]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: Fixed format problem for mdh
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38
39 #include "target.h"
40 #include "target_type.h"
41 #include "target_request.h"
42 #include "breakpoints.h"
43 #include "register.h"
44 #include "trace.h"
45 #include "image.h"
46
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target,
49                 int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target,
51                 int argc, Jim_Obj *const *argv);
52
53 /* targets */
54 extern struct target_type arm7tdmi_target;
55 extern struct target_type arm720t_target;
56 extern struct target_type arm9tdmi_target;
57 extern struct target_type arm920t_target;
58 extern struct target_type arm966e_target;
59 extern struct target_type arm926ejs_target;
60 extern struct target_type fa526_target;
61 extern struct target_type feroceon_target;
62 extern struct target_type dragonite_target;
63 extern struct target_type xscale_target;
64 extern struct target_type cortexm3_target;
65 extern struct target_type cortexa8_target;
66 extern struct target_type arm11_target;
67 extern struct target_type mips_m4k_target;
68 extern struct target_type avr_target;
69 extern struct target_type dsp563xx_target;
70 extern struct target_type testee_target;
71
72 struct target_type *target_types[] =
73 {
74         &arm7tdmi_target,
75         &arm9tdmi_target,
76         &arm920t_target,
77         &arm720t_target,
78         &arm966e_target,
79         &arm926ejs_target,
80         &fa526_target,
81         &feroceon_target,
82         &dragonite_target,
83         &xscale_target,
84         &cortexm3_target,
85         &cortexa8_target,
86         &arm11_target,
87         &mips_m4k_target,
88         &avr_target,
89         &dsp563xx_target,
90         &testee_target,
91         NULL,
92 };
93
94 struct target *all_targets = NULL;
95 struct target_event_callback *target_event_callbacks = NULL;
96 struct target_timer_callback *target_timer_callbacks = NULL;
97
98 static const Jim_Nvp nvp_assert[] = {
99         { .name = "assert", NVP_ASSERT },
100         { .name = "deassert", NVP_DEASSERT },
101         { .name = "T", NVP_ASSERT },
102         { .name = "F", NVP_DEASSERT },
103         { .name = "t", NVP_ASSERT },
104         { .name = "f", NVP_DEASSERT },
105         { .name = NULL, .value = -1 }
106 };
107
108 static const Jim_Nvp nvp_error_target[] = {
109         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
110         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
111         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
112         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
113         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
114         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
115         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
116         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
117         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
118         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
119         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
120         { .value = -1, .name = NULL }
121 };
122
123 const char *target_strerror_safe(int err)
124 {
125         const Jim_Nvp *n;
126
127         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
128         if (n->name == NULL) {
129                 return "unknown";
130         } else {
131                 return n->name;
132         }
133 }
134
135 static const Jim_Nvp nvp_target_event[] = {
136         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
137         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
138
139         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
140         { .value = TARGET_EVENT_HALTED, .name = "halted" },
141         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
142         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
143         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
144
145         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
146         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
147
148         /* historical name */
149
150         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
151
152         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
153         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
154         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
155         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
156         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
157         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
158         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
159         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
160         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
161         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
162         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
163
164         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
165         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
166
167         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
168         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
169
170         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
171         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
172
173         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
174         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
175
176         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
177         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
178
179         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
180         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
181         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
182
183         { .name = NULL, .value = -1 }
184 };
185
186 static const Jim_Nvp nvp_target_state[] = {
187         { .name = "unknown", .value = TARGET_UNKNOWN },
188         { .name = "running", .value = TARGET_RUNNING },
189         { .name = "halted",  .value = TARGET_HALTED },
190         { .name = "reset",   .value = TARGET_RESET },
191         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
192         { .name = NULL, .value = -1 },
193 };
194
195 static const Jim_Nvp nvp_target_debug_reason [] = {
196         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
197         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
198         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
199         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
200         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
201         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
202         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
203         { .name = NULL, .value = -1 },
204 };
205
206 static const Jim_Nvp nvp_target_endian[] = {
207         { .name = "big",    .value = TARGET_BIG_ENDIAN },
208         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
209         { .name = "be",     .value = TARGET_BIG_ENDIAN },
210         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
211         { .name = NULL,     .value = -1 },
212 };
213
214 static const Jim_Nvp nvp_reset_modes[] = {
215         { .name = "unknown", .value = RESET_UNKNOWN },
216         { .name = "run"    , .value = RESET_RUN },
217         { .name = "halt"   , .value = RESET_HALT },
218         { .name = "init"   , .value = RESET_INIT },
219         { .name = NULL     , .value = -1 },
220 };
221
222 const char *debug_reason_name(struct target *t)
223 {
224         const char *cp;
225
226         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
227                         t->debug_reason)->name;
228         if (!cp) {
229                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
230                 cp = "(*BUG*unknown*BUG*)";
231         }
232         return cp;
233 }
234
235 const char *
236 target_state_name( struct target *t )
237 {
238         const char *cp;
239         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
240         if( !cp ){
241                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
242                 cp = "(*BUG*unknown*BUG*)";
243         }
244         return cp;
245 }
246
247 /* determine the number of the new target */
248 static int new_target_number(void)
249 {
250         struct target *t;
251         int x;
252
253         /* number is 0 based */
254         x = -1;
255         t = all_targets;
256         while (t) {
257                 if (x < t->target_number) {
258                         x = t->target_number;
259                 }
260                 t = t->next;
261         }
262         return x + 1;
263 }
264
265 /* read a uint32_t from a buffer in target memory endianness */
266 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
267 {
268         if (target->endianness == TARGET_LITTLE_ENDIAN)
269                 return le_to_h_u32(buffer);
270         else
271                 return be_to_h_u32(buffer);
272 }
273
274 /* read a uint16_t from a buffer in target memory endianness */
275 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u16(buffer);
279         else
280                 return be_to_h_u16(buffer);
281 }
282
283 /* read a uint8_t from a buffer in target memory endianness */
284 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
285 {
286         return *buffer & 0x0ff;
287 }
288
289 /* write a uint32_t to a buffer in target memory endianness */
290 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
291 {
292         if (target->endianness == TARGET_LITTLE_ENDIAN)
293                 h_u32_to_le(buffer, value);
294         else
295                 h_u32_to_be(buffer, value);
296 }
297
298 /* write a uint16_t to a buffer in target memory endianness */
299 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u16_to_le(buffer, value);
303         else
304                 h_u16_to_be(buffer, value);
305 }
306
307 /* write a uint8_t to a buffer in target memory endianness */
308 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
309 {
310         *buffer = value;
311 }
312
313 /* return a pointer to a configured target; id is name or number */
314 struct target *get_target(const char *id)
315 {
316         struct target *target;
317
318         /* try as tcltarget name */
319         for (target = all_targets; target; target = target->next) {
320                 if (target->cmd_name == NULL)
321                         continue;
322                 if (strcmp(id, target->cmd_name) == 0)
323                         return target;
324         }
325
326         /* It's OK to remove this fallback sometime after August 2010 or so */
327
328         /* no match, try as number */
329         unsigned num;
330         if (parse_uint(id, &num) != ERROR_OK)
331                 return NULL;
332
333         for (target = all_targets; target; target = target->next) {
334                 if (target->target_number == (int)num) {
335                         LOG_WARNING("use '%s' as target identifier, not '%u'",
336                                         target->cmd_name, num);
337                         return target;
338                 }
339         }
340
341         return NULL;
342 }
343
344 /* returns a pointer to the n-th configured target */
345 static struct target *get_target_by_num(int num)
346 {
347         struct target *target = all_targets;
348
349         while (target) {
350                 if (target->target_number == num) {
351                         return target;
352                 }
353                 target = target->next;
354         }
355
356         return NULL;
357 }
358
359 struct target* get_current_target(struct command_context *cmd_ctx)
360 {
361         struct target *target = get_target_by_num(cmd_ctx->current_target);
362
363         if (target == NULL)
364         {
365                 LOG_ERROR("BUG: current_target out of bounds");
366                 exit(-1);
367         }
368
369         return target;
370 }
371
372 int target_poll(struct target *target)
373 {
374         int retval;
375
376         /* We can't poll until after examine */
377         if (!target_was_examined(target))
378         {
379                 /* Fail silently lest we pollute the log */
380                 return ERROR_FAIL;
381         }
382
383         retval = target->type->poll(target);
384         if (retval != ERROR_OK)
385                 return retval;
386
387         if (target->halt_issued)
388         {
389                 if (target->state == TARGET_HALTED)
390                 {
391                         target->halt_issued = false;
392                 } else
393                 {
394                         long long t = timeval_ms() - target->halt_issued_time;
395                         if (t>1000)
396                         {
397                                 target->halt_issued = false;
398                                 LOG_INFO("Halt timed out, wake up GDB.");
399                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
400                         }
401                 }
402         }
403
404         return ERROR_OK;
405 }
406
407 int target_halt(struct target *target)
408 {
409         int retval;
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         retval = target->type->halt(target);
418         if (retval != ERROR_OK)
419                 return retval;
420
421         target->halt_issued = true;
422         target->halt_issued_time = timeval_ms();
423
424         return ERROR_OK;
425 }
426
427 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
428 {
429         int retval;
430
431         /* We can't poll until after examine */
432         if (!target_was_examined(target))
433         {
434                 LOG_ERROR("Target not examined yet");
435                 return ERROR_FAIL;
436         }
437
438         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
439          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
440          * the application.
441          */
442         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
443                 return retval;
444
445         return retval;
446 }
447
448 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
449 {
450         char buf[100];
451         int retval;
452         Jim_Nvp *n;
453         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
454         if (n->name == NULL) {
455                 LOG_ERROR("invalid reset mode");
456                 return ERROR_FAIL;
457         }
458
459         /* disable polling during reset to make reset event scripts
460          * more predictable, i.e. dr/irscan & pathmove in events will
461          * not have JTAG operations injected into the middle of a sequence.
462          */
463         bool save_poll = jtag_poll_get_enabled();
464
465         jtag_poll_set_enabled(false);
466
467         sprintf(buf, "ocd_process_reset %s", n->name);
468         retval = Jim_Eval(cmd_ctx->interp, buf);
469
470         jtag_poll_set_enabled(save_poll);
471
472         if (retval != JIM_OK) {
473                 Jim_PrintErrorMessage(cmd_ctx->interp);
474                 return ERROR_FAIL;
475         }
476
477         /* We want any events to be processed before the prompt */
478         retval = target_call_timer_callbacks_now();
479
480         struct target *target;
481         for (target = all_targets; target; target = target->next) {
482                 target->type->check_reset(target);
483         }
484
485         return retval;
486 }
487
488 static int identity_virt2phys(struct target *target,
489                 uint32_t virtual, uint32_t *physical)
490 {
491         *physical = virtual;
492         return ERROR_OK;
493 }
494
495 static int no_mmu(struct target *target, int *enabled)
496 {
497         *enabled = 0;
498         return ERROR_OK;
499 }
500
501 static int default_examine(struct target *target)
502 {
503         target_set_examined(target);
504         return ERROR_OK;
505 }
506
507 /* no check by default */
508 static int default_check_reset(struct target *target)
509 {
510         return ERROR_OK;
511 }
512
513 int target_examine_one(struct target *target)
514 {
515         return target->type->examine(target);
516 }
517
518 static int jtag_enable_callback(enum jtag_event event, void *priv)
519 {
520         struct target *target = priv;
521
522         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
523                 return ERROR_OK;
524
525         jtag_unregister_event_callback(jtag_enable_callback, target);
526         return target_examine_one(target);
527 }
528
529
530 /* Targets that correctly implement init + examine, i.e.
531  * no communication with target during init:
532  *
533  * XScale
534  */
535 int target_examine(void)
536 {
537         int retval = ERROR_OK;
538         struct target *target;
539
540         for (target = all_targets; target; target = target->next)
541         {
542                 /* defer examination, but don't skip it */
543                 if (!target->tap->enabled) {
544                         jtag_register_event_callback(jtag_enable_callback,
545                                         target);
546                         continue;
547                 }
548                 if ((retval = target_examine_one(target)) != ERROR_OK)
549                         return retval;
550         }
551         return retval;
552 }
553 const char *target_type_name(struct target *target)
554 {
555         return target->type->name;
556 }
557
558 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
559 {
560         if (!target_was_examined(target))
561         {
562                 LOG_ERROR("Target not examined yet");
563                 return ERROR_FAIL;
564         }
565         return target->type->write_memory_imp(target, address, size, count, buffer);
566 }
567
568 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
569 {
570         if (!target_was_examined(target))
571         {
572                 LOG_ERROR("Target not examined yet");
573                 return ERROR_FAIL;
574         }
575         return target->type->read_memory_imp(target, address, size, count, buffer);
576 }
577
578 static int target_soft_reset_halt_imp(struct target *target)
579 {
580         if (!target_was_examined(target))
581         {
582                 LOG_ERROR("Target not examined yet");
583                 return ERROR_FAIL;
584         }
585         if (!target->type->soft_reset_halt_imp) {
586                 LOG_ERROR("Target %s does not support soft_reset_halt",
587                                 target_name(target));
588                 return ERROR_FAIL;
589         }
590         return target->type->soft_reset_halt_imp(target);
591 }
592
593 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
594 {
595         if (!target_was_examined(target))
596         {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
601 }
602
603 int target_read_memory(struct target *target,
604                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
605 {
606         return target->type->read_memory(target, address, size, count, buffer);
607 }
608
609 int target_read_phys_memory(struct target *target,
610                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
611 {
612         return target->type->read_phys_memory(target, address, size, count, buffer);
613 }
614
615 int target_write_memory(struct target *target,
616                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
617 {
618         return target->type->write_memory(target, address, size, count, buffer);
619 }
620
621 int target_write_phys_memory(struct target *target,
622                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
623 {
624         return target->type->write_phys_memory(target, address, size, count, buffer);
625 }
626
627 int target_bulk_write_memory(struct target *target,
628                 uint32_t address, uint32_t count, uint8_t *buffer)
629 {
630         return target->type->bulk_write_memory(target, address, count, buffer);
631 }
632
633 int target_add_breakpoint(struct target *target,
634                 struct breakpoint *breakpoint)
635 {
636         if (target->state != TARGET_HALTED) {
637                 LOG_WARNING("target %s is not halted", target->cmd_name);
638                 return ERROR_TARGET_NOT_HALTED;
639         }
640         return target->type->add_breakpoint(target, breakpoint);
641 }
642 int target_remove_breakpoint(struct target *target,
643                 struct breakpoint *breakpoint)
644 {
645         return target->type->remove_breakpoint(target, breakpoint);
646 }
647
648 int target_add_watchpoint(struct target *target,
649                 struct watchpoint *watchpoint)
650 {
651         if (target->state != TARGET_HALTED) {
652                 LOG_WARNING("target %s is not halted", target->cmd_name);
653                 return ERROR_TARGET_NOT_HALTED;
654         }
655         return target->type->add_watchpoint(target, watchpoint);
656 }
657 int target_remove_watchpoint(struct target *target,
658                 struct watchpoint *watchpoint)
659 {
660         return target->type->remove_watchpoint(target, watchpoint);
661 }
662
663 int target_get_gdb_reg_list(struct target *target,
664                 struct reg **reg_list[], int *reg_list_size)
665 {
666         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
667 }
668 int target_step(struct target *target,
669                 int current, uint32_t address, int handle_breakpoints)
670 {
671         return target->type->step(target, current, address, handle_breakpoints);
672 }
673
674
675 int target_run_algorithm(struct target *target,
676                 int num_mem_params, struct mem_param *mem_params,
677                 int num_reg_params, struct reg_param *reg_param,
678                 uint32_t entry_point, uint32_t exit_point,
679                 int timeout_ms, void *arch_info)
680 {
681         return target->type->run_algorithm(target,
682                         num_mem_params, mem_params, num_reg_params, reg_param,
683                         entry_point, exit_point, timeout_ms, arch_info);
684 }
685
686 /**
687  * Reset the @c examined flag for the given target.
688  * Pure paranoia -- targets are zeroed on allocation.
689  */
690 static void target_reset_examined(struct target *target)
691 {
692         target->examined = false;
693 }
694
695 static int
696 err_read_phys_memory(struct target *target, uint32_t address,
697                 uint32_t size, uint32_t count, uint8_t *buffer)
698 {
699         LOG_ERROR("Not implemented: %s", __func__);
700         return ERROR_FAIL;
701 }
702
703 static int
704 err_write_phys_memory(struct target *target, uint32_t address,
705                 uint32_t size, uint32_t count, uint8_t *buffer)
706 {
707         LOG_ERROR("Not implemented: %s", __func__);
708         return ERROR_FAIL;
709 }
710
711 static int handle_target(void *priv);
712
713 static int target_init_one(struct command_context *cmd_ctx,
714                 struct target *target)
715 {
716         target_reset_examined(target);
717
718         struct target_type *type = target->type;
719         if (type->examine == NULL)
720                 type->examine = default_examine;
721
722         if (type->check_reset== NULL)
723                 type->check_reset = default_check_reset;
724
725         int retval = type->init_target(cmd_ctx, target);
726         if (ERROR_OK != retval)
727         {
728                 LOG_ERROR("target '%s' init failed", target_name(target));
729                 return retval;
730         }
731
732         /**
733          * @todo get rid of those *memory_imp() methods, now that all
734          * callers are using target_*_memory() accessors ... and make
735          * sure the "physical" paths handle the same issues.
736          */
737         /* a non-invasive way(in terms of patches) to add some code that
738          * runs before the type->write/read_memory implementation
739          */
740         type->write_memory_imp = target->type->write_memory;
741         type->write_memory = target_write_memory_imp;
742
743         type->read_memory_imp = target->type->read_memory;
744         type->read_memory = target_read_memory_imp;
745
746         type->soft_reset_halt_imp = target->type->soft_reset_halt;
747         type->soft_reset_halt = target_soft_reset_halt_imp;
748
749         type->run_algorithm_imp = target->type->run_algorithm;
750         type->run_algorithm = target_run_algorithm_imp;
751
752         /* Sanity-check MMU support ... stub in what we must, to help
753          * implement it in stages, but warn if we need to do so.
754          */
755         if (type->mmu)
756         {
757                 if (type->write_phys_memory == NULL)
758                 {
759                         LOG_ERROR("type '%s' is missing write_phys_memory",
760                                         type->name);
761                         type->write_phys_memory = err_write_phys_memory;
762                 }
763                 if (type->read_phys_memory == NULL)
764                 {
765                         LOG_ERROR("type '%s' is missing read_phys_memory",
766                                         type->name);
767                         type->read_phys_memory = err_read_phys_memory;
768                 }
769                 if (type->virt2phys == NULL)
770                 {
771                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
772                         type->virt2phys = identity_virt2phys;
773                 }
774         }
775         else
776         {
777                 /* Make sure no-MMU targets all behave the same:  make no
778                  * distinction between physical and virtual addresses, and
779                  * ensure that virt2phys() is always an identity mapping.
780                  */
781                 if (type->write_phys_memory || type->read_phys_memory
782                                 || type->virt2phys)
783                 {
784                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
785                 }
786
787                 type->mmu = no_mmu;
788                 type->write_phys_memory = type->write_memory;
789                 type->read_phys_memory = type->read_memory;
790                 type->virt2phys = identity_virt2phys;
791         }
792         return ERROR_OK;
793 }
794
795 int target_init(struct command_context *cmd_ctx)
796 {
797         struct target *target;
798         int retval;
799
800         for (target = all_targets; target; target = target->next)
801         {
802                 retval = target_init_one(cmd_ctx, target);
803                 if (ERROR_OK != retval)
804                         return retval;
805         }
806
807         if (!all_targets)
808                 return ERROR_OK;
809
810         retval = target_register_user_commands(cmd_ctx);
811         if (ERROR_OK != retval)
812                 return retval;
813
814         retval = target_register_timer_callback(&handle_target,
815                         100, 1, cmd_ctx->interp);
816         if (ERROR_OK != retval)
817                 return retval;
818
819         return ERROR_OK;
820 }
821
822 COMMAND_HANDLER(handle_target_init_command)
823 {
824         if (CMD_ARGC != 0)
825                 return ERROR_COMMAND_SYNTAX_ERROR;
826
827         static bool target_initialized = false;
828         if (target_initialized)
829         {
830                 LOG_INFO("'target init' has already been called");
831                 return ERROR_OK;
832         }
833         target_initialized = true;
834
835         LOG_DEBUG("Initializing targets...");
836         return target_init(CMD_CTX);
837 }
838
839 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
840 {
841         struct target_event_callback **callbacks_p = &target_event_callbacks;
842
843         if (callback == NULL)
844         {
845                 return ERROR_INVALID_ARGUMENTS;
846         }
847
848         if (*callbacks_p)
849         {
850                 while ((*callbacks_p)->next)
851                         callbacks_p = &((*callbacks_p)->next);
852                 callbacks_p = &((*callbacks_p)->next);
853         }
854
855         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
856         (*callbacks_p)->callback = callback;
857         (*callbacks_p)->priv = priv;
858         (*callbacks_p)->next = NULL;
859
860         return ERROR_OK;
861 }
862
863 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
864 {
865         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
866         struct timeval now;
867
868         if (callback == NULL)
869         {
870                 return ERROR_INVALID_ARGUMENTS;
871         }
872
873         if (*callbacks_p)
874         {
875                 while ((*callbacks_p)->next)
876                         callbacks_p = &((*callbacks_p)->next);
877                 callbacks_p = &((*callbacks_p)->next);
878         }
879
880         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
881         (*callbacks_p)->callback = callback;
882         (*callbacks_p)->periodic = periodic;
883         (*callbacks_p)->time_ms = time_ms;
884
885         gettimeofday(&now, NULL);
886         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
887         time_ms -= (time_ms % 1000);
888         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
889         if ((*callbacks_p)->when.tv_usec > 1000000)
890         {
891                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
892                 (*callbacks_p)->when.tv_sec += 1;
893         }
894
895         (*callbacks_p)->priv = priv;
896         (*callbacks_p)->next = NULL;
897
898         return ERROR_OK;
899 }
900
901 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
902 {
903         struct target_event_callback **p = &target_event_callbacks;
904         struct target_event_callback *c = target_event_callbacks;
905
906         if (callback == NULL)
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         while (c)
912         {
913                 struct target_event_callback *next = c->next;
914                 if ((c->callback == callback) && (c->priv == priv))
915                 {
916                         *p = next;
917                         free(c);
918                         return ERROR_OK;
919                 }
920                 else
921                         p = &(c->next);
922                 c = next;
923         }
924
925         return ERROR_OK;
926 }
927
928 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
929 {
930         struct target_timer_callback **p = &target_timer_callbacks;
931         struct target_timer_callback *c = target_timer_callbacks;
932
933         if (callback == NULL)
934         {
935                 return ERROR_INVALID_ARGUMENTS;
936         }
937
938         while (c)
939         {
940                 struct target_timer_callback *next = c->next;
941                 if ((c->callback == callback) && (c->priv == priv))
942                 {
943                         *p = next;
944                         free(c);
945                         return ERROR_OK;
946                 }
947                 else
948                         p = &(c->next);
949                 c = next;
950         }
951
952         return ERROR_OK;
953 }
954
955 int target_call_event_callbacks(struct target *target, enum target_event event)
956 {
957         struct target_event_callback *callback = target_event_callbacks;
958         struct target_event_callback *next_callback;
959
960         if (event == TARGET_EVENT_HALTED)
961         {
962                 /* execute early halted first */
963                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
964         }
965
966         LOG_DEBUG("target event %i (%s)",
967                           event,
968                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
969
970         target_handle_event(target, event);
971
972         while (callback)
973         {
974                 next_callback = callback->next;
975                 callback->callback(target, event, callback->priv);
976                 callback = next_callback;
977         }
978
979         return ERROR_OK;
980 }
981
982 static int target_timer_callback_periodic_restart(
983                 struct target_timer_callback *cb, struct timeval *now)
984 {
985         int time_ms = cb->time_ms;
986         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
987         time_ms -= (time_ms % 1000);
988         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
989         if (cb->when.tv_usec > 1000000)
990         {
991                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
992                 cb->when.tv_sec += 1;
993         }
994         return ERROR_OK;
995 }
996
997 static int target_call_timer_callback(struct target_timer_callback *cb,
998                 struct timeval *now)
999 {
1000         cb->callback(cb->priv);
1001
1002         if (cb->periodic)
1003                 return target_timer_callback_periodic_restart(cb, now);
1004
1005         return target_unregister_timer_callback(cb->callback, cb->priv);
1006 }
1007
1008 static int target_call_timer_callbacks_check_time(int checktime)
1009 {
1010         keep_alive();
1011
1012         struct timeval now;
1013         gettimeofday(&now, NULL);
1014
1015         struct target_timer_callback *callback = target_timer_callbacks;
1016         while (callback)
1017         {
1018                 // cleaning up may unregister and free this callback
1019                 struct target_timer_callback *next_callback = callback->next;
1020
1021                 bool call_it = callback->callback &&
1022                         ((!checktime && callback->periodic) ||
1023                           now.tv_sec > callback->when.tv_sec ||
1024                          (now.tv_sec == callback->when.tv_sec &&
1025                           now.tv_usec >= callback->when.tv_usec));
1026
1027                 if (call_it)
1028                 {
1029                         int retval = target_call_timer_callback(callback, &now);
1030                         if (retval != ERROR_OK)
1031                                 return retval;
1032                 }
1033
1034                 callback = next_callback;
1035         }
1036
1037         return ERROR_OK;
1038 }
1039
1040 int target_call_timer_callbacks(void)
1041 {
1042         return target_call_timer_callbacks_check_time(1);
1043 }
1044
1045 /* invoke periodic callbacks immediately */
1046 int target_call_timer_callbacks_now(void)
1047 {
1048         return target_call_timer_callbacks_check_time(0);
1049 }
1050
1051 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1052 {
1053         struct working_area *c = target->working_areas;
1054         struct working_area *new_wa = NULL;
1055
1056         /* Reevaluate working area address based on MMU state*/
1057         if (target->working_areas == NULL)
1058         {
1059                 int retval;
1060                 int enabled;
1061
1062                 retval = target->type->mmu(target, &enabled);
1063                 if (retval != ERROR_OK)
1064                 {
1065                         return retval;
1066                 }
1067
1068                 if (!enabled) {
1069                         if (target->working_area_phys_spec) {
1070                                 LOG_DEBUG("MMU disabled, using physical "
1071                                         "address for working memory 0x%08x",
1072                                         (unsigned)target->working_area_phys);
1073                                 target->working_area = target->working_area_phys;
1074                         } else {
1075                                 LOG_ERROR("No working memory available. "
1076                                         "Specify -work-area-phys to target.");
1077                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1078                         }
1079                 } else {
1080                         if (target->working_area_virt_spec) {
1081                                 LOG_DEBUG("MMU enabled, using virtual "
1082                                         "address for working memory 0x%08x",
1083                                         (unsigned)target->working_area_virt);
1084                                 target->working_area = target->working_area_virt;
1085                         } else {
1086                                 LOG_ERROR("No working memory available. "
1087                                         "Specify -work-area-virt to target.");
1088                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1089                         }
1090                 }
1091         }
1092
1093         /* only allocate multiples of 4 byte */
1094         if (size % 4)
1095         {
1096                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1097                 size = (size + 3) & (~3);
1098         }
1099
1100         /* see if there's already a matching working area */
1101         while (c)
1102         {
1103                 if ((c->free) && (c->size == size))
1104                 {
1105                         new_wa = c;
1106                         break;
1107                 }
1108                 c = c->next;
1109         }
1110
1111         /* if not, allocate a new one */
1112         if (!new_wa)
1113         {
1114                 struct working_area **p = &target->working_areas;
1115                 uint32_t first_free = target->working_area;
1116                 uint32_t free_size = target->working_area_size;
1117
1118                 c = target->working_areas;
1119                 while (c)
1120                 {
1121                         first_free += c->size;
1122                         free_size -= c->size;
1123                         p = &c->next;
1124                         c = c->next;
1125                 }
1126
1127                 if (free_size < size)
1128                 {
1129                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1130                                     (unsigned)(size), (unsigned)(free_size));
1131                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1132                 }
1133
1134                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1135
1136                 new_wa = malloc(sizeof(struct working_area));
1137                 new_wa->next = NULL;
1138                 new_wa->size = size;
1139                 new_wa->address = first_free;
1140
1141                 if (target->backup_working_area)
1142                 {
1143                         int retval;
1144                         new_wa->backup = malloc(new_wa->size);
1145                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1146                         {
1147                                 free(new_wa->backup);
1148                                 free(new_wa);
1149                                 return retval;
1150                         }
1151                 }
1152                 else
1153                 {
1154                         new_wa->backup = NULL;
1155                 }
1156
1157                 /* put new entry in list */
1158                 *p = new_wa;
1159         }
1160
1161         /* mark as used, and return the new (reused) area */
1162         new_wa->free = 0;
1163         *area = new_wa;
1164
1165         /* user pointer */
1166         new_wa->user = area;
1167
1168         return ERROR_OK;
1169 }
1170
1171 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1172 {
1173         if (area->free)
1174                 return ERROR_OK;
1175
1176         if (restore && target->backup_working_area)
1177         {
1178                 int retval;
1179                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1180                         return retval;
1181         }
1182
1183         area->free = 1;
1184
1185         /* mark user pointer invalid */
1186         *area->user = NULL;
1187         area->user = NULL;
1188
1189         return ERROR_OK;
1190 }
1191
1192 int target_free_working_area(struct target *target, struct working_area *area)
1193 {
1194         return target_free_working_area_restore(target, area, 1);
1195 }
1196
1197 /* free resources and restore memory, if restoring memory fails,
1198  * free up resources anyway
1199  */
1200 void target_free_all_working_areas_restore(struct target *target, int restore)
1201 {
1202         struct working_area *c = target->working_areas;
1203
1204         while (c)
1205         {
1206                 struct working_area *next = c->next;
1207                 target_free_working_area_restore(target, c, restore);
1208
1209                 if (c->backup)
1210                         free(c->backup);
1211
1212                 free(c);
1213
1214                 c = next;
1215         }
1216
1217         target->working_areas = NULL;
1218 }
1219
1220 void target_free_all_working_areas(struct target *target)
1221 {
1222         target_free_all_working_areas_restore(target, 1);
1223 }
1224
1225 int target_arch_state(struct target *target)
1226 {
1227         int retval;
1228         if (target == NULL)
1229         {
1230                 LOG_USER("No target has been configured");
1231                 return ERROR_OK;
1232         }
1233
1234         LOG_USER("target state: %s", target_state_name( target ));
1235
1236         if (target->state != TARGET_HALTED)
1237                 return ERROR_OK;
1238
1239         retval = target->type->arch_state(target);
1240         return retval;
1241 }
1242
1243 /* Single aligned words are guaranteed to use 16 or 32 bit access
1244  * mode respectively, otherwise data is handled as quickly as
1245  * possible
1246  */
1247 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1248 {
1249         int retval;
1250         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1251                   (int)size, (unsigned)address);
1252
1253         if (!target_was_examined(target))
1254         {
1255                 LOG_ERROR("Target not examined yet");
1256                 return ERROR_FAIL;
1257         }
1258
1259         if (size == 0) {
1260                 return ERROR_OK;
1261         }
1262
1263         if ((address + size - 1) < address)
1264         {
1265                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1266                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1267                                   (unsigned)address,
1268                                   (unsigned)size);
1269                 return ERROR_FAIL;
1270         }
1271
1272         if (((address % 2) == 0) && (size == 2))
1273         {
1274                 return target_write_memory(target, address, 2, 1, buffer);
1275         }
1276
1277         /* handle unaligned head bytes */
1278         if (address % 4)
1279         {
1280                 uint32_t unaligned = 4 - (address % 4);
1281
1282                 if (unaligned > size)
1283                         unaligned = size;
1284
1285                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1286                         return retval;
1287
1288                 buffer += unaligned;
1289                 address += unaligned;
1290                 size -= unaligned;
1291         }
1292
1293         /* handle aligned words */
1294         if (size >= 4)
1295         {
1296                 int aligned = size - (size % 4);
1297
1298                 /* use bulk writes above a certain limit. This may have to be changed */
1299                 if (aligned > 128)
1300                 {
1301                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1302                                 return retval;
1303                 }
1304                 else
1305                 {
1306                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1307                                 return retval;
1308                 }
1309
1310                 buffer += aligned;
1311                 address += aligned;
1312                 size -= aligned;
1313         }
1314
1315         /* handle tail writes of less than 4 bytes */
1316         if (size > 0)
1317         {
1318                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1319                         return retval;
1320         }
1321
1322         return ERROR_OK;
1323 }
1324
1325 /* Single aligned words are guaranteed to use 16 or 32 bit access
1326  * mode respectively, otherwise data is handled as quickly as
1327  * possible
1328  */
1329 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1330 {
1331         int retval;
1332         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1333                           (int)size, (unsigned)address);
1334
1335         if (!target_was_examined(target))
1336         {
1337                 LOG_ERROR("Target not examined yet");
1338                 return ERROR_FAIL;
1339         }
1340
1341         if (size == 0) {
1342                 return ERROR_OK;
1343         }
1344
1345         if ((address + size - 1) < address)
1346         {
1347                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1348                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1349                                   address,
1350                                   size);
1351                 return ERROR_FAIL;
1352         }
1353
1354         if (((address % 2) == 0) && (size == 2))
1355         {
1356                 return target_read_memory(target, address, 2, 1, buffer);
1357         }
1358
1359         /* handle unaligned head bytes */
1360         if (address % 4)
1361         {
1362                 uint32_t unaligned = 4 - (address % 4);
1363
1364                 if (unaligned > size)
1365                         unaligned = size;
1366
1367                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1368                         return retval;
1369
1370                 buffer += unaligned;
1371                 address += unaligned;
1372                 size -= unaligned;
1373         }
1374
1375         /* handle aligned words */
1376         if (size >= 4)
1377         {
1378                 int aligned = size - (size % 4);
1379
1380                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1381                         return retval;
1382
1383                 buffer += aligned;
1384                 address += aligned;
1385                 size -= aligned;
1386         }
1387
1388         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1389         if(size >=2)
1390         {
1391                 int aligned = size - (size%2);
1392                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1393                 if (retval != ERROR_OK)
1394                         return retval;
1395
1396                 buffer += aligned;
1397                 address += aligned;
1398                 size -= aligned;
1399         }
1400         /* handle tail writes of less than 4 bytes */
1401         if (size > 0)
1402         {
1403                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1404                         return retval;
1405         }
1406
1407         return ERROR_OK;
1408 }
1409
1410 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1411 {
1412         uint8_t *buffer;
1413         int retval;
1414         uint32_t i;
1415         uint32_t checksum = 0;
1416         if (!target_was_examined(target))
1417         {
1418                 LOG_ERROR("Target not examined yet");
1419                 return ERROR_FAIL;
1420         }
1421
1422         if ((retval = target->type->checksum_memory(target, address,
1423                 size, &checksum)) != ERROR_OK)
1424         {
1425                 buffer = malloc(size);
1426                 if (buffer == NULL)
1427                 {
1428                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1429                         return ERROR_INVALID_ARGUMENTS;
1430                 }
1431                 retval = target_read_buffer(target, address, size, buffer);
1432                 if (retval != ERROR_OK)
1433                 {
1434                         free(buffer);
1435                         return retval;
1436                 }
1437
1438                 /* convert to target endianess */
1439                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1440                 {
1441                         uint32_t target_data;
1442                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1443                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1444                 }
1445
1446                 retval = image_calculate_checksum(buffer, size, &checksum);
1447                 free(buffer);
1448         }
1449
1450         *crc = checksum;
1451
1452         return retval;
1453 }
1454
1455 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1456 {
1457         int retval;
1458         if (!target_was_examined(target))
1459         {
1460                 LOG_ERROR("Target not examined yet");
1461                 return ERROR_FAIL;
1462         }
1463
1464         if (target->type->blank_check_memory == 0)
1465                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1466
1467         retval = target->type->blank_check_memory(target, address, size, blank);
1468
1469         return retval;
1470 }
1471
1472 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1473 {
1474         uint8_t value_buf[4];
1475         if (!target_was_examined(target))
1476         {
1477                 LOG_ERROR("Target not examined yet");
1478                 return ERROR_FAIL;
1479         }
1480
1481         int retval = target_read_memory(target, address, 4, 1, value_buf);
1482
1483         if (retval == ERROR_OK)
1484         {
1485                 *value = target_buffer_get_u32(target, value_buf);
1486                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1487                                   address,
1488                                   *value);
1489         }
1490         else
1491         {
1492                 *value = 0x0;
1493                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1494                                   address);
1495         }
1496
1497         return retval;
1498 }
1499
1500 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1501 {
1502         uint8_t value_buf[2];
1503         if (!target_was_examined(target))
1504         {
1505                 LOG_ERROR("Target not examined yet");
1506                 return ERROR_FAIL;
1507         }
1508
1509         int retval = target_read_memory(target, address, 2, 1, value_buf);
1510
1511         if (retval == ERROR_OK)
1512         {
1513                 *value = target_buffer_get_u16(target, value_buf);
1514                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1515                                   address,
1516                                   *value);
1517         }
1518         else
1519         {
1520                 *value = 0x0;
1521                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1522                                   address);
1523         }
1524
1525         return retval;
1526 }
1527
1528 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1529 {
1530         int retval = target_read_memory(target, address, 1, 1, value);
1531         if (!target_was_examined(target))
1532         {
1533                 LOG_ERROR("Target not examined yet");
1534                 return ERROR_FAIL;
1535         }
1536
1537         if (retval == ERROR_OK)
1538         {
1539                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1540                                   address,
1541                                   *value);
1542         }
1543         else
1544         {
1545                 *value = 0x0;
1546                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1547                                   address);
1548         }
1549
1550         return retval;
1551 }
1552
1553 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1554 {
1555         int retval;
1556         uint8_t value_buf[4];
1557         if (!target_was_examined(target))
1558         {
1559                 LOG_ERROR("Target not examined yet");
1560                 return ERROR_FAIL;
1561         }
1562
1563         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1564                           address,
1565                           value);
1566
1567         target_buffer_set_u32(target, value_buf, value);
1568         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1569         {
1570                 LOG_DEBUG("failed: %i", retval);
1571         }
1572
1573         return retval;
1574 }
1575
1576 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1577 {
1578         int retval;
1579         uint8_t value_buf[2];
1580         if (!target_was_examined(target))
1581         {
1582                 LOG_ERROR("Target not examined yet");
1583                 return ERROR_FAIL;
1584         }
1585
1586         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1587                           address,
1588                           value);
1589
1590         target_buffer_set_u16(target, value_buf, value);
1591         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1592         {
1593                 LOG_DEBUG("failed: %i", retval);
1594         }
1595
1596         return retval;
1597 }
1598
1599 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1600 {
1601         int retval;
1602         if (!target_was_examined(target))
1603         {
1604                 LOG_ERROR("Target not examined yet");
1605                 return ERROR_FAIL;
1606         }
1607
1608         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1609                           address, value);
1610
1611         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1612         {
1613                 LOG_DEBUG("failed: %i", retval);
1614         }
1615
1616         return retval;
1617 }
1618
1619 COMMAND_HANDLER(handle_targets_command)
1620 {
1621         struct target *target = all_targets;
1622
1623         if (CMD_ARGC == 1)
1624         {
1625                 target = get_target(CMD_ARGV[0]);
1626                 if (target == NULL) {
1627                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1628                         goto DumpTargets;
1629                 }
1630                 if (!target->tap->enabled) {
1631                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1632                                         "can't be the current target\n",
1633                                         target->tap->dotted_name);
1634                         return ERROR_FAIL;
1635                 }
1636
1637                 CMD_CTX->current_target = target->target_number;
1638                 return ERROR_OK;
1639         }
1640 DumpTargets:
1641
1642         target = all_targets;
1643         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1644         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1645         while (target)
1646         {
1647                 const char *state;
1648                 char marker = ' ';
1649
1650                 if (target->tap->enabled)
1651                         state = target_state_name( target );
1652                 else
1653                         state = "tap-disabled";
1654
1655                 if (CMD_CTX->current_target == target->target_number)
1656                         marker = '*';
1657
1658                 /* keep columns lined up to match the headers above */
1659                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1660                                           target->target_number,
1661                                           marker,
1662                                           target_name(target),
1663                                           target_type_name(target),
1664                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1665                                                                 target->endianness)->name,
1666                                           target->tap->dotted_name,
1667                                           state);
1668                 target = target->next;
1669         }
1670
1671         return ERROR_OK;
1672 }
1673
1674 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1675
1676 static int powerDropout;
1677 static int srstAsserted;
1678
1679 static int runPowerRestore;
1680 static int runPowerDropout;
1681 static int runSrstAsserted;
1682 static int runSrstDeasserted;
1683
1684 static int sense_handler(void)
1685 {
1686         static int prevSrstAsserted = 0;
1687         static int prevPowerdropout = 0;
1688
1689         int retval;
1690         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1691                 return retval;
1692
1693         int powerRestored;
1694         powerRestored = prevPowerdropout && !powerDropout;
1695         if (powerRestored)
1696         {
1697                 runPowerRestore = 1;
1698         }
1699
1700         long long current = timeval_ms();
1701         static long long lastPower = 0;
1702         int waitMore = lastPower + 2000 > current;
1703         if (powerDropout && !waitMore)
1704         {
1705                 runPowerDropout = 1;
1706                 lastPower = current;
1707         }
1708
1709         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1710                 return retval;
1711
1712         int srstDeasserted;
1713         srstDeasserted = prevSrstAsserted && !srstAsserted;
1714
1715         static long long lastSrst = 0;
1716         waitMore = lastSrst + 2000 > current;
1717         if (srstDeasserted && !waitMore)
1718         {
1719                 runSrstDeasserted = 1;
1720                 lastSrst = current;
1721         }
1722
1723         if (!prevSrstAsserted && srstAsserted)
1724         {
1725                 runSrstAsserted = 1;
1726         }
1727
1728         prevSrstAsserted = srstAsserted;
1729         prevPowerdropout = powerDropout;
1730
1731         if (srstDeasserted || powerRestored)
1732         {
1733                 /* Other than logging the event we can't do anything here.
1734                  * Issuing a reset is a particularly bad idea as we might
1735                  * be inside a reset already.
1736                  */
1737         }
1738
1739         return ERROR_OK;
1740 }
1741
1742 static void target_call_event_callbacks_all(enum target_event e) {
1743         struct target *target;
1744         target = all_targets;
1745         while (target) {
1746                 target_call_event_callbacks(target, e);
1747                 target = target->next;
1748         }
1749 }
1750
1751 /* process target state changes */
1752 static int handle_target(void *priv)
1753 {
1754         Jim_Interp *interp = (Jim_Interp *)priv;
1755         int retval = ERROR_OK;
1756
1757         /* we do not want to recurse here... */
1758         static int recursive = 0;
1759         if (! recursive)
1760         {
1761                 recursive = 1;
1762                 sense_handler();
1763                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1764                  * We need to avoid an infinite loop/recursion here and we do that by
1765                  * clearing the flags after running these events.
1766                  */
1767                 int did_something = 0;
1768                 if (runSrstAsserted)
1769                 {
1770                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1771                         Jim_Eval(interp, "srst_asserted");
1772                         did_something = 1;
1773                 }
1774                 if (runSrstDeasserted)
1775                 {
1776                         Jim_Eval(interp, "srst_deasserted");
1777                         did_something = 1;
1778                 }
1779                 if (runPowerDropout)
1780                 {
1781                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1782                         Jim_Eval(interp, "power_dropout");
1783                         did_something = 1;
1784                 }
1785                 if (runPowerRestore)
1786                 {
1787                         Jim_Eval(interp, "power_restore");
1788                         did_something = 1;
1789                 }
1790
1791                 if (did_something)
1792                 {
1793                         /* clear detect flags */
1794                         sense_handler();
1795                 }
1796
1797                 /* clear action flags */
1798
1799                 runSrstAsserted = 0;
1800                 runSrstDeasserted = 0;
1801                 runPowerRestore = 0;
1802                 runPowerDropout = 0;
1803
1804                 recursive = 0;
1805         }
1806
1807         /* Poll targets for state changes unless that's globally disabled.
1808          * Skip targets that are currently disabled.
1809          */
1810         for (struct target *target = all_targets;
1811                         is_jtag_poll_safe() && target;
1812                         target = target->next)
1813         {
1814                 if (!target->tap->enabled)
1815                         continue;
1816
1817                 /* only poll target if we've got power and srst isn't asserted */
1818                 if (!powerDropout && !srstAsserted)
1819                 {
1820                         /* polling may fail silently until the target has been examined */
1821                         if ((retval = target_poll(target)) != ERROR_OK)
1822                         {
1823                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1824                                 return retval;
1825                         }
1826                 }
1827         }
1828
1829         return retval;
1830 }
1831
1832 COMMAND_HANDLER(handle_reg_command)
1833 {
1834         struct target *target;
1835         struct reg *reg = NULL;
1836         unsigned count = 0;
1837         char *value;
1838
1839         LOG_DEBUG("-");
1840
1841         target = get_current_target(CMD_CTX);
1842
1843         /* list all available registers for the current target */
1844         if (CMD_ARGC == 0)
1845         {
1846                 struct reg_cache *cache = target->reg_cache;
1847
1848                 count = 0;
1849                 while (cache)
1850                 {
1851                         unsigned i;
1852
1853                         command_print(CMD_CTX, "===== %s", cache->name);
1854
1855                         for (i = 0, reg = cache->reg_list;
1856                                         i < cache->num_regs;
1857                                         i++, reg++, count++)
1858                         {
1859                                 /* only print cached values if they are valid */
1860                                 if (reg->valid) {
1861                                         value = buf_to_str(reg->value,
1862                                                         reg->size, 16);
1863                                         command_print(CMD_CTX,
1864                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1865                                                         count, reg->name,
1866                                                         reg->size, value,
1867                                                         reg->dirty
1868                                                                 ? " (dirty)"
1869                                                                 : "");
1870                                         free(value);
1871                                 } else {
1872                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1873                                                           count, reg->name,
1874                                                           reg->size) ;
1875                                 }
1876                         }
1877                         cache = cache->next;
1878                 }
1879
1880                 return ERROR_OK;
1881         }
1882
1883         /* access a single register by its ordinal number */
1884         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1885         {
1886                 unsigned num;
1887                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1888
1889                 struct reg_cache *cache = target->reg_cache;
1890                 count = 0;
1891                 while (cache)
1892                 {
1893                         unsigned i;
1894                         for (i = 0; i < cache->num_regs; i++)
1895                         {
1896                                 if (count++ == num)
1897                                 {
1898                                         reg = &cache->reg_list[i];
1899                                         break;
1900                                 }
1901                         }
1902                         if (reg)
1903                                 break;
1904                         cache = cache->next;
1905                 }
1906
1907                 if (!reg)
1908                 {
1909                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1910                         return ERROR_OK;
1911                 }
1912         } else /* access a single register by its name */
1913         {
1914                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1915
1916                 if (!reg)
1917                 {
1918                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1919                         return ERROR_OK;
1920                 }
1921         }
1922
1923         /* display a register */
1924         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1925         {
1926                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1927                         reg->valid = 0;
1928
1929                 if (reg->valid == 0)
1930                 {
1931                         reg->type->get(reg);
1932                 }
1933                 value = buf_to_str(reg->value, reg->size, 16);
1934                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1935                 free(value);
1936                 return ERROR_OK;
1937         }
1938
1939         /* set register value */
1940         if (CMD_ARGC == 2)
1941         {
1942                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1943                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1944
1945                 reg->type->set(reg, buf);
1946
1947                 value = buf_to_str(reg->value, reg->size, 16);
1948                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1949                 free(value);
1950
1951                 free(buf);
1952
1953                 return ERROR_OK;
1954         }
1955
1956         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1957
1958         return ERROR_OK;
1959 }
1960
1961 COMMAND_HANDLER(handle_poll_command)
1962 {
1963         int retval = ERROR_OK;
1964         struct target *target = get_current_target(CMD_CTX);
1965
1966         if (CMD_ARGC == 0)
1967         {
1968                 command_print(CMD_CTX, "background polling: %s",
1969                                 jtag_poll_get_enabled() ? "on" : "off");
1970                 command_print(CMD_CTX, "TAP: %s (%s)",
1971                                 target->tap->dotted_name,
1972                                 target->tap->enabled ? "enabled" : "disabled");
1973                 if (!target->tap->enabled)
1974                         return ERROR_OK;
1975                 if ((retval = target_poll(target)) != ERROR_OK)
1976                         return retval;
1977                 if ((retval = target_arch_state(target)) != ERROR_OK)
1978                         return retval;
1979         }
1980         else if (CMD_ARGC == 1)
1981         {
1982                 bool enable;
1983                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1984                 jtag_poll_set_enabled(enable);
1985         }
1986         else
1987         {
1988                 return ERROR_COMMAND_SYNTAX_ERROR;
1989         }
1990
1991         return retval;
1992 }
1993
1994 COMMAND_HANDLER(handle_wait_halt_command)
1995 {
1996         if (CMD_ARGC > 1)
1997                 return ERROR_COMMAND_SYNTAX_ERROR;
1998
1999         unsigned ms = 5000;
2000         if (1 == CMD_ARGC)
2001         {
2002                 int retval = parse_uint(CMD_ARGV[0], &ms);
2003                 if (ERROR_OK != retval)
2004                 {
2005                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2006                         return ERROR_COMMAND_SYNTAX_ERROR;
2007                 }
2008                 // convert seconds (given) to milliseconds (needed)
2009                 ms *= 1000;
2010         }
2011
2012         struct target *target = get_current_target(CMD_CTX);
2013         return target_wait_state(target, TARGET_HALTED, ms);
2014 }
2015
2016 /* wait for target state to change. The trick here is to have a low
2017  * latency for short waits and not to suck up all the CPU time
2018  * on longer waits.
2019  *
2020  * After 500ms, keep_alive() is invoked
2021  */
2022 int target_wait_state(struct target *target, enum target_state state, int ms)
2023 {
2024         int retval;
2025         long long then = 0, cur;
2026         int once = 1;
2027
2028         for (;;)
2029         {
2030                 if ((retval = target_poll(target)) != ERROR_OK)
2031                         return retval;
2032                 if (target->state == state)
2033                 {
2034                         break;
2035                 }
2036                 cur = timeval_ms();
2037                 if (once)
2038                 {
2039                         once = 0;
2040                         then = timeval_ms();
2041                         LOG_DEBUG("waiting for target %s...",
2042                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2043                 }
2044
2045                 if (cur-then > 500)
2046                 {
2047                         keep_alive();
2048                 }
2049
2050                 if ((cur-then) > ms)
2051                 {
2052                         LOG_ERROR("timed out while waiting for target %s",
2053                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2054                         return ERROR_FAIL;
2055                 }
2056         }
2057
2058         return ERROR_OK;
2059 }
2060
2061 COMMAND_HANDLER(handle_halt_command)
2062 {
2063         LOG_DEBUG("-");
2064
2065         struct target *target = get_current_target(CMD_CTX);
2066         int retval = target_halt(target);
2067         if (ERROR_OK != retval)
2068                 return retval;
2069
2070         if (CMD_ARGC == 1)
2071         {
2072                 unsigned wait;
2073                 retval = parse_uint(CMD_ARGV[0], &wait);
2074                 if (ERROR_OK != retval)
2075                         return ERROR_COMMAND_SYNTAX_ERROR;
2076                 if (!wait)
2077                         return ERROR_OK;
2078         }
2079
2080         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2081 }
2082
2083 COMMAND_HANDLER(handle_soft_reset_halt_command)
2084 {
2085         struct target *target = get_current_target(CMD_CTX);
2086
2087         LOG_USER("requesting target halt and executing a soft reset");
2088
2089         target->type->soft_reset_halt(target);
2090
2091         return ERROR_OK;
2092 }
2093
2094 COMMAND_HANDLER(handle_reset_command)
2095 {
2096         if (CMD_ARGC > 1)
2097                 return ERROR_COMMAND_SYNTAX_ERROR;
2098
2099         enum target_reset_mode reset_mode = RESET_RUN;
2100         if (CMD_ARGC == 1)
2101         {
2102                 const Jim_Nvp *n;
2103                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2104                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2105                         return ERROR_COMMAND_SYNTAX_ERROR;
2106                 }
2107                 reset_mode = n->value;
2108         }
2109
2110         /* reset *all* targets */
2111         return target_process_reset(CMD_CTX, reset_mode);
2112 }
2113
2114
2115 COMMAND_HANDLER(handle_resume_command)
2116 {
2117         int current = 1;
2118         if (CMD_ARGC > 1)
2119                 return ERROR_COMMAND_SYNTAX_ERROR;
2120
2121         struct target *target = get_current_target(CMD_CTX);
2122         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2123
2124         /* with no CMD_ARGV, resume from current pc, addr = 0,
2125          * with one arguments, addr = CMD_ARGV[0],
2126          * handle breakpoints, not debugging */
2127         uint32_t addr = 0;
2128         if (CMD_ARGC == 1)
2129         {
2130                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2131                 current = 0;
2132         }
2133
2134         return target_resume(target, current, addr, 1, 0);
2135 }
2136
2137 COMMAND_HANDLER(handle_step_command)
2138 {
2139         if (CMD_ARGC > 1)
2140                 return ERROR_COMMAND_SYNTAX_ERROR;
2141
2142         LOG_DEBUG("-");
2143
2144         /* with no CMD_ARGV, step from current pc, addr = 0,
2145          * with one argument addr = CMD_ARGV[0],
2146          * handle breakpoints, debugging */
2147         uint32_t addr = 0;
2148         int current_pc = 1;
2149         if (CMD_ARGC == 1)
2150         {
2151                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2152                 current_pc = 0;
2153         }
2154
2155         struct target *target = get_current_target(CMD_CTX);
2156
2157         return target->type->step(target, current_pc, addr, 1);
2158 }
2159
2160 static void handle_md_output(struct command_context *cmd_ctx,
2161                 struct target *target, uint32_t address, unsigned size,
2162                 unsigned count, const uint8_t *buffer)
2163 {
2164         const unsigned line_bytecnt = 32;
2165         unsigned line_modulo = line_bytecnt / size;
2166
2167         char output[line_bytecnt * 4 + 1];
2168         unsigned output_len = 0;
2169
2170         const char *value_fmt;
2171         switch (size) {
2172         case 4: value_fmt = "%8.8x "; break;
2173         case 2: value_fmt = "%4.4x "; break;
2174         case 1: value_fmt = "%2.2x "; break;
2175         default:
2176                 /* "can't happen", caller checked */
2177                 LOG_ERROR("invalid memory read size: %u", size);
2178                 return;
2179         }
2180
2181         for (unsigned i = 0; i < count; i++)
2182         {
2183                 if (i % line_modulo == 0)
2184                 {
2185                         output_len += snprintf(output + output_len,
2186                                         sizeof(output) - output_len,
2187                                         "0x%8.8x: ",
2188                                         (unsigned)(address + (i*size)));
2189                 }
2190
2191                 uint32_t value = 0;
2192                 const uint8_t *value_ptr = buffer + i * size;
2193                 switch (size) {
2194                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2195                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2196                 case 1: value = *value_ptr;
2197                 }
2198                 output_len += snprintf(output + output_len,
2199                                 sizeof(output) - output_len,
2200                                 value_fmt, value);
2201
2202                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2203                 {
2204                         command_print(cmd_ctx, "%s", output);
2205                         output_len = 0;
2206                 }
2207         }
2208 }
2209
2210 COMMAND_HANDLER(handle_md_command)
2211 {
2212         if (CMD_ARGC < 1)
2213                 return ERROR_COMMAND_SYNTAX_ERROR;
2214
2215         unsigned size = 0;
2216         switch (CMD_NAME[2]) {
2217         case 'w': size = 4; break;
2218         case 'h': size = 2; break;
2219         case 'b': size = 1; break;
2220         default: return ERROR_COMMAND_SYNTAX_ERROR;
2221         }
2222
2223         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2224         int (*fn)(struct target *target,
2225                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2226         if (physical)
2227         {
2228                 CMD_ARGC--;
2229                 CMD_ARGV++;
2230                 fn=target_read_phys_memory;
2231         } else
2232         {
2233                 fn=target_read_memory;
2234         }
2235         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2236         {
2237                 return ERROR_COMMAND_SYNTAX_ERROR;
2238         }
2239
2240         uint32_t address;
2241         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2242
2243         unsigned count = 1;
2244         if (CMD_ARGC == 2)
2245                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2246
2247         uint8_t *buffer = calloc(count, size);
2248
2249         struct target *target = get_current_target(CMD_CTX);
2250         int retval = fn(target, address, size, count, buffer);
2251         if (ERROR_OK == retval)
2252                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2253
2254         free(buffer);
2255
2256         return retval;
2257 }
2258
2259 COMMAND_HANDLER(handle_mw_command)
2260 {
2261         if (CMD_ARGC < 2)
2262         {
2263                 return ERROR_COMMAND_SYNTAX_ERROR;
2264         }
2265         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2266         int (*fn)(struct target *target,
2267                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2268         if (physical)
2269         {
2270                 CMD_ARGC--;
2271                 CMD_ARGV++;
2272                 fn=target_write_phys_memory;
2273         } else
2274         {
2275                 fn=target_write_memory;
2276         }
2277         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2278                 return ERROR_COMMAND_SYNTAX_ERROR;
2279
2280         uint32_t address;
2281         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2282
2283         uint32_t value;
2284         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2285
2286         unsigned count = 1;
2287         if (CMD_ARGC == 3)
2288                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2289
2290         struct target *target = get_current_target(CMD_CTX);
2291         unsigned wordsize;
2292         uint8_t value_buf[4];
2293         switch (CMD_NAME[2])
2294         {
2295                 case 'w':
2296                         wordsize = 4;
2297                         target_buffer_set_u32(target, value_buf, value);
2298                         break;
2299                 case 'h':
2300                         wordsize = 2;
2301                         target_buffer_set_u16(target, value_buf, value);
2302                         break;
2303                 case 'b':
2304                         wordsize = 1;
2305                         value_buf[0] = value;
2306                         break;
2307                 default:
2308                         return ERROR_COMMAND_SYNTAX_ERROR;
2309         }
2310         for (unsigned i = 0; i < count; i++)
2311         {
2312                 int retval = fn(target,
2313                                 address + i * wordsize, wordsize, 1, value_buf);
2314                 if (ERROR_OK != retval)
2315                         return retval;
2316                 keep_alive();
2317         }
2318
2319         return ERROR_OK;
2320
2321 }
2322
2323 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2324                 uint32_t *min_address, uint32_t *max_address)
2325 {
2326         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2327                 return ERROR_COMMAND_SYNTAX_ERROR;
2328
2329         /* a base address isn't always necessary,
2330          * default to 0x0 (i.e. don't relocate) */
2331         if (CMD_ARGC >= 2)
2332         {
2333                 uint32_t addr;
2334                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2335                 image->base_address = addr;
2336                 image->base_address_set = 1;
2337         }
2338         else
2339                 image->base_address_set = 0;
2340
2341         image->start_address_set = 0;
2342
2343         if (CMD_ARGC >= 4)
2344         {
2345                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2346         }
2347         if (CMD_ARGC == 5)
2348         {
2349                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2350                 // use size (given) to find max (required)
2351                 *max_address += *min_address;
2352         }
2353
2354         if (*min_address > *max_address)
2355                 return ERROR_COMMAND_SYNTAX_ERROR;
2356
2357         return ERROR_OK;
2358 }
2359
2360 COMMAND_HANDLER(handle_load_image_command)
2361 {
2362         uint8_t *buffer;
2363         size_t buf_cnt;
2364         uint32_t image_size;
2365         uint32_t min_address = 0;
2366         uint32_t max_address = 0xffffffff;
2367         int i;
2368         struct image image;
2369
2370         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2371                         &image, &min_address, &max_address);
2372         if (ERROR_OK != retval)
2373                 return retval;
2374
2375         struct target *target = get_current_target(CMD_CTX);
2376
2377         struct duration bench;
2378         duration_start(&bench);
2379
2380         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2381         {
2382                 return ERROR_OK;
2383         }
2384
2385         image_size = 0x0;
2386         retval = ERROR_OK;
2387         for (i = 0; i < image.num_sections; i++)
2388         {
2389                 buffer = malloc(image.sections[i].size);
2390                 if (buffer == NULL)
2391                 {
2392                         command_print(CMD_CTX,
2393                                                   "error allocating buffer for section (%d bytes)",
2394                                                   (int)(image.sections[i].size));
2395                         break;
2396                 }
2397
2398                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2399                 {
2400                         free(buffer);
2401                         break;
2402                 }
2403
2404                 uint32_t offset = 0;
2405                 uint32_t length = buf_cnt;
2406
2407                 /* DANGER!!! beware of unsigned comparision here!!! */
2408
2409                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2410                                 (image.sections[i].base_address < max_address))
2411                 {
2412                         if (image.sections[i].base_address < min_address)
2413                         {
2414                                 /* clip addresses below */
2415                                 offset += min_address-image.sections[i].base_address;
2416                                 length -= offset;
2417                         }
2418
2419                         if (image.sections[i].base_address + buf_cnt > max_address)
2420                         {
2421                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2422                         }
2423
2424                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2425                         {
2426                                 free(buffer);
2427                                 break;
2428                         }
2429                         image_size += length;
2430                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2431                                                   (unsigned int)length,
2432                                                   image.sections[i].base_address + offset);
2433                 }
2434
2435                 free(buffer);
2436         }
2437
2438         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2439         {
2440                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2441                                 "in %fs (%0.3f kb/s)", image_size,
2442                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2443         }
2444
2445         image_close(&image);
2446
2447         return retval;
2448
2449 }
2450
2451 COMMAND_HANDLER(handle_dump_image_command)
2452 {
2453         struct fileio fileio;
2454
2455         uint8_t buffer[560];
2456         int retvaltemp;
2457
2458
2459         struct target *target = get_current_target(CMD_CTX);
2460
2461         if (CMD_ARGC != 3)
2462         {
2463                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2464                 return ERROR_OK;
2465         }
2466
2467         uint32_t address;
2468         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2469         uint32_t size;
2470         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2471
2472         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2473         {
2474                 return ERROR_OK;
2475         }
2476
2477         struct duration bench;
2478         duration_start(&bench);
2479
2480         int retval = ERROR_OK;
2481         while (size > 0)
2482         {
2483                 size_t size_written;
2484                 uint32_t this_run_size = (size > 560) ? 560 : size;
2485                 retval = target_read_buffer(target, address, this_run_size, buffer);
2486                 if (retval != ERROR_OK)
2487                 {
2488                         break;
2489                 }
2490
2491                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2492                 if (retval != ERROR_OK)
2493                 {
2494                         break;
2495                 }
2496
2497                 size -= this_run_size;
2498                 address += this_run_size;
2499         }
2500
2501         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2502                 return retvaltemp;
2503
2504         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2505         {
2506                 command_print(CMD_CTX,
2507                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2508                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2509         }
2510
2511         return retval;
2512 }
2513
2514 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2515 {
2516         uint8_t *buffer;
2517         size_t buf_cnt;
2518         uint32_t image_size;
2519         int i;
2520         int retval;
2521         uint32_t checksum = 0;
2522         uint32_t mem_checksum = 0;
2523
2524         struct image image;
2525
2526         struct target *target = get_current_target(CMD_CTX);
2527
2528         if (CMD_ARGC < 1)
2529         {
2530                 return ERROR_COMMAND_SYNTAX_ERROR;
2531         }
2532
2533         if (!target)
2534         {
2535                 LOG_ERROR("no target selected");
2536                 return ERROR_FAIL;
2537         }
2538
2539         struct duration bench;
2540         duration_start(&bench);
2541
2542         if (CMD_ARGC >= 2)
2543         {
2544                 uint32_t addr;
2545                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2546                 image.base_address = addr;
2547                 image.base_address_set = 1;
2548         }
2549         else
2550         {
2551                 image.base_address_set = 0;
2552                 image.base_address = 0x0;
2553         }
2554
2555         image.start_address_set = 0;
2556
2557         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2558         {
2559                 return retval;
2560         }
2561
2562         image_size = 0x0;
2563         retval = ERROR_OK;
2564         for (i = 0; i < image.num_sections; i++)
2565         {
2566                 buffer = malloc(image.sections[i].size);
2567                 if (buffer == NULL)
2568                 {
2569                         command_print(CMD_CTX,
2570                                                   "error allocating buffer for section (%d bytes)",
2571                                                   (int)(image.sections[i].size));
2572                         break;
2573                 }
2574                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2575                 {
2576                         free(buffer);
2577                         break;
2578                 }
2579
2580                 if (verify)
2581                 {
2582                         /* calculate checksum of image */
2583                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2584
2585                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2586                         if (retval != ERROR_OK)
2587                         {
2588                                 free(buffer);
2589                                 break;
2590                         }
2591
2592                         if (checksum != mem_checksum)
2593                         {
2594                                 /* failed crc checksum, fall back to a binary compare */
2595                                 uint8_t *data;
2596
2597                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2598
2599                                 data = (uint8_t*)malloc(buf_cnt);
2600
2601                                 /* Can we use 32bit word accesses? */
2602                                 int size = 1;
2603                                 int count = buf_cnt;
2604                                 if ((count % 4) == 0)
2605                                 {
2606                                         size *= 4;
2607                                         count /= 4;
2608                                 }
2609                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2610                                 if (retval == ERROR_OK)
2611                                 {
2612                                         uint32_t t;
2613                                         for (t = 0; t < buf_cnt; t++)
2614                                         {
2615                                                 if (data[t] != buffer[t])
2616                                                 {
2617                                                         command_print(CMD_CTX,
2618                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2619                                                                                   (unsigned)(t + image.sections[i].base_address),
2620                                                                                   data[t],
2621                                                                                   buffer[t]);
2622                                                         free(data);
2623                                                         free(buffer);
2624                                                         retval = ERROR_FAIL;
2625                                                         goto done;
2626                                                 }
2627                                                 if ((t%16384) == 0)
2628                                                 {
2629                                                         keep_alive();
2630                                                 }
2631                                         }
2632                                 }
2633
2634                                 free(data);
2635                         }
2636                 } else
2637                 {
2638                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2639                                                   image.sections[i].base_address,
2640                                                   buf_cnt);
2641                 }
2642
2643                 free(buffer);
2644                 image_size += buf_cnt;
2645         }
2646 done:
2647         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2648         {
2649                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2650                                 "in %fs (%0.3f kb/s)", image_size,
2651                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2652         }
2653
2654         image_close(&image);
2655
2656         return retval;
2657 }
2658
2659 COMMAND_HANDLER(handle_verify_image_command)
2660 {
2661         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2662 }
2663
2664 COMMAND_HANDLER(handle_test_image_command)
2665 {
2666         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2667 }
2668
2669 static int handle_bp_command_list(struct command_context *cmd_ctx)
2670 {
2671         struct target *target = get_current_target(cmd_ctx);
2672         struct breakpoint *breakpoint = target->breakpoints;
2673         while (breakpoint)
2674         {
2675                 if (breakpoint->type == BKPT_SOFT)
2676                 {
2677                         char* buf = buf_to_str(breakpoint->orig_instr,
2678                                         breakpoint->length, 16);
2679                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2680                                         breakpoint->address,
2681                                         breakpoint->length,
2682                                         breakpoint->set, buf);
2683                         free(buf);
2684                 }
2685                 else
2686                 {
2687                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2688                                                   breakpoint->address,
2689                                                   breakpoint->length, breakpoint->set);
2690                 }
2691
2692                 breakpoint = breakpoint->next;
2693         }
2694         return ERROR_OK;
2695 }
2696
2697 static int handle_bp_command_set(struct command_context *cmd_ctx,
2698                 uint32_t addr, uint32_t length, int hw)
2699 {
2700         struct target *target = get_current_target(cmd_ctx);
2701         int retval = breakpoint_add(target, addr, length, hw);
2702         if (ERROR_OK == retval)
2703                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2704         else
2705                 LOG_ERROR("Failure setting breakpoint");
2706         return retval;
2707 }
2708
2709 COMMAND_HANDLER(handle_bp_command)
2710 {
2711         if (CMD_ARGC == 0)
2712                 return handle_bp_command_list(CMD_CTX);
2713
2714         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2715         {
2716                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2717                 return ERROR_COMMAND_SYNTAX_ERROR;
2718         }
2719
2720         uint32_t addr;
2721         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2722         uint32_t length;
2723         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2724
2725         int hw = BKPT_SOFT;
2726         if (CMD_ARGC == 3)
2727         {
2728                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2729                         hw = BKPT_HARD;
2730                 else
2731                         return ERROR_COMMAND_SYNTAX_ERROR;
2732         }
2733
2734         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2735 }
2736
2737 COMMAND_HANDLER(handle_rbp_command)
2738 {
2739         if (CMD_ARGC != 1)
2740                 return ERROR_COMMAND_SYNTAX_ERROR;
2741
2742         uint32_t addr;
2743         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2744
2745         struct target *target = get_current_target(CMD_CTX);
2746         breakpoint_remove(target, addr);
2747
2748         return ERROR_OK;
2749 }
2750
2751 COMMAND_HANDLER(handle_wp_command)
2752 {
2753         struct target *target = get_current_target(CMD_CTX);
2754
2755         if (CMD_ARGC == 0)
2756         {
2757                 struct watchpoint *watchpoint = target->watchpoints;
2758
2759                 while (watchpoint)
2760                 {
2761                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2762                                         ", len: 0x%8.8" PRIx32
2763                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2764                                         ", mask: 0x%8.8" PRIx32,
2765                                         watchpoint->address,
2766                                         watchpoint->length,
2767                                         (int)watchpoint->rw,
2768                                         watchpoint->value,
2769                                         watchpoint->mask);
2770                         watchpoint = watchpoint->next;
2771                 }
2772                 return ERROR_OK;
2773         }
2774
2775         enum watchpoint_rw type = WPT_ACCESS;
2776         uint32_t addr = 0;
2777         uint32_t length = 0;
2778         uint32_t data_value = 0x0;
2779         uint32_t data_mask = 0xffffffff;
2780
2781         switch (CMD_ARGC)
2782         {
2783         case 5:
2784                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2785                 // fall through
2786         case 4:
2787                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2788                 // fall through
2789         case 3:
2790                 switch (CMD_ARGV[2][0])
2791                 {
2792                 case 'r':
2793                         type = WPT_READ;
2794                         break;
2795                 case 'w':
2796                         type = WPT_WRITE;
2797                         break;
2798                 case 'a':
2799                         type = WPT_ACCESS;
2800                         break;
2801                 default:
2802                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2803                         return ERROR_COMMAND_SYNTAX_ERROR;
2804                 }
2805                 // fall through
2806         case 2:
2807                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2808                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2809                 break;
2810
2811         default:
2812                 command_print(CMD_CTX, "usage: wp [address length "
2813                                 "[(r|w|a) [value [mask]]]]");
2814                 return ERROR_COMMAND_SYNTAX_ERROR;
2815         }
2816
2817         int retval = watchpoint_add(target, addr, length, type,
2818                         data_value, data_mask);
2819         if (ERROR_OK != retval)
2820                 LOG_ERROR("Failure setting watchpoints");
2821
2822         return retval;
2823 }
2824
2825 COMMAND_HANDLER(handle_rwp_command)
2826 {
2827         if (CMD_ARGC != 1)
2828                 return ERROR_COMMAND_SYNTAX_ERROR;
2829
2830         uint32_t addr;
2831         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2832
2833         struct target *target = get_current_target(CMD_CTX);
2834         watchpoint_remove(target, addr);
2835
2836         return ERROR_OK;
2837 }
2838
2839
2840 /**
2841  * Translate a virtual address to a physical address.
2842  *
2843  * The low-level target implementation must have logged a detailed error
2844  * which is forwarded to telnet/GDB session.
2845  */
2846 COMMAND_HANDLER(handle_virt2phys_command)
2847 {
2848         if (CMD_ARGC != 1)
2849                 return ERROR_COMMAND_SYNTAX_ERROR;
2850
2851         uint32_t va;
2852         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2853         uint32_t pa;
2854
2855         struct target *target = get_current_target(CMD_CTX);
2856         int retval = target->type->virt2phys(target, va, &pa);
2857         if (retval == ERROR_OK)
2858                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2859
2860         return retval;
2861 }
2862
2863 static void writeData(FILE *f, const void *data, size_t len)
2864 {
2865         size_t written = fwrite(data, 1, len, f);
2866         if (written != len)
2867                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2868 }
2869
2870 static void writeLong(FILE *f, int l)
2871 {
2872         int i;
2873         for (i = 0; i < 4; i++)
2874         {
2875                 char c = (l >> (i*8))&0xff;
2876                 writeData(f, &c, 1);
2877         }
2878
2879 }
2880
2881 static void writeString(FILE *f, char *s)
2882 {
2883         writeData(f, s, strlen(s));
2884 }
2885
2886 /* Dump a gmon.out histogram file. */
2887 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2888 {
2889         uint32_t i;
2890         FILE *f = fopen(filename, "w");
2891         if (f == NULL)
2892                 return;
2893         writeString(f, "gmon");
2894         writeLong(f, 0x00000001); /* Version */
2895         writeLong(f, 0); /* padding */
2896         writeLong(f, 0); /* padding */
2897         writeLong(f, 0); /* padding */
2898
2899         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2900         writeData(f, &zero, 1);
2901
2902         /* figure out bucket size */
2903         uint32_t min = samples[0];
2904         uint32_t max = samples[0];
2905         for (i = 0; i < sampleNum; i++)
2906         {
2907                 if (min > samples[i])
2908                 {
2909                         min = samples[i];
2910                 }
2911                 if (max < samples[i])
2912                 {
2913                         max = samples[i];
2914                 }
2915         }
2916
2917         int addressSpace = (max-min + 1);
2918
2919         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2920         uint32_t length = addressSpace;
2921         if (length > maxBuckets)
2922         {
2923                 length = maxBuckets;
2924         }
2925         int *buckets = malloc(sizeof(int)*length);
2926         if (buckets == NULL)
2927         {
2928                 fclose(f);
2929                 return;
2930         }
2931         memset(buckets, 0, sizeof(int)*length);
2932         for (i = 0; i < sampleNum;i++)
2933         {
2934                 uint32_t address = samples[i];
2935                 long long a = address-min;
2936                 long long b = length-1;
2937                 long long c = addressSpace-1;
2938                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2939                 buckets[index]++;
2940         }
2941
2942         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2943         writeLong(f, min);                      /* low_pc */
2944         writeLong(f, max);                      /* high_pc */
2945         writeLong(f, length);           /* # of samples */
2946         writeLong(f, 64000000);         /* 64MHz */
2947         writeString(f, "seconds");
2948         for (i = 0; i < (15-strlen("seconds")); i++)
2949                 writeData(f, &zero, 1);
2950         writeString(f, "s");
2951
2952         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2953
2954         char *data = malloc(2*length);
2955         if (data != NULL)
2956         {
2957                 for (i = 0; i < length;i++)
2958                 {
2959                         int val;
2960                         val = buckets[i];
2961                         if (val > 65535)
2962                         {
2963                                 val = 65535;
2964                         }
2965                         data[i*2]=val&0xff;
2966                         data[i*2 + 1]=(val >> 8)&0xff;
2967                 }
2968                 free(buckets);
2969                 writeData(f, data, length * 2);
2970                 free(data);
2971         } else
2972         {
2973                 free(buckets);
2974         }
2975
2976         fclose(f);
2977 }
2978
2979 /* profiling samples the CPU PC as quickly as OpenOCD is able,
2980  * which will be used as a random sampling of PC */
2981 COMMAND_HANDLER(handle_profile_command)
2982 {
2983         struct target *target = get_current_target(CMD_CTX);
2984         struct timeval timeout, now;
2985
2986         gettimeofday(&timeout, NULL);
2987         if (CMD_ARGC != 2)
2988         {
2989                 return ERROR_COMMAND_SYNTAX_ERROR;
2990         }
2991         unsigned offset;
2992         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2993
2994         timeval_add_time(&timeout, offset, 0);
2995
2996         /**
2997          * @todo: Some cores let us sample the PC without the
2998          * annoying halt/resume step; for example, ARMv7 PCSR.
2999          * Provide a way to use that more efficient mechanism.
3000          */
3001
3002         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3003
3004         static const int maxSample = 10000;
3005         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3006         if (samples == NULL)
3007                 return ERROR_OK;
3008
3009         int numSamples = 0;
3010         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3011         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3012
3013         for (;;)
3014         {
3015                 int retval;
3016                 target_poll(target);
3017                 if (target->state == TARGET_HALTED)
3018                 {
3019                         uint32_t t=*((uint32_t *)reg->value);
3020                         samples[numSamples++]=t;
3021                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3022                         target_poll(target);
3023                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3024                 } else if (target->state == TARGET_RUNNING)
3025                 {
3026                         /* We want to quickly sample the PC. */
3027                         if ((retval = target_halt(target)) != ERROR_OK)
3028                         {
3029                                 free(samples);
3030                                 return retval;
3031                         }
3032                 } else
3033                 {
3034                         command_print(CMD_CTX, "Target not halted or running");
3035                         retval = ERROR_OK;
3036                         break;
3037                 }
3038                 if (retval != ERROR_OK)
3039                 {
3040                         break;
3041                 }
3042
3043                 gettimeofday(&now, NULL);
3044                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3045                 {
3046                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3047                         if ((retval = target_poll(target)) != ERROR_OK)
3048                         {
3049                                 free(samples);
3050                                 return retval;
3051                         }
3052                         if (target->state == TARGET_HALTED)
3053                         {
3054                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3055                         }
3056                         if ((retval = target_poll(target)) != ERROR_OK)
3057                         {
3058                                 free(samples);
3059                                 return retval;
3060                         }
3061                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3062                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3063                         break;
3064                 }
3065         }
3066         free(samples);
3067
3068         return ERROR_OK;
3069 }
3070
3071 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3072 {
3073         char *namebuf;
3074         Jim_Obj *nameObjPtr, *valObjPtr;
3075         int result;
3076
3077         namebuf = alloc_printf("%s(%d)", varname, idx);
3078         if (!namebuf)
3079                 return JIM_ERR;
3080
3081         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3082         valObjPtr = Jim_NewIntObj(interp, val);
3083         if (!nameObjPtr || !valObjPtr)
3084         {
3085                 free(namebuf);
3086                 return JIM_ERR;
3087         }
3088
3089         Jim_IncrRefCount(nameObjPtr);
3090         Jim_IncrRefCount(valObjPtr);
3091         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3092         Jim_DecrRefCount(interp, nameObjPtr);
3093         Jim_DecrRefCount(interp, valObjPtr);
3094         free(namebuf);
3095         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3096         return result;
3097 }
3098
3099 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3100 {
3101         struct command_context *context;
3102         struct target *target;
3103
3104         context = Jim_GetAssocData(interp, "context");
3105         if (context == NULL)
3106         {
3107                 LOG_ERROR("mem2array: no command context");
3108                 return JIM_ERR;
3109         }
3110         target = get_current_target(context);
3111         if (target == NULL)
3112         {
3113                 LOG_ERROR("mem2array: no current target");
3114                 return JIM_ERR;
3115         }
3116
3117         return  target_mem2array(interp, target, argc-1, argv + 1);
3118 }
3119
3120 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3121 {
3122         long l;
3123         uint32_t width;
3124         int len;
3125         uint32_t addr;
3126         uint32_t count;
3127         uint32_t v;
3128         const char *varname;
3129         int  n, e, retval;
3130         uint32_t i;
3131
3132         /* argv[1] = name of array to receive the data
3133          * argv[2] = desired width
3134          * argv[3] = memory address
3135          * argv[4] = count of times to read
3136          */
3137         if (argc != 4) {
3138                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3139                 return JIM_ERR;
3140         }
3141         varname = Jim_GetString(argv[0], &len);
3142         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3143
3144         e = Jim_GetLong(interp, argv[1], &l);
3145         width = l;
3146         if (e != JIM_OK) {
3147                 return e;
3148         }
3149
3150         e = Jim_GetLong(interp, argv[2], &l);
3151         addr = l;
3152         if (e != JIM_OK) {
3153                 return e;
3154         }
3155         e = Jim_GetLong(interp, argv[3], &l);
3156         len = l;
3157         if (e != JIM_OK) {
3158                 return e;
3159         }
3160         switch (width) {
3161                 case 8:
3162                         width = 1;
3163                         break;
3164                 case 16:
3165                         width = 2;
3166                         break;
3167                 case 32:
3168                         width = 4;
3169                         break;
3170                 default:
3171                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3172                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3173                         return JIM_ERR;
3174         }
3175         if (len == 0) {
3176                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3177                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3178                 return JIM_ERR;
3179         }
3180         if ((addr + (len * width)) < addr) {
3181                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3182                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3183                 return JIM_ERR;
3184         }
3185         /* absurd transfer size? */
3186         if (len > 65536) {
3187                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3188                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3189                 return JIM_ERR;
3190         }
3191
3192         if ((width == 1) ||
3193                 ((width == 2) && ((addr & 1) == 0)) ||
3194                 ((width == 4) && ((addr & 3) == 0))) {
3195                 /* all is well */
3196         } else {
3197                 char buf[100];
3198                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3199                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3200                                 addr,
3201                                 width);
3202                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3203                 return JIM_ERR;
3204         }
3205
3206         /* Transfer loop */
3207
3208         /* index counter */
3209         n = 0;
3210
3211         size_t buffersize = 4096;
3212         uint8_t *buffer = malloc(buffersize);
3213         if (buffer == NULL)
3214                 return JIM_ERR;
3215
3216         /* assume ok */
3217         e = JIM_OK;
3218         while (len) {
3219                 /* Slurp... in buffer size chunks */
3220
3221                 count = len; /* in objects.. */
3222                 if (count > (buffersize/width)) {
3223                         count = (buffersize/width);
3224                 }
3225
3226                 retval = target_read_memory(target, addr, width, count, buffer);
3227                 if (retval != ERROR_OK) {
3228                         /* BOO !*/
3229                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3230                                           (unsigned int)addr,
3231                                           (int)width,
3232                                           (int)count);
3233                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3234                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3235                         e = JIM_ERR;
3236                         len = 0;
3237                 } else {
3238                         v = 0; /* shut up gcc */
3239                         for (i = 0 ;i < count ;i++, n++) {
3240                                 switch (width) {
3241                                         case 4:
3242                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3243                                                 break;
3244                                         case 2:
3245                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3246                                                 break;
3247                                         case 1:
3248                                                 v = buffer[i] & 0x0ff;
3249                                                 break;
3250                                 }
3251                                 new_int_array_element(interp, varname, n, v);
3252                         }
3253                         len -= count;
3254                 }
3255         }
3256
3257         free(buffer);
3258
3259         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3260
3261         return JIM_OK;
3262 }
3263
3264 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3265 {
3266         char *namebuf;
3267         Jim_Obj *nameObjPtr, *valObjPtr;
3268         int result;
3269         long l;
3270
3271         namebuf = alloc_printf("%s(%d)", varname, idx);
3272         if (!namebuf)
3273                 return JIM_ERR;
3274
3275         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3276         if (!nameObjPtr)
3277         {
3278                 free(namebuf);
3279                 return JIM_ERR;
3280         }
3281
3282         Jim_IncrRefCount(nameObjPtr);
3283         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3284         Jim_DecrRefCount(interp, nameObjPtr);
3285         free(namebuf);
3286         if (valObjPtr == NULL)
3287                 return JIM_ERR;
3288
3289         result = Jim_GetLong(interp, valObjPtr, &l);
3290         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3291         *val = l;
3292         return result;
3293 }
3294
3295 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3296 {
3297         struct command_context *context;
3298         struct target *target;
3299
3300         context = Jim_GetAssocData(interp, "context");
3301         if (context == NULL) {
3302                 LOG_ERROR("array2mem: no command context");
3303                 return JIM_ERR;
3304         }
3305         target = get_current_target(context);
3306         if (target == NULL) {
3307                 LOG_ERROR("array2mem: no current target");
3308                 return JIM_ERR;
3309         }
3310
3311         return target_array2mem(interp,target, argc-1, argv + 1);
3312 }
3313
3314 static int target_array2mem(Jim_Interp *interp, struct target *target,
3315                 int argc, Jim_Obj *const *argv)
3316 {
3317         long l;
3318         uint32_t width;
3319         int len;
3320         uint32_t addr;
3321         uint32_t count;
3322         uint32_t v;
3323         const char *varname;
3324         int  n, e, retval;
3325         uint32_t i;
3326
3327         /* argv[1] = name of array to get the data
3328          * argv[2] = desired width
3329          * argv[3] = memory address
3330          * argv[4] = count to write
3331          */
3332         if (argc != 4) {
3333                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3334                 return JIM_ERR;
3335         }
3336         varname = Jim_GetString(argv[0], &len);
3337         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3338
3339         e = Jim_GetLong(interp, argv[1], &l);
3340         width = l;
3341         if (e != JIM_OK) {
3342                 return e;
3343         }
3344
3345         e = Jim_GetLong(interp, argv[2], &l);
3346         addr = l;
3347         if (e != JIM_OK) {
3348                 return e;
3349         }
3350         e = Jim_GetLong(interp, argv[3], &l);
3351         len = l;
3352         if (e != JIM_OK) {
3353                 return e;
3354         }
3355         switch (width) {
3356                 case 8:
3357                         width = 1;
3358                         break;
3359                 case 16:
3360                         width = 2;
3361                         break;
3362                 case 32:
3363                         width = 4;
3364                         break;
3365                 default:
3366                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3367                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3368                         return JIM_ERR;
3369         }
3370         if (len == 0) {
3371                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3372                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3373                 return JIM_ERR;
3374         }
3375         if ((addr + (len * width)) < addr) {
3376                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3377                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3378                 return JIM_ERR;
3379         }
3380         /* absurd transfer size? */
3381         if (len > 65536) {
3382                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3383                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3384                 return JIM_ERR;
3385         }
3386
3387         if ((width == 1) ||
3388                 ((width == 2) && ((addr & 1) == 0)) ||
3389                 ((width == 4) && ((addr & 3) == 0))) {
3390                 /* all is well */
3391         } else {
3392                 char buf[100];
3393                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3394                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3395                                 (unsigned int)addr,
3396                                 (int)width);
3397                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3398                 return JIM_ERR;
3399         }
3400
3401         /* Transfer loop */
3402
3403         /* index counter */
3404         n = 0;
3405         /* assume ok */
3406         e = JIM_OK;
3407
3408         size_t buffersize = 4096;
3409         uint8_t *buffer = malloc(buffersize);
3410         if (buffer == NULL)
3411                 return JIM_ERR;
3412
3413         while (len) {
3414                 /* Slurp... in buffer size chunks */
3415
3416                 count = len; /* in objects.. */
3417                 if (count > (buffersize/width)) {
3418                         count = (buffersize/width);
3419                 }
3420
3421                 v = 0; /* shut up gcc */
3422                 for (i = 0 ;i < count ;i++, n++) {
3423                         get_int_array_element(interp, varname, n, &v);
3424                         switch (width) {
3425                         case 4:
3426                                 target_buffer_set_u32(target, &buffer[i*width], v);
3427                                 break;
3428                         case 2:
3429                                 target_buffer_set_u16(target, &buffer[i*width], v);
3430                                 break;
3431                         case 1:
3432                                 buffer[i] = v & 0x0ff;
3433                                 break;
3434                         }
3435                 }
3436                 len -= count;
3437
3438                 retval = target_write_memory(target, addr, width, count, buffer);
3439                 if (retval != ERROR_OK) {
3440                         /* BOO !*/
3441                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3442                                           (unsigned int)addr,
3443                                           (int)width,
3444                                           (int)count);
3445                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3446                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3447                         e = JIM_ERR;
3448                         len = 0;
3449                 }
3450         }
3451
3452         free(buffer);
3453
3454         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3455
3456         return JIM_OK;
3457 }
3458
3459 void target_all_handle_event(enum target_event e)
3460 {
3461         struct target *target;
3462
3463         LOG_DEBUG("**all*targets: event: %d, %s",
3464                            (int)e,
3465                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3466
3467         target = all_targets;
3468         while (target) {
3469                 target_handle_event(target, e);
3470                 target = target->next;
3471         }
3472 }
3473
3474
3475 /* FIX? should we propagate errors here rather than printing them
3476  * and continuing?
3477  */
3478 void target_handle_event(struct target *target, enum target_event e)
3479 {
3480         struct target_event_action *teap;
3481
3482         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3483                 if (teap->event == e) {
3484                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3485                                            target->target_number,
3486                                            target_name(target),
3487                                            target_type_name(target),
3488                                            e,
3489                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3490                                            Jim_GetString(teap->body, NULL));
3491                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3492                         {
3493                                 Jim_PrintErrorMessage(teap->interp);
3494                         }
3495                 }
3496         }
3497 }
3498
3499 /**
3500  * Returns true only if the target has a handler for the specified event.
3501  */
3502 bool target_has_event_action(struct target *target, enum target_event event)
3503 {
3504         struct target_event_action *teap;
3505
3506         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3507                 if (teap->event == event)
3508                         return true;
3509         }
3510         return false;
3511 }
3512
3513 enum target_cfg_param {
3514         TCFG_TYPE,
3515         TCFG_EVENT,
3516         TCFG_WORK_AREA_VIRT,
3517         TCFG_WORK_AREA_PHYS,
3518         TCFG_WORK_AREA_SIZE,
3519         TCFG_WORK_AREA_BACKUP,
3520         TCFG_ENDIAN,
3521         TCFG_VARIANT,
3522         TCFG_CHAIN_POSITION,
3523 };
3524
3525 static Jim_Nvp nvp_config_opts[] = {
3526         { .name = "-type",             .value = TCFG_TYPE },
3527         { .name = "-event",            .value = TCFG_EVENT },
3528         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3529         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3530         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3531         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3532         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3533         { .name = "-variant",          .value = TCFG_VARIANT },
3534         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3535
3536         { .name = NULL, .value = -1 }
3537 };
3538
3539 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3540 {
3541         Jim_Nvp *n;
3542         Jim_Obj *o;
3543         jim_wide w;
3544         char *cp;
3545         int e;
3546
3547         /* parse config or cget options ... */
3548         while (goi->argc > 0) {
3549                 Jim_SetEmptyResult(goi->interp);
3550                 /* Jim_GetOpt_Debug(goi); */
3551
3552                 if (target->type->target_jim_configure) {
3553                         /* target defines a configure function */
3554                         /* target gets first dibs on parameters */
3555                         e = (*(target->type->target_jim_configure))(target, goi);
3556                         if (e == JIM_OK) {
3557                                 /* more? */
3558                                 continue;
3559                         }
3560                         if (e == JIM_ERR) {
3561                                 /* An error */
3562                                 return e;
3563                         }
3564                         /* otherwise we 'continue' below */
3565                 }
3566                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3567                 if (e != JIM_OK) {
3568                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3569                         return e;
3570                 }
3571                 switch (n->value) {
3572                 case TCFG_TYPE:
3573                         /* not setable */
3574                         if (goi->isconfigure) {
3575                                 Jim_SetResult_sprintf(goi->interp,
3576                                                 "not settable: %s", n->name);
3577                                 return JIM_ERR;
3578                         } else {
3579                         no_params:
3580                                 if (goi->argc != 0) {
3581                                         Jim_WrongNumArgs(goi->interp,
3582                                                         goi->argc, goi->argv,
3583                                                         "NO PARAMS");
3584                                         return JIM_ERR;
3585                                 }
3586                         }
3587                         Jim_SetResultString(goi->interp,
3588                                         target_type_name(target), -1);
3589                         /* loop for more */
3590                         break;
3591                 case TCFG_EVENT:
3592                         if (goi->argc == 0) {
3593                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3594                                 return JIM_ERR;
3595                         }
3596
3597                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3598                         if (e != JIM_OK) {
3599                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3600                                 return e;
3601                         }
3602
3603                         if (goi->isconfigure) {
3604                                 if (goi->argc != 1) {
3605                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3606                                         return JIM_ERR;
3607                                 }
3608                         } else {
3609                                 if (goi->argc != 0) {
3610                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3611                                         return JIM_ERR;
3612                                 }
3613                         }
3614
3615                         {
3616                                 struct target_event_action *teap;
3617
3618                                 teap = target->event_action;
3619                                 /* replace existing? */
3620                                 while (teap) {
3621                                         if (teap->event == (enum target_event)n->value) {
3622                                                 break;
3623                                         }
3624                                         teap = teap->next;
3625                                 }
3626
3627                                 if (goi->isconfigure) {
3628                                         bool replace = true;
3629                                         if (teap == NULL) {
3630                                                 /* create new */
3631                                                 teap = calloc(1, sizeof(*teap));
3632                                                 replace = false;
3633                                         }
3634                                         teap->event = n->value;
3635                                         teap->interp = goi->interp;
3636                                         Jim_GetOpt_Obj(goi, &o);
3637                                         if (teap->body) {
3638                                                 Jim_DecrRefCount(teap->interp, teap->body);
3639                                         }
3640                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3641                                         /*
3642                                          * FIXME:
3643                                          *     Tcl/TK - "tk events" have a nice feature.
3644                                          *     See the "BIND" command.
3645                                          *    We should support that here.
3646                                          *     You can specify %X and %Y in the event code.
3647                                          *     The idea is: %T - target name.
3648                                          *     The idea is: %N - target number
3649                                          *     The idea is: %E - event name.
3650                                          */
3651                                         Jim_IncrRefCount(teap->body);
3652
3653                                         if (!replace)
3654                                         {
3655                                                 /* add to head of event list */
3656                                                 teap->next = target->event_action;
3657                                                 target->event_action = teap;
3658                                         }
3659                                         Jim_SetEmptyResult(goi->interp);
3660                                 } else {
3661                                         /* get */
3662                                         if (teap == NULL) {
3663                                                 Jim_SetEmptyResult(goi->interp);
3664                                         } else {
3665                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3666                                         }
3667                                 }
3668                         }
3669                         /* loop for more */
3670                         break;
3671
3672                 case TCFG_WORK_AREA_VIRT:
3673                         if (goi->isconfigure) {
3674                                 target_free_all_working_areas(target);
3675                                 e = Jim_GetOpt_Wide(goi, &w);
3676                                 if (e != JIM_OK) {
3677                                         return e;
3678                                 }
3679                                 target->working_area_virt = w;
3680                                 target->working_area_virt_spec = true;
3681                         } else {
3682                                 if (goi->argc != 0) {
3683                                         goto no_params;
3684                                 }
3685                         }
3686                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3687                         /* loop for more */
3688                         break;
3689
3690                 case TCFG_WORK_AREA_PHYS:
3691                         if (goi->isconfigure) {
3692                                 target_free_all_working_areas(target);
3693                                 e = Jim_GetOpt_Wide(goi, &w);
3694                                 if (e != JIM_OK) {
3695                                         return e;
3696                                 }
3697                                 target->working_area_phys = w;
3698                                 target->working_area_phys_spec = true;
3699                         } else {
3700                                 if (goi->argc != 0) {
3701                                         goto no_params;
3702                                 }
3703                         }
3704                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3705                         /* loop for more */
3706                         break;
3707
3708                 case TCFG_WORK_AREA_SIZE:
3709                         if (goi->isconfigure) {
3710                                 target_free_all_working_areas(target);
3711                                 e = Jim_GetOpt_Wide(goi, &w);
3712                                 if (e != JIM_OK) {
3713                                         return e;
3714                                 }
3715                                 target->working_area_size = w;
3716                         } else {
3717                                 if (goi->argc != 0) {
3718                                         goto no_params;
3719                                 }
3720                         }
3721                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3722                         /* loop for more */
3723                         break;
3724
3725                 case TCFG_WORK_AREA_BACKUP:
3726                         if (goi->isconfigure) {
3727                                 target_free_all_working_areas(target);
3728                                 e = Jim_GetOpt_Wide(goi, &w);
3729                                 if (e != JIM_OK) {
3730                                         return e;
3731                                 }
3732                                 /* make this exactly 1 or 0 */
3733                                 target->backup_working_area = (!!w);
3734                         } else {
3735                                 if (goi->argc != 0) {
3736                                         goto no_params;
3737                                 }
3738                         }
3739                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3740                         /* loop for more e*/
3741                         break;
3742
3743                 case TCFG_ENDIAN:
3744                         if (goi->isconfigure) {
3745                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3746                                 if (e != JIM_OK) {
3747                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3748                                         return e;
3749                                 }
3750                                 target->endianness = n->value;
3751                         } else {
3752                                 if (goi->argc != 0) {
3753                                         goto no_params;
3754                                 }
3755                         }
3756                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3757                         if (n->name == NULL) {
3758                                 target->endianness = TARGET_LITTLE_ENDIAN;
3759                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3760                         }
3761                         Jim_SetResultString(goi->interp, n->name, -1);
3762                         /* loop for more */
3763                         break;
3764
3765                 case TCFG_VARIANT:
3766                         if (goi->isconfigure) {
3767                                 if (goi->argc < 1) {
3768                                         Jim_SetResult_sprintf(goi->interp,
3769                                                                                    "%s ?STRING?",
3770                                                                                    n->name);
3771                                         return JIM_ERR;
3772                                 }
3773                                 if (target->variant) {
3774                                         free((void *)(target->variant));
3775                                 }
3776                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3777                                 target->variant = strdup(cp);
3778                         } else {
3779                                 if (goi->argc != 0) {
3780                                         goto no_params;
3781                                 }
3782                         }
3783                         Jim_SetResultString(goi->interp, target->variant,-1);
3784                         /* loop for more */
3785                         break;
3786                 case TCFG_CHAIN_POSITION:
3787                         if (goi->isconfigure) {
3788                                 Jim_Obj *o;
3789                                 struct jtag_tap *tap;
3790                                 target_free_all_working_areas(target);
3791                                 e = Jim_GetOpt_Obj(goi, &o);
3792                                 if (e != JIM_OK) {
3793                                         return e;
3794                                 }
3795                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3796                                 if (tap == NULL) {
3797                                         return JIM_ERR;
3798                                 }
3799                                 /* make this exactly 1 or 0 */
3800                                 target->tap = tap;
3801                         } else {
3802                                 if (goi->argc != 0) {
3803                                         goto no_params;
3804                                 }
3805                         }
3806                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3807                         /* loop for more e*/
3808                         break;
3809                 }
3810         } /* while (goi->argc) */
3811
3812
3813                 /* done - we return */
3814         return JIM_OK;
3815 }
3816
3817 static int
3818 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3819 {
3820         Jim_GetOptInfo goi;
3821
3822         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3823         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3824         int need_args = 1 + goi.isconfigure;
3825         if (goi.argc < need_args)
3826         {
3827                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3828                         goi.isconfigure
3829                                 ? "missing: -option VALUE ..."
3830                                 : "missing: -option ...");
3831                 return JIM_ERR;
3832         }
3833         struct target *target = Jim_CmdPrivData(goi.interp);
3834         return target_configure(&goi, target);
3835 }
3836
3837 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3838 {
3839         const char *cmd_name = Jim_GetString(argv[0], NULL);
3840
3841         Jim_GetOptInfo goi;
3842         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3843
3844         if (goi.argc != 2 && goi.argc != 3)
3845         {
3846                 Jim_SetResult_sprintf(goi.interp,
3847                                 "usage: %s <address> <data> [<count>]", cmd_name);
3848                 return JIM_ERR;
3849         }
3850
3851         jim_wide a;
3852         int e = Jim_GetOpt_Wide(&goi, &a);
3853         if (e != JIM_OK)
3854                 return e;
3855
3856         jim_wide b;
3857         e = Jim_GetOpt_Wide(&goi, &b);
3858         if (e != JIM_OK)
3859                 return e;
3860
3861         jim_wide c = 1;
3862         if (goi.argc == 3)
3863         {
3864                 e = Jim_GetOpt_Wide(&goi, &c);
3865                 if (e != JIM_OK)
3866                         return e;
3867         }
3868
3869         struct target *target = Jim_CmdPrivData(goi.interp);
3870         uint8_t  target_buf[32];
3871         if (strcasecmp(cmd_name, "mww") == 0) {
3872                 target_buffer_set_u32(target, target_buf, b);
3873                 b = 4;
3874         }
3875         else if (strcasecmp(cmd_name, "mwh") == 0) {
3876                 target_buffer_set_u16(target, target_buf, b);
3877                 b = 2;
3878         }
3879         else if (strcasecmp(cmd_name, "mwb") == 0) {
3880                 target_buffer_set_u8(target, target_buf, b);
3881                 b = 1;
3882         } else {
3883                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3884                 return JIM_ERR;
3885         }
3886
3887         for (jim_wide x = 0; x < c; x++)
3888         {
3889                 e = target_write_memory(target, a, b, 1, target_buf);
3890                 if (e != ERROR_OK)
3891                 {
3892                         Jim_SetResult_sprintf(interp,
3893                                         "Error writing @ 0x%08x: %d\n", (int)(a), e);
3894                         return JIM_ERR;
3895                 }
3896                 /* b = width */
3897                 a = a + b;
3898         }
3899         return JIM_OK;
3900 }
3901
3902 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3903 {
3904         const char *cmd_name = Jim_GetString(argv[0], NULL);
3905
3906         Jim_GetOptInfo goi;
3907         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3908
3909         if ((goi.argc == 2) || (goi.argc == 3))
3910         {
3911                 Jim_SetResult_sprintf(goi.interp,
3912                                 "usage: %s <address> [<count>]", cmd_name);
3913                 return JIM_ERR;
3914         }
3915
3916         jim_wide a;
3917         int e = Jim_GetOpt_Wide(&goi, &a);
3918         if (e != JIM_OK) {
3919                 return JIM_ERR;
3920         }
3921         jim_wide c;
3922         if (goi.argc) {
3923                 e = Jim_GetOpt_Wide(&goi, &c);
3924                 if (e != JIM_OK) {
3925                         return JIM_ERR;
3926                 }
3927         } else {
3928                 c = 1;
3929         }
3930         jim_wide b = 1; /* shut up gcc */
3931         if (strcasecmp(cmd_name, "mdw") == 0)
3932                 b = 4;
3933         else if (strcasecmp(cmd_name, "mdh") == 0)
3934                 b = 2;
3935         else if (strcasecmp(cmd_name, "mdb") == 0)
3936                 b = 1;
3937         else {
3938                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3939                 return JIM_ERR;
3940         }
3941
3942         /* convert count to "bytes" */
3943         c = c * b;
3944
3945         struct target *target = Jim_CmdPrivData(goi.interp);
3946         uint8_t  target_buf[32];
3947         jim_wide x, y, z;
3948         while (c > 0) {
3949                 y = c;
3950                 if (y > 16) {
3951                         y = 16;
3952                 }
3953                 e = target_read_memory(target, a, b, y / b, target_buf);
3954                 if (e != ERROR_OK) {
3955                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3956                         return JIM_ERR;
3957                 }
3958
3959                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3960                 switch (b) {
3961                 case 4:
3962                         for (x = 0; x < 16 && x < y; x += 4)
3963                         {
3964                                 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3965                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3966                         }
3967                         for (; (x < 16) ; x += 4) {
3968                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
3969                         }
3970                         break;
3971                 case 2:
3972                         for (x = 0; x < 16 && x < y; x += 2)
3973                         {
3974                                 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3975                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3976                         }
3977                         for (; (x < 16) ; x += 2) {
3978                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
3979                         }
3980                         break;
3981                 case 1:
3982                 default:
3983                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3984                                 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3985                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3986                         }
3987                         for (; (x < 16) ; x += 1) {
3988                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
3989                         }
3990                         break;
3991                 }
3992                 /* ascii-ify the bytes */
3993                 for (x = 0 ; x < y ; x++) {
3994                         if ((target_buf[x] >= 0x20) &&
3995                                 (target_buf[x] <= 0x7e)) {
3996                                 /* good */
3997                         } else {
3998                                 /* smack it */
3999                                 target_buf[x] = '.';
4000                         }
4001                 }
4002                 /* space pad  */
4003                 while (x < 16) {
4004                         target_buf[x] = ' ';
4005                         x++;
4006                 }
4007                 /* terminate */
4008                 target_buf[16] = 0;
4009                 /* print - with a newline */
4010                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4011                 /* NEXT... */
4012                 c -= 16;
4013                 a += 16;
4014         }
4015         return JIM_OK;
4016 }
4017
4018 static int jim_target_mem2array(Jim_Interp *interp,
4019                 int argc, Jim_Obj *const *argv)
4020 {
4021         struct target *target = Jim_CmdPrivData(interp);
4022         return target_mem2array(interp, target, argc - 1, argv + 1);
4023 }
4024
4025 static int jim_target_array2mem(Jim_Interp *interp,
4026                 int argc, Jim_Obj *const *argv)
4027 {
4028         struct target *target = Jim_CmdPrivData(interp);
4029         return target_array2mem(interp, target, argc - 1, argv + 1);
4030 }
4031
4032 static int jim_target_tap_disabled(Jim_Interp *interp)
4033 {
4034         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4035         return JIM_ERR;
4036 }
4037
4038 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4039 {
4040         if (argc != 1)
4041         {
4042                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4043                 return JIM_ERR;
4044         }
4045         struct target *target = Jim_CmdPrivData(interp);
4046         if (!target->tap->enabled)
4047                 return jim_target_tap_disabled(interp);
4048
4049         int e = target->type->examine(target);
4050         if (e != ERROR_OK)
4051         {
4052                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4053                 return JIM_ERR;
4054         }
4055         return JIM_OK;
4056 }
4057
4058 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4059 {
4060         if (argc != 1)
4061         {
4062                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4063                 return JIM_ERR;
4064         }
4065         struct target *target = Jim_CmdPrivData(interp);
4066         if (!target->tap->enabled)
4067                 return jim_target_tap_disabled(interp);
4068
4069         int e;
4070         if (!(target_was_examined(target))) {
4071                 e = ERROR_TARGET_NOT_EXAMINED;
4072         } else {
4073                 e = target->type->poll(target);
4074         }
4075         if (e != ERROR_OK)
4076         {
4077                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4078                 return JIM_ERR;
4079         }
4080         return JIM_OK;
4081 }
4082
4083 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4084 {
4085         Jim_GetOptInfo goi;
4086         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4087
4088         if (goi.argc != 2)
4089         {
4090                 Jim_WrongNumArgs(interp, 0, argv,
4091                                 "([tT]|[fF]|assert|deassert) BOOL");
4092                 return JIM_ERR;
4093         }
4094
4095         Jim_Nvp *n;
4096         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4097         if (e != JIM_OK)
4098         {
4099                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4100                 return e;
4101         }
4102         /* the halt or not param */
4103         jim_wide a;
4104         e = Jim_GetOpt_Wide(&goi, &a);
4105         if (e != JIM_OK)
4106                 return e;
4107
4108         struct target *target = Jim_CmdPrivData(goi.interp);
4109         if (!target->tap->enabled)
4110                 return jim_target_tap_disabled(interp);
4111         if (!(target_was_examined(target)))
4112         {
4113                 LOG_ERROR("Target not examined yet");
4114                 return ERROR_TARGET_NOT_EXAMINED;
4115         }
4116         if (!target->type->assert_reset || !target->type->deassert_reset)
4117         {
4118                 Jim_SetResult_sprintf(interp,
4119                                 "No target-specific reset for %s",
4120                                 target_name(target));
4121                 return JIM_ERR;
4122         }
4123         /* determine if we should halt or not. */
4124         target->reset_halt = !!a;
4125         /* When this happens - all workareas are invalid. */
4126         target_free_all_working_areas_restore(target, 0);
4127
4128         /* do the assert */
4129         if (n->value == NVP_ASSERT) {
4130                 e = target->type->assert_reset(target);
4131         } else {
4132                 e = target->type->deassert_reset(target);
4133         }
4134         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4135 }
4136
4137 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4138 {
4139         if (argc != 1) {
4140                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4141                 return JIM_ERR;
4142         }
4143         struct target *target = Jim_CmdPrivData(interp);
4144         if (!target->tap->enabled)
4145                 return jim_target_tap_disabled(interp);
4146         int e = target->type->halt(target);
4147         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4148 }
4149
4150 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4151 {
4152         Jim_GetOptInfo goi;
4153         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4154
4155         /* params:  <name>  statename timeoutmsecs */
4156         if (goi.argc != 2)
4157         {
4158                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4159                 Jim_SetResult_sprintf(goi.interp,
4160                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4161                 return JIM_ERR;
4162         }
4163
4164         Jim_Nvp *n;
4165         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4166         if (e != JIM_OK) {
4167                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4168                 return e;
4169         }
4170         jim_wide a;
4171         e = Jim_GetOpt_Wide(&goi, &a);
4172         if (e != JIM_OK) {
4173                 return e;
4174         }
4175         struct target *target = Jim_CmdPrivData(interp);
4176         if (!target->tap->enabled)
4177                 return jim_target_tap_disabled(interp);
4178
4179         e = target_wait_state(target, n->value, a);
4180         if (e != ERROR_OK)
4181         {
4182                 Jim_SetResult_sprintf(goi.interp,
4183                                 "target: %s wait %s fails (%d) %s",
4184                                 target_name(target), n->name,
4185                                 e, target_strerror_safe(e));
4186                 return JIM_ERR;
4187         }
4188         return JIM_OK;
4189 }
4190 /* List for human, Events defined for this target.
4191  * scripts/programs should use 'name cget -event NAME'
4192  */
4193 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4194 {
4195         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4196         struct target *target = Jim_CmdPrivData(interp);
4197         struct target_event_action *teap = target->event_action;
4198         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4199                                    target->target_number,
4200                                    target_name(target));
4201         command_print(cmd_ctx, "%-25s | Body", "Event");
4202         command_print(cmd_ctx, "------------------------- | "
4203                         "----------------------------------------");
4204         while (teap)
4205         {
4206                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4207                 command_print(cmd_ctx, "%-25s | %s",
4208                                 opt->name, Jim_GetString(teap->body, NULL));
4209                 teap = teap->next;
4210         }
4211         command_print(cmd_ctx, "***END***");
4212         return JIM_OK;
4213 }
4214 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4215 {
4216         if (argc != 1)
4217         {
4218                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4219                 return JIM_ERR;
4220         }
4221         struct target *target = Jim_CmdPrivData(interp);
4222         Jim_SetResultString(interp, target_state_name(target), -1);
4223         return JIM_OK;
4224 }
4225 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4226 {
4227         Jim_GetOptInfo goi;
4228         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4229         if (goi.argc != 1)
4230         {
4231                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4232                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4233                 return JIM_ERR;
4234         }
4235         Jim_Nvp *n;
4236         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4237         if (e != JIM_OK)
4238         {
4239                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4240                 return e;
4241         }
4242         struct target *target = Jim_CmdPrivData(interp);
4243         target_handle_event(target, n->value);
4244         return JIM_OK;
4245 }
4246
4247 static const struct command_registration target_instance_command_handlers[] = {
4248         {
4249                 .name = "configure",
4250                 .mode = COMMAND_CONFIG,
4251                 .jim_handler = jim_target_configure,
4252                 .help  = "configure a new target for use",
4253                 .usage = "[target_attribute ...]",
4254         },
4255         {
4256                 .name = "cget",
4257                 .mode = COMMAND_ANY,
4258                 .jim_handler = jim_target_configure,
4259                 .help  = "returns the specified target attribute",
4260                 .usage = "target_attribute",
4261         },
4262         {
4263                 .name = "mww",
4264                 .mode = COMMAND_EXEC,
4265                 .jim_handler = jim_target_mw,
4266                 .help = "Write 32-bit word(s) to target memory",
4267                 .usage = "address data [count]",
4268         },
4269         {
4270                 .name = "mwh",
4271                 .mode = COMMAND_EXEC,
4272                 .jim_handler = jim_target_mw,
4273                 .help = "Write 16-bit half-word(s) to target memory",
4274                 .usage = "address data [count]",
4275         },
4276         {
4277                 .name = "mwb",
4278                 .mode = COMMAND_EXEC,
4279                 .jim_handler = jim_target_mw,
4280                 .help = "Write byte(s) to target memory",
4281                 .usage = "address data [count]",
4282         },
4283         {
4284                 .name = "mdw",
4285                 .mode = COMMAND_EXEC,
4286                 .jim_handler = jim_target_md,
4287                 .help = "Display target memory as 32-bit words",
4288                 .usage = "address [count]",
4289         },
4290         {
4291                 .name = "mdh",
4292                 .mode = COMMAND_EXEC,
4293                 .jim_handler = jim_target_md,
4294                 .help = "Display target memory as 16-bit half-words",
4295                 .usage = "address [count]",
4296         },
4297         {
4298                 .name = "mdb",
4299                 .mode = COMMAND_EXEC,
4300                 .jim_handler = jim_target_md,
4301                 .help = "Display target memory as 8-bit bytes",
4302                 .usage = "address [count]",
4303         },
4304         {
4305                 .name = "array2mem",
4306                 .mode = COMMAND_EXEC,
4307                 .jim_handler = jim_target_array2mem,
4308                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4309                         "to target memory",
4310                 .usage = "arrayname bitwidth address count",
4311         },
4312         {
4313                 .name = "mem2array",
4314                 .mode = COMMAND_EXEC,
4315                 .jim_handler = jim_target_mem2array,
4316                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4317                         "from target memory",
4318                 .usage = "arrayname bitwidth address count",
4319         },
4320         {
4321                 .name = "eventlist",
4322                 .mode = COMMAND_EXEC,
4323                 .jim_handler = jim_target_event_list,
4324                 .help = "displays a table of events defined for this target",
4325         },
4326         {
4327                 .name = "curstate",
4328                 .mode = COMMAND_EXEC,
4329                 .jim_handler = jim_target_current_state,
4330                 .help = "displays the current state of this target",
4331         },
4332         {
4333                 .name = "arp_examine",
4334                 .mode = COMMAND_EXEC,
4335                 .jim_handler = jim_target_examine,
4336                 .help = "used internally for reset processing",
4337         },
4338         {
4339                 .name = "arp_poll",
4340                 .mode = COMMAND_EXEC,
4341                 .jim_handler = jim_target_poll,
4342                 .help = "used internally for reset processing",
4343         },
4344         {
4345                 .name = "arp_reset",
4346                 .mode = COMMAND_EXEC,
4347                 .jim_handler = jim_target_reset,
4348                 .help = "used internally for reset processing",
4349         },
4350         {
4351                 .name = "arp_halt",
4352                 .mode = COMMAND_EXEC,
4353                 .jim_handler = jim_target_halt,
4354                 .help = "used internally for reset processing",
4355         },
4356         {
4357                 .name = "arp_waitstate",
4358                 .mode = COMMAND_EXEC,
4359                 .jim_handler = jim_target_wait_state,
4360                 .help = "used internally for reset processing",
4361         },
4362         {
4363                 .name = "invoke-event",
4364                 .mode = COMMAND_EXEC,
4365                 .jim_handler = jim_target_invoke_event,
4366                 .help = "invoke handler for specified event",
4367                 .usage = "event_name",
4368         },
4369         COMMAND_REGISTRATION_DONE
4370 };
4371
4372 static int target_create(Jim_GetOptInfo *goi)
4373 {
4374         Jim_Obj *new_cmd;
4375         Jim_Cmd *cmd;
4376         const char *cp;
4377         char *cp2;
4378         int e;
4379         int x;
4380         struct target *target;
4381         struct command_context *cmd_ctx;
4382
4383         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4384         if (goi->argc < 3) {
4385                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4386                 return JIM_ERR;
4387         }
4388
4389         /* COMMAND */
4390         Jim_GetOpt_Obj(goi, &new_cmd);
4391         /* does this command exist? */
4392         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4393         if (cmd) {
4394                 cp = Jim_GetString(new_cmd, NULL);
4395                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4396                 return JIM_ERR;
4397         }
4398
4399         /* TYPE */
4400         e = Jim_GetOpt_String(goi, &cp2, NULL);
4401         cp = cp2;
4402         /* now does target type exist */
4403         for (x = 0 ; target_types[x] ; x++) {
4404                 if (0 == strcmp(cp, target_types[x]->name)) {
4405                         /* found */
4406                         break;
4407                 }
4408         }
4409         if (target_types[x] == NULL) {
4410                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4411                 for (x = 0 ; target_types[x] ; x++) {
4412                         if (target_types[x + 1]) {
4413                                 Jim_AppendStrings(goi->interp,
4414                                                                    Jim_GetResult(goi->interp),
4415                                                                    target_types[x]->name,
4416                                                                    ", ", NULL);
4417                         } else {
4418                                 Jim_AppendStrings(goi->interp,
4419                                                                    Jim_GetResult(goi->interp),
4420                                                                    " or ",
4421                                                                    target_types[x]->name,NULL);
4422                         }
4423                 }
4424                 return JIM_ERR;
4425         }
4426
4427         /* Create it */
4428         target = calloc(1,sizeof(struct target));
4429         /* set target number */
4430         target->target_number = new_target_number();
4431
4432         /* allocate memory for each unique target type */
4433         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4434
4435         memcpy(target->type, target_types[x], sizeof(struct target_type));
4436
4437         /* will be set by "-endian" */
4438         target->endianness = TARGET_ENDIAN_UNKNOWN;
4439
4440         target->working_area        = 0x0;
4441         target->working_area_size   = 0x0;
4442         target->working_areas       = NULL;
4443         target->backup_working_area = 0;
4444
4445         target->state               = TARGET_UNKNOWN;
4446         target->debug_reason        = DBG_REASON_UNDEFINED;
4447         target->reg_cache           = NULL;
4448         target->breakpoints         = NULL;
4449         target->watchpoints         = NULL;
4450         target->next                = NULL;
4451         target->arch_info           = NULL;
4452
4453         target->display             = 1;
4454
4455         target->halt_issued                     = false;
4456
4457         /* initialize trace information */
4458         target->trace_info = malloc(sizeof(struct trace));
4459         target->trace_info->num_trace_points         = 0;
4460         target->trace_info->trace_points_size        = 0;
4461         target->trace_info->trace_points             = NULL;
4462         target->trace_info->trace_history_size       = 0;
4463         target->trace_info->trace_history            = NULL;
4464         target->trace_info->trace_history_pos        = 0;
4465         target->trace_info->trace_history_overflowed = 0;
4466
4467         target->dbgmsg          = NULL;
4468         target->dbg_msg_enabled = 0;
4469
4470         target->endianness = TARGET_ENDIAN_UNKNOWN;
4471
4472         /* Do the rest as "configure" options */
4473         goi->isconfigure = 1;
4474         e = target_configure(goi, target);
4475
4476         if (target->tap == NULL)
4477         {
4478                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4479                 e = JIM_ERR;
4480         }
4481
4482         if (e != JIM_OK) {
4483                 free(target->type);
4484                 free(target);
4485                 return e;
4486         }
4487
4488         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4489                 /* default endian to little if not specified */
4490                 target->endianness = TARGET_LITTLE_ENDIAN;
4491         }
4492
4493         /* incase variant is not set */
4494         if (!target->variant)
4495                 target->variant = strdup("");
4496
4497         cp = Jim_GetString(new_cmd, NULL);
4498         target->cmd_name = strdup(cp);
4499
4500         /* create the target specific commands */
4501         if (target->type->commands) {
4502                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4503                 if (ERROR_OK != e)
4504                         LOG_ERROR("unable to register '%s' commands", cp);
4505         }
4506         if (target->type->target_create) {
4507                 (*(target->type->target_create))(target, goi->interp);
4508         }
4509
4510         /* append to end of list */
4511         {
4512                 struct target **tpp;
4513                 tpp = &(all_targets);
4514                 while (*tpp) {
4515                         tpp = &((*tpp)->next);
4516                 }
4517                 *tpp = target;
4518         }
4519
4520         /* now - create the new target name command */
4521         const const struct command_registration target_subcommands[] = {
4522                 {
4523                         .chain = target_instance_command_handlers,
4524                 },
4525                 {
4526                         .chain = target->type->commands,
4527                 },
4528                 COMMAND_REGISTRATION_DONE
4529         };
4530         const const struct command_registration target_commands[] = {
4531                 {
4532                         .name = cp,
4533                         .mode = COMMAND_ANY,
4534                         .help = "target command group",
4535                         .chain = target_subcommands,
4536                 },
4537                 COMMAND_REGISTRATION_DONE
4538         };
4539         e = register_commands(cmd_ctx, NULL, target_commands);
4540         if (ERROR_OK != e)
4541                 return JIM_ERR;
4542
4543         struct command *c = command_find_in_context(cmd_ctx, cp);
4544         assert(c);
4545         command_set_handler_data(c, target);
4546
4547         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4548 }
4549
4550 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4551 {
4552         if (argc != 1)
4553         {
4554                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4555                 return JIM_ERR;
4556         }
4557         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4558         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4559         return JIM_OK;
4560 }
4561
4562 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4563 {
4564         if (argc != 1)
4565         {
4566                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4567                 return JIM_ERR;
4568         }
4569         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4570         for (unsigned x = 0; NULL != target_types[x]; x++)
4571         {
4572                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4573                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4574         }
4575         return JIM_OK;
4576 }
4577
4578 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4579 {
4580         if (argc != 1)
4581         {
4582                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4583                 return JIM_ERR;
4584         }
4585         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4586         struct target *target = all_targets;
4587         while (target)
4588         {
4589                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4590                         Jim_NewStringObj(interp, target_name(target), -1));
4591                 target = target->next;
4592         }
4593         return JIM_OK;
4594 }
4595
4596 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4597 {
4598         Jim_GetOptInfo goi;
4599         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4600         if (goi.argc < 3)
4601         {
4602                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4603                         "<name> <target_type> [<target_options> ...]");
4604                 return JIM_ERR;
4605         }
4606         return target_create(&goi);
4607 }
4608
4609 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4610 {
4611         Jim_GetOptInfo goi;
4612         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4613
4614         /* It's OK to remove this mechanism sometime after August 2010 or so */
4615         LOG_WARNING("don't use numbers as target identifiers; use names");
4616         if (goi.argc != 1)
4617         {
4618                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4619                 return JIM_ERR;
4620         }
4621         jim_wide w;
4622         int e = Jim_GetOpt_Wide(&goi, &w);
4623         if (e != JIM_OK)
4624                 return JIM_ERR;
4625
4626         struct target *target;
4627         for (target = all_targets; NULL != target; target = target->next)
4628         {
4629                 if (target->target_number != w)
4630                         continue;
4631
4632                 Jim_SetResultString(goi.interp, target_name(target), -1);
4633                 return JIM_OK;
4634         }
4635         Jim_SetResult_sprintf(goi.interp,
4636                         "Target: number %d does not exist", (int)(w));
4637         return JIM_ERR;
4638 }
4639
4640 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4641 {
4642         if (argc != 1)
4643         {
4644                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4645                 return JIM_ERR;
4646         }
4647         unsigned count = 0;
4648         struct target *target = all_targets;
4649         while (NULL != target)
4650         {
4651                 target = target->next;
4652                 count++;
4653         }
4654         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4655         return JIM_OK;
4656 }
4657
4658 static const struct command_registration target_subcommand_handlers[] = {
4659         {
4660                 .name = "init",
4661                 .mode = COMMAND_CONFIG,
4662                 .handler = handle_target_init_command,
4663                 .help = "initialize targets",
4664         },
4665         {
4666                 .name = "create",
4667                 /* REVISIT this should be COMMAND_CONFIG ... */
4668                 .mode = COMMAND_ANY,
4669                 .jim_handler = jim_target_create,
4670                 .usage = "name type '-chain-position' name [options ...]",
4671                 .help = "Creates and selects a new target",
4672         },
4673         {
4674                 .name = "current",
4675                 .mode = COMMAND_ANY,
4676                 .jim_handler = jim_target_current,
4677                 .help = "Returns the currently selected target",
4678         },
4679         {
4680                 .name = "types",
4681                 .mode = COMMAND_ANY,
4682                 .jim_handler = jim_target_types,
4683                 .help = "Returns the available target types as "
4684                                 "a list of strings",
4685         },
4686         {
4687                 .name = "names",
4688                 .mode = COMMAND_ANY,
4689                 .jim_handler = jim_target_names,
4690                 .help = "Returns the names of all targets as a list of strings",
4691         },
4692         {
4693                 .name = "number",
4694                 .mode = COMMAND_ANY,
4695                 .jim_handler = jim_target_number,
4696                 .usage = "number",
4697                 .help = "Returns the name of the numbered target "
4698                         "(DEPRECATED)",
4699         },
4700         {
4701                 .name = "count",
4702                 .mode = COMMAND_ANY,
4703                 .jim_handler = jim_target_count,
4704                 .help = "Returns the number of targets as an integer "
4705                         "(DEPRECATED)",
4706         },
4707         COMMAND_REGISTRATION_DONE
4708 };
4709
4710 struct FastLoad
4711 {
4712         uint32_t address;
4713         uint8_t *data;
4714         int length;
4715
4716 };
4717
4718 static int fastload_num;
4719 static struct FastLoad *fastload;
4720
4721 static void free_fastload(void)
4722 {
4723         if (fastload != NULL)
4724         {
4725                 int i;
4726                 for (i = 0; i < fastload_num; i++)
4727                 {
4728                         if (fastload[i].data)
4729                                 free(fastload[i].data);
4730                 }
4731                 free(fastload);
4732                 fastload = NULL;
4733         }
4734 }
4735
4736
4737
4738
4739 COMMAND_HANDLER(handle_fast_load_image_command)
4740 {
4741         uint8_t *buffer;
4742         size_t buf_cnt;
4743         uint32_t image_size;
4744         uint32_t min_address = 0;
4745         uint32_t max_address = 0xffffffff;
4746         int i;
4747
4748         struct image image;
4749
4750         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4751                         &image, &min_address, &max_address);
4752         if (ERROR_OK != retval)
4753                 return retval;
4754
4755         struct duration bench;
4756         duration_start(&bench);
4757
4758         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4759         {
4760                 return ERROR_OK;
4761         }
4762
4763         image_size = 0x0;
4764         retval = ERROR_OK;
4765         fastload_num = image.num_sections;
4766         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4767         if (fastload == NULL)
4768         {
4769                 image_close(&image);
4770                 return ERROR_FAIL;
4771         }
4772         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4773         for (i = 0; i < image.num_sections; i++)
4774         {
4775                 buffer = malloc(image.sections[i].size);
4776                 if (buffer == NULL)
4777                 {
4778                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4779                                                   (int)(image.sections[i].size));
4780                         break;
4781                 }
4782
4783                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4784                 {
4785                         free(buffer);
4786                         break;
4787                 }
4788
4789                 uint32_t offset = 0;
4790                 uint32_t length = buf_cnt;
4791
4792
4793                 /* DANGER!!! beware of unsigned comparision here!!! */
4794
4795                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4796                                 (image.sections[i].base_address < max_address))
4797                 {
4798                         if (image.sections[i].base_address < min_address)
4799                         {
4800                                 /* clip addresses below */
4801                                 offset += min_address-image.sections[i].base_address;
4802                                 length -= offset;
4803                         }
4804
4805                         if (image.sections[i].base_address + buf_cnt > max_address)
4806                         {
4807                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4808                         }
4809
4810                         fastload[i].address = image.sections[i].base_address + offset;
4811                         fastload[i].data = malloc(length);
4812                         if (fastload[i].data == NULL)
4813                         {
4814                                 free(buffer);
4815                                 break;
4816                         }
4817                         memcpy(fastload[i].data, buffer + offset, length);
4818                         fastload[i].length = length;
4819
4820                         image_size += length;
4821                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4822                                                   (unsigned int)length,
4823                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4824                 }
4825
4826                 free(buffer);
4827         }
4828
4829         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4830         {
4831                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4832                                 "in %fs (%0.3f kb/s)", image_size, 
4833                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4834
4835                 command_print(CMD_CTX,
4836                                 "WARNING: image has not been loaded to target!"
4837                                 "You can issue a 'fast_load' to finish loading.");
4838         }
4839
4840         image_close(&image);
4841
4842         if (retval != ERROR_OK)
4843         {
4844                 free_fastload();
4845         }
4846
4847         return retval;
4848 }
4849
4850 COMMAND_HANDLER(handle_fast_load_command)
4851 {
4852         if (CMD_ARGC > 0)
4853                 return ERROR_COMMAND_SYNTAX_ERROR;
4854         if (fastload == NULL)
4855         {
4856                 LOG_ERROR("No image in memory");
4857                 return ERROR_FAIL;
4858         }
4859         int i;
4860         int ms = timeval_ms();
4861         int size = 0;
4862         int retval = ERROR_OK;
4863         for (i = 0; i < fastload_num;i++)
4864         {
4865                 struct target *target = get_current_target(CMD_CTX);
4866                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4867                                           (unsigned int)(fastload[i].address),
4868                                           (unsigned int)(fastload[i].length));
4869                 if (retval == ERROR_OK)
4870                 {
4871                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4872                 }
4873                 size += fastload[i].length;
4874         }
4875         int after = timeval_ms();
4876         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4877         return retval;
4878 }
4879
4880 static const struct command_registration target_command_handlers[] = {
4881         {
4882                 .name = "targets",
4883                 .handler = handle_targets_command,
4884                 .mode = COMMAND_ANY,
4885                 .help = "change current default target (one parameter) "
4886                         "or prints table of all targets (no parameters)",
4887                 .usage = "[target]",
4888         },
4889         {
4890                 .name = "target",
4891                 .mode = COMMAND_CONFIG,
4892                 .help = "configure target",
4893
4894                 .chain = target_subcommand_handlers,
4895         },
4896         COMMAND_REGISTRATION_DONE
4897 };
4898
4899 int target_register_commands(struct command_context *cmd_ctx)
4900 {
4901         return register_commands(cmd_ctx, NULL, target_command_handlers);
4902 }
4903
4904 static bool target_reset_nag = true;
4905
4906 bool get_target_reset_nag(void)
4907 {
4908         return target_reset_nag;
4909 }
4910
4911 COMMAND_HANDLER(handle_target_reset_nag)
4912 {
4913         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
4914                         &target_reset_nag, "Nag after each reset about options to improve "
4915                         "performance");
4916 }
4917
4918 static const struct command_registration target_exec_command_handlers[] = {
4919         {
4920                 .name = "fast_load_image",
4921                 .handler = handle_fast_load_image_command,
4922                 .mode = COMMAND_ANY,
4923                 .help = "Load image into server memory for later use by "
4924                         "fast_load; primarily for profiling",
4925                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
4926                         "[min_address [max_length]]",
4927         },
4928         {
4929                 .name = "fast_load",
4930                 .handler = handle_fast_load_command,
4931                 .mode = COMMAND_EXEC,
4932                 .help = "loads active fast load image to current target "
4933                         "- mainly for profiling purposes",
4934         },
4935         {
4936                 .name = "profile",
4937                 .handler = handle_profile_command,
4938                 .mode = COMMAND_EXEC,
4939                 .help = "profiling samples the CPU PC",
4940         },
4941         /** @todo don't register virt2phys() unless target supports it */
4942         {
4943                 .name = "virt2phys",
4944                 .handler = handle_virt2phys_command,
4945                 .mode = COMMAND_ANY,
4946                 .help = "translate a virtual address into a physical address",
4947                 .usage = "virtual_address",
4948         },
4949         {
4950                 .name = "reg",
4951                 .handler = handle_reg_command,
4952                 .mode = COMMAND_EXEC,
4953                 .help = "display or set a register; with no arguments, "
4954                         "displays all registers and their values",
4955                 .usage = "[(register_name|register_number) [value]]",
4956         },
4957         {
4958                 .name = "poll",
4959                 .handler = handle_poll_command,
4960                 .mode = COMMAND_EXEC,
4961                 .help = "poll target state; or reconfigure background polling",
4962                 .usage = "['on'|'off']",
4963         },
4964         {
4965                 .name = "wait_halt",
4966                 .handler = handle_wait_halt_command,
4967                 .mode = COMMAND_EXEC,
4968                 .help = "wait up to the specified number of milliseconds "
4969                         "(default 5) for a previously requested halt",
4970                 .usage = "[milliseconds]",
4971         },
4972         {
4973                 .name = "halt",
4974                 .handler = handle_halt_command,
4975                 .mode = COMMAND_EXEC,
4976                 .help = "request target to halt, then wait up to the specified"
4977                         "number of milliseconds (default 5) for it to complete",
4978                 .usage = "[milliseconds]",
4979         },
4980         {
4981                 .name = "resume",
4982                 .handler = handle_resume_command,
4983                 .mode = COMMAND_EXEC,
4984                 .help = "resume target execution from current PC or address",
4985                 .usage = "[address]",
4986         },
4987         {
4988                 .name = "reset",
4989                 .handler = handle_reset_command,
4990                 .mode = COMMAND_EXEC,
4991                 .usage = "[run|halt|init]",
4992                 .help = "Reset all targets into the specified mode."
4993                         "Default reset mode is run, if not given.",
4994         },
4995         {
4996                 .name = "soft_reset_halt",
4997                 .handler = handle_soft_reset_halt_command,
4998                 .mode = COMMAND_EXEC,
4999                 .help = "halt the target and do a soft reset",
5000         },
5001         {
5002                 .name = "step",
5003                 .handler = handle_step_command,
5004                 .mode = COMMAND_EXEC,
5005                 .help = "step one instruction from current PC or address",
5006                 .usage = "[address]",
5007         },
5008         {
5009                 .name = "mdw",
5010                 .handler = handle_md_command,
5011                 .mode = COMMAND_EXEC,
5012                 .help = "display memory words",
5013                 .usage = "['phys'] address [count]",
5014         },
5015         {
5016                 .name = "mdh",
5017                 .handler = handle_md_command,
5018                 .mode = COMMAND_EXEC,
5019                 .help = "display memory half-words",
5020                 .usage = "['phys'] address [count]",
5021         },
5022         {
5023                 .name = "mdb",
5024                 .handler = handle_md_command,
5025                 .mode = COMMAND_EXEC,
5026                 .help = "display memory bytes",
5027                 .usage = "['phys'] address [count]",
5028         },
5029         {
5030                 .name = "mww",
5031                 .handler = handle_mw_command,
5032                 .mode = COMMAND_EXEC,
5033                 .help = "write memory word",
5034                 .usage = "['phys'] address value [count]",
5035         },
5036         {
5037                 .name = "mwh",
5038                 .handler = handle_mw_command,
5039                 .mode = COMMAND_EXEC,
5040                 .help = "write memory half-word",
5041                 .usage = "['phys'] address value [count]",
5042         },
5043         {
5044                 .name = "mwb",
5045                 .handler = handle_mw_command,
5046                 .mode = COMMAND_EXEC,
5047                 .help = "write memory byte",
5048                 .usage = "['phys'] address value [count]",
5049         },
5050         {
5051                 .name = "bp",
5052                 .handler = handle_bp_command,
5053                 .mode = COMMAND_EXEC,
5054                 .help = "list or set hardware or software breakpoint",
5055                 .usage = "[address length ['hw']]",
5056         },
5057         {
5058                 .name = "rbp",
5059                 .handler = handle_rbp_command,
5060                 .mode = COMMAND_EXEC,
5061                 .help = "remove breakpoint",
5062                 .usage = "address",
5063         },
5064         {
5065                 .name = "wp",
5066                 .handler = handle_wp_command,
5067                 .mode = COMMAND_EXEC,
5068                 .help = "list (no params) or create watchpoints",
5069                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5070         },
5071         {
5072                 .name = "rwp",
5073                 .handler = handle_rwp_command,
5074                 .mode = COMMAND_EXEC,
5075                 .help = "remove watchpoint",
5076                 .usage = "address",
5077         },
5078         {
5079                 .name = "load_image",
5080                 .handler = handle_load_image_command,
5081                 .mode = COMMAND_EXEC,
5082                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5083                         "[min_address] [max_length]",
5084         },
5085         {
5086                 .name = "dump_image",
5087                 .handler = handle_dump_image_command,
5088                 .mode = COMMAND_EXEC,
5089                 .usage = "filename address size",
5090         },
5091         {
5092                 .name = "verify_image",
5093                 .handler = handle_verify_image_command,
5094                 .mode = COMMAND_EXEC,
5095                 .usage = "filename [offset [type]]",
5096         },
5097         {
5098                 .name = "test_image",
5099                 .handler = handle_test_image_command,
5100                 .mode = COMMAND_EXEC,
5101                 .usage = "filename [offset [type]]",
5102         },
5103         {
5104                 .name = "ocd_mem2array",
5105                 .mode = COMMAND_EXEC,
5106                 .jim_handler = jim_mem2array,
5107                 .help = "read 8/16/32 bit memory and return as a TCL array "
5108                         "for script processing",
5109                 .usage = "arrayname bitwidth address count",
5110         },
5111         {
5112                 .name = "ocd_array2mem",
5113                 .mode = COMMAND_EXEC,
5114                 .jim_handler = jim_array2mem,
5115                 .help = "convert a TCL array to memory locations "
5116                         "and write the 8/16/32 bit values",
5117                 .usage = "arrayname bitwidth address count",
5118         },
5119         {
5120                 .name = "reset_nag",
5121                 .handler = handle_target_reset_nag,
5122                 .mode = COMMAND_ANY,
5123                 .help = "Nag after each reset about options that could have been "
5124                                 "enabled to improve performance. ",
5125                 .usage = "['enable'|'disable']",
5126         },
5127         COMMAND_REGISTRATION_DONE
5128 };
5129 int target_register_user_commands(struct command_context *cmd_ctx)
5130 {
5131         int retval = ERROR_OK;
5132         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5133                 return retval;
5134
5135         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5136                 return retval;
5137
5138
5139         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5140 }