name;
601 }
602
603 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         if (!target_was_examined(target))
606         {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610         return target->type->write_memory_imp(target, address, size, count, buffer);
611 }
612
613 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
614 {
615         if (!target_was_examined(target))
616         {
617                 LOG_ERROR("Target not examined yet");
618                 return ERROR_FAIL;
619         }
620         return target->type->read_memory_imp(target, address, size, count, buffer);
621 }
622
623 static int target_soft_reset_halt_imp(struct target *target)
624 {
625         if (!target_was_examined(target))
626         {
627                 LOG_ERROR("Target not examined yet");
628                 return ERROR_FAIL;
629         }
630         if (!target->type->soft_reset_halt_imp) {
631                 LOG_ERROR("Target %s does not support soft_reset_halt",
632                                 target_name(target));
633                 return ERROR_FAIL;
634         }
635         return target->type->soft_reset_halt_imp(target);
636 }
637
638 /**
639  * Downloads a target-specific native code algorithm to the target,
640  * and executes it.  * Note that some targets may need to set up, enable,
641  * and tear down a breakpoint (hard or * soft) to detect algorithm
642  * termination, while others may support  lower overhead schemes where
643  * soft breakpoints embedded in the algorithm automatically terminate the
644  * algorithm.
645  *
646  * @param target used to run the algorithm
647  * @param arch_info target-specific description of the algorithm.
648  */
649 int target_run_algorithm(struct target *target,
650                 int num_mem_params, struct mem_param *mem_params,
651                 int num_reg_params, struct reg_param *reg_param,
652                 uint32_t entry_point, uint32_t exit_point,
653                 int timeout_ms, void *arch_info)
654 {
655         int retval = ERROR_FAIL;
656
657         if (!target_was_examined(target))
658         {
659                 LOG_ERROR("Target not examined yet");
660                 goto done;
661         }
662         if (!target->type->run_algorithm) {
663                 LOG_ERROR("Target type '%s' does not support %s",
664                                 target_type_name(target), __func__);
665                 goto done;
666         }
667
668         target->running_alg = true;
669         retval = target->type->run_algorithm(target,
670                         num_mem_params, mem_params,
671                         num_reg_params, reg_param,
672                         entry_point, exit_point, timeout_ms, arch_info);
673         target->running_alg = false;
674
675 done:
676         return retval;
677 }
678
679
680 int target_read_memory(struct target *target,
681                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
682 {
683         return target->type->read_memory(target, address, size, count, buffer);
684 }
685
686 static int target_read_phys_memory(struct target *target,
687                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
688 {
689         return target->type->read_phys_memory(target, address, size, count, buffer);
690 }
691
692 int target_write_memory(struct target *target,
693                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
694 {
695         return target->type->write_memory(target, address, size, count, buffer);
696 }
697
698 static int target_write_phys_memory(struct target *target,
699                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
700 {
701         return target->type->write_phys_memory(target, address, size, count, buffer);
702 }
703
704 int target_bulk_write_memory(struct target *target,
705                 uint32_t address, uint32_t count, uint8_t *buffer)
706 {
707         return target->type->bulk_write_memory(target, address, count, buffer);
708 }
709
710 int target_add_breakpoint(struct target *target,
711                 struct breakpoint *breakpoint)
712 {
713         if (target->state != TARGET_HALTED) {
714                 LOG_WARNING("target %s is not halted", target->cmd_name);
715                 return ERROR_TARGET_NOT_HALTED;
716         }
717         return target->type->add_breakpoint(target, breakpoint);
718 }
719 int target_remove_breakpoint(struct target *target,
720                 struct breakpoint *breakpoint)
721 {
722         return target->type->remove_breakpoint(target, breakpoint);
723 }
724
725 int target_add_watchpoint(struct target *target,
726                 struct watchpoint *watchpoint)
727 {
728         if (target->state != TARGET_HALTED) {
729                 LOG_WARNING("target %s is not halted", target->cmd_name);
730                 return ERROR_TARGET_NOT_HALTED;
731         }
732         return target->type->add_watchpoint(target, watchpoint);
733 }
734 int target_remove_watchpoint(struct target *target,
735                 struct watchpoint *watchpoint)
736 {
737         return target->type->remove_watchpoint(target, watchpoint);
738 }
739
740 int target_get_gdb_reg_list(struct target *target,
741                 struct reg **reg_list[], int *reg_list_size)
742 {
743         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
744 }
745 int target_step(struct target *target,
746                 int current, uint32_t address, int handle_breakpoints)
747 {
748         return target->type->step(target, current, address, handle_breakpoints);
749 }
750
751
752 /**
753  * Reset the @c examined flag for the given target.
754  * Pure paranoia -- targets are zeroed on allocation.
755  */
756 static void target_reset_examined(struct target *target)
757 {
758         target->examined = false;
759 }
760
761 static int
762 err_read_phys_memory(struct target *target, uint32_t address,
763                 uint32_t size, uint32_t count, uint8_t *buffer)
764 {
765         LOG_ERROR("Not implemented: %s", __func__);
766         return ERROR_FAIL;
767 }
768
769 static int
770 err_write_phys_memory(struct target *target, uint32_t address,
771                 uint32_t size, uint32_t count, uint8_t *buffer)
772 {
773         LOG_ERROR("Not implemented: %s", __func__);
774         return ERROR_FAIL;
775 }
776
777 static int handle_target(void *priv);
778
779 static int target_init_one(struct command_context *cmd_ctx,
780                 struct target *target)
781 {
782         target_reset_examined(target);
783
784         struct target_type *type = target->type;
785         if (type->examine == NULL)
786                 type->examine = default_examine;
787
788         if (type->check_reset== NULL)
789                 type->check_reset = default_check_reset;
790
791         int retval = type->init_target(cmd_ctx, target);
792         if (ERROR_OK != retval)
793         {
794                 LOG_ERROR("target '%s' init failed", target_name(target));
795                 return retval;
796         }
797
798         /**
799          * @todo get rid of those *memory_imp() methods, now that all
800          * callers are using target_*_memory() accessors ... and make
801          * sure the "physical" paths handle the same issues.
802          */
803         /* a non-invasive way(in terms of patches) to add some code that
804          * runs before the type->write/read_memory implementation
805          */
806         type->write_memory_imp = target->type->write_memory;
807         type->write_memory = target_write_memory_imp;
808
809         type->read_memory_imp = target->type->read_memory;
810         type->read_memory = target_read_memory_imp;
811
812         type->soft_reset_halt_imp = target->type->soft_reset_halt;
813         type->soft_reset_halt = target_soft_reset_halt_imp;
814
815         /* Sanity-check MMU support ... stub in what we must, to help
816          * implement it in stages, but warn if we need to do so.
817          */
818         if (type->mmu)
819         {
820                 if (type->write_phys_memory == NULL)
821                 {
822                         LOG_ERROR("type '%s' is missing write_phys_memory",
823                                         type->name);
824                         type->write_phys_memory = err_write_phys_memory;
825                 }
826                 if (type->read_phys_memory == NULL)
827                 {
828                         LOG_ERROR("type '%s' is missing read_phys_memory",
829                                         type->name);
830                         type->read_phys_memory = err_read_phys_memory;
831                 }
832                 if (type->virt2phys == NULL)
833                 {
834                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
835                         type->virt2phys = identity_virt2phys;
836                 }
837         }
838         else
839         {
840                 /* Make sure no-MMU targets all behave the same:  make no
841                  * distinction between physical and virtual addresses, and
842                  * ensure that virt2phys() is always an identity mapping.
843                  */
844                 if (type->write_phys_memory || type->read_phys_memory
845                                 || type->virt2phys)
846                 {
847                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
848                 }
849
850                 type->mmu = no_mmu;
851                 type->write_phys_memory = type->write_memory;
852                 type->read_phys_memory = type->read_memory;
853                 type->virt2phys = identity_virt2phys;
854         }
855         return ERROR_OK;
856 }
857
858 static int target_init(struct command_context *cmd_ctx)
859 {
860         struct target *target;
861         int retval;
862
863         for (target = all_targets; target; target = target->next)
864         {
865                 retval = target_init_one(cmd_ctx, target);
866                 if (ERROR_OK != retval)
867                         return retval;
868         }
869
870         if (!all_targets)
871                 return ERROR_OK;
872
873         retval = target_register_user_commands(cmd_ctx);
874         if (ERROR_OK != retval)
875                 return retval;
876
877         retval = target_register_timer_callback(&handle_target,
878                         100, 1, cmd_ctx->interp);
879         if (ERROR_OK != retval)
880                 return retval;
881
882         return ERROR_OK;
883 }
884
885 COMMAND_HANDLER(handle_target_init_command)
886 {
887         if (CMD_ARGC != 0)
888                 return ERROR_COMMAND_SYNTAX_ERROR;
889
890         static bool target_initialized = false;
891         if (target_initialized)
892         {
893                 LOG_INFO("'target init' has already been called");
894                 return ERROR_OK;
895         }
896         target_initialized = true;
897
898         LOG_DEBUG("Initializing targets...");
899         return target_init(CMD_CTX);
900 }
901
902 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
903 {
904         struct target_event_callback **callbacks_p = &target_event_callbacks;
905
906         if (callback == NULL)
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         if (*callbacks_p)
912         {
913                 while ((*callbacks_p)->next)
914                         callbacks_p = &((*callbacks_p)->next);
915                 callbacks_p = &((*callbacks_p)->next);
916         }
917
918         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
919         (*callbacks_p)->callback = callback;
920         (*callbacks_p)->priv = priv;
921         (*callbacks_p)->next = NULL;
922
923         return ERROR_OK;
924 }
925
926 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
927 {
928         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
929         struct timeval now;
930
931         if (callback == NULL)
932         {
933                 return ERROR_INVALID_ARGUMENTS;
934         }
935
936         if (*callbacks_p)
937         {
938                 while ((*callbacks_p)->next)
939                         callbacks_p = &((*callbacks_p)->next);
940                 callbacks_p = &((*callbacks_p)->next);
941         }
942
943         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
944         (*callbacks_p)->callback = callback;
945         (*callbacks_p)->periodic = periodic;
946         (*callbacks_p)->time_ms = time_ms;
947
948         gettimeofday(&now, NULL);
949         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
950         time_ms -= (time_ms % 1000);
951         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
952         if ((*callbacks_p)->when.tv_usec > 1000000)
953         {
954                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
955                 (*callbacks_p)->when.tv_sec += 1;
956         }
957
958         (*callbacks_p)->priv = priv;
959         (*callbacks_p)->next = NULL;
960
961         return ERROR_OK;
962 }
963
964 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
965 {
966         struct target_event_callback **p = &target_event_callbacks;
967         struct target_event_callback *c = target_event_callbacks;
968
969         if (callback == NULL)
970         {
971                 return ERROR_INVALID_ARGUMENTS;
972         }
973
974         while (c)
975         {
976                 struct target_event_callback *next = c->next;
977                 if ((c->callback == callback) && (c->priv == priv))
978                 {
979                         *p = next;
980                         free(c);
981                         return ERROR_OK;
982                 }
983                 else
984                         p = &(c->next);
985                 c = next;
986         }
987
988         return ERROR_OK;
989 }
990
991 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
992 {
993         struct target_timer_callback **p = &target_timer_callbacks;
994         struct target_timer_callback *c = target_timer_callbacks;
995
996         if (callback == NULL)
997         {
998                 return ERROR_INVALID_ARGUMENTS;
999         }
1000
1001         while (c)
1002         {
1003                 struct target_timer_callback *next = c->next;
1004                 if ((c->callback == callback) && (c->priv == priv))
1005                 {
1006                         *p = next;
1007                         free(c);
1008                         return ERROR_OK;
1009                 }
1010                 else
1011                         p = &(c->next);
1012                 c = next;
1013         }
1014
1015         return ERROR_OK;
1016 }
1017
1018 int target_call_event_callbacks(struct target *target, enum target_event event)
1019 {
1020         struct target_event_callback *callback = target_event_callbacks;
1021         struct target_event_callback *next_callback;
1022
1023         if (event == TARGET_EVENT_HALTED)
1024         {
1025                 /* execute early halted first */
1026                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1027         }
1028
1029         LOG_DEBUG("target event %i (%s)",
1030                           event,
1031                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1032
1033         target_handle_event(target, event);
1034
1035         while (callback)
1036         {
1037                 next_callback = callback->next;
1038                 callback->callback(target, event, callback->priv);
1039                 callback = next_callback;
1040         }
1041
1042         return ERROR_OK;
1043 }
1044
1045 static int target_timer_callback_periodic_restart(
1046                 struct target_timer_callback *cb, struct timeval *now)
1047 {
1048         int time_ms = cb->time_ms;
1049         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1050         time_ms -= (time_ms % 1000);
1051         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1052         if (cb->when.tv_usec > 1000000)
1053         {
1054                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1055                 cb->when.tv_sec += 1;
1056         }
1057         return ERROR_OK;
1058 }
1059
1060 static int target_call_timer_callback(struct target_timer_callback *cb,
1061                 struct timeval *now)
1062 {
1063         cb->callback(cb->priv);
1064
1065         if (cb->periodic)
1066                 return target_timer_callback_periodic_restart(cb, now);
1067
1068         return target_unregister_timer_callback(cb->callback, cb->priv);
1069 }
1070
1071 static int target_call_timer_callbacks_check_time(int checktime)
1072 {
1073         keep_alive();
1074
1075         struct timeval now;
1076         gettimeofday(&now, NULL);
1077
1078         struct target_timer_callback *callback = target_timer_callbacks;
1079         while (callback)
1080         {
1081                 // cleaning up may unregister and free this callback
1082                 struct target_timer_callback *next_callback = callback->next;
1083
1084                 bool call_it = callback->callback &&
1085                         ((!checktime && callback->periodic) ||
1086                           now.tv_sec > callback->when.tv_sec ||
1087                          (now.tv_sec == callback->when.tv_sec &&
1088                           now.tv_usec >= callback->when.tv_usec));
1089
1090                 if (call_it)
1091                 {
1092                         int retval = target_call_timer_callback(callback, &now);
1093                         if (retval != ERROR_OK)
1094                                 return retval;
1095                 }
1096
1097                 callback = next_callback;
1098         }
1099
1100         return ERROR_OK;
1101 }
1102
1103 int target_call_timer_callbacks(void)
1104 {
1105         return target_call_timer_callbacks_check_time(1);
1106 }
1107
1108 /* invoke periodic callbacks immediately */
1109 int target_call_timer_callbacks_now(void)
1110 {
1111         return target_call_timer_callbacks_check_time(0);
1112 }
1113
1114 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1115 {
1116         struct working_area *c = target->working_areas;
1117         struct working_area *new_wa = NULL;
1118
1119         /* Reevaluate working area address based on MMU state*/
1120         if (target->working_areas == NULL)
1121         {
1122                 int retval;
1123                 int enabled;
1124
1125                 retval = target->type->mmu(target, &enabled);
1126                 if (retval != ERROR_OK)
1127                 {
1128                         return retval;
1129                 }
1130
1131                 if (!enabled) {
1132                         if (target->working_area_phys_spec) {
1133                                 LOG_DEBUG("MMU disabled, using physical "
1134                                         "address for working memory 0x%08x",
1135                                         (unsigned)target->working_area_phys);
1136                                 target->working_area = target->working_area_phys;
1137                         } else {
1138                                 LOG_ERROR("No working memory available. "
1139                                         "Specify -work-area-phys to target.");
1140                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1141                         }
1142                 } else {
1143                         if (target->working_area_virt_spec) {
1144                                 LOG_DEBUG("MMU enabled, using virtual "
1145                                         "address for working memory 0x%08x",
1146                                         (unsigned)target->working_area_virt);
1147                                 target->working_area = target->working_area_virt;
1148                         } else {
1149                                 LOG_ERROR("No working memory available. "
1150                                         "Specify -work-area-virt to target.");
1151                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1152                         }
1153                 }
1154         }
1155
1156         /* only allocate multiples of 4 byte */
1157         if (size % 4)
1158         {
1159                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1160                 size = (size + 3) & (~3);
1161         }
1162
1163         /* see if there's already a matching working area */
1164         while (c)
1165         {
1166                 if ((c->free) && (c->size == size))
1167                 {
1168                         new_wa = c;
1169                         break;
1170                 }
1171                 c = c->next;
1172         }
1173
1174         /* if not, allocate a new one */
1175         if (!new_wa)
1176         {
1177                 struct working_area **p = &target->working_areas;
1178                 uint32_t first_free = target->working_area;
1179                 uint32_t free_size = target->working_area_size;
1180
1181                 c = target->working_areas;
1182                 while (c)
1183                 {
1184                         first_free += c->size;
1185                         free_size -= c->size;
1186                         p = &c->next;
1187                         c = c->next;
1188                 }
1189
1190                 if (free_size < size)
1191                 {
1192                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1193                 }
1194
1195                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1196
1197                 new_wa = malloc(sizeof(struct working_area));
1198                 new_wa->next = NULL;
1199                 new_wa->size = size;
1200                 new_wa->address = first_free;
1201
1202                 if (target->backup_working_area)
1203                 {
1204                         int retval;
1205                         new_wa->backup = malloc(new_wa->size);
1206                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1207                         {
1208                                 free(new_wa->backup);
1209                                 free(new_wa);
1210                                 return retval;
1211                         }
1212                 }
1213                 else
1214                 {
1215                         new_wa->backup = NULL;
1216                 }
1217
1218                 /* put new entry in list */
1219                 *p = new_wa;
1220         }
1221
1222         /* mark as used, and return the new (reused) area */
1223         new_wa->free = 0;
1224         *area = new_wa;
1225
1226         /* user pointer */
1227         new_wa->user = area;
1228
1229         return ERROR_OK;
1230 }
1231
1232 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1233 {
1234         int retval;
1235
1236         retval = target_alloc_working_area_try(target, size, area);
1237         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1238         {
1239                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1240         }
1241         return retval;
1242
1243 }
1244
1245 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1246 {
1247         if (area->free)
1248                 return ERROR_OK;
1249
1250         if (restore && target->backup_working_area)
1251         {
1252                 int retval;
1253                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1254                         return retval;
1255         }
1256
1257         area->free = 1;
1258
1259         /* mark user pointer invalid */
1260         *area->user = NULL;
1261         area->user = NULL;
1262
1263         return ERROR_OK;
1264 }
1265
1266 int target_free_working_area(struct target *target, struct working_area *area)
1267 {
1268         return target_free_working_area_restore(target, area, 1);
1269 }
1270
1271 /* free resources and restore memory, if restoring memory fails,
1272  * free up resources anyway
1273  */
1274 static void target_free_all_working_areas_restore(struct target *target, int restore)
1275 {
1276         struct working_area *c = target->working_areas;
1277
1278         while (c)
1279         {
1280                 struct working_area *next = c->next;
1281                 target_free_working_area_restore(target, c, restore);
1282
1283                 if (c->backup)
1284                         free(c->backup);
1285
1286                 free(c);
1287
1288                 c = next;
1289         }
1290
1291         target->working_areas = NULL;
1292 }
1293
1294 void target_free_all_working_areas(struct target *target)
1295 {
1296         target_free_all_working_areas_restore(target, 1);
1297 }
1298
1299 int target_arch_state(struct target *target)
1300 {
1301         int retval;
1302         if (target == NULL)
1303         {
1304                 LOG_USER("No target has been configured");
1305                 return ERROR_OK;
1306         }
1307
1308         LOG_USER("target state: %s", target_state_name( target ));
1309
1310         if (target->state != TARGET_HALTED)
1311                 return ERROR_OK;
1312
1313         retval = target->type->arch_state(target);
1314         return retval;
1315 }
1316
1317 /* Single aligned words are guaranteed to use 16 or 32 bit access
1318  * mode respectively, otherwise data is handled as quickly as
1319  * possible
1320  */
1321 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1322 {
1323         int retval;
1324         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1325                   (int)size, (unsigned)address);
1326
1327         if (!target_was_examined(target))
1328         {
1329                 LOG_ERROR("Target not examined yet");
1330                 return ERROR_FAIL;
1331         }
1332
1333         if (size == 0) {
1334                 return ERROR_OK;
1335         }
1336
1337         if ((address + size - 1) < address)
1338         {
1339                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1340                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1341                                   (unsigned)address,
1342                                   (unsigned)size);
1343                 return ERROR_FAIL;
1344         }
1345
1346         if (((address % 2) == 0) && (size == 2))
1347         {
1348                 return target_write_memory(target, address, 2, 1, buffer);
1349         }
1350
1351         /* handle unaligned head bytes */
1352         if (address % 4)
1353         {
1354                 uint32_t unaligned = 4 - (address % 4);
1355
1356                 if (unaligned > size)
1357                         unaligned = size;
1358
1359                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1360                         return retval;
1361
1362                 buffer += unaligned;
1363                 address += unaligned;
1364                 size -= unaligned;
1365         }
1366
1367         /* handle aligned words */
1368         if (size >= 4)
1369         {
1370                 int aligned = size - (size % 4);
1371
1372                 /* use bulk writes above a certain limit. This may have to be changed */
1373                 if (aligned > 128)
1374                 {
1375                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1376                                 return retval;
1377                 }
1378                 else
1379                 {
1380                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1381                                 return retval;
1382                 }
1383
1384                 buffer += aligned;
1385                 address += aligned;
1386                 size -= aligned;
1387         }
1388
1389         /* handle tail writes of less than 4 bytes */
1390         if (size > 0)
1391         {
1392                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1393                         return retval;
1394         }
1395
1396         return ERROR_OK;
1397 }
1398
1399 /* Single aligned words are guaranteed to use 16 or 32 bit access
1400  * mode respectively, otherwise data is handled as quickly as
1401  * possible
1402  */
1403 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1404 {
1405         int retval;
1406         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1407                           (int)size, (unsigned)address);
1408
1409         if (!target_was_examined(target))
1410         {
1411                 LOG_ERROR("Target not examined yet");
1412                 return ERROR_FAIL;
1413         }
1414
1415         if (size == 0) {
1416                 return ERROR_OK;
1417         }
1418
1419         if ((address + size - 1) < address)
1420         {
1421                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1422                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1423                                   address,
1424                                   size);
1425                 return ERROR_FAIL;
1426         }
1427
1428         if (((address % 2) == 0) && (size == 2))
1429         {
1430                 return target_read_memory(target, address, 2, 1, buffer);
1431         }
1432
1433         /* handle unaligned head bytes */
1434         if (address % 4)
1435         {
1436                 uint32_t unaligned = 4 - (address % 4);
1437
1438                 if (unaligned > size)
1439                         unaligned = size;
1440
1441                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1442                         return retval;
1443
1444                 buffer += unaligned;
1445                 address += unaligned;
1446                 size -= unaligned;
1447         }
1448
1449         /* handle aligned words */
1450         if (size >= 4)
1451         {
1452                 int aligned = size - (size % 4);
1453
1454                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1455                         return retval;
1456
1457                 buffer += aligned;
1458                 address += aligned;
1459                 size -= aligned;
1460         }
1461
1462         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1463         if(size >=2)
1464         {
1465                 int aligned = size - (size%2);
1466                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1467                 if (retval != ERROR_OK)
1468                         return retval;
1469
1470                 buffer += aligned;
1471                 address += aligned;
1472                 size -= aligned;
1473         }
1474         /* handle tail writes of less than 4 bytes */
1475         if (size > 0)
1476         {
1477                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1478                         return retval;
1479         }
1480
1481         return ERROR_OK;
1482 }
1483
1484 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1485 {
1486         uint8_t *buffer;
1487         int retval;
1488         uint32_t i;
1489         uint32_t checksum = 0;
1490         if (!target_was_examined(target))
1491         {
1492                 LOG_ERROR("Target not examined yet");
1493                 return ERROR_FAIL;
1494         }
1495
1496         if ((retval = target->type->checksum_memory(target, address,
1497                 size, &checksum)) != ERROR_OK)
1498         {
1499                 buffer = malloc(size);
1500                 if (buffer == NULL)
1501                 {
1502                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1503                         return ERROR_INVALID_ARGUMENTS;
1504                 }
1505                 retval = target_read_buffer(target, address, size, buffer);
1506                 if (retval != ERROR_OK)
1507                 {
1508                         free(buffer);
1509                         return retval;
1510                 }
1511
1512                 /* convert to target endianess */
1513                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1514                 {
1515                         uint32_t target_data;
1516                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1517                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1518                 }
1519
1520                 retval = image_calculate_checksum(buffer, size, &checksum);
1521                 free(buffer);
1522         }
1523
1524         *crc = checksum;
1525
1526         return retval;
1527 }
1528
1529 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1530 {
1531         int retval;
1532         if (!target_was_examined(target))
1533         {
1534                 LOG_ERROR("Target not examined yet");
1535                 return ERROR_FAIL;
1536         }
1537
1538         if (target->type->blank_check_memory == 0)
1539                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1540
1541         retval = target->type->blank_check_memory(target, address, size, blank);
1542
1543         return retval;
1544 }
1545
1546 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1547 {
1548         uint8_t value_buf[4];
1549         if (!target_was_examined(target))
1550         {
1551                 LOG_ERROR("Target not examined yet");
1552                 return ERROR_FAIL;
1553         }
1554
1555         int retval = target_read_memory(target, address, 4, 1, value_buf);
1556
1557         if (retval == ERROR_OK)
1558         {
1559                 *value = target_buffer_get_u32(target, value_buf);
1560                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1561                                   address,
1562                                   *value);
1563         }
1564         else
1565         {
1566                 *value = 0x0;
1567                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1568                                   address);
1569         }
1570
1571         return retval;
1572 }
1573
1574 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1575 {
1576         uint8_t value_buf[2];
1577         if (!target_was_examined(target))
1578         {
1579                 LOG_ERROR("Target not examined yet");
1580                 return ERROR_FAIL;
1581         }
1582
1583         int retval = target_read_memory(target, address, 2, 1, value_buf);
1584
1585         if (retval == ERROR_OK)
1586         {
1587                 *value = target_buffer_get_u16(target, value_buf);
1588                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1589                                   address,
1590                                   *value);
1591         }
1592         else
1593         {
1594                 *value = 0x0;
1595                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1596                                   address);
1597         }
1598
1599         return retval;
1600 }
1601
1602 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1603 {
1604         int retval = target_read_memory(target, address, 1, 1, value);
1605         if (!target_was_examined(target))
1606         {
1607                 LOG_ERROR("Target not examined yet");
1608                 return ERROR_FAIL;
1609         }
1610
1611         if (retval == ERROR_OK)
1612         {
1613                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1614                                   address,
1615                                   *value);
1616         }
1617         else
1618         {
1619                 *value = 0x0;
1620                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1621                                   address);
1622         }
1623
1624         return retval;
1625 }
1626
1627 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1628 {
1629         int retval;
1630         uint8_t value_buf[4];
1631         if (!target_was_examined(target))
1632         {
1633                 LOG_ERROR("Target not examined yet");
1634                 return ERROR_FAIL;
1635         }
1636
1637         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1638                           address,
1639                           value);
1640
1641         target_buffer_set_u32(target, value_buf, value);
1642         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1643         {
1644                 LOG_DEBUG("failed: %i", retval);
1645         }
1646
1647         return retval;
1648 }
1649
1650 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1651 {
1652         int retval;
1653         uint8_t value_buf[2];
1654         if (!target_was_examined(target))
1655         {
1656                 LOG_ERROR("Target not examined yet");
1657                 return ERROR_FAIL;
1658         }
1659
1660         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1661                           address,
1662                           value);
1663
1664         target_buffer_set_u16(target, value_buf, value);
1665         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1666         {
1667                 LOG_DEBUG("failed: %i", retval);
1668         }
1669
1670         return retval;
1671 }
1672
1673 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1674 {
1675         int retval;
1676         if (!target_was_examined(target))
1677         {
1678                 LOG_ERROR("Target not examined yet");
1679                 return ERROR_FAIL;
1680         }
1681
1682         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1683                           address, value);
1684
1685         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1686         {
1687                 LOG_DEBUG("failed: %i", retval);
1688         }
1689
1690         return retval;
1691 }
1692
1693 COMMAND_HANDLER(handle_targets_command)
1694 {
1695         struct target *target = all_targets;
1696
1697         if (CMD_ARGC == 1)
1698         {
1699                 target = get_target(CMD_ARGV[0]);
1700                 if (target == NULL) {
1701                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1702                         goto DumpTargets;
1703                 }
1704                 if (!target->tap->enabled) {
1705                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1706                                         "can't be the current target\n",
1707                                         target->tap->dotted_name);
1708                         return ERROR_FAIL;
1709                 }
1710
1711                 CMD_CTX->current_target = target->target_number;
1712                 return ERROR_OK;
1713         }
1714 DumpTargets:
1715
1716         target = all_targets;
1717         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1718         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1719         while (target)
1720         {
1721                 const char *state;
1722                 char marker = ' ';
1723
1724                 if (target->tap->enabled)
1725                         state = target_state_name( target );
1726                 else
1727                         state = "tap-disabled";
1728
1729                 if (CMD_CTX->current_target == target->target_number)
1730                         marker = '*';
1731
1732                 /* keep columns lined up to match the headers above */
1733                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1734                                           target->target_number,
1735                                           marker,
1736                                           target_name(target),
1737                                           target_type_name(target),
1738                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1739                                                                 target->endianness)->name,
1740                                           target->tap->dotted_name,
1741                                           state);
1742                 target = target->next;
1743         }
1744
1745         return ERROR_OK;
1746 }
1747
1748 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1749
1750 static int powerDropout;
1751 static int srstAsserted;
1752
1753 static int runPowerRestore;
1754 static int runPowerDropout;
1755 static int runSrstAsserted;
1756 static int runSrstDeasserted;
1757
1758 static int sense_handler(void)
1759 {
1760         static int prevSrstAsserted = 0;
1761         static int prevPowerdropout = 0;
1762
1763         int retval;
1764         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1765                 return retval;
1766
1767         int powerRestored;
1768         powerRestored = prevPowerdropout && !powerDropout;
1769         if (powerRestored)
1770         {
1771                 runPowerRestore = 1;
1772         }
1773
1774         long long current = timeval_ms();
1775         static long long lastPower = 0;
1776         int waitMore = lastPower + 2000 > current;
1777         if (powerDropout && !waitMore)
1778         {
1779                 runPowerDropout = 1;
1780                 lastPower = current;
1781         }
1782
1783         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1784                 return retval;
1785
1786         int srstDeasserted;
1787         srstDeasserted = prevSrstAsserted && !srstAsserted;
1788
1789         static long long lastSrst = 0;
1790         waitMore = lastSrst + 2000 > current;
1791         if (srstDeasserted && !waitMore)
1792         {
1793                 runSrstDeasserted = 1;
1794                 lastSrst = current;
1795         }
1796
1797         if (!prevSrstAsserted && srstAsserted)
1798         {
1799                 runSrstAsserted = 1;
1800         }
1801
1802         prevSrstAsserted = srstAsserted;
1803         prevPowerdropout = powerDropout;
1804
1805         if (srstDeasserted || powerRestored)
1806         {
1807                 /* Other than logging the event we can't do anything here.
1808                  * Issuing a reset is a particularly bad idea as we might
1809                  * be inside a reset already.
1810                  */
1811         }
1812
1813         return ERROR_OK;
1814 }
1815
1816 /* process target state changes */
1817 static int handle_target(void *priv)
1818 {
1819         Jim_Interp *interp = (Jim_Interp *)priv;
1820         int retval = ERROR_OK;
1821
1822         if (!is_jtag_poll_safe())
1823         {
1824                 /* polling is disabled currently */
1825                 return ERROR_OK;
1826         }
1827
1828         /* we do not want to recurse here... */
1829         static int recursive = 0;
1830         if (! recursive)
1831         {
1832                 recursive = 1;
1833                 sense_handler();
1834                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1835                  * We need to avoid an infinite loop/recursion here and we do that by
1836                  * clearing the flags after running these events.
1837                  */
1838                 int did_something = 0;
1839                 if (runSrstAsserted)
1840                 {
1841                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1842                         Jim_Eval(interp, "srst_asserted");
1843                         did_something = 1;
1844                 }
1845                 if (runSrstDeasserted)
1846                 {
1847                         Jim_Eval(interp, "srst_deasserted");
1848                         did_something = 1;
1849                 }
1850                 if (runPowerDropout)
1851                 {
1852                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1853                         Jim_Eval(interp, "power_dropout");
1854                         did_something = 1;
1855                 }
1856                 if (runPowerRestore)
1857                 {
1858                         Jim_Eval(interp, "power_restore");
1859                         did_something = 1;
1860                 }
1861
1862                 if (did_something)
1863                 {
1864                         /* clear detect flags */
1865                         sense_handler();
1866                 }
1867
1868                 /* clear action flags */
1869
1870                 runSrstAsserted = 0;
1871                 runSrstDeasserted = 0;
1872                 runPowerRestore = 0;
1873                 runPowerDropout = 0;
1874
1875                 recursive = 0;
1876         }
1877
1878         /* Poll targets for state changes unless that's globally disabled.
1879          * Skip targets that are currently disabled.
1880          */
1881         for (struct target *target = all_targets;
1882                         is_jtag_poll_safe() && target;
1883                         target = target->next)
1884         {
1885                 if (!target->tap->enabled)
1886                         continue;
1887
1888                 /* only poll target if we've got power and srst isn't asserted */
1889                 if (!powerDropout && !srstAsserted)
1890                 {
1891                         /* polling may fail silently until the target has been examined */
1892                         if ((retval = target_poll(target)) != ERROR_OK)
1893                         {
1894                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1895                                  * *why* we are aborting GDB, then we'll spam telnet when the
1896                                  * poll is failing persistently.
1897                                  *
1898                                  * If we could implement an event that detected the
1899                                  * target going from non-pollable to pollable, we could issue
1900                                  * an error only upon the transition.
1901                                  */
1902                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1903                                 return retval;
1904                         }
1905                 }
1906         }
1907
1908         return retval;
1909 }
1910
1911 COMMAND_HANDLER(handle_reg_command)
1912 {
1913         struct target *target;
1914         struct reg *reg = NULL;
1915         unsigned count = 0;
1916         char *value;
1917
1918         LOG_DEBUG("-");
1919
1920         target = get_current_target(CMD_CTX);
1921
1922         /* list all available registers for the current target */
1923         if (CMD_ARGC == 0)
1924         {
1925                 struct reg_cache *cache = target->reg_cache;
1926
1927                 count = 0;
1928                 while (cache)
1929                 {
1930                         unsigned i;
1931
1932                         command_print(CMD_CTX, "===== %s", cache->name);
1933
1934                         for (i = 0, reg = cache->reg_list;
1935                                         i < cache->num_regs;
1936                                         i++, reg++, count++)
1937                         {
1938                                 /* only print cached values if they are valid */
1939                                 if (reg->valid) {
1940                                         value = buf_to_str(reg->value,
1941                                                         reg->size, 16);
1942                                         command_print(CMD_CTX,
1943                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1944                                                         count, reg->name,
1945                                                         reg->size, value,
1946                                                         reg->dirty
1947                                                                 ? " (dirty)"
1948                                                                 : "");
1949                                         free(value);
1950                                 } else {
1951                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1952                                                           count, reg->name,
1953                                                           reg->size) ;
1954                                 }
1955                         }
1956                         cache = cache->next;
1957                 }
1958
1959                 return ERROR_OK;
1960         }
1961
1962         /* access a single register by its ordinal number */
1963         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1964         {
1965                 unsigned num;
1966                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1967
1968                 struct reg_cache *cache = target->reg_cache;
1969                 count = 0;
1970                 while (cache)
1971                 {
1972                         unsigned i;
1973                         for (i = 0; i < cache->num_regs; i++)
1974                         {
1975                                 if (count++ == num)
1976                                 {
1977                                         reg = &cache->reg_list[i];
1978                                         break;
1979                                 }
1980                         }
1981                         if (reg)
1982                                 break;
1983                         cache = cache->next;
1984                 }
1985
1986                 if (!reg)
1987                 {
1988                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1989                         return ERROR_OK;
1990                 }
1991         } else /* access a single register by its name */
1992         {
1993                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1994
1995                 if (!reg)
1996                 {
1997                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1998                         return ERROR_OK;
1999                 }
2000         }
2001
2002         /* display a register */
2003         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2004         {
2005                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2006                         reg->valid = 0;
2007
2008                 if (reg->valid == 0)
2009                 {
2010                         reg->type->get(reg);
2011                 }
2012                 value = buf_to_str(reg->value, reg->size, 16);
2013                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2014                 free(value);
2015                 return ERROR_OK;
2016         }
2017
2018         /* set register value */
2019         if (CMD_ARGC == 2)
2020         {
2021                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2022                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2023
2024                 reg->type->set(reg, buf);
2025
2026                 value = buf_to_str(reg->value, reg->size, 16);
2027                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2028                 free(value);
2029
2030                 free(buf);
2031
2032                 return ERROR_OK;
2033         }
2034
2035         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2036
2037         return ERROR_OK;
2038 }
2039
2040 COMMAND_HANDLER(handle_poll_command)
2041 {
2042         int retval = ERROR_OK;
2043         struct target *target = get_current_target(CMD_CTX);
2044
2045         if (CMD_ARGC == 0)
2046         {
2047                 command_print(CMD_CTX, "background polling: %s",
2048                                 jtag_poll_get_enabled() ? "on" : "off");
2049                 command_print(CMD_CTX, "TAP: %s (%s)",
2050                                 target->tap->dotted_name,
2051                                 target->tap->enabled ? "enabled" : "disabled");
2052                 if (!target->tap->enabled)
2053                         return ERROR_OK;
2054                 if ((retval = target_poll(target)) != ERROR_OK)
2055                         return retval;
2056                 if ((retval = target_arch_state(target)) != ERROR_OK)
2057                         return retval;
2058         }
2059         else if (CMD_ARGC == 1)
2060         {
2061                 bool enable;
2062                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2063                 jtag_poll_set_enabled(enable);
2064         }
2065         else
2066         {
2067                 return ERROR_COMMAND_SYNTAX_ERROR;
2068         }
2069
2070         return retval;
2071 }
2072
2073 COMMAND_HANDLER(handle_wait_halt_command)
2074 {
2075         if (CMD_ARGC > 1)
2076                 return ERROR_COMMAND_SYNTAX_ERROR;
2077
2078         unsigned ms = 5000;
2079         if (1 == CMD_ARGC)
2080         {
2081                 int retval = parse_uint(CMD_ARGV[0], &ms);
2082                 if (ERROR_OK != retval)
2083                 {
2084                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2085                         return ERROR_COMMAND_SYNTAX_ERROR;
2086                 }
2087                 // convert seconds (given) to milliseconds (needed)
2088                 ms *= 1000;
2089         }
2090
2091         struct target *target = get_current_target(CMD_CTX);
2092         return target_wait_state(target, TARGET_HALTED, ms);
2093 }
2094
2095 /* wait for target state to change. The trick here is to have a low
2096  * latency for short waits and not to suck up all the CPU time
2097  * on longer waits.
2098  *
2099  * After 500ms, keep_alive() is invoked
2100  */
2101 int target_wait_state(struct target *target, enum target_state state, int ms)
2102 {
2103         int retval;
2104         long long then = 0, cur;
2105         int once = 1;
2106
2107         for (;;)
2108         {
2109                 if ((retval = target_poll(target)) != ERROR_OK)
2110                         return retval;
2111                 if (target->state == state)
2112                 {
2113                         break;
2114                 }
2115                 cur = timeval_ms();
2116                 if (once)
2117                 {
2118                         once = 0;
2119                         then = timeval_ms();
2120                         LOG_DEBUG("waiting for target %s...",
2121                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2122                 }
2123
2124                 if (cur-then > 500)
2125                 {
2126                         keep_alive();
2127                 }
2128
2129                 if ((cur-then) > ms)
2130                 {
2131                         LOG_ERROR("timed out while waiting for target %s",
2132                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2133                         return ERROR_FAIL;
2134                 }
2135         }
2136
2137         return ERROR_OK;
2138 }
2139
2140 COMMAND_HANDLER(handle_halt_command)
2141 {
2142         LOG_DEBUG("-");
2143
2144         struct target *target = get_current_target(CMD_CTX);
2145         int retval = target_halt(target);
2146         if (ERROR_OK != retval)
2147                 return retval;
2148
2149         if (CMD_ARGC == 1)
2150         {
2151                 unsigned wait;
2152                 retval = parse_uint(CMD_ARGV[0], &wait);
2153                 if (ERROR_OK != retval)
2154                         return ERROR_COMMAND_SYNTAX_ERROR;
2155                 if (!wait)
2156                         return ERROR_OK;
2157         }
2158
2159         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2160 }
2161
2162 COMMAND_HANDLER(handle_soft_reset_halt_command)
2163 {
2164         struct target *target = get_current_target(CMD_CTX);
2165
2166         LOG_USER("requesting target halt and executing a soft reset");
2167
2168         target->type->soft_reset_halt(target);
2169
2170         return ERROR_OK;
2171 }
2172
2173 COMMAND_HANDLER(handle_reset_command)
2174 {
2175         if (CMD_ARGC > 1)
2176                 return ERROR_COMMAND_SYNTAX_ERROR;
2177
2178         enum target_reset_mode reset_mode = RESET_RUN;
2179         if (CMD_ARGC == 1)
2180         {
2181                 const Jim_Nvp *n;
2182                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2183                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2184                         return ERROR_COMMAND_SYNTAX_ERROR;
2185                 }
2186                 reset_mode = n->value;
2187         }
2188
2189         /* reset *all* targets */
2190         return target_process_reset(CMD_CTX, reset_mode);
2191 }
2192
2193
2194 COMMAND_HANDLER(handle_resume_command)
2195 {
2196         int current = 1;
2197         if (CMD_ARGC > 1)
2198                 return ERROR_COMMAND_SYNTAX_ERROR;
2199
2200         struct target *target = get_current_target(CMD_CTX);
2201         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2202
2203         /* with no CMD_ARGV, resume from current pc, addr = 0,
2204          * with one arguments, addr = CMD_ARGV[0],
2205          * handle breakpoints, not debugging */
2206         uint32_t addr = 0;
2207         if (CMD_ARGC == 1)
2208         {
2209                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2210                 current = 0;
2211         }
2212
2213         return target_resume(target, current, addr, 1, 0);
2214 }
2215
2216 COMMAND_HANDLER(handle_step_command)
2217 {
2218         if (CMD_ARGC > 1)
2219                 return ERROR_COMMAND_SYNTAX_ERROR;
2220
2221         LOG_DEBUG("-");
2222
2223         /* with no CMD_ARGV, step from current pc, addr = 0,
2224          * with one argument addr = CMD_ARGV[0],
2225          * handle breakpoints, debugging */
2226         uint32_t addr = 0;
2227         int current_pc = 1;
2228         if (CMD_ARGC == 1)
2229         {
2230                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2231                 current_pc = 0;
2232         }
2233
2234         struct target *target = get_current_target(CMD_CTX);
2235
2236         return target->type->step(target, current_pc, addr, 1);
2237 }
2238
2239 static void handle_md_output(struct command_context *cmd_ctx,
2240                 struct target *target, uint32_t address, unsigned size,
2241                 unsigned count, const uint8_t *buffer)
2242 {
2243         const unsigned line_bytecnt = 32;
2244         unsigned line_modulo = line_bytecnt / size;
2245
2246         char output[line_bytecnt * 4 + 1];
2247         unsigned output_len = 0;
2248
2249         const char *value_fmt;
2250         switch (size) {
2251         case 4: value_fmt = "%8.8x "; break;
2252         case 2: value_fmt = "%4.4x "; break;
2253         case 1: value_fmt = "%2.2x "; break;
2254         default:
2255                 /* "can't happen", caller checked */
2256                 LOG_ERROR("invalid memory read size: %u", size);
2257                 return;
2258         }
2259
2260         for (unsigned i = 0; i < count; i++)
2261         {
2262                 if (i % line_modulo == 0)
2263                 {
2264                         output_len += snprintf(output + output_len,
2265                                         sizeof(output) - output_len,
2266                                         "0x%8.8x: ",
2267                                         (unsigned)(address + (i*size)));
2268                 }
2269
2270                 uint32_t value = 0;
2271                 const uint8_t *value_ptr = buffer + i * size;
2272                 switch (size) {
2273                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2274                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2275                 case 1: value = *value_ptr;
2276                 }
2277                 output_len += snprintf(output + output_len,
2278                                 sizeof(output) - output_len,
2279                                 value_fmt, value);
2280
2281                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2282                 {
2283                         command_print(cmd_ctx, "%s", output);
2284                         output_len = 0;
2285                 }
2286         }
2287 }
2288
2289 COMMAND_HANDLER(handle_md_command)
2290 {
2291         if (CMD_ARGC < 1)
2292                 return ERROR_COMMAND_SYNTAX_ERROR;
2293
2294         unsigned size = 0;
2295         switch (CMD_NAME[2]) {
2296         case 'w': size = 4; break;
2297         case 'h': size = 2; break;
2298         case 'b': size = 1; break;
2299         default: return ERROR_COMMAND_SYNTAX_ERROR;
2300         }
2301
2302         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2303         int (*fn)(struct target *target,
2304                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2305         if (physical)
2306         {
2307                 CMD_ARGC--;
2308                 CMD_ARGV++;
2309                 fn=target_read_phys_memory;
2310         } else
2311         {
2312                 fn=target_read_memory;
2313         }
2314         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2315         {
2316                 return ERROR_COMMAND_SYNTAX_ERROR;
2317         }
2318
2319         uint32_t address;
2320         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2321
2322         unsigned count = 1;
2323         if (CMD_ARGC == 2)
2324                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2325
2326         uint8_t *buffer = calloc(count, size);
2327
2328         struct target *target = get_current_target(CMD_CTX);
2329         int retval = fn(target, address, size, count, buffer);
2330         if (ERROR_OK == retval)
2331                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2332
2333         free(buffer);
2334
2335         return retval;
2336 }
2337
2338 typedef int (*target_write_fn)(struct target *target,
2339                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2340
2341 static int target_write_memory_fast(struct target *target,
2342                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2343 {
2344         return target_write_buffer(target, address, size * count, buffer);
2345 }
2346
2347 static int target_fill_mem(struct target *target,
2348                 uint32_t address,
2349                 target_write_fn fn,
2350                 unsigned data_size,
2351                 /* value */
2352                 uint32_t b,
2353                 /* count */
2354                 unsigned c)
2355 {
2356         /* We have to write in reasonably large chunks to be able
2357          * to fill large memory areas with any sane speed */
2358         const unsigned chunk_size = 16384;
2359         uint8_t *target_buf = malloc(chunk_size * data_size);
2360         if (target_buf == NULL)
2361         {
2362                 LOG_ERROR("Out of memory");
2363                 return ERROR_FAIL;
2364         }
2365
2366         for (unsigned i = 0; i < chunk_size; i ++)
2367         {
2368                 switch (data_size)
2369                 {
2370                 case 4:
2371                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2372                         break;
2373                 case 2:
2374                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2375                         break;
2376                 case 1:
2377                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2378                         break;
2379                 default:
2380                         exit(-1);
2381                 }
2382         }
2383
2384         int retval = ERROR_OK;
2385
2386         for (unsigned x = 0; x < c; x += chunk_size)
2387         {
2388                 unsigned current;
2389                 current = c - x;
2390                 if (current > chunk_size)
2391                 {
2392                         current = chunk_size;
2393                 }
2394                 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2395                 if (retval != ERROR_OK)
2396                 {
2397                         break;
2398                 }
2399                 /* avoid GDB timeouts */
2400                 keep_alive();
2401         }
2402         free(target_buf);
2403
2404         return retval;
2405 }
2406
2407
2408 COMMAND_HANDLER(handle_mw_command)
2409 {
2410         if (CMD_ARGC < 2)
2411         {
2412                 return ERROR_COMMAND_SYNTAX_ERROR;
2413         }
2414         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2415         target_write_fn fn;
2416         if (physical)
2417         {
2418                 CMD_ARGC--;
2419                 CMD_ARGV++;
2420                 fn=target_write_phys_memory;
2421         } else
2422         {
2423                 fn = target_write_memory_fast;
2424         }
2425         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2426                 return ERROR_COMMAND_SYNTAX_ERROR;
2427
2428         uint32_t address;
2429         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2430
2431         uint32_t value;
2432         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2433
2434         unsigned count = 1;
2435         if (CMD_ARGC == 3)
2436                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2437
2438         struct target *target = get_current_target(CMD_CTX);
2439         unsigned wordsize;
2440         switch (CMD_NAME[2])
2441         {
2442                 case 'w':
2443                         wordsize = 4;
2444                         break;
2445                 case 'h':
2446                         wordsize = 2;
2447                         break;
2448                 case 'b':
2449                         wordsize = 1;
2450                         break;
2451                 default:
2452                         return ERROR_COMMAND_SYNTAX_ERROR;
2453         }
2454
2455         return target_fill_mem(target, address, fn, wordsize, value, count);
2456 }
2457
2458 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2459                 uint32_t *min_address, uint32_t *max_address)
2460 {
2461         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2462                 return ERROR_COMMAND_SYNTAX_ERROR;
2463
2464         /* a base address isn't always necessary,
2465          * default to 0x0 (i.e. don't relocate) */
2466         if (CMD_ARGC >= 2)
2467         {
2468                 uint32_t addr;
2469                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2470                 image->base_address = addr;
2471                 image->base_address_set = 1;
2472         }
2473         else
2474                 image->base_address_set = 0;
2475
2476         image->start_address_set = 0;
2477
2478         if (CMD_ARGC >= 4)
2479         {
2480                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2481         }
2482         if (CMD_ARGC == 5)
2483         {
2484                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2485                 // use size (given) to find max (required)
2486                 *max_address += *min_address;
2487         }
2488
2489         if (*min_address > *max_address)
2490                 return ERROR_COMMAND_SYNTAX_ERROR;
2491
2492         return ERROR_OK;
2493 }
2494
2495 COMMAND_HANDLER(handle_load_image_command)
2496 {
2497         uint8_t *buffer;
2498         size_t buf_cnt;
2499         uint32_t image_size;
2500         uint32_t min_address = 0;
2501         uint32_t max_address = 0xffffffff;
2502         int i;
2503         struct image image;
2504
2505         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2506                         &image, &min_address, &max_address);
2507         if (ERROR_OK != retval)
2508                 return retval;
2509
2510         struct target *target = get_current_target(CMD_CTX);
2511
2512         struct duration bench;
2513         duration_start(&bench);
2514
2515         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2516         {
2517                 return ERROR_OK;
2518         }
2519
2520         image_size = 0x0;
2521         retval = ERROR_OK;
2522         for (i = 0; i < image.num_sections; i++)
2523         {
2524                 buffer = malloc(image.sections[i].size);
2525                 if (buffer == NULL)
2526                 {
2527                         command_print(CMD_CTX,
2528                                                   "error allocating buffer for section (%d bytes)",
2529                                                   (int)(image.sections[i].size));
2530                         break;
2531                 }
2532
2533                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2534                 {
2535                         free(buffer);
2536                         break;
2537                 }
2538
2539                 uint32_t offset = 0;
2540                 uint32_t length = buf_cnt;
2541
2542                 /* DANGER!!! beware of unsigned comparision here!!! */
2543
2544                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2545                                 (image.sections[i].base_address < max_address))
2546                 {
2547                         if (image.sections[i].base_address < min_address)
2548                         {
2549                                 /* clip addresses below */
2550                                 offset += min_address-image.sections[i].base_address;
2551                                 length -= offset;
2552                         }
2553
2554                         if (image.sections[i].base_address + buf_cnt > max_address)
2555                         {
2556                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2557                         }
2558
2559                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2560                         {
2561                                 free(buffer);
2562                                 break;
2563                         }
2564                         image_size += length;
2565                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2566                                                   (unsigned int)length,
2567                                                   image.sections[i].base_address + offset);
2568                 }
2569
2570                 free(buffer);
2571         }
2572
2573         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2574         {
2575                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2576                                 "in %fs (%0.3f kb/s)", image_size,
2577                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2578         }
2579
2580         image_close(&image);
2581
2582         return retval;
2583
2584 }
2585
2586 COMMAND_HANDLER(handle_dump_image_command)
2587 {
2588         struct fileio fileio;
2589
2590         uint8_t buffer[560];
2591         int retvaltemp;
2592
2593
2594         struct target *target = get_current_target(CMD_CTX);
2595
2596         if (CMD_ARGC != 3)
2597         {
2598                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2599                 return ERROR_OK;
2600         }
2601
2602         uint32_t address;
2603         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2604         uint32_t size;
2605         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2606
2607         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2608         {
2609                 return ERROR_OK;
2610         }
2611
2612         struct duration bench;
2613         duration_start(&bench);
2614
2615         int retval = ERROR_OK;
2616         while (size > 0)
2617         {
2618                 size_t size_written;
2619                 uint32_t this_run_size = (size > 560) ? 560 : size;
2620                 retval = target_read_buffer(target, address, this_run_size, buffer);
2621                 if (retval != ERROR_OK)
2622                 {
2623                         break;
2624                 }
2625
2626                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2627                 if (retval != ERROR_OK)
2628                 {
2629                         break;
2630                 }
2631
2632                 size -= this_run_size;
2633                 address += this_run_size;
2634         }
2635
2636         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2637                 return retvaltemp;
2638
2639         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2640         {
2641                 command_print(CMD_CTX,
2642                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2643                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2644         }
2645
2646         return retval;
2647 }
2648
2649 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2650 {
2651         uint8_t *buffer;
2652         size_t buf_cnt;
2653         uint32_t image_size;
2654         int i;
2655         int retval;
2656         uint32_t checksum = 0;
2657         uint32_t mem_checksum = 0;
2658
2659         struct image image;
2660
2661         struct target *target = get_current_target(CMD_CTX);
2662
2663         if (CMD_ARGC < 1)
2664         {
2665                 return ERROR_COMMAND_SYNTAX_ERROR;
2666         }
2667
2668         if (!target)
2669         {
2670                 LOG_ERROR("no target selected");
2671                 return ERROR_FAIL;
2672         }
2673
2674         struct duration bench;
2675         duration_start(&bench);
2676
2677         if (CMD_ARGC >= 2)
2678         {
2679                 uint32_t addr;
2680                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2681                 image.base_address = addr;
2682                 image.base_address_set = 1;
2683         }
2684         else
2685         {
2686                 image.base_address_set = 0;
2687                 image.base_address = 0x0;
2688         }
2689
2690         image.start_address_set = 0;
2691
2692         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2693         {
2694                 return retval;
2695         }
2696
2697         image_size = 0x0;
2698         retval = ERROR_OK;
2699         for (i = 0; i < image.num_sections; i++)
2700         {
2701                 buffer = malloc(image.sections[i].size);
2702                 if (buffer == NULL)
2703                 {
2704                         command_print(CMD_CTX,
2705                                                   "error allocating buffer for section (%d bytes)",
2706                                                   (int)(image.sections[i].size));
2707                         break;
2708                 }
2709                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2710                 {
2711                         free(buffer);
2712                         break;
2713                 }
2714
2715                 if (verify)
2716                 {
2717                         /* calculate checksum of image */
2718                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2719
2720                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2721                         if (retval != ERROR_OK)
2722                         {
2723                                 free(buffer);
2724                                 break;
2725                         }
2726
2727                         if (checksum != mem_checksum)
2728                         {
2729                                 /* failed crc checksum, fall back to a binary compare */
2730                                 uint8_t *data;
2731
2732                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2733
2734                                 data = (uint8_t*)malloc(buf_cnt);
2735
2736                                 /* Can we use 32bit word accesses? */
2737                                 int size = 1;
2738                                 int count = buf_cnt;
2739                                 if ((count % 4) == 0)
2740                                 {
2741                                         size *= 4;
2742                                         count /= 4;
2743                                 }
2744                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2745                                 if (retval == ERROR_OK)
2746                                 {
2747                                         uint32_t t;
2748                                         for (t = 0; t < buf_cnt; t++)
2749                                         {
2750                                                 if (data[t] != buffer[t])
2751                                                 {
2752                                                         command_print(CMD_CTX,
2753                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2754                                                                                   (unsigned)(t + image.sections[i].base_address),
2755                                                                                   data[t],
2756                                                                                   buffer[t]);
2757                                                         free(data);
2758                                                         free(buffer);
2759                                                         retval = ERROR_FAIL;
2760                                                         goto done;
2761                                                 }
2762                                                 if ((t%16384) == 0)
2763                                                 {
2764                                                         keep_alive();
2765                                                 }
2766                                         }
2767                                 }
2768
2769                                 free(data);
2770                         }
2771                 } else
2772                 {
2773                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2774                                                   image.sections[i].base_address,
2775                                                   buf_cnt);
2776                 }
2777
2778                 free(buffer);
2779                 image_size += buf_cnt;
2780         }
2781 done:
2782         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2783         {
2784                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2785                                 "in %fs (%0.3f kb/s)", image_size,
2786                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2787         }
2788
2789         image_close(&image);
2790
2791         return retval;
2792 }
2793
2794 COMMAND_HANDLER(handle_verify_image_command)
2795 {
2796         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2797 }
2798
2799 COMMAND_HANDLER(handle_test_image_command)
2800 {
2801         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2802 }
2803
2804 static int handle_bp_command_list(struct command_context *cmd_ctx)
2805 {
2806         struct target *target = get_current_target(cmd_ctx);
2807         struct breakpoint *breakpoint = target->breakpoints;
2808         while (breakpoint)
2809         {
2810                 if (breakpoint->type == BKPT_SOFT)
2811                 {
2812                         char* buf = buf_to_str(breakpoint->orig_instr,
2813                                         breakpoint->length, 16);
2814                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2815                                         breakpoint->address,
2816                                         breakpoint->length,
2817                                         breakpoint->set, buf);
2818                         free(buf);
2819                 }
2820                 else
2821                 {
2822                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2823                                                   breakpoint->address,
2824                                                   breakpoint->length, breakpoint->set);
2825                 }
2826
2827                 breakpoint = breakpoint->next;
2828         }
2829         return ERROR_OK;
2830 }
2831
2832 static int handle_bp_command_set(struct command_context *cmd_ctx,
2833                 uint32_t addr, uint32_t length, int hw)
2834 {
2835         struct target *target = get_current_target(cmd_ctx);
2836         int retval = breakpoint_add(target, addr, length, hw);
2837         if (ERROR_OK == retval)
2838                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2839         else
2840                 LOG_ERROR("Failure setting breakpoint");
2841         return retval;
2842 }
2843
2844 COMMAND_HANDLER(handle_bp_command)
2845 {
2846         if (CMD_ARGC == 0)
2847                 return handle_bp_command_list(CMD_CTX);
2848
2849         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2850         {
2851                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2852                 return ERROR_COMMAND_SYNTAX_ERROR;
2853         }
2854
2855         uint32_t addr;
2856         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2857         uint32_t length;
2858         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2859
2860         int hw = BKPT_SOFT;
2861         if (CMD_ARGC == 3)
2862         {
2863                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2864                         hw = BKPT_HARD;
2865                 else
2866                         return ERROR_COMMAND_SYNTAX_ERROR;
2867         }
2868
2869         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2870 }
2871
2872 COMMAND_HANDLER(handle_rbp_command)
2873 {
2874         if (CMD_ARGC != 1)
2875                 return ERROR_COMMAND_SYNTAX_ERROR;
2876
2877         uint32_t addr;
2878         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2879
2880         struct target *target = get_current_target(CMD_CTX);
2881         breakpoint_remove(target, addr);
2882
2883         return ERROR_OK;
2884 }
2885
2886 COMMAND_HANDLER(handle_wp_command)
2887 {
2888         struct target *target = get_current_target(CMD_CTX);
2889
2890         if (CMD_ARGC == 0)
2891         {
2892                 struct watchpoint *watchpoint = target->watchpoints;
2893
2894                 while (watchpoint)
2895                 {
2896                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2897                                         ", len: 0x%8.8" PRIx32
2898                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2899                                         ", mask: 0x%8.8" PRIx32,
2900                                         watchpoint->address,
2901                                         watchpoint->length,
2902                                         (int)watchpoint->rw,
2903                                         watchpoint->value,
2904                                         watchpoint->mask);
2905                         watchpoint = watchpoint->next;
2906                 }
2907                 return ERROR_OK;
2908         }
2909
2910         enum watchpoint_rw type = WPT_ACCESS;
2911         uint32_t addr = 0;
2912         uint32_t length = 0;
2913         uint32_t data_value = 0x0;
2914         uint32_t data_mask = 0xffffffff;
2915
2916         switch (CMD_ARGC)
2917         {
2918         case 5:
2919                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2920                 // fall through
2921         case 4:
2922                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2923                 // fall through
2924         case 3:
2925                 switch (CMD_ARGV[2][0])
2926                 {
2927                 case 'r':
2928                         type = WPT_READ;
2929                         break;
2930                 case 'w':
2931                         type = WPT_WRITE;
2932                         break;
2933                 case 'a':
2934                         type = WPT_ACCESS;
2935                         break;
2936                 default:
2937                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2938                         return ERROR_COMMAND_SYNTAX_ERROR;
2939                 }
2940                 // fall through
2941         case 2:
2942                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2943                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2944                 break;
2945
2946         default:
2947                 command_print(CMD_CTX, "usage: wp [address length "
2948                                 "[(r|w|a) [value [mask]]]]");
2949                 return ERROR_COMMAND_SYNTAX_ERROR;
2950         }
2951
2952         int retval = watchpoint_add(target, addr, length, type,
2953                         data_value, data_mask);
2954         if (ERROR_OK != retval)
2955                 LOG_ERROR("Failure setting watchpoints");
2956
2957         return retval;
2958 }
2959
2960 COMMAND_HANDLER(handle_rwp_command)
2961 {
2962         if (CMD_ARGC != 1)
2963                 return ERROR_COMMAND_SYNTAX_ERROR;
2964
2965         uint32_t addr;
2966         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2967
2968         struct target *target = get_current_target(CMD_CTX);
2969         watchpoint_remove(target, addr);
2970
2971         return ERROR_OK;
2972 }
2973
2974
2975 /**
2976  * Translate a virtual address to a physical address.
2977  *
2978  * The low-level target implementation must have logged a detailed error
2979  * which is forwarded to telnet/GDB session.
2980  */
2981 COMMAND_HANDLER(handle_virt2phys_command)
2982 {
2983         if (CMD_ARGC != 1)
2984                 return ERROR_COMMAND_SYNTAX_ERROR;
2985
2986         uint32_t va;
2987         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2988         uint32_t pa;
2989
2990         struct target *target = get_current_target(CMD_CTX);
2991         int retval = target->type->virt2phys(target, va, &pa);
2992         if (retval == ERROR_OK)
2993                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2994
2995         return retval;
2996 }
2997
2998 static void writeData(FILE *f, const void *data, size_t len)
2999 {
3000         size_t written = fwrite(data, 1, len, f);
3001         if (written != len)
3002                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3003 }
3004
3005 static void writeLong(FILE *f, int l)
3006 {
3007         int i;
3008         for (i = 0; i < 4; i++)
3009         {
3010                 char c = (l >> (i*8))&0xff;
3011                 writeData(f, &c, 1);
3012         }
3013
3014 }
3015
3016 static void writeString(FILE *f, char *s)
3017 {
3018         writeData(f, s, strlen(s));
3019 }
3020
3021 /* Dump a gmon.out histogram file. */
3022 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3023 {
3024         uint32_t i;
3025         FILE *f = fopen(filename, "w");
3026         if (f == NULL)
3027                 return;
3028         writeString(f, "gmon");
3029         writeLong(f, 0x00000001); /* Version */
3030         writeLong(f, 0); /* padding */
3031         writeLong(f, 0); /* padding */
3032         writeLong(f, 0); /* padding */
3033
3034         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3035         writeData(f, &zero, 1);
3036
3037         /* figure out bucket size */
3038         uint32_t min = samples[0];
3039         uint32_t max = samples[0];
3040         for (i = 0; i < sampleNum; i++)
3041         {
3042                 if (min > samples[i])
3043                 {
3044                         min = samples[i];
3045                 }
3046                 if (max < samples[i])
3047                 {
3048                         max = samples[i];
3049                 }
3050         }
3051
3052         int addressSpace = (max-min + 1);
3053
3054         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3055         uint32_t length = addressSpace;
3056         if (length > maxBuckets)
3057         {
3058                 length = maxBuckets;
3059         }
3060         int *buckets = malloc(sizeof(int)*length);
3061         if (buckets == NULL)
3062         {
3063                 fclose(f);
3064                 return;
3065         }
3066         memset(buckets, 0, sizeof(int)*length);
3067         for (i = 0; i < sampleNum;i++)
3068         {
3069                 uint32_t address = samples[i];
3070                 long long a = address-min;
3071                 long long b = length-1;
3072                 long long c = addressSpace-1;
3073                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3074                 buckets[index]++;
3075         }
3076
3077         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3078         writeLong(f, min);                      /* low_pc */
3079         writeLong(f, max);                      /* high_pc */
3080         writeLong(f, length);           /* # of samples */
3081         writeLong(f, 64000000);         /* 64MHz */
3082         writeString(f, "seconds");
3083         for (i = 0; i < (15-strlen("seconds")); i++)
3084                 writeData(f, &zero, 1);
3085         writeString(f, "s");
3086
3087         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3088
3089         char *data = malloc(2*length);
3090         if (data != NULL)
3091         {
3092                 for (i = 0; i < length;i++)
3093                 {
3094                         int val;
3095                         val = buckets[i];
3096                         if (val > 65535)
3097                         {
3098                                 val = 65535;
3099                         }
3100                         data[i*2]=val&0xff;
3101                         data[i*2 + 1]=(val >> 8)&0xff;
3102                 }
3103                 free(buckets);
3104                 writeData(f, data, length * 2);
3105                 free(data);
3106         } else
3107         {
3108                 free(buckets);
3109         }
3110
3111         fclose(f);
3112 }
3113
3114 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3115  * which will be used as a random sampling of PC */
3116 COMMAND_HANDLER(handle_profile_command)
3117 {
3118         struct target *target = get_current_target(CMD_CTX);
3119         struct timeval timeout, now;
3120
3121         gettimeofday(&timeout, NULL);
3122         if (CMD_ARGC != 2)
3123         {
3124                 return ERROR_COMMAND_SYNTAX_ERROR;
3125         }
3126         unsigned offset;
3127         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3128
3129         timeval_add_time(&timeout, offset, 0);
3130
3131         /**
3132          * @todo: Some cores let us sample the PC without the
3133          * annoying halt/resume step; for example, ARMv7 PCSR.
3134          * Provide a way to use that more efficient mechanism.
3135          */
3136
3137         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3138
3139         static const int maxSample = 10000;
3140         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3141         if (samples == NULL)
3142                 return ERROR_OK;
3143
3144         int numSamples = 0;
3145         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3146         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3147
3148         for (;;)
3149         {
3150                 int retval;
3151                 target_poll(target);
3152                 if (target->state == TARGET_HALTED)
3153                 {
3154                         uint32_t t=*((uint32_t *)reg->value);
3155                         samples[numSamples++]=t;
3156                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3157                         target_poll(target);
3158                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3159                 } else if (target->state == TARGET_RUNNING)
3160                 {
3161                         /* We want to quickly sample the PC. */
3162                         if ((retval = target_halt(target)) != ERROR_OK)
3163                         {
3164                                 free(samples);
3165                                 return retval;
3166                         }
3167                 } else
3168                 {
3169                         command_print(CMD_CTX, "Target not halted or running");
3170                         retval = ERROR_OK;
3171                         break;
3172                 }
3173                 if (retval != ERROR_OK)
3174                 {
3175                         break;
3176                 }
3177
3178                 gettimeofday(&now, NULL);
3179                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3180                 {
3181                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3182                         if ((retval = target_poll(target)) != ERROR_OK)
3183                         {
3184                                 free(samples);
3185                                 return retval;
3186                         }
3187                         if (target->state == TARGET_HALTED)
3188                         {
3189                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3190                         }
3191                         if ((retval = target_poll(target)) != ERROR_OK)
3192                         {
3193                                 free(samples);
3194                                 return retval;
3195                         }
3196                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3197                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3198                         break;
3199                 }
3200         }
3201         free(samples);
3202
3203         return ERROR_OK;
3204 }
3205
3206 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3207 {
3208         char *namebuf;
3209         Jim_Obj *nameObjPtr, *valObjPtr;
3210         int result;
3211
3212         namebuf = alloc_printf("%s(%d)", varname, idx);
3213         if (!namebuf)
3214                 return JIM_ERR;
3215
3216         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3217         valObjPtr = Jim_NewIntObj(interp, val);
3218         if (!nameObjPtr || !valObjPtr)
3219         {
3220                 free(namebuf);
3221                 return JIM_ERR;
3222         }
3223
3224         Jim_IncrRefCount(nameObjPtr);
3225         Jim_IncrRefCount(valObjPtr);
3226         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3227         Jim_DecrRefCount(interp, nameObjPtr);
3228         Jim_DecrRefCount(interp, valObjPtr);
3229         free(namebuf);
3230         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3231         return result;
3232 }
3233
3234 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3235 {
3236         struct command_context *context;
3237         struct target *target;
3238
3239         context = current_command_context(interp);
3240         assert (context != NULL);
3241
3242         target = get_current_target(context);
3243         if (target == NULL)
3244         {
3245                 LOG_ERROR("mem2array: no current target");
3246                 return JIM_ERR;
3247         }
3248
3249         return  target_mem2array(interp, target, argc-1, argv + 1);
3250 }
3251
3252 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3253 {
3254         long l;
3255         uint32_t width;
3256         int len;
3257         uint32_t addr;
3258         uint32_t count;
3259         uint32_t v;
3260         const char *varname;
3261         int  n, e, retval;
3262         uint32_t i;
3263
3264         /* argv[1] = name of array to receive the data
3265          * argv[2] = desired width
3266          * argv[3] = memory address
3267          * argv[4] = count of times to read
3268          */
3269         if (argc != 4) {
3270                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3271                 return JIM_ERR;
3272         }
3273         varname = Jim_GetString(argv[0], &len);
3274         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3275
3276         e = Jim_GetLong(interp, argv[1], &l);
3277         width = l;
3278         if (e != JIM_OK) {
3279                 return e;
3280         }
3281
3282         e = Jim_GetLong(interp, argv[2], &l);
3283         addr = l;
3284         if (e != JIM_OK) {
3285                 return e;
3286         }
3287         e = Jim_GetLong(interp, argv[3], &l);
3288         len = l;
3289         if (e != JIM_OK) {
3290                 return e;
3291         }
3292         switch (width) {
3293                 case 8:
3294                         width = 1;
3295                         break;
3296                 case 16:
3297                         width = 2;
3298                         break;
3299                 case 32:
3300                         width = 4;
3301                         break;
3302                 default:
3303                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3304                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3305                         return JIM_ERR;
3306         }
3307         if (len == 0) {
3308                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3309                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3310                 return JIM_ERR;
3311         }
3312         if ((addr + (len * width)) < addr) {
3313                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3314                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3315                 return JIM_ERR;
3316         }
3317         /* absurd transfer size? */
3318         if (len > 65536) {
3319                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3320                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3321                 return JIM_ERR;
3322         }
3323
3324         if ((width == 1) ||
3325                 ((width == 2) && ((addr & 1) == 0)) ||
3326                 ((width == 4) && ((addr & 3) == 0))) {
3327                 /* all is well */
3328         } else {
3329                 char buf[100];
3330                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3331                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3332                                 addr,
3333                                 width);
3334                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3335                 return JIM_ERR;
3336         }
3337
3338         /* Transfer loop */
3339
3340         /* index counter */
3341         n = 0;
3342
3343         size_t buffersize = 4096;
3344         uint8_t *buffer = malloc(buffersize);
3345         if (buffer == NULL)
3346                 return JIM_ERR;
3347
3348         /* assume ok */
3349         e = JIM_OK;
3350         while (len) {
3351                 /* Slurp... in buffer size chunks */
3352
3353                 count = len; /* in objects.. */
3354                 if (count > (buffersize/width)) {
3355                         count = (buffersize/width);
3356                 }
3357
3358                 retval = target_read_memory(target, addr, width, count, buffer);
3359                 if (retval != ERROR_OK) {
3360                         /* BOO !*/
3361                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3362                                           (unsigned int)addr,
3363                                           (int)width,
3364                                           (int)count);
3365                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3366                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3367                         e = JIM_ERR;
3368                         len = 0;
3369                 } else {
3370                         v = 0; /* shut up gcc */
3371                         for (i = 0 ;i < count ;i++, n++) {
3372                                 switch (width) {
3373                                         case 4:
3374                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3375                                                 break;
3376                                         case 2:
3377                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3378                                                 break;
3379                                         case 1:
3380                                                 v = buffer[i] & 0x0ff;
3381                                                 break;
3382                                 }
3383                                 new_int_array_element(interp, varname, n, v);
3384                         }
3385                         len -= count;
3386                 }
3387         }
3388
3389         free(buffer);
3390
3391         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3392
3393         return JIM_OK;
3394 }
3395
3396 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3397 {
3398         char *namebuf;
3399         Jim_Obj *nameObjPtr, *valObjPtr;
3400         int result;
3401         long l;
3402
3403         namebuf = alloc_printf("%s(%d)", varname, idx);
3404         if (!namebuf)
3405                 return JIM_ERR;
3406
3407         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3408         if (!nameObjPtr)
3409         {
3410                 free(namebuf);
3411                 return JIM_ERR;
3412         }
3413
3414         Jim_IncrRefCount(nameObjPtr);
3415         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3416         Jim_DecrRefCount(interp, nameObjPtr);
3417         free(namebuf);
3418         if (valObjPtr == NULL)
3419                 return JIM_ERR;
3420
3421         result = Jim_GetLong(interp, valObjPtr, &l);
3422         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3423         *val = l;
3424         return result;
3425 }
3426
3427 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3428 {
3429         struct command_context *context;
3430         struct target *target;
3431
3432         context = current_command_context(interp);
3433         assert (context != NULL);
3434
3435         target = get_current_target(context);
3436         if (target == NULL) {
3437                 LOG_ERROR("array2mem: no current target");
3438                 return JIM_ERR;
3439         }
3440
3441         return target_array2mem(interp,target, argc-1, argv + 1);
3442 }
3443
3444 static int target_array2mem(Jim_Interp *interp, struct target *target,
3445                 int argc, Jim_Obj *const *argv)
3446 {
3447         long l;
3448         uint32_t width;
3449         int len;
3450         uint32_t addr;
3451         uint32_t count;
3452         uint32_t v;
3453         const char *varname;
3454         int  n, e, retval;
3455         uint32_t i;
3456
3457         /* argv[1] = name of array to get the data
3458          * argv[2] = desired width
3459          * argv[3] = memory address
3460          * argv[4] = count to write
3461          */
3462         if (argc != 4) {
3463                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3464                 return JIM_ERR;
3465         }
3466         varname = Jim_GetString(argv[0], &len);
3467         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3468
3469         e = Jim_GetLong(interp, argv[1], &l);
3470         width = l;
3471         if (e != JIM_OK) {
3472                 return e;
3473         }
3474
3475         e = Jim_GetLong(interp, argv[2], &l);
3476         addr = l;
3477         if (e != JIM_OK) {
3478                 return e;
3479         }
3480         e = Jim_GetLong(interp, argv[3], &l);
3481         len = l;
3482         if (e != JIM_OK) {
3483                 return e;
3484         }
3485         switch (width) {
3486                 case 8:
3487                         width = 1;
3488                         break;
3489                 case 16:
3490                         width = 2;
3491                         break;
3492                 case 32:
3493                         width = 4;
3494                         break;
3495                 default:
3496                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3497                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3498                         return JIM_ERR;
3499         }
3500         if (len == 0) {
3501                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3502                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3503                 return JIM_ERR;
3504         }
3505         if ((addr + (len * width)) < addr) {
3506                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3507                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3508                 return JIM_ERR;
3509         }
3510         /* absurd transfer size? */
3511         if (len > 65536) {
3512                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3513                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3514                 return JIM_ERR;
3515         }
3516
3517         if ((width == 1) ||
3518                 ((width == 2) && ((addr & 1) == 0)) ||
3519                 ((width == 4) && ((addr & 3) == 0))) {
3520                 /* all is well */
3521         } else {
3522                 char buf[100];
3523                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3524                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3525                                 (unsigned int)addr,
3526                                 (int)width);
3527                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3528                 return JIM_ERR;
3529         }
3530
3531         /* Transfer loop */
3532
3533         /* index counter */
3534         n = 0;
3535         /* assume ok */
3536         e = JIM_OK;
3537
3538         size_t buffersize = 4096;
3539         uint8_t *buffer = malloc(buffersize);
3540         if (buffer == NULL)
3541                 return JIM_ERR;
3542
3543         while (len) {
3544                 /* Slurp... in buffer size chunks */
3545
3546                 count = len; /* in objects.. */
3547                 if (count > (buffersize/width)) {
3548                         count = (buffersize/width);
3549                 }
3550
3551                 v = 0; /* shut up gcc */
3552                 for (i = 0 ;i < count ;i++, n++) {
3553                         get_int_array_element(interp, varname, n, &v);
3554                         switch (width) {
3555                         case 4:
3556                                 target_buffer_set_u32(target, &buffer[i*width], v);
3557                                 break;
3558                         case 2:
3559                                 target_buffer_set_u16(target, &buffer[i*width], v);
3560                                 break;
3561                         case 1:
3562                                 buffer[i] = v & 0x0ff;
3563                                 break;
3564                         }
3565                 }
3566                 len -= count;
3567
3568                 retval = target_write_memory(target, addr, width, count, buffer);
3569                 if (retval != ERROR_OK) {
3570                         /* BOO !*/
3571                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3572                                           (unsigned int)addr,
3573                                           (int)width,
3574                                           (int)count);
3575                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3576                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3577                         e = JIM_ERR;
3578                         len = 0;
3579                 }
3580         }
3581
3582         free(buffer);
3583
3584         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3585
3586         return JIM_OK;
3587 }
3588
3589 /* FIX? should we propagate errors here rather than printing them
3590  * and continuing?
3591  */
3592 void target_handle_event(struct target *target, enum target_event e)
3593 {
3594         struct target_event_action *teap;
3595
3596         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3597                 if (teap->event == e) {
3598                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3599                                            target->target_number,
3600                                            target_name(target),
3601                                            target_type_name(target),
3602                                            e,
3603                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3604                                            Jim_GetString(teap->body, NULL));
3605                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3606                         {
3607                                 Jim_PrintErrorMessage(teap->interp);
3608                         }
3609                 }
3610         }
3611 }
3612
3613 /**
3614  * Returns true only if the target has a handler for the specified event.
3615  */
3616 bool target_has_event_action(struct target *target, enum target_event event)
3617 {
3618         struct target_event_action *teap;
3619
3620         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3621                 if (teap->event == event)
3622                         return true;
3623         }
3624         return false;
3625 }
3626
3627 enum target_cfg_param {
3628         TCFG_TYPE,
3629         TCFG_EVENT,
3630         TCFG_WORK_AREA_VIRT,
3631         TCFG_WORK_AREA_PHYS,
3632         TCFG_WORK_AREA_SIZE,
3633         TCFG_WORK_AREA_BACKUP,
3634         TCFG_ENDIAN,
3635         TCFG_VARIANT,
3636         TCFG_CHAIN_POSITION,
3637 };
3638
3639 static Jim_Nvp nvp_config_opts[] = {
3640         { .name = "-type",             .value = TCFG_TYPE },
3641         { .name = "-event",            .value = TCFG_EVENT },
3642         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3643         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3644         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3645         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3646         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3647         { .name = "-variant",          .value = TCFG_VARIANT },
3648         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3649
3650         { .name = NULL, .value = -1 }
3651 };
3652
3653 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3654 {
3655         Jim_Nvp *n;
3656         Jim_Obj *o;
3657         jim_wide w;
3658         char *cp;
3659         int e;
3660
3661         /* parse config or cget options ... */
3662         while (goi->argc > 0) {
3663                 Jim_SetEmptyResult(goi->interp);
3664                 /* Jim_GetOpt_Debug(goi); */
3665
3666                 if (target->type->target_jim_configure) {
3667                         /* target defines a configure function */
3668                         /* target gets first dibs on parameters */
3669                         e = (*(target->type->target_jim_configure))(target, goi);
3670                         if (e == JIM_OK) {
3671                                 /* more? */
3672                                 continue;
3673                         }
3674                         if (e == JIM_ERR) {
3675                                 /* An error */
3676                                 return e;
3677                         }
3678                         /* otherwise we 'continue' below */
3679                 }
3680                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3681                 if (e != JIM_OK) {
3682                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3683                         return e;
3684                 }
3685                 switch (n->value) {
3686                 case TCFG_TYPE:
3687                         /* not setable */
3688                         if (goi->isconfigure) {
3689                                 Jim_SetResult_sprintf(goi->interp,
3690                                                 "not settable: %s", n->name);
3691                                 return JIM_ERR;
3692                         } else {
3693                         no_params:
3694                                 if (goi->argc != 0) {
3695                                         Jim_WrongNumArgs(goi->interp,
3696                                                         goi->argc, goi->argv,
3697                                                         "NO PARAMS");
3698                                         return JIM_ERR;
3699                                 }
3700                         }
3701                         Jim_SetResultString(goi->interp,
3702                                         target_type_name(target), -1);
3703                         /* loop for more */
3704                         break;
3705                 case TCFG_EVENT:
3706                         if (goi->argc == 0) {
3707                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3708                                 return JIM_ERR;
3709                         }
3710
3711                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3712                         if (e != JIM_OK) {
3713                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3714                                 return e;
3715                         }
3716
3717                         if (goi->isconfigure) {
3718                                 if (goi->argc != 1) {
3719                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3720                                         return JIM_ERR;
3721                                 }
3722                         } else {
3723                                 if (goi->argc != 0) {
3724                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3725                                         return JIM_ERR;
3726                                 }
3727                         }
3728
3729                         {
3730                                 struct target_event_action *teap;
3731
3732                                 teap = target->event_action;
3733                                 /* replace existing? */
3734                                 while (teap) {
3735                                         if (teap->event == (enum target_event)n->value) {
3736                                                 break;
3737                                         }
3738                                         teap = teap->next;
3739                                 }
3740
3741                                 if (goi->isconfigure) {
3742                                         bool replace = true;
3743                                         if (teap == NULL) {
3744                                                 /* create new */
3745                                                 teap = calloc(1, sizeof(*teap));
3746                                                 replace = false;
3747                                         }
3748                                         teap->event = n->value;
3749                                         teap->interp = goi->interp;
3750                                         Jim_GetOpt_Obj(goi, &o);
3751                                         if (teap->body) {
3752                                                 Jim_DecrRefCount(teap->interp, teap->body);
3753                                         }
3754                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3755                                         /*
3756                                          * FIXME:
3757                                          *     Tcl/TK - "tk events" have a nice feature.
3758                                          *     See the "BIND" command.
3759                                          *    We should support that here.
3760                                          *     You can specify %X and %Y in the event code.
3761                                          *     The idea is: %T - target name.
3762                                          *     The idea is: %N - target number
3763                                          *     The idea is: %E - event name.
3764                                          */
3765                                         Jim_IncrRefCount(teap->body);
3766
3767                                         if (!replace)
3768                                         {
3769                                                 /* add to head of event list */
3770                                                 teap->next = target->event_action;
3771                                                 target->event_action = teap;
3772                                         }
3773                                         Jim_SetEmptyResult(goi->interp);
3774                                 } else {
3775                                         /* get */
3776                                         if (teap == NULL) {
3777                                                 Jim_SetEmptyResult(goi->interp);
3778                                         } else {
3779                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3780                                         }
3781                                 }
3782                         }
3783                         /* loop for more */
3784                         break;
3785
3786                 case TCFG_WORK_AREA_VIRT:
3787                         if (goi->isconfigure) {
3788                                 target_free_all_working_areas(target);
3789                                 e = Jim_GetOpt_Wide(goi, &w);
3790                                 if (e != JIM_OK) {
3791                                         return e;
3792                                 }
3793                                 target->working_area_virt = w;
3794                                 target->working_area_virt_spec = true;
3795                         } else {
3796                                 if (goi->argc != 0) {
3797                                         goto no_params;
3798                                 }
3799                         }
3800                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3801                         /* loop for more */
3802                         break;
3803
3804                 case TCFG_WORK_AREA_PHYS:
3805                         if (goi->isconfigure) {
3806                                 target_free_all_working_areas(target);
3807                                 e = Jim_GetOpt_Wide(goi, &w);
3808                                 if (e != JIM_OK) {
3809                                         return e;
3810                                 }
3811                                 target->working_area_phys = w;
3812                                 target->working_area_phys_spec = true;
3813                         } else {
3814                                 if (goi->argc != 0) {
3815                                         goto no_params;
3816                                 }
3817                         }
3818                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3819                         /* loop for more */
3820                         break;
3821
3822                 case TCFG_WORK_AREA_SIZE:
3823                         if (goi->isconfigure) {
3824                                 target_free_all_working_areas(target);
3825                                 e = Jim_GetOpt_Wide(goi, &w);
3826                                 if (e != JIM_OK) {
3827                                         return e;
3828                                 }
3829                                 target->working_area_size = w;
3830                         } else {
3831                                 if (goi->argc != 0) {
3832                                         goto no_params;
3833                                 }
3834                         }
3835                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3836                         /* loop for more */
3837                         break;
3838
3839                 case TCFG_WORK_AREA_BACKUP:
3840                         if (goi->isconfigure) {
3841                                 target_free_all_working_areas(target);
3842                                 e = Jim_GetOpt_Wide(goi, &w);
3843                                 if (e != JIM_OK) {
3844                                         return e;
3845                                 }
3846                                 /* make this exactly 1 or 0 */
3847                                 target->backup_working_area = (!!w);
3848                         } else {
3849                                 if (goi->argc != 0) {
3850                                         goto no_params;
3851                                 }
3852                         }
3853                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3854                         /* loop for more e*/
3855                         break;
3856
3857                 case TCFG_ENDIAN:
3858                         if (goi->isconfigure) {
3859                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3860                                 if (e != JIM_OK) {
3861                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3862                                         return e;
3863                                 }
3864                                 target->endianness = n->value;
3865                         } else {
3866                                 if (goi->argc != 0) {
3867                                         goto no_params;
3868                                 }
3869                         }
3870                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3871                         if (n->name == NULL) {
3872                                 target->endianness = TARGET_LITTLE_ENDIAN;
3873                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3874                         }
3875                         Jim_SetResultString(goi->interp, n->name, -1);
3876                         /* loop for more */
3877                         break;
3878
3879                 case TCFG_VARIANT:
3880                         if (goi->isconfigure) {
3881                                 if (goi->argc < 1) {
3882                                         Jim_SetResult_sprintf(goi->interp,
3883                                                                                    "%s ?STRING?",
3884                                                                                    n->name);
3885                                         return JIM_ERR;
3886                                 }
3887                                 if (target->variant) {
3888                                         free((void *)(target->variant));
3889                                 }
3890                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3891                                 target->variant = strdup(cp);
3892                         } else {
3893                                 if (goi->argc != 0) {
3894                                         goto no_params;
3895                                 }
3896                         }
3897                         Jim_SetResultString(goi->interp, target->variant,-1);
3898                         /* loop for more */
3899                         break;
3900                 case TCFG_CHAIN_POSITION:
3901                         if (goi->isconfigure) {
3902                                 Jim_Obj *o;
3903                                 struct jtag_tap *tap;
3904                                 target_free_all_working_areas(target);
3905                                 e = Jim_GetOpt_Obj(goi, &o);
3906                                 if (e != JIM_OK) {
3907                                         return e;
3908                                 }
3909                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3910                                 if (tap == NULL) {
3911                                         return JIM_ERR;
3912                                 }
3913                                 /* make this exactly 1 or 0 */
3914                                 target->tap = tap;
3915                         } else {
3916                                 if (goi->argc != 0) {
3917                                         goto no_params;
3918                                 }
3919                         }
3920                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3921                         /* loop for more e*/
3922                         break;
3923                 }
3924         } /* while (goi->argc) */
3925
3926
3927                 /* done - we return */
3928         return JIM_OK;
3929 }
3930
3931 static int
3932 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3933 {
3934         Jim_GetOptInfo goi;
3935
3936         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3937         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3938         int need_args = 1 + goi.isconfigure;
3939         if (goi.argc < need_args)
3940         {
3941                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3942                         goi.isconfigure
3943                                 ? "missing: -option VALUE ..."
3944                                 : "missing: -option ...");
3945                 return JIM_ERR;
3946         }
3947         struct target *target = Jim_CmdPrivData(goi.interp);
3948         return target_configure(&goi, target);
3949 }
3950
3951 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3952 {
3953         const char *cmd_name = Jim_GetString(argv[0], NULL);
3954
3955         Jim_GetOptInfo goi;
3956         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3957
3958         /* danger! goi.argc will be modified below! */
3959         argc = goi.argc;
3960
3961         if (argc != 2 && argc != 3)
3962         {
3963                 Jim_SetResult_sprintf(goi.interp,
3964                                 "usage: %s <address> <data> [<count>]", cmd_name);
3965                 return JIM_ERR;
3966         }
3967
3968
3969         jim_wide a;
3970         int e = Jim_GetOpt_Wide(&goi, &a);
3971         if (e != JIM_OK)
3972                 return e;
3973
3974         jim_wide b;
3975         e = Jim_GetOpt_Wide(&goi, &b);
3976         if (e != JIM_OK)
3977                 return e;
3978
3979         jim_wide c = 1;
3980         if (argc == 3)
3981         {
3982                 e = Jim_GetOpt_Wide(&goi, &c);
3983                 if (e != JIM_OK)
3984                         return e;
3985         }
3986
3987         struct target *target = Jim_CmdPrivData(goi.interp);
3988         unsigned data_size;
3989         if (strcasecmp(cmd_name, "mww") == 0) {
3990                 data_size = 4;
3991         }
3992         else if (strcasecmp(cmd_name, "mwh") == 0) {
3993                 data_size = 2;
3994         }
3995         else if (strcasecmp(cmd_name, "mwb") == 0) {
3996                 data_size = 1;
3997         } else {
3998                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3999                 return JIM_ERR;
4000         }
4001
4002         return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4003 }
4004
4005 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4006 {
4007         const char *cmd_name = Jim_GetString(argv[0], NULL);
4008
4009         Jim_GetOptInfo goi;
4010         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4011
4012         /* danger! goi.argc will be modified below! */
4013         argc = goi.argc;
4014
4015         if ((argc != 1) && (argc != 2))
4016         {
4017                 Jim_SetResult_sprintf(goi.interp,
4018                                 "usage: %s <address> [<count>]", cmd_name);
4019                 return JIM_ERR;
4020         }
4021
4022         jim_wide a;
4023         int e = Jim_GetOpt_Wide(&goi, &a);
4024         if (e != JIM_OK) {
4025                 return JIM_ERR;
4026         }
4027         jim_wide c;
4028         if (argc == 2) {
4029                 e = Jim_GetOpt_Wide(&goi, &c);
4030                 if (e != JIM_OK) {
4031                         return JIM_ERR;
4032                 }
4033         } else {
4034                 c = 1;
4035         }
4036         jim_wide b = 1; /* shut up gcc */
4037         if (strcasecmp(cmd_name, "mdw") == 0)
4038                 b = 4;
4039         else if (strcasecmp(cmd_name, "mdh") == 0)
4040                 b = 2;
4041         else if (strcasecmp(cmd_name, "mdb") == 0)
4042                 b = 1;
4043         else {
4044                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4045                 return JIM_ERR;
4046         }
4047
4048         /* convert count to "bytes" */
4049         c = c * b;
4050
4051         struct target *target = Jim_CmdPrivData(goi.interp);
4052         uint8_t  target_buf[32];
4053         jim_wide x, y, z;
4054         while (c > 0) {
4055                 y = c;
4056                 if (y > 16) {
4057                         y = 16;
4058                 }
4059                 e = target_read_memory(target, a, b, y / b, target_buf);
4060                 if (e != ERROR_OK) {
4061                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4062                         return JIM_ERR;
4063                 }
4064
4065                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4066                 switch (b) {
4067                 case 4:
4068                         for (x = 0; x < 16 && x < y; x += 4)
4069                         {
4070                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4071                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4072                         }
4073                         for (; (x < 16) ; x += 4) {
4074                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4075                         }
4076                         break;
4077                 case 2:
4078                         for (x = 0; x < 16 && x < y; x += 2)
4079                         {
4080                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4081                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4082                         }
4083                         for (; (x < 16) ; x += 2) {
4084                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4085                         }
4086                         break;
4087                 case 1:
4088                 default:
4089                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4090                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4091                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4092                         }
4093                         for (; (x < 16) ; x += 1) {
4094                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4095                         }
4096                         break;
4097                 }
4098                 /* ascii-ify the bytes */
4099                 for (x = 0 ; x < y ; x++) {
4100                         if ((target_buf[x] >= 0x20) &&
4101                                 (target_buf[x] <= 0x7e)) {
4102                                 /* good */
4103                         } else {
4104                                 /* smack it */
4105                                 target_buf[x] = '.';
4106                         }
4107                 }
4108                 /* space pad  */
4109                 while (x < 16) {
4110                         target_buf[x] = ' ';
4111                         x++;
4112                 }
4113                 /* terminate */
4114                 target_buf[16] = 0;
4115                 /* print - with a newline */
4116                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4117                 /* NEXT... */
4118                 c -= 16;
4119                 a += 16;
4120         }
4121         return JIM_OK;
4122 }
4123
4124 static int jim_target_mem2array(Jim_Interp *interp,
4125                 int argc, Jim_Obj *const *argv)
4126 {
4127         struct target *target = Jim_CmdPrivData(interp);
4128         return target_mem2array(interp, target, argc - 1, argv + 1);
4129 }
4130
4131 static int jim_target_array2mem(Jim_Interp *interp,
4132                 int argc, Jim_Obj *const *argv)
4133 {
4134         struct target *target = Jim_CmdPrivData(interp);
4135         return target_array2mem(interp, target, argc - 1, argv + 1);
4136 }
4137
4138 static int jim_target_tap_disabled(Jim_Interp *interp)
4139 {
4140         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4141         return JIM_ERR;
4142 }
4143
4144 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4145 {
4146         if (argc != 1)
4147         {
4148                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4149                 return JIM_ERR;
4150         }
4151         struct target *target = Jim_CmdPrivData(interp);
4152         if (!target->tap->enabled)
4153                 return jim_target_tap_disabled(interp);
4154
4155         int e = target->type->examine(target);
4156         if (e != ERROR_OK)
4157         {
4158                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4159                 return JIM_ERR;
4160         }
4161         return JIM_OK;
4162 }
4163
4164 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4165 {
4166         if (argc != 1)
4167         {
4168                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4169                 return JIM_ERR;
4170         }
4171         struct target *target = Jim_CmdPrivData(interp);
4172
4173         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4174                 return JIM_ERR;
4175
4176         return JIM_OK;
4177 }
4178
4179 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4180 {
4181         if (argc != 1)
4182         {
4183                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4184                 return JIM_ERR;
4185         }
4186         struct target *target = Jim_CmdPrivData(interp);
4187         if (!target->tap->enabled)
4188                 return jim_target_tap_disabled(interp);
4189
4190         int e;
4191         if (!(target_was_examined(target))) {
4192                 e = ERROR_TARGET_NOT_EXAMINED;
4193         } else {
4194                 e = target->type->poll(target);
4195         }
4196         if (e != ERROR_OK)
4197         {
4198                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4199                 return JIM_ERR;
4200         }
4201         return JIM_OK;
4202 }
4203
4204 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4205 {
4206         Jim_GetOptInfo goi;
4207         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4208
4209         if (goi.argc != 2)
4210         {
4211                 Jim_WrongNumArgs(interp, 0, argv,
4212                                 "([tT]|[fF]|assert|deassert) BOOL");
4213                 return JIM_ERR;
4214         }
4215
4216         Jim_Nvp *n;
4217         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4218         if (e != JIM_OK)
4219         {
4220                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4221                 return e;
4222         }
4223         /* the halt or not param */
4224         jim_wide a;
4225         e = Jim_GetOpt_Wide(&goi, &a);
4226         if (e != JIM_OK)
4227                 return e;
4228
4229         struct target *target = Jim_CmdPrivData(goi.interp);
4230         if (!target->tap->enabled)
4231                 return jim_target_tap_disabled(interp);
4232         if (!(target_was_examined(target)))
4233         {
4234                 LOG_ERROR("Target not examined yet");
4235                 return ERROR_TARGET_NOT_EXAMINED;
4236         }
4237         if (!target->type->assert_reset || !target->type->deassert_reset)
4238         {
4239                 Jim_SetResult_sprintf(interp,
4240                                 "No target-specific reset for %s",
4241                                 target_name(target));
4242                 return JIM_ERR;
4243         }
4244         /* determine if we should halt or not. */
4245         target->reset_halt = !!a;
4246         /* When this happens - all workareas are invalid. */
4247         target_free_all_working_areas_restore(target, 0);
4248
4249         /* do the assert */
4250         if (n->value == NVP_ASSERT) {
4251                 e = target->type->assert_reset(target);
4252         } else {
4253                 e = target->type->deassert_reset(target);
4254         }
4255         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4256 }
4257
4258 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4259 {
4260         if (argc != 1) {
4261                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4262                 return JIM_ERR;
4263         }
4264         struct target *target = Jim_CmdPrivData(interp);
4265         if (!target->tap->enabled)
4266                 return jim_target_tap_disabled(interp);
4267         int e = target->type->halt(target);
4268         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4269 }
4270
4271 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4272 {
4273         Jim_GetOptInfo goi;
4274         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4275
4276         /* params:  <name>  statename timeoutmsecs */
4277         if (goi.argc != 2)
4278         {
4279                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4280                 Jim_SetResult_sprintf(goi.interp,
4281                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4282                 return JIM_ERR;
4283         }
4284
4285         Jim_Nvp *n;
4286         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4287         if (e != JIM_OK) {
4288                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4289                 return e;
4290         }
4291         jim_wide a;
4292         e = Jim_GetOpt_Wide(&goi, &a);
4293         if (e != JIM_OK) {
4294                 return e;
4295         }
4296         struct target *target = Jim_CmdPrivData(interp);
4297         if (!target->tap->enabled)
4298                 return jim_target_tap_disabled(interp);
4299
4300         e = target_wait_state(target, n->value, a);
4301         if (e != ERROR_OK)
4302         {
4303                 Jim_SetResult_sprintf(goi.interp,
4304                                 "target: %s wait %s fails (%d) %s",
4305                                 target_name(target), n->name,
4306                                 e, target_strerror_safe(e));
4307                 return JIM_ERR;
4308         }
4309         return JIM_OK;
4310 }
4311 /* List for human, Events defined for this target.
4312  * scripts/programs should use 'name cget -event NAME'
4313  */
4314 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4315 {
4316         struct command_context *cmd_ctx = current_command_context(interp);
4317         assert (cmd_ctx != NULL);
4318
4319         struct target *target = Jim_CmdPrivData(interp);
4320         struct target_event_action *teap = target->event_action;
4321         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4322                                    target->target_number,
4323                                    target_name(target));
4324         command_print(cmd_ctx, "%-25s | Body", "Event");
4325         command_print(cmd_ctx, "------------------------- | "
4326                         "----------------------------------------");
4327         while (teap)
4328         {
4329                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4330                 command_print(cmd_ctx, "%-25s | %s",
4331                                 opt->name, Jim_GetString(teap->body, NULL));
4332                 teap = teap->next;
4333         }
4334         command_print(cmd_ctx, "***END***");
4335         return JIM_OK;
4336 }
4337 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4338 {
4339         if (argc != 1)
4340         {
4341                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4342                 return JIM_ERR;
4343         }
4344         struct target *target = Jim_CmdPrivData(interp);
4345         Jim_SetResultString(interp, target_state_name(target), -1);
4346         return JIM_OK;
4347 }
4348 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4349 {
4350         Jim_GetOptInfo goi;
4351         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4352         if (goi.argc != 1)
4353         {
4354                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4355                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4356                 return JIM_ERR;
4357         }
4358         Jim_Nvp *n;
4359         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4360         if (e != JIM_OK)
4361         {
4362                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4363                 return e;
4364         }
4365         struct target *target = Jim_CmdPrivData(interp);
4366         target_handle_event(target, n->value);
4367         return JIM_OK;
4368 }
4369
4370 static const struct command_registration target_instance_command_handlers[] = {
4371         {
4372                 .name = "configure",
4373                 .mode = COMMAND_CONFIG,
4374                 .jim_handler = jim_target_configure,
4375                 .help  = "configure a new target for use",
4376                 .usage = "[target_attribute ...]",
4377         },
4378         {
4379                 .name = "cget",
4380                 .mode = COMMAND_ANY,
4381                 .jim_handler = jim_target_configure,
4382                 .help  = "returns the specified target attribute",
4383                 .usage = "target_attribute",
4384         },
4385         {
4386                 .name = "mww",
4387                 .mode = COMMAND_EXEC,
4388                 .jim_handler = jim_target_mw,
4389                 .help = "Write 32-bit word(s) to target memory",
4390                 .usage = "address data [count]",
4391         },
4392         {
4393                 .name = "mwh",
4394                 .mode = COMMAND_EXEC,
4395                 .jim_handler = jim_target_mw,
4396                 .help = "Write 16-bit half-word(s) to target memory",
4397                 .usage = "address data [count]",
4398         },
4399         {
4400                 .name = "mwb",
4401                 .mode = COMMAND_EXEC,
4402                 .jim_handler = jim_target_mw,
4403                 .help = "Write byte(s) to target memory",
4404                 .usage = "address data [count]",
4405         },
4406         {
4407                 .name = "mdw",
4408                 .mode = COMMAND_EXEC,
4409                 .jim_handler = jim_target_md,
4410                 .help = "Display target memory as 32-bit words",
4411                 .usage = "address [count]",
4412         },
4413         {
4414                 .name = "mdh",
4415                 .mode = COMMAND_EXEC,
4416                 .jim_handler = jim_target_md,
4417                 .help = "Display target memory as 16-bit half-words",
4418                 .usage = "address [count]",
4419         },
4420         {
4421                 .name = "mdb",
4422                 .mode = COMMAND_EXEC,
4423                 .jim_handler = jim_target_md,
4424                 .help = "Display target memory as 8-bit bytes",
4425                 .usage = "address [count]",
4426         },
4427         {
4428                 .name = "array2mem",
4429                 .mode = COMMAND_EXEC,
4430                 .jim_handler = jim_target_array2mem,
4431                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4432                         "to target memory",
4433                 .usage = "arrayname bitwidth address count",
4434         },
4435         {
4436                 .name = "mem2array",
4437                 .mode = COMMAND_EXEC,
4438                 .jim_handler = jim_target_mem2array,
4439                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4440                         "from target memory",
4441                 .usage = "arrayname bitwidth address count",
4442         },
4443         {
4444                 .name = "eventlist",
4445                 .mode = COMMAND_EXEC,
4446                 .jim_handler = jim_target_event_list,
4447                 .help = "displays a table of events defined for this target",
4448         },
4449         {
4450                 .name = "curstate",
4451                 .mode = COMMAND_EXEC,
4452                 .jim_handler = jim_target_current_state,
4453                 .help = "displays the current state of this target",
4454         },
4455         {
4456                 .name = "arp_examine",
4457                 .mode = COMMAND_EXEC,
4458                 .jim_handler = jim_target_examine,
4459                 .help = "used internally for reset processing",
4460         },
4461         {
4462                 .name = "arp_halt_gdb",
4463                 .mode = COMMAND_EXEC,
4464                 .jim_handler = jim_target_halt_gdb,
4465                 .help = "used internally for reset processing to halt GDB",
4466         },
4467         {
4468                 .name = "arp_poll",
4469                 .mode = COMMAND_EXEC,
4470                 .jim_handler = jim_target_poll,
4471                 .help = "used internally for reset processing",
4472         },
4473         {
4474                 .name = "arp_reset",
4475                 .mode = COMMAND_EXEC,
4476                 .jim_handler = jim_target_reset,
4477                 .help = "used internally for reset processing",
4478         },
4479         {
4480                 .name = "arp_halt",
4481                 .mode = COMMAND_EXEC,
4482                 .jim_handler = jim_target_halt,
4483                 .help = "used internally for reset processing",
4484         },
4485         {
4486                 .name = "arp_waitstate",
4487                 .mode = COMMAND_EXEC,
4488                 .jim_handler = jim_target_wait_state,
4489                 .help = "used internally for reset processing",
4490         },
4491         {
4492                 .name = "invoke-event",
4493                 .mode = COMMAND_EXEC,
4494                 .jim_handler = jim_target_invoke_event,
4495                 .help = "invoke handler for specified event",
4496                 .usage = "event_name",
4497         },
4498         COMMAND_REGISTRATION_DONE
4499 };
4500
4501 static int target_create(Jim_GetOptInfo *goi)
4502 {
4503         Jim_Obj *new_cmd;
4504         Jim_Cmd *cmd;
4505         const char *cp;
4506         char *cp2;
4507         int e;
4508         int x;
4509         struct target *target;
4510         struct command_context *cmd_ctx;
4511
4512         cmd_ctx = current_command_context(goi->interp);
4513         assert (cmd_ctx != NULL);
4514
4515         if (goi->argc < 3) {
4516                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4517                 return JIM_ERR;
4518         }
4519
4520         /* COMMAND */
4521         Jim_GetOpt_Obj(goi, &new_cmd);
4522         /* does this command exist? */
4523         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4524         if (cmd) {
4525                 cp = Jim_GetString(new_cmd, NULL);
4526                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4527                 return JIM_ERR;
4528         }
4529
4530         /* TYPE */
4531         e = Jim_GetOpt_String(goi, &cp2, NULL);
4532         cp = cp2;
4533         /* now does target type exist */
4534         for (x = 0 ; target_types[x] ; x++) {
4535                 if (0 == strcmp(cp, target_types[x]->name)) {
4536                         /* found */
4537                         break;
4538                 }
4539         }
4540         if (target_types[x] == NULL) {
4541                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4542                 for (x = 0 ; target_types[x] ; x++) {
4543                         if (target_types[x + 1]) {
4544                                 Jim_AppendStrings(goi->interp,
4545                                                                    Jim_GetResult(goi->interp),
4546                                                                    target_types[x]->name,
4547                                                                    ", ", NULL);
4548                         } else {
4549                                 Jim_AppendStrings(goi->interp,
4550                                                                    Jim_GetResult(goi->interp),
4551                                                                    " or ",
4552                                                                    target_types[x]->name,NULL);
4553                         }
4554                 }
4555                 return JIM_ERR;
4556         }
4557
4558         /* Create it */
4559         target = calloc(1,sizeof(struct target));
4560         /* set target number */
4561         target->target_number = new_target_number();
4562
4563         /* allocate memory for each unique target type */
4564         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4565
4566         memcpy(target->type, target_types[x], sizeof(struct target_type));
4567
4568         /* will be set by "-endian" */
4569         target->endianness = TARGET_ENDIAN_UNKNOWN;
4570
4571         target->working_area        = 0x0;
4572         target->working_area_size   = 0x0;
4573         target->working_areas       = NULL;
4574         target->backup_working_area = 0;
4575
4576         target->state               = TARGET_UNKNOWN;
4577         target->debug_reason        = DBG_REASON_UNDEFINED;
4578         target->reg_cache           = NULL;
4579         target->breakpoints         = NULL;
4580         target->watchpoints         = NULL;
4581         target->next                = NULL;
4582         target->arch_info           = NULL;
4583
4584         target->display             = 1;
4585
4586         target->halt_issued                     = false;
4587
4588         /* initialize trace information */
4589         target->trace_info = malloc(sizeof(struct trace));
4590         target->trace_info->num_trace_points         = 0;
4591         target->trace_info->trace_points_size        = 0;
4592         target->trace_info->trace_points             = NULL;
4593         target->trace_info->trace_history_size       = 0;
4594         target->trace_info->trace_history            = NULL;
4595         target->trace_info->trace_history_pos        = 0;
4596         target->trace_info->trace_history_overflowed = 0;
4597
4598         target->dbgmsg          = NULL;
4599         target->dbg_msg_enabled = 0;
4600
4601         target->endianness = TARGET_ENDIAN_UNKNOWN;
4602
4603         /* Do the rest as "configure" options */
4604         goi->isconfigure = 1;
4605         e = target_configure(goi, target);
4606
4607         if (target->tap == NULL)
4608         {
4609                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4610                 e = JIM_ERR;
4611         }
4612
4613         if (e != JIM_OK) {
4614                 free(target->type);
4615                 free(target);
4616                 return e;
4617         }
4618
4619         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4620                 /* default endian to little if not specified */
4621                 target->endianness = TARGET_LITTLE_ENDIAN;
4622         }
4623
4624         /* incase variant is not set */
4625         if (!target->variant)
4626                 target->variant = strdup("");
4627
4628         cp = Jim_GetString(new_cmd, NULL);
4629         target->cmd_name = strdup(cp);
4630
4631         /* create the target specific commands */
4632         if (target->type->commands) {
4633                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4634                 if (ERROR_OK != e)
4635                         LOG_ERROR("unable to register '%s' commands", cp);
4636         }
4637         if (target->type->target_create) {
4638                 (*(target->type->target_create))(target, goi->interp);
4639         }
4640
4641         /* append to end of list */
4642         {
4643                 struct target **tpp;
4644                 tpp = &(all_targets);
4645                 while (*tpp) {
4646                         tpp = &((*tpp)->next);
4647                 }
4648                 *tpp = target;
4649         }
4650
4651         /* now - create the new target name command */
4652         const const struct command_registration target_subcommands[] = {
4653                 {
4654                         .chain = target_instance_command_handlers,
4655                 },
4656                 {
4657                         .chain = target->type->commands,
4658                 },
4659                 COMMAND_REGISTRATION_DONE
4660         };
4661         const const struct command_registration target_commands[] = {
4662                 {
4663                         .name = cp,
4664                         .mode = COMMAND_ANY,
4665                         .help = "target command group",
4666                         .chain = target_subcommands,
4667                 },
4668                 COMMAND_REGISTRATION_DONE
4669         };
4670         e = register_commands(cmd_ctx, NULL, target_commands);
4671         if (ERROR_OK != e)
4672                 return JIM_ERR;
4673
4674         struct command *c = command_find_in_context(cmd_ctx, cp);
4675         assert(c);
4676         command_set_handler_data(c, target);
4677
4678         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4679 }
4680
4681 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4682 {
4683         if (argc != 1)
4684         {
4685                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4686                 return JIM_ERR;
4687         }
4688         struct command_context *cmd_ctx = current_command_context(interp);
4689         assert (cmd_ctx != NULL);
4690
4691         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4692         return JIM_OK;
4693 }
4694
4695 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4696 {
4697         if (argc != 1)
4698         {
4699                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4700                 return JIM_ERR;
4701         }
4702         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4703         for (unsigned x = 0; NULL != target_types[x]; x++)
4704         {
4705                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4706                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4707         }
4708         return JIM_OK;
4709 }
4710
4711 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4712 {
4713         if (argc != 1)
4714         {
4715                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4716                 return JIM_ERR;
4717         }
4718         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4719         struct target *target = all_targets;
4720         while (target)
4721         {
4722                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4723                         Jim_NewStringObj(interp, target_name(target), -1));
4724                 target = target->next;
4725         }
4726         return JIM_OK;
4727 }
4728
4729 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4730 {
4731         Jim_GetOptInfo goi;
4732         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4733         if (goi.argc < 3)
4734         {
4735                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4736                         "<name> <target_type> [<target_options> ...]");
4737                 return JIM_ERR;
4738         }
4739         return target_create(&goi);
4740 }
4741
4742 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4743 {
4744         Jim_GetOptInfo goi;
4745         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4746
4747         /* It's OK to remove this mechanism sometime after August 2010 or so */
4748         LOG_WARNING("don't use numbers as target identifiers; use names");
4749         if (goi.argc != 1)
4750         {
4751                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4752                 return JIM_ERR;
4753         }
4754         jim_wide w;
4755         int e = Jim_GetOpt_Wide(&goi, &w);
4756         if (e != JIM_OK)
4757                 return JIM_ERR;
4758
4759         struct target *target;
4760         for (target = all_targets; NULL != target; target = target->next)
4761         {
4762                 if (target->target_number != w)
4763                         continue;
4764
4765                 Jim_SetResultString(goi.interp, target_name(target), -1);
4766                 return JIM_OK;
4767         }
4768         Jim_SetResult_sprintf(goi.interp,
4769                         "Target: number %d does not exist", (int)(w));
4770         return JIM_ERR;
4771 }
4772
4773 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4774 {
4775         if (argc != 1)
4776         {
4777                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4778                 return JIM_ERR;
4779         }
4780         unsigned count = 0;
4781         struct target *target = all_targets;
4782         while (NULL != target)
4783         {
4784                 target = target->next;
4785                 count++;
4786         }
4787         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4788         return JIM_OK;
4789 }
4790
4791 static const struct command_registration target_subcommand_handlers[] = {
4792         {
4793                 .name = "init",
4794                 .mode = COMMAND_CONFIG,
4795                 .handler = handle_target_init_command,
4796                 .help = "initialize targets",
4797         },
4798         {
4799                 .name = "create",
4800                 /* REVISIT this should be COMMAND_CONFIG ... */
4801                 .mode = COMMAND_ANY,
4802                 .jim_handler = jim_target_create,
4803                 .usage = "name type '-chain-position' name [options ...]",
4804                 .help = "Creates and selects a new target",
4805         },
4806         {
4807                 .name = "current",
4808                 .mode = COMMAND_ANY,
4809                 .jim_handler = jim_target_current,
4810                 .help = "Returns the currently selected target",
4811         },
4812         {
4813                 .name = "types",
4814                 .mode = COMMAND_ANY,
4815                 .jim_handler = jim_target_types,
4816                 .help = "Returns the available target types as "
4817                                 "a list of strings",
4818         },
4819         {
4820                 .name = "names",
4821                 .mode = COMMAND_ANY,
4822                 .jim_handler = jim_target_names,
4823                 .help = "Returns the names of all targets as a list of strings",
4824         },
4825         {
4826                 .name = "number",
4827                 .mode = COMMAND_ANY,
4828                 .jim_handler = jim_target_number,
4829                 .usage = "number",
4830                 .help = "Returns the name of the numbered target "
4831                         "(DEPRECATED)",
4832         },
4833         {
4834                 .name = "count",
4835                 .mode = COMMAND_ANY,
4836                 .jim_handler = jim_target_count,
4837                 .help = "Returns the number of targets as an integer "
4838                         "(DEPRECATED)",
4839         },
4840         COMMAND_REGISTRATION_DONE
4841 };
4842
4843 struct FastLoad
4844 {
4845         uint32_t address;
4846         uint8_t *data;
4847         int length;
4848
4849 };
4850
4851 static int fastload_num;
4852 static struct FastLoad *fastload;
4853
4854 static void free_fastload(void)
4855 {
4856         if (fastload != NULL)
4857         {
4858                 int i;
4859                 for (i = 0; i < fastload_num; i++)
4860                 {
4861                         if (fastload[i].data)
4862                                 free(fastload[i].data);
4863                 }
4864                 free(fastload);
4865                 fastload = NULL;
4866         }
4867 }
4868
4869
4870
4871
4872 COMMAND_HANDLER(handle_fast_load_image_command)
4873 {
4874         uint8_t *buffer;
4875         size_t buf_cnt;
4876         uint32_t image_size;
4877         uint32_t min_address = 0;
4878         uint32_t max_address = 0xffffffff;
4879         int i;
4880
4881         struct image image;
4882
4883         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4884                         &image, &min_address, &max_address);
4885         if (ERROR_OK != retval)
4886                 return retval;
4887
4888         struct duration bench;
4889         duration_start(&bench);
4890
4891         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4892         {
4893                 return ERROR_OK;
4894         }
4895
4896         image_size = 0x0;
4897         retval = ERROR_OK;
4898         fastload_num = image.num_sections;
4899         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4900         if (fastload == NULL)
4901         {
4902                 image_close(&image);
4903                 return ERROR_FAIL;
4904         }
4905         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4906         for (i = 0; i < image.num_sections; i++)
4907         {
4908                 buffer = malloc(image.sections[i].size);
4909                 if (buffer == NULL)
4910                 {
4911                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4912                                                   (int)(image.sections[i].size));
4913                         break;
4914                 }
4915
4916                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4917                 {
4918                         free(buffer);
4919                         break;
4920                 }
4921
4922                 uint32_t offset = 0;
4923                 uint32_t length = buf_cnt;
4924
4925
4926                 /* DANGER!!! beware of unsigned comparision here!!! */
4927
4928                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4929                                 (image.sections[i].base_address < max_address))
4930                 {
4931                         if (image.sections[i].base_address < min_address)
4932                         {
4933                                 /* clip addresses below */
4934                                 offset += min_address-image.sections[i].base_address;
4935                                 length -= offset;
4936                         }
4937
4938                         if (image.sections[i].base_address + buf_cnt > max_address)
4939                         {
4940                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4941                         }
4942
4943                         fastload[i].address = image.sections[i].base_address + offset;
4944                         fastload[i].data = malloc(length);
4945                         if (fastload[i].data == NULL)
4946                         {
4947                                 free(buffer);
4948                                 break;
4949                         }
4950                         memcpy(fastload[i].data, buffer + offset, length);
4951                         fastload[i].length = length;
4952
4953                         image_size += length;
4954                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4955                                                   (unsigned int)length,
4956                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4957                 }
4958
4959                 free(buffer);
4960         }
4961
4962         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4963         {
4964                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4965                                 "in %fs (%0.3f kb/s)", image_size, 
4966                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4967
4968                 command_print(CMD_CTX,
4969                                 "WARNING: image has not been loaded to target!"
4970                                 "You can issue a 'fast_load' to finish loading.");
4971         }
4972
4973         image_close(&image);
4974
4975         if (retval != ERROR_OK)
4976         {
4977                 free_fastload();
4978         }
4979
4980         return retval;
4981 }
4982
4983 COMMAND_HANDLER(handle_fast_load_command)
4984 {
4985         if (CMD_ARGC > 0)
4986                 return ERROR_COMMAND_SYNTAX_ERROR;
4987         if (fastload == NULL)
4988         {
4989                 LOG_ERROR("No image in memory");
4990                 return ERROR_FAIL;
4991         }
4992         int i;
4993         int ms = timeval_ms();
4994         int size = 0;
4995         int retval = ERROR_OK;
4996         for (i = 0; i < fastload_num;i++)
4997         {
4998                 struct target *target = get_current_target(CMD_CTX);
4999                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5000                                           (unsigned int)(fastload[i].address),
5001                                           (unsigned int)(fastload[i].length));
5002                 if (retval == ERROR_OK)
5003                 {
5004                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5005                 }
5006                 size += fastload[i].length;
5007         }
5008         int after = timeval_ms();
5009         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5010         return retval;
5011 }
5012
5013 static const struct command_registration target_command_handlers[] = {
5014         {
5015                 .name = "targets",
5016                 .handler = handle_targets_command,
5017                 .mode = COMMAND_ANY,
5018                 .help = "change current default target (one parameter) "
5019                         "or prints table of all targets (no parameters)",
5020                 .usage = "[target]",
5021         },
5022         {
5023                 .name = "target",
5024                 .mode = COMMAND_CONFIG,
5025                 .help = "configure target",
5026
5027                 .chain = target_subcommand_handlers,
5028         },
5029         COMMAND_REGISTRATION_DONE
5030 };
5031
5032 int target_register_commands(struct command_context *cmd_ctx)
5033 {
5034         return register_commands(cmd_ctx, NULL, target_command_handlers);
5035 }
5036
5037 static bool target_reset_nag = true;
5038
5039 bool get_target_reset_nag(void)
5040 {
5041         return target_reset_nag;
5042 }
5043
5044 COMMAND_HANDLER(handle_target_reset_nag)
5045 {
5046         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5047                         &target_reset_nag, "Nag after each reset about options to improve "
5048                         "performance");
5049 }
5050
5051 static const struct command_registration target_exec_command_handlers[] = {
5052         {
5053                 .name = "fast_load_image",
5054                 .handler = handle_fast_load_image_command,
5055                 .mode = COMMAND_ANY,
5056                 .help = "Load image into server memory for later use by "
5057                         "fast_load; primarily for profiling",
5058                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5059                         "[min_address [max_length]]",
5060         },
5061         {
5062                 .name = "fast_load",
5063                 .handler = handle_fast_load_command,
5064                 .mode = COMMAND_EXEC,
5065                 .help = "loads active fast load image to current target "
5066                         "- mainly for profiling purposes",
5067         },
5068         {
5069                 .name = "profile",
5070                 .handler = handle_profile_command,
5071                 .mode = COMMAND_EXEC,
5072                 .help = "profiling samples the CPU PC",
5073         },
5074         /** @todo don't register virt2phys() unless target supports it */
5075         {
5076                 .name = "virt2phys",
5077                 .handler = handle_virt2phys_command,
5078                 .mode = COMMAND_ANY,
5079                 .help = "translate a virtual address into a physical address",
5080                 .usage = "virtual_address",
5081         },
5082         {
5083                 .name = "reg",
5084                 .handler = handle_reg_command,
5085                 .mode = COMMAND_EXEC,
5086                 .help = "display or set a register; with no arguments, "
5087                         "displays all registers and their values",
5088                 .usage = "[(register_name|register_number) [value]]",
5089         },
5090         {
5091                 .name = "poll",
5092                 .handler = handle_poll_command,
5093                 .mode = COMMAND_EXEC,
5094                 .help = "poll target state; or reconfigure background polling",
5095                 .usage = "['on'|'off']",
5096         },
5097         {
5098                 .name = "wait_halt",
5099                 .handler = handle_wait_halt_command,
5100                 .mode = COMMAND_EXEC,
5101                 .help = "wait up to the specified number of milliseconds "
5102                         "(default 5) for a previously requested halt",
5103                 .usage = "[milliseconds]",
5104         },
5105         {
5106                 .name = "halt",
5107                 .handler = handle_halt_command,
5108                 .mode = COMMAND_EXEC,
5109                 .help = "request target to halt, then wait up to the specified"
5110                         "number of milliseconds (default 5) for it to complete",
5111                 .usage = "[milliseconds]",
5112         },
5113         {
5114                 .name = "resume",
5115                 .handler = handle_resume_command,
5116                 .mode = COMMAND_EXEC,
5117                 .help = "resume target execution from current PC or address",
5118                 .usage = "[address]",
5119         },
5120         {
5121                 .name = "reset",
5122                 .handler = handle_reset_command,
5123                 .mode = COMMAND_EXEC,
5124                 .usage = "[run|halt|init]",
5125                 .help = "Reset all targets into the specified mode."
5126                         "Default reset mode is run, if not given.",
5127         },
5128         {
5129                 .name = "soft_reset_halt",
5130                 .handler = handle_soft_reset_halt_command,
5131                 .mode = COMMAND_EXEC,
5132                 .help = "halt the target and do a soft reset",
5133         },
5134         {
5135                 .name = "step",
5136                 .handler = handle_step_command,
5137                 .mode = COMMAND_EXEC,
5138                 .help = "step one instruction from current PC or address",
5139                 .usage = "[address]",
5140         },
5141         {
5142                 .name = "mdw",
5143                 .handler = handle_md_command,
5144                 .mode = COMMAND_EXEC,
5145                 .help = "display memory words",
5146                 .usage = "['phys'] address [count]",
5147         },
5148         {
5149                 .name = "mdh",
5150                 .handler = handle_md_command,
5151                 .mode = COMMAND_EXEC,
5152                 .help = "display memory half-words",
5153                 .usage = "['phys'] address [count]",
5154         },
5155         {
5156                 .name = "mdb",
5157                 .handler = handle_md_command,
5158                 .mode = COMMAND_EXEC,
5159                 .help = "display memory bytes",
5160                 .usage = "['phys'] address [count]",
5161         },
5162         {
5163                 .name = "mww",
5164                 .handler = handle_mw_command,
5165                 .mode = COMMAND_EXEC,
5166                 .help = "write memory word",
5167                 .usage = "['phys'] address value [count]",
5168         },
5169         {
5170                 .name = "mwh",
5171                 .handler = handle_mw_command,
5172                 .mode = COMMAND_EXEC,
5173                 .help = "write memory half-word",
5174                 .usage = "['phys'] address value [count]",
5175         },
5176         {
5177                 .name = "mwb",
5178                 .handler = handle_mw_command,
5179                 .mode = COMMAND_EXEC,
5180                 .help = "write memory byte",
5181                 .usage = "['phys'] address value [count]",
5182         },
5183         {
5184                 .name = "bp",
5185                 .handler = handle_bp_command,
5186                 .mode = COMMAND_EXEC,
5187                 .help = "list or set hardware or software breakpoint",
5188                 .usage = "[address length ['hw']]",
5189         },
5190         {
5191                 .name = "rbp",
5192                 .handler = handle_rbp_command,
5193                 .mode = COMMAND_EXEC,
5194                 .help = "remove breakpoint",
5195                 .usage = "address",
5196         },
5197         {
5198                 .name = "wp",
5199                 .handler = handle_wp_command,
5200                 .mode = COMMAND_EXEC,
5201                 .help = "list (no params) or create watchpoints",
5202                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5203         },
5204         {
5205                 .name = "rwp",
5206                 .handler = handle_rwp_command,
5207                 .mode = COMMAND_EXEC,
5208                 .help = "remove watchpoint",
5209                 .usage = "address",
5210         },
5211         {
5212                 .name = "load_image",
5213                 .handler = handle_load_image_command,
5214                 .mode = COMMAND_EXEC,
5215                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5216                         "[min_address] [max_length]",
5217         },
5218         {
5219                 .name = "dump_image",
5220                 .handler = handle_dump_image_command,
5221                 .mode = COMMAND_EXEC,
5222                 .usage = "filename address size",
5223         },
5224         {
5225                 .name = "verify_image",
5226                 .handler = handle_verify_image_command,
5227                 .mode = COMMAND_EXEC,
5228                 .usage = "filename [offset [type]]",
5229         },
5230         {
5231                 .name = "test_image",
5232                 .handler = handle_test_image_command,
5233                 .mode = COMMAND_EXEC,
5234                 .usage = "filename [offset [type]]",
5235         },
5236         {
5237                 .name = "ocd_mem2array",
5238                 .mode = COMMAND_EXEC,
5239                 .jim_handler = jim_mem2array,
5240                 .help = "read 8/16/32 bit memory and return as a TCL array "
5241                         "for script processing",
5242                 .usage = "arrayname bitwidth address count",
5243         },
5244         {
5245                 .name = "ocd_array2mem",
5246                 .mode = COMMAND_EXEC,
5247                 .jim_handler = jim_array2mem,
5248                 .help = "convert a TCL array to memory locations "
5249                         "and write the 8/16/32 bit values",
5250                 .usage = "arrayname bitwidth address count",
5251         },
5252         {
5253                 .name = "reset_nag",
5254                 .handler = handle_target_reset_nag,
5255                 .mode = COMMAND_ANY,
5256                 .help = "Nag after each reset about options that could have been "
5257                                 "enabled to improve performance. ",
5258                 .usage = "['enable'|'disable']",
5259         },
5260         COMMAND_REGISTRATION_DONE
5261 };
5262 static int target_register_user_commands(struct command_context *cmd_ctx)
5263 {
5264         int retval = ERROR_OK;
5265         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5266                 return retval;
5267
5268         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5269                 return retval;
5270
5271
5272         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5273 }