]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: check late abort from target in async_algorithm
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, uint32_t address,
62                 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71                 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73                 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106 extern struct target_type quark_d20xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &ls1_sap_target,
125         &mips_m4k_target,
126         &avr_target,
127         &dsp563xx_target,
128         &dsp5680xx_target,
129         &testee_target,
130         &avr32_ap7k_target,
131         &hla_target,
132         &nds32_v2_target,
133         &nds32_v3_target,
134         &nds32_v3m_target,
135         &or1k_target,
136         &quark_x10xx_target,
137         &quark_d20xx_target,
138         NULL,
139 };
140
141 struct target *all_targets;
142 static struct target_event_callback *target_event_callbacks;
143 static struct target_timer_callback *target_timer_callbacks;
144 LIST_HEAD(target_reset_callback_list);
145 LIST_HEAD(target_trace_callback_list);
146 static const int polling_interval = 100;
147
148 static const Jim_Nvp nvp_assert[] = {
149         { .name = "assert", NVP_ASSERT },
150         { .name = "deassert", NVP_DEASSERT },
151         { .name = "T", NVP_ASSERT },
152         { .name = "F", NVP_DEASSERT },
153         { .name = "t", NVP_ASSERT },
154         { .name = "f", NVP_DEASSERT },
155         { .name = NULL, .value = -1 }
156 };
157
158 static const Jim_Nvp nvp_error_target[] = {
159         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
160         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
161         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
162         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
163         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
164         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
165         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
166         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
167         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
168         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
169         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
170         { .value = -1, .name = NULL }
171 };
172
173 static const char *target_strerror_safe(int err)
174 {
175         const Jim_Nvp *n;
176
177         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
178         if (n->name == NULL)
179                 return "unknown";
180         else
181                 return n->name;
182 }
183
184 static const Jim_Nvp nvp_target_event[] = {
185
186         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
187         { .value = TARGET_EVENT_HALTED, .name = "halted" },
188         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
189         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
190         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
191
192         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
193         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
194
195         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
196         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
197         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
198         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
199         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
200         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
201         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
202         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
203         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
204         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
205         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
206         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
207
208         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
209         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
210
211         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
212         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
213
214         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
215         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
216
217         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
218         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
219
220         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
221         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
222
223         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
224
225         { .name = NULL, .value = -1 }
226 };
227
228 static const Jim_Nvp nvp_target_state[] = {
229         { .name = "unknown", .value = TARGET_UNKNOWN },
230         { .name = "running", .value = TARGET_RUNNING },
231         { .name = "halted",  .value = TARGET_HALTED },
232         { .name = "reset",   .value = TARGET_RESET },
233         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
234         { .name = NULL, .value = -1 },
235 };
236
237 static const Jim_Nvp nvp_target_debug_reason[] = {
238         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
239         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
240         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
241         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
242         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
243         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
244         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
245         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
246         { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_endian[] = {
250         { .name = "big",    .value = TARGET_BIG_ENDIAN },
251         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
252         { .name = "be",     .value = TARGET_BIG_ENDIAN },
253         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
254         { .name = NULL,     .value = -1 },
255 };
256
257 static const Jim_Nvp nvp_reset_modes[] = {
258         { .name = "unknown", .value = RESET_UNKNOWN },
259         { .name = "run"    , .value = RESET_RUN },
260         { .name = "halt"   , .value = RESET_HALT },
261         { .name = "init"   , .value = RESET_INIT },
262         { .name = NULL     , .value = -1 },
263 };
264
265 const char *debug_reason_name(struct target *t)
266 {
267         const char *cp;
268
269         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
270                         t->debug_reason)->name;
271         if (!cp) {
272                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
273                 cp = "(*BUG*unknown*BUG*)";
274         }
275         return cp;
276 }
277
278 const char *target_state_name(struct target *t)
279 {
280         const char *cp;
281         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
282         if (!cp) {
283                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
284                 cp = "(*BUG*unknown*BUG*)";
285         }
286         return cp;
287 }
288
289 const char *target_event_name(enum target_event event)
290 {
291         const char *cp;
292         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
293         if (!cp) {
294                 LOG_ERROR("Invalid target event: %d", (int)(event));
295                 cp = "(*BUG*unknown*BUG*)";
296         }
297         return cp;
298 }
299
300 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
301 {
302         const char *cp;
303         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
304         if (!cp) {
305                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
306                 cp = "(*BUG*unknown*BUG*)";
307         }
308         return cp;
309 }
310
311 /* determine the number of the new target */
312 static int new_target_number(void)
313 {
314         struct target *t;
315         int x;
316
317         /* number is 0 based */
318         x = -1;
319         t = all_targets;
320         while (t) {
321                 if (x < t->target_number)
322                         x = t->target_number;
323                 t = t->next;
324         }
325         return x + 1;
326 }
327
328 /* read a uint64_t from a buffer in target memory endianness */
329 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
330 {
331         if (target->endianness == TARGET_LITTLE_ENDIAN)
332                 return le_to_h_u64(buffer);
333         else
334                 return be_to_h_u64(buffer);
335 }
336
337 /* read a uint32_t from a buffer in target memory endianness */
338 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
339 {
340         if (target->endianness == TARGET_LITTLE_ENDIAN)
341                 return le_to_h_u32(buffer);
342         else
343                 return be_to_h_u32(buffer);
344 }
345
346 /* read a uint24_t from a buffer in target memory endianness */
347 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
348 {
349         if (target->endianness == TARGET_LITTLE_ENDIAN)
350                 return le_to_h_u24(buffer);
351         else
352                 return be_to_h_u24(buffer);
353 }
354
355 /* read a uint16_t from a buffer in target memory endianness */
356 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
357 {
358         if (target->endianness == TARGET_LITTLE_ENDIAN)
359                 return le_to_h_u16(buffer);
360         else
361                 return be_to_h_u16(buffer);
362 }
363
364 /* read a uint8_t from a buffer in target memory endianness */
365 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
366 {
367         return *buffer & 0x0ff;
368 }
369
370 /* write a uint64_t to a buffer in target memory endianness */
371 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
372 {
373         if (target->endianness == TARGET_LITTLE_ENDIAN)
374                 h_u64_to_le(buffer, value);
375         else
376                 h_u64_to_be(buffer, value);
377 }
378
379 /* write a uint32_t to a buffer in target memory endianness */
380 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
381 {
382         if (target->endianness == TARGET_LITTLE_ENDIAN)
383                 h_u32_to_le(buffer, value);
384         else
385                 h_u32_to_be(buffer, value);
386 }
387
388 /* write a uint24_t to a buffer in target memory endianness */
389 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
390 {
391         if (target->endianness == TARGET_LITTLE_ENDIAN)
392                 h_u24_to_le(buffer, value);
393         else
394                 h_u24_to_be(buffer, value);
395 }
396
397 /* write a uint16_t to a buffer in target memory endianness */
398 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
399 {
400         if (target->endianness == TARGET_LITTLE_ENDIAN)
401                 h_u16_to_le(buffer, value);
402         else
403                 h_u16_to_be(buffer, value);
404 }
405
406 /* write a uint8_t to a buffer in target memory endianness */
407 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
408 {
409         *buffer = value;
410 }
411
412 /* write a uint64_t array to a buffer in target memory endianness */
413 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
414 {
415         uint32_t i;
416         for (i = 0; i < count; i++)
417                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
418 }
419
420 /* write a uint32_t array to a buffer in target memory endianness */
421 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
422 {
423         uint32_t i;
424         for (i = 0; i < count; i++)
425                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
426 }
427
428 /* write a uint16_t array to a buffer in target memory endianness */
429 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
430 {
431         uint32_t i;
432         for (i = 0; i < count; i++)
433                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
434 }
435
436 /* write a uint64_t array to a buffer in target memory endianness */
437 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
438 {
439         uint32_t i;
440         for (i = 0; i < count; i++)
441                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
442 }
443
444 /* write a uint32_t array to a buffer in target memory endianness */
445 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
446 {
447         uint32_t i;
448         for (i = 0; i < count; i++)
449                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
450 }
451
452 /* write a uint16_t array to a buffer in target memory endianness */
453 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
454 {
455         uint32_t i;
456         for (i = 0; i < count; i++)
457                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
458 }
459
460 /* return a pointer to a configured target; id is name or number */
461 struct target *get_target(const char *id)
462 {
463         struct target *target;
464
465         /* try as tcltarget name */
466         for (target = all_targets; target; target = target->next) {
467                 if (target_name(target) == NULL)
468                         continue;
469                 if (strcmp(id, target_name(target)) == 0)
470                         return target;
471         }
472
473         /* It's OK to remove this fallback sometime after August 2010 or so */
474
475         /* no match, try as number */
476         unsigned num;
477         if (parse_uint(id, &num) != ERROR_OK)
478                 return NULL;
479
480         for (target = all_targets; target; target = target->next) {
481                 if (target->target_number == (int)num) {
482                         LOG_WARNING("use '%s' as target identifier, not '%u'",
483                                         target_name(target), num);
484                         return target;
485                 }
486         }
487
488         return NULL;
489 }
490
491 /* returns a pointer to the n-th configured target */
492 struct target *get_target_by_num(int num)
493 {
494         struct target *target = all_targets;
495
496         while (target) {
497                 if (target->target_number == num)
498                         return target;
499                 target = target->next;
500         }
501
502         return NULL;
503 }
504
505 struct target *get_current_target(struct command_context *cmd_ctx)
506 {
507         struct target *target = get_target_by_num(cmd_ctx->current_target);
508
509         if (target == NULL) {
510                 LOG_ERROR("BUG: current_target out of bounds");
511                 exit(-1);
512         }
513
514         return target;
515 }
516
517 int target_poll(struct target *target)
518 {
519         int retval;
520
521         /* We can't poll until after examine */
522         if (!target_was_examined(target)) {
523                 /* Fail silently lest we pollute the log */
524                 return ERROR_FAIL;
525         }
526
527         retval = target->type->poll(target);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         if (target->halt_issued) {
532                 if (target->state == TARGET_HALTED)
533                         target->halt_issued = false;
534                 else {
535                         int64_t t = timeval_ms() - target->halt_issued_time;
536                         if (t > DEFAULT_HALT_TIMEOUT) {
537                                 target->halt_issued = false;
538                                 LOG_INFO("Halt timed out, wake up GDB.");
539                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
540                         }
541                 }
542         }
543
544         return ERROR_OK;
545 }
546
547 int target_halt(struct target *target)
548 {
549         int retval;
550         /* We can't poll until after examine */
551         if (!target_was_examined(target)) {
552                 LOG_ERROR("Target not examined yet");
553                 return ERROR_FAIL;
554         }
555
556         retval = target->type->halt(target);
557         if (retval != ERROR_OK)
558                 return retval;
559
560         target->halt_issued = true;
561         target->halt_issued_time = timeval_ms();
562
563         return ERROR_OK;
564 }
565
566 /**
567  * Make the target (re)start executing using its saved execution
568  * context (possibly with some modifications).
569  *
570  * @param target Which target should start executing.
571  * @param current True to use the target's saved program counter instead
572  *      of the address parameter
573  * @param address Optionally used as the program counter.
574  * @param handle_breakpoints True iff breakpoints at the resumption PC
575  *      should be skipped.  (For example, maybe execution was stopped by
576  *      such a breakpoint, in which case it would be counterprodutive to
577  *      let it re-trigger.
578  * @param debug_execution False if all working areas allocated by OpenOCD
579  *      should be released and/or restored to their original contents.
580  *      (This would for example be true to run some downloaded "helper"
581  *      algorithm code, which resides in one such working buffer and uses
582  *      another for data storage.)
583  *
584  * @todo Resolve the ambiguity about what the "debug_execution" flag
585  * signifies.  For example, Target implementations don't agree on how
586  * it relates to invalidation of the register cache, or to whether
587  * breakpoints and watchpoints should be enabled.  (It would seem wrong
588  * to enable breakpoints when running downloaded "helper" algorithms
589  * (debug_execution true), since the breakpoints would be set to match
590  * target firmware being debugged, not the helper algorithm.... and
591  * enabling them could cause such helpers to malfunction (for example,
592  * by overwriting data with a breakpoint instruction.  On the other
593  * hand the infrastructure for running such helpers might use this
594  * procedure but rely on hardware breakpoint to detect termination.)
595  */
596 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
597 {
598         int retval;
599
600         /* We can't poll until after examine */
601         if (!target_was_examined(target)) {
602                 LOG_ERROR("Target not examined yet");
603                 return ERROR_FAIL;
604         }
605
606         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
607
608         /* note that resume *must* be asynchronous. The CPU can halt before
609          * we poll. The CPU can even halt at the current PC as a result of
610          * a software breakpoint being inserted by (a bug?) the application.
611          */
612         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
613         if (retval != ERROR_OK)
614                 return retval;
615
616         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
617
618         return retval;
619 }
620
621 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
622 {
623         char buf[100];
624         int retval;
625         Jim_Nvp *n;
626         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
627         if (n->name == NULL) {
628                 LOG_ERROR("invalid reset mode");
629                 return ERROR_FAIL;
630         }
631
632         struct target *target;
633         for (target = all_targets; target; target = target->next)
634                 target_call_reset_callbacks(target, reset_mode);
635
636         /* disable polling during reset to make reset event scripts
637          * more predictable, i.e. dr/irscan & pathmove in events will
638          * not have JTAG operations injected into the middle of a sequence.
639          */
640         bool save_poll = jtag_poll_get_enabled();
641
642         jtag_poll_set_enabled(false);
643
644         sprintf(buf, "ocd_process_reset %s", n->name);
645         retval = Jim_Eval(cmd_ctx->interp, buf);
646
647         jtag_poll_set_enabled(save_poll);
648
649         if (retval != JIM_OK) {
650                 Jim_MakeErrorMessage(cmd_ctx->interp);
651                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
652                 return ERROR_FAIL;
653         }
654
655         /* We want any events to be processed before the prompt */
656         retval = target_call_timer_callbacks_now();
657
658         for (target = all_targets; target; target = target->next) {
659                 target->type->check_reset(target);
660                 target->running_alg = false;
661         }
662
663         return retval;
664 }
665
666 static int identity_virt2phys(struct target *target,
667                 uint32_t virtual, uint32_t *physical)
668 {
669         *physical = virtual;
670         return ERROR_OK;
671 }
672
673 static int no_mmu(struct target *target, int *enabled)
674 {
675         *enabled = 0;
676         return ERROR_OK;
677 }
678
679 static int default_examine(struct target *target)
680 {
681         target_set_examined(target);
682         return ERROR_OK;
683 }
684
685 /* no check by default */
686 static int default_check_reset(struct target *target)
687 {
688         return ERROR_OK;
689 }
690
691 int target_examine_one(struct target *target)
692 {
693         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
694
695         int retval = target->type->examine(target);
696         if (retval != ERROR_OK)
697                 return retval;
698
699         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
700
701         return ERROR_OK;
702 }
703
704 static int jtag_enable_callback(enum jtag_event event, void *priv)
705 {
706         struct target *target = priv;
707
708         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
709                 return ERROR_OK;
710
711         jtag_unregister_event_callback(jtag_enable_callback, target);
712
713         return target_examine_one(target);
714 }
715
716 /* Targets that correctly implement init + examine, i.e.
717  * no communication with target during init:
718  *
719  * XScale
720  */
721 int target_examine(void)
722 {
723         int retval = ERROR_OK;
724         struct target *target;
725
726         for (target = all_targets; target; target = target->next) {
727                 /* defer examination, but don't skip it */
728                 if (!target->tap->enabled) {
729                         jtag_register_event_callback(jtag_enable_callback,
730                                         target);
731                         continue;
732                 }
733
734                 retval = target_examine_one(target);
735                 if (retval != ERROR_OK)
736                         return retval;
737         }
738         return retval;
739 }
740
741 const char *target_type_name(struct target *target)
742 {
743         return target->type->name;
744 }
745
746 static int target_soft_reset_halt(struct target *target)
747 {
748         if (!target_was_examined(target)) {
749                 LOG_ERROR("Target not examined yet");
750                 return ERROR_FAIL;
751         }
752         if (!target->type->soft_reset_halt) {
753                 LOG_ERROR("Target %s does not support soft_reset_halt",
754                                 target_name(target));
755                 return ERROR_FAIL;
756         }
757         return target->type->soft_reset_halt(target);
758 }
759
760 /**
761  * Downloads a target-specific native code algorithm to the target,
762  * and executes it.  * Note that some targets may need to set up, enable,
763  * and tear down a breakpoint (hard or * soft) to detect algorithm
764  * termination, while others may support  lower overhead schemes where
765  * soft breakpoints embedded in the algorithm automatically terminate the
766  * algorithm.
767  *
768  * @param target used to run the algorithm
769  * @param arch_info target-specific description of the algorithm.
770  */
771 int target_run_algorithm(struct target *target,
772                 int num_mem_params, struct mem_param *mem_params,
773                 int num_reg_params, struct reg_param *reg_param,
774                 uint32_t entry_point, uint32_t exit_point,
775                 int timeout_ms, void *arch_info)
776 {
777         int retval = ERROR_FAIL;
778
779         if (!target_was_examined(target)) {
780                 LOG_ERROR("Target not examined yet");
781                 goto done;
782         }
783         if (!target->type->run_algorithm) {
784                 LOG_ERROR("Target type '%s' does not support %s",
785                                 target_type_name(target), __func__);
786                 goto done;
787         }
788
789         target->running_alg = true;
790         retval = target->type->run_algorithm(target,
791                         num_mem_params, mem_params,
792                         num_reg_params, reg_param,
793                         entry_point, exit_point, timeout_ms, arch_info);
794         target->running_alg = false;
795
796 done:
797         return retval;
798 }
799
800 /**
801  * Downloads a target-specific native code algorithm to the target,
802  * executes and leaves it running.
803  *
804  * @param target used to run the algorithm
805  * @param arch_info target-specific description of the algorithm.
806  */
807 int target_start_algorithm(struct target *target,
808                 int num_mem_params, struct mem_param *mem_params,
809                 int num_reg_params, struct reg_param *reg_params,
810                 uint32_t entry_point, uint32_t exit_point,
811                 void *arch_info)
812 {
813         int retval = ERROR_FAIL;
814
815         if (!target_was_examined(target)) {
816                 LOG_ERROR("Target not examined yet");
817                 goto done;
818         }
819         if (!target->type->start_algorithm) {
820                 LOG_ERROR("Target type '%s' does not support %s",
821                                 target_type_name(target), __func__);
822                 goto done;
823         }
824         if (target->running_alg) {
825                 LOG_ERROR("Target is already running an algorithm");
826                 goto done;
827         }
828
829         target->running_alg = true;
830         retval = target->type->start_algorithm(target,
831                         num_mem_params, mem_params,
832                         num_reg_params, reg_params,
833                         entry_point, exit_point, arch_info);
834
835 done:
836         return retval;
837 }
838
839 /**
840  * Waits for an algorithm started with target_start_algorithm() to complete.
841  *
842  * @param target used to run the algorithm
843  * @param arch_info target-specific description of the algorithm.
844  */
845 int target_wait_algorithm(struct target *target,
846                 int num_mem_params, struct mem_param *mem_params,
847                 int num_reg_params, struct reg_param *reg_params,
848                 uint32_t exit_point, int timeout_ms,
849                 void *arch_info)
850 {
851         int retval = ERROR_FAIL;
852
853         if (!target->type->wait_algorithm) {
854                 LOG_ERROR("Target type '%s' does not support %s",
855                                 target_type_name(target), __func__);
856                 goto done;
857         }
858         if (!target->running_alg) {
859                 LOG_ERROR("Target is not running an algorithm");
860                 goto done;
861         }
862
863         retval = target->type->wait_algorithm(target,
864                         num_mem_params, mem_params,
865                         num_reg_params, reg_params,
866                         exit_point, timeout_ms, arch_info);
867         if (retval != ERROR_TARGET_TIMEOUT)
868                 target->running_alg = false;
869
870 done:
871         return retval;
872 }
873
874 /**
875  * Executes a target-specific native code algorithm in the target.
876  * It differs from target_run_algorithm in that the algorithm is asynchronous.
877  * Because of this it requires an compliant algorithm:
878  * see contrib/loaders/flash/stm32f1x.S for example.
879  *
880  * @param target used to run the algorithm
881  */
882
883 int target_run_flash_async_algorithm(struct target *target,
884                 const uint8_t *buffer, uint32_t count, int block_size,
885                 int num_mem_params, struct mem_param *mem_params,
886                 int num_reg_params, struct reg_param *reg_params,
887                 uint32_t buffer_start, uint32_t buffer_size,
888                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
889 {
890         int retval;
891         int timeout = 0;
892
893         const uint8_t *buffer_orig = buffer;
894
895         /* Set up working area. First word is write pointer, second word is read pointer,
896          * rest is fifo data area. */
897         uint32_t wp_addr = buffer_start;
898         uint32_t rp_addr = buffer_start + 4;
899         uint32_t fifo_start_addr = buffer_start + 8;
900         uint32_t fifo_end_addr = buffer_start + buffer_size;
901
902         uint32_t wp = fifo_start_addr;
903         uint32_t rp = fifo_start_addr;
904
905         /* validate block_size is 2^n */
906         assert(!block_size || !(block_size & (block_size - 1)));
907
908         retval = target_write_u32(target, wp_addr, wp);
909         if (retval != ERROR_OK)
910                 return retval;
911         retval = target_write_u32(target, rp_addr, rp);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         /* Start up algorithm on target and let it idle while writing the first chunk */
916         retval = target_start_algorithm(target, num_mem_params, mem_params,
917                         num_reg_params, reg_params,
918                         entry_point,
919                         exit_point,
920                         arch_info);
921
922         if (retval != ERROR_OK) {
923                 LOG_ERROR("error starting target flash write algorithm");
924                 return retval;
925         }
926
927         while (count > 0) {
928
929                 retval = target_read_u32(target, rp_addr, &rp);
930                 if (retval != ERROR_OK) {
931                         LOG_ERROR("failed to get read pointer");
932                         break;
933                 }
934
935                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
936                         (size_t) (buffer - buffer_orig), count, wp, rp);
937
938                 if (rp == 0) {
939                         LOG_ERROR("flash write algorithm aborted by target");
940                         retval = ERROR_FLASH_OPERATION_FAILED;
941                         break;
942                 }
943
944                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
945                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
946                         break;
947                 }
948
949                 /* Count the number of bytes available in the fifo without
950                  * crossing the wrap around. Make sure to not fill it completely,
951                  * because that would make wp == rp and that's the empty condition. */
952                 uint32_t thisrun_bytes;
953                 if (rp > wp)
954                         thisrun_bytes = rp - wp - block_size;
955                 else if (rp > fifo_start_addr)
956                         thisrun_bytes = fifo_end_addr - wp;
957                 else
958                         thisrun_bytes = fifo_end_addr - wp - block_size;
959
960                 if (thisrun_bytes == 0) {
961                         /* Throttle polling a bit if transfer is (much) faster than flash
962                          * programming. The exact delay shouldn't matter as long as it's
963                          * less than buffer size / flash speed. This is very unlikely to
964                          * run when using high latency connections such as USB. */
965                         alive_sleep(10);
966
967                         /* to stop an infinite loop on some targets check and increment a timeout
968                          * this issue was observed on a stellaris using the new ICDI interface */
969                         if (timeout++ >= 500) {
970                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
971                                 return ERROR_FLASH_OPERATION_FAILED;
972                         }
973                         continue;
974                 }
975
976                 /* reset our timeout */
977                 timeout = 0;
978
979                 /* Limit to the amount of data we actually want to write */
980                 if (thisrun_bytes > count * block_size)
981                         thisrun_bytes = count * block_size;
982
983                 /* Write data to fifo */
984                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
985                 if (retval != ERROR_OK)
986                         break;
987
988                 /* Update counters and wrap write pointer */
989                 buffer += thisrun_bytes;
990                 count -= thisrun_bytes / block_size;
991                 wp += thisrun_bytes;
992                 if (wp >= fifo_end_addr)
993                         wp = fifo_start_addr;
994
995                 /* Store updated write pointer to target */
996                 retval = target_write_u32(target, wp_addr, wp);
997                 if (retval != ERROR_OK)
998                         break;
999         }
1000
1001         if (retval != ERROR_OK) {
1002                 /* abort flash write algorithm on target */
1003                 target_write_u32(target, wp_addr, 0);
1004         }
1005
1006         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1007                         num_reg_params, reg_params,
1008                         exit_point,
1009                         10000,
1010                         arch_info);
1011
1012         if (retval2 != ERROR_OK) {
1013                 LOG_ERROR("error waiting for target flash write algorithm");
1014                 retval = retval2;
1015         }
1016
1017         if (retval == ERROR_OK) {
1018                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1019                 retval = target_read_u32(target, rp_addr, &rp);
1020                 if (retval == ERROR_OK && rp == 0) {
1021                         LOG_ERROR("flash write algorithm aborted by target");
1022                         retval = ERROR_FLASH_OPERATION_FAILED;
1023                 }
1024         }
1025
1026         return retval;
1027 }
1028
1029 int target_read_memory(struct target *target,
1030                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1031 {
1032         if (!target_was_examined(target)) {
1033                 LOG_ERROR("Target not examined yet");
1034                 return ERROR_FAIL;
1035         }
1036         if (!target->type->read_memory) {
1037                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1038                 return ERROR_FAIL;
1039         }
1040         return target->type->read_memory(target, address, size, count, buffer);
1041 }
1042
1043 int target_read_phys_memory(struct target *target,
1044                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1045 {
1046         if (!target_was_examined(target)) {
1047                 LOG_ERROR("Target not examined yet");
1048                 return ERROR_FAIL;
1049         }
1050         if (!target->type->read_phys_memory) {
1051                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1052                 return ERROR_FAIL;
1053         }
1054         return target->type->read_phys_memory(target, address, size, count, buffer);
1055 }
1056
1057 int target_write_memory(struct target *target,
1058                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1059 {
1060         if (!target_was_examined(target)) {
1061                 LOG_ERROR("Target not examined yet");
1062                 return ERROR_FAIL;
1063         }
1064         if (!target->type->write_memory) {
1065                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1066                 return ERROR_FAIL;
1067         }
1068         return target->type->write_memory(target, address, size, count, buffer);
1069 }
1070
1071 int target_write_phys_memory(struct target *target,
1072                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1073 {
1074         if (!target_was_examined(target)) {
1075                 LOG_ERROR("Target not examined yet");
1076                 return ERROR_FAIL;
1077         }
1078         if (!target->type->write_phys_memory) {
1079                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1080                 return ERROR_FAIL;
1081         }
1082         return target->type->write_phys_memory(target, address, size, count, buffer);
1083 }
1084
1085 int target_add_breakpoint(struct target *target,
1086                 struct breakpoint *breakpoint)
1087 {
1088         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1089                 LOG_WARNING("target %s is not halted", target_name(target));
1090                 return ERROR_TARGET_NOT_HALTED;
1091         }
1092         return target->type->add_breakpoint(target, breakpoint);
1093 }
1094
1095 int target_add_context_breakpoint(struct target *target,
1096                 struct breakpoint *breakpoint)
1097 {
1098         if (target->state != TARGET_HALTED) {
1099                 LOG_WARNING("target %s is not halted", target_name(target));
1100                 return ERROR_TARGET_NOT_HALTED;
1101         }
1102         return target->type->add_context_breakpoint(target, breakpoint);
1103 }
1104
1105 int target_add_hybrid_breakpoint(struct target *target,
1106                 struct breakpoint *breakpoint)
1107 {
1108         if (target->state != TARGET_HALTED) {
1109                 LOG_WARNING("target %s is not halted", target_name(target));
1110                 return ERROR_TARGET_NOT_HALTED;
1111         }
1112         return target->type->add_hybrid_breakpoint(target, breakpoint);
1113 }
1114
1115 int target_remove_breakpoint(struct target *target,
1116                 struct breakpoint *breakpoint)
1117 {
1118         return target->type->remove_breakpoint(target, breakpoint);
1119 }
1120
1121 int target_add_watchpoint(struct target *target,
1122                 struct watchpoint *watchpoint)
1123 {
1124         if (target->state != TARGET_HALTED) {
1125                 LOG_WARNING("target %s is not halted", target_name(target));
1126                 return ERROR_TARGET_NOT_HALTED;
1127         }
1128         return target->type->add_watchpoint(target, watchpoint);
1129 }
1130 int target_remove_watchpoint(struct target *target,
1131                 struct watchpoint *watchpoint)
1132 {
1133         return target->type->remove_watchpoint(target, watchpoint);
1134 }
1135 int target_hit_watchpoint(struct target *target,
1136                 struct watchpoint **hit_watchpoint)
1137 {
1138         if (target->state != TARGET_HALTED) {
1139                 LOG_WARNING("target %s is not halted", target->cmd_name);
1140                 return ERROR_TARGET_NOT_HALTED;
1141         }
1142
1143         if (target->type->hit_watchpoint == NULL) {
1144                 /* For backward compatible, if hit_watchpoint is not implemented,
1145                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1146                  * information. */
1147                 return ERROR_FAIL;
1148         }
1149
1150         return target->type->hit_watchpoint(target, hit_watchpoint);
1151 }
1152
1153 int target_get_gdb_reg_list(struct target *target,
1154                 struct reg **reg_list[], int *reg_list_size,
1155                 enum target_register_class reg_class)
1156 {
1157         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1158 }
1159 int target_step(struct target *target,
1160                 int current, uint32_t address, int handle_breakpoints)
1161 {
1162         return target->type->step(target, current, address, handle_breakpoints);
1163 }
1164
1165 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1166 {
1167         if (target->state != TARGET_HALTED) {
1168                 LOG_WARNING("target %s is not halted", target->cmd_name);
1169                 return ERROR_TARGET_NOT_HALTED;
1170         }
1171         return target->type->get_gdb_fileio_info(target, fileio_info);
1172 }
1173
1174 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1175 {
1176         if (target->state != TARGET_HALTED) {
1177                 LOG_WARNING("target %s is not halted", target->cmd_name);
1178                 return ERROR_TARGET_NOT_HALTED;
1179         }
1180         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1181 }
1182
1183 int target_profiling(struct target *target, uint32_t *samples,
1184                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1185 {
1186         if (target->state != TARGET_HALTED) {
1187                 LOG_WARNING("target %s is not halted", target->cmd_name);
1188                 return ERROR_TARGET_NOT_HALTED;
1189         }
1190         return target->type->profiling(target, samples, max_num_samples,
1191                         num_samples, seconds);
1192 }
1193
1194 /**
1195  * Reset the @c examined flag for the given target.
1196  * Pure paranoia -- targets are zeroed on allocation.
1197  */
1198 static void target_reset_examined(struct target *target)
1199 {
1200         target->examined = false;
1201 }
1202
1203 static int handle_target(void *priv);
1204
1205 static int target_init_one(struct command_context *cmd_ctx,
1206                 struct target *target)
1207 {
1208         target_reset_examined(target);
1209
1210         struct target_type *type = target->type;
1211         if (type->examine == NULL)
1212                 type->examine = default_examine;
1213
1214         if (type->check_reset == NULL)
1215                 type->check_reset = default_check_reset;
1216
1217         assert(type->init_target != NULL);
1218
1219         int retval = type->init_target(cmd_ctx, target);
1220         if (ERROR_OK != retval) {
1221                 LOG_ERROR("target '%s' init failed", target_name(target));
1222                 return retval;
1223         }
1224
1225         /* Sanity-check MMU support ... stub in what we must, to help
1226          * implement it in stages, but warn if we need to do so.
1227          */
1228         if (type->mmu) {
1229                 if (type->virt2phys == NULL) {
1230                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1231                         type->virt2phys = identity_virt2phys;
1232                 }
1233         } else {
1234                 /* Make sure no-MMU targets all behave the same:  make no
1235                  * distinction between physical and virtual addresses, and
1236                  * ensure that virt2phys() is always an identity mapping.
1237                  */
1238                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1239                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1240
1241                 type->mmu = no_mmu;
1242                 type->write_phys_memory = type->write_memory;
1243                 type->read_phys_memory = type->read_memory;
1244                 type->virt2phys = identity_virt2phys;
1245         }
1246
1247         if (target->type->read_buffer == NULL)
1248                 target->type->read_buffer = target_read_buffer_default;
1249
1250         if (target->type->write_buffer == NULL)
1251                 target->type->write_buffer = target_write_buffer_default;
1252
1253         if (target->type->get_gdb_fileio_info == NULL)
1254                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1255
1256         if (target->type->gdb_fileio_end == NULL)
1257                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1258
1259         if (target->type->profiling == NULL)
1260                 target->type->profiling = target_profiling_default;
1261
1262         return ERROR_OK;
1263 }
1264
1265 static int target_init(struct command_context *cmd_ctx)
1266 {
1267         struct target *target;
1268         int retval;
1269
1270         for (target = all_targets; target; target = target->next) {
1271                 retval = target_init_one(cmd_ctx, target);
1272                 if (ERROR_OK != retval)
1273                         return retval;
1274         }
1275
1276         if (!all_targets)
1277                 return ERROR_OK;
1278
1279         retval = target_register_user_commands(cmd_ctx);
1280         if (ERROR_OK != retval)
1281                 return retval;
1282
1283         retval = target_register_timer_callback(&handle_target,
1284                         polling_interval, 1, cmd_ctx->interp);
1285         if (ERROR_OK != retval)
1286                 return retval;
1287
1288         return ERROR_OK;
1289 }
1290
1291 COMMAND_HANDLER(handle_target_init_command)
1292 {
1293         int retval;
1294
1295         if (CMD_ARGC != 0)
1296                 return ERROR_COMMAND_SYNTAX_ERROR;
1297
1298         static bool target_initialized;
1299         if (target_initialized) {
1300                 LOG_INFO("'target init' has already been called");
1301                 return ERROR_OK;
1302         }
1303         target_initialized = true;
1304
1305         retval = command_run_line(CMD_CTX, "init_targets");
1306         if (ERROR_OK != retval)
1307                 return retval;
1308
1309         retval = command_run_line(CMD_CTX, "init_target_events");
1310         if (ERROR_OK != retval)
1311                 return retval;
1312
1313         retval = command_run_line(CMD_CTX, "init_board");
1314         if (ERROR_OK != retval)
1315                 return retval;
1316
1317         LOG_DEBUG("Initializing targets...");
1318         return target_init(CMD_CTX);
1319 }
1320
1321 int target_register_event_callback(int (*callback)(struct target *target,
1322                 enum target_event event, void *priv), void *priv)
1323 {
1324         struct target_event_callback **callbacks_p = &target_event_callbacks;
1325
1326         if (callback == NULL)
1327                 return ERROR_COMMAND_SYNTAX_ERROR;
1328
1329         if (*callbacks_p) {
1330                 while ((*callbacks_p)->next)
1331                         callbacks_p = &((*callbacks_p)->next);
1332                 callbacks_p = &((*callbacks_p)->next);
1333         }
1334
1335         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1336         (*callbacks_p)->callback = callback;
1337         (*callbacks_p)->priv = priv;
1338         (*callbacks_p)->next = NULL;
1339
1340         return ERROR_OK;
1341 }
1342
1343 int target_register_reset_callback(int (*callback)(struct target *target,
1344                 enum target_reset_mode reset_mode, void *priv), void *priv)
1345 {
1346         struct target_reset_callback *entry;
1347
1348         if (callback == NULL)
1349                 return ERROR_COMMAND_SYNTAX_ERROR;
1350
1351         entry = malloc(sizeof(struct target_reset_callback));
1352         if (entry == NULL) {
1353                 LOG_ERROR("error allocating buffer for reset callback entry");
1354                 return ERROR_COMMAND_SYNTAX_ERROR;
1355         }
1356
1357         entry->callback = callback;
1358         entry->priv = priv;
1359         list_add(&entry->list, &target_reset_callback_list);
1360
1361
1362         return ERROR_OK;
1363 }
1364
1365 int target_register_trace_callback(int (*callback)(struct target *target,
1366                 size_t len, uint8_t *data, void *priv), void *priv)
1367 {
1368         struct target_trace_callback *entry;
1369
1370         if (callback == NULL)
1371                 return ERROR_COMMAND_SYNTAX_ERROR;
1372
1373         entry = malloc(sizeof(struct target_trace_callback));
1374         if (entry == NULL) {
1375                 LOG_ERROR("error allocating buffer for trace callback entry");
1376                 return ERROR_COMMAND_SYNTAX_ERROR;
1377         }
1378
1379         entry->callback = callback;
1380         entry->priv = priv;
1381         list_add(&entry->list, &target_trace_callback_list);
1382
1383
1384         return ERROR_OK;
1385 }
1386
1387 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1388 {
1389         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1390         struct timeval now;
1391
1392         if (callback == NULL)
1393                 return ERROR_COMMAND_SYNTAX_ERROR;
1394
1395         if (*callbacks_p) {
1396                 while ((*callbacks_p)->next)
1397                         callbacks_p = &((*callbacks_p)->next);
1398                 callbacks_p = &((*callbacks_p)->next);
1399         }
1400
1401         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1402         (*callbacks_p)->callback = callback;
1403         (*callbacks_p)->periodic = periodic;
1404         (*callbacks_p)->time_ms = time_ms;
1405         (*callbacks_p)->removed = false;
1406
1407         gettimeofday(&now, NULL);
1408         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1409         time_ms -= (time_ms % 1000);
1410         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1411         if ((*callbacks_p)->when.tv_usec > 1000000) {
1412                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1413                 (*callbacks_p)->when.tv_sec += 1;
1414         }
1415
1416         (*callbacks_p)->priv = priv;
1417         (*callbacks_p)->next = NULL;
1418
1419         return ERROR_OK;
1420 }
1421
1422 int target_unregister_event_callback(int (*callback)(struct target *target,
1423                 enum target_event event, void *priv), void *priv)
1424 {
1425         struct target_event_callback **p = &target_event_callbacks;
1426         struct target_event_callback *c = target_event_callbacks;
1427
1428         if (callback == NULL)
1429                 return ERROR_COMMAND_SYNTAX_ERROR;
1430
1431         while (c) {
1432                 struct target_event_callback *next = c->next;
1433                 if ((c->callback == callback) && (c->priv == priv)) {
1434                         *p = next;
1435                         free(c);
1436                         return ERROR_OK;
1437                 } else
1438                         p = &(c->next);
1439                 c = next;
1440         }
1441
1442         return ERROR_OK;
1443 }
1444
1445 int target_unregister_reset_callback(int (*callback)(struct target *target,
1446                 enum target_reset_mode reset_mode, void *priv), void *priv)
1447 {
1448         struct target_reset_callback *entry;
1449
1450         if (callback == NULL)
1451                 return ERROR_COMMAND_SYNTAX_ERROR;
1452
1453         list_for_each_entry(entry, &target_reset_callback_list, list) {
1454                 if (entry->callback == callback && entry->priv == priv) {
1455                         list_del(&entry->list);
1456                         free(entry);
1457                         break;
1458                 }
1459         }
1460
1461         return ERROR_OK;
1462 }
1463
1464 int target_unregister_trace_callback(int (*callback)(struct target *target,
1465                 size_t len, uint8_t *data, void *priv), void *priv)
1466 {
1467         struct target_trace_callback *entry;
1468
1469         if (callback == NULL)
1470                 return ERROR_COMMAND_SYNTAX_ERROR;
1471
1472         list_for_each_entry(entry, &target_trace_callback_list, list) {
1473                 if (entry->callback == callback && entry->priv == priv) {
1474                         list_del(&entry->list);
1475                         free(entry);
1476                         break;
1477                 }
1478         }
1479
1480         return ERROR_OK;
1481 }
1482
1483 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1484 {
1485         if (callback == NULL)
1486                 return ERROR_COMMAND_SYNTAX_ERROR;
1487
1488         for (struct target_timer_callback *c = target_timer_callbacks;
1489              c; c = c->next) {
1490                 if ((c->callback == callback) && (c->priv == priv)) {
1491                         c->removed = true;
1492                         return ERROR_OK;
1493                 }
1494         }
1495
1496         return ERROR_FAIL;
1497 }
1498
1499 int target_call_event_callbacks(struct target *target, enum target_event event)
1500 {
1501         struct target_event_callback *callback = target_event_callbacks;
1502         struct target_event_callback *next_callback;
1503
1504         if (event == TARGET_EVENT_HALTED) {
1505                 /* execute early halted first */
1506                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1507         }
1508
1509         LOG_DEBUG("target event %i (%s)", event,
1510                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1511
1512         target_handle_event(target, event);
1513
1514         while (callback) {
1515                 next_callback = callback->next;
1516                 callback->callback(target, event, callback->priv);
1517                 callback = next_callback;
1518         }
1519
1520         return ERROR_OK;
1521 }
1522
1523 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1524 {
1525         struct target_reset_callback *callback;
1526
1527         LOG_DEBUG("target reset %i (%s)", reset_mode,
1528                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1529
1530         list_for_each_entry(callback, &target_reset_callback_list, list)
1531                 callback->callback(target, reset_mode, callback->priv);
1532
1533         return ERROR_OK;
1534 }
1535
1536 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1537 {
1538         struct target_trace_callback *callback;
1539
1540         list_for_each_entry(callback, &target_trace_callback_list, list)
1541                 callback->callback(target, len, data, callback->priv);
1542
1543         return ERROR_OK;
1544 }
1545
1546 static int target_timer_callback_periodic_restart(
1547                 struct target_timer_callback *cb, struct timeval *now)
1548 {
1549         int time_ms = cb->time_ms;
1550         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1551         time_ms -= (time_ms % 1000);
1552         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1553         if (cb->when.tv_usec > 1000000) {
1554                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1555                 cb->when.tv_sec += 1;
1556         }
1557         return ERROR_OK;
1558 }
1559
1560 static int target_call_timer_callback(struct target_timer_callback *cb,
1561                 struct timeval *now)
1562 {
1563         cb->callback(cb->priv);
1564
1565         if (cb->periodic)
1566                 return target_timer_callback_periodic_restart(cb, now);
1567
1568         return target_unregister_timer_callback(cb->callback, cb->priv);
1569 }
1570
1571 static int target_call_timer_callbacks_check_time(int checktime)
1572 {
1573         static bool callback_processing;
1574
1575         /* Do not allow nesting */
1576         if (callback_processing)
1577                 return ERROR_OK;
1578
1579         callback_processing = true;
1580
1581         keep_alive();
1582
1583         struct timeval now;
1584         gettimeofday(&now, NULL);
1585
1586         /* Store an address of the place containing a pointer to the
1587          * next item; initially, that's a standalone "root of the
1588          * list" variable. */
1589         struct target_timer_callback **callback = &target_timer_callbacks;
1590         while (*callback) {
1591                 if ((*callback)->removed) {
1592                         struct target_timer_callback *p = *callback;
1593                         *callback = (*callback)->next;
1594                         free(p);
1595                         continue;
1596                 }
1597
1598                 bool call_it = (*callback)->callback &&
1599                         ((!checktime && (*callback)->periodic) ||
1600                          now.tv_sec > (*callback)->when.tv_sec ||
1601                          (now.tv_sec == (*callback)->when.tv_sec &&
1602                           now.tv_usec >= (*callback)->when.tv_usec));
1603
1604                 if (call_it)
1605                         target_call_timer_callback(*callback, &now);
1606
1607                 callback = &(*callback)->next;
1608         }
1609
1610         callback_processing = false;
1611         return ERROR_OK;
1612 }
1613
1614 int target_call_timer_callbacks(void)
1615 {
1616         return target_call_timer_callbacks_check_time(1);
1617 }
1618
1619 /* invoke periodic callbacks immediately */
1620 int target_call_timer_callbacks_now(void)
1621 {
1622         return target_call_timer_callbacks_check_time(0);
1623 }
1624
1625 /* Prints the working area layout for debug purposes */
1626 static void print_wa_layout(struct target *target)
1627 {
1628         struct working_area *c = target->working_areas;
1629
1630         while (c) {
1631                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1632                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1633                         c->address, c->address + c->size - 1, c->size);
1634                 c = c->next;
1635         }
1636 }
1637
1638 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1639 static void target_split_working_area(struct working_area *area, uint32_t size)
1640 {
1641         assert(area->free); /* Shouldn't split an allocated area */
1642         assert(size <= area->size); /* Caller should guarantee this */
1643
1644         /* Split only if not already the right size */
1645         if (size < area->size) {
1646                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1647
1648                 if (new_wa == NULL)
1649                         return;
1650
1651                 new_wa->next = area->next;
1652                 new_wa->size = area->size - size;
1653                 new_wa->address = area->address + size;
1654                 new_wa->backup = NULL;
1655                 new_wa->user = NULL;
1656                 new_wa->free = true;
1657
1658                 area->next = new_wa;
1659                 area->size = size;
1660
1661                 /* If backup memory was allocated to this area, it has the wrong size
1662                  * now so free it and it will be reallocated if/when needed */
1663                 if (area->backup) {
1664                         free(area->backup);
1665                         area->backup = NULL;
1666                 }
1667         }
1668 }
1669
1670 /* Merge all adjacent free areas into one */
1671 static void target_merge_working_areas(struct target *target)
1672 {
1673         struct working_area *c = target->working_areas;
1674
1675         while (c && c->next) {
1676                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1677
1678                 /* Find two adjacent free areas */
1679                 if (c->free && c->next->free) {
1680                         /* Merge the last into the first */
1681                         c->size += c->next->size;
1682
1683                         /* Remove the last */
1684                         struct working_area *to_be_freed = c->next;
1685                         c->next = c->next->next;
1686                         if (to_be_freed->backup)
1687                                 free(to_be_freed->backup);
1688                         free(to_be_freed);
1689
1690                         /* If backup memory was allocated to the remaining area, it's has
1691                          * the wrong size now */
1692                         if (c->backup) {
1693                                 free(c->backup);
1694                                 c->backup = NULL;
1695                         }
1696                 } else {
1697                         c = c->next;
1698                 }
1699         }
1700 }
1701
1702 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1703 {
1704         /* Reevaluate working area address based on MMU state*/
1705         if (target->working_areas == NULL) {
1706                 int retval;
1707                 int enabled;
1708
1709                 retval = target->type->mmu(target, &enabled);
1710                 if (retval != ERROR_OK)
1711                         return retval;
1712
1713                 if (!enabled) {
1714                         if (target->working_area_phys_spec) {
1715                                 LOG_DEBUG("MMU disabled, using physical "
1716                                         "address for working memory 0x%08"PRIx32,
1717                                         target->working_area_phys);
1718                                 target->working_area = target->working_area_phys;
1719                         } else {
1720                                 LOG_ERROR("No working memory available. "
1721                                         "Specify -work-area-phys to target.");
1722                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1723                         }
1724                 } else {
1725                         if (target->working_area_virt_spec) {
1726                                 LOG_DEBUG("MMU enabled, using virtual "
1727                                         "address for working memory 0x%08"PRIx32,
1728                                         target->working_area_virt);
1729                                 target->working_area = target->working_area_virt;
1730                         } else {
1731                                 LOG_ERROR("No working memory available. "
1732                                         "Specify -work-area-virt to target.");
1733                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1734                         }
1735                 }
1736
1737                 /* Set up initial working area on first call */
1738                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1739                 if (new_wa) {
1740                         new_wa->next = NULL;
1741                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1742                         new_wa->address = target->working_area;
1743                         new_wa->backup = NULL;
1744                         new_wa->user = NULL;
1745                         new_wa->free = true;
1746                 }
1747
1748                 target->working_areas = new_wa;
1749         }
1750
1751         /* only allocate multiples of 4 byte */
1752         if (size % 4)
1753                 size = (size + 3) & (~3UL);
1754
1755         struct working_area *c = target->working_areas;
1756
1757         /* Find the first large enough working area */
1758         while (c) {
1759                 if (c->free && c->size >= size)
1760                         break;
1761                 c = c->next;
1762         }
1763
1764         if (c == NULL)
1765                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1766
1767         /* Split the working area into the requested size */
1768         target_split_working_area(c, size);
1769
1770         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1771
1772         if (target->backup_working_area) {
1773                 if (c->backup == NULL) {
1774                         c->backup = malloc(c->size);
1775                         if (c->backup == NULL)
1776                                 return ERROR_FAIL;
1777                 }
1778
1779                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1780                 if (retval != ERROR_OK)
1781                         return retval;
1782         }
1783
1784         /* mark as used, and return the new (reused) area */
1785         c->free = false;
1786         *area = c;
1787
1788         /* user pointer */
1789         c->user = area;
1790
1791         print_wa_layout(target);
1792
1793         return ERROR_OK;
1794 }
1795
1796 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1797 {
1798         int retval;
1799
1800         retval = target_alloc_working_area_try(target, size, area);
1801         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1802                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1803         return retval;
1804
1805 }
1806
1807 static int target_restore_working_area(struct target *target, struct working_area *area)
1808 {
1809         int retval = ERROR_OK;
1810
1811         if (target->backup_working_area && area->backup != NULL) {
1812                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1813                 if (retval != ERROR_OK)
1814                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1815                                         area->size, area->address);
1816         }
1817
1818         return retval;
1819 }
1820
1821 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1822 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1823 {
1824         int retval = ERROR_OK;
1825
1826         if (area->free)
1827                 return retval;
1828
1829         if (restore) {
1830                 retval = target_restore_working_area(target, area);
1831                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1832                 if (retval != ERROR_OK)
1833                         return retval;
1834         }
1835
1836         area->free = true;
1837
1838         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1839                         area->size, area->address);
1840
1841         /* mark user pointer invalid */
1842         /* TODO: Is this really safe? It points to some previous caller's memory.
1843          * How could we know that the area pointer is still in that place and not
1844          * some other vital data? What's the purpose of this, anyway? */
1845         *area->user = NULL;
1846         area->user = NULL;
1847
1848         target_merge_working_areas(target);
1849
1850         print_wa_layout(target);
1851
1852         return retval;
1853 }
1854
1855 int target_free_working_area(struct target *target, struct working_area *area)
1856 {
1857         return target_free_working_area_restore(target, area, 1);
1858 }
1859
1860 void target_quit(void)
1861 {
1862         struct target_event_callback *pe = target_event_callbacks;
1863         while (pe) {
1864                 struct target_event_callback *t = pe->next;
1865                 free(pe);
1866                 pe = t;
1867         }
1868         target_event_callbacks = NULL;
1869
1870         struct target_timer_callback *pt = target_timer_callbacks;
1871         while (pt) {
1872                 struct target_timer_callback *t = pt->next;
1873                 free(pt);
1874                 pt = t;
1875         }
1876         target_timer_callbacks = NULL;
1877
1878         for (struct target *target = all_targets;
1879              target; target = target->next) {
1880                 if (target->type->deinit_target)
1881                         target->type->deinit_target(target);
1882         }
1883 }
1884
1885 /* free resources and restore memory, if restoring memory fails,
1886  * free up resources anyway
1887  */
1888 static void target_free_all_working_areas_restore(struct target *target, int restore)
1889 {
1890         struct working_area *c = target->working_areas;
1891
1892         LOG_DEBUG("freeing all working areas");
1893
1894         /* Loop through all areas, restoring the allocated ones and marking them as free */
1895         while (c) {
1896                 if (!c->free) {
1897                         if (restore)
1898                                 target_restore_working_area(target, c);
1899                         c->free = true;
1900                         *c->user = NULL; /* Same as above */
1901                         c->user = NULL;
1902                 }
1903                 c = c->next;
1904         }
1905
1906         /* Run a merge pass to combine all areas into one */
1907         target_merge_working_areas(target);
1908
1909         print_wa_layout(target);
1910 }
1911
1912 void target_free_all_working_areas(struct target *target)
1913 {
1914         target_free_all_working_areas_restore(target, 1);
1915 }
1916
1917 /* Find the largest number of bytes that can be allocated */
1918 uint32_t target_get_working_area_avail(struct target *target)
1919 {
1920         struct working_area *c = target->working_areas;
1921         uint32_t max_size = 0;
1922
1923         if (c == NULL)
1924                 return target->working_area_size;
1925
1926         while (c) {
1927                 if (c->free && max_size < c->size)
1928                         max_size = c->size;
1929
1930                 c = c->next;
1931         }
1932
1933         return max_size;
1934 }
1935
1936 int target_arch_state(struct target *target)
1937 {
1938         int retval;
1939         if (target == NULL) {
1940                 LOG_USER("No target has been configured");
1941                 return ERROR_OK;
1942         }
1943
1944         LOG_USER("%s: target state: %s", target_name(target),
1945                  target_state_name(target));
1946
1947         if (target->state != TARGET_HALTED)
1948                 return ERROR_OK;
1949
1950         retval = target->type->arch_state(target);
1951         return retval;
1952 }
1953
1954 static int target_get_gdb_fileio_info_default(struct target *target,
1955                 struct gdb_fileio_info *fileio_info)
1956 {
1957         /* If target does not support semi-hosting function, target
1958            has no need to provide .get_gdb_fileio_info callback.
1959            It just return ERROR_FAIL and gdb_server will return "Txx"
1960            as target halted every time.  */
1961         return ERROR_FAIL;
1962 }
1963
1964 static int target_gdb_fileio_end_default(struct target *target,
1965                 int retcode, int fileio_errno, bool ctrl_c)
1966 {
1967         return ERROR_OK;
1968 }
1969
1970 static int target_profiling_default(struct target *target, uint32_t *samples,
1971                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1972 {
1973         struct timeval timeout, now;
1974
1975         gettimeofday(&timeout, NULL);
1976         timeval_add_time(&timeout, seconds, 0);
1977
1978         LOG_INFO("Starting profiling. Halting and resuming the"
1979                         " target as often as we can...");
1980
1981         uint32_t sample_count = 0;
1982         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1983         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1984
1985         int retval = ERROR_OK;
1986         for (;;) {
1987                 target_poll(target);
1988                 if (target->state == TARGET_HALTED) {
1989                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1990                         samples[sample_count++] = t;
1991                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1992                         retval = target_resume(target, 1, 0, 0, 0);
1993                         target_poll(target);
1994                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1995                 } else if (target->state == TARGET_RUNNING) {
1996                         /* We want to quickly sample the PC. */
1997                         retval = target_halt(target);
1998                 } else {
1999                         LOG_INFO("Target not halted or running");
2000                         retval = ERROR_OK;
2001                         break;
2002                 }
2003
2004                 if (retval != ERROR_OK)
2005                         break;
2006
2007                 gettimeofday(&now, NULL);
2008                 if ((sample_count >= max_num_samples) ||
2009                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2010                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2011                         break;
2012                 }
2013         }
2014
2015         *num_samples = sample_count;
2016         return retval;
2017 }
2018
2019 /* Single aligned words are guaranteed to use 16 or 32 bit access
2020  * mode respectively, otherwise data is handled as quickly as
2021  * possible
2022  */
2023 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
2024 {
2025         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
2026                         (int)size, (unsigned)address);
2027
2028         if (!target_was_examined(target)) {
2029                 LOG_ERROR("Target not examined yet");
2030                 return ERROR_FAIL;
2031         }
2032
2033         if (size == 0)
2034                 return ERROR_OK;
2035
2036         if ((address + size - 1) < address) {
2037                 /* GDB can request this when e.g. PC is 0xfffffffc*/
2038                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
2039                                   (unsigned)address,
2040                                   (unsigned)size);
2041                 return ERROR_FAIL;
2042         }
2043
2044         return target->type->write_buffer(target, address, size, buffer);
2045 }
2046
2047 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
2048 {
2049         uint32_t size;
2050
2051         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2052          * will have something to do with the size we leave to it. */
2053         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2054                 if (address & size) {
2055                         int retval = target_write_memory(target, address, size, 1, buffer);
2056                         if (retval != ERROR_OK)
2057                                 return retval;
2058                         address += size;
2059                         count -= size;
2060                         buffer += size;
2061                 }
2062         }
2063
2064         /* Write the data with as large access size as possible. */
2065         for (; size > 0; size /= 2) {
2066                 uint32_t aligned = count - count % size;
2067                 if (aligned > 0) {
2068                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2069                         if (retval != ERROR_OK)
2070                                 return retval;
2071                         address += aligned;
2072                         count -= aligned;
2073                         buffer += aligned;
2074                 }
2075         }
2076
2077         return ERROR_OK;
2078 }
2079
2080 /* Single aligned words are guaranteed to use 16 or 32 bit access
2081  * mode respectively, otherwise data is handled as quickly as
2082  * possible
2083  */
2084 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2085 {
2086         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2087                           (int)size, (unsigned)address);
2088
2089         if (!target_was_examined(target)) {
2090                 LOG_ERROR("Target not examined yet");
2091                 return ERROR_FAIL;
2092         }
2093
2094         if (size == 0)
2095                 return ERROR_OK;
2096
2097         if ((address + size - 1) < address) {
2098                 /* GDB can request this when e.g. PC is 0xfffffffc*/
2099                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2100                                   address,
2101                                   size);
2102                 return ERROR_FAIL;
2103         }
2104
2105         return target->type->read_buffer(target, address, size, buffer);
2106 }
2107
2108 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2109 {
2110         uint32_t size;
2111
2112         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2113          * will have something to do with the size we leave to it. */
2114         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2115                 if (address & size) {
2116                         int retval = target_read_memory(target, address, size, 1, buffer);
2117                         if (retval != ERROR_OK)
2118                                 return retval;
2119                         address += size;
2120                         count -= size;
2121                         buffer += size;
2122                 }
2123         }
2124
2125         /* Read the data with as large access size as possible. */
2126         for (; size > 0; size /= 2) {
2127                 uint32_t aligned = count - count % size;
2128                 if (aligned > 0) {
2129                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2130                         if (retval != ERROR_OK)
2131                                 return retval;
2132                         address += aligned;
2133                         count -= aligned;
2134                         buffer += aligned;
2135                 }
2136         }
2137
2138         return ERROR_OK;
2139 }
2140
2141 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2142 {
2143         uint8_t *buffer;
2144         int retval;
2145         uint32_t i;
2146         uint32_t checksum = 0;
2147         if (!target_was_examined(target)) {
2148                 LOG_ERROR("Target not examined yet");
2149                 return ERROR_FAIL;
2150         }
2151
2152         retval = target->type->checksum_memory(target, address, size, &checksum);
2153         if (retval != ERROR_OK) {
2154                 buffer = malloc(size);
2155                 if (buffer == NULL) {
2156                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2157                         return ERROR_COMMAND_SYNTAX_ERROR;
2158                 }
2159                 retval = target_read_buffer(target, address, size, buffer);
2160                 if (retval != ERROR_OK) {
2161                         free(buffer);
2162                         return retval;
2163                 }
2164
2165                 /* convert to target endianness */
2166                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2167                         uint32_t target_data;
2168                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2169                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2170                 }
2171
2172                 retval = image_calculate_checksum(buffer, size, &checksum);
2173                 free(buffer);
2174         }
2175
2176         *crc = checksum;
2177
2178         return retval;
2179 }
2180
2181 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2182 {
2183         int retval;
2184         if (!target_was_examined(target)) {
2185                 LOG_ERROR("Target not examined yet");
2186                 return ERROR_FAIL;
2187         }
2188
2189         if (target->type->blank_check_memory == 0)
2190                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2191
2192         retval = target->type->blank_check_memory(target, address, size, blank);
2193
2194         return retval;
2195 }
2196
2197 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2198 {
2199         uint8_t value_buf[8];
2200         if (!target_was_examined(target)) {
2201                 LOG_ERROR("Target not examined yet");
2202                 return ERROR_FAIL;
2203         }
2204
2205         int retval = target_read_memory(target, address, 8, 1, value_buf);
2206
2207         if (retval == ERROR_OK) {
2208                 *value = target_buffer_get_u64(target, value_buf);
2209                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2210                                   address,
2211                                   *value);
2212         } else {
2213                 *value = 0x0;
2214                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2215                                   address);
2216         }
2217
2218         return retval;
2219 }
2220
2221 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2222 {
2223         uint8_t value_buf[4];
2224         if (!target_was_examined(target)) {
2225                 LOG_ERROR("Target not examined yet");
2226                 return ERROR_FAIL;
2227         }
2228
2229         int retval = target_read_memory(target, address, 4, 1, value_buf);
2230
2231         if (retval == ERROR_OK) {
2232                 *value = target_buffer_get_u32(target, value_buf);
2233                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2234                                   address,
2235                                   *value);
2236         } else {
2237                 *value = 0x0;
2238                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2239                                   address);
2240         }
2241
2242         return retval;
2243 }
2244
2245 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2246 {
2247         uint8_t value_buf[2];
2248         if (!target_was_examined(target)) {
2249                 LOG_ERROR("Target not examined yet");
2250                 return ERROR_FAIL;
2251         }
2252
2253         int retval = target_read_memory(target, address, 2, 1, value_buf);
2254
2255         if (retval == ERROR_OK) {
2256                 *value = target_buffer_get_u16(target, value_buf);
2257                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2258                                   address,
2259                                   *value);
2260         } else {
2261                 *value = 0x0;
2262                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2263                                   address);
2264         }
2265
2266         return retval;
2267 }
2268
2269 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2270 {
2271         if (!target_was_examined(target)) {
2272                 LOG_ERROR("Target not examined yet");
2273                 return ERROR_FAIL;
2274         }
2275
2276         int retval = target_read_memory(target, address, 1, 1, value);
2277
2278         if (retval == ERROR_OK) {
2279                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2280                                   address,
2281                                   *value);
2282         } else {
2283                 *value = 0x0;
2284                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2285                                   address);
2286         }
2287
2288         return retval;
2289 }
2290
2291 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2292 {
2293         int retval;
2294         uint8_t value_buf[8];
2295         if (!target_was_examined(target)) {
2296                 LOG_ERROR("Target not examined yet");
2297                 return ERROR_FAIL;
2298         }
2299
2300         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2301                           address,
2302                           value);
2303
2304         target_buffer_set_u64(target, value_buf, value);
2305         retval = target_write_memory(target, address, 8, 1, value_buf);
2306         if (retval != ERROR_OK)
2307                 LOG_DEBUG("failed: %i", retval);
2308
2309         return retval;
2310 }
2311
2312 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2313 {
2314         int retval;
2315         uint8_t value_buf[4];
2316         if (!target_was_examined(target)) {
2317                 LOG_ERROR("Target not examined yet");
2318                 return ERROR_FAIL;
2319         }
2320
2321         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2322                           address,
2323                           value);
2324
2325         target_buffer_set_u32(target, value_buf, value);
2326         retval = target_write_memory(target, address, 4, 1, value_buf);
2327         if (retval != ERROR_OK)
2328                 LOG_DEBUG("failed: %i", retval);
2329
2330         return retval;
2331 }
2332
2333 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2334 {
2335         int retval;
2336         uint8_t value_buf[2];
2337         if (!target_was_examined(target)) {
2338                 LOG_ERROR("Target not examined yet");
2339                 return ERROR_FAIL;
2340         }
2341
2342         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2343                           address,
2344                           value);
2345
2346         target_buffer_set_u16(target, value_buf, value);
2347         retval = target_write_memory(target, address, 2, 1, value_buf);
2348         if (retval != ERROR_OK)
2349                 LOG_DEBUG("failed: %i", retval);
2350
2351         return retval;
2352 }
2353
2354 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2355 {
2356         int retval;
2357         if (!target_was_examined(target)) {
2358                 LOG_ERROR("Target not examined yet");
2359                 return ERROR_FAIL;
2360         }
2361
2362         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2363                           address, value);
2364
2365         retval = target_write_memory(target, address, 1, 1, &value);
2366         if (retval != ERROR_OK)
2367                 LOG_DEBUG("failed: %i", retval);
2368
2369         return retval;
2370 }
2371
2372 static int find_target(struct command_context *cmd_ctx, const char *name)
2373 {
2374         struct target *target = get_target(name);
2375         if (target == NULL) {
2376                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2377                 return ERROR_FAIL;
2378         }
2379         if (!target->tap->enabled) {
2380                 LOG_USER("Target: TAP %s is disabled, "
2381                          "can't be the current target\n",
2382                          target->tap->dotted_name);
2383                 return ERROR_FAIL;
2384         }
2385
2386         cmd_ctx->current_target = target->target_number;
2387         return ERROR_OK;
2388 }
2389
2390
2391 COMMAND_HANDLER(handle_targets_command)
2392 {
2393         int retval = ERROR_OK;
2394         if (CMD_ARGC == 1) {
2395                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2396                 if (retval == ERROR_OK) {
2397                         /* we're done! */
2398                         return retval;
2399                 }
2400         }
2401
2402         struct target *target = all_targets;
2403         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2404         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2405         while (target) {
2406                 const char *state;
2407                 char marker = ' ';
2408
2409                 if (target->tap->enabled)
2410                         state = target_state_name(target);
2411                 else
2412                         state = "tap-disabled";
2413
2414                 if (CMD_CTX->current_target == target->target_number)
2415                         marker = '*';
2416
2417                 /* keep columns lined up to match the headers above */
2418                 command_print(CMD_CTX,
2419                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2420                                 target->target_number,
2421                                 marker,
2422                                 target_name(target),
2423                                 target_type_name(target),
2424                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2425                                         target->endianness)->name,
2426                                 target->tap->dotted_name,
2427                                 state);
2428                 target = target->next;
2429         }
2430
2431         return retval;
2432 }
2433
2434 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2435
2436 static int powerDropout;
2437 static int srstAsserted;
2438
2439 static int runPowerRestore;
2440 static int runPowerDropout;
2441 static int runSrstAsserted;
2442 static int runSrstDeasserted;
2443
2444 static int sense_handler(void)
2445 {
2446         static int prevSrstAsserted;
2447         static int prevPowerdropout;
2448
2449         int retval = jtag_power_dropout(&powerDropout);
2450         if (retval != ERROR_OK)
2451                 return retval;
2452
2453         int powerRestored;
2454         powerRestored = prevPowerdropout && !powerDropout;
2455         if (powerRestored)
2456                 runPowerRestore = 1;
2457
2458         int64_t current = timeval_ms();
2459         static int64_t lastPower;
2460         bool waitMore = lastPower + 2000 > current;
2461         if (powerDropout && !waitMore) {
2462                 runPowerDropout = 1;
2463                 lastPower = current;
2464         }
2465
2466         retval = jtag_srst_asserted(&srstAsserted);
2467         if (retval != ERROR_OK)
2468                 return retval;
2469
2470         int srstDeasserted;
2471         srstDeasserted = prevSrstAsserted && !srstAsserted;
2472
2473         static int64_t lastSrst;
2474         waitMore = lastSrst + 2000 > current;
2475         if (srstDeasserted && !waitMore) {
2476                 runSrstDeasserted = 1;
2477                 lastSrst = current;
2478         }
2479
2480         if (!prevSrstAsserted && srstAsserted)
2481                 runSrstAsserted = 1;
2482
2483         prevSrstAsserted = srstAsserted;
2484         prevPowerdropout = powerDropout;
2485
2486         if (srstDeasserted || powerRestored) {
2487                 /* Other than logging the event we can't do anything here.
2488                  * Issuing a reset is a particularly bad idea as we might
2489                  * be inside a reset already.
2490                  */
2491         }
2492
2493         return ERROR_OK;
2494 }
2495
2496 /* process target state changes */
2497 static int handle_target(void *priv)
2498 {
2499         Jim_Interp *interp = (Jim_Interp *)priv;
2500         int retval = ERROR_OK;
2501
2502         if (!is_jtag_poll_safe()) {
2503                 /* polling is disabled currently */
2504                 return ERROR_OK;
2505         }
2506
2507         /* we do not want to recurse here... */
2508         static int recursive;
2509         if (!recursive) {
2510                 recursive = 1;
2511                 sense_handler();
2512                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2513                  * We need to avoid an infinite loop/recursion here and we do that by
2514                  * clearing the flags after running these events.
2515                  */
2516                 int did_something = 0;
2517                 if (runSrstAsserted) {
2518                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2519                         Jim_Eval(interp, "srst_asserted");
2520                         did_something = 1;
2521                 }
2522                 if (runSrstDeasserted) {
2523                         Jim_Eval(interp, "srst_deasserted");
2524                         did_something = 1;
2525                 }
2526                 if (runPowerDropout) {
2527                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2528                         Jim_Eval(interp, "power_dropout");
2529                         did_something = 1;
2530                 }
2531                 if (runPowerRestore) {
2532                         Jim_Eval(interp, "power_restore");
2533                         did_something = 1;
2534                 }
2535
2536                 if (did_something) {
2537                         /* clear detect flags */
2538                         sense_handler();
2539                 }
2540
2541                 /* clear action flags */
2542
2543                 runSrstAsserted = 0;
2544                 runSrstDeasserted = 0;
2545                 runPowerRestore = 0;
2546                 runPowerDropout = 0;
2547
2548                 recursive = 0;
2549         }
2550
2551         /* Poll targets for state changes unless that's globally disabled.
2552          * Skip targets that are currently disabled.
2553          */
2554         for (struct target *target = all_targets;
2555                         is_jtag_poll_safe() && target;
2556                         target = target->next) {
2557
2558                 if (!target_was_examined(target))
2559                         continue;
2560
2561                 if (!target->tap->enabled)
2562                         continue;
2563
2564                 if (target->backoff.times > target->backoff.count) {
2565                         /* do not poll this time as we failed previously */
2566                         target->backoff.count++;
2567                         continue;
2568                 }
2569                 target->backoff.count = 0;
2570
2571                 /* only poll target if we've got power and srst isn't asserted */
2572                 if (!powerDropout && !srstAsserted) {
2573                         /* polling may fail silently until the target has been examined */
2574                         retval = target_poll(target);
2575                         if (retval != ERROR_OK) {
2576                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2577                                 if (target->backoff.times * polling_interval < 5000) {
2578                                         target->backoff.times *= 2;
2579                                         target->backoff.times++;
2580                                 }
2581
2582                                 /* Tell GDB to halt the debugger. This allows the user to
2583                                  * run monitor commands to handle the situation.
2584                                  */
2585                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2586                         }
2587                         if (target->backoff.times > 0) {
2588                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2589                                 target_reset_examined(target);
2590                                 retval = target_examine_one(target);
2591                                 /* Target examination could have failed due to unstable connection,
2592                                  * but we set the examined flag anyway to repoll it later */
2593                                 if (retval != ERROR_OK) {
2594                                         target->examined = true;
2595                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2596                                                  target->backoff.times * polling_interval);
2597                                         return retval;
2598                                 }
2599                         }
2600
2601                         /* Since we succeeded, we reset backoff count */
2602                         target->backoff.times = 0;
2603                 }
2604         }
2605
2606         return retval;
2607 }
2608
2609 COMMAND_HANDLER(handle_reg_command)
2610 {
2611         struct target *target;
2612         struct reg *reg = NULL;
2613         unsigned count = 0;
2614         char *value;
2615
2616         LOG_DEBUG("-");
2617
2618         target = get_current_target(CMD_CTX);
2619
2620         /* list all available registers for the current target */
2621         if (CMD_ARGC == 0) {
2622                 struct reg_cache *cache = target->reg_cache;
2623
2624                 count = 0;
2625                 while (cache) {
2626                         unsigned i;
2627
2628                         command_print(CMD_CTX, "===== %s", cache->name);
2629
2630                         for (i = 0, reg = cache->reg_list;
2631                                         i < cache->num_regs;
2632                                         i++, reg++, count++) {
2633                                 /* only print cached values if they are valid */
2634                                 if (reg->valid) {
2635                                         value = buf_to_str(reg->value,
2636                                                         reg->size, 16);
2637                                         command_print(CMD_CTX,
2638                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2639                                                         count, reg->name,
2640                                                         reg->size, value,
2641                                                         reg->dirty
2642                                                                 ? " (dirty)"
2643                                                                 : "");
2644                                         free(value);
2645                                 } else {
2646                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2647                                                           count, reg->name,
2648                                                           reg->size) ;
2649                                 }
2650                         }
2651                         cache = cache->next;
2652                 }
2653
2654                 return ERROR_OK;
2655         }
2656
2657         /* access a single register by its ordinal number */
2658         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2659                 unsigned num;
2660                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2661
2662                 struct reg_cache *cache = target->reg_cache;
2663                 count = 0;
2664                 while (cache) {
2665                         unsigned i;
2666                         for (i = 0; i < cache->num_regs; i++) {
2667                                 if (count++ == num) {
2668                                         reg = &cache->reg_list[i];
2669                                         break;
2670                                 }
2671                         }
2672                         if (reg)
2673                                 break;
2674                         cache = cache->next;
2675                 }
2676
2677                 if (!reg) {
2678                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2679                                         "has only %i registers (0 - %i)", num, count, count - 1);
2680                         return ERROR_OK;
2681                 }
2682         } else {
2683                 /* access a single register by its name */
2684                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2685
2686                 if (!reg) {
2687                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2688                         return ERROR_OK;
2689                 }
2690         }
2691
2692         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2693
2694         /* display a register */
2695         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2696                         && (CMD_ARGV[1][0] <= '9')))) {
2697                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2698                         reg->valid = 0;
2699
2700                 if (reg->valid == 0)
2701                         reg->type->get(reg);
2702                 value = buf_to_str(reg->value, reg->size, 16);
2703                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2704                 free(value);
2705                 return ERROR_OK;
2706         }
2707
2708         /* set register value */
2709         if (CMD_ARGC == 2) {
2710                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2711                 if (buf == NULL)
2712                         return ERROR_FAIL;
2713                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2714
2715                 reg->type->set(reg, buf);
2716
2717                 value = buf_to_str(reg->value, reg->size, 16);
2718                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2719                 free(value);
2720
2721                 free(buf);
2722
2723                 return ERROR_OK;
2724         }
2725
2726         return ERROR_COMMAND_SYNTAX_ERROR;
2727 }
2728
2729 COMMAND_HANDLER(handle_poll_command)
2730 {
2731         int retval = ERROR_OK;
2732         struct target *target = get_current_target(CMD_CTX);
2733
2734         if (CMD_ARGC == 0) {
2735                 command_print(CMD_CTX, "background polling: %s",
2736                                 jtag_poll_get_enabled() ? "on" : "off");
2737                 command_print(CMD_CTX, "TAP: %s (%s)",
2738                                 target->tap->dotted_name,
2739                                 target->tap->enabled ? "enabled" : "disabled");
2740                 if (!target->tap->enabled)
2741                         return ERROR_OK;
2742                 retval = target_poll(target);
2743                 if (retval != ERROR_OK)
2744                         return retval;
2745                 retval = target_arch_state(target);
2746                 if (retval != ERROR_OK)
2747                         return retval;
2748         } else if (CMD_ARGC == 1) {
2749                 bool enable;
2750                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2751                 jtag_poll_set_enabled(enable);
2752         } else
2753                 return ERROR_COMMAND_SYNTAX_ERROR;
2754
2755         return retval;
2756 }
2757
2758 COMMAND_HANDLER(handle_wait_halt_command)
2759 {
2760         if (CMD_ARGC > 1)
2761                 return ERROR_COMMAND_SYNTAX_ERROR;
2762
2763         unsigned ms = DEFAULT_HALT_TIMEOUT;
2764         if (1 == CMD_ARGC) {
2765                 int retval = parse_uint(CMD_ARGV[0], &ms);
2766                 if (ERROR_OK != retval)
2767                         return ERROR_COMMAND_SYNTAX_ERROR;
2768         }
2769
2770         struct target *target = get_current_target(CMD_CTX);
2771         return target_wait_state(target, TARGET_HALTED, ms);
2772 }
2773
2774 /* wait for target state to change. The trick here is to have a low
2775  * latency for short waits and not to suck up all the CPU time
2776  * on longer waits.
2777  *
2778  * After 500ms, keep_alive() is invoked
2779  */
2780 int target_wait_state(struct target *target, enum target_state state, int ms)
2781 {
2782         int retval;
2783         int64_t then = 0, cur;
2784         bool once = true;
2785
2786         for (;;) {
2787                 retval = target_poll(target);
2788                 if (retval != ERROR_OK)
2789                         return retval;
2790                 if (target->state == state)
2791                         break;
2792                 cur = timeval_ms();
2793                 if (once) {
2794                         once = false;
2795                         then = timeval_ms();
2796                         LOG_DEBUG("waiting for target %s...",
2797                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2798                 }
2799
2800                 if (cur-then > 500)
2801                         keep_alive();
2802
2803                 if ((cur-then) > ms) {
2804                         LOG_ERROR("timed out while waiting for target %s",
2805                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2806                         return ERROR_FAIL;
2807                 }
2808         }
2809
2810         return ERROR_OK;
2811 }
2812
2813 COMMAND_HANDLER(handle_halt_command)
2814 {
2815         LOG_DEBUG("-");
2816
2817         struct target *target = get_current_target(CMD_CTX);
2818         int retval = target_halt(target);
2819         if (ERROR_OK != retval)
2820                 return retval;
2821
2822         if (CMD_ARGC == 1) {
2823                 unsigned wait_local;
2824                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2825                 if (ERROR_OK != retval)
2826                         return ERROR_COMMAND_SYNTAX_ERROR;
2827                 if (!wait_local)
2828                         return ERROR_OK;
2829         }
2830
2831         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2832 }
2833
2834 COMMAND_HANDLER(handle_soft_reset_halt_command)
2835 {
2836         struct target *target = get_current_target(CMD_CTX);
2837
2838         LOG_USER("requesting target halt and executing a soft reset");
2839
2840         target_soft_reset_halt(target);
2841
2842         return ERROR_OK;
2843 }
2844
2845 COMMAND_HANDLER(handle_reset_command)
2846 {
2847         if (CMD_ARGC > 1)
2848                 return ERROR_COMMAND_SYNTAX_ERROR;
2849
2850         enum target_reset_mode reset_mode = RESET_RUN;
2851         if (CMD_ARGC == 1) {
2852                 const Jim_Nvp *n;
2853                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2854                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2855                         return ERROR_COMMAND_SYNTAX_ERROR;
2856                 reset_mode = n->value;
2857         }
2858
2859         /* reset *all* targets */
2860         return target_process_reset(CMD_CTX, reset_mode);
2861 }
2862
2863
2864 COMMAND_HANDLER(handle_resume_command)
2865 {
2866         int current = 1;
2867         if (CMD_ARGC > 1)
2868                 return ERROR_COMMAND_SYNTAX_ERROR;
2869
2870         struct target *target = get_current_target(CMD_CTX);
2871
2872         /* with no CMD_ARGV, resume from current pc, addr = 0,
2873          * with one arguments, addr = CMD_ARGV[0],
2874          * handle breakpoints, not debugging */
2875         uint32_t addr = 0;
2876         if (CMD_ARGC == 1) {
2877                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2878                 current = 0;
2879         }
2880
2881         return target_resume(target, current, addr, 1, 0);
2882 }
2883
2884 COMMAND_HANDLER(handle_step_command)
2885 {
2886         if (CMD_ARGC > 1)
2887                 return ERROR_COMMAND_SYNTAX_ERROR;
2888
2889         LOG_DEBUG("-");
2890
2891         /* with no CMD_ARGV, step from current pc, addr = 0,
2892          * with one argument addr = CMD_ARGV[0],
2893          * handle breakpoints, debugging */
2894         uint32_t addr = 0;
2895         int current_pc = 1;
2896         if (CMD_ARGC == 1) {
2897                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2898                 current_pc = 0;
2899         }
2900
2901         struct target *target = get_current_target(CMD_CTX);
2902
2903         return target->type->step(target, current_pc, addr, 1);
2904 }
2905
2906 static void handle_md_output(struct command_context *cmd_ctx,
2907                 struct target *target, uint32_t address, unsigned size,
2908                 unsigned count, const uint8_t *buffer)
2909 {
2910         const unsigned line_bytecnt = 32;
2911         unsigned line_modulo = line_bytecnt / size;
2912
2913         char output[line_bytecnt * 4 + 1];
2914         unsigned output_len = 0;
2915
2916         const char *value_fmt;
2917         switch (size) {
2918         case 4:
2919                 value_fmt = "%8.8x ";
2920                 break;
2921         case 2:
2922                 value_fmt = "%4.4x ";
2923                 break;
2924         case 1:
2925                 value_fmt = "%2.2x ";
2926                 break;
2927         default:
2928                 /* "can't happen", caller checked */
2929                 LOG_ERROR("invalid memory read size: %u", size);
2930                 return;
2931         }
2932
2933         for (unsigned i = 0; i < count; i++) {
2934                 if (i % line_modulo == 0) {
2935                         output_len += snprintf(output + output_len,
2936                                         sizeof(output) - output_len,
2937                                         "0x%8.8x: ",
2938                                         (unsigned)(address + (i*size)));
2939                 }
2940
2941                 uint32_t value = 0;
2942                 const uint8_t *value_ptr = buffer + i * size;
2943                 switch (size) {
2944                 case 4:
2945                         value = target_buffer_get_u32(target, value_ptr);
2946                         break;
2947                 case 2:
2948                         value = target_buffer_get_u16(target, value_ptr);
2949                         break;
2950                 case 1:
2951                         value = *value_ptr;
2952                 }
2953                 output_len += snprintf(output + output_len,
2954                                 sizeof(output) - output_len,
2955                                 value_fmt, value);
2956
2957                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2958                         command_print(cmd_ctx, "%s", output);
2959                         output_len = 0;
2960                 }
2961         }
2962 }
2963
2964 COMMAND_HANDLER(handle_md_command)
2965 {
2966         if (CMD_ARGC < 1)
2967                 return ERROR_COMMAND_SYNTAX_ERROR;
2968
2969         unsigned size = 0;
2970         switch (CMD_NAME[2]) {
2971         case 'w':
2972                 size = 4;
2973                 break;
2974         case 'h':
2975                 size = 2;
2976                 break;
2977         case 'b':
2978                 size = 1;
2979                 break;
2980         default:
2981                 return ERROR_COMMAND_SYNTAX_ERROR;
2982         }
2983
2984         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2985         int (*fn)(struct target *target,
2986                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2987         if (physical) {
2988                 CMD_ARGC--;
2989                 CMD_ARGV++;
2990                 fn = target_read_phys_memory;
2991         } else
2992                 fn = target_read_memory;
2993         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2994                 return ERROR_COMMAND_SYNTAX_ERROR;
2995
2996         uint32_t address;
2997         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2998
2999         unsigned count = 1;
3000         if (CMD_ARGC == 2)
3001                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3002
3003         uint8_t *buffer = calloc(count, size);
3004
3005         struct target *target = get_current_target(CMD_CTX);
3006         int retval = fn(target, address, size, count, buffer);
3007         if (ERROR_OK == retval)
3008                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3009
3010         free(buffer);
3011
3012         return retval;
3013 }
3014
3015 typedef int (*target_write_fn)(struct target *target,
3016                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3017
3018 static int target_fill_mem(struct target *target,
3019                 uint32_t address,
3020                 target_write_fn fn,
3021                 unsigned data_size,
3022                 /* value */
3023                 uint32_t b,
3024                 /* count */
3025                 unsigned c)
3026 {
3027         /* We have to write in reasonably large chunks to be able
3028          * to fill large memory areas with any sane speed */
3029         const unsigned chunk_size = 16384;
3030         uint8_t *target_buf = malloc(chunk_size * data_size);
3031         if (target_buf == NULL) {
3032                 LOG_ERROR("Out of memory");
3033                 return ERROR_FAIL;
3034         }
3035
3036         for (unsigned i = 0; i < chunk_size; i++) {
3037                 switch (data_size) {
3038                 case 4:
3039                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3040                         break;
3041                 case 2:
3042                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3043                         break;
3044                 case 1:
3045                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3046                         break;
3047                 default:
3048                         exit(-1);
3049                 }
3050         }
3051
3052         int retval = ERROR_OK;
3053
3054         for (unsigned x = 0; x < c; x += chunk_size) {
3055                 unsigned current;
3056                 current = c - x;
3057                 if (current > chunk_size)
3058                         current = chunk_size;
3059                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3060                 if (retval != ERROR_OK)
3061                         break;
3062                 /* avoid GDB timeouts */
3063                 keep_alive();
3064         }
3065         free(target_buf);
3066
3067         return retval;
3068 }
3069
3070
3071 COMMAND_HANDLER(handle_mw_command)
3072 {
3073         if (CMD_ARGC < 2)
3074                 return ERROR_COMMAND_SYNTAX_ERROR;
3075         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3076         target_write_fn fn;
3077         if (physical) {
3078                 CMD_ARGC--;
3079                 CMD_ARGV++;
3080                 fn = target_write_phys_memory;
3081         } else
3082                 fn = target_write_memory;
3083         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3084                 return ERROR_COMMAND_SYNTAX_ERROR;
3085
3086         uint32_t address;
3087         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3088
3089         uint32_t value;
3090         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3091
3092         unsigned count = 1;
3093         if (CMD_ARGC == 3)
3094                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3095
3096         struct target *target = get_current_target(CMD_CTX);
3097         unsigned wordsize;
3098         switch (CMD_NAME[2]) {
3099                 case 'w':
3100                         wordsize = 4;
3101                         break;
3102                 case 'h':
3103                         wordsize = 2;
3104                         break;
3105                 case 'b':
3106                         wordsize = 1;
3107                         break;
3108                 default:
3109                         return ERROR_COMMAND_SYNTAX_ERROR;
3110         }
3111
3112         return target_fill_mem(target, address, fn, wordsize, value, count);
3113 }
3114
3115 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3116                 uint32_t *min_address, uint32_t *max_address)
3117 {
3118         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3119                 return ERROR_COMMAND_SYNTAX_ERROR;
3120
3121         /* a base address isn't always necessary,
3122          * default to 0x0 (i.e. don't relocate) */
3123         if (CMD_ARGC >= 2) {
3124                 uint32_t addr;
3125                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3126                 image->base_address = addr;
3127                 image->base_address_set = 1;
3128         } else
3129                 image->base_address_set = 0;
3130
3131         image->start_address_set = 0;
3132
3133         if (CMD_ARGC >= 4)
3134                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3135         if (CMD_ARGC == 5) {
3136                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3137                 /* use size (given) to find max (required) */
3138                 *max_address += *min_address;
3139         }
3140
3141         if (*min_address > *max_address)
3142                 return ERROR_COMMAND_SYNTAX_ERROR;
3143
3144         return ERROR_OK;
3145 }
3146
3147 COMMAND_HANDLER(handle_load_image_command)
3148 {
3149         uint8_t *buffer;
3150         size_t buf_cnt;
3151         uint32_t image_size;
3152         uint32_t min_address = 0;
3153         uint32_t max_address = 0xffffffff;
3154         int i;
3155         struct image image;
3156
3157         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3158                         &image, &min_address, &max_address);
3159         if (ERROR_OK != retval)
3160                 return retval;
3161
3162         struct target *target = get_current_target(CMD_CTX);
3163
3164         struct duration bench;
3165         duration_start(&bench);
3166
3167         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3168                 return ERROR_OK;
3169
3170         image_size = 0x0;
3171         retval = ERROR_OK;
3172         for (i = 0; i < image.num_sections; i++) {
3173                 buffer = malloc(image.sections[i].size);
3174                 if (buffer == NULL) {
3175                         command_print(CMD_CTX,
3176                                                   "error allocating buffer for section (%d bytes)",
3177                                                   (int)(image.sections[i].size));
3178                         break;
3179                 }
3180
3181                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3182                 if (retval != ERROR_OK) {
3183                         free(buffer);
3184                         break;
3185                 }
3186
3187                 uint32_t offset = 0;
3188                 uint32_t length = buf_cnt;
3189
3190                 /* DANGER!!! beware of unsigned comparision here!!! */
3191
3192                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3193                                 (image.sections[i].base_address < max_address)) {
3194
3195                         if (image.sections[i].base_address < min_address) {
3196                                 /* clip addresses below */
3197                                 offset += min_address-image.sections[i].base_address;
3198                                 length -= offset;
3199                         }
3200
3201                         if (image.sections[i].base_address + buf_cnt > max_address)
3202                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3203
3204                         retval = target_write_buffer(target,
3205                                         image.sections[i].base_address + offset, length, buffer + offset);
3206                         if (retval != ERROR_OK) {
3207                                 free(buffer);
3208                                 break;
3209                         }
3210                         image_size += length;
3211                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3212                                         (unsigned int)length,
3213                                         image.sections[i].base_address + offset);
3214                 }
3215
3216                 free(buffer);
3217         }
3218
3219         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3220                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3221                                 "in %fs (%0.3f KiB/s)", image_size,
3222                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3223         }
3224
3225         image_close(&image);
3226
3227         return retval;
3228
3229 }
3230
3231 COMMAND_HANDLER(handle_dump_image_command)
3232 {
3233         struct fileio *fileio;
3234         uint8_t *buffer;
3235         int retval, retvaltemp;
3236         uint32_t address, size;
3237         struct duration bench;
3238         struct target *target = get_current_target(CMD_CTX);
3239
3240         if (CMD_ARGC != 3)
3241                 return ERROR_COMMAND_SYNTAX_ERROR;
3242
3243         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3244         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3245
3246         uint32_t buf_size = (size > 4096) ? 4096 : size;
3247         buffer = malloc(buf_size);
3248         if (!buffer)
3249                 return ERROR_FAIL;
3250
3251         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3252         if (retval != ERROR_OK) {
3253                 free(buffer);
3254                 return retval;
3255         }
3256
3257         duration_start(&bench);
3258
3259         while (size > 0) {
3260                 size_t size_written;
3261                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3262                 retval = target_read_buffer(target, address, this_run_size, buffer);
3263                 if (retval != ERROR_OK)
3264                         break;
3265
3266                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3267                 if (retval != ERROR_OK)
3268                         break;
3269
3270                 size -= this_run_size;
3271                 address += this_run_size;
3272         }
3273
3274         free(buffer);
3275
3276         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3277                 size_t filesize;
3278                 retval = fileio_size(fileio, &filesize);
3279                 if (retval != ERROR_OK)
3280                         return retval;
3281                 command_print(CMD_CTX,
3282                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3283                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3284         }
3285
3286         retvaltemp = fileio_close(fileio);
3287         if (retvaltemp != ERROR_OK)
3288                 return retvaltemp;
3289
3290         return retval;
3291 }
3292
3293 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3294 {
3295         uint8_t *buffer;
3296         size_t buf_cnt;
3297         uint32_t image_size;
3298         int i;
3299         int retval;
3300         uint32_t checksum = 0;
3301         uint32_t mem_checksum = 0;
3302
3303         struct image image;
3304
3305         struct target *target = get_current_target(CMD_CTX);
3306
3307         if (CMD_ARGC < 1)
3308                 return ERROR_COMMAND_SYNTAX_ERROR;
3309
3310         if (!target) {
3311                 LOG_ERROR("no target selected");
3312                 return ERROR_FAIL;
3313         }
3314
3315         struct duration bench;
3316         duration_start(&bench);
3317
3318         if (CMD_ARGC >= 2) {
3319                 uint32_t addr;
3320                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3321                 image.base_address = addr;
3322                 image.base_address_set = 1;
3323         } else {
3324                 image.base_address_set = 0;
3325                 image.base_address = 0x0;
3326         }
3327
3328         image.start_address_set = 0;
3329
3330         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3331         if (retval != ERROR_OK)
3332                 return retval;
3333
3334         image_size = 0x0;
3335         int diffs = 0;
3336         retval = ERROR_OK;
3337         for (i = 0; i < image.num_sections; i++) {
3338                 buffer = malloc(image.sections[i].size);
3339                 if (buffer == NULL) {
3340                         command_print(CMD_CTX,
3341                                         "error allocating buffer for section (%d bytes)",
3342                                         (int)(image.sections[i].size));
3343                         break;
3344                 }
3345                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3346                 if (retval != ERROR_OK) {
3347                         free(buffer);
3348                         break;
3349                 }
3350
3351                 if (verify) {
3352                         /* calculate checksum of image */
3353                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3354                         if (retval != ERROR_OK) {
3355                                 free(buffer);
3356                                 break;
3357                         }
3358
3359                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3360                         if (retval != ERROR_OK) {
3361                                 free(buffer);
3362                                 break;
3363                         }
3364
3365                         if (checksum != mem_checksum) {
3366                                 /* failed crc checksum, fall back to a binary compare */
3367                                 uint8_t *data;
3368
3369                                 if (diffs == 0)
3370                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3371
3372                                 data = malloc(buf_cnt);
3373
3374                                 /* Can we use 32bit word accesses? */
3375                                 int size = 1;
3376                                 int count = buf_cnt;
3377                                 if ((count % 4) == 0) {
3378                                         size *= 4;
3379                                         count /= 4;
3380                                 }
3381                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3382                                 if (retval == ERROR_OK) {
3383                                         uint32_t t;
3384                                         for (t = 0; t < buf_cnt; t++) {
3385                                                 if (data[t] != buffer[t]) {
3386                                                         command_print(CMD_CTX,
3387                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3388                                                                                   diffs,
3389                                                                                   (unsigned)(t + image.sections[i].base_address),
3390                                                                                   data[t],
3391                                                                                   buffer[t]);
3392                                                         if (diffs++ >= 127) {
3393                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3394                                                                 free(data);
3395                                                                 free(buffer);
3396                                                                 goto done;
3397                                                         }
3398                                                 }
3399                                                 keep_alive();
3400                                         }
3401                                 }
3402                                 free(data);
3403                         }
3404                 } else {
3405                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3406                                                   image.sections[i].base_address,
3407                                                   buf_cnt);
3408                 }
3409
3410                 free(buffer);
3411                 image_size += buf_cnt;
3412         }
3413         if (diffs > 0)
3414                 command_print(CMD_CTX, "No more differences found.");
3415 done:
3416         if (diffs > 0)
3417                 retval = ERROR_FAIL;
3418         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3419                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3420                                 "in %fs (%0.3f KiB/s)", image_size,
3421                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3422         }
3423
3424         image_close(&image);
3425
3426         return retval;
3427 }
3428
3429 COMMAND_HANDLER(handle_verify_image_command)
3430 {
3431         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3432 }
3433
3434 COMMAND_HANDLER(handle_test_image_command)
3435 {
3436         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3437 }
3438
3439 static int handle_bp_command_list(struct command_context *cmd_ctx)
3440 {
3441         struct target *target = get_current_target(cmd_ctx);
3442         struct breakpoint *breakpoint = target->breakpoints;
3443         while (breakpoint) {
3444                 if (breakpoint->type == BKPT_SOFT) {
3445                         char *buf = buf_to_str(breakpoint->orig_instr,
3446                                         breakpoint->length, 16);
3447                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3448                                         breakpoint->address,
3449                                         breakpoint->length,
3450                                         breakpoint->set, buf);
3451                         free(buf);
3452                 } else {
3453                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3454                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3455                                                         breakpoint->asid,
3456                                                         breakpoint->length, breakpoint->set);
3457                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3458                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3459                                                         breakpoint->address,
3460                                                         breakpoint->length, breakpoint->set);
3461                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3462                                                         breakpoint->asid);
3463                         } else
3464                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3465                                                         breakpoint->address,
3466                                                         breakpoint->length, breakpoint->set);
3467                 }
3468
3469                 breakpoint = breakpoint->next;
3470         }
3471         return ERROR_OK;
3472 }
3473
3474 static int handle_bp_command_set(struct command_context *cmd_ctx,
3475                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3476 {
3477         struct target *target = get_current_target(cmd_ctx);
3478         int retval;
3479
3480         if (asid == 0) {
3481                 retval = breakpoint_add(target, addr, length, hw);
3482                 if (ERROR_OK == retval)
3483                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3484                 else {
3485                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3486                         return retval;
3487                 }
3488         } else if (addr == 0) {
3489                 if (target->type->add_context_breakpoint == NULL) {
3490                         LOG_WARNING("Context breakpoint not available");
3491                         return ERROR_OK;
3492                 }
3493                 retval = context_breakpoint_add(target, asid, length, hw);
3494                 if (ERROR_OK == retval)
3495                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3496                 else {
3497                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3498                         return retval;
3499                 }
3500         } else {
3501                 if (target->type->add_hybrid_breakpoint == NULL) {
3502                         LOG_WARNING("Hybrid breakpoint not available");
3503                         return ERROR_OK;
3504                 }
3505                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3506                 if (ERROR_OK == retval)
3507                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3508                 else {
3509                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3510                         return retval;
3511                 }
3512         }
3513         return ERROR_OK;
3514 }
3515
3516 COMMAND_HANDLER(handle_bp_command)
3517 {
3518         uint32_t addr;
3519         uint32_t asid;
3520         uint32_t length;
3521         int hw = BKPT_SOFT;
3522
3523         switch (CMD_ARGC) {
3524                 case 0:
3525                         return handle_bp_command_list(CMD_CTX);
3526
3527                 case 2:
3528                         asid = 0;
3529                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3530                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3531                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3532
3533                 case 3:
3534                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3535                                 hw = BKPT_HARD;
3536                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3537
3538                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3539
3540                                 asid = 0;
3541                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3542                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3543                                 hw = BKPT_HARD;
3544                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3545                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3546                                 addr = 0;
3547                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3548                         }
3549
3550                 case 4:
3551                         hw = BKPT_HARD;
3552                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3553                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3554                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3555                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3556
3557                 default:
3558                         return ERROR_COMMAND_SYNTAX_ERROR;
3559         }
3560 }
3561
3562 COMMAND_HANDLER(handle_rbp_command)
3563 {
3564         if (CMD_ARGC != 1)
3565                 return ERROR_COMMAND_SYNTAX_ERROR;
3566
3567         uint32_t addr;
3568         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3569
3570         struct target *target = get_current_target(CMD_CTX);
3571         breakpoint_remove(target, addr);
3572
3573         return ERROR_OK;
3574 }
3575
3576 COMMAND_HANDLER(handle_wp_command)
3577 {
3578         struct target *target = get_current_target(CMD_CTX);
3579
3580         if (CMD_ARGC == 0) {
3581                 struct watchpoint *watchpoint = target->watchpoints;
3582
3583                 while (watchpoint) {
3584                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3585                                         ", len: 0x%8.8" PRIx32
3586                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3587                                         ", mask: 0x%8.8" PRIx32,
3588                                         watchpoint->address,
3589                                         watchpoint->length,
3590                                         (int)watchpoint->rw,
3591                                         watchpoint->value,
3592                                         watchpoint->mask);
3593                         watchpoint = watchpoint->next;
3594                 }
3595                 return ERROR_OK;
3596         }
3597
3598         enum watchpoint_rw type = WPT_ACCESS;
3599         uint32_t addr = 0;
3600         uint32_t length = 0;
3601         uint32_t data_value = 0x0;
3602         uint32_t data_mask = 0xffffffff;
3603
3604         switch (CMD_ARGC) {
3605         case 5:
3606                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3607                 /* fall through */
3608         case 4:
3609                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3610                 /* fall through */
3611         case 3:
3612                 switch (CMD_ARGV[2][0]) {
3613                 case 'r':
3614                         type = WPT_READ;
3615                         break;
3616                 case 'w':
3617                         type = WPT_WRITE;
3618                         break;
3619                 case 'a':
3620                         type = WPT_ACCESS;
3621                         break;
3622                 default:
3623                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3624                         return ERROR_COMMAND_SYNTAX_ERROR;
3625                 }
3626                 /* fall through */
3627         case 2:
3628                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3629                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3630                 break;
3631
3632         default:
3633                 return ERROR_COMMAND_SYNTAX_ERROR;
3634         }
3635
3636         int retval = watchpoint_add(target, addr, length, type,
3637                         data_value, data_mask);
3638         if (ERROR_OK != retval)
3639                 LOG_ERROR("Failure setting watchpoints");
3640
3641         return retval;
3642 }
3643
3644 COMMAND_HANDLER(handle_rwp_command)
3645 {
3646         if (CMD_ARGC != 1)
3647                 return ERROR_COMMAND_SYNTAX_ERROR;
3648
3649         uint32_t addr;
3650         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3651
3652         struct target *target = get_current_target(CMD_CTX);
3653         watchpoint_remove(target, addr);
3654
3655         return ERROR_OK;
3656 }
3657
3658 /**
3659  * Translate a virtual address to a physical address.
3660  *
3661  * The low-level target implementation must have logged a detailed error
3662  * which is forwarded to telnet/GDB session.
3663  */
3664 COMMAND_HANDLER(handle_virt2phys_command)
3665 {
3666         if (CMD_ARGC != 1)
3667                 return ERROR_COMMAND_SYNTAX_ERROR;
3668
3669         uint32_t va;
3670         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3671         uint32_t pa;
3672
3673         struct target *target = get_current_target(CMD_CTX);
3674         int retval = target->type->virt2phys(target, va, &pa);
3675         if (retval == ERROR_OK)
3676                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3677
3678         return retval;
3679 }
3680
3681 static void writeData(FILE *f, const void *data, size_t len)
3682 {
3683         size_t written = fwrite(data, 1, len, f);
3684         if (written != len)
3685                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3686 }
3687
3688 static void writeLong(FILE *f, int l, struct target *target)
3689 {
3690         uint8_t val[4];
3691
3692         target_buffer_set_u32(target, val, l);
3693         writeData(f, val, 4);
3694 }
3695
3696 static void writeString(FILE *f, char *s)
3697 {
3698         writeData(f, s, strlen(s));
3699 }
3700
3701 typedef unsigned char UNIT[2];  /* unit of profiling */
3702
3703 /* Dump a gmon.out histogram file. */
3704 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3705                         uint32_t start_address, uint32_t end_address, struct target *target)
3706 {
3707         uint32_t i;
3708         FILE *f = fopen(filename, "w");
3709         if (f == NULL)
3710                 return;
3711         writeString(f, "gmon");
3712         writeLong(f, 0x00000001, target); /* Version */
3713         writeLong(f, 0, target); /* padding */
3714         writeLong(f, 0, target); /* padding */
3715         writeLong(f, 0, target); /* padding */
3716
3717         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3718         writeData(f, &zero, 1);
3719
3720         /* figure out bucket size */
3721         uint32_t min;
3722         uint32_t max;
3723         if (with_range) {
3724                 min = start_address;
3725                 max = end_address;
3726         } else {
3727                 min = samples[0];
3728                 max = samples[0];
3729                 for (i = 0; i < sampleNum; i++) {
3730                         if (min > samples[i])
3731                                 min = samples[i];
3732                         if (max < samples[i])
3733                                 max = samples[i];
3734                 }
3735
3736                 /* max should be (largest sample + 1)
3737                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3738                 max++;
3739         }
3740
3741         int addressSpace = max - min;
3742         assert(addressSpace >= 2);
3743
3744         /* FIXME: What is the reasonable number of buckets?
3745          * The profiling result will be more accurate if there are enough buckets. */
3746         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3747         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3748         if (numBuckets > maxBuckets)
3749                 numBuckets = maxBuckets;
3750         int *buckets = malloc(sizeof(int) * numBuckets);
3751         if (buckets == NULL) {
3752                 fclose(f);
3753                 return;
3754         }
3755         memset(buckets, 0, sizeof(int) * numBuckets);
3756         for (i = 0; i < sampleNum; i++) {
3757                 uint32_t address = samples[i];
3758
3759                 if ((address < min) || (max <= address))
3760                         continue;
3761
3762                 long long a = address - min;
3763                 long long b = numBuckets;
3764                 long long c = addressSpace;
3765                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3766                 buckets[index_t]++;
3767         }
3768
3769         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3770         writeLong(f, min, target);                      /* low_pc */
3771         writeLong(f, max, target);                      /* high_pc */
3772         writeLong(f, numBuckets, target);       /* # of buckets */
3773         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3774         writeString(f, "seconds");
3775         for (i = 0; i < (15-strlen("seconds")); i++)
3776                 writeData(f, &zero, 1);
3777         writeString(f, "s");
3778
3779         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3780
3781         char *data = malloc(2 * numBuckets);
3782         if (data != NULL) {
3783                 for (i = 0; i < numBuckets; i++) {
3784                         int val;
3785                         val = buckets[i];
3786                         if (val > 65535)
3787                                 val = 65535;
3788                         data[i * 2] = val&0xff;
3789                         data[i * 2 + 1] = (val >> 8) & 0xff;
3790                 }
3791                 free(buckets);
3792                 writeData(f, data, numBuckets * 2);
3793                 free(data);
3794         } else
3795                 free(buckets);
3796
3797         fclose(f);
3798 }
3799
3800 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3801  * which will be used as a random sampling of PC */
3802 COMMAND_HANDLER(handle_profile_command)
3803 {
3804         struct target *target = get_current_target(CMD_CTX);
3805
3806         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3807                 return ERROR_COMMAND_SYNTAX_ERROR;
3808
3809         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3810         uint32_t offset;
3811         uint32_t num_of_samples;
3812         int retval = ERROR_OK;
3813
3814         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3815
3816         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3817         if (samples == NULL) {
3818                 LOG_ERROR("No memory to store samples.");
3819                 return ERROR_FAIL;
3820         }
3821
3822         /**
3823          * Some cores let us sample the PC without the
3824          * annoying halt/resume step; for example, ARMv7 PCSR.
3825          * Provide a way to use that more efficient mechanism.
3826          */
3827         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3828                                 &num_of_samples, offset);
3829         if (retval != ERROR_OK) {
3830                 free(samples);
3831                 return retval;
3832         }
3833
3834         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3835
3836         retval = target_poll(target);
3837         if (retval != ERROR_OK) {
3838                 free(samples);
3839                 return retval;
3840         }
3841         if (target->state == TARGET_RUNNING) {
3842                 retval = target_halt(target);
3843                 if (retval != ERROR_OK) {
3844                         free(samples);
3845                         return retval;
3846                 }
3847         }
3848
3849         retval = target_poll(target);
3850         if (retval != ERROR_OK) {
3851                 free(samples);
3852                 return retval;
3853         }
3854
3855         uint32_t start_address = 0;
3856         uint32_t end_address = 0;
3857         bool with_range = false;
3858         if (CMD_ARGC == 4) {
3859                 with_range = true;
3860                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3861                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3862         }
3863
3864         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3865                    with_range, start_address, end_address, target);
3866         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3867
3868         free(samples);
3869         return retval;
3870 }
3871
3872 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3873 {
3874         char *namebuf;
3875         Jim_Obj *nameObjPtr, *valObjPtr;
3876         int result;
3877
3878         namebuf = alloc_printf("%s(%d)", varname, idx);
3879         if (!namebuf)
3880                 return JIM_ERR;
3881
3882         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3883         valObjPtr = Jim_NewIntObj(interp, val);
3884         if (!nameObjPtr || !valObjPtr) {
3885                 free(namebuf);
3886                 return JIM_ERR;
3887         }
3888
3889         Jim_IncrRefCount(nameObjPtr);
3890         Jim_IncrRefCount(valObjPtr);
3891         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3892         Jim_DecrRefCount(interp, nameObjPtr);
3893         Jim_DecrRefCount(interp, valObjPtr);
3894         free(namebuf);
3895         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3896         return result;
3897 }
3898
3899 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3900 {
3901         struct command_context *context;
3902         struct target *target;
3903
3904         context = current_command_context(interp);
3905         assert(context != NULL);
3906
3907         target = get_current_target(context);
3908         if (target == NULL) {
3909                 LOG_ERROR("mem2array: no current target");
3910                 return JIM_ERR;
3911         }
3912
3913         return target_mem2array(interp, target, argc - 1, argv + 1);
3914 }
3915
3916 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3917 {
3918         long l;
3919         uint32_t width;
3920         int len;
3921         uint32_t addr;
3922         uint32_t count;
3923         uint32_t v;
3924         const char *varname;
3925         const char *phys;
3926         bool is_phys;
3927         int  n, e, retval;
3928         uint32_t i;
3929
3930         /* argv[1] = name of array to receive the data
3931          * argv[2] = desired width
3932          * argv[3] = memory address
3933          * argv[4] = count of times to read
3934          */
3935         if (argc < 4 || argc > 5) {
3936                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems [phys]");
3937                 return JIM_ERR;
3938         }
3939         varname = Jim_GetString(argv[0], &len);
3940         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3941
3942         e = Jim_GetLong(interp, argv[1], &l);
3943         width = l;
3944         if (e != JIM_OK)
3945                 return e;
3946
3947         e = Jim_GetLong(interp, argv[2], &l);
3948         addr = l;
3949         if (e != JIM_OK)
3950                 return e;
3951         e = Jim_GetLong(interp, argv[3], &l);
3952         len = l;
3953         if (e != JIM_OK)
3954                 return e;
3955         is_phys = false;
3956         if (argc > 4) {
3957                 phys = Jim_GetString(argv[4], &n);
3958                 if (!strncmp(phys, "phys", n))
3959                         is_phys = true;
3960                 else
3961                         return JIM_ERR;
3962         }
3963         switch (width) {
3964                 case 8:
3965                         width = 1;
3966                         break;
3967                 case 16:
3968                         width = 2;
3969                         break;
3970                 case 32:
3971                         width = 4;
3972                         break;
3973                 default:
3974                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3975                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3976                         return JIM_ERR;
3977         }
3978         if (len == 0) {
3979                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3980                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3981                 return JIM_ERR;
3982         }
3983         if ((addr + (len * width)) < addr) {
3984                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3985                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3986                 return JIM_ERR;
3987         }
3988         /* absurd transfer size? */
3989         if (len > 65536) {
3990                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3991                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3992                 return JIM_ERR;
3993         }
3994
3995         if ((width == 1) ||
3996                 ((width == 2) && ((addr & 1) == 0)) ||
3997                 ((width == 4) && ((addr & 3) == 0))) {
3998                 /* all is well */
3999         } else {
4000                 char buf[100];
4001                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4002                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4003                                 addr,
4004                                 width);
4005                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4006                 return JIM_ERR;
4007         }
4008
4009         /* Transfer loop */
4010
4011         /* index counter */
4012         n = 0;
4013
4014         size_t buffersize = 4096;
4015         uint8_t *buffer = malloc(buffersize);
4016         if (buffer == NULL)
4017                 return JIM_ERR;
4018
4019         /* assume ok */
4020         e = JIM_OK;
4021         while (len) {
4022                 /* Slurp... in buffer size chunks */
4023
4024                 count = len; /* in objects.. */
4025                 if (count > (buffersize / width))
4026                         count = (buffersize / width);
4027
4028                 if (is_phys)
4029                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4030                 else
4031                         retval = target_read_memory(target, addr, width, count, buffer);
4032                 if (retval != ERROR_OK) {
4033                         /* BOO !*/
4034                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
4035                                           (unsigned int)addr,
4036                                           (int)width,
4037                                           (int)count);
4038                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4039                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4040                         e = JIM_ERR;
4041                         break;
4042                 } else {
4043                         v = 0; /* shut up gcc */
4044                         for (i = 0; i < count ; i++, n++) {
4045                                 switch (width) {
4046                                         case 4:
4047                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4048                                                 break;
4049                                         case 2:
4050                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4051                                                 break;
4052                                         case 1:
4053                                                 v = buffer[i] & 0x0ff;
4054                                                 break;
4055                                 }
4056                                 new_int_array_element(interp, varname, n, v);
4057                         }
4058                         len -= count;
4059                         addr += count * width;
4060                 }
4061         }
4062
4063         free(buffer);
4064
4065         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4066
4067         return e;
4068 }
4069
4070 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4071 {
4072         char *namebuf;
4073         Jim_Obj *nameObjPtr, *valObjPtr;
4074         int result;
4075         long l;
4076
4077         namebuf = alloc_printf("%s(%d)", varname, idx);
4078         if (!namebuf)
4079                 return JIM_ERR;
4080
4081         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4082         if (!nameObjPtr) {
4083                 free(namebuf);
4084                 return JIM_ERR;
4085         }
4086
4087         Jim_IncrRefCount(nameObjPtr);
4088         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4089         Jim_DecrRefCount(interp, nameObjPtr);
4090         free(namebuf);
4091         if (valObjPtr == NULL)
4092                 return JIM_ERR;
4093
4094         result = Jim_GetLong(interp, valObjPtr, &l);
4095         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4096         *val = l;
4097         return result;
4098 }
4099
4100 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4101 {
4102         struct command_context *context;
4103         struct target *target;
4104
4105         context = current_command_context(interp);
4106         assert(context != NULL);
4107
4108         target = get_current_target(context);
4109         if (target == NULL) {
4110                 LOG_ERROR("array2mem: no current target");
4111                 return JIM_ERR;
4112         }
4113
4114         return target_array2mem(interp, target, argc-1, argv + 1);
4115 }
4116
4117 static int target_array2mem(Jim_Interp *interp, struct target *target,
4118                 int argc, Jim_Obj *const *argv)
4119 {
4120         long l;
4121         uint32_t width;
4122         int len;
4123         uint32_t addr;
4124         uint32_t count;
4125         uint32_t v;
4126         const char *varname;
4127         const char *phys;
4128         bool is_phys;
4129         int  n, e, retval;
4130         uint32_t i;
4131
4132         /* argv[1] = name of array to get the data
4133          * argv[2] = desired width
4134          * argv[3] = memory address
4135          * argv[4] = count to write
4136          */
4137         if (argc < 4 || argc > 5) {
4138                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4139                 return JIM_ERR;
4140         }
4141         varname = Jim_GetString(argv[0], &len);
4142         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4143
4144         e = Jim_GetLong(interp, argv[1], &l);
4145         width = l;
4146         if (e != JIM_OK)
4147                 return e;
4148
4149         e = Jim_GetLong(interp, argv[2], &l);
4150         addr = l;
4151         if (e != JIM_OK)
4152                 return e;
4153         e = Jim_GetLong(interp, argv[3], &l);
4154         len = l;
4155         if (e != JIM_OK)
4156                 return e;
4157         is_phys = false;
4158         if (argc > 4) {
4159                 phys = Jim_GetString(argv[4], &n);
4160                 if (!strncmp(phys, "phys", n))
4161                         is_phys = true;
4162                 else
4163                         return JIM_ERR;
4164         }
4165         switch (width) {
4166                 case 8:
4167                         width = 1;
4168                         break;
4169                 case 16:
4170                         width = 2;
4171                         break;
4172                 case 32:
4173                         width = 4;
4174                         break;
4175                 default:
4176                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4177                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4178                                         "Invalid width param, must be 8/16/32", NULL);
4179                         return JIM_ERR;
4180         }
4181         if (len == 0) {
4182                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4183                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4184                                 "array2mem: zero width read?", NULL);
4185                 return JIM_ERR;
4186         }
4187         if ((addr + (len * width)) < addr) {
4188                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4189                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4190                                 "array2mem: addr + len - wraps to zero?", NULL);
4191                 return JIM_ERR;
4192         }
4193         /* absurd transfer size? */
4194         if (len > 65536) {
4195                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4196                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4197                                 "array2mem: absurd > 64K item request", NULL);
4198                 return JIM_ERR;
4199         }
4200
4201         if ((width == 1) ||
4202                 ((width == 2) && ((addr & 1) == 0)) ||
4203                 ((width == 4) && ((addr & 3) == 0))) {
4204                 /* all is well */
4205         } else {
4206                 char buf[100];
4207                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4208                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4209                                 (unsigned int)addr,
4210                                 (int)width);
4211                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4212                 return JIM_ERR;
4213         }
4214
4215         /* Transfer loop */
4216
4217         /* index counter */
4218         n = 0;
4219         /* assume ok */
4220         e = JIM_OK;
4221
4222         size_t buffersize = 4096;
4223         uint8_t *buffer = malloc(buffersize);
4224         if (buffer == NULL)
4225                 return JIM_ERR;
4226
4227         while (len) {
4228                 /* Slurp... in buffer size chunks */
4229
4230                 count = len; /* in objects.. */
4231                 if (count > (buffersize / width))
4232                         count = (buffersize / width);
4233
4234                 v = 0; /* shut up gcc */
4235                 for (i = 0; i < count; i++, n++) {
4236                         get_int_array_element(interp, varname, n, &v);
4237                         switch (width) {
4238                         case 4:
4239                                 target_buffer_set_u32(target, &buffer[i * width], v);
4240                                 break;
4241                         case 2:
4242                                 target_buffer_set_u16(target, &buffer[i * width], v);
4243                                 break;
4244                         case 1:
4245                                 buffer[i] = v & 0x0ff;
4246                                 break;
4247                         }
4248                 }
4249                 len -= count;
4250
4251                 if (is_phys)
4252                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4253                 else
4254                         retval = target_write_memory(target, addr, width, count, buffer);
4255                 if (retval != ERROR_OK) {
4256                         /* BOO !*/
4257                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4258                                           (unsigned int)addr,
4259                                           (int)width,
4260                                           (int)count);
4261                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4262                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4263                         e = JIM_ERR;
4264                         break;
4265                 }
4266                 addr += count * width;
4267         }
4268
4269         free(buffer);
4270
4271         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4272
4273         return e;
4274 }
4275
4276 /* FIX? should we propagate errors here rather than printing them
4277  * and continuing?
4278  */
4279 void target_handle_event(struct target *target, enum target_event e)
4280 {
4281         struct target_event_action *teap;
4282
4283         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4284                 if (teap->event == e) {
4285                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4286                                            target->target_number,
4287                                            target_name(target),
4288                                            target_type_name(target),
4289                                            e,
4290                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4291                                            Jim_GetString(teap->body, NULL));
4292                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4293                                 Jim_MakeErrorMessage(teap->interp);
4294                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4295                         }
4296                 }
4297         }
4298 }
4299
4300 /**
4301  * Returns true only if the target has a handler for the specified event.
4302  */
4303 bool target_has_event_action(struct target *target, enum target_event event)
4304 {
4305         struct target_event_action *teap;
4306
4307         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4308                 if (teap->event == event)
4309                         return true;
4310         }
4311         return false;
4312 }
4313
4314 enum target_cfg_param {
4315         TCFG_TYPE,
4316         TCFG_EVENT,
4317         TCFG_WORK_AREA_VIRT,
4318         TCFG_WORK_AREA_PHYS,
4319         TCFG_WORK_AREA_SIZE,
4320         TCFG_WORK_AREA_BACKUP,
4321         TCFG_ENDIAN,
4322         TCFG_COREID,
4323         TCFG_CHAIN_POSITION,
4324         TCFG_DBGBASE,
4325         TCFG_RTOS,
4326 };
4327
4328 static Jim_Nvp nvp_config_opts[] = {
4329         { .name = "-type",             .value = TCFG_TYPE },
4330         { .name = "-event",            .value = TCFG_EVENT },
4331         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4332         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4333         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4334         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4335         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4336         { .name = "-coreid",           .value = TCFG_COREID },
4337         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4338         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4339         { .name = "-rtos",             .value = TCFG_RTOS },
4340         { .name = NULL, .value = -1 }
4341 };
4342
4343 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4344 {
4345         Jim_Nvp *n;
4346         Jim_Obj *o;
4347         jim_wide w;
4348         int e;
4349
4350         /* parse config or cget options ... */
4351         while (goi->argc > 0) {
4352                 Jim_SetEmptyResult(goi->interp);
4353                 /* Jim_GetOpt_Debug(goi); */
4354
4355                 if (target->type->target_jim_configure) {
4356                         /* target defines a configure function */
4357                         /* target gets first dibs on parameters */
4358                         e = (*(target->type->target_jim_configure))(target, goi);
4359                         if (e == JIM_OK) {
4360                                 /* more? */
4361                                 continue;
4362                         }
4363                         if (e == JIM_ERR) {
4364                                 /* An error */
4365                                 return e;
4366                         }
4367                         /* otherwise we 'continue' below */
4368                 }
4369                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4370                 if (e != JIM_OK) {
4371                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4372                         return e;
4373                 }
4374                 switch (n->value) {
4375                 case TCFG_TYPE:
4376                         /* not setable */
4377                         if (goi->isconfigure) {
4378                                 Jim_SetResultFormatted(goi->interp,
4379                                                 "not settable: %s", n->name);
4380                                 return JIM_ERR;
4381                         } else {
4382 no_params:
4383                                 if (goi->argc != 0) {
4384                                         Jim_WrongNumArgs(goi->interp,
4385                                                         goi->argc, goi->argv,
4386                                                         "NO PARAMS");
4387                                         return JIM_ERR;
4388                                 }
4389                         }
4390                         Jim_SetResultString(goi->interp,
4391                                         target_type_name(target), -1);
4392                         /* loop for more */
4393                         break;
4394                 case TCFG_EVENT:
4395                         if (goi->argc == 0) {
4396                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4397                                 return JIM_ERR;
4398                         }
4399
4400                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4401                         if (e != JIM_OK) {
4402                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4403                                 return e;
4404                         }
4405
4406                         if (goi->isconfigure) {
4407                                 if (goi->argc != 1) {
4408                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4409                                         return JIM_ERR;
4410                                 }
4411                         } else {
4412                                 if (goi->argc != 0) {
4413                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4414                                         return JIM_ERR;
4415                                 }
4416                         }
4417
4418                         {
4419                                 struct target_event_action *teap;
4420
4421                                 teap = target->event_action;
4422                                 /* replace existing? */
4423                                 while (teap) {
4424                                         if (teap->event == (enum target_event)n->value)
4425                                                 break;
4426                                         teap = teap->next;
4427                                 }
4428
4429                                 if (goi->isconfigure) {
4430                                         bool replace = true;
4431                                         if (teap == NULL) {
4432                                                 /* create new */
4433                                                 teap = calloc(1, sizeof(*teap));
4434                                                 replace = false;
4435                                         }
4436                                         teap->event = n->value;
4437                                         teap->interp = goi->interp;
4438                                         Jim_GetOpt_Obj(goi, &o);
4439                                         if (teap->body)
4440                                                 Jim_DecrRefCount(teap->interp, teap->body);
4441                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4442                                         /*
4443                                          * FIXME:
4444                                          *     Tcl/TK - "tk events" have a nice feature.
4445                                          *     See the "BIND" command.
4446                                          *    We should support that here.
4447                                          *     You can specify %X and %Y in the event code.
4448                                          *     The idea is: %T - target name.
4449                                          *     The idea is: %N - target number
4450                                          *     The idea is: %E - event name.
4451                                          */
4452                                         Jim_IncrRefCount(teap->body);
4453
4454                                         if (!replace) {
4455                                                 /* add to head of event list */
4456                                                 teap->next = target->event_action;
4457                                                 target->event_action = teap;
4458                                         }
4459                                         Jim_SetEmptyResult(goi->interp);
4460                                 } else {
4461                                         /* get */
4462                                         if (teap == NULL)
4463                                                 Jim_SetEmptyResult(goi->interp);
4464                                         else
4465                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4466                                 }
4467                         }
4468                         /* loop for more */
4469                         break;
4470
4471                 case TCFG_WORK_AREA_VIRT:
4472                         if (goi->isconfigure) {
4473                                 target_free_all_working_areas(target);
4474                                 e = Jim_GetOpt_Wide(goi, &w);
4475                                 if (e != JIM_OK)
4476                                         return e;
4477                                 target->working_area_virt = w;
4478                                 target->working_area_virt_spec = true;
4479                         } else {
4480                                 if (goi->argc != 0)
4481                                         goto no_params;
4482                         }
4483                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4484                         /* loop for more */
4485                         break;
4486
4487                 case TCFG_WORK_AREA_PHYS:
4488                         if (goi->isconfigure) {
4489                                 target_free_all_working_areas(target);
4490                                 e = Jim_GetOpt_Wide(goi, &w);
4491                                 if (e != JIM_OK)
4492                                         return e;
4493                                 target->working_area_phys = w;
4494                                 target->working_area_phys_spec = true;
4495                         } else {
4496                                 if (goi->argc != 0)
4497                                         goto no_params;
4498                         }
4499                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4500                         /* loop for more */
4501                         break;
4502
4503                 case TCFG_WORK_AREA_SIZE:
4504                         if (goi->isconfigure) {
4505                                 target_free_all_working_areas(target);
4506                                 e = Jim_GetOpt_Wide(goi, &w);
4507                                 if (e != JIM_OK)
4508                                         return e;
4509                                 target->working_area_size = w;
4510                         } else {
4511                                 if (goi->argc != 0)
4512                                         goto no_params;
4513                         }
4514                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4515                         /* loop for more */
4516                         break;
4517
4518                 case TCFG_WORK_AREA_BACKUP:
4519                         if (goi->isconfigure) {
4520                                 target_free_all_working_areas(target);
4521                                 e = Jim_GetOpt_Wide(goi, &w);
4522                                 if (e != JIM_OK)
4523                                         return e;
4524                                 /* make this exactly 1 or 0 */
4525                                 target->backup_working_area = (!!w);
4526                         } else {
4527                                 if (goi->argc != 0)
4528                                         goto no_params;
4529                         }
4530                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4531                         /* loop for more e*/
4532                         break;
4533
4534
4535                 case TCFG_ENDIAN:
4536                         if (goi->isconfigure) {
4537                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4538                                 if (e != JIM_OK) {
4539                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4540                                         return e;
4541                                 }
4542                                 target->endianness = n->value;
4543                         } else {
4544                                 if (goi->argc != 0)
4545                                         goto no_params;
4546                         }
4547                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4548                         if (n->name == NULL) {
4549                                 target->endianness = TARGET_LITTLE_ENDIAN;
4550                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4551                         }
4552                         Jim_SetResultString(goi->interp, n->name, -1);
4553                         /* loop for more */
4554                         break;
4555
4556                 case TCFG_COREID:
4557                         if (goi->isconfigure) {
4558                                 e = Jim_GetOpt_Wide(goi, &w);
4559                                 if (e != JIM_OK)
4560                                         return e;
4561                                 target->coreid = (int32_t)w;
4562                         } else {
4563                                 if (goi->argc != 0)
4564                                         goto no_params;
4565                         }
4566                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4567                         /* loop for more */
4568                         break;
4569
4570                 case TCFG_CHAIN_POSITION:
4571                         if (goi->isconfigure) {
4572                                 Jim_Obj *o_t;
4573                                 struct jtag_tap *tap;
4574                                 target_free_all_working_areas(target);
4575                                 e = Jim_GetOpt_Obj(goi, &o_t);
4576                                 if (e != JIM_OK)
4577                                         return e;
4578                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4579                                 if (tap == NULL)
4580                                         return JIM_ERR;
4581                                 /* make this exactly 1 or 0 */
4582                                 target->tap = tap;
4583                         } else {
4584                                 if (goi->argc != 0)
4585                                         goto no_params;
4586                         }
4587                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4588                         /* loop for more e*/
4589                         break;
4590                 case TCFG_DBGBASE:
4591                         if (goi->isconfigure) {
4592                                 e = Jim_GetOpt_Wide(goi, &w);
4593                                 if (e != JIM_OK)
4594                                         return e;
4595                                 target->dbgbase = (uint32_t)w;
4596                                 target->dbgbase_set = true;
4597                         } else {
4598                                 if (goi->argc != 0)
4599                                         goto no_params;
4600                         }
4601                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4602                         /* loop for more */
4603                         break;
4604
4605                 case TCFG_RTOS:
4606                         /* RTOS */
4607                         {
4608                                 int result = rtos_create(goi, target);
4609                                 if (result != JIM_OK)
4610                                         return result;
4611                         }
4612                         /* loop for more */
4613                         break;
4614                 }
4615         } /* while (goi->argc) */
4616
4617
4618                 /* done - we return */
4619         return JIM_OK;
4620 }
4621
4622 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4623 {
4624         Jim_GetOptInfo goi;
4625
4626         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4627         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4628         int need_args = 1 + goi.isconfigure;
4629         if (goi.argc < need_args) {
4630                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4631                         goi.isconfigure
4632                                 ? "missing: -option VALUE ..."
4633                                 : "missing: -option ...");
4634                 return JIM_ERR;
4635         }
4636         struct target *target = Jim_CmdPrivData(goi.interp);
4637         return target_configure(&goi, target);
4638 }
4639
4640 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4641 {
4642         const char *cmd_name = Jim_GetString(argv[0], NULL);
4643
4644         Jim_GetOptInfo goi;
4645         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4646
4647         if (goi.argc < 2 || goi.argc > 4) {
4648                 Jim_SetResultFormatted(goi.interp,
4649                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4650                 return JIM_ERR;
4651         }
4652
4653         target_write_fn fn;
4654         fn = target_write_memory;
4655
4656         int e;
4657         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4658                 /* consume it */
4659                 struct Jim_Obj *obj;
4660                 e = Jim_GetOpt_Obj(&goi, &obj);
4661                 if (e != JIM_OK)
4662                         return e;
4663
4664                 fn = target_write_phys_memory;
4665         }
4666
4667         jim_wide a;
4668         e = Jim_GetOpt_Wide(&goi, &a);
4669         if (e != JIM_OK)
4670                 return e;
4671
4672         jim_wide b;
4673         e = Jim_GetOpt_Wide(&goi, &b);
4674         if (e != JIM_OK)
4675                 return e;
4676
4677         jim_wide c = 1;
4678         if (goi.argc == 1) {
4679                 e = Jim_GetOpt_Wide(&goi, &c);
4680                 if (e != JIM_OK)
4681                         return e;
4682         }
4683
4684         /* all args must be consumed */
4685         if (goi.argc != 0)
4686                 return JIM_ERR;
4687
4688         struct target *target = Jim_CmdPrivData(goi.interp);
4689         unsigned data_size;
4690         if (strcasecmp(cmd_name, "mww") == 0)
4691                 data_size = 4;
4692         else if (strcasecmp(cmd_name, "mwh") == 0)
4693                 data_size = 2;
4694         else if (strcasecmp(cmd_name, "mwb") == 0)
4695                 data_size = 1;
4696         else {
4697                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4698                 return JIM_ERR;
4699         }
4700
4701         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4702 }
4703
4704 /**
4705 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4706 *
4707 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4708 *         mdh [phys] <address> [<count>] - for 16 bit reads
4709 *         mdb [phys] <address> [<count>] - for  8 bit reads
4710 *
4711 *  Count defaults to 1.
4712 *
4713 *  Calls target_read_memory or target_read_phys_memory depending on
4714 *  the presence of the "phys" argument
4715 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4716 *  to int representation in base16.
4717 *  Also outputs read data in a human readable form using command_print
4718 *
4719 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4720 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4721 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4722 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4723 *  on success, with [<count>] number of elements.
4724 *
4725 *  In case of little endian target:
4726 *      Example1: "mdw 0x00000000"  returns "10123456"
4727 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4728 *      Example3: "mdb 0x00000000" returns "56"
4729 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4730 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4731 **/
4732 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4733 {
4734         const char *cmd_name = Jim_GetString(argv[0], NULL);
4735
4736         Jim_GetOptInfo goi;
4737         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4738
4739         if ((goi.argc < 1) || (goi.argc > 3)) {
4740                 Jim_SetResultFormatted(goi.interp,
4741                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4742                 return JIM_ERR;
4743         }
4744
4745         int (*fn)(struct target *target,
4746                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4747         fn = target_read_memory;
4748
4749         int e;
4750         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4751                 /* consume it */
4752                 struct Jim_Obj *obj;
4753                 e = Jim_GetOpt_Obj(&goi, &obj);
4754                 if (e != JIM_OK)
4755                         return e;
4756
4757                 fn = target_read_phys_memory;
4758         }
4759
4760         /* Read address parameter */
4761         jim_wide addr;
4762         e = Jim_GetOpt_Wide(&goi, &addr);
4763         if (e != JIM_OK)
4764                 return JIM_ERR;
4765
4766         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4767         jim_wide count;
4768         if (goi.argc == 1) {
4769                 e = Jim_GetOpt_Wide(&goi, &count);
4770                 if (e != JIM_OK)
4771                         return JIM_ERR;
4772         } else
4773                 count = 1;
4774
4775         /* all args must be consumed */
4776         if (goi.argc != 0)
4777                 return JIM_ERR;
4778
4779         jim_wide dwidth = 1; /* shut up gcc */
4780         if (strcasecmp(cmd_name, "mdw") == 0)
4781                 dwidth = 4;
4782         else if (strcasecmp(cmd_name, "mdh") == 0)
4783                 dwidth = 2;
4784         else if (strcasecmp(cmd_name, "mdb") == 0)
4785                 dwidth = 1;
4786         else {
4787                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4788                 return JIM_ERR;
4789         }
4790
4791         /* convert count to "bytes" */
4792         int bytes = count * dwidth;
4793
4794         struct target *target = Jim_CmdPrivData(goi.interp);
4795         uint8_t  target_buf[32];
4796         jim_wide x, y, z;
4797         while (bytes > 0) {
4798                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4799
4800                 /* Try to read out next block */
4801                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4802
4803                 if (e != ERROR_OK) {
4804                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4805                         return JIM_ERR;
4806                 }
4807
4808                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4809                 switch (dwidth) {
4810                 case 4:
4811                         for (x = 0; x < 16 && x < y; x += 4) {
4812                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4813                                 command_print_sameline(NULL, "%08x ", (int)(z));
4814                         }
4815                         for (; (x < 16) ; x += 4)
4816                                 command_print_sameline(NULL, "         ");
4817                         break;
4818                 case 2:
4819                         for (x = 0; x < 16 && x < y; x += 2) {
4820                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4821                                 command_print_sameline(NULL, "%04x ", (int)(z));
4822                         }
4823                         for (; (x < 16) ; x += 2)
4824                                 command_print_sameline(NULL, "     ");
4825                         break;
4826                 case 1:
4827                 default:
4828                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4829                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4830                                 command_print_sameline(NULL, "%02x ", (int)(z));
4831                         }
4832                         for (; (x < 16) ; x += 1)
4833                                 command_print_sameline(NULL, "   ");
4834                         break;
4835                 }
4836                 /* ascii-ify the bytes */
4837                 for (x = 0 ; x < y ; x++) {
4838                         if ((target_buf[x] >= 0x20) &&
4839                                 (target_buf[x] <= 0x7e)) {
4840                                 /* good */
4841                         } else {
4842                                 /* smack it */
4843                                 target_buf[x] = '.';
4844                         }
4845                 }
4846                 /* space pad  */
4847                 while (x < 16) {
4848                         target_buf[x] = ' ';
4849                         x++;
4850                 }
4851                 /* terminate */
4852                 target_buf[16] = 0;
4853                 /* print - with a newline */
4854                 command_print_sameline(NULL, "%s\n", target_buf);
4855                 /* NEXT... */
4856                 bytes -= 16;
4857                 addr += 16;
4858         }
4859         return JIM_OK;
4860 }
4861
4862 static int jim_target_mem2array(Jim_Interp *interp,
4863                 int argc, Jim_Obj *const *argv)
4864 {
4865         struct target *target = Jim_CmdPrivData(interp);
4866         return target_mem2array(interp, target, argc - 1, argv + 1);
4867 }
4868
4869 static int jim_target_array2mem(Jim_Interp *interp,
4870                 int argc, Jim_Obj *const *argv)
4871 {
4872         struct target *target = Jim_CmdPrivData(interp);
4873         return target_array2mem(interp, target, argc - 1, argv + 1);
4874 }
4875
4876 static int jim_target_tap_disabled(Jim_Interp *interp)
4877 {
4878         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4879         return JIM_ERR;
4880 }
4881
4882 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4883 {
4884         if (argc != 1) {
4885                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4886                 return JIM_ERR;
4887         }
4888         struct target *target = Jim_CmdPrivData(interp);
4889         if (!target->tap->enabled)
4890                 return jim_target_tap_disabled(interp);
4891
4892         int e = target->type->examine(target);
4893         if (e != ERROR_OK)
4894                 return JIM_ERR;
4895         return JIM_OK;
4896 }
4897
4898 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4899 {
4900         if (argc != 1) {
4901                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4902                 return JIM_ERR;
4903         }
4904         struct target *target = Jim_CmdPrivData(interp);
4905
4906         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4907                 return JIM_ERR;
4908
4909         return JIM_OK;
4910 }
4911
4912 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4913 {
4914         if (argc != 1) {
4915                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4916                 return JIM_ERR;
4917         }
4918         struct target *target = Jim_CmdPrivData(interp);
4919         if (!target->tap->enabled)
4920                 return jim_target_tap_disabled(interp);
4921
4922         int e;
4923         if (!(target_was_examined(target)))
4924                 e = ERROR_TARGET_NOT_EXAMINED;
4925         else
4926                 e = target->type->poll(target);
4927         if (e != ERROR_OK)
4928                 return JIM_ERR;
4929         return JIM_OK;
4930 }
4931
4932 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4933 {
4934         Jim_GetOptInfo goi;
4935         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4936
4937         if (goi.argc != 2) {
4938                 Jim_WrongNumArgs(interp, 0, argv,
4939                                 "([tT]|[fF]|assert|deassert) BOOL");
4940                 return JIM_ERR;
4941         }
4942
4943         Jim_Nvp *n;
4944         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4945         if (e != JIM_OK) {
4946                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4947                 return e;
4948         }
4949         /* the halt or not param */
4950         jim_wide a;
4951         e = Jim_GetOpt_Wide(&goi, &a);
4952         if (e != JIM_OK)
4953                 return e;
4954
4955         struct target *target = Jim_CmdPrivData(goi.interp);
4956         if (!target->tap->enabled)
4957                 return jim_target_tap_disabled(interp);
4958
4959         if (!target->type->assert_reset || !target->type->deassert_reset) {
4960                 Jim_SetResultFormatted(interp,
4961                                 "No target-specific reset for %s",
4962                                 target_name(target));
4963                 return JIM_ERR;
4964         }
4965         /* determine if we should halt or not. */
4966         target->reset_halt = !!a;
4967         /* When this happens - all workareas are invalid. */
4968         target_free_all_working_areas_restore(target, 0);
4969
4970         /* do the assert */
4971         if (n->value == NVP_ASSERT)
4972                 e = target->type->assert_reset(target);
4973         else
4974                 e = target->type->deassert_reset(target);
4975         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4976 }
4977
4978 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4979 {
4980         if (argc != 1) {
4981                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4982                 return JIM_ERR;
4983         }
4984         struct target *target = Jim_CmdPrivData(interp);
4985         if (!target->tap->enabled)
4986                 return jim_target_tap_disabled(interp);
4987         int e = target->type->halt(target);
4988         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4989 }
4990
4991 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4992 {
4993         Jim_GetOptInfo goi;
4994         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4995
4996         /* params:  <name>  statename timeoutmsecs */
4997         if (goi.argc != 2) {
4998                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4999                 Jim_SetResultFormatted(goi.interp,
5000                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5001                 return JIM_ERR;
5002         }
5003
5004         Jim_Nvp *n;
5005         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5006         if (e != JIM_OK) {
5007                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5008                 return e;
5009         }
5010         jim_wide a;
5011         e = Jim_GetOpt_Wide(&goi, &a);
5012         if (e != JIM_OK)
5013                 return e;
5014         struct target *target = Jim_CmdPrivData(interp);
5015         if (!target->tap->enabled)
5016                 return jim_target_tap_disabled(interp);
5017
5018         e = target_wait_state(target, n->value, a);
5019         if (e != ERROR_OK) {
5020                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5021                 Jim_SetResultFormatted(goi.interp,
5022                                 "target: %s wait %s fails (%#s) %s",
5023                                 target_name(target), n->name,
5024                                 eObj, target_strerror_safe(e));
5025                 Jim_FreeNewObj(interp, eObj);
5026                 return JIM_ERR;
5027         }
5028         return JIM_OK;
5029 }
5030 /* List for human, Events defined for this target.
5031  * scripts/programs should use 'name cget -event NAME'
5032  */
5033 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5034 {
5035         struct command_context *cmd_ctx = current_command_context(interp);
5036         assert(cmd_ctx != NULL);
5037
5038         struct target *target = Jim_CmdPrivData(interp);
5039         struct target_event_action *teap = target->event_action;
5040         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5041                                    target->target_number,
5042                                    target_name(target));
5043         command_print(cmd_ctx, "%-25s | Body", "Event");
5044         command_print(cmd_ctx, "------------------------- | "
5045                         "----------------------------------------");
5046         while (teap) {
5047                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5048                 command_print(cmd_ctx, "%-25s | %s",
5049                                 opt->name, Jim_GetString(teap->body, NULL));
5050                 teap = teap->next;
5051         }
5052         command_print(cmd_ctx, "***END***");
5053         return JIM_OK;
5054 }
5055 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5056 {
5057         if (argc != 1) {
5058                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5059                 return JIM_ERR;
5060         }
5061         struct target *target = Jim_CmdPrivData(interp);
5062         Jim_SetResultString(interp, target_state_name(target), -1);
5063         return JIM_OK;
5064 }
5065 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5066 {
5067         Jim_GetOptInfo goi;
5068         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5069         if (goi.argc != 1) {
5070                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5071                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5072                 return JIM_ERR;
5073         }
5074         Jim_Nvp *n;
5075         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5076         if (e != JIM_OK) {
5077                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5078                 return e;
5079         }
5080         struct target *target = Jim_CmdPrivData(interp);
5081         target_handle_event(target, n->value);
5082         return JIM_OK;
5083 }
5084
5085 static const struct command_registration target_instance_command_handlers[] = {
5086         {
5087                 .name = "configure",
5088                 .mode = COMMAND_CONFIG,
5089                 .jim_handler = jim_target_configure,
5090                 .help  = "configure a new target for use",
5091                 .usage = "[target_attribute ...]",
5092         },
5093         {
5094                 .name = "cget",
5095                 .mode = COMMAND_ANY,
5096                 .jim_handler = jim_target_configure,
5097                 .help  = "returns the specified target attribute",
5098                 .usage = "target_attribute",
5099         },
5100         {
5101                 .name = "mww",
5102                 .mode = COMMAND_EXEC,
5103                 .jim_handler = jim_target_mw,
5104                 .help = "Write 32-bit word(s) to target memory",
5105                 .usage = "address data [count]",
5106         },
5107         {
5108                 .name = "mwh",
5109                 .mode = COMMAND_EXEC,
5110                 .jim_handler = jim_target_mw,
5111                 .help = "Write 16-bit half-word(s) to target memory",
5112                 .usage = "address data [count]",
5113         },
5114         {
5115                 .name = "mwb",
5116                 .mode = COMMAND_EXEC,
5117                 .jim_handler = jim_target_mw,
5118                 .help = "Write byte(s) to target memory",
5119                 .usage = "address data [count]",
5120         },
5121         {
5122                 .name = "mdw",
5123                 .mode = COMMAND_EXEC,
5124                 .jim_handler = jim_target_md,
5125                 .help = "Display target memory as 32-bit words",
5126                 .usage = "address [count]",
5127         },
5128         {
5129                 .name = "mdh",
5130                 .mode = COMMAND_EXEC,
5131                 .jim_handler = jim_target_md,
5132                 .help = "Display target memory as 16-bit half-words",
5133                 .usage = "address [count]",
5134         },
5135         {
5136                 .name = "mdb",
5137                 .mode = COMMAND_EXEC,
5138                 .jim_handler = jim_target_md,
5139                 .help = "Display target memory as 8-bit bytes",
5140                 .usage = "address [count]",
5141         },
5142         {
5143                 .name = "array2mem",
5144                 .mode = COMMAND_EXEC,
5145                 .jim_handler = jim_target_array2mem,
5146                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5147                         "to target memory",
5148                 .usage = "arrayname bitwidth address count",
5149         },
5150         {
5151                 .name = "mem2array",
5152                 .mode = COMMAND_EXEC,
5153                 .jim_handler = jim_target_mem2array,
5154                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5155                         "from target memory",
5156                 .usage = "arrayname bitwidth address count",
5157         },
5158         {
5159                 .name = "eventlist",
5160                 .mode = COMMAND_EXEC,
5161                 .jim_handler = jim_target_event_list,
5162                 .help = "displays a table of events defined for this target",
5163         },
5164         {
5165                 .name = "curstate",
5166                 .mode = COMMAND_EXEC,
5167                 .jim_handler = jim_target_current_state,
5168                 .help = "displays the current state of this target",
5169         },
5170         {
5171                 .name = "arp_examine",
5172                 .mode = COMMAND_EXEC,
5173                 .jim_handler = jim_target_examine,
5174                 .help = "used internally for reset processing",
5175         },
5176         {
5177                 .name = "arp_halt_gdb",
5178                 .mode = COMMAND_EXEC,
5179                 .jim_handler = jim_target_halt_gdb,
5180                 .help = "used internally for reset processing to halt GDB",
5181         },
5182         {
5183                 .name = "arp_poll",
5184                 .mode = COMMAND_EXEC,
5185                 .jim_handler = jim_target_poll,
5186                 .help = "used internally for reset processing",
5187         },
5188         {
5189                 .name = "arp_reset",
5190                 .mode = COMMAND_EXEC,
5191                 .jim_handler = jim_target_reset,
5192                 .help = "used internally for reset processing",
5193         },
5194         {
5195                 .name = "arp_halt",
5196                 .mode = COMMAND_EXEC,
5197                 .jim_handler = jim_target_halt,
5198                 .help = "used internally for reset processing",
5199         },
5200         {
5201                 .name = "arp_waitstate",
5202                 .mode = COMMAND_EXEC,
5203                 .jim_handler = jim_target_wait_state,
5204                 .help = "used internally for reset processing",
5205         },
5206         {
5207                 .name = "invoke-event",
5208                 .mode = COMMAND_EXEC,
5209                 .jim_handler = jim_target_invoke_event,
5210                 .help = "invoke handler for specified event",
5211                 .usage = "event_name",
5212         },
5213         COMMAND_REGISTRATION_DONE
5214 };
5215
5216 static int target_create(Jim_GetOptInfo *goi)
5217 {
5218         Jim_Obj *new_cmd;
5219         Jim_Cmd *cmd;
5220         const char *cp;
5221         int e;
5222         int x;
5223         struct target *target;
5224         struct command_context *cmd_ctx;
5225
5226         cmd_ctx = current_command_context(goi->interp);
5227         assert(cmd_ctx != NULL);
5228
5229         if (goi->argc < 3) {
5230                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5231                 return JIM_ERR;
5232         }
5233
5234         /* COMMAND */
5235         Jim_GetOpt_Obj(goi, &new_cmd);
5236         /* does this command exist? */
5237         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5238         if (cmd) {
5239                 cp = Jim_GetString(new_cmd, NULL);
5240                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5241                 return JIM_ERR;
5242         }
5243
5244         /* TYPE */
5245         e = Jim_GetOpt_String(goi, &cp, NULL);
5246         if (e != JIM_OK)
5247                 return e;
5248         struct transport *tr = get_current_transport();
5249         if (tr->override_target) {
5250                 e = tr->override_target(&cp);
5251                 if (e != ERROR_OK) {
5252                         LOG_ERROR("The selected transport doesn't support this target");
5253                         return JIM_ERR;
5254                 }
5255                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5256         }
5257         /* now does target type exist */
5258         for (x = 0 ; target_types[x] ; x++) {
5259                 if (0 == strcmp(cp, target_types[x]->name)) {
5260                         /* found */
5261                         break;
5262                 }
5263
5264                 /* check for deprecated name */
5265                 if (target_types[x]->deprecated_name) {
5266                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5267                                 /* found */
5268                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5269                                 break;
5270                         }
5271                 }
5272         }
5273         if (target_types[x] == NULL) {
5274                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5275                 for (x = 0 ; target_types[x] ; x++) {
5276                         if (target_types[x + 1]) {
5277                                 Jim_AppendStrings(goi->interp,
5278                                                                    Jim_GetResult(goi->interp),
5279                                                                    target_types[x]->name,
5280                                                                    ", ", NULL);
5281                         } else {
5282                                 Jim_AppendStrings(goi->interp,
5283                                                                    Jim_GetResult(goi->interp),
5284                                                                    " or ",
5285                                                                    target_types[x]->name, NULL);
5286                         }
5287                 }
5288                 return JIM_ERR;
5289         }
5290
5291         /* Create it */
5292         target = calloc(1, sizeof(struct target));
5293         /* set target number */
5294         target->target_number = new_target_number();
5295         cmd_ctx->current_target = target->target_number;
5296
5297         /* allocate memory for each unique target type */
5298         target->type = calloc(1, sizeof(struct target_type));
5299
5300         memcpy(target->type, target_types[x], sizeof(struct target_type));
5301
5302         /* will be set by "-endian" */
5303         target->endianness = TARGET_ENDIAN_UNKNOWN;
5304
5305         /* default to first core, override with -coreid */
5306         target->coreid = 0;
5307
5308         target->working_area        = 0x0;
5309         target->working_area_size   = 0x0;
5310         target->working_areas       = NULL;
5311         target->backup_working_area = 0;
5312
5313         target->state               = TARGET_UNKNOWN;
5314         target->debug_reason        = DBG_REASON_UNDEFINED;
5315         target->reg_cache           = NULL;
5316         target->breakpoints         = NULL;
5317         target->watchpoints         = NULL;
5318         target->next                = NULL;
5319         target->arch_info           = NULL;
5320
5321         target->display             = 1;
5322
5323         target->halt_issued                     = false;
5324
5325         /* initialize trace information */
5326         target->trace_info = malloc(sizeof(struct trace));
5327         target->trace_info->num_trace_points         = 0;
5328         target->trace_info->trace_points_size        = 0;
5329         target->trace_info->trace_points             = NULL;
5330         target->trace_info->trace_history_size       = 0;
5331         target->trace_info->trace_history            = NULL;
5332         target->trace_info->trace_history_pos        = 0;
5333         target->trace_info->trace_history_overflowed = 0;
5334
5335         target->dbgmsg          = NULL;
5336         target->dbg_msg_enabled = 0;
5337
5338         target->endianness = TARGET_ENDIAN_UNKNOWN;
5339
5340         target->rtos = NULL;
5341         target->rtos_auto_detect = false;
5342
5343         /* Do the rest as "configure" options */
5344         goi->isconfigure = 1;
5345         e = target_configure(goi, target);
5346
5347         if (target->tap == NULL) {
5348                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5349                 e = JIM_ERR;
5350         }
5351
5352         if (e != JIM_OK) {
5353                 free(target->type);
5354                 free(target);
5355                 return e;
5356         }
5357
5358         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5359                 /* default endian to little if not specified */
5360                 target->endianness = TARGET_LITTLE_ENDIAN;
5361         }
5362
5363         cp = Jim_GetString(new_cmd, NULL);
5364         target->cmd_name = strdup(cp);
5365
5366         /* create the target specific commands */
5367         if (target->type->commands) {
5368                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5369                 if (ERROR_OK != e)
5370                         LOG_ERROR("unable to register '%s' commands", cp);
5371         }
5372         if (target->type->target_create)
5373                 (*(target->type->target_create))(target, goi->interp);
5374
5375         /* append to end of list */
5376         {
5377                 struct target **tpp;
5378                 tpp = &(all_targets);
5379                 while (*tpp)
5380                         tpp = &((*tpp)->next);
5381                 *tpp = target;
5382         }
5383
5384         /* now - create the new target name command */
5385         const struct command_registration target_subcommands[] = {
5386                 {
5387                         .chain = target_instance_command_handlers,
5388                 },
5389                 {
5390                         .chain = target->type->commands,
5391                 },
5392                 COMMAND_REGISTRATION_DONE
5393         };
5394         const struct command_registration target_commands[] = {
5395                 {
5396                         .name = cp,
5397                         .mode = COMMAND_ANY,
5398                         .help = "target command group",
5399                         .usage = "",
5400                         .chain = target_subcommands,
5401                 },
5402                 COMMAND_REGISTRATION_DONE
5403         };
5404         e = register_commands(cmd_ctx, NULL, target_commands);
5405         if (ERROR_OK != e)
5406                 return JIM_ERR;
5407
5408         struct command *c = command_find_in_context(cmd_ctx, cp);
5409         assert(c);
5410         command_set_handler_data(c, target);
5411
5412         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5413 }
5414
5415 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5416 {
5417         if (argc != 1) {
5418                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5419                 return JIM_ERR;
5420         }
5421         struct command_context *cmd_ctx = current_command_context(interp);
5422         assert(cmd_ctx != NULL);
5423
5424         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5425         return JIM_OK;
5426 }
5427
5428 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5429 {
5430         if (argc != 1) {
5431                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5432                 return JIM_ERR;
5433         }
5434         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5435         for (unsigned x = 0; NULL != target_types[x]; x++) {
5436                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5437                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5438         }
5439         return JIM_OK;
5440 }
5441
5442 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5443 {
5444         if (argc != 1) {
5445                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5446                 return JIM_ERR;
5447         }
5448         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5449         struct target *target = all_targets;
5450         while (target) {
5451                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5452                         Jim_NewStringObj(interp, target_name(target), -1));
5453                 target = target->next;
5454         }
5455         return JIM_OK;
5456 }
5457
5458 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5459 {
5460         int i;
5461         const char *targetname;
5462         int retval, len;
5463         struct target *target = (struct target *) NULL;
5464         struct target_list *head, *curr, *new;
5465         curr = (struct target_list *) NULL;
5466         head = (struct target_list *) NULL;
5467
5468         retval = 0;
5469         LOG_DEBUG("%d", argc);
5470         /* argv[1] = target to associate in smp
5471          * argv[2] = target to assoicate in smp
5472          * argv[3] ...
5473          */
5474
5475         for (i = 1; i < argc; i++) {
5476
5477                 targetname = Jim_GetString(argv[i], &len);
5478                 target = get_target(targetname);
5479                 LOG_DEBUG("%s ", targetname);
5480                 if (target) {
5481                         new = malloc(sizeof(struct target_list));
5482                         new->target = target;
5483                         new->next = (struct target_list *)NULL;
5484                         if (head == (struct target_list *)NULL) {
5485                                 head = new;
5486                                 curr = head;
5487                         } else {
5488                                 curr->next = new;
5489                                 curr = new;
5490                         }
5491                 }
5492         }
5493         /*  now parse the list of cpu and put the target in smp mode*/
5494         curr = head;
5495
5496         while (curr != (struct target_list *)NULL) {
5497                 target = curr->target;
5498                 target->smp = 1;
5499                 target->head = head;
5500                 curr = curr->next;
5501         }
5502
5503         if (target && target->rtos)
5504                 retval = rtos_smp_init(head->target);
5505
5506         return retval;
5507 }
5508
5509
5510 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5511 {
5512         Jim_GetOptInfo goi;
5513         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5514         if (goi.argc < 3) {
5515                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5516                         "<name> <target_type> [<target_options> ...]");
5517                 return JIM_ERR;
5518         }
5519         return target_create(&goi);
5520 }
5521
5522 static const struct command_registration target_subcommand_handlers[] = {
5523         {
5524                 .name = "init",
5525                 .mode = COMMAND_CONFIG,
5526                 .handler = handle_target_init_command,
5527                 .help = "initialize targets",
5528         },
5529         {
5530                 .name = "create",
5531                 /* REVISIT this should be COMMAND_CONFIG ... */
5532                 .mode = COMMAND_ANY,
5533                 .jim_handler = jim_target_create,
5534                 .usage = "name type '-chain-position' name [options ...]",
5535                 .help = "Creates and selects a new target",
5536         },
5537         {
5538                 .name = "current",
5539                 .mode = COMMAND_ANY,
5540                 .jim_handler = jim_target_current,
5541                 .help = "Returns the currently selected target",
5542         },
5543         {
5544                 .name = "types",
5545                 .mode = COMMAND_ANY,
5546                 .jim_handler = jim_target_types,
5547                 .help = "Returns the available target types as "
5548                                 "a list of strings",
5549         },
5550         {
5551                 .name = "names",
5552                 .mode = COMMAND_ANY,
5553                 .jim_handler = jim_target_names,
5554                 .help = "Returns the names of all targets as a list of strings",
5555         },
5556         {
5557                 .name = "smp",
5558                 .mode = COMMAND_ANY,
5559                 .jim_handler = jim_target_smp,
5560                 .usage = "targetname1 targetname2 ...",
5561                 .help = "gather several target in a smp list"
5562         },
5563
5564         COMMAND_REGISTRATION_DONE
5565 };
5566
5567 struct FastLoad {
5568         uint32_t address;
5569         uint8_t *data;
5570         int length;
5571
5572 };
5573
5574 static int fastload_num;
5575 static struct FastLoad *fastload;
5576
5577 static void free_fastload(void)
5578 {
5579         if (fastload != NULL) {
5580                 int i;
5581                 for (i = 0; i < fastload_num; i++) {
5582                         if (fastload[i].data)
5583                                 free(fastload[i].data);
5584                 }
5585                 free(fastload);
5586                 fastload = NULL;
5587         }
5588 }
5589
5590 COMMAND_HANDLER(handle_fast_load_image_command)
5591 {
5592         uint8_t *buffer;
5593         size_t buf_cnt;
5594         uint32_t image_size;
5595         uint32_t min_address = 0;
5596         uint32_t max_address = 0xffffffff;
5597         int i;
5598
5599         struct image image;
5600
5601         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5602                         &image, &min_address, &max_address);
5603         if (ERROR_OK != retval)
5604                 return retval;
5605
5606         struct duration bench;
5607         duration_start(&bench);
5608
5609         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5610         if (retval != ERROR_OK)
5611                 return retval;
5612
5613         image_size = 0x0;
5614         retval = ERROR_OK;
5615         fastload_num = image.num_sections;
5616         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5617         if (fastload == NULL) {
5618                 command_print(CMD_CTX, "out of memory");
5619                 image_close(&image);
5620                 return ERROR_FAIL;
5621         }
5622         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5623         for (i = 0; i < image.num_sections; i++) {
5624                 buffer = malloc(image.sections[i].size);
5625                 if (buffer == NULL) {
5626                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5627                                                   (int)(image.sections[i].size));
5628                         retval = ERROR_FAIL;
5629                         break;
5630                 }
5631
5632                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5633                 if (retval != ERROR_OK) {
5634                         free(buffer);
5635                         break;
5636                 }
5637
5638                 uint32_t offset = 0;
5639                 uint32_t length = buf_cnt;
5640
5641                 /* DANGER!!! beware of unsigned comparision here!!! */
5642
5643                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5644                                 (image.sections[i].base_address < max_address)) {
5645                         if (image.sections[i].base_address < min_address) {
5646                                 /* clip addresses below */
5647                                 offset += min_address-image.sections[i].base_address;
5648                                 length -= offset;
5649                         }
5650
5651                         if (image.sections[i].base_address + buf_cnt > max_address)
5652                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5653
5654                         fastload[i].address = image.sections[i].base_address + offset;
5655                         fastload[i].data = malloc(length);
5656                         if (fastload[i].data == NULL) {
5657                                 free(buffer);
5658                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5659                                                           length);
5660                                 retval = ERROR_FAIL;
5661                                 break;
5662                         }
5663                         memcpy(fastload[i].data, buffer + offset, length);
5664                         fastload[i].length = length;
5665
5666                         image_size += length;
5667                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5668                                                   (unsigned int)length,
5669                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5670                 }
5671
5672                 free(buffer);
5673         }
5674
5675         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5676                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5677                                 "in %fs (%0.3f KiB/s)", image_size,
5678                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5679
5680                 command_print(CMD_CTX,
5681                                 "WARNING: image has not been loaded to target!"
5682                                 "You can issue a 'fast_load' to finish loading.");
5683         }
5684
5685         image_close(&image);
5686
5687         if (retval != ERROR_OK)
5688                 free_fastload();
5689
5690         return retval;
5691 }
5692
5693 COMMAND_HANDLER(handle_fast_load_command)
5694 {
5695         if (CMD_ARGC > 0)
5696                 return ERROR_COMMAND_SYNTAX_ERROR;
5697         if (fastload == NULL) {
5698                 LOG_ERROR("No image in memory");
5699                 return ERROR_FAIL;
5700         }
5701         int i;
5702         int64_t ms = timeval_ms();
5703         int size = 0;
5704         int retval = ERROR_OK;
5705         for (i = 0; i < fastload_num; i++) {
5706                 struct target *target = get_current_target(CMD_CTX);
5707                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5708                                           (unsigned int)(fastload[i].address),
5709                                           (unsigned int)(fastload[i].length));
5710                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5711                 if (retval != ERROR_OK)
5712                         break;
5713                 size += fastload[i].length;
5714         }
5715         if (retval == ERROR_OK) {
5716                 int64_t after = timeval_ms();
5717                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5718         }
5719         return retval;
5720 }
5721
5722 static const struct command_registration target_command_handlers[] = {
5723         {
5724                 .name = "targets",
5725                 .handler = handle_targets_command,
5726                 .mode = COMMAND_ANY,
5727                 .help = "change current default target (one parameter) "
5728                         "or prints table of all targets (no parameters)",
5729                 .usage = "[target]",
5730         },
5731         {
5732                 .name = "target",
5733                 .mode = COMMAND_CONFIG,
5734                 .help = "configure target",
5735
5736                 .chain = target_subcommand_handlers,
5737         },
5738         COMMAND_REGISTRATION_DONE
5739 };
5740
5741 int target_register_commands(struct command_context *cmd_ctx)
5742 {
5743         return register_commands(cmd_ctx, NULL, target_command_handlers);
5744 }
5745
5746 static bool target_reset_nag = true;
5747
5748 bool get_target_reset_nag(void)
5749 {
5750         return target_reset_nag;
5751 }
5752
5753 COMMAND_HANDLER(handle_target_reset_nag)
5754 {
5755         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5756                         &target_reset_nag, "Nag after each reset about options to improve "
5757                         "performance");
5758 }
5759
5760 COMMAND_HANDLER(handle_ps_command)
5761 {
5762         struct target *target = get_current_target(CMD_CTX);
5763         char *display;
5764         if (target->state != TARGET_HALTED) {
5765                 LOG_INFO("target not halted !!");
5766                 return ERROR_OK;
5767         }
5768
5769         if ((target->rtos) && (target->rtos->type)
5770                         && (target->rtos->type->ps_command)) {
5771                 display = target->rtos->type->ps_command(target);
5772                 command_print(CMD_CTX, "%s", display);
5773                 free(display);
5774                 return ERROR_OK;
5775         } else {
5776                 LOG_INFO("failed");
5777                 return ERROR_TARGET_FAILURE;
5778         }
5779 }
5780
5781 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5782 {
5783         if (text != NULL)
5784                 command_print_sameline(cmd_ctx, "%s", text);
5785         for (int i = 0; i < size; i++)
5786                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5787         command_print(cmd_ctx, " ");
5788 }
5789
5790 COMMAND_HANDLER(handle_test_mem_access_command)
5791 {
5792         struct target *target = get_current_target(CMD_CTX);
5793         uint32_t test_size;
5794         int retval = ERROR_OK;
5795
5796         if (target->state != TARGET_HALTED) {
5797                 LOG_INFO("target not halted !!");
5798                 return ERROR_FAIL;
5799         }
5800
5801         if (CMD_ARGC != 1)
5802                 return ERROR_COMMAND_SYNTAX_ERROR;
5803
5804         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5805
5806         /* Test reads */
5807         size_t num_bytes = test_size + 4;
5808
5809         struct working_area *wa = NULL;
5810         retval = target_alloc_working_area(target, num_bytes, &wa);
5811         if (retval != ERROR_OK) {
5812                 LOG_ERROR("Not enough working area");
5813                 return ERROR_FAIL;
5814         }
5815
5816         uint8_t *test_pattern = malloc(num_bytes);
5817
5818         for (size_t i = 0; i < num_bytes; i++)
5819                 test_pattern[i] = rand();
5820
5821         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5822         if (retval != ERROR_OK) {
5823                 LOG_ERROR("Test pattern write failed");
5824                 goto out;
5825         }
5826
5827         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5828                 for (int size = 1; size <= 4; size *= 2) {
5829                         for (int offset = 0; offset < 4; offset++) {
5830                                 uint32_t count = test_size / size;
5831                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5832                                 uint8_t *read_ref = malloc(host_bufsiz);
5833                                 uint8_t *read_buf = malloc(host_bufsiz);
5834
5835                                 for (size_t i = 0; i < host_bufsiz; i++) {
5836                                         read_ref[i] = rand();
5837                                         read_buf[i] = read_ref[i];
5838                                 }
5839                                 command_print_sameline(CMD_CTX,
5840                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5841                                                 size, offset, host_offset ? "un" : "");
5842
5843                                 struct duration bench;
5844                                 duration_start(&bench);
5845
5846                                 retval = target_read_memory(target, wa->address + offset, size, count,
5847                                                 read_buf + size + host_offset);
5848
5849                                 duration_measure(&bench);
5850
5851                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5852                                         command_print(CMD_CTX, "Unsupported alignment");
5853                                         goto next;
5854                                 } else if (retval != ERROR_OK) {
5855                                         command_print(CMD_CTX, "Memory read failed");
5856                                         goto next;
5857                                 }
5858
5859                                 /* replay on host */
5860                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5861
5862                                 /* check result */
5863                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5864                                 if (result == 0) {
5865                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5866                                                         duration_elapsed(&bench),
5867                                                         duration_kbps(&bench, count * size));
5868                                 } else {
5869                                         command_print(CMD_CTX, "Compare failed");
5870                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5871                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5872                                 }
5873 next:
5874                                 free(read_ref);
5875                                 free(read_buf);
5876                         }
5877                 }
5878         }
5879
5880 out:
5881         free(test_pattern);
5882
5883         if (wa != NULL)
5884                 target_free_working_area(target, wa);
5885
5886         /* Test writes */
5887         num_bytes = test_size + 4 + 4 + 4;
5888
5889         retval = target_alloc_working_area(target, num_bytes, &wa);
5890         if (retval != ERROR_OK) {
5891                 LOG_ERROR("Not enough working area");
5892                 return ERROR_FAIL;
5893         }
5894
5895         test_pattern = malloc(num_bytes);
5896
5897         for (size_t i = 0; i < num_bytes; i++)
5898                 test_pattern[i] = rand();
5899
5900         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5901                 for (int size = 1; size <= 4; size *= 2) {
5902                         for (int offset = 0; offset < 4; offset++) {
5903                                 uint32_t count = test_size / size;
5904                                 size_t host_bufsiz = count * size + host_offset;
5905                                 uint8_t *read_ref = malloc(num_bytes);
5906                                 uint8_t *read_buf = malloc(num_bytes);
5907                                 uint8_t *write_buf = malloc(host_bufsiz);
5908
5909                                 for (size_t i = 0; i < host_bufsiz; i++)
5910                                         write_buf[i] = rand();
5911                                 command_print_sameline(CMD_CTX,
5912                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5913                                                 size, offset, host_offset ? "un" : "");
5914
5915                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5916                                 if (retval != ERROR_OK) {
5917                                         command_print(CMD_CTX, "Test pattern write failed");
5918                                         goto nextw;
5919                                 }
5920
5921                                 /* replay on host */
5922                                 memcpy(read_ref, test_pattern, num_bytes);
5923                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5924
5925                                 struct duration bench;
5926                                 duration_start(&bench);
5927
5928                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5929                                                 write_buf + host_offset);
5930
5931                                 duration_measure(&bench);
5932
5933                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5934                                         command_print(CMD_CTX, "Unsupported alignment");
5935                                         goto nextw;
5936                                 } else if (retval != ERROR_OK) {
5937                                         command_print(CMD_CTX, "Memory write failed");
5938                                         goto nextw;
5939                                 }
5940
5941                                 /* read back */
5942                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5943                                 if (retval != ERROR_OK) {
5944                                         command_print(CMD_CTX, "Test pattern write failed");
5945                                         goto nextw;
5946                                 }
5947
5948                                 /* check result */
5949                                 int result = memcmp(read_ref, read_buf, num_bytes);
5950                                 if (result == 0) {
5951                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5952                                                         duration_elapsed(&bench),
5953                                                         duration_kbps(&bench, count * size));
5954                                 } else {
5955                                         command_print(CMD_CTX, "Compare failed");
5956                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5957                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5958                                 }
5959 nextw:
5960                                 free(read_ref);
5961                                 free(read_buf);
5962                         }
5963                 }
5964         }
5965
5966         free(test_pattern);
5967
5968         if (wa != NULL)
5969                 target_free_working_area(target, wa);
5970         return retval;
5971 }
5972
5973 static const struct command_registration target_exec_command_handlers[] = {
5974         {
5975                 .name = "fast_load_image",
5976                 .handler = handle_fast_load_image_command,
5977                 .mode = COMMAND_ANY,
5978                 .help = "Load image into server memory for later use by "
5979                         "fast_load; primarily for profiling",
5980                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5981                         "[min_address [max_length]]",
5982         },
5983         {
5984                 .name = "fast_load",
5985                 .handler = handle_fast_load_command,
5986                 .mode = COMMAND_EXEC,
5987                 .help = "loads active fast load image to current target "
5988                         "- mainly for profiling purposes",
5989                 .usage = "",
5990         },
5991         {
5992                 .name = "profile",
5993                 .handler = handle_profile_command,
5994                 .mode = COMMAND_EXEC,
5995                 .usage = "seconds filename [start end]",
5996                 .help = "profiling samples the CPU PC",
5997         },
5998         /** @todo don't register virt2phys() unless target supports it */
5999         {
6000                 .name = "virt2phys",
6001                 .handler = handle_virt2phys_command,
6002                 .mode = COMMAND_ANY,
6003                 .help = "translate a virtual address into a physical address",
6004                 .usage = "virtual_address",
6005         },
6006         {
6007                 .name = "reg",
6008                 .handler = handle_reg_command,
6009                 .mode = COMMAND_EXEC,
6010                 .help = "display (reread from target with \"force\") or set a register; "
6011                         "with no arguments, displays all registers and their values",
6012                 .usage = "[(register_number|register_name) [(value|'force')]]",
6013         },
6014         {
6015                 .name = "poll",
6016                 .handler = handle_poll_command,
6017                 .mode = COMMAND_EXEC,
6018                 .help = "poll target state; or reconfigure background polling",
6019                 .usage = "['on'|'off']",
6020         },
6021         {
6022                 .name = "wait_halt",
6023                 .handler = handle_wait_halt_command,
6024                 .mode = COMMAND_EXEC,
6025                 .help = "wait up to the specified number of milliseconds "
6026                         "(default 5000) for a previously requested halt",
6027                 .usage = "[milliseconds]",
6028         },
6029         {
6030                 .name = "halt",
6031                 .handler = handle_halt_command,
6032                 .mode = COMMAND_EXEC,
6033                 .help = "request target to halt, then wait up to the specified"
6034                         "number of milliseconds (default 5000) for it to complete",
6035                 .usage = "[milliseconds]",
6036         },
6037         {
6038                 .name = "resume",
6039                 .handler = handle_resume_command,
6040                 .mode = COMMAND_EXEC,
6041                 .help = "resume target execution from current PC or address",
6042                 .usage = "[address]",
6043         },
6044         {
6045                 .name = "reset",
6046                 .handler = handle_reset_command,
6047                 .mode = COMMAND_EXEC,
6048                 .usage = "[run|halt|init]",
6049                 .help = "Reset all targets into the specified mode."
6050                         "Default reset mode is run, if not given.",
6051         },
6052         {
6053                 .name = "soft_reset_halt",
6054                 .handler = handle_soft_reset_halt_command,
6055                 .mode = COMMAND_EXEC,
6056                 .usage = "",
6057                 .help = "halt the target and do a soft reset",
6058         },
6059         {
6060                 .name = "step",
6061                 .handler = handle_step_command,
6062                 .mode = COMMAND_EXEC,
6063                 .help = "step one instruction from current PC or address",
6064                 .usage = "[address]",
6065         },
6066         {
6067                 .name = "mdw",
6068                 .handler = handle_md_command,
6069                 .mode = COMMAND_EXEC,
6070                 .help = "display memory words",
6071                 .usage = "['phys'] address [count]",
6072         },
6073         {
6074                 .name = "mdh",
6075                 .handler = handle_md_command,
6076                 .mode = COMMAND_EXEC,
6077                 .help = "display memory half-words",
6078                 .usage = "['phys'] address [count]",
6079         },
6080         {
6081                 .name = "mdb",
6082                 .handler = handle_md_command,
6083                 .mode = COMMAND_EXEC,
6084                 .help = "display memory bytes",
6085                 .usage = "['phys'] address [count]",
6086         },
6087         {
6088                 .name = "mww",
6089                 .handler = handle_mw_command,
6090                 .mode = COMMAND_EXEC,
6091                 .help = "write memory word",
6092                 .usage = "['phys'] address value [count]",
6093         },
6094         {
6095                 .name = "mwh",
6096                 .handler = handle_mw_command,
6097                 .mode = COMMAND_EXEC,
6098                 .help = "write memory half-word",
6099                 .usage = "['phys'] address value [count]",
6100         },
6101         {
6102                 .name = "mwb",
6103                 .handler = handle_mw_command,
6104                 .mode = COMMAND_EXEC,
6105                 .help = "write memory byte",
6106                 .usage = "['phys'] address value [count]",
6107         },
6108         {
6109                 .name = "bp",
6110                 .handler = handle_bp_command,
6111                 .mode = COMMAND_EXEC,
6112                 .help = "list or set hardware or software breakpoint",
6113                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6114         },
6115         {
6116                 .name = "rbp",
6117                 .handler = handle_rbp_command,
6118                 .mode = COMMAND_EXEC,
6119                 .help = "remove breakpoint",
6120                 .usage = "address",
6121         },
6122         {
6123                 .name = "wp",
6124                 .handler = handle_wp_command,
6125                 .mode = COMMAND_EXEC,
6126                 .help = "list (no params) or create watchpoints",
6127                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6128         },
6129         {
6130                 .name = "rwp",
6131                 .handler = handle_rwp_command,
6132                 .mode = COMMAND_EXEC,
6133                 .help = "remove watchpoint",
6134                 .usage = "address",
6135         },
6136         {
6137                 .name = "load_image",
6138                 .handler = handle_load_image_command,
6139                 .mode = COMMAND_EXEC,
6140                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6141                         "[min_address] [max_length]",
6142         },
6143         {
6144                 .name = "dump_image",
6145                 .handler = handle_dump_image_command,
6146                 .mode = COMMAND_EXEC,
6147                 .usage = "filename address size",
6148         },
6149         {
6150                 .name = "verify_image",
6151                 .handler = handle_verify_image_command,
6152                 .mode = COMMAND_EXEC,
6153                 .usage = "filename [offset [type]]",
6154         },
6155         {
6156                 .name = "test_image",
6157                 .handler = handle_test_image_command,
6158                 .mode = COMMAND_EXEC,
6159                 .usage = "filename [offset [type]]",
6160         },
6161         {
6162                 .name = "mem2array",
6163                 .mode = COMMAND_EXEC,
6164                 .jim_handler = jim_mem2array,
6165                 .help = "read 8/16/32 bit memory and return as a TCL array "
6166                         "for script processing",
6167                 .usage = "arrayname bitwidth address count",
6168         },
6169         {
6170                 .name = "array2mem",
6171                 .mode = COMMAND_EXEC,
6172                 .jim_handler = jim_array2mem,
6173                 .help = "convert a TCL array to memory locations "
6174                         "and write the 8/16/32 bit values",
6175                 .usage = "arrayname bitwidth address count",
6176         },
6177         {
6178                 .name = "reset_nag",
6179                 .handler = handle_target_reset_nag,
6180                 .mode = COMMAND_ANY,
6181                 .help = "Nag after each reset about options that could have been "
6182                                 "enabled to improve performance. ",
6183                 .usage = "['enable'|'disable']",
6184         },
6185         {
6186                 .name = "ps",
6187                 .handler = handle_ps_command,
6188                 .mode = COMMAND_EXEC,
6189                 .help = "list all tasks ",
6190                 .usage = " ",
6191         },
6192         {
6193                 .name = "test_mem_access",
6194                 .handler = handle_test_mem_access_command,
6195                 .mode = COMMAND_EXEC,
6196                 .help = "Test the target's memory access functions",
6197                 .usage = "size",
6198         },
6199
6200         COMMAND_REGISTRATION_DONE
6201 };
6202 static int target_register_user_commands(struct command_context *cmd_ctx)
6203 {
6204         int retval = ERROR_OK;
6205         retval = target_request_register_commands(cmd_ctx);
6206         if (retval != ERROR_OK)
6207                 return retval;
6208
6209         retval = trace_register_commands(cmd_ctx);
6210         if (retval != ERROR_OK)
6211                 return retval;
6212
6213
6214         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6215 }