]> git.sur5r.net Git - openocd/blob - src/target/target.c
rename CEIL as DIV_ROUND_UP
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "breakpoints.h"
40 #include "time_support.h"
41 #include "register.h"
42 #include "trace.h"
43 #include "image.h"
44 #include "jtag.h"
45
46
47 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
51
52 /* targets */
53 extern struct target_type arm7tdmi_target;
54 extern struct target_type arm720t_target;
55 extern struct target_type arm9tdmi_target;
56 extern struct target_type arm920t_target;
57 extern struct target_type arm966e_target;
58 extern struct target_type arm926ejs_target;
59 extern struct target_type fa526_target;
60 extern struct target_type feroceon_target;
61 extern struct target_type dragonite_target;
62 extern struct target_type xscale_target;
63 extern struct target_type cortexm3_target;
64 extern struct target_type cortexa8_target;
65 extern struct target_type arm11_target;
66 extern struct target_type mips_m4k_target;
67 extern struct target_type avr_target;
68
69 struct target_type *target_types[] =
70 {
71         &arm7tdmi_target,
72         &arm9tdmi_target,
73         &arm920t_target,
74         &arm720t_target,
75         &arm966e_target,
76         &arm926ejs_target,
77         &fa526_target,
78         &feroceon_target,
79         &dragonite_target,
80         &xscale_target,
81         &cortexm3_target,
82         &cortexa8_target,
83         &arm11_target,
84         &mips_m4k_target,
85         &avr_target,
86         NULL,
87 };
88
89 struct target *all_targets = NULL;
90 struct target_event_callback *target_event_callbacks = NULL;
91 struct target_timer_callback *target_timer_callbacks = NULL;
92
93 const Jim_Nvp nvp_assert[] = {
94         { .name = "assert", NVP_ASSERT },
95         { .name = "deassert", NVP_DEASSERT },
96         { .name = "T", NVP_ASSERT },
97         { .name = "F", NVP_DEASSERT },
98         { .name = "t", NVP_ASSERT },
99         { .name = "f", NVP_DEASSERT },
100         { .name = NULL, .value = -1 }
101 };
102
103 const Jim_Nvp nvp_error_target[] = {
104         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
105         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
106         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
107         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
108         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
109         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
110         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
111         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
112         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
113         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
114         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
115         { .value = -1, .name = NULL }
116 };
117
118 const char *target_strerror_safe(int err)
119 {
120         const Jim_Nvp *n;
121
122         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
123         if (n->name == NULL) {
124                 return "unknown";
125         } else {
126                 return n->name;
127         }
128 }
129
130 static const Jim_Nvp nvp_target_event[] = {
131         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
132         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
133
134         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
135         { .value = TARGET_EVENT_HALTED, .name = "halted" },
136         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
137         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
138         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
139
140         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
141         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
142
143         /* historical name */
144
145         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
146
147         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
148         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
149         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
150         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
151         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
152         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
153         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
154         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
155         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
156         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
157
158         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
159         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
160
161         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
162         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
163
164         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
165         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
166
167         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
168         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
169
170         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
171         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
172
173         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
174         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
175         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
176
177         { .name = NULL, .value = -1 }
178 };
179
180 const Jim_Nvp nvp_target_state[] = {
181         { .name = "unknown", .value = TARGET_UNKNOWN },
182         { .name = "running", .value = TARGET_RUNNING },
183         { .name = "halted",  .value = TARGET_HALTED },
184         { .name = "reset",   .value = TARGET_RESET },
185         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
186         { .name = NULL, .value = -1 },
187 };
188
189 const Jim_Nvp nvp_target_debug_reason [] = {
190         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
191         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
192         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
193         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
194         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
195         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
196         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
197         { .name = NULL, .value = -1 },
198 };
199
200 const Jim_Nvp nvp_target_endian[] = {
201         { .name = "big",    .value = TARGET_BIG_ENDIAN },
202         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
203         { .name = "be",     .value = TARGET_BIG_ENDIAN },
204         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
205         { .name = NULL,     .value = -1 },
206 };
207
208 const Jim_Nvp nvp_reset_modes[] = {
209         { .name = "unknown", .value = RESET_UNKNOWN },
210         { .name = "run"    , .value = RESET_RUN },
211         { .name = "halt"   , .value = RESET_HALT },
212         { .name = "init"   , .value = RESET_INIT },
213         { .name = NULL     , .value = -1 },
214 };
215
216 const char *
217 target_state_name( struct target *t )
218 {
219         const char *cp;
220         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
221         if( !cp ){
222                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
223                 cp = "(*BUG*unknown*BUG*)";
224         }
225         return cp;
226 }
227
228 /* determine the number of the new target */
229 static int new_target_number(void)
230 {
231         struct target *t;
232         int x;
233
234         /* number is 0 based */
235         x = -1;
236         t = all_targets;
237         while (t) {
238                 if (x < t->target_number) {
239                         x = t->target_number;
240                 }
241                 t = t->next;
242         }
243         return x + 1;
244 }
245
246 /* read a uint32_t from a buffer in target memory endianness */
247 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
248 {
249         if (target->endianness == TARGET_LITTLE_ENDIAN)
250                 return le_to_h_u32(buffer);
251         else
252                 return be_to_h_u32(buffer);
253 }
254
255 /* read a uint16_t from a buffer in target memory endianness */
256 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
257 {
258         if (target->endianness == TARGET_LITTLE_ENDIAN)
259                 return le_to_h_u16(buffer);
260         else
261                 return be_to_h_u16(buffer);
262 }
263
264 /* read a uint8_t from a buffer in target memory endianness */
265 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
266 {
267         return *buffer & 0x0ff;
268 }
269
270 /* write a uint32_t to a buffer in target memory endianness */
271 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
272 {
273         if (target->endianness == TARGET_LITTLE_ENDIAN)
274                 h_u32_to_le(buffer, value);
275         else
276                 h_u32_to_be(buffer, value);
277 }
278
279 /* write a uint16_t to a buffer in target memory endianness */
280 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 h_u16_to_le(buffer, value);
284         else
285                 h_u16_to_be(buffer, value);
286 }
287
288 /* write a uint8_t to a buffer in target memory endianness */
289 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
290 {
291         *buffer = value;
292 }
293
294 /* return a pointer to a configured target; id is name or number */
295 struct target *get_target(const char *id)
296 {
297         struct target *target;
298
299         /* try as tcltarget name */
300         for (target = all_targets; target; target = target->next) {
301                 if (target->cmd_name == NULL)
302                         continue;
303                 if (strcmp(id, target->cmd_name) == 0)
304                         return target;
305         }
306
307         /* It's OK to remove this fallback sometime after August 2010 or so */
308
309         /* no match, try as number */
310         unsigned num;
311         if (parse_uint(id, &num) != ERROR_OK)
312                 return NULL;
313
314         for (target = all_targets; target; target = target->next) {
315                 if (target->target_number == (int)num) {
316                         LOG_WARNING("use '%s' as target identifier, not '%u'",
317                                         target->cmd_name, num);
318                         return target;
319                 }
320         }
321
322         return NULL;
323 }
324
325 /* returns a pointer to the n-th configured target */
326 static struct target *get_target_by_num(int num)
327 {
328         struct target *target = all_targets;
329
330         while (target) {
331                 if (target->target_number == num) {
332                         return target;
333                 }
334                 target = target->next;
335         }
336
337         return NULL;
338 }
339
340 struct target* get_current_target(struct command_context *cmd_ctx)
341 {
342         struct target *target = get_target_by_num(cmd_ctx->current_target);
343
344         if (target == NULL)
345         {
346                 LOG_ERROR("BUG: current_target out of bounds");
347                 exit(-1);
348         }
349
350         return target;
351 }
352
353 int target_poll(struct target *target)
354 {
355         int retval;
356
357         /* We can't poll until after examine */
358         if (!target_was_examined(target))
359         {
360                 /* Fail silently lest we pollute the log */
361                 return ERROR_FAIL;
362         }
363
364         retval = target->type->poll(target);
365         if (retval != ERROR_OK)
366                 return retval;
367
368         if (target->halt_issued)
369         {
370                 if (target->state == TARGET_HALTED)
371                 {
372                         target->halt_issued = false;
373                 } else
374                 {
375                         long long t = timeval_ms() - target->halt_issued_time;
376                         if (t>1000)
377                         {
378                                 target->halt_issued = false;
379                                 LOG_INFO("Halt timed out, wake up GDB.");
380                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
381                         }
382                 }
383         }
384
385         return ERROR_OK;
386 }
387
388 int target_halt(struct target *target)
389 {
390         int retval;
391         /* We can't poll until after examine */
392         if (!target_was_examined(target))
393         {
394                 LOG_ERROR("Target not examined yet");
395                 return ERROR_FAIL;
396         }
397
398         retval = target->type->halt(target);
399         if (retval != ERROR_OK)
400                 return retval;
401
402         target->halt_issued = true;
403         target->halt_issued_time = timeval_ms();
404
405         return ERROR_OK;
406 }
407
408 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
409 {
410         int retval;
411
412         /* We can't poll until after examine */
413         if (!target_was_examined(target))
414         {
415                 LOG_ERROR("Target not examined yet");
416                 return ERROR_FAIL;
417         }
418
419         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
420          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
421          * the application.
422          */
423         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
424                 return retval;
425
426         return retval;
427 }
428
429 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
430 {
431         char buf[100];
432         int retval;
433         Jim_Nvp *n;
434         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
435         if (n->name == NULL) {
436                 LOG_ERROR("invalid reset mode");
437                 return ERROR_FAIL;
438         }
439
440         /* disable polling during reset to make reset event scripts
441          * more predictable, i.e. dr/irscan & pathmove in events will
442          * not have JTAG operations injected into the middle of a sequence.
443          */
444         bool save_poll = jtag_poll_get_enabled();
445
446         jtag_poll_set_enabled(false);
447
448         sprintf(buf, "ocd_process_reset %s", n->name);
449         retval = Jim_Eval(interp, buf);
450
451         jtag_poll_set_enabled(save_poll);
452
453         if (retval != JIM_OK) {
454                 Jim_PrintErrorMessage(interp);
455                 return ERROR_FAIL;
456         }
457
458         /* We want any events to be processed before the prompt */
459         retval = target_call_timer_callbacks_now();
460
461         return retval;
462 }
463
464 static int identity_virt2phys(struct target *target,
465                 uint32_t virtual, uint32_t *physical)
466 {
467         *physical = virtual;
468         return ERROR_OK;
469 }
470
471 static int no_mmu(struct target *target, int *enabled)
472 {
473         *enabled = 0;
474         return ERROR_OK;
475 }
476
477 static int default_examine(struct target *target)
478 {
479         target_set_examined(target);
480         return ERROR_OK;
481 }
482
483 int target_examine_one(struct target *target)
484 {
485         return target->type->examine(target);
486 }
487
488 static int jtag_enable_callback(enum jtag_event event, void *priv)
489 {
490         struct target *target = priv;
491
492         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
493                 return ERROR_OK;
494
495         jtag_unregister_event_callback(jtag_enable_callback, target);
496         return target_examine_one(target);
497 }
498
499
500 /* Targets that correctly implement init + examine, i.e.
501  * no communication with target during init:
502  *
503  * XScale
504  */
505 int target_examine(void)
506 {
507         int retval = ERROR_OK;
508         struct target *target;
509
510         for (target = all_targets; target; target = target->next)
511         {
512                 /* defer examination, but don't skip it */
513                 if (!target->tap->enabled) {
514                         jtag_register_event_callback(jtag_enable_callback,
515                                         target);
516                         continue;
517                 }
518                 if ((retval = target_examine_one(target)) != ERROR_OK)
519                         return retval;
520         }
521         return retval;
522 }
523 const char *target_get_name(struct target *target)
524 {
525         return target->type->name;
526 }
527
528 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
529 {
530         if (!target_was_examined(target))
531         {
532                 LOG_ERROR("Target not examined yet");
533                 return ERROR_FAIL;
534         }
535         return target->type->write_memory_imp(target, address, size, count, buffer);
536 }
537
538 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
539 {
540         if (!target_was_examined(target))
541         {
542                 LOG_ERROR("Target not examined yet");
543                 return ERROR_FAIL;
544         }
545         return target->type->read_memory_imp(target, address, size, count, buffer);
546 }
547
548 static int target_soft_reset_halt_imp(struct target *target)
549 {
550         if (!target_was_examined(target))
551         {
552                 LOG_ERROR("Target not examined yet");
553                 return ERROR_FAIL;
554         }
555         if (!target->type->soft_reset_halt_imp) {
556                 LOG_ERROR("Target %s does not support soft_reset_halt",
557                                 target->cmd_name);
558                 return ERROR_FAIL;
559         }
560         return target->type->soft_reset_halt_imp(target);
561 }
562
563 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
564 {
565         if (!target_was_examined(target))
566         {
567                 LOG_ERROR("Target not examined yet");
568                 return ERROR_FAIL;
569         }
570         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
571 }
572
573 int target_read_memory(struct target *target,
574                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
575 {
576         return target->type->read_memory(target, address, size, count, buffer);
577 }
578
579 int target_read_phys_memory(struct target *target,
580                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
581 {
582         return target->type->read_phys_memory(target, address, size, count, buffer);
583 }
584
585 int target_write_memory(struct target *target,
586                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
587 {
588         return target->type->write_memory(target, address, size, count, buffer);
589 }
590
591 int target_write_phys_memory(struct target *target,
592                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
593 {
594         return target->type->write_phys_memory(target, address, size, count, buffer);
595 }
596
597 int target_bulk_write_memory(struct target *target,
598                 uint32_t address, uint32_t count, uint8_t *buffer)
599 {
600         return target->type->bulk_write_memory(target, address, count, buffer);
601 }
602
603 int target_add_breakpoint(struct target *target,
604                 struct breakpoint *breakpoint)
605 {
606         return target->type->add_breakpoint(target, breakpoint);
607 }
608 int target_remove_breakpoint(struct target *target,
609                 struct breakpoint *breakpoint)
610 {
611         return target->type->remove_breakpoint(target, breakpoint);
612 }
613
614 int target_add_watchpoint(struct target *target,
615                 struct watchpoint *watchpoint)
616 {
617         return target->type->add_watchpoint(target, watchpoint);
618 }
619 int target_remove_watchpoint(struct target *target,
620                 struct watchpoint *watchpoint)
621 {
622         return target->type->remove_watchpoint(target, watchpoint);
623 }
624
625 int target_get_gdb_reg_list(struct target *target,
626                 struct reg **reg_list[], int *reg_list_size)
627 {
628         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
629 }
630 int target_step(struct target *target,
631                 int current, uint32_t address, int handle_breakpoints)
632 {
633         return target->type->step(target, current, address, handle_breakpoints);
634 }
635
636
637 int target_run_algorithm(struct target *target,
638                 int num_mem_params, struct mem_param *mem_params,
639                 int num_reg_params, struct reg_param *reg_param,
640                 uint32_t entry_point, uint32_t exit_point,
641                 int timeout_ms, void *arch_info)
642 {
643         return target->type->run_algorithm(target,
644                         num_mem_params, mem_params, num_reg_params, reg_param,
645                         entry_point, exit_point, timeout_ms, arch_info);
646 }
647
648 /**
649  * Reset the @c examined flag for the given target.
650  * Pure paranoia -- targets are zeroed on allocation.
651  */
652 static void target_reset_examined(struct target *target)
653 {
654         target->examined = false;
655 }
656
657
658
659 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
660 {
661         LOG_ERROR("Not implemented: %s", __func__);
662         return ERROR_FAIL;
663 }
664
665 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
666 {
667         LOG_ERROR("Not implemented: %s", __func__);
668         return ERROR_FAIL;
669 }
670
671 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
672 {
673         /* basic check */
674         if (!target_was_examined(target))
675         {
676                 LOG_ERROR("Target not examined yet");
677                 return ERROR_FAIL;
678         }
679
680         if ((cpnum <0) || (cpnum > 15))
681         {
682                 LOG_ERROR("Illegal co-processor %d", cpnum);
683                 return ERROR_FAIL;
684         }
685
686         if (op1 > 7)
687         {
688                 LOG_ERROR("Illegal op1");
689                 return ERROR_FAIL;
690         }
691
692         if (op2 > 7)
693         {
694                 LOG_ERROR("Illegal op2");
695                 return ERROR_FAIL;
696         }
697
698         if (CRn > 15)
699         {
700                 LOG_ERROR("Illegal CRn");
701                 return ERROR_FAIL;
702         }
703
704         if (CRm > 15)
705         {
706                 LOG_ERROR("Illegal CRm");
707                 return ERROR_FAIL;
708         }
709
710         return ERROR_OK;
711 }
712
713 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
714 {
715         int retval;
716
717         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
718         if (retval != ERROR_OK)
719                 return retval;
720
721         return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
722 }
723
724 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
725 {
726         int retval;
727
728         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
729         if (retval != ERROR_OK)
730                 return retval;
731
732         return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
733 }
734
735 static int
736 err_read_phys_memory(struct target *target, uint32_t address,
737                 uint32_t size, uint32_t count, uint8_t *buffer)
738 {
739         LOG_ERROR("Not implemented: %s", __func__);
740         return ERROR_FAIL;
741 }
742
743 static int
744 err_write_phys_memory(struct target *target, uint32_t address,
745                 uint32_t size, uint32_t count, uint8_t *buffer)
746 {
747         LOG_ERROR("Not implemented: %s", __func__);
748         return ERROR_FAIL;
749 }
750
751 int target_init(struct command_context *cmd_ctx)
752 {
753         struct target *target;
754         int retval;
755
756         for (target = all_targets; target; target = target->next) {
757                 struct target_type *type = target->type;
758
759                 target_reset_examined(target);
760                 if (target->type->examine == NULL)
761                 {
762                         target->type->examine = default_examine;
763                 }
764
765                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
766                 {
767                         LOG_ERROR("target '%s' init failed", target_get_name(target));
768                         return retval;
769                 }
770
771                 /**
772                  * @todo MCR/MRC are ARM-specific; don't require them in
773                  * all targets, or for ARMs without coprocessors.
774                  */
775                 if (target->type->mcr == NULL)
776                 {
777                         target->type->mcr = default_mcr;
778                 } else
779                 {
780                         /* FIX! multiple targets will generally register global commands
781                          * multiple times. Only register this one if *one* of the
782                          * targets need the command. Hmm... make it a command on the
783                          * Jim Tcl target object?
784                          */
785                         register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
786                 }
787
788                 if (target->type->mrc == NULL)
789                 {
790                         target->type->mrc = default_mrc;
791                 } else
792                 {
793                         register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
794                 }
795
796
797                 /**
798                  * @todo get rid of those *memory_imp() methods, now that all
799                  * callers are using target_*_memory() accessors ... and make
800                  * sure the "physical" paths handle the same issues.
801                  */
802
803                 /* a non-invasive way(in terms of patches) to add some code that
804                  * runs before the type->write/read_memory implementation
805                  */
806                 target->type->write_memory_imp = target->type->write_memory;
807                 target->type->write_memory = target_write_memory_imp;
808                 target->type->read_memory_imp = target->type->read_memory;
809                 target->type->read_memory = target_read_memory_imp;
810                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
811                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
812                 target->type->run_algorithm_imp = target->type->run_algorithm;
813                 target->type->run_algorithm = target_run_algorithm_imp;
814
815                 /* Sanity-check MMU support ... stub in what we must, to help
816                  * implement it in stages, but warn if we need to do so.
817                  */
818                 if (type->mmu) {
819                         if (type->write_phys_memory == NULL) {
820                                 LOG_ERROR("type '%s' is missing %s",
821                                                 type->name,
822                                                 "write_phys_memory");
823                                 type->write_phys_memory = err_write_phys_memory;
824                         }
825                         if (type->read_phys_memory == NULL) {
826                                 LOG_ERROR("type '%s' is missing %s",
827                                                 type->name,
828                                                 "read_phys_memory");
829                                 type->read_phys_memory = err_read_phys_memory;
830                         }
831                         if (type->virt2phys == NULL) {
832                                 LOG_ERROR("type '%s' is missing %s",
833                                                 type->name,
834                                                 "virt2phys");
835                                 type->virt2phys = identity_virt2phys;
836                         }
837
838                 /* Make sure no-MMU targets all behave the same:  make no
839                  * distinction between physical and virtual addresses, and
840                  * ensure that virt2phys() is always an identity mapping.
841                  */
842                 } else {
843                         if (type->write_phys_memory
844                                         || type->read_phys_memory
845                                         || type->virt2phys)
846                                 LOG_WARNING("type '%s' has broken MMU hooks",
847                                                 type->name);
848
849                         type->mmu = no_mmu;
850                         type->write_phys_memory = type->write_memory;
851                         type->read_phys_memory = type->read_memory;
852                         type->virt2phys = identity_virt2phys;
853                 }
854         }
855
856         if (all_targets)
857         {
858                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
859                         return retval;
860                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
861                         return retval;
862         }
863
864         return ERROR_OK;
865 }
866
867 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
868 {
869         struct target_event_callback **callbacks_p = &target_event_callbacks;
870
871         if (callback == NULL)
872         {
873                 return ERROR_INVALID_ARGUMENTS;
874         }
875
876         if (*callbacks_p)
877         {
878                 while ((*callbacks_p)->next)
879                         callbacks_p = &((*callbacks_p)->next);
880                 callbacks_p = &((*callbacks_p)->next);
881         }
882
883         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
884         (*callbacks_p)->callback = callback;
885         (*callbacks_p)->priv = priv;
886         (*callbacks_p)->next = NULL;
887
888         return ERROR_OK;
889 }
890
891 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
892 {
893         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
894         struct timeval now;
895
896         if (callback == NULL)
897         {
898                 return ERROR_INVALID_ARGUMENTS;
899         }
900
901         if (*callbacks_p)
902         {
903                 while ((*callbacks_p)->next)
904                         callbacks_p = &((*callbacks_p)->next);
905                 callbacks_p = &((*callbacks_p)->next);
906         }
907
908         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
909         (*callbacks_p)->callback = callback;
910         (*callbacks_p)->periodic = periodic;
911         (*callbacks_p)->time_ms = time_ms;
912
913         gettimeofday(&now, NULL);
914         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
915         time_ms -= (time_ms % 1000);
916         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
917         if ((*callbacks_p)->when.tv_usec > 1000000)
918         {
919                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
920                 (*callbacks_p)->when.tv_sec += 1;
921         }
922
923         (*callbacks_p)->priv = priv;
924         (*callbacks_p)->next = NULL;
925
926         return ERROR_OK;
927 }
928
929 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
930 {
931         struct target_event_callback **p = &target_event_callbacks;
932         struct target_event_callback *c = target_event_callbacks;
933
934         if (callback == NULL)
935         {
936                 return ERROR_INVALID_ARGUMENTS;
937         }
938
939         while (c)
940         {
941                 struct target_event_callback *next = c->next;
942                 if ((c->callback == callback) && (c->priv == priv))
943                 {
944                         *p = next;
945                         free(c);
946                         return ERROR_OK;
947                 }
948                 else
949                         p = &(c->next);
950                 c = next;
951         }
952
953         return ERROR_OK;
954 }
955
956 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
957 {
958         struct target_timer_callback **p = &target_timer_callbacks;
959         struct target_timer_callback *c = target_timer_callbacks;
960
961         if (callback == NULL)
962         {
963                 return ERROR_INVALID_ARGUMENTS;
964         }
965
966         while (c)
967         {
968                 struct target_timer_callback *next = c->next;
969                 if ((c->callback == callback) && (c->priv == priv))
970                 {
971                         *p = next;
972                         free(c);
973                         return ERROR_OK;
974                 }
975                 else
976                         p = &(c->next);
977                 c = next;
978         }
979
980         return ERROR_OK;
981 }
982
983 int target_call_event_callbacks(struct target *target, enum target_event event)
984 {
985         struct target_event_callback *callback = target_event_callbacks;
986         struct target_event_callback *next_callback;
987
988         if (event == TARGET_EVENT_HALTED)
989         {
990                 /* execute early halted first */
991                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
992         }
993
994         LOG_DEBUG("target event %i (%s)",
995                           event,
996                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
997
998         target_handle_event(target, event);
999
1000         while (callback)
1001         {
1002                 next_callback = callback->next;
1003                 callback->callback(target, event, callback->priv);
1004                 callback = next_callback;
1005         }
1006
1007         return ERROR_OK;
1008 }
1009
1010 static int target_timer_callback_periodic_restart(
1011                 struct target_timer_callback *cb, struct timeval *now)
1012 {
1013         int time_ms = cb->time_ms;
1014         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1015         time_ms -= (time_ms % 1000);
1016         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1017         if (cb->when.tv_usec > 1000000)
1018         {
1019                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1020                 cb->when.tv_sec += 1;
1021         }
1022         return ERROR_OK;
1023 }
1024
1025 static int target_call_timer_callback(struct target_timer_callback *cb,
1026                 struct timeval *now)
1027 {
1028         cb->callback(cb->priv);
1029
1030         if (cb->periodic)
1031                 return target_timer_callback_periodic_restart(cb, now);
1032
1033         return target_unregister_timer_callback(cb->callback, cb->priv);
1034 }
1035
1036 static int target_call_timer_callbacks_check_time(int checktime)
1037 {
1038         keep_alive();
1039
1040         struct timeval now;
1041         gettimeofday(&now, NULL);
1042
1043         struct target_timer_callback *callback = target_timer_callbacks;
1044         while (callback)
1045         {
1046                 // cleaning up may unregister and free this callback
1047                 struct target_timer_callback *next_callback = callback->next;
1048
1049                 bool call_it = callback->callback &&
1050                         ((!checktime && callback->periodic) ||
1051                           now.tv_sec > callback->when.tv_sec ||
1052                          (now.tv_sec == callback->when.tv_sec &&
1053                           now.tv_usec >= callback->when.tv_usec));
1054
1055                 if (call_it)
1056                 {
1057                         int retval = target_call_timer_callback(callback, &now);
1058                         if (retval != ERROR_OK)
1059                                 return retval;
1060                 }
1061
1062                 callback = next_callback;
1063         }
1064
1065         return ERROR_OK;
1066 }
1067
1068 int target_call_timer_callbacks(void)
1069 {
1070         return target_call_timer_callbacks_check_time(1);
1071 }
1072
1073 /* invoke periodic callbacks immediately */
1074 int target_call_timer_callbacks_now(void)
1075 {
1076         return target_call_timer_callbacks_check_time(0);
1077 }
1078
1079 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1080 {
1081         struct working_area *c = target->working_areas;
1082         struct working_area *new_wa = NULL;
1083
1084         /* Reevaluate working area address based on MMU state*/
1085         if (target->working_areas == NULL)
1086         {
1087                 int retval;
1088                 int enabled;
1089
1090                 retval = target->type->mmu(target, &enabled);
1091                 if (retval != ERROR_OK)
1092                 {
1093                         return retval;
1094                 }
1095
1096                 if (!enabled) {
1097                         if (target->working_area_phys_spec) {
1098                                 LOG_DEBUG("MMU disabled, using physical "
1099                                         "address for working memory 0x%08x",
1100                                         (unsigned)target->working_area_phys);
1101                                 target->working_area = target->working_area_phys;
1102                         } else {
1103                                 LOG_ERROR("No working memory available. "
1104                                         "Specify -work-area-phys to target.");
1105                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1106                         }
1107                 } else {
1108                         if (target->working_area_virt_spec) {
1109                                 LOG_DEBUG("MMU enabled, using virtual "
1110                                         "address for working memory 0x%08x",
1111                                         (unsigned)target->working_area_virt);
1112                                 target->working_area = target->working_area_virt;
1113                         } else {
1114                                 LOG_ERROR("No working memory available. "
1115                                         "Specify -work-area-virt to target.");
1116                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1117                         }
1118                 }
1119         }
1120
1121         /* only allocate multiples of 4 byte */
1122         if (size % 4)
1123         {
1124                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1125                 size = (size + 3) & (~3);
1126         }
1127
1128         /* see if there's already a matching working area */
1129         while (c)
1130         {
1131                 if ((c->free) && (c->size == size))
1132                 {
1133                         new_wa = c;
1134                         break;
1135                 }
1136                 c = c->next;
1137         }
1138
1139         /* if not, allocate a new one */
1140         if (!new_wa)
1141         {
1142                 struct working_area **p = &target->working_areas;
1143                 uint32_t first_free = target->working_area;
1144                 uint32_t free_size = target->working_area_size;
1145
1146                 c = target->working_areas;
1147                 while (c)
1148                 {
1149                         first_free += c->size;
1150                         free_size -= c->size;
1151                         p = &c->next;
1152                         c = c->next;
1153                 }
1154
1155                 if (free_size < size)
1156                 {
1157                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1158                                     (unsigned)(size), (unsigned)(free_size));
1159                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1160                 }
1161
1162                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1163
1164                 new_wa = malloc(sizeof(struct working_area));
1165                 new_wa->next = NULL;
1166                 new_wa->size = size;
1167                 new_wa->address = first_free;
1168
1169                 if (target->backup_working_area)
1170                 {
1171                         int retval;
1172                         new_wa->backup = malloc(new_wa->size);
1173                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1174                         {
1175                                 free(new_wa->backup);
1176                                 free(new_wa);
1177                                 return retval;
1178                         }
1179                 }
1180                 else
1181                 {
1182                         new_wa->backup = NULL;
1183                 }
1184
1185                 /* put new entry in list */
1186                 *p = new_wa;
1187         }
1188
1189         /* mark as used, and return the new (reused) area */
1190         new_wa->free = 0;
1191         *area = new_wa;
1192
1193         /* user pointer */
1194         new_wa->user = area;
1195
1196         return ERROR_OK;
1197 }
1198
1199 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1200 {
1201         if (area->free)
1202                 return ERROR_OK;
1203
1204         if (restore && target->backup_working_area)
1205         {
1206                 int retval;
1207                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1208                         return retval;
1209         }
1210
1211         area->free = 1;
1212
1213         /* mark user pointer invalid */
1214         *area->user = NULL;
1215         area->user = NULL;
1216
1217         return ERROR_OK;
1218 }
1219
1220 int target_free_working_area(struct target *target, struct working_area *area)
1221 {
1222         return target_free_working_area_restore(target, area, 1);
1223 }
1224
1225 /* free resources and restore memory, if restoring memory fails,
1226  * free up resources anyway
1227  */
1228 void target_free_all_working_areas_restore(struct target *target, int restore)
1229 {
1230         struct working_area *c = target->working_areas;
1231
1232         while (c)
1233         {
1234                 struct working_area *next = c->next;
1235                 target_free_working_area_restore(target, c, restore);
1236
1237                 if (c->backup)
1238                         free(c->backup);
1239
1240                 free(c);
1241
1242                 c = next;
1243         }
1244
1245         target->working_areas = NULL;
1246 }
1247
1248 void target_free_all_working_areas(struct target *target)
1249 {
1250         target_free_all_working_areas_restore(target, 1);
1251 }
1252
1253 int target_arch_state(struct target *target)
1254 {
1255         int retval;
1256         if (target == NULL)
1257         {
1258                 LOG_USER("No target has been configured");
1259                 return ERROR_OK;
1260         }
1261
1262         LOG_USER("target state: %s", target_state_name( target ));
1263
1264         if (target->state != TARGET_HALTED)
1265                 return ERROR_OK;
1266
1267         retval = target->type->arch_state(target);
1268         return retval;
1269 }
1270
1271 /* Single aligned words are guaranteed to use 16 or 32 bit access
1272  * mode respectively, otherwise data is handled as quickly as
1273  * possible
1274  */
1275 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1276 {
1277         int retval;
1278         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1279                   (int)size, (unsigned)address);
1280
1281         if (!target_was_examined(target))
1282         {
1283                 LOG_ERROR("Target not examined yet");
1284                 return ERROR_FAIL;
1285         }
1286
1287         if (size == 0) {
1288                 return ERROR_OK;
1289         }
1290
1291         if ((address + size - 1) < address)
1292         {
1293                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1294                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1295                                   (unsigned)address,
1296                                   (unsigned)size);
1297                 return ERROR_FAIL;
1298         }
1299
1300         if (((address % 2) == 0) && (size == 2))
1301         {
1302                 return target_write_memory(target, address, 2, 1, buffer);
1303         }
1304
1305         /* handle unaligned head bytes */
1306         if (address % 4)
1307         {
1308                 uint32_t unaligned = 4 - (address % 4);
1309
1310                 if (unaligned > size)
1311                         unaligned = size;
1312
1313                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1314                         return retval;
1315
1316                 buffer += unaligned;
1317                 address += unaligned;
1318                 size -= unaligned;
1319         }
1320
1321         /* handle aligned words */
1322         if (size >= 4)
1323         {
1324                 int aligned = size - (size % 4);
1325
1326                 /* use bulk writes above a certain limit. This may have to be changed */
1327                 if (aligned > 128)
1328                 {
1329                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1330                                 return retval;
1331                 }
1332                 else
1333                 {
1334                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1335                                 return retval;
1336                 }
1337
1338                 buffer += aligned;
1339                 address += aligned;
1340                 size -= aligned;
1341         }
1342
1343         /* handle tail writes of less than 4 bytes */
1344         if (size > 0)
1345         {
1346                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1347                         return retval;
1348         }
1349
1350         return ERROR_OK;
1351 }
1352
1353 /* Single aligned words are guaranteed to use 16 or 32 bit access
1354  * mode respectively, otherwise data is handled as quickly as
1355  * possible
1356  */
1357 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1358 {
1359         int retval;
1360         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1361                           (int)size, (unsigned)address);
1362
1363         if (!target_was_examined(target))
1364         {
1365                 LOG_ERROR("Target not examined yet");
1366                 return ERROR_FAIL;
1367         }
1368
1369         if (size == 0) {
1370                 return ERROR_OK;
1371         }
1372
1373         if ((address + size - 1) < address)
1374         {
1375                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1376                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1377                                   address,
1378                                   size);
1379                 return ERROR_FAIL;
1380         }
1381
1382         if (((address % 2) == 0) && (size == 2))
1383         {
1384                 return target_read_memory(target, address, 2, 1, buffer);
1385         }
1386
1387         /* handle unaligned head bytes */
1388         if (address % 4)
1389         {
1390                 uint32_t unaligned = 4 - (address % 4);
1391
1392                 if (unaligned > size)
1393                         unaligned = size;
1394
1395                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1396                         return retval;
1397
1398                 buffer += unaligned;
1399                 address += unaligned;
1400                 size -= unaligned;
1401         }
1402
1403         /* handle aligned words */
1404         if (size >= 4)
1405         {
1406                 int aligned = size - (size % 4);
1407
1408                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1409                         return retval;
1410
1411                 buffer += aligned;
1412                 address += aligned;
1413                 size -= aligned;
1414         }
1415
1416         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1417         if(size >=2)
1418         {
1419                 int aligned = size - (size%2);
1420                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1421                 if (retval != ERROR_OK)
1422                         return retval;
1423
1424                 buffer += aligned;
1425                 address += aligned;
1426                 size -= aligned;
1427         }
1428         /* handle tail writes of less than 4 bytes */
1429         if (size > 0)
1430         {
1431                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1432                         return retval;
1433         }
1434
1435         return ERROR_OK;
1436 }
1437
1438 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1439 {
1440         uint8_t *buffer;
1441         int retval;
1442         uint32_t i;
1443         uint32_t checksum = 0;
1444         if (!target_was_examined(target))
1445         {
1446                 LOG_ERROR("Target not examined yet");
1447                 return ERROR_FAIL;
1448         }
1449
1450         if ((retval = target->type->checksum_memory(target, address,
1451                 size, &checksum)) != ERROR_OK)
1452         {
1453                 buffer = malloc(size);
1454                 if (buffer == NULL)
1455                 {
1456                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1457                         return ERROR_INVALID_ARGUMENTS;
1458                 }
1459                 retval = target_read_buffer(target, address, size, buffer);
1460                 if (retval != ERROR_OK)
1461                 {
1462                         free(buffer);
1463                         return retval;
1464                 }
1465
1466                 /* convert to target endianess */
1467                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1468                 {
1469                         uint32_t target_data;
1470                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1471                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1472                 }
1473
1474                 retval = image_calculate_checksum(buffer, size, &checksum);
1475                 free(buffer);
1476         }
1477
1478         *crc = checksum;
1479
1480         return retval;
1481 }
1482
1483 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1484 {
1485         int retval;
1486         if (!target_was_examined(target))
1487         {
1488                 LOG_ERROR("Target not examined yet");
1489                 return ERROR_FAIL;
1490         }
1491
1492         if (target->type->blank_check_memory == 0)
1493                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1494
1495         retval = target->type->blank_check_memory(target, address, size, blank);
1496
1497         return retval;
1498 }
1499
1500 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1501 {
1502         uint8_t value_buf[4];
1503         if (!target_was_examined(target))
1504         {
1505                 LOG_ERROR("Target not examined yet");
1506                 return ERROR_FAIL;
1507         }
1508
1509         int retval = target_read_memory(target, address, 4, 1, value_buf);
1510
1511         if (retval == ERROR_OK)
1512         {
1513                 *value = target_buffer_get_u32(target, value_buf);
1514                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1515                                   address,
1516                                   *value);
1517         }
1518         else
1519         {
1520                 *value = 0x0;
1521                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1522                                   address);
1523         }
1524
1525         return retval;
1526 }
1527
1528 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1529 {
1530         uint8_t value_buf[2];
1531         if (!target_was_examined(target))
1532         {
1533                 LOG_ERROR("Target not examined yet");
1534                 return ERROR_FAIL;
1535         }
1536
1537         int retval = target_read_memory(target, address, 2, 1, value_buf);
1538
1539         if (retval == ERROR_OK)
1540         {
1541                 *value = target_buffer_get_u16(target, value_buf);
1542                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1543                                   address,
1544                                   *value);
1545         }
1546         else
1547         {
1548                 *value = 0x0;
1549                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1550                                   address);
1551         }
1552
1553         return retval;
1554 }
1555
1556 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1557 {
1558         int retval = target_read_memory(target, address, 1, 1, value);
1559         if (!target_was_examined(target))
1560         {
1561                 LOG_ERROR("Target not examined yet");
1562                 return ERROR_FAIL;
1563         }
1564
1565         if (retval == ERROR_OK)
1566         {
1567                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1568                                   address,
1569                                   *value);
1570         }
1571         else
1572         {
1573                 *value = 0x0;
1574                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1575                                   address);
1576         }
1577
1578         return retval;
1579 }
1580
1581 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1582 {
1583         int retval;
1584         uint8_t value_buf[4];
1585         if (!target_was_examined(target))
1586         {
1587                 LOG_ERROR("Target not examined yet");
1588                 return ERROR_FAIL;
1589         }
1590
1591         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1592                           address,
1593                           value);
1594
1595         target_buffer_set_u32(target, value_buf, value);
1596         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1597         {
1598                 LOG_DEBUG("failed: %i", retval);
1599         }
1600
1601         return retval;
1602 }
1603
1604 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1605 {
1606         int retval;
1607         uint8_t value_buf[2];
1608         if (!target_was_examined(target))
1609         {
1610                 LOG_ERROR("Target not examined yet");
1611                 return ERROR_FAIL;
1612         }
1613
1614         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1615                           address,
1616                           value);
1617
1618         target_buffer_set_u16(target, value_buf, value);
1619         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1620         {
1621                 LOG_DEBUG("failed: %i", retval);
1622         }
1623
1624         return retval;
1625 }
1626
1627 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1628 {
1629         int retval;
1630         if (!target_was_examined(target))
1631         {
1632                 LOG_ERROR("Target not examined yet");
1633                 return ERROR_FAIL;
1634         }
1635
1636         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1637                           address, value);
1638
1639         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1640         {
1641                 LOG_DEBUG("failed: %i", retval);
1642         }
1643
1644         return retval;
1645 }
1646
1647 COMMAND_HANDLER(handle_targets_command)
1648 {
1649         struct target *target = all_targets;
1650
1651         if (argc == 1)
1652         {
1653                 target = get_target(args[0]);
1654                 if (target == NULL) {
1655                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1656                         goto DumpTargets;
1657                 }
1658                 if (!target->tap->enabled) {
1659                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1660                                         "can't be the current target\n",
1661                                         target->tap->dotted_name);
1662                         return ERROR_FAIL;
1663                 }
1664
1665                 cmd_ctx->current_target = target->target_number;
1666                 return ERROR_OK;
1667         }
1668 DumpTargets:
1669
1670         target = all_targets;
1671         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1672         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1673         while (target)
1674         {
1675                 const char *state;
1676                 char marker = ' ';
1677
1678                 if (target->tap->enabled)
1679                         state = target_state_name( target );
1680                 else
1681                         state = "tap-disabled";
1682
1683                 if (cmd_ctx->current_target == target->target_number)
1684                         marker = '*';
1685
1686                 /* keep columns lined up to match the headers above */
1687                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1688                                           target->target_number,
1689                                           marker,
1690                                           target->cmd_name,
1691                                           target_get_name(target),
1692                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1693                                                                 target->endianness)->name,
1694                                           target->tap->dotted_name,
1695                                           state);
1696                 target = target->next;
1697         }
1698
1699         return ERROR_OK;
1700 }
1701
1702 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1703
1704 static int powerDropout;
1705 static int srstAsserted;
1706
1707 static int runPowerRestore;
1708 static int runPowerDropout;
1709 static int runSrstAsserted;
1710 static int runSrstDeasserted;
1711
1712 static int sense_handler(void)
1713 {
1714         static int prevSrstAsserted = 0;
1715         static int prevPowerdropout = 0;
1716
1717         int retval;
1718         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1719                 return retval;
1720
1721         int powerRestored;
1722         powerRestored = prevPowerdropout && !powerDropout;
1723         if (powerRestored)
1724         {
1725                 runPowerRestore = 1;
1726         }
1727
1728         long long current = timeval_ms();
1729         static long long lastPower = 0;
1730         int waitMore = lastPower + 2000 > current;
1731         if (powerDropout && !waitMore)
1732         {
1733                 runPowerDropout = 1;
1734                 lastPower = current;
1735         }
1736
1737         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1738                 return retval;
1739
1740         int srstDeasserted;
1741         srstDeasserted = prevSrstAsserted && !srstAsserted;
1742
1743         static long long lastSrst = 0;
1744         waitMore = lastSrst + 2000 > current;
1745         if (srstDeasserted && !waitMore)
1746         {
1747                 runSrstDeasserted = 1;
1748                 lastSrst = current;
1749         }
1750
1751         if (!prevSrstAsserted && srstAsserted)
1752         {
1753                 runSrstAsserted = 1;
1754         }
1755
1756         prevSrstAsserted = srstAsserted;
1757         prevPowerdropout = powerDropout;
1758
1759         if (srstDeasserted || powerRestored)
1760         {
1761                 /* Other than logging the event we can't do anything here.
1762                  * Issuing a reset is a particularly bad idea as we might
1763                  * be inside a reset already.
1764                  */
1765         }
1766
1767         return ERROR_OK;
1768 }
1769
1770 static void target_call_event_callbacks_all(enum target_event e) {
1771         struct target *target;
1772         target = all_targets;
1773         while (target) {
1774                 target_call_event_callbacks(target, e);
1775                 target = target->next;
1776         }
1777 }
1778
1779 /* process target state changes */
1780 int handle_target(void *priv)
1781 {
1782         int retval = ERROR_OK;
1783
1784         /* we do not want to recurse here... */
1785         static int recursive = 0;
1786         if (! recursive)
1787         {
1788                 recursive = 1;
1789                 sense_handler();
1790                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1791                  * We need to avoid an infinite loop/recursion here and we do that by
1792                  * clearing the flags after running these events.
1793                  */
1794                 int did_something = 0;
1795                 if (runSrstAsserted)
1796                 {
1797                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1798                         Jim_Eval(interp, "srst_asserted");
1799                         did_something = 1;
1800                 }
1801                 if (runSrstDeasserted)
1802                 {
1803                         Jim_Eval(interp, "srst_deasserted");
1804                         did_something = 1;
1805                 }
1806                 if (runPowerDropout)
1807                 {
1808                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1809                         Jim_Eval(interp, "power_dropout");
1810                         did_something = 1;
1811                 }
1812                 if (runPowerRestore)
1813                 {
1814                         Jim_Eval(interp, "power_restore");
1815                         did_something = 1;
1816                 }
1817
1818                 if (did_something)
1819                 {
1820                         /* clear detect flags */
1821                         sense_handler();
1822                 }
1823
1824                 /* clear action flags */
1825
1826                 runSrstAsserted = 0;
1827                 runSrstDeasserted = 0;
1828                 runPowerRestore = 0;
1829                 runPowerDropout = 0;
1830
1831                 recursive = 0;
1832         }
1833
1834         /* Poll targets for state changes unless that's globally disabled.
1835          * Skip targets that are currently disabled.
1836          */
1837         for (struct target *target = all_targets;
1838                         is_jtag_poll_safe() && target;
1839                         target = target->next)
1840         {
1841                 if (!target->tap->enabled)
1842                         continue;
1843
1844                 /* only poll target if we've got power and srst isn't asserted */
1845                 if (!powerDropout && !srstAsserted)
1846                 {
1847                         /* polling may fail silently until the target has been examined */
1848                         if ((retval = target_poll(target)) != ERROR_OK)
1849                         {
1850                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1851                                 return retval;
1852                         }
1853                 }
1854         }
1855
1856         return retval;
1857 }
1858
1859 COMMAND_HANDLER(handle_reg_command)
1860 {
1861         struct target *target;
1862         struct reg *reg = NULL;
1863         int count = 0;
1864         char *value;
1865
1866         LOG_DEBUG("-");
1867
1868         target = get_current_target(cmd_ctx);
1869
1870         /* list all available registers for the current target */
1871         if (argc == 0)
1872         {
1873                 struct reg_cache *cache = target->reg_cache;
1874
1875                 count = 0;
1876                 while (cache)
1877                 {
1878                         int i;
1879
1880                         command_print(cmd_ctx, "===== %s", cache->name);
1881
1882                         for (i = 0, reg = cache->reg_list;
1883                                         i < cache->num_regs;
1884                                         i++, reg++, count++)
1885                         {
1886                                 /* only print cached values if they are valid */
1887                                 if (reg->valid) {
1888                                         value = buf_to_str(reg->value,
1889                                                         reg->size, 16);
1890                                         command_print(cmd_ctx,
1891                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1892                                                         count, reg->name,
1893                                                         reg->size, value,
1894                                                         reg->dirty
1895                                                                 ? " (dirty)"
1896                                                                 : "");
1897                                         free(value);
1898                                 } else {
1899                                         command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1900                                                           count, reg->name,
1901                                                           reg->size) ;
1902                                 }
1903                         }
1904                         cache = cache->next;
1905                 }
1906
1907                 return ERROR_OK;
1908         }
1909
1910         /* access a single register by its ordinal number */
1911         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1912         {
1913                 unsigned num;
1914                 COMMAND_PARSE_NUMBER(uint, args[0], num);
1915
1916                 struct reg_cache *cache = target->reg_cache;
1917                 count = 0;
1918                 while (cache)
1919                 {
1920                         int i;
1921                         for (i = 0; i < cache->num_regs; i++)
1922                         {
1923                                 if (count++ == (int)num)
1924                                 {
1925                                         reg = &cache->reg_list[i];
1926                                         break;
1927                                 }
1928                         }
1929                         if (reg)
1930                                 break;
1931                         cache = cache->next;
1932                 }
1933
1934                 if (!reg)
1935                 {
1936                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1937                         return ERROR_OK;
1938                 }
1939         } else /* access a single register by its name */
1940         {
1941                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1942
1943                 if (!reg)
1944                 {
1945                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1946                         return ERROR_OK;
1947                 }
1948         }
1949
1950         /* display a register */
1951         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1952         {
1953                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1954                         reg->valid = 0;
1955
1956                 if (reg->valid == 0)
1957                 {
1958                         struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1959                         arch_type->get(reg);
1960                 }
1961                 value = buf_to_str(reg->value, reg->size, 16);
1962                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1963                 free(value);
1964                 return ERROR_OK;
1965         }
1966
1967         /* set register value */
1968         if (argc == 2)
1969         {
1970                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1971                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1972
1973                 struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1974                 arch_type->set(reg, buf);
1975
1976                 value = buf_to_str(reg->value, reg->size, 16);
1977                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1978                 free(value);
1979
1980                 free(buf);
1981
1982                 return ERROR_OK;
1983         }
1984
1985         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1986
1987         return ERROR_OK;
1988 }
1989
1990 COMMAND_HANDLER(handle_poll_command)
1991 {
1992         int retval = ERROR_OK;
1993         struct target *target = get_current_target(cmd_ctx);
1994
1995         if (argc == 0)
1996         {
1997                 command_print(cmd_ctx, "background polling: %s",
1998                                 jtag_poll_get_enabled() ? "on" : "off");
1999                 command_print(cmd_ctx, "TAP: %s (%s)",
2000                                 target->tap->dotted_name,
2001                                 target->tap->enabled ? "enabled" : "disabled");
2002                 if (!target->tap->enabled)
2003                         return ERROR_OK;
2004                 if ((retval = target_poll(target)) != ERROR_OK)
2005                         return retval;
2006                 if ((retval = target_arch_state(target)) != ERROR_OK)
2007                         return retval;
2008
2009         }
2010         else if (argc == 1)
2011         {
2012                 if (strcmp(args[0], "on") == 0)
2013                 {
2014                         jtag_poll_set_enabled(true);
2015                 }
2016                 else if (strcmp(args[0], "off") == 0)
2017                 {
2018                         jtag_poll_set_enabled(false);
2019                 }
2020                 else
2021                 {
2022                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2023                 }
2024         } else
2025         {
2026                 return ERROR_COMMAND_SYNTAX_ERROR;
2027         }
2028
2029         return retval;
2030 }
2031
2032 COMMAND_HANDLER(handle_wait_halt_command)
2033 {
2034         if (argc > 1)
2035                 return ERROR_COMMAND_SYNTAX_ERROR;
2036
2037         unsigned ms = 5000;
2038         if (1 == argc)
2039         {
2040                 int retval = parse_uint(args[0], &ms);
2041                 if (ERROR_OK != retval)
2042                 {
2043                         command_print(cmd_ctx, "usage: %s [seconds]", CMD_NAME);
2044                         return ERROR_COMMAND_SYNTAX_ERROR;
2045                 }
2046                 // convert seconds (given) to milliseconds (needed)
2047                 ms *= 1000;
2048         }
2049
2050         struct target *target = get_current_target(cmd_ctx);
2051         return target_wait_state(target, TARGET_HALTED, ms);
2052 }
2053
2054 /* wait for target state to change. The trick here is to have a low
2055  * latency for short waits and not to suck up all the CPU time
2056  * on longer waits.
2057  *
2058  * After 500ms, keep_alive() is invoked
2059  */
2060 int target_wait_state(struct target *target, enum target_state state, int ms)
2061 {
2062         int retval;
2063         long long then = 0, cur;
2064         int once = 1;
2065
2066         for (;;)
2067         {
2068                 if ((retval = target_poll(target)) != ERROR_OK)
2069                         return retval;
2070                 if (target->state == state)
2071                 {
2072                         break;
2073                 }
2074                 cur = timeval_ms();
2075                 if (once)
2076                 {
2077                         once = 0;
2078                         then = timeval_ms();
2079                         LOG_DEBUG("waiting for target %s...",
2080                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2081                 }
2082
2083                 if (cur-then > 500)
2084                 {
2085                         keep_alive();
2086                 }
2087
2088                 if ((cur-then) > ms)
2089                 {
2090                         LOG_ERROR("timed out while waiting for target %s",
2091                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2092                         return ERROR_FAIL;
2093                 }
2094         }
2095
2096         return ERROR_OK;
2097 }
2098
2099 COMMAND_HANDLER(handle_halt_command)
2100 {
2101         LOG_DEBUG("-");
2102
2103         struct target *target = get_current_target(cmd_ctx);
2104         int retval = target_halt(target);
2105         if (ERROR_OK != retval)
2106                 return retval;
2107
2108         if (argc == 1)
2109         {
2110                 unsigned wait;
2111                 retval = parse_uint(args[0], &wait);
2112                 if (ERROR_OK != retval)
2113                         return ERROR_COMMAND_SYNTAX_ERROR;
2114                 if (!wait)
2115                         return ERROR_OK;
2116         }
2117
2118         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2119 }
2120
2121 COMMAND_HANDLER(handle_soft_reset_halt_command)
2122 {
2123         struct target *target = get_current_target(cmd_ctx);
2124
2125         LOG_USER("requesting target halt and executing a soft reset");
2126
2127         target->type->soft_reset_halt(target);
2128
2129         return ERROR_OK;
2130 }
2131
2132 COMMAND_HANDLER(handle_reset_command)
2133 {
2134         if (argc > 1)
2135                 return ERROR_COMMAND_SYNTAX_ERROR;
2136
2137         enum target_reset_mode reset_mode = RESET_RUN;
2138         if (argc == 1)
2139         {
2140                 const Jim_Nvp *n;
2141                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2142                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2143                         return ERROR_COMMAND_SYNTAX_ERROR;
2144                 }
2145                 reset_mode = n->value;
2146         }
2147
2148         /* reset *all* targets */
2149         return target_process_reset(cmd_ctx, reset_mode);
2150 }
2151
2152
2153 COMMAND_HANDLER(handle_resume_command)
2154 {
2155         int current = 1;
2156         if (argc > 1)
2157                 return ERROR_COMMAND_SYNTAX_ERROR;
2158
2159         struct target *target = get_current_target(cmd_ctx);
2160         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2161
2162         /* with no args, resume from current pc, addr = 0,
2163          * with one arguments, addr = args[0],
2164          * handle breakpoints, not debugging */
2165         uint32_t addr = 0;
2166         if (argc == 1)
2167         {
2168                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2169                 current = 0;
2170         }
2171
2172         return target_resume(target, current, addr, 1, 0);
2173 }
2174
2175 COMMAND_HANDLER(handle_step_command)
2176 {
2177         if (argc > 1)
2178                 return ERROR_COMMAND_SYNTAX_ERROR;
2179
2180         LOG_DEBUG("-");
2181
2182         /* with no args, step from current pc, addr = 0,
2183          * with one argument addr = args[0],
2184          * handle breakpoints, debugging */
2185         uint32_t addr = 0;
2186         int current_pc = 1;
2187         if (argc == 1)
2188         {
2189                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2190                 current_pc = 0;
2191         }
2192
2193         struct target *target = get_current_target(cmd_ctx);
2194
2195         return target->type->step(target, current_pc, addr, 1);
2196 }
2197
2198 static void handle_md_output(struct command_context *cmd_ctx,
2199                 struct target *target, uint32_t address, unsigned size,
2200                 unsigned count, const uint8_t *buffer)
2201 {
2202         const unsigned line_bytecnt = 32;
2203         unsigned line_modulo = line_bytecnt / size;
2204
2205         char output[line_bytecnt * 4 + 1];
2206         unsigned output_len = 0;
2207
2208         const char *value_fmt;
2209         switch (size) {
2210         case 4: value_fmt = "%8.8x "; break;
2211         case 2: value_fmt = "%4.2x "; break;
2212         case 1: value_fmt = "%2.2x "; break;
2213         default:
2214                 LOG_ERROR("invalid memory read size: %u", size);
2215                 exit(-1);
2216         }
2217
2218         for (unsigned i = 0; i < count; i++)
2219         {
2220                 if (i % line_modulo == 0)
2221                 {
2222                         output_len += snprintf(output + output_len,
2223                                         sizeof(output) - output_len,
2224                                         "0x%8.8x: ",
2225                                         (unsigned)(address + (i*size)));
2226                 }
2227
2228                 uint32_t value = 0;
2229                 const uint8_t *value_ptr = buffer + i * size;
2230                 switch (size) {
2231                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2232                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2233                 case 1: value = *value_ptr;
2234                 }
2235                 output_len += snprintf(output + output_len,
2236                                 sizeof(output) - output_len,
2237                                 value_fmt, value);
2238
2239                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2240                 {
2241                         command_print(cmd_ctx, "%s", output);
2242                         output_len = 0;
2243                 }
2244         }
2245 }
2246
2247 COMMAND_HANDLER(handle_md_command)
2248 {
2249         if (argc < 1)
2250                 return ERROR_COMMAND_SYNTAX_ERROR;
2251
2252         unsigned size = 0;
2253         const char *cmd_name = CMD_NAME;
2254         switch (cmd_name[6]) {
2255         case 'w': size = 4; break;
2256         case 'h': size = 2; break;
2257         case 'b': size = 1; break;
2258         default: return ERROR_COMMAND_SYNTAX_ERROR;
2259         }
2260
2261         bool physical=strcmp(args[0], "phys")==0;
2262         int (*fn)(struct target *target,
2263                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2264         if (physical)
2265         {
2266                 argc--;
2267                 args++;
2268                 fn=target_read_phys_memory;
2269         } else
2270         {
2271                 fn=target_read_memory;
2272         }
2273         if ((argc < 1) || (argc > 2))
2274         {
2275                 return ERROR_COMMAND_SYNTAX_ERROR;
2276         }
2277
2278         uint32_t address;
2279         COMMAND_PARSE_NUMBER(u32, args[0], address);
2280
2281         unsigned count = 1;
2282         if (argc == 2)
2283                 COMMAND_PARSE_NUMBER(uint, args[1], count);
2284
2285         uint8_t *buffer = calloc(count, size);
2286
2287         struct target *target = get_current_target(cmd_ctx);
2288         int retval = fn(target, address, size, count, buffer);
2289         if (ERROR_OK == retval)
2290                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2291
2292         free(buffer);
2293
2294         return retval;
2295 }
2296
2297 COMMAND_HANDLER(handle_mw_command)
2298 {
2299         if (argc < 2)
2300         {
2301                 return ERROR_COMMAND_SYNTAX_ERROR;
2302         }
2303         bool physical=strcmp(args[0], "phys")==0;
2304         int (*fn)(struct target *target,
2305                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2306         const char *cmd_name = CMD_NAME;
2307         if (physical)
2308         {
2309                 argc--;
2310                 args++;
2311                 fn=target_write_phys_memory;
2312         } else
2313         {
2314                 fn=target_write_memory;
2315         }
2316         if ((argc < 2) || (argc > 3))
2317                 return ERROR_COMMAND_SYNTAX_ERROR;
2318
2319         uint32_t address;
2320         COMMAND_PARSE_NUMBER(u32, args[0], address);
2321
2322         uint32_t value;
2323         COMMAND_PARSE_NUMBER(u32, args[1], value);
2324
2325         unsigned count = 1;
2326         if (argc == 3)
2327                 COMMAND_PARSE_NUMBER(uint, args[2], count);
2328
2329         struct target *target = get_current_target(cmd_ctx);
2330         unsigned wordsize;
2331         uint8_t value_buf[4];
2332         switch (cmd_name[6])
2333         {
2334                 case 'w':
2335                         wordsize = 4;
2336                         target_buffer_set_u32(target, value_buf, value);
2337                         break;
2338                 case 'h':
2339                         wordsize = 2;
2340                         target_buffer_set_u16(target, value_buf, value);
2341                         break;
2342                 case 'b':
2343                         wordsize = 1;
2344                         value_buf[0] = value;
2345                         break;
2346                 default:
2347                         return ERROR_COMMAND_SYNTAX_ERROR;
2348         }
2349         for (unsigned i = 0; i < count; i++)
2350         {
2351                 int retval = fn(target,
2352                                 address + i * wordsize, wordsize, 1, value_buf);
2353                 if (ERROR_OK != retval)
2354                         return retval;
2355                 keep_alive();
2356         }
2357
2358         return ERROR_OK;
2359
2360 }
2361
2362 static COMMAND_HELPER(parse_load_image_command_args, struct image *image,
2363                 uint32_t *min_address, uint32_t *max_address)
2364 {
2365         if (argc < 1 || argc > 5)
2366                 return ERROR_COMMAND_SYNTAX_ERROR;
2367
2368         /* a base address isn't always necessary,
2369          * default to 0x0 (i.e. don't relocate) */
2370         if (argc >= 2)
2371         {
2372                 uint32_t addr;
2373                 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2374                 image->base_address = addr;
2375                 image->base_address_set = 1;
2376         }
2377         else
2378                 image->base_address_set = 0;
2379
2380         image->start_address_set = 0;
2381
2382         if (argc >= 4)
2383         {
2384                 COMMAND_PARSE_NUMBER(u32, args[3], *min_address);
2385         }
2386         if (argc == 5)
2387         {
2388                 COMMAND_PARSE_NUMBER(u32, args[4], *max_address);
2389                 // use size (given) to find max (required)
2390                 *max_address += *min_address;
2391         }
2392
2393         if (*min_address > *max_address)
2394                 return ERROR_COMMAND_SYNTAX_ERROR;
2395
2396         return ERROR_OK;
2397 }
2398
2399 COMMAND_HANDLER(handle_load_image_command)
2400 {
2401         uint8_t *buffer;
2402         uint32_t buf_cnt;
2403         uint32_t image_size;
2404         uint32_t min_address = 0;
2405         uint32_t max_address = 0xffffffff;
2406         int i;
2407         struct image image;
2408
2409         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
2410                         &image, &min_address, &max_address);
2411         if (ERROR_OK != retval)
2412                 return retval;
2413
2414         struct target *target = get_current_target(cmd_ctx);
2415
2416         struct duration bench;
2417         duration_start(&bench);
2418
2419         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2420         {
2421                 return ERROR_OK;
2422         }
2423
2424         image_size = 0x0;
2425         retval = ERROR_OK;
2426         for (i = 0; i < image.num_sections; i++)
2427         {
2428                 buffer = malloc(image.sections[i].size);
2429                 if (buffer == NULL)
2430                 {
2431                         command_print(cmd_ctx,
2432                                                   "error allocating buffer for section (%d bytes)",
2433                                                   (int)(image.sections[i].size));
2434                         break;
2435                 }
2436
2437                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2438                 {
2439                         free(buffer);
2440                         break;
2441                 }
2442
2443                 uint32_t offset = 0;
2444                 uint32_t length = buf_cnt;
2445
2446                 /* DANGER!!! beware of unsigned comparision here!!! */
2447
2448                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2449                                 (image.sections[i].base_address < max_address))
2450                 {
2451                         if (image.sections[i].base_address < min_address)
2452                         {
2453                                 /* clip addresses below */
2454                                 offset += min_address-image.sections[i].base_address;
2455                                 length -= offset;
2456                         }
2457
2458                         if (image.sections[i].base_address + buf_cnt > max_address)
2459                         {
2460                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2461                         }
2462
2463                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2464                         {
2465                                 free(buffer);
2466                                 break;
2467                         }
2468                         image_size += length;
2469                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2470                                                   (unsigned int)length,
2471                                                   image.sections[i].base_address + offset);
2472                 }
2473
2474                 free(buffer);
2475         }
2476
2477         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2478         {
2479                 command_print(cmd_ctx, "downloaded %" PRIu32 " bytes "
2480                                 "in %fs (%0.3f kb/s)", image_size,
2481                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2482         }
2483
2484         image_close(&image);
2485
2486         return retval;
2487
2488 }
2489
2490 COMMAND_HANDLER(handle_dump_image_command)
2491 {
2492         struct fileio fileio;
2493
2494         uint8_t buffer[560];
2495         int retvaltemp;
2496
2497
2498         struct target *target = get_current_target(cmd_ctx);
2499
2500         if (argc != 3)
2501         {
2502                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2503                 return ERROR_OK;
2504         }
2505
2506         uint32_t address;
2507         COMMAND_PARSE_NUMBER(u32, args[1], address);
2508         uint32_t size;
2509         COMMAND_PARSE_NUMBER(u32, args[2], size);
2510
2511         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2512         {
2513                 return ERROR_OK;
2514         }
2515
2516         struct duration bench;
2517         duration_start(&bench);
2518
2519         int retval = ERROR_OK;
2520         while (size > 0)
2521         {
2522                 uint32_t size_written;
2523                 uint32_t this_run_size = (size > 560) ? 560 : size;
2524                 retval = target_read_buffer(target, address, this_run_size, buffer);
2525                 if (retval != ERROR_OK)
2526                 {
2527                         break;
2528                 }
2529
2530                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2531                 if (retval != ERROR_OK)
2532                 {
2533                         break;
2534                 }
2535
2536                 size -= this_run_size;
2537                 address += this_run_size;
2538         }
2539
2540         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2541                 return retvaltemp;
2542
2543         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2544         {
2545                 command_print(cmd_ctx,
2546                                 "dumped %lld bytes in %fs (%0.3f kb/s)", fileio.size,
2547                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2548         }
2549
2550         return retval;
2551 }
2552
2553 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2554 {
2555         uint8_t *buffer;
2556         uint32_t buf_cnt;
2557         uint32_t image_size;
2558         int i;
2559         int retval;
2560         uint32_t checksum = 0;
2561         uint32_t mem_checksum = 0;
2562
2563         struct image image;
2564
2565         struct target *target = get_current_target(cmd_ctx);
2566
2567         if (argc < 1)
2568         {
2569                 return ERROR_COMMAND_SYNTAX_ERROR;
2570         }
2571
2572         if (!target)
2573         {
2574                 LOG_ERROR("no target selected");
2575                 return ERROR_FAIL;
2576         }
2577
2578         struct duration bench;
2579         duration_start(&bench);
2580
2581         if (argc >= 2)
2582         {
2583                 uint32_t addr;
2584                 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2585                 image.base_address = addr;
2586                 image.base_address_set = 1;
2587         }
2588         else
2589         {
2590                 image.base_address_set = 0;
2591                 image.base_address = 0x0;
2592         }
2593
2594         image.start_address_set = 0;
2595
2596         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2597         {
2598                 return retval;
2599         }
2600
2601         image_size = 0x0;
2602         retval = ERROR_OK;
2603         for (i = 0; i < image.num_sections; i++)
2604         {
2605                 buffer = malloc(image.sections[i].size);
2606                 if (buffer == NULL)
2607                 {
2608                         command_print(cmd_ctx,
2609                                                   "error allocating buffer for section (%d bytes)",
2610                                                   (int)(image.sections[i].size));
2611                         break;
2612                 }
2613                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2614                 {
2615                         free(buffer);
2616                         break;
2617                 }
2618
2619                 if (verify)
2620                 {
2621                         /* calculate checksum of image */
2622                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2623
2624                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2625                         if (retval != ERROR_OK)
2626                         {
2627                                 free(buffer);
2628                                 break;
2629                         }
2630
2631                         if (checksum != mem_checksum)
2632                         {
2633                                 /* failed crc checksum, fall back to a binary compare */
2634                                 uint8_t *data;
2635
2636                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2637
2638                                 data = (uint8_t*)malloc(buf_cnt);
2639
2640                                 /* Can we use 32bit word accesses? */
2641                                 int size = 1;
2642                                 int count = buf_cnt;
2643                                 if ((count % 4) == 0)
2644                                 {
2645                                         size *= 4;
2646                                         count /= 4;
2647                                 }
2648                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2649                                 if (retval == ERROR_OK)
2650                                 {
2651                                         uint32_t t;
2652                                         for (t = 0; t < buf_cnt; t++)
2653                                         {
2654                                                 if (data[t] != buffer[t])
2655                                                 {
2656                                                         command_print(cmd_ctx,
2657                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2658                                                                                   (unsigned)(t + image.sections[i].base_address),
2659                                                                                   data[t],
2660                                                                                   buffer[t]);
2661                                                         free(data);
2662                                                         free(buffer);
2663                                                         retval = ERROR_FAIL;
2664                                                         goto done;
2665                                                 }
2666                                                 if ((t%16384) == 0)
2667                                                 {
2668                                                         keep_alive();
2669                                                 }
2670                                         }
2671                                 }
2672
2673                                 free(data);
2674                         }
2675                 } else
2676                 {
2677                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2678                                                   image.sections[i].base_address,
2679                                                   buf_cnt);
2680                 }
2681
2682                 free(buffer);
2683                 image_size += buf_cnt;
2684         }
2685 done:
2686         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2687         {
2688                 command_print(cmd_ctx, "verified %" PRIu32 " bytes "
2689                                 "in %fs (%0.3f kb/s)", image_size,
2690                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2691         }
2692
2693         image_close(&image);
2694
2695         return retval;
2696 }
2697
2698 COMMAND_HANDLER(handle_verify_image_command)
2699 {
2700         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2701 }
2702
2703 COMMAND_HANDLER(handle_test_image_command)
2704 {
2705         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2706 }
2707
2708 static int handle_bp_command_list(struct command_context *cmd_ctx)
2709 {
2710         struct target *target = get_current_target(cmd_ctx);
2711         struct breakpoint *breakpoint = target->breakpoints;
2712         while (breakpoint)
2713         {
2714                 if (breakpoint->type == BKPT_SOFT)
2715                 {
2716                         char* buf = buf_to_str(breakpoint->orig_instr,
2717                                         breakpoint->length, 16);
2718                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2719                                         breakpoint->address,
2720                                         breakpoint->length,
2721                                         breakpoint->set, buf);
2722                         free(buf);
2723                 }
2724                 else
2725                 {
2726                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2727                                                   breakpoint->address,
2728                                                   breakpoint->length, breakpoint->set);
2729                 }
2730
2731                 breakpoint = breakpoint->next;
2732         }
2733         return ERROR_OK;
2734 }
2735
2736 static int handle_bp_command_set(struct command_context *cmd_ctx,
2737                 uint32_t addr, uint32_t length, int hw)
2738 {
2739         struct target *target = get_current_target(cmd_ctx);
2740         int retval = breakpoint_add(target, addr, length, hw);
2741         if (ERROR_OK == retval)
2742                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2743         else
2744                 LOG_ERROR("Failure setting breakpoint");
2745         return retval;
2746 }
2747
2748 COMMAND_HANDLER(handle_bp_command)
2749 {
2750         if (argc == 0)
2751                 return handle_bp_command_list(cmd_ctx);
2752
2753         if (argc < 2 || argc > 3)
2754         {
2755                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2756                 return ERROR_COMMAND_SYNTAX_ERROR;
2757         }
2758
2759         uint32_t addr;
2760         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2761         uint32_t length;
2762         COMMAND_PARSE_NUMBER(u32, args[1], length);
2763
2764         int hw = BKPT_SOFT;
2765         if (argc == 3)
2766         {
2767                 if (strcmp(args[2], "hw") == 0)
2768                         hw = BKPT_HARD;
2769                 else
2770                         return ERROR_COMMAND_SYNTAX_ERROR;
2771         }
2772
2773         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2774 }
2775
2776 COMMAND_HANDLER(handle_rbp_command)
2777 {
2778         if (argc != 1)
2779                 return ERROR_COMMAND_SYNTAX_ERROR;
2780
2781         uint32_t addr;
2782         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2783
2784         struct target *target = get_current_target(cmd_ctx);
2785         breakpoint_remove(target, addr);
2786
2787         return ERROR_OK;
2788 }
2789
2790 COMMAND_HANDLER(handle_wp_command)
2791 {
2792         struct target *target = get_current_target(cmd_ctx);
2793
2794         if (argc == 0)
2795         {
2796                 struct watchpoint *watchpoint = target->watchpoints;
2797
2798                 while (watchpoint)
2799                 {
2800                         command_print(cmd_ctx, "address: 0x%8.8" PRIx32
2801                                         ", len: 0x%8.8" PRIx32
2802                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2803                                         ", mask: 0x%8.8" PRIx32,
2804                                         watchpoint->address,
2805                                         watchpoint->length,
2806                                         (int)watchpoint->rw,
2807                                         watchpoint->value,
2808                                         watchpoint->mask);
2809                         watchpoint = watchpoint->next;
2810                 }
2811                 return ERROR_OK;
2812         }
2813
2814         enum watchpoint_rw type = WPT_ACCESS;
2815         uint32_t addr = 0;
2816         uint32_t length = 0;
2817         uint32_t data_value = 0x0;
2818         uint32_t data_mask = 0xffffffff;
2819
2820         switch (argc)
2821         {
2822         case 5:
2823                 COMMAND_PARSE_NUMBER(u32, args[4], data_mask);
2824                 // fall through
2825         case 4:
2826                 COMMAND_PARSE_NUMBER(u32, args[3], data_value);
2827                 // fall through
2828         case 3:
2829                 switch (args[2][0])
2830                 {
2831                 case 'r':
2832                         type = WPT_READ;
2833                         break;
2834                 case 'w':
2835                         type = WPT_WRITE;
2836                         break;
2837                 case 'a':
2838                         type = WPT_ACCESS;
2839                         break;
2840                 default:
2841                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2842                         return ERROR_COMMAND_SYNTAX_ERROR;
2843                 }
2844                 // fall through
2845         case 2:
2846                 COMMAND_PARSE_NUMBER(u32, args[1], length);
2847                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2848                 break;
2849
2850         default:
2851                 command_print(cmd_ctx, "usage: wp [address length "
2852                                 "[(r|w|a) [value [mask]]]]");
2853                 return ERROR_COMMAND_SYNTAX_ERROR;
2854         }
2855
2856         int retval = watchpoint_add(target, addr, length, type,
2857                         data_value, data_mask);
2858         if (ERROR_OK != retval)
2859                 LOG_ERROR("Failure setting watchpoints");
2860
2861         return retval;
2862 }
2863
2864 COMMAND_HANDLER(handle_rwp_command)
2865 {
2866         if (argc != 1)
2867                 return ERROR_COMMAND_SYNTAX_ERROR;
2868
2869         uint32_t addr;
2870         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2871
2872         struct target *target = get_current_target(cmd_ctx);
2873         watchpoint_remove(target, addr);
2874
2875         return ERROR_OK;
2876 }
2877
2878
2879 /**
2880  * Translate a virtual address to a physical address.
2881  *
2882  * The low-level target implementation must have logged a detailed error
2883  * which is forwarded to telnet/GDB session.
2884  */
2885 COMMAND_HANDLER(handle_virt2phys_command)
2886 {
2887         if (argc != 1)
2888                 return ERROR_COMMAND_SYNTAX_ERROR;
2889
2890         uint32_t va;
2891         COMMAND_PARSE_NUMBER(u32, args[0], va);
2892         uint32_t pa;
2893
2894         struct target *target = get_current_target(cmd_ctx);
2895         int retval = target->type->virt2phys(target, va, &pa);
2896         if (retval == ERROR_OK)
2897                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2898
2899         return retval;
2900 }
2901
2902 static void writeData(FILE *f, const void *data, size_t len)
2903 {
2904         size_t written = fwrite(data, 1, len, f);
2905         if (written != len)
2906                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2907 }
2908
2909 static void writeLong(FILE *f, int l)
2910 {
2911         int i;
2912         for (i = 0; i < 4; i++)
2913         {
2914                 char c = (l >> (i*8))&0xff;
2915                 writeData(f, &c, 1);
2916         }
2917
2918 }
2919
2920 static void writeString(FILE *f, char *s)
2921 {
2922         writeData(f, s, strlen(s));
2923 }
2924
2925 /* Dump a gmon.out histogram file. */
2926 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2927 {
2928         uint32_t i;
2929         FILE *f = fopen(filename, "w");
2930         if (f == NULL)
2931                 return;
2932         writeString(f, "gmon");
2933         writeLong(f, 0x00000001); /* Version */
2934         writeLong(f, 0); /* padding */
2935         writeLong(f, 0); /* padding */
2936         writeLong(f, 0); /* padding */
2937
2938         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2939         writeData(f, &zero, 1);
2940
2941         /* figure out bucket size */
2942         uint32_t min = samples[0];
2943         uint32_t max = samples[0];
2944         for (i = 0; i < sampleNum; i++)
2945         {
2946                 if (min > samples[i])
2947                 {
2948                         min = samples[i];
2949                 }
2950                 if (max < samples[i])
2951                 {
2952                         max = samples[i];
2953                 }
2954         }
2955
2956         int addressSpace = (max-min + 1);
2957
2958         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2959         uint32_t length = addressSpace;
2960         if (length > maxBuckets)
2961         {
2962                 length = maxBuckets;
2963         }
2964         int *buckets = malloc(sizeof(int)*length);
2965         if (buckets == NULL)
2966         {
2967                 fclose(f);
2968                 return;
2969         }
2970         memset(buckets, 0, sizeof(int)*length);
2971         for (i = 0; i < sampleNum;i++)
2972         {
2973                 uint32_t address = samples[i];
2974                 long long a = address-min;
2975                 long long b = length-1;
2976                 long long c = addressSpace-1;
2977                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2978                 buckets[index]++;
2979         }
2980
2981         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2982         writeLong(f, min);                      /* low_pc */
2983         writeLong(f, max);                      /* high_pc */
2984         writeLong(f, length);           /* # of samples */
2985         writeLong(f, 64000000);         /* 64MHz */
2986         writeString(f, "seconds");
2987         for (i = 0; i < (15-strlen("seconds")); i++)
2988                 writeData(f, &zero, 1);
2989         writeString(f, "s");
2990
2991         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2992
2993         char *data = malloc(2*length);
2994         if (data != NULL)
2995         {
2996                 for (i = 0; i < length;i++)
2997                 {
2998                         int val;
2999                         val = buckets[i];
3000                         if (val > 65535)
3001                         {
3002                                 val = 65535;
3003                         }
3004                         data[i*2]=val&0xff;
3005                         data[i*2 + 1]=(val >> 8)&0xff;
3006                 }
3007                 free(buckets);
3008                 writeData(f, data, length * 2);
3009                 free(data);
3010         } else
3011         {
3012                 free(buckets);
3013         }
3014
3015         fclose(f);
3016 }
3017
3018 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3019 COMMAND_HANDLER(handle_profile_command)
3020 {
3021         struct target *target = get_current_target(cmd_ctx);
3022         struct timeval timeout, now;
3023
3024         gettimeofday(&timeout, NULL);
3025         if (argc != 2)
3026         {
3027                 return ERROR_COMMAND_SYNTAX_ERROR;
3028         }
3029         unsigned offset;
3030         COMMAND_PARSE_NUMBER(uint, args[0], offset);
3031
3032         timeval_add_time(&timeout, offset, 0);
3033
3034         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3035
3036         static const int maxSample = 10000;
3037         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3038         if (samples == NULL)
3039                 return ERROR_OK;
3040
3041         int numSamples = 0;
3042         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3043         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3044
3045         for (;;)
3046         {
3047                 int retval;
3048                 target_poll(target);
3049                 if (target->state == TARGET_HALTED)
3050                 {
3051                         uint32_t t=*((uint32_t *)reg->value);
3052                         samples[numSamples++]=t;
3053                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3054                         target_poll(target);
3055                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3056                 } else if (target->state == TARGET_RUNNING)
3057                 {
3058                         /* We want to quickly sample the PC. */
3059                         if ((retval = target_halt(target)) != ERROR_OK)
3060                         {
3061                                 free(samples);
3062                                 return retval;
3063                         }
3064                 } else
3065                 {
3066                         command_print(cmd_ctx, "Target not halted or running");
3067                         retval = ERROR_OK;
3068                         break;
3069                 }
3070                 if (retval != ERROR_OK)
3071                 {
3072                         break;
3073                 }
3074
3075                 gettimeofday(&now, NULL);
3076                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3077                 {
3078                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3079                         if ((retval = target_poll(target)) != ERROR_OK)
3080                         {
3081                                 free(samples);
3082                                 return retval;
3083                         }
3084                         if (target->state == TARGET_HALTED)
3085                         {
3086                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3087                         }
3088                         if ((retval = target_poll(target)) != ERROR_OK)
3089                         {
3090                                 free(samples);
3091                                 return retval;
3092                         }
3093                         writeGmon(samples, numSamples, args[1]);
3094                         command_print(cmd_ctx, "Wrote %s", args[1]);
3095                         break;
3096                 }
3097         }
3098         free(samples);
3099
3100         return ERROR_OK;
3101 }
3102
3103 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3104 {
3105         char *namebuf;
3106         Jim_Obj *nameObjPtr, *valObjPtr;
3107         int result;
3108
3109         namebuf = alloc_printf("%s(%d)", varname, idx);
3110         if (!namebuf)
3111                 return JIM_ERR;
3112
3113         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3114         valObjPtr = Jim_NewIntObj(interp, val);
3115         if (!nameObjPtr || !valObjPtr)
3116         {
3117                 free(namebuf);
3118                 return JIM_ERR;
3119         }
3120
3121         Jim_IncrRefCount(nameObjPtr);
3122         Jim_IncrRefCount(valObjPtr);
3123         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3124         Jim_DecrRefCount(interp, nameObjPtr);
3125         Jim_DecrRefCount(interp, valObjPtr);
3126         free(namebuf);
3127         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3128         return result;
3129 }
3130
3131 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3132 {
3133         struct command_context *context;
3134         struct target *target;
3135
3136         context = Jim_GetAssocData(interp, "context");
3137         if (context == NULL)
3138         {
3139                 LOG_ERROR("mem2array: no command context");
3140                 return JIM_ERR;
3141         }
3142         target = get_current_target(context);
3143         if (target == NULL)
3144         {
3145                 LOG_ERROR("mem2array: no current target");
3146                 return JIM_ERR;
3147         }
3148
3149         return  target_mem2array(interp, target, argc-1, argv + 1);
3150 }
3151
3152 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3153 {
3154         long l;
3155         uint32_t width;
3156         int len;
3157         uint32_t addr;
3158         uint32_t count;
3159         uint32_t v;
3160         const char *varname;
3161         uint8_t buffer[4096];
3162         int  n, e, retval;
3163         uint32_t i;
3164
3165         /* argv[1] = name of array to receive the data
3166          * argv[2] = desired width
3167          * argv[3] = memory address
3168          * argv[4] = count of times to read
3169          */
3170         if (argc != 4) {
3171                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3172                 return JIM_ERR;
3173         }
3174         varname = Jim_GetString(argv[0], &len);
3175         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3176
3177         e = Jim_GetLong(interp, argv[1], &l);
3178         width = l;
3179         if (e != JIM_OK) {
3180                 return e;
3181         }
3182
3183         e = Jim_GetLong(interp, argv[2], &l);
3184         addr = l;
3185         if (e != JIM_OK) {
3186                 return e;
3187         }
3188         e = Jim_GetLong(interp, argv[3], &l);
3189         len = l;
3190         if (e != JIM_OK) {
3191                 return e;
3192         }
3193         switch (width) {
3194                 case 8:
3195                         width = 1;
3196                         break;
3197                 case 16:
3198                         width = 2;
3199                         break;
3200                 case 32:
3201                         width = 4;
3202                         break;
3203                 default:
3204                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3205                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3206                         return JIM_ERR;
3207         }
3208         if (len == 0) {
3209                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3210                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3211                 return JIM_ERR;
3212         }
3213         if ((addr + (len * width)) < addr) {
3214                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3215                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3216                 return JIM_ERR;
3217         }
3218         /* absurd transfer size? */
3219         if (len > 65536) {
3220                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3221                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3222                 return JIM_ERR;
3223         }
3224
3225         if ((width == 1) ||
3226                 ((width == 2) && ((addr & 1) == 0)) ||
3227                 ((width == 4) && ((addr & 3) == 0))) {
3228                 /* all is well */
3229         } else {
3230                 char buf[100];
3231                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3232                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3233                                 addr,
3234                                 width);
3235                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3236                 return JIM_ERR;
3237         }
3238
3239         /* Transfer loop */
3240
3241         /* index counter */
3242         n = 0;
3243         /* assume ok */
3244         e = JIM_OK;
3245         while (len) {
3246                 /* Slurp... in buffer size chunks */
3247
3248                 count = len; /* in objects.. */
3249                 if (count > (sizeof(buffer)/width)) {
3250                         count = (sizeof(buffer)/width);
3251                 }
3252
3253                 retval = target_read_memory(target, addr, width, count, buffer);
3254                 if (retval != ERROR_OK) {
3255                         /* BOO !*/
3256                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3257                                           (unsigned int)addr,
3258                                           (int)width,
3259                                           (int)count);
3260                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3261                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3262                         e = JIM_ERR;
3263                         len = 0;
3264                 } else {
3265                         v = 0; /* shut up gcc */
3266                         for (i = 0 ;i < count ;i++, n++) {
3267                                 switch (width) {
3268                                         case 4:
3269                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3270                                                 break;
3271                                         case 2:
3272                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3273                                                 break;
3274                                         case 1:
3275                                                 v = buffer[i] & 0x0ff;
3276                                                 break;
3277                                 }
3278                                 new_int_array_element(interp, varname, n, v);
3279                         }
3280                         len -= count;
3281                 }
3282         }
3283
3284         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3285
3286         return JIM_OK;
3287 }
3288
3289 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3290 {
3291         char *namebuf;
3292         Jim_Obj *nameObjPtr, *valObjPtr;
3293         int result;
3294         long l;
3295
3296         namebuf = alloc_printf("%s(%d)", varname, idx);
3297         if (!namebuf)
3298                 return JIM_ERR;
3299
3300         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3301         if (!nameObjPtr)
3302         {
3303                 free(namebuf);
3304                 return JIM_ERR;
3305         }
3306
3307         Jim_IncrRefCount(nameObjPtr);
3308         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3309         Jim_DecrRefCount(interp, nameObjPtr);
3310         free(namebuf);
3311         if (valObjPtr == NULL)
3312                 return JIM_ERR;
3313
3314         result = Jim_GetLong(interp, valObjPtr, &l);
3315         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3316         *val = l;
3317         return result;
3318 }
3319
3320 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3321 {
3322         struct command_context *context;
3323         struct target *target;
3324
3325         context = Jim_GetAssocData(interp, "context");
3326         if (context == NULL) {
3327                 LOG_ERROR("array2mem: no command context");
3328                 return JIM_ERR;
3329         }
3330         target = get_current_target(context);
3331         if (target == NULL) {
3332                 LOG_ERROR("array2mem: no current target");
3333                 return JIM_ERR;
3334         }
3335
3336         return target_array2mem(interp,target, argc-1, argv + 1);
3337 }
3338 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3339 {
3340         long l;
3341         uint32_t width;
3342         int len;
3343         uint32_t addr;
3344         uint32_t count;
3345         uint32_t v;
3346         const char *varname;
3347         uint8_t buffer[4096];
3348         int  n, e, retval;
3349         uint32_t i;
3350
3351         /* argv[1] = name of array to get the data
3352          * argv[2] = desired width
3353          * argv[3] = memory address
3354          * argv[4] = count to write
3355          */
3356         if (argc != 4) {
3357                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3358                 return JIM_ERR;
3359         }
3360         varname = Jim_GetString(argv[0], &len);
3361         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3362
3363         e = Jim_GetLong(interp, argv[1], &l);
3364         width = l;
3365         if (e != JIM_OK) {
3366                 return e;
3367         }
3368
3369         e = Jim_GetLong(interp, argv[2], &l);
3370         addr = l;
3371         if (e != JIM_OK) {
3372                 return e;
3373         }
3374         e = Jim_GetLong(interp, argv[3], &l);
3375         len = l;
3376         if (e != JIM_OK) {
3377                 return e;
3378         }
3379         switch (width) {
3380                 case 8:
3381                         width = 1;
3382                         break;
3383                 case 16:
3384                         width = 2;
3385                         break;
3386                 case 32:
3387                         width = 4;
3388                         break;
3389                 default:
3390                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3391                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3392                         return JIM_ERR;
3393         }
3394         if (len == 0) {
3395                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3396                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3397                 return JIM_ERR;
3398         }
3399         if ((addr + (len * width)) < addr) {
3400                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3401                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3402                 return JIM_ERR;
3403         }
3404         /* absurd transfer size? */
3405         if (len > 65536) {
3406                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3407                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3408                 return JIM_ERR;
3409         }
3410
3411         if ((width == 1) ||
3412                 ((width == 2) && ((addr & 1) == 0)) ||
3413                 ((width == 4) && ((addr & 3) == 0))) {
3414                 /* all is well */
3415         } else {
3416                 char buf[100];
3417                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3418                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3419                                 (unsigned int)addr,
3420                                 (int)width);
3421                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3422                 return JIM_ERR;
3423         }
3424
3425         /* Transfer loop */
3426
3427         /* index counter */
3428         n = 0;
3429         /* assume ok */
3430         e = JIM_OK;
3431         while (len) {
3432                 /* Slurp... in buffer size chunks */
3433
3434                 count = len; /* in objects.. */
3435                 if (count > (sizeof(buffer)/width)) {
3436                         count = (sizeof(buffer)/width);
3437                 }
3438
3439                 v = 0; /* shut up gcc */
3440                 for (i = 0 ;i < count ;i++, n++) {
3441                         get_int_array_element(interp, varname, n, &v);
3442                         switch (width) {
3443                         case 4:
3444                                 target_buffer_set_u32(target, &buffer[i*width], v);
3445                                 break;
3446                         case 2:
3447                                 target_buffer_set_u16(target, &buffer[i*width], v);
3448                                 break;
3449                         case 1:
3450                                 buffer[i] = v & 0x0ff;
3451                                 break;
3452                         }
3453                 }
3454                 len -= count;
3455
3456                 retval = target_write_memory(target, addr, width, count, buffer);
3457                 if (retval != ERROR_OK) {
3458                         /* BOO !*/
3459                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3460                                           (unsigned int)addr,
3461                                           (int)width,
3462                                           (int)count);
3463                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3464                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3465                         e = JIM_ERR;
3466                         len = 0;
3467                 }
3468         }
3469
3470         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3471
3472         return JIM_OK;
3473 }
3474
3475 void target_all_handle_event(enum target_event e)
3476 {
3477         struct target *target;
3478
3479         LOG_DEBUG("**all*targets: event: %d, %s",
3480                            (int)e,
3481                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3482
3483         target = all_targets;
3484         while (target) {
3485                 target_handle_event(target, e);
3486                 target = target->next;
3487         }
3488 }
3489
3490
3491 /* FIX? should we propagate errors here rather than printing them
3492  * and continuing?
3493  */
3494 void target_handle_event(struct target *target, enum target_event e)
3495 {
3496         struct target_event_action *teap;
3497
3498         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3499                 if (teap->event == e) {
3500                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3501                                            target->target_number,
3502                                            target->cmd_name,
3503                                            target_get_name(target),
3504                                            e,
3505                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3506                                            Jim_GetString(teap->body, NULL));
3507                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3508                         {
3509                                 Jim_PrintErrorMessage(interp);
3510                         }
3511                 }
3512         }
3513 }
3514
3515 enum target_cfg_param {
3516         TCFG_TYPE,
3517         TCFG_EVENT,
3518         TCFG_WORK_AREA_VIRT,
3519         TCFG_WORK_AREA_PHYS,
3520         TCFG_WORK_AREA_SIZE,
3521         TCFG_WORK_AREA_BACKUP,
3522         TCFG_ENDIAN,
3523         TCFG_VARIANT,
3524         TCFG_CHAIN_POSITION,
3525 };
3526
3527 static Jim_Nvp nvp_config_opts[] = {
3528         { .name = "-type",             .value = TCFG_TYPE },
3529         { .name = "-event",            .value = TCFG_EVENT },
3530         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3531         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3532         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3533         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3534         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3535         { .name = "-variant",          .value = TCFG_VARIANT },
3536         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3537
3538         { .name = NULL, .value = -1 }
3539 };
3540
3541 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3542 {
3543         Jim_Nvp *n;
3544         Jim_Obj *o;
3545         jim_wide w;
3546         char *cp;
3547         int e;
3548
3549         /* parse config or cget options ... */
3550         while (goi->argc > 0) {
3551                 Jim_SetEmptyResult(goi->interp);
3552                 /* Jim_GetOpt_Debug(goi); */
3553
3554                 if (target->type->target_jim_configure) {
3555                         /* target defines a configure function */
3556                         /* target gets first dibs on parameters */
3557                         e = (*(target->type->target_jim_configure))(target, goi);
3558                         if (e == JIM_OK) {
3559                                 /* more? */
3560                                 continue;
3561                         }
3562                         if (e == JIM_ERR) {
3563                                 /* An error */
3564                                 return e;
3565                         }
3566                         /* otherwise we 'continue' below */
3567                 }
3568                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3569                 if (e != JIM_OK) {
3570                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3571                         return e;
3572                 }
3573                 switch (n->value) {
3574                 case TCFG_TYPE:
3575                         /* not setable */
3576                         if (goi->isconfigure) {
3577                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3578                                 return JIM_ERR;
3579                         } else {
3580                         no_params:
3581                                 if (goi->argc != 0) {
3582                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3583                                         return JIM_ERR;
3584                                 }
3585                         }
3586                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3587                         /* loop for more */
3588                         break;
3589                 case TCFG_EVENT:
3590                         if (goi->argc == 0) {
3591                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3592                                 return JIM_ERR;
3593                         }
3594
3595                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3596                         if (e != JIM_OK) {
3597                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3598                                 return e;
3599                         }
3600
3601                         if (goi->isconfigure) {
3602                                 if (goi->argc != 1) {
3603                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3604                                         return JIM_ERR;
3605                                 }
3606                         } else {
3607                                 if (goi->argc != 0) {
3608                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3609                                         return JIM_ERR;
3610                                 }
3611                         }
3612
3613                         {
3614                                 struct target_event_action *teap;
3615
3616                                 teap = target->event_action;
3617                                 /* replace existing? */
3618                                 while (teap) {
3619                                         if (teap->event == (enum target_event)n->value) {
3620                                                 break;
3621                                         }
3622                                         teap = teap->next;
3623                                 }
3624
3625                                 if (goi->isconfigure) {
3626                                         bool replace = true;
3627                                         if (teap == NULL) {
3628                                                 /* create new */
3629                                                 teap = calloc(1, sizeof(*teap));
3630                                                 replace = false;
3631                                         }
3632                                         teap->event = n->value;
3633                                         Jim_GetOpt_Obj(goi, &o);
3634                                         if (teap->body) {
3635                                                 Jim_DecrRefCount(interp, teap->body);
3636                                         }
3637                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3638                                         /*
3639                                          * FIXME:
3640                                          *     Tcl/TK - "tk events" have a nice feature.
3641                                          *     See the "BIND" command.
3642                                          *    We should support that here.
3643                                          *     You can specify %X and %Y in the event code.
3644                                          *     The idea is: %T - target name.
3645                                          *     The idea is: %N - target number
3646                                          *     The idea is: %E - event name.
3647                                          */
3648                                         Jim_IncrRefCount(teap->body);
3649
3650                                         if (!replace)
3651                                         {
3652                                                 /* add to head of event list */
3653                                                 teap->next = target->event_action;
3654                                                 target->event_action = teap;
3655                                         }
3656                                         Jim_SetEmptyResult(goi->interp);
3657                                 } else {
3658                                         /* get */
3659                                         if (teap == NULL) {
3660                                                 Jim_SetEmptyResult(goi->interp);
3661                                         } else {
3662                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3663                                         }
3664                                 }
3665                         }
3666                         /* loop for more */
3667                         break;
3668
3669                 case TCFG_WORK_AREA_VIRT:
3670                         if (goi->isconfigure) {
3671                                 target_free_all_working_areas(target);
3672                                 e = Jim_GetOpt_Wide(goi, &w);
3673                                 if (e != JIM_OK) {
3674                                         return e;
3675                                 }
3676                                 target->working_area_virt = w;
3677                                 target->working_area_virt_spec = true;
3678                         } else {
3679                                 if (goi->argc != 0) {
3680                                         goto no_params;
3681                                 }
3682                         }
3683                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3684                         /* loop for more */
3685                         break;
3686
3687                 case TCFG_WORK_AREA_PHYS:
3688                         if (goi->isconfigure) {
3689                                 target_free_all_working_areas(target);
3690                                 e = Jim_GetOpt_Wide(goi, &w);
3691                                 if (e != JIM_OK) {
3692                                         return e;
3693                                 }
3694                                 target->working_area_phys = w;
3695                                 target->working_area_phys_spec = true;
3696                         } else {
3697                                 if (goi->argc != 0) {
3698                                         goto no_params;
3699                                 }
3700                         }
3701                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3702                         /* loop for more */
3703                         break;
3704
3705                 case TCFG_WORK_AREA_SIZE:
3706                         if (goi->isconfigure) {
3707                                 target_free_all_working_areas(target);
3708                                 e = Jim_GetOpt_Wide(goi, &w);
3709                                 if (e != JIM_OK) {
3710                                         return e;
3711                                 }
3712                                 target->working_area_size = w;
3713                         } else {
3714                                 if (goi->argc != 0) {
3715                                         goto no_params;
3716                                 }
3717                         }
3718                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3719                         /* loop for more */
3720                         break;
3721
3722                 case TCFG_WORK_AREA_BACKUP:
3723                         if (goi->isconfigure) {
3724                                 target_free_all_working_areas(target);
3725                                 e = Jim_GetOpt_Wide(goi, &w);
3726                                 if (e != JIM_OK) {
3727                                         return e;
3728                                 }
3729                                 /* make this exactly 1 or 0 */
3730                                 target->backup_working_area = (!!w);
3731                         } else {
3732                                 if (goi->argc != 0) {
3733                                         goto no_params;
3734                                 }
3735                         }
3736                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3737                         /* loop for more e*/
3738                         break;
3739
3740                 case TCFG_ENDIAN:
3741                         if (goi->isconfigure) {
3742                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3743                                 if (e != JIM_OK) {
3744                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3745                                         return e;
3746                                 }
3747                                 target->endianness = n->value;
3748                         } else {
3749                                 if (goi->argc != 0) {
3750                                         goto no_params;
3751                                 }
3752                         }
3753                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3754                         if (n->name == NULL) {
3755                                 target->endianness = TARGET_LITTLE_ENDIAN;
3756                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3757                         }
3758                         Jim_SetResultString(goi->interp, n->name, -1);
3759                         /* loop for more */
3760                         break;
3761
3762                 case TCFG_VARIANT:
3763                         if (goi->isconfigure) {
3764                                 if (goi->argc < 1) {
3765                                         Jim_SetResult_sprintf(goi->interp,
3766                                                                                    "%s ?STRING?",
3767                                                                                    n->name);
3768                                         return JIM_ERR;
3769                                 }
3770                                 if (target->variant) {
3771                                         free((void *)(target->variant));
3772                                 }
3773                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3774                                 target->variant = strdup(cp);
3775                         } else {
3776                                 if (goi->argc != 0) {
3777                                         goto no_params;
3778                                 }
3779                         }
3780                         Jim_SetResultString(goi->interp, target->variant,-1);
3781                         /* loop for more */
3782                         break;
3783                 case TCFG_CHAIN_POSITION:
3784                         if (goi->isconfigure) {
3785                                 Jim_Obj *o;
3786                                 struct jtag_tap *tap;
3787                                 target_free_all_working_areas(target);
3788                                 e = Jim_GetOpt_Obj(goi, &o);
3789                                 if (e != JIM_OK) {
3790                                         return e;
3791                                 }
3792                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3793                                 if (tap == NULL) {
3794                                         return JIM_ERR;
3795                                 }
3796                                 /* make this exactly 1 or 0 */
3797                                 target->tap = tap;
3798                         } else {
3799                                 if (goi->argc != 0) {
3800                                         goto no_params;
3801                                 }
3802                         }
3803                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3804                         /* loop for more e*/
3805                         break;
3806                 }
3807         } /* while (goi->argc) */
3808
3809
3810                 /* done - we return */
3811         return JIM_OK;
3812 }
3813
3814 /** this is the 'tcl' handler for the target specific command */
3815 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3816 {
3817         Jim_GetOptInfo goi;
3818         jim_wide a,b,c;
3819         int x,y,z;
3820         uint8_t  target_buf[32];
3821         Jim_Nvp *n;
3822         struct target *target;
3823         struct command_context *cmd_ctx;
3824         int e;
3825
3826         enum {
3827                 TS_CMD_CONFIGURE,
3828                 TS_CMD_CGET,
3829
3830                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3831                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3832                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3833                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3834                 TS_CMD_EXAMINE,
3835                 TS_CMD_POLL,
3836                 TS_CMD_RESET,
3837                 TS_CMD_HALT,
3838                 TS_CMD_WAITSTATE,
3839                 TS_CMD_EVENTLIST,
3840                 TS_CMD_CURSTATE,
3841                 TS_CMD_INVOKE_EVENT,
3842         };
3843
3844         static const Jim_Nvp target_options[] = {
3845                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3846                 { .name = "cget", .value = TS_CMD_CGET },
3847                 { .name = "mww", .value = TS_CMD_MWW },
3848                 { .name = "mwh", .value = TS_CMD_MWH },
3849                 { .name = "mwb", .value = TS_CMD_MWB },
3850                 { .name = "mdw", .value = TS_CMD_MDW },
3851                 { .name = "mdh", .value = TS_CMD_MDH },
3852                 { .name = "mdb", .value = TS_CMD_MDB },
3853                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3854                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3855                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3856                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3857
3858                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3859                 { .name = "arp_poll", .value = TS_CMD_POLL },
3860                 { .name = "arp_reset", .value = TS_CMD_RESET },
3861                 { .name = "arp_halt", .value = TS_CMD_HALT },
3862                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3863                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3864
3865                 { .name = NULL, .value = -1 },
3866         };
3867
3868         /* go past the "command" */
3869         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3870
3871         target = Jim_CmdPrivData(goi.interp);
3872         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3873
3874         /* commands here are in an NVP table */
3875         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3876         if (e != JIM_OK) {
3877                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3878                 return e;
3879         }
3880         /* Assume blank result */
3881         Jim_SetEmptyResult(goi.interp);
3882
3883         switch (n->value) {
3884         case TS_CMD_CONFIGURE:
3885                 if (goi.argc < 2) {
3886                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3887                         return JIM_ERR;
3888                 }
3889                 goi.isconfigure = 1;
3890                 return target_configure(&goi, target);
3891         case TS_CMD_CGET:
3892                 // some things take params
3893                 if (goi.argc < 1) {
3894                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3895                         return JIM_ERR;
3896                 }
3897                 goi.isconfigure = 0;
3898                 return target_configure(&goi, target);
3899                 break;
3900         case TS_CMD_MWW:
3901         case TS_CMD_MWH:
3902         case TS_CMD_MWB:
3903                 /* argv[0] = cmd
3904                  * argv[1] = address
3905                  * argv[2] = data
3906                  * argv[3] = optional count.
3907                  */
3908
3909                 if ((goi.argc == 2) || (goi.argc == 3)) {
3910                         /* all is well */
3911                 } else {
3912                 mwx_error:
3913                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3914                         return JIM_ERR;
3915                 }
3916
3917                 e = Jim_GetOpt_Wide(&goi, &a);
3918                 if (e != JIM_OK) {
3919                         goto mwx_error;
3920                 }
3921
3922                 e = Jim_GetOpt_Wide(&goi, &b);
3923                 if (e != JIM_OK) {
3924                         goto mwx_error;
3925                 }
3926                 if (goi.argc == 3) {
3927                         e = Jim_GetOpt_Wide(&goi, &c);
3928                         if (e != JIM_OK) {
3929                                 goto mwx_error;
3930                         }
3931                 } else {
3932                         c = 1;
3933                 }
3934
3935                 switch (n->value) {
3936                 case TS_CMD_MWW:
3937                         target_buffer_set_u32(target, target_buf, b);
3938                         b = 4;
3939                         break;
3940                 case TS_CMD_MWH:
3941                         target_buffer_set_u16(target, target_buf, b);
3942                         b = 2;
3943                         break;
3944                 case TS_CMD_MWB:
3945                         target_buffer_set_u8(target, target_buf, b);
3946                         b = 1;
3947                         break;
3948                 }
3949                 for (x = 0 ; x < c ; x++) {
3950                         e = target_write_memory(target, a, b, 1, target_buf);
3951                         if (e != ERROR_OK) {
3952                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3953                                 return JIM_ERR;
3954                         }
3955                         /* b = width */
3956                         a = a + b;
3957                 }
3958                 return JIM_OK;
3959                 break;
3960
3961                 /* display */
3962         case TS_CMD_MDW:
3963         case TS_CMD_MDH:
3964         case TS_CMD_MDB:
3965                 /* argv[0] = command
3966                  * argv[1] = address
3967                  * argv[2] = optional count
3968                  */
3969                 if ((goi.argc == 2) || (goi.argc == 3)) {
3970                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
3971                         return JIM_ERR;
3972                 }
3973                 e = Jim_GetOpt_Wide(&goi, &a);
3974                 if (e != JIM_OK) {
3975                         return JIM_ERR;
3976                 }
3977                 if (goi.argc) {
3978                         e = Jim_GetOpt_Wide(&goi, &c);
3979                         if (e != JIM_OK) {
3980                                 return JIM_ERR;
3981                         }
3982                 } else {
3983                         c = 1;
3984                 }
3985                 b = 1; /* shut up gcc */
3986                 switch (n->value) {
3987                 case TS_CMD_MDW:
3988                         b =  4;
3989                         break;
3990                 case TS_CMD_MDH:
3991                         b = 2;
3992                         break;
3993                 case TS_CMD_MDB:
3994                         b = 1;
3995                         break;
3996                 }
3997
3998                 /* convert to "bytes" */
3999                 c = c * b;
4000                 /* count is now in 'BYTES' */
4001                 while (c > 0) {
4002                         y = c;
4003                         if (y > 16) {
4004                                 y = 16;
4005                         }
4006                         e = target_read_memory(target, a, b, y / b, target_buf);
4007                         if (e != ERROR_OK) {
4008                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4009                                 return JIM_ERR;
4010                         }
4011
4012                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4013                         switch (b) {
4014                         case 4:
4015                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4016                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4017                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4018                                 }
4019                                 for (; (x < 16) ; x += 4) {
4020                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
4021                                 }
4022                                 break;
4023                         case 2:
4024                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4025                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4026                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4027                                 }
4028                                 for (; (x < 16) ; x += 2) {
4029                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
4030                                 }
4031                                 break;
4032                         case 1:
4033                         default:
4034                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4035                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4036                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4037                                 }
4038                                 for (; (x < 16) ; x += 1) {
4039                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
4040                                 }
4041                                 break;
4042                         }
4043                         /* ascii-ify the bytes */
4044                         for (x = 0 ; x < y ; x++) {
4045                                 if ((target_buf[x] >= 0x20) &&
4046                                         (target_buf[x] <= 0x7e)) {
4047                                         /* good */
4048                                 } else {
4049                                         /* smack it */
4050                                         target_buf[x] = '.';
4051                                 }
4052                         }
4053                         /* space pad  */
4054                         while (x < 16) {
4055                                 target_buf[x] = ' ';
4056                                 x++;
4057                         }
4058                         /* terminate */
4059                         target_buf[16] = 0;
4060                         /* print - with a newline */
4061                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4062                         /* NEXT... */
4063                         c -= 16;
4064                         a += 16;
4065                 }
4066                 return JIM_OK;
4067         case TS_CMD_MEM2ARRAY:
4068                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4069                 break;
4070         case TS_CMD_ARRAY2MEM:
4071                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4072                 break;
4073         case TS_CMD_EXAMINE:
4074                 if (goi.argc) {
4075                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4076                         return JIM_ERR;
4077                 }
4078                 if (!target->tap->enabled)
4079                         goto err_tap_disabled;
4080                 e = target->type->examine(target);
4081                 if (e != ERROR_OK) {
4082                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4083                         return JIM_ERR;
4084                 }
4085                 return JIM_OK;
4086         case TS_CMD_POLL:
4087                 if (goi.argc) {
4088                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4089                         return JIM_ERR;
4090                 }
4091                 if (!target->tap->enabled)
4092                         goto err_tap_disabled;
4093                 if (!(target_was_examined(target))) {
4094                         e = ERROR_TARGET_NOT_EXAMINED;
4095                 } else {
4096                         e = target->type->poll(target);
4097                 }
4098                 if (e != ERROR_OK) {
4099                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4100                         return JIM_ERR;
4101                 } else {
4102                         return JIM_OK;
4103                 }
4104                 break;
4105         case TS_CMD_RESET:
4106                 if (goi.argc != 2) {
4107                         Jim_WrongNumArgs(interp, 2, argv,
4108                                         "([tT]|[fF]|assert|deassert) BOOL");
4109                         return JIM_ERR;
4110                 }
4111                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4112                 if (e != JIM_OK) {
4113                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4114                         return e;
4115                 }
4116                 /* the halt or not param */
4117                 e = Jim_GetOpt_Wide(&goi, &a);
4118                 if (e != JIM_OK) {
4119                         return e;
4120                 }
4121                 if (!target->tap->enabled)
4122                         goto err_tap_disabled;
4123                 if (!target->type->assert_reset
4124                                 || !target->type->deassert_reset) {
4125                         Jim_SetResult_sprintf(interp,
4126                                         "No target-specific reset for %s",
4127                                         target->cmd_name);
4128                         return JIM_ERR;
4129                 }
4130                 /* determine if we should halt or not. */
4131                 target->reset_halt = !!a;
4132                 /* When this happens - all workareas are invalid. */
4133                 target_free_all_working_areas_restore(target, 0);
4134
4135                 /* do the assert */
4136                 if (n->value == NVP_ASSERT) {
4137                         e = target->type->assert_reset(target);
4138                 } else {
4139                         e = target->type->deassert_reset(target);
4140                 }
4141                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4142         case TS_CMD_HALT:
4143                 if (goi.argc) {
4144                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4145                         return JIM_ERR;
4146                 }
4147                 if (!target->tap->enabled)
4148                         goto err_tap_disabled;
4149                 e = target->type->halt(target);
4150                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4151         case TS_CMD_WAITSTATE:
4152                 /* params:  <name>  statename timeoutmsecs */
4153                 if (goi.argc != 2) {
4154                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4155                         return JIM_ERR;
4156                 }
4157                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4158                 if (e != JIM_OK) {
4159                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4160                         return e;
4161                 }
4162                 e = Jim_GetOpt_Wide(&goi, &a);
4163                 if (e != JIM_OK) {
4164                         return e;
4165                 }
4166                 if (!target->tap->enabled)
4167                         goto err_tap_disabled;
4168                 e = target_wait_state(target, n->value, a);
4169                 if (e != ERROR_OK) {
4170                         Jim_SetResult_sprintf(goi.interp,
4171                                                                    "target: %s wait %s fails (%d) %s",
4172                                                                    target->cmd_name,
4173                                                                    n->name,
4174                                                                    e, target_strerror_safe(e));
4175                         return JIM_ERR;
4176                 } else {
4177                         return JIM_OK;
4178                 }
4179         case TS_CMD_EVENTLIST:
4180                 /* List for human, Events defined for this target.
4181                  * scripts/programs should use 'name cget -event NAME'
4182                  */
4183                 {
4184                         struct target_event_action *teap;
4185                         teap = target->event_action;
4186                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4187                                                    target->target_number,
4188                                                    target->cmd_name);
4189                         command_print(cmd_ctx, "%-25s | Body", "Event");
4190                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4191                         while (teap) {
4192                                 command_print(cmd_ctx,
4193                                                            "%-25s | %s",
4194                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4195                                                            Jim_GetString(teap->body, NULL));
4196                                 teap = teap->next;
4197                         }
4198                         command_print(cmd_ctx, "***END***");
4199                         return JIM_OK;
4200                 }
4201         case TS_CMD_CURSTATE:
4202                 if (goi.argc != 0) {
4203                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4204                         return JIM_ERR;
4205                 }
4206                 Jim_SetResultString(goi.interp,
4207                                                         target_state_name( target ),
4208                                                         -1);
4209                 return JIM_OK;
4210         case TS_CMD_INVOKE_EVENT:
4211                 if (goi.argc != 1) {
4212                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4213                         return JIM_ERR;
4214                 }
4215                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4216                 if (e != JIM_OK) {
4217                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4218                         return e;
4219                 }
4220                 target_handle_event(target, n->value);
4221                 return JIM_OK;
4222         }
4223         return JIM_ERR;
4224
4225 err_tap_disabled:
4226         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4227         return JIM_ERR;
4228 }
4229
4230 static int target_create(Jim_GetOptInfo *goi)
4231 {
4232         Jim_Obj *new_cmd;
4233         Jim_Cmd *cmd;
4234         const char *cp;
4235         char *cp2;
4236         int e;
4237         int x;
4238         struct target *target;
4239         struct command_context *cmd_ctx;
4240
4241         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4242         if (goi->argc < 3) {
4243                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4244                 return JIM_ERR;
4245         }
4246
4247         /* COMMAND */
4248         Jim_GetOpt_Obj(goi, &new_cmd);
4249         /* does this command exist? */
4250         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4251         if (cmd) {
4252                 cp = Jim_GetString(new_cmd, NULL);
4253                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4254                 return JIM_ERR;
4255         }
4256
4257         /* TYPE */
4258         e = Jim_GetOpt_String(goi, &cp2, NULL);
4259         cp = cp2;
4260         /* now does target type exist */
4261         for (x = 0 ; target_types[x] ; x++) {
4262                 if (0 == strcmp(cp, target_types[x]->name)) {
4263                         /* found */
4264                         break;
4265                 }
4266         }
4267         if (target_types[x] == NULL) {
4268                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4269                 for (x = 0 ; target_types[x] ; x++) {
4270                         if (target_types[x + 1]) {
4271                                 Jim_AppendStrings(goi->interp,
4272                                                                    Jim_GetResult(goi->interp),
4273                                                                    target_types[x]->name,
4274                                                                    ", ", NULL);
4275                         } else {
4276                                 Jim_AppendStrings(goi->interp,
4277                                                                    Jim_GetResult(goi->interp),
4278                                                                    " or ",
4279                                                                    target_types[x]->name,NULL);
4280                         }
4281                 }
4282                 return JIM_ERR;
4283         }
4284
4285         /* Create it */
4286         target = calloc(1,sizeof(struct target));
4287         /* set target number */
4288         target->target_number = new_target_number();
4289
4290         /* allocate memory for each unique target type */
4291         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4292
4293         memcpy(target->type, target_types[x], sizeof(struct target_type));
4294
4295         /* will be set by "-endian" */
4296         target->endianness = TARGET_ENDIAN_UNKNOWN;
4297
4298         target->working_area        = 0x0;
4299         target->working_area_size   = 0x0;
4300         target->working_areas       = NULL;
4301         target->backup_working_area = 0;
4302
4303         target->state               = TARGET_UNKNOWN;
4304         target->debug_reason        = DBG_REASON_UNDEFINED;
4305         target->reg_cache           = NULL;
4306         target->breakpoints         = NULL;
4307         target->watchpoints         = NULL;
4308         target->next                = NULL;
4309         target->arch_info           = NULL;
4310
4311         target->display             = 1;
4312
4313         target->halt_issued                     = false;
4314
4315         /* initialize trace information */
4316         target->trace_info = malloc(sizeof(struct trace));
4317         target->trace_info->num_trace_points         = 0;
4318         target->trace_info->trace_points_size        = 0;
4319         target->trace_info->trace_points             = NULL;
4320         target->trace_info->trace_history_size       = 0;
4321         target->trace_info->trace_history            = NULL;
4322         target->trace_info->trace_history_pos        = 0;
4323         target->trace_info->trace_history_overflowed = 0;
4324
4325         target->dbgmsg          = NULL;
4326         target->dbg_msg_enabled = 0;
4327
4328         target->endianness = TARGET_ENDIAN_UNKNOWN;
4329
4330         /* Do the rest as "configure" options */
4331         goi->isconfigure = 1;
4332         e = target_configure(goi, target);
4333
4334         if (target->tap == NULL)
4335         {
4336                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4337                 e = JIM_ERR;
4338         }
4339
4340         if (e != JIM_OK) {
4341                 free(target->type);
4342                 free(target);
4343                 return e;
4344         }
4345
4346         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4347                 /* default endian to little if not specified */
4348                 target->endianness = TARGET_LITTLE_ENDIAN;
4349         }
4350
4351         /* incase variant is not set */
4352         if (!target->variant)
4353                 target->variant = strdup("");
4354
4355         /* create the target specific commands */
4356         if (target->type->register_commands) {
4357                 (*(target->type->register_commands))(cmd_ctx);
4358         }
4359         if (target->type->target_create) {
4360                 (*(target->type->target_create))(target, goi->interp);
4361         }
4362
4363         /* append to end of list */
4364         {
4365                 struct target **tpp;
4366                 tpp = &(all_targets);
4367                 while (*tpp) {
4368                         tpp = &((*tpp)->next);
4369                 }
4370                 *tpp = target;
4371         }
4372
4373         cp = Jim_GetString(new_cmd, NULL);
4374         target->cmd_name = strdup(cp);
4375
4376         /* now - create the new target name command */
4377         e = Jim_CreateCommand(goi->interp,
4378                                                    /* name */
4379                                                    cp,
4380                                                    tcl_target_func, /* C function */
4381                                                    target, /* private data */
4382                                                    NULL); /* no del proc */
4383
4384         return e;
4385 }
4386
4387 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4388 {
4389         int x,r,e;
4390         jim_wide w;
4391         struct command_context *cmd_ctx;
4392         struct target *target;
4393         Jim_GetOptInfo goi;
4394         enum tcmd {
4395                 /* TG = target generic */
4396                 TG_CMD_CREATE,
4397                 TG_CMD_TYPES,
4398                 TG_CMD_NAMES,
4399                 TG_CMD_CURRENT,
4400                 TG_CMD_NUMBER,
4401                 TG_CMD_COUNT,
4402         };
4403         const char *target_cmds[] = {
4404                 "create", "types", "names", "current", "number",
4405                 "count",
4406                 NULL /* terminate */
4407         };
4408
4409         LOG_DEBUG("Target command params:");
4410         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4411
4412         cmd_ctx = Jim_GetAssocData(interp, "context");
4413
4414         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4415
4416         if (goi.argc == 0) {
4417                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4418                 return JIM_ERR;
4419         }
4420
4421         /* Jim_GetOpt_Debug(&goi); */
4422         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4423         if (r != JIM_OK) {
4424                 return r;
4425         }
4426
4427         switch (x) {
4428         default:
4429                 Jim_Panic(goi.interp,"Why am I here?");
4430                 return JIM_ERR;
4431         case TG_CMD_CURRENT:
4432                 if (goi.argc != 0) {
4433                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4434                         return JIM_ERR;
4435                 }
4436                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4437                 return JIM_OK;
4438         case TG_CMD_TYPES:
4439                 if (goi.argc != 0) {
4440                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4441                         return JIM_ERR;
4442                 }
4443                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4444                 for (x = 0 ; target_types[x] ; x++) {
4445                         Jim_ListAppendElement(goi.interp,
4446                                                                    Jim_GetResult(goi.interp),
4447                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4448                 }
4449                 return JIM_OK;
4450         case TG_CMD_NAMES:
4451                 if (goi.argc != 0) {
4452                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4453                         return JIM_ERR;
4454                 }
4455                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4456                 target = all_targets;
4457                 while (target) {
4458                         Jim_ListAppendElement(goi.interp,
4459                                                                    Jim_GetResult(goi.interp),
4460                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4461                         target = target->next;
4462                 }
4463                 return JIM_OK;
4464         case TG_CMD_CREATE:
4465                 if (goi.argc < 3) {
4466                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4467                         return JIM_ERR;
4468                 }
4469                 return target_create(&goi);
4470                 break;
4471         case TG_CMD_NUMBER:
4472                 /* It's OK to remove this mechanism sometime after August 2010 or so */
4473                 LOG_WARNING("don't use numbers as target identifiers; use names");
4474                 if (goi.argc != 1) {
4475                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4476                         return JIM_ERR;
4477                 }
4478                 e = Jim_GetOpt_Wide(&goi, &w);
4479                 if (e != JIM_OK) {
4480                         return JIM_ERR;
4481                 }
4482                 for (x = 0, target = all_targets; target; target = target->next, x++) {
4483                         if (target->target_number == w)
4484                                 break;
4485                 }
4486                 if (target == NULL) {
4487                         Jim_SetResult_sprintf(goi.interp,
4488                                         "Target: number %d does not exist", (int)(w));
4489                         return JIM_ERR;
4490                 }
4491                 Jim_SetResultString(goi.interp, target->cmd_name, -1);
4492                 return JIM_OK;
4493         case TG_CMD_COUNT:
4494                 if (goi.argc != 0) {
4495                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4496                         return JIM_ERR;
4497                 }
4498                 for (x = 0, target = all_targets; target; target = target->next, x++)
4499                         continue;
4500                 Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x));
4501                 return JIM_OK;
4502         }
4503
4504         return JIM_ERR;
4505 }
4506
4507
4508 struct FastLoad
4509 {
4510         uint32_t address;
4511         uint8_t *data;
4512         int length;
4513
4514 };
4515
4516 static int fastload_num;
4517 static struct FastLoad *fastload;
4518
4519 static void free_fastload(void)
4520 {
4521         if (fastload != NULL)
4522         {
4523                 int i;
4524                 for (i = 0; i < fastload_num; i++)
4525                 {
4526                         if (fastload[i].data)
4527                                 free(fastload[i].data);
4528                 }
4529                 free(fastload);
4530                 fastload = NULL;
4531         }
4532 }
4533
4534
4535
4536
4537 COMMAND_HANDLER(handle_fast_load_image_command)
4538 {
4539         uint8_t *buffer;
4540         uint32_t buf_cnt;
4541         uint32_t image_size;
4542         uint32_t min_address = 0;
4543         uint32_t max_address = 0xffffffff;
4544         int i;
4545
4546         struct image image;
4547
4548         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
4549                         &image, &min_address, &max_address);
4550         if (ERROR_OK != retval)
4551                 return retval;
4552
4553         struct duration bench;
4554         duration_start(&bench);
4555
4556         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4557         {
4558                 return ERROR_OK;
4559         }
4560
4561         image_size = 0x0;
4562         retval = ERROR_OK;
4563         fastload_num = image.num_sections;
4564         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4565         if (fastload == NULL)
4566         {
4567                 image_close(&image);
4568                 return ERROR_FAIL;
4569         }
4570         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4571         for (i = 0; i < image.num_sections; i++)
4572         {
4573                 buffer = malloc(image.sections[i].size);
4574                 if (buffer == NULL)
4575                 {
4576                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4577                                                   (int)(image.sections[i].size));
4578                         break;
4579                 }
4580
4581                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4582                 {
4583                         free(buffer);
4584                         break;
4585                 }
4586
4587                 uint32_t offset = 0;
4588                 uint32_t length = buf_cnt;
4589
4590
4591                 /* DANGER!!! beware of unsigned comparision here!!! */
4592
4593                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4594                                 (image.sections[i].base_address < max_address))
4595                 {
4596                         if (image.sections[i].base_address < min_address)
4597                         {
4598                                 /* clip addresses below */
4599                                 offset += min_address-image.sections[i].base_address;
4600                                 length -= offset;
4601                         }
4602
4603                         if (image.sections[i].base_address + buf_cnt > max_address)
4604                         {
4605                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4606                         }
4607
4608                         fastload[i].address = image.sections[i].base_address + offset;
4609                         fastload[i].data = malloc(length);
4610                         if (fastload[i].data == NULL)
4611                         {
4612                                 free(buffer);
4613                                 break;
4614                         }
4615                         memcpy(fastload[i].data, buffer + offset, length);
4616                         fastload[i].length = length;
4617
4618                         image_size += length;
4619                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8x",
4620                                                   (unsigned int)length,
4621                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4622                 }
4623
4624                 free(buffer);
4625         }
4626
4627         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4628         {
4629                 command_print(cmd_ctx, "Loaded %" PRIu32 " bytes "
4630                                 "in %fs (%0.3f kb/s)", image_size, 
4631                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4632
4633                 command_print(cmd_ctx,
4634                                 "WARNING: image has not been loaded to target!"
4635                                 "You can issue a 'fast_load' to finish loading.");
4636         }
4637
4638         image_close(&image);
4639
4640         if (retval != ERROR_OK)
4641         {
4642                 free_fastload();
4643         }
4644
4645         return retval;
4646 }
4647
4648 COMMAND_HANDLER(handle_fast_load_command)
4649 {
4650         if (argc > 0)
4651                 return ERROR_COMMAND_SYNTAX_ERROR;
4652         if (fastload == NULL)
4653         {
4654                 LOG_ERROR("No image in memory");
4655                 return ERROR_FAIL;
4656         }
4657         int i;
4658         int ms = timeval_ms();
4659         int size = 0;
4660         int retval = ERROR_OK;
4661         for (i = 0; i < fastload_num;i++)
4662         {
4663                 struct target *target = get_current_target(cmd_ctx);
4664                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4665                                           (unsigned int)(fastload[i].address),
4666                                           (unsigned int)(fastload[i].length));
4667                 if (retval == ERROR_OK)
4668                 {
4669                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4670                 }
4671                 size += fastload[i].length;
4672         }
4673         int after = timeval_ms();
4674         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4675         return retval;
4676 }
4677
4678 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4679 {
4680         struct command_context *context;
4681         struct target *target;
4682         int retval;
4683
4684         context = Jim_GetAssocData(interp, "context");
4685         if (context == NULL) {
4686                 LOG_ERROR("array2mem: no command context");
4687                 return JIM_ERR;
4688         }
4689         target = get_current_target(context);
4690         if (target == NULL) {
4691                 LOG_ERROR("array2mem: no current target");
4692                 return JIM_ERR;
4693         }
4694
4695         if ((argc < 6) || (argc > 7))
4696         {
4697                 return JIM_ERR;
4698         }
4699
4700         int cpnum;
4701         uint32_t op1;
4702         uint32_t op2;
4703         uint32_t CRn;
4704         uint32_t CRm;
4705         uint32_t value;
4706
4707         int e;
4708         long l;
4709         e = Jim_GetLong(interp, argv[1], &l);
4710         if (e != JIM_OK) {
4711                 return e;
4712         }
4713         cpnum = l;
4714
4715         e = Jim_GetLong(interp, argv[2], &l);
4716         if (e != JIM_OK) {
4717                 return e;
4718         }
4719         op1 = l;
4720
4721         e = Jim_GetLong(interp, argv[3], &l);
4722         if (e != JIM_OK) {
4723                 return e;
4724         }
4725         CRn = l;
4726
4727         e = Jim_GetLong(interp, argv[4], &l);
4728         if (e != JIM_OK) {
4729                 return e;
4730         }
4731         CRm = l;
4732
4733         e = Jim_GetLong(interp, argv[5], &l);
4734         if (e != JIM_OK) {
4735                 return e;
4736         }
4737         op2 = l;
4738
4739         value = 0;
4740
4741         if (argc == 7)
4742         {
4743                 e = Jim_GetLong(interp, argv[6], &l);
4744                 if (e != JIM_OK) {
4745                         return e;
4746                 }
4747                 value = l;
4748
4749                 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4750                 if (retval != ERROR_OK)
4751                         return JIM_ERR;
4752         } else
4753         {
4754                 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4755                 if (retval != ERROR_OK)
4756                         return JIM_ERR;
4757
4758                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4759         }
4760
4761         return JIM_OK;
4762 }
4763
4764 int target_register_commands(struct command_context *cmd_ctx)
4765 {
4766
4767         register_command(cmd_ctx, NULL, "targets",
4768                         handle_targets_command, COMMAND_EXEC,
4769                         "change current command line target (one parameter) "
4770                         "or list targets (no parameters)");
4771
4772         register_jim(cmd_ctx, "target", jim_target, "configure target");
4773
4774         return ERROR_OK;
4775 }
4776
4777 int target_register_user_commands(struct command_context *cmd_ctx)
4778 {
4779         int retval = ERROR_OK;
4780         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
4781                 return retval;
4782
4783         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
4784                 return retval;
4785
4786         register_command(cmd_ctx, NULL, "profile",
4787                         handle_profile_command, COMMAND_EXEC,
4788                         "profiling samples the CPU PC");
4789
4790         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array,
4791                         "read memory and return as a TCL array for script processing "
4792                         "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
4793
4794         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem,
4795                         "convert a TCL array to memory locations and write the values "
4796                         "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
4797
4798         register_command(cmd_ctx, NULL, "fast_load_image",
4799                         handle_fast_load_image_command, COMMAND_ANY,
4800                         "same args as load_image, image stored in memory "
4801                         "- mainly for profiling purposes");
4802
4803         register_command(cmd_ctx, NULL, "fast_load",
4804                         handle_fast_load_command, COMMAND_ANY,
4805                         "loads active fast load image to current target "
4806                         "- mainly for profiling purposes");
4807
4808         /** @todo don't register virt2phys() unless target supports it */
4809         register_command(cmd_ctx, NULL, "virt2phys",
4810                         handle_virt2phys_command, COMMAND_ANY,
4811                         "translate a virtual address into a physical address");
4812
4813         register_command(cmd_ctx,  NULL, "reg",
4814                         handle_reg_command, COMMAND_EXEC,
4815                         "display or set a register");
4816
4817         register_command(cmd_ctx,  NULL, "poll",
4818                         handle_poll_command, COMMAND_EXEC,
4819                         "poll target state");
4820         register_command(cmd_ctx,  NULL, "wait_halt",
4821                         handle_wait_halt_command, COMMAND_EXEC,
4822                         "wait for target halt [time (s)]");
4823         register_command(cmd_ctx,  NULL, "halt",
4824                         handle_halt_command, COMMAND_EXEC,
4825                         "halt target");
4826         register_command(cmd_ctx,  NULL, "resume",
4827                         handle_resume_command, COMMAND_EXEC,
4828                         "resume target [addr]");
4829         register_command(cmd_ctx,  NULL, "reset",
4830                         handle_reset_command, COMMAND_EXEC,
4831                         "reset target [run | halt | init] - default is run");
4832         register_command(cmd_ctx,  NULL, "soft_reset_halt",
4833                         handle_soft_reset_halt_command, COMMAND_EXEC,
4834                         "halt the target and do a soft reset");
4835
4836         register_command(cmd_ctx,  NULL, "step",
4837                         handle_step_command, COMMAND_EXEC,
4838                         "step one instruction from current PC or [addr]");
4839
4840         register_command(cmd_ctx,  NULL, "mdw",
4841                         handle_md_command, COMMAND_EXEC,
4842                         "display memory words [phys] <addr> [count]");
4843         register_command(cmd_ctx,  NULL, "mdh",
4844                         handle_md_command, COMMAND_EXEC,
4845                         "display memory half-words [phys] <addr> [count]");
4846         register_command(cmd_ctx,  NULL, "mdb",
4847                         handle_md_command, COMMAND_EXEC,
4848                         "display memory bytes [phys] <addr> [count]");
4849
4850         register_command(cmd_ctx,  NULL, "mww",
4851                         handle_mw_command, COMMAND_EXEC,
4852                         "write memory word [phys]  <addr> <value> [count]");
4853         register_command(cmd_ctx,  NULL, "mwh",
4854                         handle_mw_command, COMMAND_EXEC,
4855                         "write memory half-word [phys]  <addr> <value> [count]");
4856         register_command(cmd_ctx,  NULL, "mwb",
4857                         handle_mw_command, COMMAND_EXEC,
4858                         "write memory byte [phys] <addr> <value> [count]");
4859
4860         register_command(cmd_ctx,  NULL, "bp",
4861                         handle_bp_command, COMMAND_EXEC,
4862                         "list or set breakpoint [<address> <length> [hw]]");
4863         register_command(cmd_ctx,  NULL, "rbp",
4864                         handle_rbp_command, COMMAND_EXEC,
4865                         "remove breakpoint <address>");
4866
4867         register_command(cmd_ctx,  NULL, "wp",
4868                         handle_wp_command, COMMAND_EXEC,
4869                         "list or set watchpoint "
4870                                 "[<address> <length> <r/w/a> [value] [mask]]");
4871         register_command(cmd_ctx,  NULL, "rwp",
4872                         handle_rwp_command, COMMAND_EXEC,
4873                         "remove watchpoint <address>");
4874
4875         register_command(cmd_ctx,  NULL, "load_image",
4876                         handle_load_image_command, COMMAND_EXEC,
4877                         "load_image <file> <address> "
4878                         "['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
4879         register_command(cmd_ctx,  NULL, "dump_image",
4880                         handle_dump_image_command, COMMAND_EXEC,
4881                         "dump_image <file> <address> <size>");
4882         register_command(cmd_ctx,  NULL, "verify_image",
4883                         handle_verify_image_command, COMMAND_EXEC,
4884                         "verify_image <file> [offset] [type]");
4885         register_command(cmd_ctx,  NULL, "test_image",
4886                         handle_test_image_command, COMMAND_EXEC,
4887                         "test_image <file> [offset] [type]");
4888
4889         return ERROR_OK;
4890 }