]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: Fix segfault for 'mem2array'
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110
111 static struct target_type *target_types[] = {
112         &arm7tdmi_target,
113         &arm9tdmi_target,
114         &arm920t_target,
115         &arm720t_target,
116         &arm966e_target,
117         &arm946e_target,
118         &arm926ejs_target,
119         &fa526_target,
120         &feroceon_target,
121         &dragonite_target,
122         &xscale_target,
123         &cortexm_target,
124         &cortexa_target,
125         &cortexr4_target,
126         &arm11_target,
127         &ls1_sap_target,
128         &mips_m4k_target,
129         &avr_target,
130         &dsp563xx_target,
131         &dsp5680xx_target,
132         &testee_target,
133         &avr32_ap7k_target,
134         &hla_target,
135         &nds32_v2_target,
136         &nds32_v3_target,
137         &nds32_v3m_target,
138         &or1k_target,
139         &quark_x10xx_target,
140         &quark_d20xx_target,
141         &stm8_target,
142 #if BUILD_TARGET64
143         &aarch64_target,
144 #endif
145         NULL,
146 };
147
148 struct target *all_targets;
149 static struct target_event_callback *target_event_callbacks;
150 static struct target_timer_callback *target_timer_callbacks;
151 LIST_HEAD(target_reset_callback_list);
152 LIST_HEAD(target_trace_callback_list);
153 static const int polling_interval = 100;
154
155 static const Jim_Nvp nvp_assert[] = {
156         { .name = "assert", NVP_ASSERT },
157         { .name = "deassert", NVP_DEASSERT },
158         { .name = "T", NVP_ASSERT },
159         { .name = "F", NVP_DEASSERT },
160         { .name = "t", NVP_ASSERT },
161         { .name = "f", NVP_DEASSERT },
162         { .name = NULL, .value = -1 }
163 };
164
165 static const Jim_Nvp nvp_error_target[] = {
166         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
167         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
168         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
169         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
170         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
171         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
172         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
173         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
174         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
175         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
176         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
177         { .value = -1, .name = NULL }
178 };
179
180 static const char *target_strerror_safe(int err)
181 {
182         const Jim_Nvp *n;
183
184         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
185         if (n->name == NULL)
186                 return "unknown";
187         else
188                 return n->name;
189 }
190
191 static const Jim_Nvp nvp_target_event[] = {
192
193         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
194         { .value = TARGET_EVENT_HALTED, .name = "halted" },
195         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
198
199         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
200         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
201
202         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
203         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
204         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
205         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
206         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
207         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
208         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
209         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
210
211         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
212         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
213
214         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
215         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
216
217         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
218         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
219
220         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
221         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
222
223         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
224         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
225
226         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
227
228         { .name = NULL, .value = -1 }
229 };
230
231 static const Jim_Nvp nvp_target_state[] = {
232         { .name = "unknown", .value = TARGET_UNKNOWN },
233         { .name = "running", .value = TARGET_RUNNING },
234         { .name = "halted",  .value = TARGET_HALTED },
235         { .name = "reset",   .value = TARGET_RESET },
236         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
237         { .name = NULL, .value = -1 },
238 };
239
240 static const Jim_Nvp nvp_target_debug_reason[] = {
241         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
242         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
243         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
244         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
245         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
246         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
247         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
248         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
249         { .name = NULL, .value = -1 },
250 };
251
252 static const Jim_Nvp nvp_target_endian[] = {
253         { .name = "big",    .value = TARGET_BIG_ENDIAN },
254         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
255         { .name = "be",     .value = TARGET_BIG_ENDIAN },
256         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
257         { .name = NULL,     .value = -1 },
258 };
259
260 static const Jim_Nvp nvp_reset_modes[] = {
261         { .name = "unknown", .value = RESET_UNKNOWN },
262         { .name = "run"    , .value = RESET_RUN },
263         { .name = "halt"   , .value = RESET_HALT },
264         { .name = "init"   , .value = RESET_INIT },
265         { .name = NULL     , .value = -1 },
266 };
267
268 const char *debug_reason_name(struct target *t)
269 {
270         const char *cp;
271
272         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
273                         t->debug_reason)->name;
274         if (!cp) {
275                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
276                 cp = "(*BUG*unknown*BUG*)";
277         }
278         return cp;
279 }
280
281 const char *target_state_name(struct target *t)
282 {
283         const char *cp;
284         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
285         if (!cp) {
286                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
287                 cp = "(*BUG*unknown*BUG*)";
288         }
289
290         if (!target_was_examined(t) && t->defer_examine)
291                 cp = "examine deferred";
292
293         return cp;
294 }
295
296 const char *target_event_name(enum target_event event)
297 {
298         const char *cp;
299         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
300         if (!cp) {
301                 LOG_ERROR("Invalid target event: %d", (int)(event));
302                 cp = "(*BUG*unknown*BUG*)";
303         }
304         return cp;
305 }
306
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
308 {
309         const char *cp;
310         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
311         if (!cp) {
312                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
313                 cp = "(*BUG*unknown*BUG*)";
314         }
315         return cp;
316 }
317
318 /* determine the number of the new target */
319 static int new_target_number(void)
320 {
321         struct target *t;
322         int x;
323
324         /* number is 0 based */
325         x = -1;
326         t = all_targets;
327         while (t) {
328                 if (x < t->target_number)
329                         x = t->target_number;
330                 t = t->next;
331         }
332         return x + 1;
333 }
334
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
337 {
338         if (target->endianness == TARGET_LITTLE_ENDIAN)
339                 return le_to_h_u64(buffer);
340         else
341                 return be_to_h_u64(buffer);
342 }
343
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
346 {
347         if (target->endianness == TARGET_LITTLE_ENDIAN)
348                 return le_to_h_u32(buffer);
349         else
350                 return be_to_h_u32(buffer);
351 }
352
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
355 {
356         if (target->endianness == TARGET_LITTLE_ENDIAN)
357                 return le_to_h_u24(buffer);
358         else
359                 return be_to_h_u24(buffer);
360 }
361
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
364 {
365         if (target->endianness == TARGET_LITTLE_ENDIAN)
366                 return le_to_h_u16(buffer);
367         else
368                 return be_to_h_u16(buffer);
369 }
370
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
373 {
374         return *buffer & 0x0ff;
375 }
376
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
379 {
380         if (target->endianness == TARGET_LITTLE_ENDIAN)
381                 h_u64_to_le(buffer, value);
382         else
383                 h_u64_to_be(buffer, value);
384 }
385
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
388 {
389         if (target->endianness == TARGET_LITTLE_ENDIAN)
390                 h_u32_to_le(buffer, value);
391         else
392                 h_u32_to_be(buffer, value);
393 }
394
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
397 {
398         if (target->endianness == TARGET_LITTLE_ENDIAN)
399                 h_u24_to_le(buffer, value);
400         else
401                 h_u24_to_be(buffer, value);
402 }
403
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
406 {
407         if (target->endianness == TARGET_LITTLE_ENDIAN)
408                 h_u16_to_le(buffer, value);
409         else
410                 h_u16_to_be(buffer, value);
411 }
412
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
415 {
416         *buffer = value;
417 }
418
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
421 {
422         uint32_t i;
423         for (i = 0; i < count; i++)
424                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
425 }
426
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
429 {
430         uint32_t i;
431         for (i = 0; i < count; i++)
432                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
433 }
434
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
437 {
438         uint32_t i;
439         for (i = 0; i < count; i++)
440                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
441 }
442
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
445 {
446         uint32_t i;
447         for (i = 0; i < count; i++)
448                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
449 }
450
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
453 {
454         uint32_t i;
455         for (i = 0; i < count; i++)
456                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
457 }
458
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
461 {
462         uint32_t i;
463         for (i = 0; i < count; i++)
464                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
465 }
466
467 /* return a pointer to a configured target; id is name or number */
468 struct target *get_target(const char *id)
469 {
470         struct target *target;
471
472         /* try as tcltarget name */
473         for (target = all_targets; target; target = target->next) {
474                 if (target_name(target) == NULL)
475                         continue;
476                 if (strcmp(id, target_name(target)) == 0)
477                         return target;
478         }
479
480         /* It's OK to remove this fallback sometime after August 2010 or so */
481
482         /* no match, try as number */
483         unsigned num;
484         if (parse_uint(id, &num) != ERROR_OK)
485                 return NULL;
486
487         for (target = all_targets; target; target = target->next) {
488                 if (target->target_number == (int)num) {
489                         LOG_WARNING("use '%s' as target identifier, not '%u'",
490                                         target_name(target), num);
491                         return target;
492                 }
493         }
494
495         return NULL;
496 }
497
498 /* returns a pointer to the n-th configured target */
499 struct target *get_target_by_num(int num)
500 {
501         struct target *target = all_targets;
502
503         while (target) {
504                 if (target->target_number == num)
505                         return target;
506                 target = target->next;
507         }
508
509         return NULL;
510 }
511
512 struct target *get_current_target(struct command_context *cmd_ctx)
513 {
514         struct target *target = cmd_ctx->current_target_override
515                 ? cmd_ctx->current_target_override
516                 : cmd_ctx->current_target;
517
518         if (target == NULL) {
519                 LOG_ERROR("BUG: current_target out of bounds");
520                 exit(-1);
521         }
522
523         return target;
524 }
525
526 int target_poll(struct target *target)
527 {
528         int retval;
529
530         /* We can't poll until after examine */
531         if (!target_was_examined(target)) {
532                 /* Fail silently lest we pollute the log */
533                 return ERROR_FAIL;
534         }
535
536         retval = target->type->poll(target);
537         if (retval != ERROR_OK)
538                 return retval;
539
540         if (target->halt_issued) {
541                 if (target->state == TARGET_HALTED)
542                         target->halt_issued = false;
543                 else {
544                         int64_t t = timeval_ms() - target->halt_issued_time;
545                         if (t > DEFAULT_HALT_TIMEOUT) {
546                                 target->halt_issued = false;
547                                 LOG_INFO("Halt timed out, wake up GDB.");
548                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
549                         }
550                 }
551         }
552
553         return ERROR_OK;
554 }
555
556 int target_halt(struct target *target)
557 {
558         int retval;
559         /* We can't poll until after examine */
560         if (!target_was_examined(target)) {
561                 LOG_ERROR("Target not examined yet");
562                 return ERROR_FAIL;
563         }
564
565         retval = target->type->halt(target);
566         if (retval != ERROR_OK)
567                 return retval;
568
569         target->halt_issued = true;
570         target->halt_issued_time = timeval_ms();
571
572         return ERROR_OK;
573 }
574
575 /**
576  * Make the target (re)start executing using its saved execution
577  * context (possibly with some modifications).
578  *
579  * @param target Which target should start executing.
580  * @param current True to use the target's saved program counter instead
581  *      of the address parameter
582  * @param address Optionally used as the program counter.
583  * @param handle_breakpoints True iff breakpoints at the resumption PC
584  *      should be skipped.  (For example, maybe execution was stopped by
585  *      such a breakpoint, in which case it would be counterprodutive to
586  *      let it re-trigger.
587  * @param debug_execution False if all working areas allocated by OpenOCD
588  *      should be released and/or restored to their original contents.
589  *      (This would for example be true to run some downloaded "helper"
590  *      algorithm code, which resides in one such working buffer and uses
591  *      another for data storage.)
592  *
593  * @todo Resolve the ambiguity about what the "debug_execution" flag
594  * signifies.  For example, Target implementations don't agree on how
595  * it relates to invalidation of the register cache, or to whether
596  * breakpoints and watchpoints should be enabled.  (It would seem wrong
597  * to enable breakpoints when running downloaded "helper" algorithms
598  * (debug_execution true), since the breakpoints would be set to match
599  * target firmware being debugged, not the helper algorithm.... and
600  * enabling them could cause such helpers to malfunction (for example,
601  * by overwriting data with a breakpoint instruction.  On the other
602  * hand the infrastructure for running such helpers might use this
603  * procedure but rely on hardware breakpoint to detect termination.)
604  */
605 int target_resume(struct target *target, int current, target_addr_t address,
606                 int handle_breakpoints, int debug_execution)
607 {
608         int retval;
609
610         /* We can't poll until after examine */
611         if (!target_was_examined(target)) {
612                 LOG_ERROR("Target not examined yet");
613                 return ERROR_FAIL;
614         }
615
616         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
617
618         /* note that resume *must* be asynchronous. The CPU can halt before
619          * we poll. The CPU can even halt at the current PC as a result of
620          * a software breakpoint being inserted by (a bug?) the application.
621          */
622         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
623         if (retval != ERROR_OK)
624                 return retval;
625
626         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
627
628         return retval;
629 }
630
631 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
632 {
633         char buf[100];
634         int retval;
635         Jim_Nvp *n;
636         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
637         if (n->name == NULL) {
638                 LOG_ERROR("invalid reset mode");
639                 return ERROR_FAIL;
640         }
641
642         struct target *target;
643         for (target = all_targets; target; target = target->next)
644                 target_call_reset_callbacks(target, reset_mode);
645
646         /* disable polling during reset to make reset event scripts
647          * more predictable, i.e. dr/irscan & pathmove in events will
648          * not have JTAG operations injected into the middle of a sequence.
649          */
650         bool save_poll = jtag_poll_get_enabled();
651
652         jtag_poll_set_enabled(false);
653
654         sprintf(buf, "ocd_process_reset %s", n->name);
655         retval = Jim_Eval(cmd_ctx->interp, buf);
656
657         jtag_poll_set_enabled(save_poll);
658
659         if (retval != JIM_OK) {
660                 Jim_MakeErrorMessage(cmd_ctx->interp);
661                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
662                 return ERROR_FAIL;
663         }
664
665         /* We want any events to be processed before the prompt */
666         retval = target_call_timer_callbacks_now();
667
668         for (target = all_targets; target; target = target->next) {
669                 target->type->check_reset(target);
670                 target->running_alg = false;
671         }
672
673         return retval;
674 }
675
676 static int identity_virt2phys(struct target *target,
677                 target_addr_t virtual, target_addr_t *physical)
678 {
679         *physical = virtual;
680         return ERROR_OK;
681 }
682
683 static int no_mmu(struct target *target, int *enabled)
684 {
685         *enabled = 0;
686         return ERROR_OK;
687 }
688
689 static int default_examine(struct target *target)
690 {
691         target_set_examined(target);
692         return ERROR_OK;
693 }
694
695 /* no check by default */
696 static int default_check_reset(struct target *target)
697 {
698         return ERROR_OK;
699 }
700
701 int target_examine_one(struct target *target)
702 {
703         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704
705         int retval = target->type->examine(target);
706         if (retval != ERROR_OK)
707                 return retval;
708
709         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710
711         return ERROR_OK;
712 }
713
714 static int jtag_enable_callback(enum jtag_event event, void *priv)
715 {
716         struct target *target = priv;
717
718         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
719                 return ERROR_OK;
720
721         jtag_unregister_event_callback(jtag_enable_callback, target);
722
723         return target_examine_one(target);
724 }
725
726 /* Targets that correctly implement init + examine, i.e.
727  * no communication with target during init:
728  *
729  * XScale
730  */
731 int target_examine(void)
732 {
733         int retval = ERROR_OK;
734         struct target *target;
735
736         for (target = all_targets; target; target = target->next) {
737                 /* defer examination, but don't skip it */
738                 if (!target->tap->enabled) {
739                         jtag_register_event_callback(jtag_enable_callback,
740                                         target);
741                         continue;
742                 }
743
744                 if (target->defer_examine)
745                         continue;
746
747                 retval = target_examine_one(target);
748                 if (retval != ERROR_OK)
749                         return retval;
750         }
751         return retval;
752 }
753
754 const char *target_type_name(struct target *target)
755 {
756         return target->type->name;
757 }
758
759 static int target_soft_reset_halt(struct target *target)
760 {
761         if (!target_was_examined(target)) {
762                 LOG_ERROR("Target not examined yet");
763                 return ERROR_FAIL;
764         }
765         if (!target->type->soft_reset_halt) {
766                 LOG_ERROR("Target %s does not support soft_reset_halt",
767                                 target_name(target));
768                 return ERROR_FAIL;
769         }
770         return target->type->soft_reset_halt(target);
771 }
772
773 /**
774  * Downloads a target-specific native code algorithm to the target,
775  * and executes it.  * Note that some targets may need to set up, enable,
776  * and tear down a breakpoint (hard or * soft) to detect algorithm
777  * termination, while others may support  lower overhead schemes where
778  * soft breakpoints embedded in the algorithm automatically terminate the
779  * algorithm.
780  *
781  * @param target used to run the algorithm
782  * @param arch_info target-specific description of the algorithm.
783  */
784 int target_run_algorithm(struct target *target,
785                 int num_mem_params, struct mem_param *mem_params,
786                 int num_reg_params, struct reg_param *reg_param,
787                 uint32_t entry_point, uint32_t exit_point,
788                 int timeout_ms, void *arch_info)
789 {
790         int retval = ERROR_FAIL;
791
792         if (!target_was_examined(target)) {
793                 LOG_ERROR("Target not examined yet");
794                 goto done;
795         }
796         if (!target->type->run_algorithm) {
797                 LOG_ERROR("Target type '%s' does not support %s",
798                                 target_type_name(target), __func__);
799                 goto done;
800         }
801
802         target->running_alg = true;
803         retval = target->type->run_algorithm(target,
804                         num_mem_params, mem_params,
805                         num_reg_params, reg_param,
806                         entry_point, exit_point, timeout_ms, arch_info);
807         target->running_alg = false;
808
809 done:
810         return retval;
811 }
812
813 /**
814  * Executes a target-specific native code algorithm and leaves it running.
815  *
816  * @param target used to run the algorithm
817  * @param arch_info target-specific description of the algorithm.
818  */
819 int target_start_algorithm(struct target *target,
820                 int num_mem_params, struct mem_param *mem_params,
821                 int num_reg_params, struct reg_param *reg_params,
822                 uint32_t entry_point, uint32_t exit_point,
823                 void *arch_info)
824 {
825         int retval = ERROR_FAIL;
826
827         if (!target_was_examined(target)) {
828                 LOG_ERROR("Target not examined yet");
829                 goto done;
830         }
831         if (!target->type->start_algorithm) {
832                 LOG_ERROR("Target type '%s' does not support %s",
833                                 target_type_name(target), __func__);
834                 goto done;
835         }
836         if (target->running_alg) {
837                 LOG_ERROR("Target is already running an algorithm");
838                 goto done;
839         }
840
841         target->running_alg = true;
842         retval = target->type->start_algorithm(target,
843                         num_mem_params, mem_params,
844                         num_reg_params, reg_params,
845                         entry_point, exit_point, arch_info);
846
847 done:
848         return retval;
849 }
850
851 /**
852  * Waits for an algorithm started with target_start_algorithm() to complete.
853  *
854  * @param target used to run the algorithm
855  * @param arch_info target-specific description of the algorithm.
856  */
857 int target_wait_algorithm(struct target *target,
858                 int num_mem_params, struct mem_param *mem_params,
859                 int num_reg_params, struct reg_param *reg_params,
860                 uint32_t exit_point, int timeout_ms,
861                 void *arch_info)
862 {
863         int retval = ERROR_FAIL;
864
865         if (!target->type->wait_algorithm) {
866                 LOG_ERROR("Target type '%s' does not support %s",
867                                 target_type_name(target), __func__);
868                 goto done;
869         }
870         if (!target->running_alg) {
871                 LOG_ERROR("Target is not running an algorithm");
872                 goto done;
873         }
874
875         retval = target->type->wait_algorithm(target,
876                         num_mem_params, mem_params,
877                         num_reg_params, reg_params,
878                         exit_point, timeout_ms, arch_info);
879         if (retval != ERROR_TARGET_TIMEOUT)
880                 target->running_alg = false;
881
882 done:
883         return retval;
884 }
885
886 /**
887  * Streams data to a circular buffer on target intended for consumption by code
888  * running asynchronously on target.
889  *
890  * This is intended for applications where target-specific native code runs
891  * on the target, receives data from the circular buffer, does something with
892  * it (most likely writing it to a flash memory), and advances the circular
893  * buffer pointer.
894  *
895  * This assumes that the helper algorithm has already been loaded to the target,
896  * but has not been started yet. Given memory and register parameters are passed
897  * to the algorithm.
898  *
899  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
900  * following format:
901  *
902  *     [buffer_start + 0, buffer_start + 4):
903  *         Write Pointer address (aka head). Written and updated by this
904  *         routine when new data is written to the circular buffer.
905  *     [buffer_start + 4, buffer_start + 8):
906  *         Read Pointer address (aka tail). Updated by code running on the
907  *         target after it consumes data.
908  *     [buffer_start + 8, buffer_start + buffer_size):
909  *         Circular buffer contents.
910  *
911  * See contrib/loaders/flash/stm32f1x.S for an example.
912  *
913  * @param target used to run the algorithm
914  * @param buffer address on the host where data to be sent is located
915  * @param count number of blocks to send
916  * @param block_size size in bytes of each block
917  * @param num_mem_params count of memory-based params to pass to algorithm
918  * @param mem_params memory-based params to pass to algorithm
919  * @param num_reg_params count of register-based params to pass to algorithm
920  * @param reg_params memory-based params to pass to algorithm
921  * @param buffer_start address on the target of the circular buffer structure
922  * @param buffer_size size of the circular buffer structure
923  * @param entry_point address on the target to execute to start the algorithm
924  * @param exit_point address at which to set a breakpoint to catch the
925  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
926  */
927
928 int target_run_flash_async_algorithm(struct target *target,
929                 const uint8_t *buffer, uint32_t count, int block_size,
930                 int num_mem_params, struct mem_param *mem_params,
931                 int num_reg_params, struct reg_param *reg_params,
932                 uint32_t buffer_start, uint32_t buffer_size,
933                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
934 {
935         int retval;
936         int timeout = 0;
937
938         const uint8_t *buffer_orig = buffer;
939
940         /* Set up working area. First word is write pointer, second word is read pointer,
941          * rest is fifo data area. */
942         uint32_t wp_addr = buffer_start;
943         uint32_t rp_addr = buffer_start + 4;
944         uint32_t fifo_start_addr = buffer_start + 8;
945         uint32_t fifo_end_addr = buffer_start + buffer_size;
946
947         uint32_t wp = fifo_start_addr;
948         uint32_t rp = fifo_start_addr;
949
950         /* validate block_size is 2^n */
951         assert(!block_size || !(block_size & (block_size - 1)));
952
953         retval = target_write_u32(target, wp_addr, wp);
954         if (retval != ERROR_OK)
955                 return retval;
956         retval = target_write_u32(target, rp_addr, rp);
957         if (retval != ERROR_OK)
958                 return retval;
959
960         /* Start up algorithm on target and let it idle while writing the first chunk */
961         retval = target_start_algorithm(target, num_mem_params, mem_params,
962                         num_reg_params, reg_params,
963                         entry_point,
964                         exit_point,
965                         arch_info);
966
967         if (retval != ERROR_OK) {
968                 LOG_ERROR("error starting target flash write algorithm");
969                 return retval;
970         }
971
972         while (count > 0) {
973
974                 retval = target_read_u32(target, rp_addr, &rp);
975                 if (retval != ERROR_OK) {
976                         LOG_ERROR("failed to get read pointer");
977                         break;
978                 }
979
980                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
981                         (size_t) (buffer - buffer_orig), count, wp, rp);
982
983                 if (rp == 0) {
984                         LOG_ERROR("flash write algorithm aborted by target");
985                         retval = ERROR_FLASH_OPERATION_FAILED;
986                         break;
987                 }
988
989                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
990                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
991                         break;
992                 }
993
994                 /* Count the number of bytes available in the fifo without
995                  * crossing the wrap around. Make sure to not fill it completely,
996                  * because that would make wp == rp and that's the empty condition. */
997                 uint32_t thisrun_bytes;
998                 if (rp > wp)
999                         thisrun_bytes = rp - wp - block_size;
1000                 else if (rp > fifo_start_addr)
1001                         thisrun_bytes = fifo_end_addr - wp;
1002                 else
1003                         thisrun_bytes = fifo_end_addr - wp - block_size;
1004
1005                 if (thisrun_bytes == 0) {
1006                         /* Throttle polling a bit if transfer is (much) faster than flash
1007                          * programming. The exact delay shouldn't matter as long as it's
1008                          * less than buffer size / flash speed. This is very unlikely to
1009                          * run when using high latency connections such as USB. */
1010                         alive_sleep(10);
1011
1012                         /* to stop an infinite loop on some targets check and increment a timeout
1013                          * this issue was observed on a stellaris using the new ICDI interface */
1014                         if (timeout++ >= 500) {
1015                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1016                                 return ERROR_FLASH_OPERATION_FAILED;
1017                         }
1018                         continue;
1019                 }
1020
1021                 /* reset our timeout */
1022                 timeout = 0;
1023
1024                 /* Limit to the amount of data we actually want to write */
1025                 if (thisrun_bytes > count * block_size)
1026                         thisrun_bytes = count * block_size;
1027
1028                 /* Write data to fifo */
1029                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1030                 if (retval != ERROR_OK)
1031                         break;
1032
1033                 /* Update counters and wrap write pointer */
1034                 buffer += thisrun_bytes;
1035                 count -= thisrun_bytes / block_size;
1036                 wp += thisrun_bytes;
1037                 if (wp >= fifo_end_addr)
1038                         wp = fifo_start_addr;
1039
1040                 /* Store updated write pointer to target */
1041                 retval = target_write_u32(target, wp_addr, wp);
1042                 if (retval != ERROR_OK)
1043                         break;
1044         }
1045
1046         if (retval != ERROR_OK) {
1047                 /* abort flash write algorithm on target */
1048                 target_write_u32(target, wp_addr, 0);
1049         }
1050
1051         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1052                         num_reg_params, reg_params,
1053                         exit_point,
1054                         10000,
1055                         arch_info);
1056
1057         if (retval2 != ERROR_OK) {
1058                 LOG_ERROR("error waiting for target flash write algorithm");
1059                 retval = retval2;
1060         }
1061
1062         if (retval == ERROR_OK) {
1063                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1064                 retval = target_read_u32(target, rp_addr, &rp);
1065                 if (retval == ERROR_OK && rp == 0) {
1066                         LOG_ERROR("flash write algorithm aborted by target");
1067                         retval = ERROR_FLASH_OPERATION_FAILED;
1068                 }
1069         }
1070
1071         return retval;
1072 }
1073
1074 int target_read_memory(struct target *target,
1075                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1076 {
1077         if (!target_was_examined(target)) {
1078                 LOG_ERROR("Target not examined yet");
1079                 return ERROR_FAIL;
1080         }
1081         if (!target->type->read_memory) {
1082                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1083                 return ERROR_FAIL;
1084         }
1085         return target->type->read_memory(target, address, size, count, buffer);
1086 }
1087
1088 int target_read_phys_memory(struct target *target,
1089                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1090 {
1091         if (!target_was_examined(target)) {
1092                 LOG_ERROR("Target not examined yet");
1093                 return ERROR_FAIL;
1094         }
1095         if (!target->type->read_phys_memory) {
1096                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1097                 return ERROR_FAIL;
1098         }
1099         return target->type->read_phys_memory(target, address, size, count, buffer);
1100 }
1101
1102 int target_write_memory(struct target *target,
1103                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1104 {
1105         if (!target_was_examined(target)) {
1106                 LOG_ERROR("Target not examined yet");
1107                 return ERROR_FAIL;
1108         }
1109         if (!target->type->write_memory) {
1110                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1111                 return ERROR_FAIL;
1112         }
1113         return target->type->write_memory(target, address, size, count, buffer);
1114 }
1115
1116 int target_write_phys_memory(struct target *target,
1117                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119         if (!target_was_examined(target)) {
1120                 LOG_ERROR("Target not examined yet");
1121                 return ERROR_FAIL;
1122         }
1123         if (!target->type->write_phys_memory) {
1124                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1125                 return ERROR_FAIL;
1126         }
1127         return target->type->write_phys_memory(target, address, size, count, buffer);
1128 }
1129
1130 int target_add_breakpoint(struct target *target,
1131                 struct breakpoint *breakpoint)
1132 {
1133         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1134                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1135                 return ERROR_TARGET_NOT_HALTED;
1136         }
1137         return target->type->add_breakpoint(target, breakpoint);
1138 }
1139
1140 int target_add_context_breakpoint(struct target *target,
1141                 struct breakpoint *breakpoint)
1142 {
1143         if (target->state != TARGET_HALTED) {
1144                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1145                 return ERROR_TARGET_NOT_HALTED;
1146         }
1147         return target->type->add_context_breakpoint(target, breakpoint);
1148 }
1149
1150 int target_add_hybrid_breakpoint(struct target *target,
1151                 struct breakpoint *breakpoint)
1152 {
1153         if (target->state != TARGET_HALTED) {
1154                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1155                 return ERROR_TARGET_NOT_HALTED;
1156         }
1157         return target->type->add_hybrid_breakpoint(target, breakpoint);
1158 }
1159
1160 int target_remove_breakpoint(struct target *target,
1161                 struct breakpoint *breakpoint)
1162 {
1163         return target->type->remove_breakpoint(target, breakpoint);
1164 }
1165
1166 int target_add_watchpoint(struct target *target,
1167                 struct watchpoint *watchpoint)
1168 {
1169         if (target->state != TARGET_HALTED) {
1170                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1171                 return ERROR_TARGET_NOT_HALTED;
1172         }
1173         return target->type->add_watchpoint(target, watchpoint);
1174 }
1175 int target_remove_watchpoint(struct target *target,
1176                 struct watchpoint *watchpoint)
1177 {
1178         return target->type->remove_watchpoint(target, watchpoint);
1179 }
1180 int target_hit_watchpoint(struct target *target,
1181                 struct watchpoint **hit_watchpoint)
1182 {
1183         if (target->state != TARGET_HALTED) {
1184                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1185                 return ERROR_TARGET_NOT_HALTED;
1186         }
1187
1188         if (target->type->hit_watchpoint == NULL) {
1189                 /* For backward compatible, if hit_watchpoint is not implemented,
1190                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1191                  * information. */
1192                 return ERROR_FAIL;
1193         }
1194
1195         return target->type->hit_watchpoint(target, hit_watchpoint);
1196 }
1197
1198 int target_get_gdb_reg_list(struct target *target,
1199                 struct reg **reg_list[], int *reg_list_size,
1200                 enum target_register_class reg_class)
1201 {
1202         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1203 }
1204 int target_step(struct target *target,
1205                 int current, target_addr_t address, int handle_breakpoints)
1206 {
1207         return target->type->step(target, current, address, handle_breakpoints);
1208 }
1209
1210 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1211 {
1212         if (target->state != TARGET_HALTED) {
1213                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1214                 return ERROR_TARGET_NOT_HALTED;
1215         }
1216         return target->type->get_gdb_fileio_info(target, fileio_info);
1217 }
1218
1219 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1220 {
1221         if (target->state != TARGET_HALTED) {
1222                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1223                 return ERROR_TARGET_NOT_HALTED;
1224         }
1225         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1226 }
1227
1228 int target_profiling(struct target *target, uint32_t *samples,
1229                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1230 {
1231         if (target->state != TARGET_HALTED) {
1232                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1233                 return ERROR_TARGET_NOT_HALTED;
1234         }
1235         return target->type->profiling(target, samples, max_num_samples,
1236                         num_samples, seconds);
1237 }
1238
1239 /**
1240  * Reset the @c examined flag for the given target.
1241  * Pure paranoia -- targets are zeroed on allocation.
1242  */
1243 static void target_reset_examined(struct target *target)
1244 {
1245         target->examined = false;
1246 }
1247
1248 static int handle_target(void *priv);
1249
1250 static int target_init_one(struct command_context *cmd_ctx,
1251                 struct target *target)
1252 {
1253         target_reset_examined(target);
1254
1255         struct target_type *type = target->type;
1256         if (type->examine == NULL)
1257                 type->examine = default_examine;
1258
1259         if (type->check_reset == NULL)
1260                 type->check_reset = default_check_reset;
1261
1262         assert(type->init_target != NULL);
1263
1264         int retval = type->init_target(cmd_ctx, target);
1265         if (ERROR_OK != retval) {
1266                 LOG_ERROR("target '%s' init failed", target_name(target));
1267                 return retval;
1268         }
1269
1270         /* Sanity-check MMU support ... stub in what we must, to help
1271          * implement it in stages, but warn if we need to do so.
1272          */
1273         if (type->mmu) {
1274                 if (type->virt2phys == NULL) {
1275                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1276                         type->virt2phys = identity_virt2phys;
1277                 }
1278         } else {
1279                 /* Make sure no-MMU targets all behave the same:  make no
1280                  * distinction between physical and virtual addresses, and
1281                  * ensure that virt2phys() is always an identity mapping.
1282                  */
1283                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1284                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1285
1286                 type->mmu = no_mmu;
1287                 type->write_phys_memory = type->write_memory;
1288                 type->read_phys_memory = type->read_memory;
1289                 type->virt2phys = identity_virt2phys;
1290         }
1291
1292         if (target->type->read_buffer == NULL)
1293                 target->type->read_buffer = target_read_buffer_default;
1294
1295         if (target->type->write_buffer == NULL)
1296                 target->type->write_buffer = target_write_buffer_default;
1297
1298         if (target->type->get_gdb_fileio_info == NULL)
1299                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1300
1301         if (target->type->gdb_fileio_end == NULL)
1302                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1303
1304         if (target->type->profiling == NULL)
1305                 target->type->profiling = target_profiling_default;
1306
1307         return ERROR_OK;
1308 }
1309
1310 static int target_init(struct command_context *cmd_ctx)
1311 {
1312         struct target *target;
1313         int retval;
1314
1315         for (target = all_targets; target; target = target->next) {
1316                 retval = target_init_one(cmd_ctx, target);
1317                 if (ERROR_OK != retval)
1318                         return retval;
1319         }
1320
1321         if (!all_targets)
1322                 return ERROR_OK;
1323
1324         retval = target_register_user_commands(cmd_ctx);
1325         if (ERROR_OK != retval)
1326                 return retval;
1327
1328         retval = target_register_timer_callback(&handle_target,
1329                         polling_interval, 1, cmd_ctx->interp);
1330         if (ERROR_OK != retval)
1331                 return retval;
1332
1333         return ERROR_OK;
1334 }
1335
1336 COMMAND_HANDLER(handle_target_init_command)
1337 {
1338         int retval;
1339
1340         if (CMD_ARGC != 0)
1341                 return ERROR_COMMAND_SYNTAX_ERROR;
1342
1343         static bool target_initialized;
1344         if (target_initialized) {
1345                 LOG_INFO("'target init' has already been called");
1346                 return ERROR_OK;
1347         }
1348         target_initialized = true;
1349
1350         retval = command_run_line(CMD_CTX, "init_targets");
1351         if (ERROR_OK != retval)
1352                 return retval;
1353
1354         retval = command_run_line(CMD_CTX, "init_target_events");
1355         if (ERROR_OK != retval)
1356                 return retval;
1357
1358         retval = command_run_line(CMD_CTX, "init_board");
1359         if (ERROR_OK != retval)
1360                 return retval;
1361
1362         LOG_DEBUG("Initializing targets...");
1363         return target_init(CMD_CTX);
1364 }
1365
1366 int target_register_event_callback(int (*callback)(struct target *target,
1367                 enum target_event event, void *priv), void *priv)
1368 {
1369         struct target_event_callback **callbacks_p = &target_event_callbacks;
1370
1371         if (callback == NULL)
1372                 return ERROR_COMMAND_SYNTAX_ERROR;
1373
1374         if (*callbacks_p) {
1375                 while ((*callbacks_p)->next)
1376                         callbacks_p = &((*callbacks_p)->next);
1377                 callbacks_p = &((*callbacks_p)->next);
1378         }
1379
1380         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1381         (*callbacks_p)->callback = callback;
1382         (*callbacks_p)->priv = priv;
1383         (*callbacks_p)->next = NULL;
1384
1385         return ERROR_OK;
1386 }
1387
1388 int target_register_reset_callback(int (*callback)(struct target *target,
1389                 enum target_reset_mode reset_mode, void *priv), void *priv)
1390 {
1391         struct target_reset_callback *entry;
1392
1393         if (callback == NULL)
1394                 return ERROR_COMMAND_SYNTAX_ERROR;
1395
1396         entry = malloc(sizeof(struct target_reset_callback));
1397         if (entry == NULL) {
1398                 LOG_ERROR("error allocating buffer for reset callback entry");
1399                 return ERROR_COMMAND_SYNTAX_ERROR;
1400         }
1401
1402         entry->callback = callback;
1403         entry->priv = priv;
1404         list_add(&entry->list, &target_reset_callback_list);
1405
1406
1407         return ERROR_OK;
1408 }
1409
1410 int target_register_trace_callback(int (*callback)(struct target *target,
1411                 size_t len, uint8_t *data, void *priv), void *priv)
1412 {
1413         struct target_trace_callback *entry;
1414
1415         if (callback == NULL)
1416                 return ERROR_COMMAND_SYNTAX_ERROR;
1417
1418         entry = malloc(sizeof(struct target_trace_callback));
1419         if (entry == NULL) {
1420                 LOG_ERROR("error allocating buffer for trace callback entry");
1421                 return ERROR_COMMAND_SYNTAX_ERROR;
1422         }
1423
1424         entry->callback = callback;
1425         entry->priv = priv;
1426         list_add(&entry->list, &target_trace_callback_list);
1427
1428
1429         return ERROR_OK;
1430 }
1431
1432 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1433 {
1434         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1435
1436         if (callback == NULL)
1437                 return ERROR_COMMAND_SYNTAX_ERROR;
1438
1439         if (*callbacks_p) {
1440                 while ((*callbacks_p)->next)
1441                         callbacks_p = &((*callbacks_p)->next);
1442                 callbacks_p = &((*callbacks_p)->next);
1443         }
1444
1445         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1446         (*callbacks_p)->callback = callback;
1447         (*callbacks_p)->periodic = periodic;
1448         (*callbacks_p)->time_ms = time_ms;
1449         (*callbacks_p)->removed = false;
1450
1451         gettimeofday(&(*callbacks_p)->when, NULL);
1452         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1453
1454         (*callbacks_p)->priv = priv;
1455         (*callbacks_p)->next = NULL;
1456
1457         return ERROR_OK;
1458 }
1459
1460 int target_unregister_event_callback(int (*callback)(struct target *target,
1461                 enum target_event event, void *priv), void *priv)
1462 {
1463         struct target_event_callback **p = &target_event_callbacks;
1464         struct target_event_callback *c = target_event_callbacks;
1465
1466         if (callback == NULL)
1467                 return ERROR_COMMAND_SYNTAX_ERROR;
1468
1469         while (c) {
1470                 struct target_event_callback *next = c->next;
1471                 if ((c->callback == callback) && (c->priv == priv)) {
1472                         *p = next;
1473                         free(c);
1474                         return ERROR_OK;
1475                 } else
1476                         p = &(c->next);
1477                 c = next;
1478         }
1479
1480         return ERROR_OK;
1481 }
1482
1483 int target_unregister_reset_callback(int (*callback)(struct target *target,
1484                 enum target_reset_mode reset_mode, void *priv), void *priv)
1485 {
1486         struct target_reset_callback *entry;
1487
1488         if (callback == NULL)
1489                 return ERROR_COMMAND_SYNTAX_ERROR;
1490
1491         list_for_each_entry(entry, &target_reset_callback_list, list) {
1492                 if (entry->callback == callback && entry->priv == priv) {
1493                         list_del(&entry->list);
1494                         free(entry);
1495                         break;
1496                 }
1497         }
1498
1499         return ERROR_OK;
1500 }
1501
1502 int target_unregister_trace_callback(int (*callback)(struct target *target,
1503                 size_t len, uint8_t *data, void *priv), void *priv)
1504 {
1505         struct target_trace_callback *entry;
1506
1507         if (callback == NULL)
1508                 return ERROR_COMMAND_SYNTAX_ERROR;
1509
1510         list_for_each_entry(entry, &target_trace_callback_list, list) {
1511                 if (entry->callback == callback && entry->priv == priv) {
1512                         list_del(&entry->list);
1513                         free(entry);
1514                         break;
1515                 }
1516         }
1517
1518         return ERROR_OK;
1519 }
1520
1521 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1522 {
1523         if (callback == NULL)
1524                 return ERROR_COMMAND_SYNTAX_ERROR;
1525
1526         for (struct target_timer_callback *c = target_timer_callbacks;
1527              c; c = c->next) {
1528                 if ((c->callback == callback) && (c->priv == priv)) {
1529                         c->removed = true;
1530                         return ERROR_OK;
1531                 }
1532         }
1533
1534         return ERROR_FAIL;
1535 }
1536
1537 int target_call_event_callbacks(struct target *target, enum target_event event)
1538 {
1539         struct target_event_callback *callback = target_event_callbacks;
1540         struct target_event_callback *next_callback;
1541
1542         if (event == TARGET_EVENT_HALTED) {
1543                 /* execute early halted first */
1544                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1545         }
1546
1547         LOG_DEBUG("target event %i (%s)", event,
1548                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1549
1550         target_handle_event(target, event);
1551
1552         while (callback) {
1553                 next_callback = callback->next;
1554                 callback->callback(target, event, callback->priv);
1555                 callback = next_callback;
1556         }
1557
1558         return ERROR_OK;
1559 }
1560
1561 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1562 {
1563         struct target_reset_callback *callback;
1564
1565         LOG_DEBUG("target reset %i (%s)", reset_mode,
1566                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1567
1568         list_for_each_entry(callback, &target_reset_callback_list, list)
1569                 callback->callback(target, reset_mode, callback->priv);
1570
1571         return ERROR_OK;
1572 }
1573
1574 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1575 {
1576         struct target_trace_callback *callback;
1577
1578         list_for_each_entry(callback, &target_trace_callback_list, list)
1579                 callback->callback(target, len, data, callback->priv);
1580
1581         return ERROR_OK;
1582 }
1583
1584 static int target_timer_callback_periodic_restart(
1585                 struct target_timer_callback *cb, struct timeval *now)
1586 {
1587         cb->when = *now;
1588         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1589         return ERROR_OK;
1590 }
1591
1592 static int target_call_timer_callback(struct target_timer_callback *cb,
1593                 struct timeval *now)
1594 {
1595         cb->callback(cb->priv);
1596
1597         if (cb->periodic)
1598                 return target_timer_callback_periodic_restart(cb, now);
1599
1600         return target_unregister_timer_callback(cb->callback, cb->priv);
1601 }
1602
1603 static int target_call_timer_callbacks_check_time(int checktime)
1604 {
1605         static bool callback_processing;
1606
1607         /* Do not allow nesting */
1608         if (callback_processing)
1609                 return ERROR_OK;
1610
1611         callback_processing = true;
1612
1613         keep_alive();
1614
1615         struct timeval now;
1616         gettimeofday(&now, NULL);
1617
1618         /* Store an address of the place containing a pointer to the
1619          * next item; initially, that's a standalone "root of the
1620          * list" variable. */
1621         struct target_timer_callback **callback = &target_timer_callbacks;
1622         while (*callback) {
1623                 if ((*callback)->removed) {
1624                         struct target_timer_callback *p = *callback;
1625                         *callback = (*callback)->next;
1626                         free(p);
1627                         continue;
1628                 }
1629
1630                 bool call_it = (*callback)->callback &&
1631                         ((!checktime && (*callback)->periodic) ||
1632                          timeval_compare(&now, &(*callback)->when) >= 0);
1633
1634                 if (call_it)
1635                         target_call_timer_callback(*callback, &now);
1636
1637                 callback = &(*callback)->next;
1638         }
1639
1640         callback_processing = false;
1641         return ERROR_OK;
1642 }
1643
1644 int target_call_timer_callbacks(void)
1645 {
1646         return target_call_timer_callbacks_check_time(1);
1647 }
1648
1649 /* invoke periodic callbacks immediately */
1650 int target_call_timer_callbacks_now(void)
1651 {
1652         return target_call_timer_callbacks_check_time(0);
1653 }
1654
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target *target)
1657 {
1658         struct working_area *c = target->working_areas;
1659
1660         while (c) {
1661                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1662                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1663                         c->address, c->address + c->size - 1, c->size);
1664                 c = c->next;
1665         }
1666 }
1667
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area *area, uint32_t size)
1670 {
1671         assert(area->free); /* Shouldn't split an allocated area */
1672         assert(size <= area->size); /* Caller should guarantee this */
1673
1674         /* Split only if not already the right size */
1675         if (size < area->size) {
1676                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1677
1678                 if (new_wa == NULL)
1679                         return;
1680
1681                 new_wa->next = area->next;
1682                 new_wa->size = area->size - size;
1683                 new_wa->address = area->address + size;
1684                 new_wa->backup = NULL;
1685                 new_wa->user = NULL;
1686                 new_wa->free = true;
1687
1688                 area->next = new_wa;
1689                 area->size = size;
1690
1691                 /* If backup memory was allocated to this area, it has the wrong size
1692                  * now so free it and it will be reallocated if/when needed */
1693                 if (area->backup) {
1694                         free(area->backup);
1695                         area->backup = NULL;
1696                 }
1697         }
1698 }
1699
1700 /* Merge all adjacent free areas into one */
1701 static void target_merge_working_areas(struct target *target)
1702 {
1703         struct working_area *c = target->working_areas;
1704
1705         while (c && c->next) {
1706                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1707
1708                 /* Find two adjacent free areas */
1709                 if (c->free && c->next->free) {
1710                         /* Merge the last into the first */
1711                         c->size += c->next->size;
1712
1713                         /* Remove the last */
1714                         struct working_area *to_be_freed = c->next;
1715                         c->next = c->next->next;
1716                         if (to_be_freed->backup)
1717                                 free(to_be_freed->backup);
1718                         free(to_be_freed);
1719
1720                         /* If backup memory was allocated to the remaining area, it's has
1721                          * the wrong size now */
1722                         if (c->backup) {
1723                                 free(c->backup);
1724                                 c->backup = NULL;
1725                         }
1726                 } else {
1727                         c = c->next;
1728                 }
1729         }
1730 }
1731
1732 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1733 {
1734         /* Reevaluate working area address based on MMU state*/
1735         if (target->working_areas == NULL) {
1736                 int retval;
1737                 int enabled;
1738
1739                 retval = target->type->mmu(target, &enabled);
1740                 if (retval != ERROR_OK)
1741                         return retval;
1742
1743                 if (!enabled) {
1744                         if (target->working_area_phys_spec) {
1745                                 LOG_DEBUG("MMU disabled, using physical "
1746                                         "address for working memory " TARGET_ADDR_FMT,
1747                                         target->working_area_phys);
1748                                 target->working_area = target->working_area_phys;
1749                         } else {
1750                                 LOG_ERROR("No working memory available. "
1751                                         "Specify -work-area-phys to target.");
1752                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1753                         }
1754                 } else {
1755                         if (target->working_area_virt_spec) {
1756                                 LOG_DEBUG("MMU enabled, using virtual "
1757                                         "address for working memory " TARGET_ADDR_FMT,
1758                                         target->working_area_virt);
1759                                 target->working_area = target->working_area_virt;
1760                         } else {
1761                                 LOG_ERROR("No working memory available. "
1762                                         "Specify -work-area-virt to target.");
1763                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1764                         }
1765                 }
1766
1767                 /* Set up initial working area on first call */
1768                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1769                 if (new_wa) {
1770                         new_wa->next = NULL;
1771                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1772                         new_wa->address = target->working_area;
1773                         new_wa->backup = NULL;
1774                         new_wa->user = NULL;
1775                         new_wa->free = true;
1776                 }
1777
1778                 target->working_areas = new_wa;
1779         }
1780
1781         /* only allocate multiples of 4 byte */
1782         if (size % 4)
1783                 size = (size + 3) & (~3UL);
1784
1785         struct working_area *c = target->working_areas;
1786
1787         /* Find the first large enough working area */
1788         while (c) {
1789                 if (c->free && c->size >= size)
1790                         break;
1791                 c = c->next;
1792         }
1793
1794         if (c == NULL)
1795                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1796
1797         /* Split the working area into the requested size */
1798         target_split_working_area(c, size);
1799
1800         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1801                           size, c->address);
1802
1803         if (target->backup_working_area) {
1804                 if (c->backup == NULL) {
1805                         c->backup = malloc(c->size);
1806                         if (c->backup == NULL)
1807                                 return ERROR_FAIL;
1808                 }
1809
1810                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1811                 if (retval != ERROR_OK)
1812                         return retval;
1813         }
1814
1815         /* mark as used, and return the new (reused) area */
1816         c->free = false;
1817         *area = c;
1818
1819         /* user pointer */
1820         c->user = area;
1821
1822         print_wa_layout(target);
1823
1824         return ERROR_OK;
1825 }
1826
1827 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1828 {
1829         int retval;
1830
1831         retval = target_alloc_working_area_try(target, size, area);
1832         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1833                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1834         return retval;
1835
1836 }
1837
1838 static int target_restore_working_area(struct target *target, struct working_area *area)
1839 {
1840         int retval = ERROR_OK;
1841
1842         if (target->backup_working_area && area->backup != NULL) {
1843                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1844                 if (retval != ERROR_OK)
1845                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1846                                         area->size, area->address);
1847         }
1848
1849         return retval;
1850 }
1851
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1854 {
1855         int retval = ERROR_OK;
1856
1857         if (area->free)
1858                 return retval;
1859
1860         if (restore) {
1861                 retval = target_restore_working_area(target, area);
1862                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863                 if (retval != ERROR_OK)
1864                         return retval;
1865         }
1866
1867         area->free = true;
1868
1869         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1870                         area->size, area->address);
1871
1872         /* mark user pointer invalid */
1873         /* TODO: Is this really safe? It points to some previous caller's memory.
1874          * How could we know that the area pointer is still in that place and not
1875          * some other vital data? What's the purpose of this, anyway? */
1876         *area->user = NULL;
1877         area->user = NULL;
1878
1879         target_merge_working_areas(target);
1880
1881         print_wa_layout(target);
1882
1883         return retval;
1884 }
1885
1886 int target_free_working_area(struct target *target, struct working_area *area)
1887 {
1888         return target_free_working_area_restore(target, area, 1);
1889 }
1890
1891 static void target_destroy(struct target *target)
1892 {
1893         if (target->type->deinit_target)
1894                 target->type->deinit_target(target);
1895
1896         if (target->semihosting)
1897                 free(target->semihosting);
1898
1899         jtag_unregister_event_callback(jtag_enable_callback, target);
1900
1901         struct target_event_action *teap = target->event_action;
1902         while (teap) {
1903                 struct target_event_action *next = teap->next;
1904                 Jim_DecrRefCount(teap->interp, teap->body);
1905                 free(teap);
1906                 teap = next;
1907         }
1908
1909         target_free_all_working_areas(target);
1910         /* Now we have none or only one working area marked as free */
1911         if (target->working_areas) {
1912                 free(target->working_areas->backup);
1913                 free(target->working_areas);
1914         }
1915
1916         /* release the targets SMP list */
1917         if (target->smp) {
1918                 struct target_list *head = target->head;
1919                 while (head != NULL) {
1920                         struct target_list *pos = head->next;
1921                         head->target->smp = 0;
1922                         free(head);
1923                         head = pos;
1924                 }
1925                 target->smp = 0;
1926         }
1927
1928         free(target->type);
1929         free(target->trace_info);
1930         free(target->fileio_info);
1931         free(target->cmd_name);
1932         free(target);
1933 }
1934
1935 void target_quit(void)
1936 {
1937         struct target_event_callback *pe = target_event_callbacks;
1938         while (pe) {
1939                 struct target_event_callback *t = pe->next;
1940                 free(pe);
1941                 pe = t;
1942         }
1943         target_event_callbacks = NULL;
1944
1945         struct target_timer_callback *pt = target_timer_callbacks;
1946         while (pt) {
1947                 struct target_timer_callback *t = pt->next;
1948                 free(pt);
1949                 pt = t;
1950         }
1951         target_timer_callbacks = NULL;
1952
1953         for (struct target *target = all_targets; target;) {
1954                 struct target *tmp;
1955
1956                 tmp = target->next;
1957                 target_destroy(target);
1958                 target = tmp;
1959         }
1960
1961         all_targets = NULL;
1962 }
1963
1964 /* free resources and restore memory, if restoring memory fails,
1965  * free up resources anyway
1966  */
1967 static void target_free_all_working_areas_restore(struct target *target, int restore)
1968 {
1969         struct working_area *c = target->working_areas;
1970
1971         LOG_DEBUG("freeing all working areas");
1972
1973         /* Loop through all areas, restoring the allocated ones and marking them as free */
1974         while (c) {
1975                 if (!c->free) {
1976                         if (restore)
1977                                 target_restore_working_area(target, c);
1978                         c->free = true;
1979                         *c->user = NULL; /* Same as above */
1980                         c->user = NULL;
1981                 }
1982                 c = c->next;
1983         }
1984
1985         /* Run a merge pass to combine all areas into one */
1986         target_merge_working_areas(target);
1987
1988         print_wa_layout(target);
1989 }
1990
1991 void target_free_all_working_areas(struct target *target)
1992 {
1993         target_free_all_working_areas_restore(target, 1);
1994 }
1995
1996 /* Find the largest number of bytes that can be allocated */
1997 uint32_t target_get_working_area_avail(struct target *target)
1998 {
1999         struct working_area *c = target->working_areas;
2000         uint32_t max_size = 0;
2001
2002         if (c == NULL)
2003                 return target->working_area_size;
2004
2005         while (c) {
2006                 if (c->free && max_size < c->size)
2007                         max_size = c->size;
2008
2009                 c = c->next;
2010         }
2011
2012         return max_size;
2013 }
2014
2015 int target_arch_state(struct target *target)
2016 {
2017         int retval;
2018         if (target == NULL) {
2019                 LOG_WARNING("No target has been configured");
2020                 return ERROR_OK;
2021         }
2022
2023         if (target->state != TARGET_HALTED)
2024                 return ERROR_OK;
2025
2026         retval = target->type->arch_state(target);
2027         return retval;
2028 }
2029
2030 static int target_get_gdb_fileio_info_default(struct target *target,
2031                 struct gdb_fileio_info *fileio_info)
2032 {
2033         /* If target does not support semi-hosting function, target
2034            has no need to provide .get_gdb_fileio_info callback.
2035            It just return ERROR_FAIL and gdb_server will return "Txx"
2036            as target halted every time.  */
2037         return ERROR_FAIL;
2038 }
2039
2040 static int target_gdb_fileio_end_default(struct target *target,
2041                 int retcode, int fileio_errno, bool ctrl_c)
2042 {
2043         return ERROR_OK;
2044 }
2045
2046 static int target_profiling_default(struct target *target, uint32_t *samples,
2047                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2048 {
2049         struct timeval timeout, now;
2050
2051         gettimeofday(&timeout, NULL);
2052         timeval_add_time(&timeout, seconds, 0);
2053
2054         LOG_INFO("Starting profiling. Halting and resuming the"
2055                         " target as often as we can...");
2056
2057         uint32_t sample_count = 0;
2058         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2059         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2060
2061         int retval = ERROR_OK;
2062         for (;;) {
2063                 target_poll(target);
2064                 if (target->state == TARGET_HALTED) {
2065                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2066                         samples[sample_count++] = t;
2067                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2068                         retval = target_resume(target, 1, 0, 0, 0);
2069                         target_poll(target);
2070                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2071                 } else if (target->state == TARGET_RUNNING) {
2072                         /* We want to quickly sample the PC. */
2073                         retval = target_halt(target);
2074                 } else {
2075                         LOG_INFO("Target not halted or running");
2076                         retval = ERROR_OK;
2077                         break;
2078                 }
2079
2080                 if (retval != ERROR_OK)
2081                         break;
2082
2083                 gettimeofday(&now, NULL);
2084                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2085                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2086                         break;
2087                 }
2088         }
2089
2090         *num_samples = sample_count;
2091         return retval;
2092 }
2093
2094 /* Single aligned words are guaranteed to use 16 or 32 bit access
2095  * mode respectively, otherwise data is handled as quickly as
2096  * possible
2097  */
2098 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2099 {
2100         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2101                           size, address);
2102
2103         if (!target_was_examined(target)) {
2104                 LOG_ERROR("Target not examined yet");
2105                 return ERROR_FAIL;
2106         }
2107
2108         if (size == 0)
2109                 return ERROR_OK;
2110
2111         if ((address + size - 1) < address) {
2112                 /* GDB can request this when e.g. PC is 0xfffffffc */
2113                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2114                                   address,
2115                                   size);
2116                 return ERROR_FAIL;
2117         }
2118
2119         return target->type->write_buffer(target, address, size, buffer);
2120 }
2121
2122 static int target_write_buffer_default(struct target *target,
2123         target_addr_t address, uint32_t count, const uint8_t *buffer)
2124 {
2125         uint32_t size;
2126
2127         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2128          * will have something to do with the size we leave to it. */
2129         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2130                 if (address & size) {
2131                         int retval = target_write_memory(target, address, size, 1, buffer);
2132                         if (retval != ERROR_OK)
2133                                 return retval;
2134                         address += size;
2135                         count -= size;
2136                         buffer += size;
2137                 }
2138         }
2139
2140         /* Write the data with as large access size as possible. */
2141         for (; size > 0; size /= 2) {
2142                 uint32_t aligned = count - count % size;
2143                 if (aligned > 0) {
2144                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2145                         if (retval != ERROR_OK)
2146                                 return retval;
2147                         address += aligned;
2148                         count -= aligned;
2149                         buffer += aligned;
2150                 }
2151         }
2152
2153         return ERROR_OK;
2154 }
2155
2156 /* Single aligned words are guaranteed to use 16 or 32 bit access
2157  * mode respectively, otherwise data is handled as quickly as
2158  * possible
2159  */
2160 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2161 {
2162         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2163                           size, address);
2164
2165         if (!target_was_examined(target)) {
2166                 LOG_ERROR("Target not examined yet");
2167                 return ERROR_FAIL;
2168         }
2169
2170         if (size == 0)
2171                 return ERROR_OK;
2172
2173         if ((address + size - 1) < address) {
2174                 /* GDB can request this when e.g. PC is 0xfffffffc */
2175                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2176                                   address,
2177                                   size);
2178                 return ERROR_FAIL;
2179         }
2180
2181         return target->type->read_buffer(target, address, size, buffer);
2182 }
2183
2184 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2185 {
2186         uint32_t size;
2187
2188         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2189          * will have something to do with the size we leave to it. */
2190         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2191                 if (address & size) {
2192                         int retval = target_read_memory(target, address, size, 1, buffer);
2193                         if (retval != ERROR_OK)
2194                                 return retval;
2195                         address += size;
2196                         count -= size;
2197                         buffer += size;
2198                 }
2199         }
2200
2201         /* Read the data with as large access size as possible. */
2202         for (; size > 0; size /= 2) {
2203                 uint32_t aligned = count - count % size;
2204                 if (aligned > 0) {
2205                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2206                         if (retval != ERROR_OK)
2207                                 return retval;
2208                         address += aligned;
2209                         count -= aligned;
2210                         buffer += aligned;
2211                 }
2212         }
2213
2214         return ERROR_OK;
2215 }
2216
2217 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2218 {
2219         uint8_t *buffer;
2220         int retval;
2221         uint32_t i;
2222         uint32_t checksum = 0;
2223         if (!target_was_examined(target)) {
2224                 LOG_ERROR("Target not examined yet");
2225                 return ERROR_FAIL;
2226         }
2227
2228         retval = target->type->checksum_memory(target, address, size, &checksum);
2229         if (retval != ERROR_OK) {
2230                 buffer = malloc(size);
2231                 if (buffer == NULL) {
2232                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2233                         return ERROR_COMMAND_SYNTAX_ERROR;
2234                 }
2235                 retval = target_read_buffer(target, address, size, buffer);
2236                 if (retval != ERROR_OK) {
2237                         free(buffer);
2238                         return retval;
2239                 }
2240
2241                 /* convert to target endianness */
2242                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2243                         uint32_t target_data;
2244                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2245                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2246                 }
2247
2248                 retval = image_calculate_checksum(buffer, size, &checksum);
2249                 free(buffer);
2250         }
2251
2252         *crc = checksum;
2253
2254         return retval;
2255 }
2256
2257 int target_blank_check_memory(struct target *target,
2258         struct target_memory_check_block *blocks, int num_blocks,
2259         uint8_t erased_value)
2260 {
2261         if (!target_was_examined(target)) {
2262                 LOG_ERROR("Target not examined yet");
2263                 return ERROR_FAIL;
2264         }
2265
2266         if (target->type->blank_check_memory == NULL)
2267                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2268
2269         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2270 }
2271
2272 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2273 {
2274         uint8_t value_buf[8];
2275         if (!target_was_examined(target)) {
2276                 LOG_ERROR("Target not examined yet");
2277                 return ERROR_FAIL;
2278         }
2279
2280         int retval = target_read_memory(target, address, 8, 1, value_buf);
2281
2282         if (retval == ERROR_OK) {
2283                 *value = target_buffer_get_u64(target, value_buf);
2284                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2285                                   address,
2286                                   *value);
2287         } else {
2288                 *value = 0x0;
2289                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2290                                   address);
2291         }
2292
2293         return retval;
2294 }
2295
2296 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2297 {
2298         uint8_t value_buf[4];
2299         if (!target_was_examined(target)) {
2300                 LOG_ERROR("Target not examined yet");
2301                 return ERROR_FAIL;
2302         }
2303
2304         int retval = target_read_memory(target, address, 4, 1, value_buf);
2305
2306         if (retval == ERROR_OK) {
2307                 *value = target_buffer_get_u32(target, value_buf);
2308                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2309                                   address,
2310                                   *value);
2311         } else {
2312                 *value = 0x0;
2313                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2314                                   address);
2315         }
2316
2317         return retval;
2318 }
2319
2320 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2321 {
2322         uint8_t value_buf[2];
2323         if (!target_was_examined(target)) {
2324                 LOG_ERROR("Target not examined yet");
2325                 return ERROR_FAIL;
2326         }
2327
2328         int retval = target_read_memory(target, address, 2, 1, value_buf);
2329
2330         if (retval == ERROR_OK) {
2331                 *value = target_buffer_get_u16(target, value_buf);
2332                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2333                                   address,
2334                                   *value);
2335         } else {
2336                 *value = 0x0;
2337                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2338                                   address);
2339         }
2340
2341         return retval;
2342 }
2343
2344 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2345 {
2346         if (!target_was_examined(target)) {
2347                 LOG_ERROR("Target not examined yet");
2348                 return ERROR_FAIL;
2349         }
2350
2351         int retval = target_read_memory(target, address, 1, 1, value);
2352
2353         if (retval == ERROR_OK) {
2354                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2355                                   address,
2356                                   *value);
2357         } else {
2358                 *value = 0x0;
2359                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2360                                   address);
2361         }
2362
2363         return retval;
2364 }
2365
2366 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2367 {
2368         int retval;
2369         uint8_t value_buf[8];
2370         if (!target_was_examined(target)) {
2371                 LOG_ERROR("Target not examined yet");
2372                 return ERROR_FAIL;
2373         }
2374
2375         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2376                           address,
2377                           value);
2378
2379         target_buffer_set_u64(target, value_buf, value);
2380         retval = target_write_memory(target, address, 8, 1, value_buf);
2381         if (retval != ERROR_OK)
2382                 LOG_DEBUG("failed: %i", retval);
2383
2384         return retval;
2385 }
2386
2387 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2388 {
2389         int retval;
2390         uint8_t value_buf[4];
2391         if (!target_was_examined(target)) {
2392                 LOG_ERROR("Target not examined yet");
2393                 return ERROR_FAIL;
2394         }
2395
2396         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2397                           address,
2398                           value);
2399
2400         target_buffer_set_u32(target, value_buf, value);
2401         retval = target_write_memory(target, address, 4, 1, value_buf);
2402         if (retval != ERROR_OK)
2403                 LOG_DEBUG("failed: %i", retval);
2404
2405         return retval;
2406 }
2407
2408 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2409 {
2410         int retval;
2411         uint8_t value_buf[2];
2412         if (!target_was_examined(target)) {
2413                 LOG_ERROR("Target not examined yet");
2414                 return ERROR_FAIL;
2415         }
2416
2417         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2418                           address,
2419                           value);
2420
2421         target_buffer_set_u16(target, value_buf, value);
2422         retval = target_write_memory(target, address, 2, 1, value_buf);
2423         if (retval != ERROR_OK)
2424                 LOG_DEBUG("failed: %i", retval);
2425
2426         return retval;
2427 }
2428
2429 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2430 {
2431         int retval;
2432         if (!target_was_examined(target)) {
2433                 LOG_ERROR("Target not examined yet");
2434                 return ERROR_FAIL;
2435         }
2436
2437         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2438                           address, value);
2439
2440         retval = target_write_memory(target, address, 1, 1, &value);
2441         if (retval != ERROR_OK)
2442                 LOG_DEBUG("failed: %i", retval);
2443
2444         return retval;
2445 }
2446
2447 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2448 {
2449         int retval;
2450         uint8_t value_buf[8];
2451         if (!target_was_examined(target)) {
2452                 LOG_ERROR("Target not examined yet");
2453                 return ERROR_FAIL;
2454         }
2455
2456         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2457                           address,
2458                           value);
2459
2460         target_buffer_set_u64(target, value_buf, value);
2461         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2462         if (retval != ERROR_OK)
2463                 LOG_DEBUG("failed: %i", retval);
2464
2465         return retval;
2466 }
2467
2468 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2469 {
2470         int retval;
2471         uint8_t value_buf[4];
2472         if (!target_was_examined(target)) {
2473                 LOG_ERROR("Target not examined yet");
2474                 return ERROR_FAIL;
2475         }
2476
2477         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2478                           address,
2479                           value);
2480
2481         target_buffer_set_u32(target, value_buf, value);
2482         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2483         if (retval != ERROR_OK)
2484                 LOG_DEBUG("failed: %i", retval);
2485
2486         return retval;
2487 }
2488
2489 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2490 {
2491         int retval;
2492         uint8_t value_buf[2];
2493         if (!target_was_examined(target)) {
2494                 LOG_ERROR("Target not examined yet");
2495                 return ERROR_FAIL;
2496         }
2497
2498         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2499                           address,
2500                           value);
2501
2502         target_buffer_set_u16(target, value_buf, value);
2503         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2504         if (retval != ERROR_OK)
2505                 LOG_DEBUG("failed: %i", retval);
2506
2507         return retval;
2508 }
2509
2510 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2511 {
2512         int retval;
2513         if (!target_was_examined(target)) {
2514                 LOG_ERROR("Target not examined yet");
2515                 return ERROR_FAIL;
2516         }
2517
2518         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2519                           address, value);
2520
2521         retval = target_write_phys_memory(target, address, 1, 1, &value);
2522         if (retval != ERROR_OK)
2523                 LOG_DEBUG("failed: %i", retval);
2524
2525         return retval;
2526 }
2527
2528 static int find_target(struct command_context *cmd_ctx, const char *name)
2529 {
2530         struct target *target = get_target(name);
2531         if (target == NULL) {
2532                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2533                 return ERROR_FAIL;
2534         }
2535         if (!target->tap->enabled) {
2536                 LOG_USER("Target: TAP %s is disabled, "
2537                          "can't be the current target\n",
2538                          target->tap->dotted_name);
2539                 return ERROR_FAIL;
2540         }
2541
2542         cmd_ctx->current_target = target;
2543         if (cmd_ctx->current_target_override)
2544                 cmd_ctx->current_target_override = target;
2545
2546         return ERROR_OK;
2547 }
2548
2549
2550 COMMAND_HANDLER(handle_targets_command)
2551 {
2552         int retval = ERROR_OK;
2553         if (CMD_ARGC == 1) {
2554                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2555                 if (retval == ERROR_OK) {
2556                         /* we're done! */
2557                         return retval;
2558                 }
2559         }
2560
2561         struct target *target = all_targets;
2562         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2563         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2564         while (target) {
2565                 const char *state;
2566                 char marker = ' ';
2567
2568                 if (target->tap->enabled)
2569                         state = target_state_name(target);
2570                 else
2571                         state = "tap-disabled";
2572
2573                 if (CMD_CTX->current_target == target)
2574                         marker = '*';
2575
2576                 /* keep columns lined up to match the headers above */
2577                 command_print(CMD_CTX,
2578                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2579                                 target->target_number,
2580                                 marker,
2581                                 target_name(target),
2582                                 target_type_name(target),
2583                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2584                                         target->endianness)->name,
2585                                 target->tap->dotted_name,
2586                                 state);
2587                 target = target->next;
2588         }
2589
2590         return retval;
2591 }
2592
2593 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2594
2595 static int powerDropout;
2596 static int srstAsserted;
2597
2598 static int runPowerRestore;
2599 static int runPowerDropout;
2600 static int runSrstAsserted;
2601 static int runSrstDeasserted;
2602
2603 static int sense_handler(void)
2604 {
2605         static int prevSrstAsserted;
2606         static int prevPowerdropout;
2607
2608         int retval = jtag_power_dropout(&powerDropout);
2609         if (retval != ERROR_OK)
2610                 return retval;
2611
2612         int powerRestored;
2613         powerRestored = prevPowerdropout && !powerDropout;
2614         if (powerRestored)
2615                 runPowerRestore = 1;
2616
2617         int64_t current = timeval_ms();
2618         static int64_t lastPower;
2619         bool waitMore = lastPower + 2000 > current;
2620         if (powerDropout && !waitMore) {
2621                 runPowerDropout = 1;
2622                 lastPower = current;
2623         }
2624
2625         retval = jtag_srst_asserted(&srstAsserted);
2626         if (retval != ERROR_OK)
2627                 return retval;
2628
2629         int srstDeasserted;
2630         srstDeasserted = prevSrstAsserted && !srstAsserted;
2631
2632         static int64_t lastSrst;
2633         waitMore = lastSrst + 2000 > current;
2634         if (srstDeasserted && !waitMore) {
2635                 runSrstDeasserted = 1;
2636                 lastSrst = current;
2637         }
2638
2639         if (!prevSrstAsserted && srstAsserted)
2640                 runSrstAsserted = 1;
2641
2642         prevSrstAsserted = srstAsserted;
2643         prevPowerdropout = powerDropout;
2644
2645         if (srstDeasserted || powerRestored) {
2646                 /* Other than logging the event we can't do anything here.
2647                  * Issuing a reset is a particularly bad idea as we might
2648                  * be inside a reset already.
2649                  */
2650         }
2651
2652         return ERROR_OK;
2653 }
2654
2655 /* process target state changes */
2656 static int handle_target(void *priv)
2657 {
2658         Jim_Interp *interp = (Jim_Interp *)priv;
2659         int retval = ERROR_OK;
2660
2661         if (!is_jtag_poll_safe()) {
2662                 /* polling is disabled currently */
2663                 return ERROR_OK;
2664         }
2665
2666         /* we do not want to recurse here... */
2667         static int recursive;
2668         if (!recursive) {
2669                 recursive = 1;
2670                 sense_handler();
2671                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2672                  * We need to avoid an infinite loop/recursion here and we do that by
2673                  * clearing the flags after running these events.
2674                  */
2675                 int did_something = 0;
2676                 if (runSrstAsserted) {
2677                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2678                         Jim_Eval(interp, "srst_asserted");
2679                         did_something = 1;
2680                 }
2681                 if (runSrstDeasserted) {
2682                         Jim_Eval(interp, "srst_deasserted");
2683                         did_something = 1;
2684                 }
2685                 if (runPowerDropout) {
2686                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2687                         Jim_Eval(interp, "power_dropout");
2688                         did_something = 1;
2689                 }
2690                 if (runPowerRestore) {
2691                         Jim_Eval(interp, "power_restore");
2692                         did_something = 1;
2693                 }
2694
2695                 if (did_something) {
2696                         /* clear detect flags */
2697                         sense_handler();
2698                 }
2699
2700                 /* clear action flags */
2701
2702                 runSrstAsserted = 0;
2703                 runSrstDeasserted = 0;
2704                 runPowerRestore = 0;
2705                 runPowerDropout = 0;
2706
2707                 recursive = 0;
2708         }
2709
2710         /* Poll targets for state changes unless that's globally disabled.
2711          * Skip targets that are currently disabled.
2712          */
2713         for (struct target *target = all_targets;
2714                         is_jtag_poll_safe() && target;
2715                         target = target->next) {
2716
2717                 if (!target_was_examined(target))
2718                         continue;
2719
2720                 if (!target->tap->enabled)
2721                         continue;
2722
2723                 if (target->backoff.times > target->backoff.count) {
2724                         /* do not poll this time as we failed previously */
2725                         target->backoff.count++;
2726                         continue;
2727                 }
2728                 target->backoff.count = 0;
2729
2730                 /* only poll target if we've got power and srst isn't asserted */
2731                 if (!powerDropout && !srstAsserted) {
2732                         /* polling may fail silently until the target has been examined */
2733                         retval = target_poll(target);
2734                         if (retval != ERROR_OK) {
2735                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2736                                 if (target->backoff.times * polling_interval < 5000) {
2737                                         target->backoff.times *= 2;
2738                                         target->backoff.times++;
2739                                 }
2740
2741                                 /* Tell GDB to halt the debugger. This allows the user to
2742                                  * run monitor commands to handle the situation.
2743                                  */
2744                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2745                         }
2746                         if (target->backoff.times > 0) {
2747                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2748                                 target_reset_examined(target);
2749                                 retval = target_examine_one(target);
2750                                 /* Target examination could have failed due to unstable connection,
2751                                  * but we set the examined flag anyway to repoll it later */
2752                                 if (retval != ERROR_OK) {
2753                                         target->examined = true;
2754                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2755                                                  target->backoff.times * polling_interval);
2756                                         return retval;
2757                                 }
2758                         }
2759
2760                         /* Since we succeeded, we reset backoff count */
2761                         target->backoff.times = 0;
2762                 }
2763         }
2764
2765         return retval;
2766 }
2767
2768 COMMAND_HANDLER(handle_reg_command)
2769 {
2770         struct target *target;
2771         struct reg *reg = NULL;
2772         unsigned count = 0;
2773         char *value;
2774
2775         LOG_DEBUG("-");
2776
2777         target = get_current_target(CMD_CTX);
2778
2779         /* list all available registers for the current target */
2780         if (CMD_ARGC == 0) {
2781                 struct reg_cache *cache = target->reg_cache;
2782
2783                 count = 0;
2784                 while (cache) {
2785                         unsigned i;
2786
2787                         command_print(CMD_CTX, "===== %s", cache->name);
2788
2789                         for (i = 0, reg = cache->reg_list;
2790                                         i < cache->num_regs;
2791                                         i++, reg++, count++) {
2792                                 /* only print cached values if they are valid */
2793                                 if (reg->valid) {
2794                                         value = buf_to_str(reg->value,
2795                                                         reg->size, 16);
2796                                         command_print(CMD_CTX,
2797                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2798                                                         count, reg->name,
2799                                                         reg->size, value,
2800                                                         reg->dirty
2801                                                                 ? " (dirty)"
2802                                                                 : "");
2803                                         free(value);
2804                                 } else {
2805                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2806                                                           count, reg->name,
2807                                                           reg->size) ;
2808                                 }
2809                         }
2810                         cache = cache->next;
2811                 }
2812
2813                 return ERROR_OK;
2814         }
2815
2816         /* access a single register by its ordinal number */
2817         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2818                 unsigned num;
2819                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2820
2821                 struct reg_cache *cache = target->reg_cache;
2822                 count = 0;
2823                 while (cache) {
2824                         unsigned i;
2825                         for (i = 0; i < cache->num_regs; i++) {
2826                                 if (count++ == num) {
2827                                         reg = &cache->reg_list[i];
2828                                         break;
2829                                 }
2830                         }
2831                         if (reg)
2832                                 break;
2833                         cache = cache->next;
2834                 }
2835
2836                 if (!reg) {
2837                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2838                                         "has only %i registers (0 - %i)", num, count, count - 1);
2839                         return ERROR_OK;
2840                 }
2841         } else {
2842                 /* access a single register by its name */
2843                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2844
2845                 if (!reg) {
2846                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2847                         return ERROR_OK;
2848                 }
2849         }
2850
2851         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2852
2853         /* display a register */
2854         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2855                         && (CMD_ARGV[1][0] <= '9')))) {
2856                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2857                         reg->valid = 0;
2858
2859                 if (reg->valid == 0)
2860                         reg->type->get(reg);
2861                 value = buf_to_str(reg->value, reg->size, 16);
2862                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2863                 free(value);
2864                 return ERROR_OK;
2865         }
2866
2867         /* set register value */
2868         if (CMD_ARGC == 2) {
2869                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2870                 if (buf == NULL)
2871                         return ERROR_FAIL;
2872                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2873
2874                 reg->type->set(reg, buf);
2875
2876                 value = buf_to_str(reg->value, reg->size, 16);
2877                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2878                 free(value);
2879
2880                 free(buf);
2881
2882                 return ERROR_OK;
2883         }
2884
2885         return ERROR_COMMAND_SYNTAX_ERROR;
2886 }
2887
2888 COMMAND_HANDLER(handle_poll_command)
2889 {
2890         int retval = ERROR_OK;
2891         struct target *target = get_current_target(CMD_CTX);
2892
2893         if (CMD_ARGC == 0) {
2894                 command_print(CMD_CTX, "background polling: %s",
2895                                 jtag_poll_get_enabled() ? "on" : "off");
2896                 command_print(CMD_CTX, "TAP: %s (%s)",
2897                                 target->tap->dotted_name,
2898                                 target->tap->enabled ? "enabled" : "disabled");
2899                 if (!target->tap->enabled)
2900                         return ERROR_OK;
2901                 retval = target_poll(target);
2902                 if (retval != ERROR_OK)
2903                         return retval;
2904                 retval = target_arch_state(target);
2905                 if (retval != ERROR_OK)
2906                         return retval;
2907         } else if (CMD_ARGC == 1) {
2908                 bool enable;
2909                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2910                 jtag_poll_set_enabled(enable);
2911         } else
2912                 return ERROR_COMMAND_SYNTAX_ERROR;
2913
2914         return retval;
2915 }
2916
2917 COMMAND_HANDLER(handle_wait_halt_command)
2918 {
2919         if (CMD_ARGC > 1)
2920                 return ERROR_COMMAND_SYNTAX_ERROR;
2921
2922         unsigned ms = DEFAULT_HALT_TIMEOUT;
2923         if (1 == CMD_ARGC) {
2924                 int retval = parse_uint(CMD_ARGV[0], &ms);
2925                 if (ERROR_OK != retval)
2926                         return ERROR_COMMAND_SYNTAX_ERROR;
2927         }
2928
2929         struct target *target = get_current_target(CMD_CTX);
2930         return target_wait_state(target, TARGET_HALTED, ms);
2931 }
2932
2933 /* wait for target state to change. The trick here is to have a low
2934  * latency for short waits and not to suck up all the CPU time
2935  * on longer waits.
2936  *
2937  * After 500ms, keep_alive() is invoked
2938  */
2939 int target_wait_state(struct target *target, enum target_state state, int ms)
2940 {
2941         int retval;
2942         int64_t then = 0, cur;
2943         bool once = true;
2944
2945         for (;;) {
2946                 retval = target_poll(target);
2947                 if (retval != ERROR_OK)
2948                         return retval;
2949                 if (target->state == state)
2950                         break;
2951                 cur = timeval_ms();
2952                 if (once) {
2953                         once = false;
2954                         then = timeval_ms();
2955                         LOG_DEBUG("waiting for target %s...",
2956                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2957                 }
2958
2959                 if (cur-then > 500)
2960                         keep_alive();
2961
2962                 if ((cur-then) > ms) {
2963                         LOG_ERROR("timed out while waiting for target %s",
2964                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2965                         return ERROR_FAIL;
2966                 }
2967         }
2968
2969         return ERROR_OK;
2970 }
2971
2972 COMMAND_HANDLER(handle_halt_command)
2973 {
2974         LOG_DEBUG("-");
2975
2976         struct target *target = get_current_target(CMD_CTX);
2977
2978         target->verbose_halt_msg = true;
2979
2980         int retval = target_halt(target);
2981         if (ERROR_OK != retval)
2982                 return retval;
2983
2984         if (CMD_ARGC == 1) {
2985                 unsigned wait_local;
2986                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2987                 if (ERROR_OK != retval)
2988                         return ERROR_COMMAND_SYNTAX_ERROR;
2989                 if (!wait_local)
2990                         return ERROR_OK;
2991         }
2992
2993         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2994 }
2995
2996 COMMAND_HANDLER(handle_soft_reset_halt_command)
2997 {
2998         struct target *target = get_current_target(CMD_CTX);
2999
3000         LOG_USER("requesting target halt and executing a soft reset");
3001
3002         target_soft_reset_halt(target);
3003
3004         return ERROR_OK;
3005 }
3006
3007 COMMAND_HANDLER(handle_reset_command)
3008 {
3009         if (CMD_ARGC > 1)
3010                 return ERROR_COMMAND_SYNTAX_ERROR;
3011
3012         enum target_reset_mode reset_mode = RESET_RUN;
3013         if (CMD_ARGC == 1) {
3014                 const Jim_Nvp *n;
3015                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3016                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3017                         return ERROR_COMMAND_SYNTAX_ERROR;
3018                 reset_mode = n->value;
3019         }
3020
3021         /* reset *all* targets */
3022         return target_process_reset(CMD_CTX, reset_mode);
3023 }
3024
3025
3026 COMMAND_HANDLER(handle_resume_command)
3027 {
3028         int current = 1;
3029         if (CMD_ARGC > 1)
3030                 return ERROR_COMMAND_SYNTAX_ERROR;
3031
3032         struct target *target = get_current_target(CMD_CTX);
3033
3034         /* with no CMD_ARGV, resume from current pc, addr = 0,
3035          * with one arguments, addr = CMD_ARGV[0],
3036          * handle breakpoints, not debugging */
3037         target_addr_t addr = 0;
3038         if (CMD_ARGC == 1) {
3039                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3040                 current = 0;
3041         }
3042
3043         return target_resume(target, current, addr, 1, 0);
3044 }
3045
3046 COMMAND_HANDLER(handle_step_command)
3047 {
3048         if (CMD_ARGC > 1)
3049                 return ERROR_COMMAND_SYNTAX_ERROR;
3050
3051         LOG_DEBUG("-");
3052
3053         /* with no CMD_ARGV, step from current pc, addr = 0,
3054          * with one argument addr = CMD_ARGV[0],
3055          * handle breakpoints, debugging */
3056         target_addr_t addr = 0;
3057         int current_pc = 1;
3058         if (CMD_ARGC == 1) {
3059                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3060                 current_pc = 0;
3061         }
3062
3063         struct target *target = get_current_target(CMD_CTX);
3064
3065         return target->type->step(target, current_pc, addr, 1);
3066 }
3067
3068 static void handle_md_output(struct command_context *cmd_ctx,
3069                 struct target *target, target_addr_t address, unsigned size,
3070                 unsigned count, const uint8_t *buffer)
3071 {
3072         const unsigned line_bytecnt = 32;
3073         unsigned line_modulo = line_bytecnt / size;
3074
3075         char output[line_bytecnt * 4 + 1];
3076         unsigned output_len = 0;
3077
3078         const char *value_fmt;
3079         switch (size) {
3080         case 8:
3081                 value_fmt = "%16.16"PRIx64" ";
3082                 break;
3083         case 4:
3084                 value_fmt = "%8.8"PRIx64" ";
3085                 break;
3086         case 2:
3087                 value_fmt = "%4.4"PRIx64" ";
3088                 break;
3089         case 1:
3090                 value_fmt = "%2.2"PRIx64" ";
3091                 break;
3092         default:
3093                 /* "can't happen", caller checked */
3094                 LOG_ERROR("invalid memory read size: %u", size);
3095                 return;
3096         }
3097
3098         for (unsigned i = 0; i < count; i++) {
3099                 if (i % line_modulo == 0) {
3100                         output_len += snprintf(output + output_len,
3101                                         sizeof(output) - output_len,
3102                                         TARGET_ADDR_FMT ": ",
3103                                         (address + (i * size)));
3104                 }
3105
3106                 uint64_t value = 0;
3107                 const uint8_t *value_ptr = buffer + i * size;
3108                 switch (size) {
3109                 case 8:
3110                         value = target_buffer_get_u64(target, value_ptr);
3111                         break;
3112                 case 4:
3113                         value = target_buffer_get_u32(target, value_ptr);
3114                         break;
3115                 case 2:
3116                         value = target_buffer_get_u16(target, value_ptr);
3117                         break;
3118                 case 1:
3119                         value = *value_ptr;
3120                 }
3121                 output_len += snprintf(output + output_len,
3122                                 sizeof(output) - output_len,
3123                                 value_fmt, value);
3124
3125                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3126                         command_print(cmd_ctx, "%s", output);
3127                         output_len = 0;
3128                 }
3129         }
3130 }
3131
3132 COMMAND_HANDLER(handle_md_command)
3133 {
3134         if (CMD_ARGC < 1)
3135                 return ERROR_COMMAND_SYNTAX_ERROR;
3136
3137         unsigned size = 0;
3138         switch (CMD_NAME[2]) {
3139         case 'd':
3140                 size = 8;
3141                 break;
3142         case 'w':
3143                 size = 4;
3144                 break;
3145         case 'h':
3146                 size = 2;
3147                 break;
3148         case 'b':
3149                 size = 1;
3150                 break;
3151         default:
3152                 return ERROR_COMMAND_SYNTAX_ERROR;
3153         }
3154
3155         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3156         int (*fn)(struct target *target,
3157                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3158         if (physical) {
3159                 CMD_ARGC--;
3160                 CMD_ARGV++;
3161                 fn = target_read_phys_memory;
3162         } else
3163                 fn = target_read_memory;
3164         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3165                 return ERROR_COMMAND_SYNTAX_ERROR;
3166
3167         target_addr_t address;
3168         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3169
3170         unsigned count = 1;
3171         if (CMD_ARGC == 2)
3172                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3173
3174         uint8_t *buffer = calloc(count, size);
3175         if (buffer == NULL) {
3176                 LOG_ERROR("Failed to allocate md read buffer");
3177                 return ERROR_FAIL;
3178         }
3179
3180         struct target *target = get_current_target(CMD_CTX);
3181         int retval = fn(target, address, size, count, buffer);
3182         if (ERROR_OK == retval)
3183                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3184
3185         free(buffer);
3186
3187         return retval;
3188 }
3189
3190 typedef int (*target_write_fn)(struct target *target,
3191                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3192
3193 static int target_fill_mem(struct target *target,
3194                 target_addr_t address,
3195                 target_write_fn fn,
3196                 unsigned data_size,
3197                 /* value */
3198                 uint64_t b,
3199                 /* count */
3200                 unsigned c)
3201 {
3202         /* We have to write in reasonably large chunks to be able
3203          * to fill large memory areas with any sane speed */
3204         const unsigned chunk_size = 16384;
3205         uint8_t *target_buf = malloc(chunk_size * data_size);
3206         if (target_buf == NULL) {
3207                 LOG_ERROR("Out of memory");
3208                 return ERROR_FAIL;
3209         }
3210
3211         for (unsigned i = 0; i < chunk_size; i++) {
3212                 switch (data_size) {
3213                 case 8:
3214                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3215                         break;
3216                 case 4:
3217                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3218                         break;
3219                 case 2:
3220                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3221                         break;
3222                 case 1:
3223                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3224                         break;
3225                 default:
3226                         exit(-1);
3227                 }
3228         }
3229
3230         int retval = ERROR_OK;
3231
3232         for (unsigned x = 0; x < c; x += chunk_size) {
3233                 unsigned current;
3234                 current = c - x;
3235                 if (current > chunk_size)
3236                         current = chunk_size;
3237                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3238                 if (retval != ERROR_OK)
3239                         break;
3240                 /* avoid GDB timeouts */
3241                 keep_alive();
3242         }
3243         free(target_buf);
3244
3245         return retval;
3246 }
3247
3248
3249 COMMAND_HANDLER(handle_mw_command)
3250 {
3251         if (CMD_ARGC < 2)
3252                 return ERROR_COMMAND_SYNTAX_ERROR;
3253         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3254         target_write_fn fn;
3255         if (physical) {
3256                 CMD_ARGC--;
3257                 CMD_ARGV++;
3258                 fn = target_write_phys_memory;
3259         } else
3260                 fn = target_write_memory;
3261         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3262                 return ERROR_COMMAND_SYNTAX_ERROR;
3263
3264         target_addr_t address;
3265         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3266
3267         target_addr_t value;
3268         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3269
3270         unsigned count = 1;
3271         if (CMD_ARGC == 3)
3272                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3273
3274         struct target *target = get_current_target(CMD_CTX);
3275         unsigned wordsize;
3276         switch (CMD_NAME[2]) {
3277                 case 'd':
3278                         wordsize = 8;
3279                         break;
3280                 case 'w':
3281                         wordsize = 4;
3282                         break;
3283                 case 'h':
3284                         wordsize = 2;
3285                         break;
3286                 case 'b':
3287                         wordsize = 1;
3288                         break;
3289                 default:
3290                         return ERROR_COMMAND_SYNTAX_ERROR;
3291         }
3292
3293         return target_fill_mem(target, address, fn, wordsize, value, count);
3294 }
3295
3296 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3297                 target_addr_t *min_address, target_addr_t *max_address)
3298 {
3299         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3300                 return ERROR_COMMAND_SYNTAX_ERROR;
3301
3302         /* a base address isn't always necessary,
3303          * default to 0x0 (i.e. don't relocate) */
3304         if (CMD_ARGC >= 2) {
3305                 target_addr_t addr;
3306                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3307                 image->base_address = addr;
3308                 image->base_address_set = 1;
3309         } else
3310                 image->base_address_set = 0;
3311
3312         image->start_address_set = 0;
3313
3314         if (CMD_ARGC >= 4)
3315                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3316         if (CMD_ARGC == 5) {
3317                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3318                 /* use size (given) to find max (required) */
3319                 *max_address += *min_address;
3320         }
3321
3322         if (*min_address > *max_address)
3323                 return ERROR_COMMAND_SYNTAX_ERROR;
3324
3325         return ERROR_OK;
3326 }
3327
3328 COMMAND_HANDLER(handle_load_image_command)
3329 {
3330         uint8_t *buffer;
3331         size_t buf_cnt;
3332         uint32_t image_size;
3333         target_addr_t min_address = 0;
3334         target_addr_t max_address = -1;
3335         int i;
3336         struct image image;
3337
3338         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3339                         &image, &min_address, &max_address);
3340         if (ERROR_OK != retval)
3341                 return retval;
3342
3343         struct target *target = get_current_target(CMD_CTX);
3344
3345         struct duration bench;
3346         duration_start(&bench);
3347
3348         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3349                 return ERROR_FAIL;
3350
3351         image_size = 0x0;
3352         retval = ERROR_OK;
3353         for (i = 0; i < image.num_sections; i++) {
3354                 buffer = malloc(image.sections[i].size);
3355                 if (buffer == NULL) {
3356                         command_print(CMD_CTX,
3357                                                   "error allocating buffer for section (%d bytes)",
3358                                                   (int)(image.sections[i].size));
3359                         retval = ERROR_FAIL;
3360                         break;
3361                 }
3362
3363                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3364                 if (retval != ERROR_OK) {
3365                         free(buffer);
3366                         break;
3367                 }
3368
3369                 uint32_t offset = 0;
3370                 uint32_t length = buf_cnt;
3371
3372                 /* DANGER!!! beware of unsigned comparision here!!! */
3373
3374                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3375                                 (image.sections[i].base_address < max_address)) {
3376
3377                         if (image.sections[i].base_address < min_address) {
3378                                 /* clip addresses below */
3379                                 offset += min_address-image.sections[i].base_address;
3380                                 length -= offset;
3381                         }
3382
3383                         if (image.sections[i].base_address + buf_cnt > max_address)
3384                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3385
3386                         retval = target_write_buffer(target,
3387                                         image.sections[i].base_address + offset, length, buffer + offset);
3388                         if (retval != ERROR_OK) {
3389                                 free(buffer);
3390                                 break;
3391                         }
3392                         image_size += length;
3393                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3394                                         (unsigned int)length,
3395                                         image.sections[i].base_address + offset);
3396                 }
3397
3398                 free(buffer);
3399         }
3400
3401         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3402                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3403                                 "in %fs (%0.3f KiB/s)", image_size,
3404                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3405         }
3406
3407         image_close(&image);
3408
3409         return retval;
3410
3411 }
3412
3413 COMMAND_HANDLER(handle_dump_image_command)
3414 {
3415         struct fileio *fileio;
3416         uint8_t *buffer;
3417         int retval, retvaltemp;
3418         target_addr_t address, size;
3419         struct duration bench;
3420         struct target *target = get_current_target(CMD_CTX);
3421
3422         if (CMD_ARGC != 3)
3423                 return ERROR_COMMAND_SYNTAX_ERROR;
3424
3425         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3426         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3427
3428         uint32_t buf_size = (size > 4096) ? 4096 : size;
3429         buffer = malloc(buf_size);
3430         if (!buffer)
3431                 return ERROR_FAIL;
3432
3433         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3434         if (retval != ERROR_OK) {
3435                 free(buffer);
3436                 return retval;
3437         }
3438
3439         duration_start(&bench);
3440
3441         while (size > 0) {
3442                 size_t size_written;
3443                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3444                 retval = target_read_buffer(target, address, this_run_size, buffer);
3445                 if (retval != ERROR_OK)
3446                         break;
3447
3448                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3449                 if (retval != ERROR_OK)
3450                         break;
3451
3452                 size -= this_run_size;
3453                 address += this_run_size;
3454         }
3455
3456         free(buffer);
3457
3458         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3459                 size_t filesize;
3460                 retval = fileio_size(fileio, &filesize);
3461                 if (retval != ERROR_OK)
3462                         return retval;
3463                 command_print(CMD_CTX,
3464                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3465                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3466         }
3467
3468         retvaltemp = fileio_close(fileio);
3469         if (retvaltemp != ERROR_OK)
3470                 return retvaltemp;
3471
3472         return retval;
3473 }
3474
3475 enum verify_mode {
3476         IMAGE_TEST = 0,
3477         IMAGE_VERIFY = 1,
3478         IMAGE_CHECKSUM_ONLY = 2
3479 };
3480
3481 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3482 {
3483         uint8_t *buffer;
3484         size_t buf_cnt;
3485         uint32_t image_size;
3486         int i;
3487         int retval;
3488         uint32_t checksum = 0;
3489         uint32_t mem_checksum = 0;
3490
3491         struct image image;
3492
3493         struct target *target = get_current_target(CMD_CTX);
3494
3495         if (CMD_ARGC < 1)
3496                 return ERROR_COMMAND_SYNTAX_ERROR;
3497
3498         if (!target) {
3499                 LOG_ERROR("no target selected");
3500                 return ERROR_FAIL;
3501         }
3502
3503         struct duration bench;
3504         duration_start(&bench);
3505
3506         if (CMD_ARGC >= 2) {
3507                 target_addr_t addr;
3508                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3509                 image.base_address = addr;
3510                 image.base_address_set = 1;
3511         } else {
3512                 image.base_address_set = 0;
3513                 image.base_address = 0x0;
3514         }
3515
3516         image.start_address_set = 0;
3517
3518         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3519         if (retval != ERROR_OK)
3520                 return retval;
3521
3522         image_size = 0x0;
3523         int diffs = 0;
3524         retval = ERROR_OK;
3525         for (i = 0; i < image.num_sections; i++) {
3526                 buffer = malloc(image.sections[i].size);
3527                 if (buffer == NULL) {
3528                         command_print(CMD_CTX,
3529                                         "error allocating buffer for section (%d bytes)",
3530                                         (int)(image.sections[i].size));
3531                         break;
3532                 }
3533                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3534                 if (retval != ERROR_OK) {
3535                         free(buffer);
3536                         break;
3537                 }
3538
3539                 if (verify >= IMAGE_VERIFY) {
3540                         /* calculate checksum of image */
3541                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3542                         if (retval != ERROR_OK) {
3543                                 free(buffer);
3544                                 break;
3545                         }
3546
3547                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3548                         if (retval != ERROR_OK) {
3549                                 free(buffer);
3550                                 break;
3551                         }
3552                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3553                                 LOG_ERROR("checksum mismatch");
3554                                 free(buffer);
3555                                 retval = ERROR_FAIL;
3556                                 goto done;
3557                         }
3558                         if (checksum != mem_checksum) {
3559                                 /* failed crc checksum, fall back to a binary compare */
3560                                 uint8_t *data;
3561
3562                                 if (diffs == 0)
3563                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3564
3565                                 data = malloc(buf_cnt);
3566
3567                                 /* Can we use 32bit word accesses? */
3568                                 int size = 1;
3569                                 int count = buf_cnt;
3570                                 if ((count % 4) == 0) {
3571                                         size *= 4;
3572                                         count /= 4;
3573                                 }
3574                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3575                                 if (retval == ERROR_OK) {
3576                                         uint32_t t;
3577                                         for (t = 0; t < buf_cnt; t++) {
3578                                                 if (data[t] != buffer[t]) {
3579                                                         command_print(CMD_CTX,
3580                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3581                                                                                   diffs,
3582                                                                                   (unsigned)(t + image.sections[i].base_address),
3583                                                                                   data[t],
3584                                                                                   buffer[t]);
3585                                                         if (diffs++ >= 127) {
3586                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3587                                                                 free(data);
3588                                                                 free(buffer);
3589                                                                 goto done;
3590                                                         }
3591                                                 }
3592                                                 keep_alive();
3593                                         }
3594                                 }
3595                                 free(data);
3596                         }
3597                 } else {
3598                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3599                                                   image.sections[i].base_address,
3600                                                   buf_cnt);
3601                 }
3602
3603                 free(buffer);
3604                 image_size += buf_cnt;
3605         }
3606         if (diffs > 0)
3607                 command_print(CMD_CTX, "No more differences found.");
3608 done:
3609         if (diffs > 0)
3610                 retval = ERROR_FAIL;
3611         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3612                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3613                                 "in %fs (%0.3f KiB/s)", image_size,
3614                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3615         }
3616
3617         image_close(&image);
3618
3619         return retval;
3620 }
3621
3622 COMMAND_HANDLER(handle_verify_image_checksum_command)
3623 {
3624         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3625 }
3626
3627 COMMAND_HANDLER(handle_verify_image_command)
3628 {
3629         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3630 }
3631
3632 COMMAND_HANDLER(handle_test_image_command)
3633 {
3634         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3635 }
3636
3637 static int handle_bp_command_list(struct command_context *cmd_ctx)
3638 {
3639         struct target *target = get_current_target(cmd_ctx);
3640         struct breakpoint *breakpoint = target->breakpoints;
3641         while (breakpoint) {
3642                 if (breakpoint->type == BKPT_SOFT) {
3643                         char *buf = buf_to_str(breakpoint->orig_instr,
3644                                         breakpoint->length, 16);
3645                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3646                                         breakpoint->address,
3647                                         breakpoint->length,
3648                                         breakpoint->set, buf);
3649                         free(buf);
3650                 } else {
3651                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3652                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3653                                                         breakpoint->asid,
3654                                                         breakpoint->length, breakpoint->set);
3655                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3656                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3657                                                         breakpoint->address,
3658                                                         breakpoint->length, breakpoint->set);
3659                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3660                                                         breakpoint->asid);
3661                         } else
3662                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3663                                                         breakpoint->address,
3664                                                         breakpoint->length, breakpoint->set);
3665                 }
3666
3667                 breakpoint = breakpoint->next;
3668         }
3669         return ERROR_OK;
3670 }
3671
3672 static int handle_bp_command_set(struct command_context *cmd_ctx,
3673                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3674 {
3675         struct target *target = get_current_target(cmd_ctx);
3676         int retval;
3677
3678         if (asid == 0) {
3679                 retval = breakpoint_add(target, addr, length, hw);
3680                 if (ERROR_OK == retval)
3681                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3682                 else {
3683                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3684                         return retval;
3685                 }
3686         } else if (addr == 0) {
3687                 if (target->type->add_context_breakpoint == NULL) {
3688                         LOG_WARNING("Context breakpoint not available");
3689                         return ERROR_OK;
3690                 }
3691                 retval = context_breakpoint_add(target, asid, length, hw);
3692                 if (ERROR_OK == retval)
3693                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3694                 else {
3695                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3696                         return retval;
3697                 }
3698         } else {
3699                 if (target->type->add_hybrid_breakpoint == NULL) {
3700                         LOG_WARNING("Hybrid breakpoint not available");
3701                         return ERROR_OK;
3702                 }
3703                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3704                 if (ERROR_OK == retval)
3705                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3706                 else {
3707                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3708                         return retval;
3709                 }
3710         }
3711         return ERROR_OK;
3712 }
3713
3714 COMMAND_HANDLER(handle_bp_command)
3715 {
3716         target_addr_t addr;
3717         uint32_t asid;
3718         uint32_t length;
3719         int hw = BKPT_SOFT;
3720
3721         switch (CMD_ARGC) {
3722                 case 0:
3723                         return handle_bp_command_list(CMD_CTX);
3724
3725                 case 2:
3726                         asid = 0;
3727                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3728                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3729                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3730
3731                 case 3:
3732                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3733                                 hw = BKPT_HARD;
3734                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3735                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3736                                 asid = 0;
3737                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3738                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3739                                 hw = BKPT_HARD;
3740                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3741                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3742                                 addr = 0;
3743                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3744                         }
3745                         /* fallthrough */
3746                 case 4:
3747                         hw = BKPT_HARD;
3748                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3749                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3750                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3751                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3752
3753                 default:
3754                         return ERROR_COMMAND_SYNTAX_ERROR;
3755         }
3756 }
3757
3758 COMMAND_HANDLER(handle_rbp_command)
3759 {
3760         if (CMD_ARGC != 1)
3761                 return ERROR_COMMAND_SYNTAX_ERROR;
3762
3763         target_addr_t addr;
3764         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3765
3766         struct target *target = get_current_target(CMD_CTX);
3767         breakpoint_remove(target, addr);
3768
3769         return ERROR_OK;
3770 }
3771
3772 COMMAND_HANDLER(handle_wp_command)
3773 {
3774         struct target *target = get_current_target(CMD_CTX);
3775
3776         if (CMD_ARGC == 0) {
3777                 struct watchpoint *watchpoint = target->watchpoints;
3778
3779                 while (watchpoint) {
3780                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3781                                         ", len: 0x%8.8" PRIx32
3782                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3783                                         ", mask: 0x%8.8" PRIx32,
3784                                         watchpoint->address,
3785                                         watchpoint->length,
3786                                         (int)watchpoint->rw,
3787                                         watchpoint->value,
3788                                         watchpoint->mask);
3789                         watchpoint = watchpoint->next;
3790                 }
3791                 return ERROR_OK;
3792         }
3793
3794         enum watchpoint_rw type = WPT_ACCESS;
3795         uint32_t addr = 0;
3796         uint32_t length = 0;
3797         uint32_t data_value = 0x0;
3798         uint32_t data_mask = 0xffffffff;
3799
3800         switch (CMD_ARGC) {
3801         case 5:
3802                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3803                 /* fall through */
3804         case 4:
3805                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3806                 /* fall through */
3807         case 3:
3808                 switch (CMD_ARGV[2][0]) {
3809                 case 'r':
3810                         type = WPT_READ;
3811                         break;
3812                 case 'w':
3813                         type = WPT_WRITE;
3814                         break;
3815                 case 'a':
3816                         type = WPT_ACCESS;
3817                         break;
3818                 default:
3819                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3820                         return ERROR_COMMAND_SYNTAX_ERROR;
3821                 }
3822                 /* fall through */
3823         case 2:
3824                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3825                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3826                 break;
3827
3828         default:
3829                 return ERROR_COMMAND_SYNTAX_ERROR;
3830         }
3831
3832         int retval = watchpoint_add(target, addr, length, type,
3833                         data_value, data_mask);
3834         if (ERROR_OK != retval)
3835                 LOG_ERROR("Failure setting watchpoints");
3836
3837         return retval;
3838 }
3839
3840 COMMAND_HANDLER(handle_rwp_command)
3841 {
3842         if (CMD_ARGC != 1)
3843                 return ERROR_COMMAND_SYNTAX_ERROR;
3844
3845         uint32_t addr;
3846         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3847
3848         struct target *target = get_current_target(CMD_CTX);
3849         watchpoint_remove(target, addr);
3850
3851         return ERROR_OK;
3852 }
3853
3854 /**
3855  * Translate a virtual address to a physical address.
3856  *
3857  * The low-level target implementation must have logged a detailed error
3858  * which is forwarded to telnet/GDB session.
3859  */
3860 COMMAND_HANDLER(handle_virt2phys_command)
3861 {
3862         if (CMD_ARGC != 1)
3863                 return ERROR_COMMAND_SYNTAX_ERROR;
3864
3865         target_addr_t va;
3866         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3867         target_addr_t pa;
3868
3869         struct target *target = get_current_target(CMD_CTX);
3870         int retval = target->type->virt2phys(target, va, &pa);
3871         if (retval == ERROR_OK)
3872                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3873
3874         return retval;
3875 }
3876
3877 static void writeData(FILE *f, const void *data, size_t len)
3878 {
3879         size_t written = fwrite(data, 1, len, f);
3880         if (written != len)
3881                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3882 }
3883
3884 static void writeLong(FILE *f, int l, struct target *target)
3885 {
3886         uint8_t val[4];
3887
3888         target_buffer_set_u32(target, val, l);
3889         writeData(f, val, 4);
3890 }
3891
3892 static void writeString(FILE *f, char *s)
3893 {
3894         writeData(f, s, strlen(s));
3895 }
3896
3897 typedef unsigned char UNIT[2];  /* unit of profiling */
3898
3899 /* Dump a gmon.out histogram file. */
3900 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3901                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3902 {
3903         uint32_t i;
3904         FILE *f = fopen(filename, "w");
3905         if (f == NULL)
3906                 return;
3907         writeString(f, "gmon");
3908         writeLong(f, 0x00000001, target); /* Version */
3909         writeLong(f, 0, target); /* padding */
3910         writeLong(f, 0, target); /* padding */
3911         writeLong(f, 0, target); /* padding */
3912
3913         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3914         writeData(f, &zero, 1);
3915
3916         /* figure out bucket size */
3917         uint32_t min;
3918         uint32_t max;
3919         if (with_range) {
3920                 min = start_address;
3921                 max = end_address;
3922         } else {
3923                 min = samples[0];
3924                 max = samples[0];
3925                 for (i = 0; i < sampleNum; i++) {
3926                         if (min > samples[i])
3927                                 min = samples[i];
3928                         if (max < samples[i])
3929                                 max = samples[i];
3930                 }
3931
3932                 /* max should be (largest sample + 1)
3933                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3934                 max++;
3935         }
3936
3937         int addressSpace = max - min;
3938         assert(addressSpace >= 2);
3939
3940         /* FIXME: What is the reasonable number of buckets?
3941          * The profiling result will be more accurate if there are enough buckets. */
3942         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3943         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3944         if (numBuckets > maxBuckets)
3945                 numBuckets = maxBuckets;
3946         int *buckets = malloc(sizeof(int) * numBuckets);
3947         if (buckets == NULL) {
3948                 fclose(f);
3949                 return;
3950         }
3951         memset(buckets, 0, sizeof(int) * numBuckets);
3952         for (i = 0; i < sampleNum; i++) {
3953                 uint32_t address = samples[i];
3954
3955                 if ((address < min) || (max <= address))
3956                         continue;
3957
3958                 long long a = address - min;
3959                 long long b = numBuckets;
3960                 long long c = addressSpace;
3961                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3962                 buckets[index_t]++;
3963         }
3964
3965         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3966         writeLong(f, min, target);                      /* low_pc */
3967         writeLong(f, max, target);                      /* high_pc */
3968         writeLong(f, numBuckets, target);       /* # of buckets */
3969         float sample_rate = sampleNum / (duration_ms / 1000.0);
3970         writeLong(f, sample_rate, target);
3971         writeString(f, "seconds");
3972         for (i = 0; i < (15-strlen("seconds")); i++)
3973                 writeData(f, &zero, 1);
3974         writeString(f, "s");
3975
3976         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3977
3978         char *data = malloc(2 * numBuckets);
3979         if (data != NULL) {
3980                 for (i = 0; i < numBuckets; i++) {
3981                         int val;
3982                         val = buckets[i];
3983                         if (val > 65535)
3984                                 val = 65535;
3985                         data[i * 2] = val&0xff;
3986                         data[i * 2 + 1] = (val >> 8) & 0xff;
3987                 }
3988                 free(buckets);
3989                 writeData(f, data, numBuckets * 2);
3990                 free(data);
3991         } else
3992                 free(buckets);
3993
3994         fclose(f);
3995 }
3996
3997 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3998  * which will be used as a random sampling of PC */
3999 COMMAND_HANDLER(handle_profile_command)
4000 {
4001         struct target *target = get_current_target(CMD_CTX);
4002
4003         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4004                 return ERROR_COMMAND_SYNTAX_ERROR;
4005
4006         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4007         uint32_t offset;
4008         uint32_t num_of_samples;
4009         int retval = ERROR_OK;
4010
4011         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4012
4013         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4014         if (samples == NULL) {
4015                 LOG_ERROR("No memory to store samples.");
4016                 return ERROR_FAIL;
4017         }
4018
4019         uint64_t timestart_ms = timeval_ms();
4020         /**
4021          * Some cores let us sample the PC without the
4022          * annoying halt/resume step; for example, ARMv7 PCSR.
4023          * Provide a way to use that more efficient mechanism.
4024          */
4025         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4026                                 &num_of_samples, offset);
4027         if (retval != ERROR_OK) {
4028                 free(samples);
4029                 return retval;
4030         }
4031         uint32_t duration_ms = timeval_ms() - timestart_ms;
4032
4033         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4034
4035         retval = target_poll(target);
4036         if (retval != ERROR_OK) {
4037                 free(samples);
4038                 return retval;
4039         }
4040         if (target->state == TARGET_RUNNING) {
4041                 retval = target_halt(target);
4042                 if (retval != ERROR_OK) {
4043                         free(samples);
4044                         return retval;
4045                 }
4046         }
4047
4048         retval = target_poll(target);
4049         if (retval != ERROR_OK) {
4050                 free(samples);
4051                 return retval;
4052         }
4053
4054         uint32_t start_address = 0;
4055         uint32_t end_address = 0;
4056         bool with_range = false;
4057         if (CMD_ARGC == 4) {
4058                 with_range = true;
4059                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4060                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4061         }
4062
4063         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4064                    with_range, start_address, end_address, target, duration_ms);
4065         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4066
4067         free(samples);
4068         return retval;
4069 }
4070
4071 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4072 {
4073         char *namebuf;
4074         Jim_Obj *nameObjPtr, *valObjPtr;
4075         int result;
4076
4077         namebuf = alloc_printf("%s(%d)", varname, idx);
4078         if (!namebuf)
4079                 return JIM_ERR;
4080
4081         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4082         valObjPtr = Jim_NewIntObj(interp, val);
4083         if (!nameObjPtr || !valObjPtr) {
4084                 free(namebuf);
4085                 return JIM_ERR;
4086         }
4087
4088         Jim_IncrRefCount(nameObjPtr);
4089         Jim_IncrRefCount(valObjPtr);
4090         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4091         Jim_DecrRefCount(interp, nameObjPtr);
4092         Jim_DecrRefCount(interp, valObjPtr);
4093         free(namebuf);
4094         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4095         return result;
4096 }
4097
4098 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4099 {
4100         struct command_context *context;
4101         struct target *target;
4102
4103         context = current_command_context(interp);
4104         assert(context != NULL);
4105
4106         target = get_current_target(context);
4107         if (target == NULL) {
4108                 LOG_ERROR("mem2array: no current target");
4109                 return JIM_ERR;
4110         }
4111
4112         return target_mem2array(interp, target, argc - 1, argv + 1);
4113 }
4114
4115 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4116 {
4117         long l;
4118         uint32_t width;
4119         int len;
4120         uint32_t addr;
4121         uint32_t count;
4122         uint32_t v;
4123         const char *varname;
4124         const char *phys;
4125         bool is_phys;
4126         int  n, e, retval;
4127         uint32_t i;
4128
4129         /* argv[1] = name of array to receive the data
4130          * argv[2] = desired width
4131          * argv[3] = memory address
4132          * argv[4] = count of times to read
4133          */
4134
4135         if (argc < 4 || argc > 5) {
4136                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4137                 return JIM_ERR;
4138         }
4139         varname = Jim_GetString(argv[0], &len);
4140         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4141
4142         e = Jim_GetLong(interp, argv[1], &l);
4143         width = l;
4144         if (e != JIM_OK)
4145                 return e;
4146
4147         e = Jim_GetLong(interp, argv[2], &l);
4148         addr = l;
4149         if (e != JIM_OK)
4150                 return e;
4151         e = Jim_GetLong(interp, argv[3], &l);
4152         len = l;
4153         if (e != JIM_OK)
4154                 return e;
4155         is_phys = false;
4156         if (argc > 4) {
4157                 phys = Jim_GetString(argv[4], &n);
4158                 if (!strncmp(phys, "phys", n))
4159                         is_phys = true;
4160                 else
4161                         return JIM_ERR;
4162         }
4163         switch (width) {
4164                 case 8:
4165                         width = 1;
4166                         break;
4167                 case 16:
4168                         width = 2;
4169                         break;
4170                 case 32:
4171                         width = 4;
4172                         break;
4173                 default:
4174                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4175                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4176                         return JIM_ERR;
4177         }
4178         if (len == 0) {
4179                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4180                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4181                 return JIM_ERR;
4182         }
4183         if ((addr + (len * width)) < addr) {
4184                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4185                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4186                 return JIM_ERR;
4187         }
4188         /* absurd transfer size? */
4189         if (len > 65536) {
4190                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4191                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4192                 return JIM_ERR;
4193         }
4194
4195         if ((width == 1) ||
4196                 ((width == 2) && ((addr & 1) == 0)) ||
4197                 ((width == 4) && ((addr & 3) == 0))) {
4198                 /* all is well */
4199         } else {
4200                 char buf[100];
4201                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4202                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4203                                 addr,
4204                                 width);
4205                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4206                 return JIM_ERR;
4207         }
4208
4209         /* Transfer loop */
4210
4211         /* index counter */
4212         n = 0;
4213
4214         size_t buffersize = 4096;
4215         uint8_t *buffer = malloc(buffersize);
4216         if (buffer == NULL)
4217                 return JIM_ERR;
4218
4219         /* assume ok */
4220         e = JIM_OK;
4221         while (len) {
4222                 /* Slurp... in buffer size chunks */
4223
4224                 count = len; /* in objects.. */
4225                 if (count > (buffersize / width))
4226                         count = (buffersize / width);
4227
4228                 if (is_phys)
4229                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4230                 else
4231                         retval = target_read_memory(target, addr, width, count, buffer);
4232                 if (retval != ERROR_OK) {
4233                         /* BOO !*/
4234                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4235                                           addr,
4236                                           width,
4237                                           count);
4238                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4239                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4240                         e = JIM_ERR;
4241                         break;
4242                 } else {
4243                         v = 0; /* shut up gcc */
4244                         for (i = 0; i < count ; i++, n++) {
4245                                 switch (width) {
4246                                         case 4:
4247                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4248                                                 break;
4249                                         case 2:
4250                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4251                                                 break;
4252                                         case 1:
4253                                                 v = buffer[i] & 0x0ff;
4254                                                 break;
4255                                 }
4256                                 new_int_array_element(interp, varname, n, v);
4257                         }
4258                         len -= count;
4259                         addr += count * width;
4260                 }
4261         }
4262
4263         free(buffer);
4264
4265         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4266
4267         return e;
4268 }
4269
4270 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4271 {
4272         char *namebuf;
4273         Jim_Obj *nameObjPtr, *valObjPtr;
4274         int result;
4275         long l;
4276
4277         namebuf = alloc_printf("%s(%d)", varname, idx);
4278         if (!namebuf)
4279                 return JIM_ERR;
4280
4281         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4282         if (!nameObjPtr) {
4283                 free(namebuf);
4284                 return JIM_ERR;
4285         }
4286
4287         Jim_IncrRefCount(nameObjPtr);
4288         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4289         Jim_DecrRefCount(interp, nameObjPtr);
4290         free(namebuf);
4291         if (valObjPtr == NULL)
4292                 return JIM_ERR;
4293
4294         result = Jim_GetLong(interp, valObjPtr, &l);
4295         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4296         *val = l;
4297         return result;
4298 }
4299
4300 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4301 {
4302         struct command_context *context;
4303         struct target *target;
4304
4305         context = current_command_context(interp);
4306         assert(context != NULL);
4307
4308         target = get_current_target(context);
4309         if (target == NULL) {
4310                 LOG_ERROR("array2mem: no current target");
4311                 return JIM_ERR;
4312         }
4313
4314         return target_array2mem(interp, target, argc-1, argv + 1);
4315 }
4316
4317 static int target_array2mem(Jim_Interp *interp, struct target *target,
4318                 int argc, Jim_Obj *const *argv)
4319 {
4320         long l;
4321         uint32_t width;
4322         int len;
4323         uint32_t addr;
4324         uint32_t count;
4325         uint32_t v;
4326         const char *varname;
4327         const char *phys;
4328         bool is_phys;
4329         int  n, e, retval;
4330         uint32_t i;
4331
4332         /* argv[1] = name of array to get the data
4333          * argv[2] = desired width
4334          * argv[3] = memory address
4335          * argv[4] = count to write
4336          */
4337         if (argc < 4 || argc > 5) {
4338                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4339                 return JIM_ERR;
4340         }
4341         varname = Jim_GetString(argv[0], &len);
4342         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4343
4344         e = Jim_GetLong(interp, argv[1], &l);
4345         width = l;
4346         if (e != JIM_OK)
4347                 return e;
4348
4349         e = Jim_GetLong(interp, argv[2], &l);
4350         addr = l;
4351         if (e != JIM_OK)
4352                 return e;
4353         e = Jim_GetLong(interp, argv[3], &l);
4354         len = l;
4355         if (e != JIM_OK)
4356                 return e;
4357         is_phys = false;
4358         if (argc > 4) {
4359                 phys = Jim_GetString(argv[4], &n);
4360                 if (!strncmp(phys, "phys", n))
4361                         is_phys = true;
4362                 else
4363                         return JIM_ERR;
4364         }
4365         switch (width) {
4366                 case 8:
4367                         width = 1;
4368                         break;
4369                 case 16:
4370                         width = 2;
4371                         break;
4372                 case 32:
4373                         width = 4;
4374                         break;
4375                 default:
4376                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4377                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4378                                         "Invalid width param, must be 8/16/32", NULL);
4379                         return JIM_ERR;
4380         }
4381         if (len == 0) {
4382                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4383                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4384                                 "array2mem: zero width read?", NULL);
4385                 return JIM_ERR;
4386         }
4387         if ((addr + (len * width)) < addr) {
4388                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4389                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4390                                 "array2mem: addr + len - wraps to zero?", NULL);
4391                 return JIM_ERR;
4392         }
4393         /* absurd transfer size? */
4394         if (len > 65536) {
4395                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4396                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4397                                 "array2mem: absurd > 64K item request", NULL);
4398                 return JIM_ERR;
4399         }
4400
4401         if ((width == 1) ||
4402                 ((width == 2) && ((addr & 1) == 0)) ||
4403                 ((width == 4) && ((addr & 3) == 0))) {
4404                 /* all is well */
4405         } else {
4406                 char buf[100];
4407                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4408                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4409                                 addr,
4410                                 width);
4411                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4412                 return JIM_ERR;
4413         }
4414
4415         /* Transfer loop */
4416
4417         /* index counter */
4418         n = 0;
4419         /* assume ok */
4420         e = JIM_OK;
4421
4422         size_t buffersize = 4096;
4423         uint8_t *buffer = malloc(buffersize);
4424         if (buffer == NULL)
4425                 return JIM_ERR;
4426
4427         while (len) {
4428                 /* Slurp... in buffer size chunks */
4429
4430                 count = len; /* in objects.. */
4431                 if (count > (buffersize / width))
4432                         count = (buffersize / width);
4433
4434                 v = 0; /* shut up gcc */
4435                 for (i = 0; i < count; i++, n++) {
4436                         get_int_array_element(interp, varname, n, &v);
4437                         switch (width) {
4438                         case 4:
4439                                 target_buffer_set_u32(target, &buffer[i * width], v);
4440                                 break;
4441                         case 2:
4442                                 target_buffer_set_u16(target, &buffer[i * width], v);
4443                                 break;
4444                         case 1:
4445                                 buffer[i] = v & 0x0ff;
4446                                 break;
4447                         }
4448                 }
4449                 len -= count;
4450
4451                 if (is_phys)
4452                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4453                 else
4454                         retval = target_write_memory(target, addr, width, count, buffer);
4455                 if (retval != ERROR_OK) {
4456                         /* BOO !*/
4457                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4458                                           addr,
4459                                           width,
4460                                           count);
4461                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4462                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4463                         e = JIM_ERR;
4464                         break;
4465                 }
4466                 addr += count * width;
4467         }
4468
4469         free(buffer);
4470
4471         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4472
4473         return e;
4474 }
4475
4476 /* FIX? should we propagate errors here rather than printing them
4477  * and continuing?
4478  */
4479 void target_handle_event(struct target *target, enum target_event e)
4480 {
4481         struct target_event_action *teap;
4482
4483         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4484                 if (teap->event == e) {
4485                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4486                                            target->target_number,
4487                                            target_name(target),
4488                                            target_type_name(target),
4489                                            e,
4490                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4491                                            Jim_GetString(teap->body, NULL));
4492
4493                         /* Override current target by the target an event
4494                          * is issued from (lot of scripts need it).
4495                          * Return back to previous override as soon
4496                          * as the handler processing is done */
4497                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4498                         struct target *saved_target_override = cmd_ctx->current_target_override;
4499                         cmd_ctx->current_target_override = target;
4500
4501                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4502                                 Jim_MakeErrorMessage(teap->interp);
4503                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4504                         }
4505
4506                         cmd_ctx->current_target_override = saved_target_override;
4507                 }
4508         }
4509 }
4510
4511 /**
4512  * Returns true only if the target has a handler for the specified event.
4513  */
4514 bool target_has_event_action(struct target *target, enum target_event event)
4515 {
4516         struct target_event_action *teap;
4517
4518         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4519                 if (teap->event == event)
4520                         return true;
4521         }
4522         return false;
4523 }
4524
4525 enum target_cfg_param {
4526         TCFG_TYPE,
4527         TCFG_EVENT,
4528         TCFG_WORK_AREA_VIRT,
4529         TCFG_WORK_AREA_PHYS,
4530         TCFG_WORK_AREA_SIZE,
4531         TCFG_WORK_AREA_BACKUP,
4532         TCFG_ENDIAN,
4533         TCFG_COREID,
4534         TCFG_CHAIN_POSITION,
4535         TCFG_DBGBASE,
4536         TCFG_RTOS,
4537         TCFG_DEFER_EXAMINE,
4538 };
4539
4540 static Jim_Nvp nvp_config_opts[] = {
4541         { .name = "-type",             .value = TCFG_TYPE },
4542         { .name = "-event",            .value = TCFG_EVENT },
4543         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4544         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4545         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4546         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4547         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4548         { .name = "-coreid",           .value = TCFG_COREID },
4549         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4550         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4551         { .name = "-rtos",             .value = TCFG_RTOS },
4552         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4553         { .name = NULL, .value = -1 }
4554 };
4555
4556 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4557 {
4558         Jim_Nvp *n;
4559         Jim_Obj *o;
4560         jim_wide w;
4561         int e;
4562
4563         /* parse config or cget options ... */
4564         while (goi->argc > 0) {
4565                 Jim_SetEmptyResult(goi->interp);
4566                 /* Jim_GetOpt_Debug(goi); */
4567
4568                 if (target->type->target_jim_configure) {
4569                         /* target defines a configure function */
4570                         /* target gets first dibs on parameters */
4571                         e = (*(target->type->target_jim_configure))(target, goi);
4572                         if (e == JIM_OK) {
4573                                 /* more? */
4574                                 continue;
4575                         }
4576                         if (e == JIM_ERR) {
4577                                 /* An error */
4578                                 return e;
4579                         }
4580                         /* otherwise we 'continue' below */
4581                 }
4582                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4583                 if (e != JIM_OK) {
4584                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4585                         return e;
4586                 }
4587                 switch (n->value) {
4588                 case TCFG_TYPE:
4589                         /* not setable */
4590                         if (goi->isconfigure) {
4591                                 Jim_SetResultFormatted(goi->interp,
4592                                                 "not settable: %s", n->name);
4593                                 return JIM_ERR;
4594                         } else {
4595 no_params:
4596                                 if (goi->argc != 0) {
4597                                         Jim_WrongNumArgs(goi->interp,
4598                                                         goi->argc, goi->argv,
4599                                                         "NO PARAMS");
4600                                         return JIM_ERR;
4601                                 }
4602                         }
4603                         Jim_SetResultString(goi->interp,
4604                                         target_type_name(target), -1);
4605                         /* loop for more */
4606                         break;
4607                 case TCFG_EVENT:
4608                         if (goi->argc == 0) {
4609                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4610                                 return JIM_ERR;
4611                         }
4612
4613                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4614                         if (e != JIM_OK) {
4615                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4616                                 return e;
4617                         }
4618
4619                         if (goi->isconfigure) {
4620                                 if (goi->argc != 1) {
4621                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4622                                         return JIM_ERR;
4623                                 }
4624                         } else {
4625                                 if (goi->argc != 0) {
4626                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4627                                         return JIM_ERR;
4628                                 }
4629                         }
4630
4631                         {
4632                                 struct target_event_action *teap;
4633
4634                                 teap = target->event_action;
4635                                 /* replace existing? */
4636                                 while (teap) {
4637                                         if (teap->event == (enum target_event)n->value)
4638                                                 break;
4639                                         teap = teap->next;
4640                                 }
4641
4642                                 if (goi->isconfigure) {
4643                                         bool replace = true;
4644                                         if (teap == NULL) {
4645                                                 /* create new */
4646                                                 teap = calloc(1, sizeof(*teap));
4647                                                 replace = false;
4648                                         }
4649                                         teap->event = n->value;
4650                                         teap->interp = goi->interp;
4651                                         Jim_GetOpt_Obj(goi, &o);
4652                                         if (teap->body)
4653                                                 Jim_DecrRefCount(teap->interp, teap->body);
4654                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4655                                         /*
4656                                          * FIXME:
4657                                          *     Tcl/TK - "tk events" have a nice feature.
4658                                          *     See the "BIND" command.
4659                                          *    We should support that here.
4660                                          *     You can specify %X and %Y in the event code.
4661                                          *     The idea is: %T - target name.
4662                                          *     The idea is: %N - target number
4663                                          *     The idea is: %E - event name.
4664                                          */
4665                                         Jim_IncrRefCount(teap->body);
4666
4667                                         if (!replace) {
4668                                                 /* add to head of event list */
4669                                                 teap->next = target->event_action;
4670                                                 target->event_action = teap;
4671                                         }
4672                                         Jim_SetEmptyResult(goi->interp);
4673                                 } else {
4674                                         /* get */
4675                                         if (teap == NULL)
4676                                                 Jim_SetEmptyResult(goi->interp);
4677                                         else
4678                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4679                                 }
4680                         }
4681                         /* loop for more */
4682                         break;
4683
4684                 case TCFG_WORK_AREA_VIRT:
4685                         if (goi->isconfigure) {
4686                                 target_free_all_working_areas(target);
4687                                 e = Jim_GetOpt_Wide(goi, &w);
4688                                 if (e != JIM_OK)
4689                                         return e;
4690                                 target->working_area_virt = w;
4691                                 target->working_area_virt_spec = true;
4692                         } else {
4693                                 if (goi->argc != 0)
4694                                         goto no_params;
4695                         }
4696                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4697                         /* loop for more */
4698                         break;
4699
4700                 case TCFG_WORK_AREA_PHYS:
4701                         if (goi->isconfigure) {
4702                                 target_free_all_working_areas(target);
4703                                 e = Jim_GetOpt_Wide(goi, &w);
4704                                 if (e != JIM_OK)
4705                                         return e;
4706                                 target->working_area_phys = w;
4707                                 target->working_area_phys_spec = true;
4708                         } else {
4709                                 if (goi->argc != 0)
4710                                         goto no_params;
4711                         }
4712                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4713                         /* loop for more */
4714                         break;
4715
4716                 case TCFG_WORK_AREA_SIZE:
4717                         if (goi->isconfigure) {
4718                                 target_free_all_working_areas(target);
4719                                 e = Jim_GetOpt_Wide(goi, &w);
4720                                 if (e != JIM_OK)
4721                                         return e;
4722                                 target->working_area_size = w;
4723                         } else {
4724                                 if (goi->argc != 0)
4725                                         goto no_params;
4726                         }
4727                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4728                         /* loop for more */
4729                         break;
4730
4731                 case TCFG_WORK_AREA_BACKUP:
4732                         if (goi->isconfigure) {
4733                                 target_free_all_working_areas(target);
4734                                 e = Jim_GetOpt_Wide(goi, &w);
4735                                 if (e != JIM_OK)
4736                                         return e;
4737                                 /* make this exactly 1 or 0 */
4738                                 target->backup_working_area = (!!w);
4739                         } else {
4740                                 if (goi->argc != 0)
4741                                         goto no_params;
4742                         }
4743                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4744                         /* loop for more e*/
4745                         break;
4746
4747
4748                 case TCFG_ENDIAN:
4749                         if (goi->isconfigure) {
4750                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4751                                 if (e != JIM_OK) {
4752                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4753                                         return e;
4754                                 }
4755                                 target->endianness = n->value;
4756                         } else {
4757                                 if (goi->argc != 0)
4758                                         goto no_params;
4759                         }
4760                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4761                         if (n->name == NULL) {
4762                                 target->endianness = TARGET_LITTLE_ENDIAN;
4763                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4764                         }
4765                         Jim_SetResultString(goi->interp, n->name, -1);
4766                         /* loop for more */
4767                         break;
4768
4769                 case TCFG_COREID:
4770                         if (goi->isconfigure) {
4771                                 e = Jim_GetOpt_Wide(goi, &w);
4772                                 if (e != JIM_OK)
4773                                         return e;
4774                                 target->coreid = (int32_t)w;
4775                         } else {
4776                                 if (goi->argc != 0)
4777                                         goto no_params;
4778                         }
4779                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4780                         /* loop for more */
4781                         break;
4782
4783                 case TCFG_CHAIN_POSITION:
4784                         if (goi->isconfigure) {
4785                                 Jim_Obj *o_t;
4786                                 struct jtag_tap *tap;
4787
4788                                 if (target->has_dap) {
4789                                         Jim_SetResultString(goi->interp,
4790                                                 "target requires -dap parameter instead of -chain-position!", -1);
4791                                         return JIM_ERR;
4792                                 }
4793
4794                                 target_free_all_working_areas(target);
4795                                 e = Jim_GetOpt_Obj(goi, &o_t);
4796                                 if (e != JIM_OK)
4797                                         return e;
4798                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4799                                 if (tap == NULL)
4800                                         return JIM_ERR;
4801                                 target->tap = tap;
4802                                 target->tap_configured = true;
4803                         } else {
4804                                 if (goi->argc != 0)
4805                                         goto no_params;
4806                         }
4807                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4808                         /* loop for more e*/
4809                         break;
4810                 case TCFG_DBGBASE:
4811                         if (goi->isconfigure) {
4812                                 e = Jim_GetOpt_Wide(goi, &w);
4813                                 if (e != JIM_OK)
4814                                         return e;
4815                                 target->dbgbase = (uint32_t)w;
4816                                 target->dbgbase_set = true;
4817                         } else {
4818                                 if (goi->argc != 0)
4819                                         goto no_params;
4820                         }
4821                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4822                         /* loop for more */
4823                         break;
4824                 case TCFG_RTOS:
4825                         /* RTOS */
4826                         {
4827                                 int result = rtos_create(goi, target);
4828                                 if (result != JIM_OK)
4829                                         return result;
4830                         }
4831                         /* loop for more */
4832                         break;
4833
4834                 case TCFG_DEFER_EXAMINE:
4835                         /* DEFER_EXAMINE */
4836                         target->defer_examine = true;
4837                         /* loop for more */
4838                         break;
4839
4840                 }
4841         } /* while (goi->argc) */
4842
4843
4844                 /* done - we return */
4845         return JIM_OK;
4846 }
4847
4848 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4849 {
4850         Jim_GetOptInfo goi;
4851
4852         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4853         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4854         if (goi.argc < 1) {
4855                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4856                                  "missing: -option ...");
4857                 return JIM_ERR;
4858         }
4859         struct target *target = Jim_CmdPrivData(goi.interp);
4860         return target_configure(&goi, target);
4861 }
4862
4863 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4864 {
4865         const char *cmd_name = Jim_GetString(argv[0], NULL);
4866
4867         Jim_GetOptInfo goi;
4868         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4869
4870         if (goi.argc < 2 || goi.argc > 4) {
4871                 Jim_SetResultFormatted(goi.interp,
4872                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4873                 return JIM_ERR;
4874         }
4875
4876         target_write_fn fn;
4877         fn = target_write_memory;
4878
4879         int e;
4880         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4881                 /* consume it */
4882                 struct Jim_Obj *obj;
4883                 e = Jim_GetOpt_Obj(&goi, &obj);
4884                 if (e != JIM_OK)
4885                         return e;
4886
4887                 fn = target_write_phys_memory;
4888         }
4889
4890         jim_wide a;
4891         e = Jim_GetOpt_Wide(&goi, &a);
4892         if (e != JIM_OK)
4893                 return e;
4894
4895         jim_wide b;
4896         e = Jim_GetOpt_Wide(&goi, &b);
4897         if (e != JIM_OK)
4898                 return e;
4899
4900         jim_wide c = 1;
4901         if (goi.argc == 1) {
4902                 e = Jim_GetOpt_Wide(&goi, &c);
4903                 if (e != JIM_OK)
4904                         return e;
4905         }
4906
4907         /* all args must be consumed */
4908         if (goi.argc != 0)
4909                 return JIM_ERR;
4910
4911         struct target *target = Jim_CmdPrivData(goi.interp);
4912         unsigned data_size;
4913         if (strcasecmp(cmd_name, "mww") == 0)
4914                 data_size = 4;
4915         else if (strcasecmp(cmd_name, "mwh") == 0)
4916                 data_size = 2;
4917         else if (strcasecmp(cmd_name, "mwb") == 0)
4918                 data_size = 1;
4919         else {
4920                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4921                 return JIM_ERR;
4922         }
4923
4924         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4925 }
4926
4927 /**
4928 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4929 *
4930 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4931 *         mdh [phys] <address> [<count>] - for 16 bit reads
4932 *         mdb [phys] <address> [<count>] - for  8 bit reads
4933 *
4934 *  Count defaults to 1.
4935 *
4936 *  Calls target_read_memory or target_read_phys_memory depending on
4937 *  the presence of the "phys" argument
4938 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4939 *  to int representation in base16.
4940 *  Also outputs read data in a human readable form using command_print
4941 *
4942 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4943 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4944 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4945 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4946 *  on success, with [<count>] number of elements.
4947 *
4948 *  In case of little endian target:
4949 *      Example1: "mdw 0x00000000"  returns "10123456"
4950 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4951 *      Example3: "mdb 0x00000000" returns "56"
4952 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4953 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4954 **/
4955 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4956 {
4957         const char *cmd_name = Jim_GetString(argv[0], NULL);
4958
4959         Jim_GetOptInfo goi;
4960         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4961
4962         if ((goi.argc < 1) || (goi.argc > 3)) {
4963                 Jim_SetResultFormatted(goi.interp,
4964                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4965                 return JIM_ERR;
4966         }
4967
4968         int (*fn)(struct target *target,
4969                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4970         fn = target_read_memory;
4971
4972         int e;
4973         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4974                 /* consume it */
4975                 struct Jim_Obj *obj;
4976                 e = Jim_GetOpt_Obj(&goi, &obj);
4977                 if (e != JIM_OK)
4978                         return e;
4979
4980                 fn = target_read_phys_memory;
4981         }
4982
4983         /* Read address parameter */
4984         jim_wide addr;
4985         e = Jim_GetOpt_Wide(&goi, &addr);
4986         if (e != JIM_OK)
4987                 return JIM_ERR;
4988
4989         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4990         jim_wide count;
4991         if (goi.argc == 1) {
4992                 e = Jim_GetOpt_Wide(&goi, &count);
4993                 if (e != JIM_OK)
4994                         return JIM_ERR;
4995         } else
4996                 count = 1;
4997
4998         /* all args must be consumed */
4999         if (goi.argc != 0)
5000                 return JIM_ERR;
5001
5002         jim_wide dwidth = 1; /* shut up gcc */
5003         if (strcasecmp(cmd_name, "mdw") == 0)
5004                 dwidth = 4;
5005         else if (strcasecmp(cmd_name, "mdh") == 0)
5006                 dwidth = 2;
5007         else if (strcasecmp(cmd_name, "mdb") == 0)
5008                 dwidth = 1;
5009         else {
5010                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5011                 return JIM_ERR;
5012         }
5013
5014         /* convert count to "bytes" */
5015         int bytes = count * dwidth;
5016
5017         struct target *target = Jim_CmdPrivData(goi.interp);
5018         uint8_t  target_buf[32];
5019         jim_wide x, y, z;
5020         while (bytes > 0) {
5021                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5022
5023                 /* Try to read out next block */
5024                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5025
5026                 if (e != ERROR_OK) {
5027                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5028                         return JIM_ERR;
5029                 }
5030
5031                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5032                 switch (dwidth) {
5033                 case 4:
5034                         for (x = 0; x < 16 && x < y; x += 4) {
5035                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5036                                 command_print_sameline(NULL, "%08x ", (int)(z));
5037                         }
5038                         for (; (x < 16) ; x += 4)
5039                                 command_print_sameline(NULL, "         ");
5040                         break;
5041                 case 2:
5042                         for (x = 0; x < 16 && x < y; x += 2) {
5043                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5044                                 command_print_sameline(NULL, "%04x ", (int)(z));
5045                         }
5046                         for (; (x < 16) ; x += 2)
5047                                 command_print_sameline(NULL, "     ");
5048                         break;
5049                 case 1:
5050                 default:
5051                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5052                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5053                                 command_print_sameline(NULL, "%02x ", (int)(z));
5054                         }
5055                         for (; (x < 16) ; x += 1)
5056                                 command_print_sameline(NULL, "   ");
5057                         break;
5058                 }
5059                 /* ascii-ify the bytes */
5060                 for (x = 0 ; x < y ; x++) {
5061                         if ((target_buf[x] >= 0x20) &&
5062                                 (target_buf[x] <= 0x7e)) {
5063                                 /* good */
5064                         } else {
5065                                 /* smack it */
5066                                 target_buf[x] = '.';
5067                         }
5068                 }
5069                 /* space pad  */
5070                 while (x < 16) {
5071                         target_buf[x] = ' ';
5072                         x++;
5073                 }
5074                 /* terminate */
5075                 target_buf[16] = 0;
5076                 /* print - with a newline */
5077                 command_print_sameline(NULL, "%s\n", target_buf);
5078                 /* NEXT... */
5079                 bytes -= 16;
5080                 addr += 16;
5081         }
5082         return JIM_OK;
5083 }
5084
5085 static int jim_target_mem2array(Jim_Interp *interp,
5086                 int argc, Jim_Obj *const *argv)
5087 {
5088         struct target *target = Jim_CmdPrivData(interp);
5089         return target_mem2array(interp, target, argc - 1, argv + 1);
5090 }
5091
5092 static int jim_target_array2mem(Jim_Interp *interp,
5093                 int argc, Jim_Obj *const *argv)
5094 {
5095         struct target *target = Jim_CmdPrivData(interp);
5096         return target_array2mem(interp, target, argc - 1, argv + 1);
5097 }
5098
5099 static int jim_target_tap_disabled(Jim_Interp *interp)
5100 {
5101         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5102         return JIM_ERR;
5103 }
5104
5105 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5106 {
5107         bool allow_defer = false;
5108
5109         Jim_GetOptInfo goi;
5110         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5111         if (goi.argc > 1) {
5112                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5113                 Jim_SetResultFormatted(goi.interp,
5114                                 "usage: %s ['allow-defer']", cmd_name);
5115                 return JIM_ERR;
5116         }
5117         if (goi.argc > 0 &&
5118             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5119                 /* consume it */
5120                 struct Jim_Obj *obj;
5121                 int e = Jim_GetOpt_Obj(&goi, &obj);
5122                 if (e != JIM_OK)
5123                         return e;
5124                 allow_defer = true;
5125         }
5126
5127         struct target *target = Jim_CmdPrivData(interp);
5128         if (!target->tap->enabled)
5129                 return jim_target_tap_disabled(interp);
5130
5131         if (allow_defer && target->defer_examine) {
5132                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5133                 LOG_INFO("Use arp_examine command to examine it manually!");
5134                 return JIM_OK;
5135         }
5136
5137         int e = target->type->examine(target);
5138         if (e != ERROR_OK)
5139                 return JIM_ERR;
5140         return JIM_OK;
5141 }
5142
5143 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5144 {
5145         struct target *target = Jim_CmdPrivData(interp);
5146
5147         Jim_SetResultBool(interp, target_was_examined(target));
5148         return JIM_OK;
5149 }
5150
5151 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5152 {
5153         struct target *target = Jim_CmdPrivData(interp);
5154
5155         Jim_SetResultBool(interp, target->defer_examine);
5156         return JIM_OK;
5157 }
5158
5159 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5160 {
5161         if (argc != 1) {
5162                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5163                 return JIM_ERR;
5164         }
5165         struct target *target = Jim_CmdPrivData(interp);
5166
5167         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5168                 return JIM_ERR;
5169
5170         return JIM_OK;
5171 }
5172
5173 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5174 {
5175         if (argc != 1) {
5176                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5177                 return JIM_ERR;
5178         }
5179         struct target *target = Jim_CmdPrivData(interp);
5180         if (!target->tap->enabled)
5181                 return jim_target_tap_disabled(interp);
5182
5183         int e;
5184         if (!(target_was_examined(target)))
5185                 e = ERROR_TARGET_NOT_EXAMINED;
5186         else
5187                 e = target->type->poll(target);
5188         if (e != ERROR_OK)
5189                 return JIM_ERR;
5190         return JIM_OK;
5191 }
5192
5193 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5194 {
5195         Jim_GetOptInfo goi;
5196         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5197
5198         if (goi.argc != 2) {
5199                 Jim_WrongNumArgs(interp, 0, argv,
5200                                 "([tT]|[fF]|assert|deassert) BOOL");
5201                 return JIM_ERR;
5202         }
5203
5204         Jim_Nvp *n;
5205         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5206         if (e != JIM_OK) {
5207                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5208                 return e;
5209         }
5210         /* the halt or not param */
5211         jim_wide a;
5212         e = Jim_GetOpt_Wide(&goi, &a);
5213         if (e != JIM_OK)
5214                 return e;
5215
5216         struct target *target = Jim_CmdPrivData(goi.interp);
5217         if (!target->tap->enabled)
5218                 return jim_target_tap_disabled(interp);
5219
5220         if (!target->type->assert_reset || !target->type->deassert_reset) {
5221                 Jim_SetResultFormatted(interp,
5222                                 "No target-specific reset for %s",
5223                                 target_name(target));
5224                 return JIM_ERR;
5225         }
5226
5227         if (target->defer_examine)
5228                 target_reset_examined(target);
5229
5230         /* determine if we should halt or not. */
5231         target->reset_halt = !!a;
5232         /* When this happens - all workareas are invalid. */
5233         target_free_all_working_areas_restore(target, 0);
5234
5235         /* do the assert */
5236         if (n->value == NVP_ASSERT)
5237                 e = target->type->assert_reset(target);
5238         else
5239                 e = target->type->deassert_reset(target);
5240         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5241 }
5242
5243 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5244 {
5245         if (argc != 1) {
5246                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5247                 return JIM_ERR;
5248         }
5249         struct target *target = Jim_CmdPrivData(interp);
5250         if (!target->tap->enabled)
5251                 return jim_target_tap_disabled(interp);
5252         int e = target->type->halt(target);
5253         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5254 }
5255
5256 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5257 {
5258         Jim_GetOptInfo goi;
5259         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5260
5261         /* params:  <name>  statename timeoutmsecs */
5262         if (goi.argc != 2) {
5263                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5264                 Jim_SetResultFormatted(goi.interp,
5265                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5266                 return JIM_ERR;
5267         }
5268
5269         Jim_Nvp *n;
5270         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5271         if (e != JIM_OK) {
5272                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5273                 return e;
5274         }
5275         jim_wide a;
5276         e = Jim_GetOpt_Wide(&goi, &a);
5277         if (e != JIM_OK)
5278                 return e;
5279         struct target *target = Jim_CmdPrivData(interp);
5280         if (!target->tap->enabled)
5281                 return jim_target_tap_disabled(interp);
5282
5283         e = target_wait_state(target, n->value, a);
5284         if (e != ERROR_OK) {
5285                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5286                 Jim_SetResultFormatted(goi.interp,
5287                                 "target: %s wait %s fails (%#s) %s",
5288                                 target_name(target), n->name,
5289                                 eObj, target_strerror_safe(e));
5290                 Jim_FreeNewObj(interp, eObj);
5291                 return JIM_ERR;
5292         }
5293         return JIM_OK;
5294 }
5295 /* List for human, Events defined for this target.
5296  * scripts/programs should use 'name cget -event NAME'
5297  */
5298 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5299 {
5300         struct command_context *cmd_ctx = current_command_context(interp);
5301         assert(cmd_ctx != NULL);
5302
5303         struct target *target = Jim_CmdPrivData(interp);
5304         struct target_event_action *teap = target->event_action;
5305         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5306                                    target->target_number,
5307                                    target_name(target));
5308         command_print(cmd_ctx, "%-25s | Body", "Event");
5309         command_print(cmd_ctx, "------------------------- | "
5310                         "----------------------------------------");
5311         while (teap) {
5312                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5313                 command_print(cmd_ctx, "%-25s | %s",
5314                                 opt->name, Jim_GetString(teap->body, NULL));
5315                 teap = teap->next;
5316         }
5317         command_print(cmd_ctx, "***END***");
5318         return JIM_OK;
5319 }
5320 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5321 {
5322         if (argc != 1) {
5323                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5324                 return JIM_ERR;
5325         }
5326         struct target *target = Jim_CmdPrivData(interp);
5327         Jim_SetResultString(interp, target_state_name(target), -1);
5328         return JIM_OK;
5329 }
5330 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5331 {
5332         Jim_GetOptInfo goi;
5333         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5334         if (goi.argc != 1) {
5335                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5336                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5337                 return JIM_ERR;
5338         }
5339         Jim_Nvp *n;
5340         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5341         if (e != JIM_OK) {
5342                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5343                 return e;
5344         }
5345         struct target *target = Jim_CmdPrivData(interp);
5346         target_handle_event(target, n->value);
5347         return JIM_OK;
5348 }
5349
5350 static const struct command_registration target_instance_command_handlers[] = {
5351         {
5352                 .name = "configure",
5353                 .mode = COMMAND_CONFIG,
5354                 .jim_handler = jim_target_configure,
5355                 .help  = "configure a new target for use",
5356                 .usage = "[target_attribute ...]",
5357         },
5358         {
5359                 .name = "cget",
5360                 .mode = COMMAND_ANY,
5361                 .jim_handler = jim_target_configure,
5362                 .help  = "returns the specified target attribute",
5363                 .usage = "target_attribute",
5364         },
5365         {
5366                 .name = "mww",
5367                 .mode = COMMAND_EXEC,
5368                 .jim_handler = jim_target_mw,
5369                 .help = "Write 32-bit word(s) to target memory",
5370                 .usage = "address data [count]",
5371         },
5372         {
5373                 .name = "mwh",
5374                 .mode = COMMAND_EXEC,
5375                 .jim_handler = jim_target_mw,
5376                 .help = "Write 16-bit half-word(s) to target memory",
5377                 .usage = "address data [count]",
5378         },
5379         {
5380                 .name = "mwb",
5381                 .mode = COMMAND_EXEC,
5382                 .jim_handler = jim_target_mw,
5383                 .help = "Write byte(s) to target memory",
5384                 .usage = "address data [count]",
5385         },
5386         {
5387                 .name = "mdw",
5388                 .mode = COMMAND_EXEC,
5389                 .jim_handler = jim_target_md,
5390                 .help = "Display target memory as 32-bit words",
5391                 .usage = "address [count]",
5392         },
5393         {
5394                 .name = "mdh",
5395                 .mode = COMMAND_EXEC,
5396                 .jim_handler = jim_target_md,
5397                 .help = "Display target memory as 16-bit half-words",
5398                 .usage = "address [count]",
5399         },
5400         {
5401                 .name = "mdb",
5402                 .mode = COMMAND_EXEC,
5403                 .jim_handler = jim_target_md,
5404                 .help = "Display target memory as 8-bit bytes",
5405                 .usage = "address [count]",
5406         },
5407         {
5408                 .name = "array2mem",
5409                 .mode = COMMAND_EXEC,
5410                 .jim_handler = jim_target_array2mem,
5411                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5412                         "to target memory",
5413                 .usage = "arrayname bitwidth address count",
5414         },
5415         {
5416                 .name = "mem2array",
5417                 .mode = COMMAND_EXEC,
5418                 .jim_handler = jim_target_mem2array,
5419                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5420                         "from target memory",
5421                 .usage = "arrayname bitwidth address count",
5422         },
5423         {
5424                 .name = "eventlist",
5425                 .mode = COMMAND_EXEC,
5426                 .jim_handler = jim_target_event_list,
5427                 .help = "displays a table of events defined for this target",
5428         },
5429         {
5430                 .name = "curstate",
5431                 .mode = COMMAND_EXEC,
5432                 .jim_handler = jim_target_current_state,
5433                 .help = "displays the current state of this target",
5434         },
5435         {
5436                 .name = "arp_examine",
5437                 .mode = COMMAND_EXEC,
5438                 .jim_handler = jim_target_examine,
5439                 .help = "used internally for reset processing",
5440                 .usage = "['allow-defer']",
5441         },
5442         {
5443                 .name = "was_examined",
5444                 .mode = COMMAND_EXEC,
5445                 .jim_handler = jim_target_was_examined,
5446                 .help = "used internally for reset processing",
5447         },
5448         {
5449                 .name = "examine_deferred",
5450                 .mode = COMMAND_EXEC,
5451                 .jim_handler = jim_target_examine_deferred,
5452                 .help = "used internally for reset processing",
5453         },
5454         {
5455                 .name = "arp_halt_gdb",
5456                 .mode = COMMAND_EXEC,
5457                 .jim_handler = jim_target_halt_gdb,
5458                 .help = "used internally for reset processing to halt GDB",
5459         },
5460         {
5461                 .name = "arp_poll",
5462                 .mode = COMMAND_EXEC,
5463                 .jim_handler = jim_target_poll,
5464                 .help = "used internally for reset processing",
5465         },
5466         {
5467                 .name = "arp_reset",
5468                 .mode = COMMAND_EXEC,
5469                 .jim_handler = jim_target_reset,
5470                 .help = "used internally for reset processing",
5471         },
5472         {
5473                 .name = "arp_halt",
5474                 .mode = COMMAND_EXEC,
5475                 .jim_handler = jim_target_halt,
5476                 .help = "used internally for reset processing",
5477         },
5478         {
5479                 .name = "arp_waitstate",
5480                 .mode = COMMAND_EXEC,
5481                 .jim_handler = jim_target_wait_state,
5482                 .help = "used internally for reset processing",
5483         },
5484         {
5485                 .name = "invoke-event",
5486                 .mode = COMMAND_EXEC,
5487                 .jim_handler = jim_target_invoke_event,
5488                 .help = "invoke handler for specified event",
5489                 .usage = "event_name",
5490         },
5491         COMMAND_REGISTRATION_DONE
5492 };
5493
5494 static int target_create(Jim_GetOptInfo *goi)
5495 {
5496         Jim_Obj *new_cmd;
5497         Jim_Cmd *cmd;
5498         const char *cp;
5499         int e;
5500         int x;
5501         struct target *target;
5502         struct command_context *cmd_ctx;
5503
5504         cmd_ctx = current_command_context(goi->interp);
5505         assert(cmd_ctx != NULL);
5506
5507         if (goi->argc < 3) {
5508                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5509                 return JIM_ERR;
5510         }
5511
5512         /* COMMAND */
5513         Jim_GetOpt_Obj(goi, &new_cmd);
5514         /* does this command exist? */
5515         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5516         if (cmd) {
5517                 cp = Jim_GetString(new_cmd, NULL);
5518                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5519                 return JIM_ERR;
5520         }
5521
5522         /* TYPE */
5523         e = Jim_GetOpt_String(goi, &cp, NULL);
5524         if (e != JIM_OK)
5525                 return e;
5526         struct transport *tr = get_current_transport();
5527         if (tr->override_target) {
5528                 e = tr->override_target(&cp);
5529                 if (e != ERROR_OK) {
5530                         LOG_ERROR("The selected transport doesn't support this target");
5531                         return JIM_ERR;
5532                 }
5533                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5534         }
5535         /* now does target type exist */
5536         for (x = 0 ; target_types[x] ; x++) {
5537                 if (0 == strcmp(cp, target_types[x]->name)) {
5538                         /* found */
5539                         break;
5540                 }
5541
5542                 /* check for deprecated name */
5543                 if (target_types[x]->deprecated_name) {
5544                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5545                                 /* found */
5546                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5547                                 break;
5548                         }
5549                 }
5550         }
5551         if (target_types[x] == NULL) {
5552                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5553                 for (x = 0 ; target_types[x] ; x++) {
5554                         if (target_types[x + 1]) {
5555                                 Jim_AppendStrings(goi->interp,
5556                                                                    Jim_GetResult(goi->interp),
5557                                                                    target_types[x]->name,
5558                                                                    ", ", NULL);
5559                         } else {
5560                                 Jim_AppendStrings(goi->interp,
5561                                                                    Jim_GetResult(goi->interp),
5562                                                                    " or ",
5563                                                                    target_types[x]->name, NULL);
5564                         }
5565                 }
5566                 return JIM_ERR;
5567         }
5568
5569         /* Create it */
5570         target = calloc(1, sizeof(struct target));
5571         /* set target number */
5572         target->target_number = new_target_number();
5573         cmd_ctx->current_target = target;
5574
5575         /* allocate memory for each unique target type */
5576         target->type = calloc(1, sizeof(struct target_type));
5577
5578         memcpy(target->type, target_types[x], sizeof(struct target_type));
5579
5580         /* will be set by "-endian" */
5581         target->endianness = TARGET_ENDIAN_UNKNOWN;
5582
5583         /* default to first core, override with -coreid */
5584         target->coreid = 0;
5585
5586         target->working_area        = 0x0;
5587         target->working_area_size   = 0x0;
5588         target->working_areas       = NULL;
5589         target->backup_working_area = 0;
5590
5591         target->state               = TARGET_UNKNOWN;
5592         target->debug_reason        = DBG_REASON_UNDEFINED;
5593         target->reg_cache           = NULL;
5594         target->breakpoints         = NULL;
5595         target->watchpoints         = NULL;
5596         target->next                = NULL;
5597         target->arch_info           = NULL;
5598
5599         target->verbose_halt_msg        = true;
5600
5601         target->halt_issued                     = false;
5602
5603         /* initialize trace information */
5604         target->trace_info = calloc(1, sizeof(struct trace));
5605
5606         target->dbgmsg          = NULL;
5607         target->dbg_msg_enabled = 0;
5608
5609         target->endianness = TARGET_ENDIAN_UNKNOWN;
5610
5611         target->rtos = NULL;
5612         target->rtos_auto_detect = false;
5613
5614         /* Do the rest as "configure" options */
5615         goi->isconfigure = 1;
5616         e = target_configure(goi, target);
5617
5618         if (e == JIM_OK) {
5619                 if (target->has_dap) {
5620                         if (!target->dap_configured) {
5621                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5622                                 e = JIM_ERR;
5623                         }
5624                 } else {
5625                         if (!target->tap_configured) {
5626                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5627                                 e = JIM_ERR;
5628                         }
5629                 }
5630                 /* tap must be set after target was configured */
5631                 if (target->tap == NULL)
5632                         e = JIM_ERR;
5633         }
5634
5635         if (e != JIM_OK) {
5636                 free(target->type);
5637                 free(target);
5638                 return e;
5639         }
5640
5641         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5642                 /* default endian to little if not specified */
5643                 target->endianness = TARGET_LITTLE_ENDIAN;
5644         }
5645
5646         cp = Jim_GetString(new_cmd, NULL);
5647         target->cmd_name = strdup(cp);
5648
5649         if (target->type->target_create) {
5650                 e = (*(target->type->target_create))(target, goi->interp);
5651                 if (e != ERROR_OK) {
5652                         LOG_DEBUG("target_create failed");
5653                         free(target->type);
5654                         free(target->cmd_name);
5655                         free(target);
5656                         return JIM_ERR;
5657                 }
5658         }
5659
5660         /* create the target specific commands */
5661         if (target->type->commands) {
5662                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5663                 if (ERROR_OK != e)
5664                         LOG_ERROR("unable to register '%s' commands", cp);
5665         }
5666
5667         /* append to end of list */
5668         {
5669                 struct target **tpp;
5670                 tpp = &(all_targets);
5671                 while (*tpp)
5672                         tpp = &((*tpp)->next);
5673                 *tpp = target;
5674         }
5675
5676         /* now - create the new target name command */
5677         const struct command_registration target_subcommands[] = {
5678                 {
5679                         .chain = target_instance_command_handlers,
5680                 },
5681                 {
5682                         .chain = target->type->commands,
5683                 },
5684                 COMMAND_REGISTRATION_DONE
5685         };
5686         const struct command_registration target_commands[] = {
5687                 {
5688                         .name = cp,
5689                         .mode = COMMAND_ANY,
5690                         .help = "target command group",
5691                         .usage = "",
5692                         .chain = target_subcommands,
5693                 },
5694                 COMMAND_REGISTRATION_DONE
5695         };
5696         e = register_commands(cmd_ctx, NULL, target_commands);
5697         if (ERROR_OK != e)
5698                 return JIM_ERR;
5699
5700         struct command *c = command_find_in_context(cmd_ctx, cp);
5701         assert(c);
5702         command_set_handler_data(c, target);
5703
5704         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5705 }
5706
5707 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5708 {
5709         if (argc != 1) {
5710                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5711                 return JIM_ERR;
5712         }
5713         struct command_context *cmd_ctx = current_command_context(interp);
5714         assert(cmd_ctx != NULL);
5715
5716         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5717         return JIM_OK;
5718 }
5719
5720 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5721 {
5722         if (argc != 1) {
5723                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5724                 return JIM_ERR;
5725         }
5726         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5727         for (unsigned x = 0; NULL != target_types[x]; x++) {
5728                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5729                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5730         }
5731         return JIM_OK;
5732 }
5733
5734 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5735 {
5736         if (argc != 1) {
5737                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5738                 return JIM_ERR;
5739         }
5740         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5741         struct target *target = all_targets;
5742         while (target) {
5743                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5744                         Jim_NewStringObj(interp, target_name(target), -1));
5745                 target = target->next;
5746         }
5747         return JIM_OK;
5748 }
5749
5750 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5751 {
5752         int i;
5753         const char *targetname;
5754         int retval, len;
5755         struct target *target = (struct target *) NULL;
5756         struct target_list *head, *curr, *new;
5757         curr = (struct target_list *) NULL;
5758         head = (struct target_list *) NULL;
5759
5760         retval = 0;
5761         LOG_DEBUG("%d", argc);
5762         /* argv[1] = target to associate in smp
5763          * argv[2] = target to assoicate in smp
5764          * argv[3] ...
5765          */
5766
5767         for (i = 1; i < argc; i++) {
5768
5769                 targetname = Jim_GetString(argv[i], &len);
5770                 target = get_target(targetname);
5771                 LOG_DEBUG("%s ", targetname);
5772                 if (target) {
5773                         new = malloc(sizeof(struct target_list));
5774                         new->target = target;
5775                         new->next = (struct target_list *)NULL;
5776                         if (head == (struct target_list *)NULL) {
5777                                 head = new;
5778                                 curr = head;
5779                         } else {
5780                                 curr->next = new;
5781                                 curr = new;
5782                         }
5783                 }
5784         }
5785         /*  now parse the list of cpu and put the target in smp mode*/
5786         curr = head;
5787
5788         while (curr != (struct target_list *)NULL) {
5789                 target = curr->target;
5790                 target->smp = 1;
5791                 target->head = head;
5792                 curr = curr->next;
5793         }
5794
5795         if (target && target->rtos)
5796                 retval = rtos_smp_init(head->target);
5797
5798         return retval;
5799 }
5800
5801
5802 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5803 {
5804         Jim_GetOptInfo goi;
5805         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5806         if (goi.argc < 3) {
5807                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5808                         "<name> <target_type> [<target_options> ...]");
5809                 return JIM_ERR;
5810         }
5811         return target_create(&goi);
5812 }
5813
5814 static const struct command_registration target_subcommand_handlers[] = {
5815         {
5816                 .name = "init",
5817                 .mode = COMMAND_CONFIG,
5818                 .handler = handle_target_init_command,
5819                 .help = "initialize targets",
5820         },
5821         {
5822                 .name = "create",
5823                 /* REVISIT this should be COMMAND_CONFIG ... */
5824                 .mode = COMMAND_ANY,
5825                 .jim_handler = jim_target_create,
5826                 .usage = "name type '-chain-position' name [options ...]",
5827                 .help = "Creates and selects a new target",
5828         },
5829         {
5830                 .name = "current",
5831                 .mode = COMMAND_ANY,
5832                 .jim_handler = jim_target_current,
5833                 .help = "Returns the currently selected target",
5834         },
5835         {
5836                 .name = "types",
5837                 .mode = COMMAND_ANY,
5838                 .jim_handler = jim_target_types,
5839                 .help = "Returns the available target types as "
5840                                 "a list of strings",
5841         },
5842         {
5843                 .name = "names",
5844                 .mode = COMMAND_ANY,
5845                 .jim_handler = jim_target_names,
5846                 .help = "Returns the names of all targets as a list of strings",
5847         },
5848         {
5849                 .name = "smp",
5850                 .mode = COMMAND_ANY,
5851                 .jim_handler = jim_target_smp,
5852                 .usage = "targetname1 targetname2 ...",
5853                 .help = "gather several target in a smp list"
5854         },
5855
5856         COMMAND_REGISTRATION_DONE
5857 };
5858
5859 struct FastLoad {
5860         target_addr_t address;
5861         uint8_t *data;
5862         int length;
5863
5864 };
5865
5866 static int fastload_num;
5867 static struct FastLoad *fastload;
5868
5869 static void free_fastload(void)
5870 {
5871         if (fastload != NULL) {
5872                 int i;
5873                 for (i = 0; i < fastload_num; i++) {
5874                         if (fastload[i].data)
5875                                 free(fastload[i].data);
5876                 }
5877                 free(fastload);
5878                 fastload = NULL;
5879         }
5880 }
5881
5882 COMMAND_HANDLER(handle_fast_load_image_command)
5883 {
5884         uint8_t *buffer;
5885         size_t buf_cnt;
5886         uint32_t image_size;
5887         target_addr_t min_address = 0;
5888         target_addr_t max_address = -1;
5889         int i;
5890
5891         struct image image;
5892
5893         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5894                         &image, &min_address, &max_address);
5895         if (ERROR_OK != retval)
5896                 return retval;
5897
5898         struct duration bench;
5899         duration_start(&bench);
5900
5901         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5902         if (retval != ERROR_OK)
5903                 return retval;
5904
5905         image_size = 0x0;
5906         retval = ERROR_OK;
5907         fastload_num = image.num_sections;
5908         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5909         if (fastload == NULL) {
5910                 command_print(CMD_CTX, "out of memory");
5911                 image_close(&image);
5912                 return ERROR_FAIL;
5913         }
5914         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5915         for (i = 0; i < image.num_sections; i++) {
5916                 buffer = malloc(image.sections[i].size);
5917                 if (buffer == NULL) {
5918                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5919                                                   (int)(image.sections[i].size));
5920                         retval = ERROR_FAIL;
5921                         break;
5922                 }
5923
5924                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5925                 if (retval != ERROR_OK) {
5926                         free(buffer);
5927                         break;
5928                 }
5929
5930                 uint32_t offset = 0;
5931                 uint32_t length = buf_cnt;
5932
5933                 /* DANGER!!! beware of unsigned comparision here!!! */
5934
5935                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5936                                 (image.sections[i].base_address < max_address)) {
5937                         if (image.sections[i].base_address < min_address) {
5938                                 /* clip addresses below */
5939                                 offset += min_address-image.sections[i].base_address;
5940                                 length -= offset;
5941                         }
5942
5943                         if (image.sections[i].base_address + buf_cnt > max_address)
5944                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5945
5946                         fastload[i].address = image.sections[i].base_address + offset;
5947                         fastload[i].data = malloc(length);
5948                         if (fastload[i].data == NULL) {
5949                                 free(buffer);
5950                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5951                                                           length);
5952                                 retval = ERROR_FAIL;
5953                                 break;
5954                         }
5955                         memcpy(fastload[i].data, buffer + offset, length);
5956                         fastload[i].length = length;
5957
5958                         image_size += length;
5959                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5960                                                   (unsigned int)length,
5961                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5962                 }
5963
5964                 free(buffer);
5965         }
5966
5967         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5968                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5969                                 "in %fs (%0.3f KiB/s)", image_size,
5970                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5971
5972                 command_print(CMD_CTX,
5973                                 "WARNING: image has not been loaded to target!"
5974                                 "You can issue a 'fast_load' to finish loading.");
5975         }
5976
5977         image_close(&image);
5978
5979         if (retval != ERROR_OK)
5980                 free_fastload();
5981
5982         return retval;
5983 }
5984
5985 COMMAND_HANDLER(handle_fast_load_command)
5986 {
5987         if (CMD_ARGC > 0)
5988                 return ERROR_COMMAND_SYNTAX_ERROR;
5989         if (fastload == NULL) {
5990                 LOG_ERROR("No image in memory");
5991                 return ERROR_FAIL;
5992         }
5993         int i;
5994         int64_t ms = timeval_ms();
5995         int size = 0;
5996         int retval = ERROR_OK;
5997         for (i = 0; i < fastload_num; i++) {
5998                 struct target *target = get_current_target(CMD_CTX);
5999                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6000                                           (unsigned int)(fastload[i].address),
6001                                           (unsigned int)(fastload[i].length));
6002                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6003                 if (retval != ERROR_OK)
6004                         break;
6005                 size += fastload[i].length;
6006         }
6007         if (retval == ERROR_OK) {
6008                 int64_t after = timeval_ms();
6009                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6010         }
6011         return retval;
6012 }
6013
6014 static const struct command_registration target_command_handlers[] = {
6015         {
6016                 .name = "targets",
6017                 .handler = handle_targets_command,
6018                 .mode = COMMAND_ANY,
6019                 .help = "change current default target (one parameter) "
6020                         "or prints table of all targets (no parameters)",
6021                 .usage = "[target]",
6022         },
6023         {
6024                 .name = "target",
6025                 .mode = COMMAND_CONFIG,
6026                 .help = "configure target",
6027
6028                 .chain = target_subcommand_handlers,
6029         },
6030         COMMAND_REGISTRATION_DONE
6031 };
6032
6033 int target_register_commands(struct command_context *cmd_ctx)
6034 {
6035         return register_commands(cmd_ctx, NULL, target_command_handlers);
6036 }
6037
6038 static bool target_reset_nag = true;
6039
6040 bool get_target_reset_nag(void)
6041 {
6042         return target_reset_nag;
6043 }
6044
6045 COMMAND_HANDLER(handle_target_reset_nag)
6046 {
6047         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6048                         &target_reset_nag, "Nag after each reset about options to improve "
6049                         "performance");
6050 }
6051
6052 COMMAND_HANDLER(handle_ps_command)
6053 {
6054         struct target *target = get_current_target(CMD_CTX);
6055         char *display;
6056         if (target->state != TARGET_HALTED) {
6057                 LOG_INFO("target not halted !!");
6058                 return ERROR_OK;
6059         }
6060
6061         if ((target->rtos) && (target->rtos->type)
6062                         && (target->rtos->type->ps_command)) {
6063                 display = target->rtos->type->ps_command(target);
6064                 command_print(CMD_CTX, "%s", display);
6065                 free(display);
6066                 return ERROR_OK;
6067         } else {
6068                 LOG_INFO("failed");
6069                 return ERROR_TARGET_FAILURE;
6070         }
6071 }
6072
6073 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6074 {
6075         if (text != NULL)
6076                 command_print_sameline(cmd_ctx, "%s", text);
6077         for (int i = 0; i < size; i++)
6078                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6079         command_print(cmd_ctx, " ");
6080 }
6081
6082 COMMAND_HANDLER(handle_test_mem_access_command)
6083 {
6084         struct target *target = get_current_target(CMD_CTX);
6085         uint32_t test_size;
6086         int retval = ERROR_OK;
6087
6088         if (target->state != TARGET_HALTED) {
6089                 LOG_INFO("target not halted !!");
6090                 return ERROR_FAIL;
6091         }
6092
6093         if (CMD_ARGC != 1)
6094                 return ERROR_COMMAND_SYNTAX_ERROR;
6095
6096         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6097
6098         /* Test reads */
6099         size_t num_bytes = test_size + 4;
6100
6101         struct working_area *wa = NULL;
6102         retval = target_alloc_working_area(target, num_bytes, &wa);
6103         if (retval != ERROR_OK) {
6104                 LOG_ERROR("Not enough working area");
6105                 return ERROR_FAIL;
6106         }
6107
6108         uint8_t *test_pattern = malloc(num_bytes);
6109
6110         for (size_t i = 0; i < num_bytes; i++)
6111                 test_pattern[i] = rand();
6112
6113         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6114         if (retval != ERROR_OK) {
6115                 LOG_ERROR("Test pattern write failed");
6116                 goto out;
6117         }
6118
6119         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6120                 for (int size = 1; size <= 4; size *= 2) {
6121                         for (int offset = 0; offset < 4; offset++) {
6122                                 uint32_t count = test_size / size;
6123                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6124                                 uint8_t *read_ref = malloc(host_bufsiz);
6125                                 uint8_t *read_buf = malloc(host_bufsiz);
6126
6127                                 for (size_t i = 0; i < host_bufsiz; i++) {
6128                                         read_ref[i] = rand();
6129                                         read_buf[i] = read_ref[i];
6130                                 }
6131                                 command_print_sameline(CMD_CTX,
6132                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6133                                                 size, offset, host_offset ? "un" : "");
6134
6135                                 struct duration bench;
6136                                 duration_start(&bench);
6137
6138                                 retval = target_read_memory(target, wa->address + offset, size, count,
6139                                                 read_buf + size + host_offset);
6140
6141                                 duration_measure(&bench);
6142
6143                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6144                                         command_print(CMD_CTX, "Unsupported alignment");
6145                                         goto next;
6146                                 } else if (retval != ERROR_OK) {
6147                                         command_print(CMD_CTX, "Memory read failed");
6148                                         goto next;
6149                                 }
6150
6151                                 /* replay on host */
6152                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6153
6154                                 /* check result */
6155                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6156                                 if (result == 0) {
6157                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6158                                                         duration_elapsed(&bench),
6159                                                         duration_kbps(&bench, count * size));
6160                                 } else {
6161                                         command_print(CMD_CTX, "Compare failed");
6162                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6163                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6164                                 }
6165 next:
6166                                 free(read_ref);
6167                                 free(read_buf);
6168                         }
6169                 }
6170         }
6171
6172 out:
6173         free(test_pattern);
6174
6175         if (wa != NULL)
6176                 target_free_working_area(target, wa);
6177
6178         /* Test writes */
6179         num_bytes = test_size + 4 + 4 + 4;
6180
6181         retval = target_alloc_working_area(target, num_bytes, &wa);
6182         if (retval != ERROR_OK) {
6183                 LOG_ERROR("Not enough working area");
6184                 return ERROR_FAIL;
6185         }
6186
6187         test_pattern = malloc(num_bytes);
6188
6189         for (size_t i = 0; i < num_bytes; i++)
6190                 test_pattern[i] = rand();
6191
6192         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6193                 for (int size = 1; size <= 4; size *= 2) {
6194                         for (int offset = 0; offset < 4; offset++) {
6195                                 uint32_t count = test_size / size;
6196                                 size_t host_bufsiz = count * size + host_offset;
6197                                 uint8_t *read_ref = malloc(num_bytes);
6198                                 uint8_t *read_buf = malloc(num_bytes);
6199                                 uint8_t *write_buf = malloc(host_bufsiz);
6200
6201                                 for (size_t i = 0; i < host_bufsiz; i++)
6202                                         write_buf[i] = rand();
6203                                 command_print_sameline(CMD_CTX,
6204                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6205                                                 size, offset, host_offset ? "un" : "");
6206
6207                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6208                                 if (retval != ERROR_OK) {
6209                                         command_print(CMD_CTX, "Test pattern write failed");
6210                                         goto nextw;
6211                                 }
6212
6213                                 /* replay on host */
6214                                 memcpy(read_ref, test_pattern, num_bytes);
6215                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6216
6217                                 struct duration bench;
6218                                 duration_start(&bench);
6219
6220                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6221                                                 write_buf + host_offset);
6222
6223                                 duration_measure(&bench);
6224
6225                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6226                                         command_print(CMD_CTX, "Unsupported alignment");
6227                                         goto nextw;
6228                                 } else if (retval != ERROR_OK) {
6229                                         command_print(CMD_CTX, "Memory write failed");
6230                                         goto nextw;
6231                                 }
6232
6233                                 /* read back */
6234                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6235                                 if (retval != ERROR_OK) {
6236                                         command_print(CMD_CTX, "Test pattern write failed");
6237                                         goto nextw;
6238                                 }
6239
6240                                 /* check result */
6241                                 int result = memcmp(read_ref, read_buf, num_bytes);
6242                                 if (result == 0) {
6243                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6244                                                         duration_elapsed(&bench),
6245                                                         duration_kbps(&bench, count * size));
6246                                 } else {
6247                                         command_print(CMD_CTX, "Compare failed");
6248                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6249                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6250                                 }
6251 nextw:
6252                                 free(read_ref);
6253                                 free(read_buf);
6254                         }
6255                 }
6256         }
6257
6258         free(test_pattern);
6259
6260         if (wa != NULL)
6261                 target_free_working_area(target, wa);
6262         return retval;
6263 }
6264
6265 static const struct command_registration target_exec_command_handlers[] = {
6266         {
6267                 .name = "fast_load_image",
6268                 .handler = handle_fast_load_image_command,
6269                 .mode = COMMAND_ANY,
6270                 .help = "Load image into server memory for later use by "
6271                         "fast_load; primarily for profiling",
6272                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6273                         "[min_address [max_length]]",
6274         },
6275         {
6276                 .name = "fast_load",
6277                 .handler = handle_fast_load_command,
6278                 .mode = COMMAND_EXEC,
6279                 .help = "loads active fast load image to current target "
6280                         "- mainly for profiling purposes",
6281                 .usage = "",
6282         },
6283         {
6284                 .name = "profile",
6285                 .handler = handle_profile_command,
6286                 .mode = COMMAND_EXEC,
6287                 .usage = "seconds filename [start end]",
6288                 .help = "profiling samples the CPU PC",
6289         },
6290         /** @todo don't register virt2phys() unless target supports it */
6291         {
6292                 .name = "virt2phys",
6293                 .handler = handle_virt2phys_command,
6294                 .mode = COMMAND_ANY,
6295                 .help = "translate a virtual address into a physical address",
6296                 .usage = "virtual_address",
6297         },
6298         {
6299                 .name = "reg",
6300                 .handler = handle_reg_command,
6301                 .mode = COMMAND_EXEC,
6302                 .help = "display (reread from target with \"force\") or set a register; "
6303                         "with no arguments, displays all registers and their values",
6304                 .usage = "[(register_number|register_name) [(value|'force')]]",
6305         },
6306         {
6307                 .name = "poll",
6308                 .handler = handle_poll_command,
6309                 .mode = COMMAND_EXEC,
6310                 .help = "poll target state; or reconfigure background polling",
6311                 .usage = "['on'|'off']",
6312         },
6313         {
6314                 .name = "wait_halt",
6315                 .handler = handle_wait_halt_command,
6316                 .mode = COMMAND_EXEC,
6317                 .help = "wait up to the specified number of milliseconds "
6318                         "(default 5000) for a previously requested halt",
6319                 .usage = "[milliseconds]",
6320         },
6321         {
6322                 .name = "halt",
6323                 .handler = handle_halt_command,
6324                 .mode = COMMAND_EXEC,
6325                 .help = "request target to halt, then wait up to the specified"
6326                         "number of milliseconds (default 5000) for it to complete",
6327                 .usage = "[milliseconds]",
6328         },
6329         {
6330                 .name = "resume",
6331                 .handler = handle_resume_command,
6332                 .mode = COMMAND_EXEC,
6333                 .help = "resume target execution from current PC or address",
6334                 .usage = "[address]",
6335         },
6336         {
6337                 .name = "reset",
6338                 .handler = handle_reset_command,
6339                 .mode = COMMAND_EXEC,
6340                 .usage = "[run|halt|init]",
6341                 .help = "Reset all targets into the specified mode."
6342                         "Default reset mode is run, if not given.",
6343         },
6344         {
6345                 .name = "soft_reset_halt",
6346                 .handler = handle_soft_reset_halt_command,
6347                 .mode = COMMAND_EXEC,
6348                 .usage = "",
6349                 .help = "halt the target and do a soft reset",
6350         },
6351         {
6352                 .name = "step",
6353                 .handler = handle_step_command,
6354                 .mode = COMMAND_EXEC,
6355                 .help = "step one instruction from current PC or address",
6356                 .usage = "[address]",
6357         },
6358         {
6359                 .name = "mdd",
6360                 .handler = handle_md_command,
6361                 .mode = COMMAND_EXEC,
6362                 .help = "display memory words",
6363                 .usage = "['phys'] address [count]",
6364         },
6365         {
6366                 .name = "mdw",
6367                 .handler = handle_md_command,
6368                 .mode = COMMAND_EXEC,
6369                 .help = "display memory words",
6370                 .usage = "['phys'] address [count]",
6371         },
6372         {
6373                 .name = "mdh",
6374                 .handler = handle_md_command,
6375                 .mode = COMMAND_EXEC,
6376                 .help = "display memory half-words",
6377                 .usage = "['phys'] address [count]",
6378         },
6379         {
6380                 .name = "mdb",
6381                 .handler = handle_md_command,
6382                 .mode = COMMAND_EXEC,
6383                 .help = "display memory bytes",
6384                 .usage = "['phys'] address [count]",
6385         },
6386         {
6387                 .name = "mwd",
6388                 .handler = handle_mw_command,
6389                 .mode = COMMAND_EXEC,
6390                 .help = "write memory word",
6391                 .usage = "['phys'] address value [count]",
6392         },
6393         {
6394                 .name = "mww",
6395                 .handler = handle_mw_command,
6396                 .mode = COMMAND_EXEC,
6397                 .help = "write memory word",
6398                 .usage = "['phys'] address value [count]",
6399         },
6400         {
6401                 .name = "mwh",
6402                 .handler = handle_mw_command,
6403                 .mode = COMMAND_EXEC,
6404                 .help = "write memory half-word",
6405                 .usage = "['phys'] address value [count]",
6406         },
6407         {
6408                 .name = "mwb",
6409                 .handler = handle_mw_command,
6410                 .mode = COMMAND_EXEC,
6411                 .help = "write memory byte",
6412                 .usage = "['phys'] address value [count]",
6413         },
6414         {
6415                 .name = "bp",
6416                 .handler = handle_bp_command,
6417                 .mode = COMMAND_EXEC,
6418                 .help = "list or set hardware or software breakpoint",
6419                 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6420         },
6421         {
6422                 .name = "rbp",
6423                 .handler = handle_rbp_command,
6424                 .mode = COMMAND_EXEC,
6425                 .help = "remove breakpoint",
6426                 .usage = "address",
6427         },
6428         {
6429                 .name = "wp",
6430                 .handler = handle_wp_command,
6431                 .mode = COMMAND_EXEC,
6432                 .help = "list (no params) or create watchpoints",
6433                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6434         },
6435         {
6436                 .name = "rwp",
6437                 .handler = handle_rwp_command,
6438                 .mode = COMMAND_EXEC,
6439                 .help = "remove watchpoint",
6440                 .usage = "address",
6441         },
6442         {
6443                 .name = "load_image",
6444                 .handler = handle_load_image_command,
6445                 .mode = COMMAND_EXEC,
6446                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6447                         "[min_address] [max_length]",
6448         },
6449         {
6450                 .name = "dump_image",
6451                 .handler = handle_dump_image_command,
6452                 .mode = COMMAND_EXEC,
6453                 .usage = "filename address size",
6454         },
6455         {
6456                 .name = "verify_image_checksum",
6457                 .handler = handle_verify_image_checksum_command,
6458                 .mode = COMMAND_EXEC,
6459                 .usage = "filename [offset [type]]",
6460         },
6461         {
6462                 .name = "verify_image",
6463                 .handler = handle_verify_image_command,
6464                 .mode = COMMAND_EXEC,
6465                 .usage = "filename [offset [type]]",
6466         },
6467         {
6468                 .name = "test_image",
6469                 .handler = handle_test_image_command,
6470                 .mode = COMMAND_EXEC,
6471                 .usage = "filename [offset [type]]",
6472         },
6473         {
6474                 .name = "mem2array",
6475                 .mode = COMMAND_EXEC,
6476                 .jim_handler = jim_mem2array,
6477                 .help = "read 8/16/32 bit memory and return as a TCL array "
6478                         "for script processing",
6479                 .usage = "arrayname bitwidth address count",
6480         },
6481         {
6482                 .name = "array2mem",
6483                 .mode = COMMAND_EXEC,
6484                 .jim_handler = jim_array2mem,
6485                 .help = "convert a TCL array to memory locations "
6486                         "and write the 8/16/32 bit values",
6487                 .usage = "arrayname bitwidth address count",
6488         },
6489         {
6490                 .name = "reset_nag",
6491                 .handler = handle_target_reset_nag,
6492                 .mode = COMMAND_ANY,
6493                 .help = "Nag after each reset about options that could have been "
6494                                 "enabled to improve performance. ",
6495                 .usage = "['enable'|'disable']",
6496         },
6497         {
6498                 .name = "ps",
6499                 .handler = handle_ps_command,
6500                 .mode = COMMAND_EXEC,
6501                 .help = "list all tasks ",
6502                 .usage = " ",
6503         },
6504         {
6505                 .name = "test_mem_access",
6506                 .handler = handle_test_mem_access_command,
6507                 .mode = COMMAND_EXEC,
6508                 .help = "Test the target's memory access functions",
6509                 .usage = "size",
6510         },
6511
6512         COMMAND_REGISTRATION_DONE
6513 };
6514 static int target_register_user_commands(struct command_context *cmd_ctx)
6515 {
6516         int retval = ERROR_OK;
6517         retval = target_request_register_commands(cmd_ctx);
6518         if (retval != ERROR_OK)
6519                 return retval;
6520
6521         retval = trace_register_commands(cmd_ctx);
6522         if (retval != ERROR_OK)
6523                 return retval;
6524
6525
6526         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6527 }