]> git.sur5r.net Git - openocd/blob - src/target/target.c
target: reexamine after polling succeeds again
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106
107 static struct target_type *target_types[] = {
108         &arm7tdmi_target,
109         &arm9tdmi_target,
110         &arm920t_target,
111         &arm720t_target,
112         &arm966e_target,
113         &arm946e_target,
114         &arm926ejs_target,
115         &fa526_target,
116         &feroceon_target,
117         &dragonite_target,
118         &xscale_target,
119         &cortexm_target,
120         &cortexa8_target,
121         &cortexr4_target,
122         &arm11_target,
123         &mips_m4k_target,
124         &avr_target,
125         &dsp563xx_target,
126         &dsp5680xx_target,
127         &testee_target,
128         &avr32_ap7k_target,
129         &hla_target,
130         &nds32_v2_target,
131         &nds32_v3_target,
132         &nds32_v3m_target,
133         &or1k_target,
134         &quark_x10xx_target,
135         NULL,
136 };
137
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
142
143 static const Jim_Nvp nvp_assert[] = {
144         { .name = "assert", NVP_ASSERT },
145         { .name = "deassert", NVP_DEASSERT },
146         { .name = "T", NVP_ASSERT },
147         { .name = "F", NVP_DEASSERT },
148         { .name = "t", NVP_ASSERT },
149         { .name = "f", NVP_DEASSERT },
150         { .name = NULL, .value = -1 }
151 };
152
153 static const Jim_Nvp nvp_error_target[] = {
154         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
160         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
163         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165         { .value = -1, .name = NULL }
166 };
167
168 static const char *target_strerror_safe(int err)
169 {
170         const Jim_Nvp *n;
171
172         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173         if (n->name == NULL)
174                 return "unknown";
175         else
176                 return n->name;
177 }
178
179 static const Jim_Nvp nvp_target_event[] = {
180
181         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182         { .value = TARGET_EVENT_HALTED, .name = "halted" },
183         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
186
187         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
189
190         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
191         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
192         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
193         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
194         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
195         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
197         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
198         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
199         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
200         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
201         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
202
203         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
205
206         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
208
209         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
211
212         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
214
215         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
217
218         { .name = NULL, .value = -1 }
219 };
220
221 static const Jim_Nvp nvp_target_state[] = {
222         { .name = "unknown", .value = TARGET_UNKNOWN },
223         { .name = "running", .value = TARGET_RUNNING },
224         { .name = "halted",  .value = TARGET_HALTED },
225         { .name = "reset",   .value = TARGET_RESET },
226         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227         { .name = NULL, .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
232         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
233         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
234         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
236         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
237         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
238         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
239         { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_endian[] = {
243         { .name = "big",    .value = TARGET_BIG_ENDIAN },
244         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245         { .name = "be",     .value = TARGET_BIG_ENDIAN },
246         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
247         { .name = NULL,     .value = -1 },
248 };
249
250 static const Jim_Nvp nvp_reset_modes[] = {
251         { .name = "unknown", .value = RESET_UNKNOWN },
252         { .name = "run"    , .value = RESET_RUN },
253         { .name = "halt"   , .value = RESET_HALT },
254         { .name = "init"   , .value = RESET_INIT },
255         { .name = NULL     , .value = -1 },
256 };
257
258 const char *debug_reason_name(struct target *t)
259 {
260         const char *cp;
261
262         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263                         t->debug_reason)->name;
264         if (!cp) {
265                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266                 cp = "(*BUG*unknown*BUG*)";
267         }
268         return cp;
269 }
270
271 const char *target_state_name(struct target *t)
272 {
273         const char *cp;
274         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275         if (!cp) {
276                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277                 cp = "(*BUG*unknown*BUG*)";
278         }
279         return cp;
280 }
281
282 /* determine the number of the new target */
283 static int new_target_number(void)
284 {
285         struct target *t;
286         int x;
287
288         /* number is 0 based */
289         x = -1;
290         t = all_targets;
291         while (t) {
292                 if (x < t->target_number)
293                         x = t->target_number;
294                 t = t->next;
295         }
296         return x + 1;
297 }
298
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 return le_to_h_u64(buffer);
304         else
305                 return be_to_h_u64(buffer);
306 }
307
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 return le_to_h_u32(buffer);
313         else
314                 return be_to_h_u32(buffer);
315 }
316
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
319 {
320         if (target->endianness == TARGET_LITTLE_ENDIAN)
321                 return le_to_h_u24(buffer);
322         else
323                 return be_to_h_u24(buffer);
324 }
325
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
328 {
329         if (target->endianness == TARGET_LITTLE_ENDIAN)
330                 return le_to_h_u16(buffer);
331         else
332                 return be_to_h_u16(buffer);
333 }
334
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
337 {
338         return *buffer & 0x0ff;
339 }
340
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 h_u64_to_le(buffer, value);
346         else
347                 h_u64_to_be(buffer, value);
348 }
349
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 h_u32_to_le(buffer, value);
355         else
356                 h_u32_to_be(buffer, value);
357 }
358
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 h_u24_to_le(buffer, value);
364         else
365                 h_u24_to_be(buffer, value);
366 }
367
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
370 {
371         if (target->endianness == TARGET_LITTLE_ENDIAN)
372                 h_u16_to_le(buffer, value);
373         else
374                 h_u16_to_be(buffer, value);
375 }
376
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
379 {
380         *buffer = value;
381 }
382
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
385 {
386         uint32_t i;
387         for (i = 0; i < count; i++)
388                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
389 }
390
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
393 {
394         uint32_t i;
395         for (i = 0; i < count; i++)
396                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
397 }
398
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
401 {
402         uint32_t i;
403         for (i = 0; i < count; i++)
404                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
409 {
410         uint32_t i;
411         for (i = 0; i < count; i++)
412                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
417 {
418         uint32_t i;
419         for (i = 0; i < count; i++)
420                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
429 }
430
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
433 {
434         struct target *target;
435
436         /* try as tcltarget name */
437         for (target = all_targets; target; target = target->next) {
438                 if (target_name(target) == NULL)
439                         continue;
440                 if (strcmp(id, target_name(target)) == 0)
441                         return target;
442         }
443
444         /* It's OK to remove this fallback sometime after August 2010 or so */
445
446         /* no match, try as number */
447         unsigned num;
448         if (parse_uint(id, &num) != ERROR_OK)
449                 return NULL;
450
451         for (target = all_targets; target; target = target->next) {
452                 if (target->target_number == (int)num) {
453                         LOG_WARNING("use '%s' as target identifier, not '%u'",
454                                         target_name(target), num);
455                         return target;
456                 }
457         }
458
459         return NULL;
460 }
461
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
464 {
465         struct target *target = all_targets;
466
467         while (target) {
468                 if (target->target_number == num)
469                         return target;
470                 target = target->next;
471         }
472
473         return NULL;
474 }
475
476 struct target *get_current_target(struct command_context *cmd_ctx)
477 {
478         struct target *target = get_target_by_num(cmd_ctx->current_target);
479
480         if (target == NULL) {
481                 LOG_ERROR("BUG: current_target out of bounds");
482                 exit(-1);
483         }
484
485         return target;
486 }
487
488 int target_poll(struct target *target)
489 {
490         int retval;
491
492         /* We can't poll until after examine */
493         if (!target_was_examined(target)) {
494                 /* Fail silently lest we pollute the log */
495                 return ERROR_FAIL;
496         }
497
498         retval = target->type->poll(target);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         if (target->halt_issued) {
503                 if (target->state == TARGET_HALTED)
504                         target->halt_issued = false;
505                 else {
506                         long long t = timeval_ms() - target->halt_issued_time;
507                         if (t > DEFAULT_HALT_TIMEOUT) {
508                                 target->halt_issued = false;
509                                 LOG_INFO("Halt timed out, wake up GDB.");
510                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
511                         }
512                 }
513         }
514
515         return ERROR_OK;
516 }
517
518 int target_halt(struct target *target)
519 {
520         int retval;
521         /* We can't poll until after examine */
522         if (!target_was_examined(target)) {
523                 LOG_ERROR("Target not examined yet");
524                 return ERROR_FAIL;
525         }
526
527         retval = target->type->halt(target);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         target->halt_issued = true;
532         target->halt_issued_time = timeval_ms();
533
534         return ERROR_OK;
535 }
536
537 /**
538  * Make the target (re)start executing using its saved execution
539  * context (possibly with some modifications).
540  *
541  * @param target Which target should start executing.
542  * @param current True to use the target's saved program counter instead
543  *      of the address parameter
544  * @param address Optionally used as the program counter.
545  * @param handle_breakpoints True iff breakpoints at the resumption PC
546  *      should be skipped.  (For example, maybe execution was stopped by
547  *      such a breakpoint, in which case it would be counterprodutive to
548  *      let it re-trigger.
549  * @param debug_execution False if all working areas allocated by OpenOCD
550  *      should be released and/or restored to their original contents.
551  *      (This would for example be true to run some downloaded "helper"
552  *      algorithm code, which resides in one such working buffer and uses
553  *      another for data storage.)
554  *
555  * @todo Resolve the ambiguity about what the "debug_execution" flag
556  * signifies.  For example, Target implementations don't agree on how
557  * it relates to invalidation of the register cache, or to whether
558  * breakpoints and watchpoints should be enabled.  (It would seem wrong
559  * to enable breakpoints when running downloaded "helper" algorithms
560  * (debug_execution true), since the breakpoints would be set to match
561  * target firmware being debugged, not the helper algorithm.... and
562  * enabling them could cause such helpers to malfunction (for example,
563  * by overwriting data with a breakpoint instruction.  On the other
564  * hand the infrastructure for running such helpers might use this
565  * procedure but rely on hardware breakpoint to detect termination.)
566  */
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
568 {
569         int retval;
570
571         /* We can't poll until after examine */
572         if (!target_was_examined(target)) {
573                 LOG_ERROR("Target not examined yet");
574                 return ERROR_FAIL;
575         }
576
577         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
578
579         /* note that resume *must* be asynchronous. The CPU can halt before
580          * we poll. The CPU can even halt at the current PC as a result of
581          * a software breakpoint being inserted by (a bug?) the application.
582          */
583         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584         if (retval != ERROR_OK)
585                 return retval;
586
587         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
588
589         return retval;
590 }
591
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
593 {
594         char buf[100];
595         int retval;
596         Jim_Nvp *n;
597         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598         if (n->name == NULL) {
599                 LOG_ERROR("invalid reset mode");
600                 return ERROR_FAIL;
601         }
602
603         /* disable polling during reset to make reset event scripts
604          * more predictable, i.e. dr/irscan & pathmove in events will
605          * not have JTAG operations injected into the middle of a sequence.
606          */
607         bool save_poll = jtag_poll_get_enabled();
608
609         jtag_poll_set_enabled(false);
610
611         sprintf(buf, "ocd_process_reset %s", n->name);
612         retval = Jim_Eval(cmd_ctx->interp, buf);
613
614         jtag_poll_set_enabled(save_poll);
615
616         if (retval != JIM_OK) {
617                 Jim_MakeErrorMessage(cmd_ctx->interp);
618                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619                 return ERROR_FAIL;
620         }
621
622         /* We want any events to be processed before the prompt */
623         retval = target_call_timer_callbacks_now();
624
625         struct target *target;
626         for (target = all_targets; target; target = target->next) {
627                 target->type->check_reset(target);
628                 target->running_alg = false;
629         }
630
631         return retval;
632 }
633
634 static int identity_virt2phys(struct target *target,
635                 uint32_t virtual, uint32_t *physical)
636 {
637         *physical = virtual;
638         return ERROR_OK;
639 }
640
641 static int no_mmu(struct target *target, int *enabled)
642 {
643         *enabled = 0;
644         return ERROR_OK;
645 }
646
647 static int default_examine(struct target *target)
648 {
649         target_set_examined(target);
650         return ERROR_OK;
651 }
652
653 /* no check by default */
654 static int default_check_reset(struct target *target)
655 {
656         return ERROR_OK;
657 }
658
659 int target_examine_one(struct target *target)
660 {
661         return target->type->examine(target);
662 }
663
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
665 {
666         struct target *target = priv;
667
668         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669                 return ERROR_OK;
670
671         jtag_unregister_event_callback(jtag_enable_callback, target);
672
673         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
674
675         int retval = target_examine_one(target);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
680
681         return retval;
682 }
683
684 /* Targets that correctly implement init + examine, i.e.
685  * no communication with target during init:
686  *
687  * XScale
688  */
689 int target_examine(void)
690 {
691         int retval = ERROR_OK;
692         struct target *target;
693
694         for (target = all_targets; target; target = target->next) {
695                 /* defer examination, but don't skip it */
696                 if (!target->tap->enabled) {
697                         jtag_register_event_callback(jtag_enable_callback,
698                                         target);
699                         continue;
700                 }
701
702                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704                 retval = target_examine_one(target);
705                 if (retval != ERROR_OK)
706                         return retval;
707
708                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709         }
710         return retval;
711 }
712
713 const char *target_type_name(struct target *target)
714 {
715         return target->type->name;
716 }
717
718 static int target_soft_reset_halt(struct target *target)
719 {
720         if (!target_was_examined(target)) {
721                 LOG_ERROR("Target not examined yet");
722                 return ERROR_FAIL;
723         }
724         if (!target->type->soft_reset_halt) {
725                 LOG_ERROR("Target %s does not support soft_reset_halt",
726                                 target_name(target));
727                 return ERROR_FAIL;
728         }
729         return target->type->soft_reset_halt(target);
730 }
731
732 /**
733  * Downloads a target-specific native code algorithm to the target,
734  * and executes it.  * Note that some targets may need to set up, enable,
735  * and tear down a breakpoint (hard or * soft) to detect algorithm
736  * termination, while others may support  lower overhead schemes where
737  * soft breakpoints embedded in the algorithm automatically terminate the
738  * algorithm.
739  *
740  * @param target used to run the algorithm
741  * @param arch_info target-specific description of the algorithm.
742  */
743 int target_run_algorithm(struct target *target,
744                 int num_mem_params, struct mem_param *mem_params,
745                 int num_reg_params, struct reg_param *reg_param,
746                 uint32_t entry_point, uint32_t exit_point,
747                 int timeout_ms, void *arch_info)
748 {
749         int retval = ERROR_FAIL;
750
751         if (!target_was_examined(target)) {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->run_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760
761         target->running_alg = true;
762         retval = target->type->run_algorithm(target,
763                         num_mem_params, mem_params,
764                         num_reg_params, reg_param,
765                         entry_point, exit_point, timeout_ms, arch_info);
766         target->running_alg = false;
767
768 done:
769         return retval;
770 }
771
772 /**
773  * Downloads a target-specific native code algorithm to the target,
774  * executes and leaves it running.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_start_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t entry_point, uint32_t exit_point,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target_was_examined(target)) {
788                 LOG_ERROR("Target not examined yet");
789                 goto done;
790         }
791         if (!target->type->start_algorithm) {
792                 LOG_ERROR("Target type '%s' does not support %s",
793                                 target_type_name(target), __func__);
794                 goto done;
795         }
796         if (target->running_alg) {
797                 LOG_ERROR("Target is already running an algorithm");
798                 goto done;
799         }
800
801         target->running_alg = true;
802         retval = target->type->start_algorithm(target,
803                         num_mem_params, mem_params,
804                         num_reg_params, reg_params,
805                         entry_point, exit_point, arch_info);
806
807 done:
808         return retval;
809 }
810
811 /**
812  * Waits for an algorithm started with target_start_algorithm() to complete.
813  *
814  * @param target used to run the algorithm
815  * @param arch_info target-specific description of the algorithm.
816  */
817 int target_wait_algorithm(struct target *target,
818                 int num_mem_params, struct mem_param *mem_params,
819                 int num_reg_params, struct reg_param *reg_params,
820                 uint32_t exit_point, int timeout_ms,
821                 void *arch_info)
822 {
823         int retval = ERROR_FAIL;
824
825         if (!target->type->wait_algorithm) {
826                 LOG_ERROR("Target type '%s' does not support %s",
827                                 target_type_name(target), __func__);
828                 goto done;
829         }
830         if (!target->running_alg) {
831                 LOG_ERROR("Target is not running an algorithm");
832                 goto done;
833         }
834
835         retval = target->type->wait_algorithm(target,
836                         num_mem_params, mem_params,
837                         num_reg_params, reg_params,
838                         exit_point, timeout_ms, arch_info);
839         if (retval != ERROR_TARGET_TIMEOUT)
840                 target->running_alg = false;
841
842 done:
843         return retval;
844 }
845
846 /**
847  * Executes a target-specific native code algorithm in the target.
848  * It differs from target_run_algorithm in that the algorithm is asynchronous.
849  * Because of this it requires an compliant algorithm:
850  * see contrib/loaders/flash/stm32f1x.S for example.
851  *
852  * @param target used to run the algorithm
853  */
854
855 int target_run_flash_async_algorithm(struct target *target,
856                 const uint8_t *buffer, uint32_t count, int block_size,
857                 int num_mem_params, struct mem_param *mem_params,
858                 int num_reg_params, struct reg_param *reg_params,
859                 uint32_t buffer_start, uint32_t buffer_size,
860                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
861 {
862         int retval;
863         int timeout = 0;
864
865         /* Set up working area. First word is write pointer, second word is read pointer,
866          * rest is fifo data area. */
867         uint32_t wp_addr = buffer_start;
868         uint32_t rp_addr = buffer_start + 4;
869         uint32_t fifo_start_addr = buffer_start + 8;
870         uint32_t fifo_end_addr = buffer_start + buffer_size;
871
872         uint32_t wp = fifo_start_addr;
873         uint32_t rp = fifo_start_addr;
874
875         /* validate block_size is 2^n */
876         assert(!block_size || !(block_size & (block_size - 1)));
877
878         retval = target_write_u32(target, wp_addr, wp);
879         if (retval != ERROR_OK)
880                 return retval;
881         retval = target_write_u32(target, rp_addr, rp);
882         if (retval != ERROR_OK)
883                 return retval;
884
885         /* Start up algorithm on target and let it idle while writing the first chunk */
886         retval = target_start_algorithm(target, num_mem_params, mem_params,
887                         num_reg_params, reg_params,
888                         entry_point,
889                         exit_point,
890                         arch_info);
891
892         if (retval != ERROR_OK) {
893                 LOG_ERROR("error starting target flash write algorithm");
894                 return retval;
895         }
896
897         while (count > 0) {
898
899                 retval = target_read_u32(target, rp_addr, &rp);
900                 if (retval != ERROR_OK) {
901                         LOG_ERROR("failed to get read pointer");
902                         break;
903                 }
904
905                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
906
907                 if (rp == 0) {
908                         LOG_ERROR("flash write algorithm aborted by target");
909                         retval = ERROR_FLASH_OPERATION_FAILED;
910                         break;
911                 }
912
913                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915                         break;
916                 }
917
918                 /* Count the number of bytes available in the fifo without
919                  * crossing the wrap around. Make sure to not fill it completely,
920                  * because that would make wp == rp and that's the empty condition. */
921                 uint32_t thisrun_bytes;
922                 if (rp > wp)
923                         thisrun_bytes = rp - wp - block_size;
924                 else if (rp > fifo_start_addr)
925                         thisrun_bytes = fifo_end_addr - wp;
926                 else
927                         thisrun_bytes = fifo_end_addr - wp - block_size;
928
929                 if (thisrun_bytes == 0) {
930                         /* Throttle polling a bit if transfer is (much) faster than flash
931                          * programming. The exact delay shouldn't matter as long as it's
932                          * less than buffer size / flash speed. This is very unlikely to
933                          * run when using high latency connections such as USB. */
934                         alive_sleep(10);
935
936                         /* to stop an infinite loop on some targets check and increment a timeout
937                          * this issue was observed on a stellaris using the new ICDI interface */
938                         if (timeout++ >= 500) {
939                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940                                 return ERROR_FLASH_OPERATION_FAILED;
941                         }
942                         continue;
943                 }
944
945                 /* reset our timeout */
946                 timeout = 0;
947
948                 /* Limit to the amount of data we actually want to write */
949                 if (thisrun_bytes > count * block_size)
950                         thisrun_bytes = count * block_size;
951
952                 /* Write data to fifo */
953                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954                 if (retval != ERROR_OK)
955                         break;
956
957                 /* Update counters and wrap write pointer */
958                 buffer += thisrun_bytes;
959                 count -= thisrun_bytes / block_size;
960                 wp += thisrun_bytes;
961                 if (wp >= fifo_end_addr)
962                         wp = fifo_start_addr;
963
964                 /* Store updated write pointer to target */
965                 retval = target_write_u32(target, wp_addr, wp);
966                 if (retval != ERROR_OK)
967                         break;
968         }
969
970         if (retval != ERROR_OK) {
971                 /* abort flash write algorithm on target */
972                 target_write_u32(target, wp_addr, 0);
973         }
974
975         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976                         num_reg_params, reg_params,
977                         exit_point,
978                         10000,
979                         arch_info);
980
981         if (retval2 != ERROR_OK) {
982                 LOG_ERROR("error waiting for target flash write algorithm");
983                 retval = retval2;
984         }
985
986         return retval;
987 }
988
989 int target_read_memory(struct target *target,
990                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
991 {
992         if (!target_was_examined(target)) {
993                 LOG_ERROR("Target not examined yet");
994                 return ERROR_FAIL;
995         }
996         return target->type->read_memory(target, address, size, count, buffer);
997 }
998
999 int target_read_phys_memory(struct target *target,
1000                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1001 {
1002         if (!target_was_examined(target)) {
1003                 LOG_ERROR("Target not examined yet");
1004                 return ERROR_FAIL;
1005         }
1006         return target->type->read_phys_memory(target, address, size, count, buffer);
1007 }
1008
1009 int target_write_memory(struct target *target,
1010                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1011 {
1012         if (!target_was_examined(target)) {
1013                 LOG_ERROR("Target not examined yet");
1014                 return ERROR_FAIL;
1015         }
1016         return target->type->write_memory(target, address, size, count, buffer);
1017 }
1018
1019 int target_write_phys_memory(struct target *target,
1020                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1021 {
1022         if (!target_was_examined(target)) {
1023                 LOG_ERROR("Target not examined yet");
1024                 return ERROR_FAIL;
1025         }
1026         return target->type->write_phys_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_add_breakpoint(struct target *target,
1030                 struct breakpoint *breakpoint)
1031 {
1032         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033                 LOG_WARNING("target %s is not halted", target_name(target));
1034                 return ERROR_TARGET_NOT_HALTED;
1035         }
1036         return target->type->add_breakpoint(target, breakpoint);
1037 }
1038
1039 int target_add_context_breakpoint(struct target *target,
1040                 struct breakpoint *breakpoint)
1041 {
1042         if (target->state != TARGET_HALTED) {
1043                 LOG_WARNING("target %s is not halted", target_name(target));
1044                 return ERROR_TARGET_NOT_HALTED;
1045         }
1046         return target->type->add_context_breakpoint(target, breakpoint);
1047 }
1048
1049 int target_add_hybrid_breakpoint(struct target *target,
1050                 struct breakpoint *breakpoint)
1051 {
1052         if (target->state != TARGET_HALTED) {
1053                 LOG_WARNING("target %s is not halted", target_name(target));
1054                 return ERROR_TARGET_NOT_HALTED;
1055         }
1056         return target->type->add_hybrid_breakpoint(target, breakpoint);
1057 }
1058
1059 int target_remove_breakpoint(struct target *target,
1060                 struct breakpoint *breakpoint)
1061 {
1062         return target->type->remove_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_watchpoint(struct target *target,
1066                 struct watchpoint *watchpoint)
1067 {
1068         if (target->state != TARGET_HALTED) {
1069                 LOG_WARNING("target %s is not halted", target_name(target));
1070                 return ERROR_TARGET_NOT_HALTED;
1071         }
1072         return target->type->add_watchpoint(target, watchpoint);
1073 }
1074 int target_remove_watchpoint(struct target *target,
1075                 struct watchpoint *watchpoint)
1076 {
1077         return target->type->remove_watchpoint(target, watchpoint);
1078 }
1079 int target_hit_watchpoint(struct target *target,
1080                 struct watchpoint **hit_watchpoint)
1081 {
1082         if (target->state != TARGET_HALTED) {
1083                 LOG_WARNING("target %s is not halted", target->cmd_name);
1084                 return ERROR_TARGET_NOT_HALTED;
1085         }
1086
1087         if (target->type->hit_watchpoint == NULL) {
1088                 /* For backward compatible, if hit_watchpoint is not implemented,
1089                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1090                  * information. */
1091                 return ERROR_FAIL;
1092         }
1093
1094         return target->type->hit_watchpoint(target, hit_watchpoint);
1095 }
1096
1097 int target_get_gdb_reg_list(struct target *target,
1098                 struct reg **reg_list[], int *reg_list_size,
1099                 enum target_register_class reg_class)
1100 {
1101         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1102 }
1103 int target_step(struct target *target,
1104                 int current, uint32_t address, int handle_breakpoints)
1105 {
1106         return target->type->step(target, current, address, handle_breakpoints);
1107 }
1108
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1110 {
1111         if (target->state != TARGET_HALTED) {
1112                 LOG_WARNING("target %s is not halted", target->cmd_name);
1113                 return ERROR_TARGET_NOT_HALTED;
1114         }
1115         return target->type->get_gdb_fileio_info(target, fileio_info);
1116 }
1117
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1119 {
1120         if (target->state != TARGET_HALTED) {
1121                 LOG_WARNING("target %s is not halted", target->cmd_name);
1122                 return ERROR_TARGET_NOT_HALTED;
1123         }
1124         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1125 }
1126
1127 int target_profiling(struct target *target, uint32_t *samples,
1128                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1129 {
1130         if (target->state != TARGET_HALTED) {
1131                 LOG_WARNING("target %s is not halted", target->cmd_name);
1132                 return ERROR_TARGET_NOT_HALTED;
1133         }
1134         return target->type->profiling(target, samples, max_num_samples,
1135                         num_samples, seconds);
1136 }
1137
1138 /**
1139  * Reset the @c examined flag for the given target.
1140  * Pure paranoia -- targets are zeroed on allocation.
1141  */
1142 static void target_reset_examined(struct target *target)
1143 {
1144         target->examined = false;
1145 }
1146
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148                 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150         LOG_ERROR("Not implemented: %s", __func__);
1151         return ERROR_FAIL;
1152 }
1153
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155                 uint32_t size, uint32_t count, const uint8_t *buffer)
1156 {
1157         LOG_ERROR("Not implemented: %s", __func__);
1158         return ERROR_FAIL;
1159 }
1160
1161 static int handle_target(void *priv);
1162
1163 static int target_init_one(struct command_context *cmd_ctx,
1164                 struct target *target)
1165 {
1166         target_reset_examined(target);
1167
1168         struct target_type *type = target->type;
1169         if (type->examine == NULL)
1170                 type->examine = default_examine;
1171
1172         if (type->check_reset == NULL)
1173                 type->check_reset = default_check_reset;
1174
1175         assert(type->init_target != NULL);
1176
1177         int retval = type->init_target(cmd_ctx, target);
1178         if (ERROR_OK != retval) {
1179                 LOG_ERROR("target '%s' init failed", target_name(target));
1180                 return retval;
1181         }
1182
1183         /* Sanity-check MMU support ... stub in what we must, to help
1184          * implement it in stages, but warn if we need to do so.
1185          */
1186         if (type->mmu) {
1187                 if (type->write_phys_memory == NULL) {
1188                         LOG_ERROR("type '%s' is missing write_phys_memory",
1189                                         type->name);
1190                         type->write_phys_memory = err_write_phys_memory;
1191                 }
1192                 if (type->read_phys_memory == NULL) {
1193                         LOG_ERROR("type '%s' is missing read_phys_memory",
1194                                         type->name);
1195                         type->read_phys_memory = err_read_phys_memory;
1196                 }
1197                 if (type->virt2phys == NULL) {
1198                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199                         type->virt2phys = identity_virt2phys;
1200                 }
1201         } else {
1202                 /* Make sure no-MMU targets all behave the same:  make no
1203                  * distinction between physical and virtual addresses, and
1204                  * ensure that virt2phys() is always an identity mapping.
1205                  */
1206                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1208
1209                 type->mmu = no_mmu;
1210                 type->write_phys_memory = type->write_memory;
1211                 type->read_phys_memory = type->read_memory;
1212                 type->virt2phys = identity_virt2phys;
1213         }
1214
1215         if (target->type->read_buffer == NULL)
1216                 target->type->read_buffer = target_read_buffer_default;
1217
1218         if (target->type->write_buffer == NULL)
1219                 target->type->write_buffer = target_write_buffer_default;
1220
1221         if (target->type->get_gdb_fileio_info == NULL)
1222                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1223
1224         if (target->type->gdb_fileio_end == NULL)
1225                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1226
1227         if (target->type->profiling == NULL)
1228                 target->type->profiling = target_profiling_default;
1229
1230         return ERROR_OK;
1231 }
1232
1233 static int target_init(struct command_context *cmd_ctx)
1234 {
1235         struct target *target;
1236         int retval;
1237
1238         for (target = all_targets; target; target = target->next) {
1239                 retval = target_init_one(cmd_ctx, target);
1240                 if (ERROR_OK != retval)
1241                         return retval;
1242         }
1243
1244         if (!all_targets)
1245                 return ERROR_OK;
1246
1247         retval = target_register_user_commands(cmd_ctx);
1248         if (ERROR_OK != retval)
1249                 return retval;
1250
1251         retval = target_register_timer_callback(&handle_target,
1252                         polling_interval, 1, cmd_ctx->interp);
1253         if (ERROR_OK != retval)
1254                 return retval;
1255
1256         return ERROR_OK;
1257 }
1258
1259 COMMAND_HANDLER(handle_target_init_command)
1260 {
1261         int retval;
1262
1263         if (CMD_ARGC != 0)
1264                 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266         static bool target_initialized;
1267         if (target_initialized) {
1268                 LOG_INFO("'target init' has already been called");
1269                 return ERROR_OK;
1270         }
1271         target_initialized = true;
1272
1273         retval = command_run_line(CMD_CTX, "init_targets");
1274         if (ERROR_OK != retval)
1275                 return retval;
1276
1277         retval = command_run_line(CMD_CTX, "init_target_events");
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         retval = command_run_line(CMD_CTX, "init_board");
1282         if (ERROR_OK != retval)
1283                 return retval;
1284
1285         LOG_DEBUG("Initializing targets...");
1286         return target_init(CMD_CTX);
1287 }
1288
1289 int target_register_event_callback(int (*callback)(struct target *target,
1290                 enum target_event event, void *priv), void *priv)
1291 {
1292         struct target_event_callback **callbacks_p = &target_event_callbacks;
1293
1294         if (callback == NULL)
1295                 return ERROR_COMMAND_SYNTAX_ERROR;
1296
1297         if (*callbacks_p) {
1298                 while ((*callbacks_p)->next)
1299                         callbacks_p = &((*callbacks_p)->next);
1300                 callbacks_p = &((*callbacks_p)->next);
1301         }
1302
1303         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1304         (*callbacks_p)->callback = callback;
1305         (*callbacks_p)->priv = priv;
1306         (*callbacks_p)->next = NULL;
1307
1308         return ERROR_OK;
1309 }
1310
1311 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1312 {
1313         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1314         struct timeval now;
1315
1316         if (callback == NULL)
1317                 return ERROR_COMMAND_SYNTAX_ERROR;
1318
1319         if (*callbacks_p) {
1320                 while ((*callbacks_p)->next)
1321                         callbacks_p = &((*callbacks_p)->next);
1322                 callbacks_p = &((*callbacks_p)->next);
1323         }
1324
1325         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1326         (*callbacks_p)->callback = callback;
1327         (*callbacks_p)->periodic = periodic;
1328         (*callbacks_p)->time_ms = time_ms;
1329
1330         gettimeofday(&now, NULL);
1331         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1332         time_ms -= (time_ms % 1000);
1333         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1334         if ((*callbacks_p)->when.tv_usec > 1000000) {
1335                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1336                 (*callbacks_p)->when.tv_sec += 1;
1337         }
1338
1339         (*callbacks_p)->priv = priv;
1340         (*callbacks_p)->next = NULL;
1341
1342         return ERROR_OK;
1343 }
1344
1345 int target_unregister_event_callback(int (*callback)(struct target *target,
1346                 enum target_event event, void *priv), void *priv)
1347 {
1348         struct target_event_callback **p = &target_event_callbacks;
1349         struct target_event_callback *c = target_event_callbacks;
1350
1351         if (callback == NULL)
1352                 return ERROR_COMMAND_SYNTAX_ERROR;
1353
1354         while (c) {
1355                 struct target_event_callback *next = c->next;
1356                 if ((c->callback == callback) && (c->priv == priv)) {
1357                         *p = next;
1358                         free(c);
1359                         return ERROR_OK;
1360                 } else
1361                         p = &(c->next);
1362                 c = next;
1363         }
1364
1365         return ERROR_OK;
1366 }
1367
1368 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1369 {
1370         struct target_timer_callback **p = &target_timer_callbacks;
1371         struct target_timer_callback *c = target_timer_callbacks;
1372
1373         if (callback == NULL)
1374                 return ERROR_COMMAND_SYNTAX_ERROR;
1375
1376         while (c) {
1377                 struct target_timer_callback *next = c->next;
1378                 if ((c->callback == callback) && (c->priv == priv)) {
1379                         *p = next;
1380                         free(c);
1381                         return ERROR_OK;
1382                 } else
1383                         p = &(c->next);
1384                 c = next;
1385         }
1386
1387         return ERROR_OK;
1388 }
1389
1390 int target_call_event_callbacks(struct target *target, enum target_event event)
1391 {
1392         struct target_event_callback *callback = target_event_callbacks;
1393         struct target_event_callback *next_callback;
1394
1395         if (event == TARGET_EVENT_HALTED) {
1396                 /* execute early halted first */
1397                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1398         }
1399
1400         LOG_DEBUG("target event %i (%s)", event,
1401                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1402
1403         target_handle_event(target, event);
1404
1405         while (callback) {
1406                 next_callback = callback->next;
1407                 callback->callback(target, event, callback->priv);
1408                 callback = next_callback;
1409         }
1410
1411         return ERROR_OK;
1412 }
1413
1414 static int target_timer_callback_periodic_restart(
1415                 struct target_timer_callback *cb, struct timeval *now)
1416 {
1417         int time_ms = cb->time_ms;
1418         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1419         time_ms -= (time_ms % 1000);
1420         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1421         if (cb->when.tv_usec > 1000000) {
1422                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1423                 cb->when.tv_sec += 1;
1424         }
1425         return ERROR_OK;
1426 }
1427
1428 static int target_call_timer_callback(struct target_timer_callback *cb,
1429                 struct timeval *now)
1430 {
1431         cb->callback(cb->priv);
1432
1433         if (cb->periodic)
1434                 return target_timer_callback_periodic_restart(cb, now);
1435
1436         return target_unregister_timer_callback(cb->callback, cb->priv);
1437 }
1438
1439 static int target_call_timer_callbacks_check_time(int checktime)
1440 {
1441         keep_alive();
1442
1443         struct timeval now;
1444         gettimeofday(&now, NULL);
1445
1446         struct target_timer_callback *callback = target_timer_callbacks;
1447         while (callback) {
1448                 /* cleaning up may unregister and free this callback */
1449                 struct target_timer_callback *next_callback = callback->next;
1450
1451                 bool call_it = callback->callback &&
1452                         ((!checktime && callback->periodic) ||
1453                           now.tv_sec > callback->when.tv_sec ||
1454                          (now.tv_sec == callback->when.tv_sec &&
1455                           now.tv_usec >= callback->when.tv_usec));
1456
1457                 if (call_it) {
1458                         int retval = target_call_timer_callback(callback, &now);
1459                         if (retval != ERROR_OK)
1460                                 return retval;
1461                 }
1462
1463                 callback = next_callback;
1464         }
1465
1466         return ERROR_OK;
1467 }
1468
1469 int target_call_timer_callbacks(void)
1470 {
1471         return target_call_timer_callbacks_check_time(1);
1472 }
1473
1474 /* invoke periodic callbacks immediately */
1475 int target_call_timer_callbacks_now(void)
1476 {
1477         return target_call_timer_callbacks_check_time(0);
1478 }
1479
1480 /* Prints the working area layout for debug purposes */
1481 static void print_wa_layout(struct target *target)
1482 {
1483         struct working_area *c = target->working_areas;
1484
1485         while (c) {
1486                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1487                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1488                         c->address, c->address + c->size - 1, c->size);
1489                 c = c->next;
1490         }
1491 }
1492
1493 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1494 static void target_split_working_area(struct working_area *area, uint32_t size)
1495 {
1496         assert(area->free); /* Shouldn't split an allocated area */
1497         assert(size <= area->size); /* Caller should guarantee this */
1498
1499         /* Split only if not already the right size */
1500         if (size < area->size) {
1501                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1502
1503                 if (new_wa == NULL)
1504                         return;
1505
1506                 new_wa->next = area->next;
1507                 new_wa->size = area->size - size;
1508                 new_wa->address = area->address + size;
1509                 new_wa->backup = NULL;
1510                 new_wa->user = NULL;
1511                 new_wa->free = true;
1512
1513                 area->next = new_wa;
1514                 area->size = size;
1515
1516                 /* If backup memory was allocated to this area, it has the wrong size
1517                  * now so free it and it will be reallocated if/when needed */
1518                 if (area->backup) {
1519                         free(area->backup);
1520                         area->backup = NULL;
1521                 }
1522         }
1523 }
1524
1525 /* Merge all adjacent free areas into one */
1526 static void target_merge_working_areas(struct target *target)
1527 {
1528         struct working_area *c = target->working_areas;
1529
1530         while (c && c->next) {
1531                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1532
1533                 /* Find two adjacent free areas */
1534                 if (c->free && c->next->free) {
1535                         /* Merge the last into the first */
1536                         c->size += c->next->size;
1537
1538                         /* Remove the last */
1539                         struct working_area *to_be_freed = c->next;
1540                         c->next = c->next->next;
1541                         if (to_be_freed->backup)
1542                                 free(to_be_freed->backup);
1543                         free(to_be_freed);
1544
1545                         /* If backup memory was allocated to the remaining area, it's has
1546                          * the wrong size now */
1547                         if (c->backup) {
1548                                 free(c->backup);
1549                                 c->backup = NULL;
1550                         }
1551                 } else {
1552                         c = c->next;
1553                 }
1554         }
1555 }
1556
1557 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1558 {
1559         /* Reevaluate working area address based on MMU state*/
1560         if (target->working_areas == NULL) {
1561                 int retval;
1562                 int enabled;
1563
1564                 retval = target->type->mmu(target, &enabled);
1565                 if (retval != ERROR_OK)
1566                         return retval;
1567
1568                 if (!enabled) {
1569                         if (target->working_area_phys_spec) {
1570                                 LOG_DEBUG("MMU disabled, using physical "
1571                                         "address for working memory 0x%08"PRIx32,
1572                                         target->working_area_phys);
1573                                 target->working_area = target->working_area_phys;
1574                         } else {
1575                                 LOG_ERROR("No working memory available. "
1576                                         "Specify -work-area-phys to target.");
1577                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1578                         }
1579                 } else {
1580                         if (target->working_area_virt_spec) {
1581                                 LOG_DEBUG("MMU enabled, using virtual "
1582                                         "address for working memory 0x%08"PRIx32,
1583                                         target->working_area_virt);
1584                                 target->working_area = target->working_area_virt;
1585                         } else {
1586                                 LOG_ERROR("No working memory available. "
1587                                         "Specify -work-area-virt to target.");
1588                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1589                         }
1590                 }
1591
1592                 /* Set up initial working area on first call */
1593                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1594                 if (new_wa) {
1595                         new_wa->next = NULL;
1596                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1597                         new_wa->address = target->working_area;
1598                         new_wa->backup = NULL;
1599                         new_wa->user = NULL;
1600                         new_wa->free = true;
1601                 }
1602
1603                 target->working_areas = new_wa;
1604         }
1605
1606         /* only allocate multiples of 4 byte */
1607         if (size % 4)
1608                 size = (size + 3) & (~3UL);
1609
1610         struct working_area *c = target->working_areas;
1611
1612         /* Find the first large enough working area */
1613         while (c) {
1614                 if (c->free && c->size >= size)
1615                         break;
1616                 c = c->next;
1617         }
1618
1619         if (c == NULL)
1620                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1621
1622         /* Split the working area into the requested size */
1623         target_split_working_area(c, size);
1624
1625         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1626
1627         if (target->backup_working_area) {
1628                 if (c->backup == NULL) {
1629                         c->backup = malloc(c->size);
1630                         if (c->backup == NULL)
1631                                 return ERROR_FAIL;
1632                 }
1633
1634                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1635                 if (retval != ERROR_OK)
1636                         return retval;
1637         }
1638
1639         /* mark as used, and return the new (reused) area */
1640         c->free = false;
1641         *area = c;
1642
1643         /* user pointer */
1644         c->user = area;
1645
1646         print_wa_layout(target);
1647
1648         return ERROR_OK;
1649 }
1650
1651 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1652 {
1653         int retval;
1654
1655         retval = target_alloc_working_area_try(target, size, area);
1656         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1657                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1658         return retval;
1659
1660 }
1661
1662 static int target_restore_working_area(struct target *target, struct working_area *area)
1663 {
1664         int retval = ERROR_OK;
1665
1666         if (target->backup_working_area && area->backup != NULL) {
1667                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1668                 if (retval != ERROR_OK)
1669                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1670                                         area->size, area->address);
1671         }
1672
1673         return retval;
1674 }
1675
1676 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1677 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1678 {
1679         int retval = ERROR_OK;
1680
1681         if (area->free)
1682                 return retval;
1683
1684         if (restore) {
1685                 retval = target_restore_working_area(target, area);
1686                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1687                 if (retval != ERROR_OK)
1688                         return retval;
1689         }
1690
1691         area->free = true;
1692
1693         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1694                         area->size, area->address);
1695
1696         /* mark user pointer invalid */
1697         /* TODO: Is this really safe? It points to some previous caller's memory.
1698          * How could we know that the area pointer is still in that place and not
1699          * some other vital data? What's the purpose of this, anyway? */
1700         *area->user = NULL;
1701         area->user = NULL;
1702
1703         target_merge_working_areas(target);
1704
1705         print_wa_layout(target);
1706
1707         return retval;
1708 }
1709
1710 int target_free_working_area(struct target *target, struct working_area *area)
1711 {
1712         return target_free_working_area_restore(target, area, 1);
1713 }
1714
1715 /* free resources and restore memory, if restoring memory fails,
1716  * free up resources anyway
1717  */
1718 static void target_free_all_working_areas_restore(struct target *target, int restore)
1719 {
1720         struct working_area *c = target->working_areas;
1721
1722         LOG_DEBUG("freeing all working areas");
1723
1724         /* Loop through all areas, restoring the allocated ones and marking them as free */
1725         while (c) {
1726                 if (!c->free) {
1727                         if (restore)
1728                                 target_restore_working_area(target, c);
1729                         c->free = true;
1730                         *c->user = NULL; /* Same as above */
1731                         c->user = NULL;
1732                 }
1733                 c = c->next;
1734         }
1735
1736         /* Run a merge pass to combine all areas into one */
1737         target_merge_working_areas(target);
1738
1739         print_wa_layout(target);
1740 }
1741
1742 void target_free_all_working_areas(struct target *target)
1743 {
1744         target_free_all_working_areas_restore(target, 1);
1745 }
1746
1747 /* Find the largest number of bytes that can be allocated */
1748 uint32_t target_get_working_area_avail(struct target *target)
1749 {
1750         struct working_area *c = target->working_areas;
1751         uint32_t max_size = 0;
1752
1753         if (c == NULL)
1754                 return target->working_area_size;
1755
1756         while (c) {
1757                 if (c->free && max_size < c->size)
1758                         max_size = c->size;
1759
1760                 c = c->next;
1761         }
1762
1763         return max_size;
1764 }
1765
1766 int target_arch_state(struct target *target)
1767 {
1768         int retval;
1769         if (target == NULL) {
1770                 LOG_USER("No target has been configured");
1771                 return ERROR_OK;
1772         }
1773
1774         LOG_USER("target state: %s", target_state_name(target));
1775
1776         if (target->state != TARGET_HALTED)
1777                 return ERROR_OK;
1778
1779         retval = target->type->arch_state(target);
1780         return retval;
1781 }
1782
1783 static int target_get_gdb_fileio_info_default(struct target *target,
1784                 struct gdb_fileio_info *fileio_info)
1785 {
1786         /* If target does not support semi-hosting function, target
1787            has no need to provide .get_gdb_fileio_info callback.
1788            It just return ERROR_FAIL and gdb_server will return "Txx"
1789            as target halted every time.  */
1790         return ERROR_FAIL;
1791 }
1792
1793 static int target_gdb_fileio_end_default(struct target *target,
1794                 int retcode, int fileio_errno, bool ctrl_c)
1795 {
1796         return ERROR_OK;
1797 }
1798
1799 static int target_profiling_default(struct target *target, uint32_t *samples,
1800                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1801 {
1802         struct timeval timeout, now;
1803
1804         gettimeofday(&timeout, NULL);
1805         timeval_add_time(&timeout, seconds, 0);
1806
1807         LOG_INFO("Starting profiling. Halting and resuming the"
1808                         " target as often as we can...");
1809
1810         uint32_t sample_count = 0;
1811         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1812         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1813
1814         int retval = ERROR_OK;
1815         for (;;) {
1816                 target_poll(target);
1817                 if (target->state == TARGET_HALTED) {
1818                         uint32_t t = *((uint32_t *)reg->value);
1819                         samples[sample_count++] = t;
1820                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1821                         retval = target_resume(target, 1, 0, 0, 0);
1822                         target_poll(target);
1823                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1824                 } else if (target->state == TARGET_RUNNING) {
1825                         /* We want to quickly sample the PC. */
1826                         retval = target_halt(target);
1827                 } else {
1828                         LOG_INFO("Target not halted or running");
1829                         retval = ERROR_OK;
1830                         break;
1831                 }
1832
1833                 if (retval != ERROR_OK)
1834                         break;
1835
1836                 gettimeofday(&now, NULL);
1837                 if ((sample_count >= max_num_samples) ||
1838                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1839                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1840                         break;
1841                 }
1842         }
1843
1844         *num_samples = sample_count;
1845         return retval;
1846 }
1847
1848 /* Single aligned words are guaranteed to use 16 or 32 bit access
1849  * mode respectively, otherwise data is handled as quickly as
1850  * possible
1851  */
1852 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1853 {
1854         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1855                         (int)size, (unsigned)address);
1856
1857         if (!target_was_examined(target)) {
1858                 LOG_ERROR("Target not examined yet");
1859                 return ERROR_FAIL;
1860         }
1861
1862         if (size == 0)
1863                 return ERROR_OK;
1864
1865         if ((address + size - 1) < address) {
1866                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1867                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1868                                   (unsigned)address,
1869                                   (unsigned)size);
1870                 return ERROR_FAIL;
1871         }
1872
1873         return target->type->write_buffer(target, address, size, buffer);
1874 }
1875
1876 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1877 {
1878         uint32_t size;
1879
1880         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1881          * will have something to do with the size we leave to it. */
1882         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1883                 if (address & size) {
1884                         int retval = target_write_memory(target, address, size, 1, buffer);
1885                         if (retval != ERROR_OK)
1886                                 return retval;
1887                         address += size;
1888                         count -= size;
1889                         buffer += size;
1890                 }
1891         }
1892
1893         /* Write the data with as large access size as possible. */
1894         for (; size > 0; size /= 2) {
1895                 uint32_t aligned = count - count % size;
1896                 if (aligned > 0) {
1897                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1898                         if (retval != ERROR_OK)
1899                                 return retval;
1900                         address += aligned;
1901                         count -= aligned;
1902                         buffer += aligned;
1903                 }
1904         }
1905
1906         return ERROR_OK;
1907 }
1908
1909 /* Single aligned words are guaranteed to use 16 or 32 bit access
1910  * mode respectively, otherwise data is handled as quickly as
1911  * possible
1912  */
1913 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1914 {
1915         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1916                           (int)size, (unsigned)address);
1917
1918         if (!target_was_examined(target)) {
1919                 LOG_ERROR("Target not examined yet");
1920                 return ERROR_FAIL;
1921         }
1922
1923         if (size == 0)
1924                 return ERROR_OK;
1925
1926         if ((address + size - 1) < address) {
1927                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1928                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1929                                   address,
1930                                   size);
1931                 return ERROR_FAIL;
1932         }
1933
1934         return target->type->read_buffer(target, address, size, buffer);
1935 }
1936
1937 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1938 {
1939         uint32_t size;
1940
1941         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1942          * will have something to do with the size we leave to it. */
1943         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1944                 if (address & size) {
1945                         int retval = target_read_memory(target, address, size, 1, buffer);
1946                         if (retval != ERROR_OK)
1947                                 return retval;
1948                         address += size;
1949                         count -= size;
1950                         buffer += size;
1951                 }
1952         }
1953
1954         /* Read the data with as large access size as possible. */
1955         for (; size > 0; size /= 2) {
1956                 uint32_t aligned = count - count % size;
1957                 if (aligned > 0) {
1958                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1959                         if (retval != ERROR_OK)
1960                                 return retval;
1961                         address += aligned;
1962                         count -= aligned;
1963                         buffer += aligned;
1964                 }
1965         }
1966
1967         return ERROR_OK;
1968 }
1969
1970 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1971 {
1972         uint8_t *buffer;
1973         int retval;
1974         uint32_t i;
1975         uint32_t checksum = 0;
1976         if (!target_was_examined(target)) {
1977                 LOG_ERROR("Target not examined yet");
1978                 return ERROR_FAIL;
1979         }
1980
1981         retval = target->type->checksum_memory(target, address, size, &checksum);
1982         if (retval != ERROR_OK) {
1983                 buffer = malloc(size);
1984                 if (buffer == NULL) {
1985                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1986                         return ERROR_COMMAND_SYNTAX_ERROR;
1987                 }
1988                 retval = target_read_buffer(target, address, size, buffer);
1989                 if (retval != ERROR_OK) {
1990                         free(buffer);
1991                         return retval;
1992                 }
1993
1994                 /* convert to target endianness */
1995                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1996                         uint32_t target_data;
1997                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1998                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1999                 }
2000
2001                 retval = image_calculate_checksum(buffer, size, &checksum);
2002                 free(buffer);
2003         }
2004
2005         *crc = checksum;
2006
2007         return retval;
2008 }
2009
2010 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2011 {
2012         int retval;
2013         if (!target_was_examined(target)) {
2014                 LOG_ERROR("Target not examined yet");
2015                 return ERROR_FAIL;
2016         }
2017
2018         if (target->type->blank_check_memory == 0)
2019                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2020
2021         retval = target->type->blank_check_memory(target, address, size, blank);
2022
2023         return retval;
2024 }
2025
2026 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2027 {
2028         uint8_t value_buf[8];
2029         if (!target_was_examined(target)) {
2030                 LOG_ERROR("Target not examined yet");
2031                 return ERROR_FAIL;
2032         }
2033
2034         int retval = target_read_memory(target, address, 8, 1, value_buf);
2035
2036         if (retval == ERROR_OK) {
2037                 *value = target_buffer_get_u64(target, value_buf);
2038                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2039                                   address,
2040                                   *value);
2041         } else {
2042                 *value = 0x0;
2043                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2044                                   address);
2045         }
2046
2047         return retval;
2048 }
2049
2050 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2051 {
2052         uint8_t value_buf[4];
2053         if (!target_was_examined(target)) {
2054                 LOG_ERROR("Target not examined yet");
2055                 return ERROR_FAIL;
2056         }
2057
2058         int retval = target_read_memory(target, address, 4, 1, value_buf);
2059
2060         if (retval == ERROR_OK) {
2061                 *value = target_buffer_get_u32(target, value_buf);
2062                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063                                   address,
2064                                   *value);
2065         } else {
2066                 *value = 0x0;
2067                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2068                                   address);
2069         }
2070
2071         return retval;
2072 }
2073
2074 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2075 {
2076         uint8_t value_buf[2];
2077         if (!target_was_examined(target)) {
2078                 LOG_ERROR("Target not examined yet");
2079                 return ERROR_FAIL;
2080         }
2081
2082         int retval = target_read_memory(target, address, 2, 1, value_buf);
2083
2084         if (retval == ERROR_OK) {
2085                 *value = target_buffer_get_u16(target, value_buf);
2086                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2087                                   address,
2088                                   *value);
2089         } else {
2090                 *value = 0x0;
2091                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2092                                   address);
2093         }
2094
2095         return retval;
2096 }
2097
2098 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2099 {
2100         if (!target_was_examined(target)) {
2101                 LOG_ERROR("Target not examined yet");
2102                 return ERROR_FAIL;
2103         }
2104
2105         int retval = target_read_memory(target, address, 1, 1, value);
2106
2107         if (retval == ERROR_OK) {
2108                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2109                                   address,
2110                                   *value);
2111         } else {
2112                 *value = 0x0;
2113                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2114                                   address);
2115         }
2116
2117         return retval;
2118 }
2119
2120 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2121 {
2122         int retval;
2123         uint8_t value_buf[8];
2124         if (!target_was_examined(target)) {
2125                 LOG_ERROR("Target not examined yet");
2126                 return ERROR_FAIL;
2127         }
2128
2129         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2130                           address,
2131                           value);
2132
2133         target_buffer_set_u64(target, value_buf, value);
2134         retval = target_write_memory(target, address, 8, 1, value_buf);
2135         if (retval != ERROR_OK)
2136                 LOG_DEBUG("failed: %i", retval);
2137
2138         return retval;
2139 }
2140
2141 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2142 {
2143         int retval;
2144         uint8_t value_buf[4];
2145         if (!target_was_examined(target)) {
2146                 LOG_ERROR("Target not examined yet");
2147                 return ERROR_FAIL;
2148         }
2149
2150         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2151                           address,
2152                           value);
2153
2154         target_buffer_set_u32(target, value_buf, value);
2155         retval = target_write_memory(target, address, 4, 1, value_buf);
2156         if (retval != ERROR_OK)
2157                 LOG_DEBUG("failed: %i", retval);
2158
2159         return retval;
2160 }
2161
2162 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2163 {
2164         int retval;
2165         uint8_t value_buf[2];
2166         if (!target_was_examined(target)) {
2167                 LOG_ERROR("Target not examined yet");
2168                 return ERROR_FAIL;
2169         }
2170
2171         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2172                           address,
2173                           value);
2174
2175         target_buffer_set_u16(target, value_buf, value);
2176         retval = target_write_memory(target, address, 2, 1, value_buf);
2177         if (retval != ERROR_OK)
2178                 LOG_DEBUG("failed: %i", retval);
2179
2180         return retval;
2181 }
2182
2183 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2184 {
2185         int retval;
2186         if (!target_was_examined(target)) {
2187                 LOG_ERROR("Target not examined yet");
2188                 return ERROR_FAIL;
2189         }
2190
2191         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2192                           address, value);
2193
2194         retval = target_write_memory(target, address, 1, 1, &value);
2195         if (retval != ERROR_OK)
2196                 LOG_DEBUG("failed: %i", retval);
2197
2198         return retval;
2199 }
2200
2201 static int find_target(struct command_context *cmd_ctx, const char *name)
2202 {
2203         struct target *target = get_target(name);
2204         if (target == NULL) {
2205                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2206                 return ERROR_FAIL;
2207         }
2208         if (!target->tap->enabled) {
2209                 LOG_USER("Target: TAP %s is disabled, "
2210                          "can't be the current target\n",
2211                          target->tap->dotted_name);
2212                 return ERROR_FAIL;
2213         }
2214
2215         cmd_ctx->current_target = target->target_number;
2216         return ERROR_OK;
2217 }
2218
2219
2220 COMMAND_HANDLER(handle_targets_command)
2221 {
2222         int retval = ERROR_OK;
2223         if (CMD_ARGC == 1) {
2224                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2225                 if (retval == ERROR_OK) {
2226                         /* we're done! */
2227                         return retval;
2228                 }
2229         }
2230
2231         struct target *target = all_targets;
2232         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2233         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2234         while (target) {
2235                 const char *state;
2236                 char marker = ' ';
2237
2238                 if (target->tap->enabled)
2239                         state = target_state_name(target);
2240                 else
2241                         state = "tap-disabled";
2242
2243                 if (CMD_CTX->current_target == target->target_number)
2244                         marker = '*';
2245
2246                 /* keep columns lined up to match the headers above */
2247                 command_print(CMD_CTX,
2248                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2249                                 target->target_number,
2250                                 marker,
2251                                 target_name(target),
2252                                 target_type_name(target),
2253                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2254                                         target->endianness)->name,
2255                                 target->tap->dotted_name,
2256                                 state);
2257                 target = target->next;
2258         }
2259
2260         return retval;
2261 }
2262
2263 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2264
2265 static int powerDropout;
2266 static int srstAsserted;
2267
2268 static int runPowerRestore;
2269 static int runPowerDropout;
2270 static int runSrstAsserted;
2271 static int runSrstDeasserted;
2272
2273 static int sense_handler(void)
2274 {
2275         static int prevSrstAsserted;
2276         static int prevPowerdropout;
2277
2278         int retval = jtag_power_dropout(&powerDropout);
2279         if (retval != ERROR_OK)
2280                 return retval;
2281
2282         int powerRestored;
2283         powerRestored = prevPowerdropout && !powerDropout;
2284         if (powerRestored)
2285                 runPowerRestore = 1;
2286
2287         long long current = timeval_ms();
2288         static long long lastPower;
2289         int waitMore = lastPower + 2000 > current;
2290         if (powerDropout && !waitMore) {
2291                 runPowerDropout = 1;
2292                 lastPower = current;
2293         }
2294
2295         retval = jtag_srst_asserted(&srstAsserted);
2296         if (retval != ERROR_OK)
2297                 return retval;
2298
2299         int srstDeasserted;
2300         srstDeasserted = prevSrstAsserted && !srstAsserted;
2301
2302         static long long lastSrst;
2303         waitMore = lastSrst + 2000 > current;
2304         if (srstDeasserted && !waitMore) {
2305                 runSrstDeasserted = 1;
2306                 lastSrst = current;
2307         }
2308
2309         if (!prevSrstAsserted && srstAsserted)
2310                 runSrstAsserted = 1;
2311
2312         prevSrstAsserted = srstAsserted;
2313         prevPowerdropout = powerDropout;
2314
2315         if (srstDeasserted || powerRestored) {
2316                 /* Other than logging the event we can't do anything here.
2317                  * Issuing a reset is a particularly bad idea as we might
2318                  * be inside a reset already.
2319                  */
2320         }
2321
2322         return ERROR_OK;
2323 }
2324
2325 /* process target state changes */
2326 static int handle_target(void *priv)
2327 {
2328         Jim_Interp *interp = (Jim_Interp *)priv;
2329         int retval = ERROR_OK;
2330
2331         if (!is_jtag_poll_safe()) {
2332                 /* polling is disabled currently */
2333                 return ERROR_OK;
2334         }
2335
2336         /* we do not want to recurse here... */
2337         static int recursive;
2338         if (!recursive) {
2339                 recursive = 1;
2340                 sense_handler();
2341                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2342                  * We need to avoid an infinite loop/recursion here and we do that by
2343                  * clearing the flags after running these events.
2344                  */
2345                 int did_something = 0;
2346                 if (runSrstAsserted) {
2347                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2348                         Jim_Eval(interp, "srst_asserted");
2349                         did_something = 1;
2350                 }
2351                 if (runSrstDeasserted) {
2352                         Jim_Eval(interp, "srst_deasserted");
2353                         did_something = 1;
2354                 }
2355                 if (runPowerDropout) {
2356                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2357                         Jim_Eval(interp, "power_dropout");
2358                         did_something = 1;
2359                 }
2360                 if (runPowerRestore) {
2361                         Jim_Eval(interp, "power_restore");
2362                         did_something = 1;
2363                 }
2364
2365                 if (did_something) {
2366                         /* clear detect flags */
2367                         sense_handler();
2368                 }
2369
2370                 /* clear action flags */
2371
2372                 runSrstAsserted = 0;
2373                 runSrstDeasserted = 0;
2374                 runPowerRestore = 0;
2375                 runPowerDropout = 0;
2376
2377                 recursive = 0;
2378         }
2379
2380         /* Poll targets for state changes unless that's globally disabled.
2381          * Skip targets that are currently disabled.
2382          */
2383         for (struct target *target = all_targets;
2384                         is_jtag_poll_safe() && target;
2385                         target = target->next) {
2386
2387                 if (!target_was_examined(target))
2388                         continue;
2389
2390                 if (!target->tap->enabled)
2391                         continue;
2392
2393                 if (target->backoff.times > target->backoff.count) {
2394                         /* do not poll this time as we failed previously */
2395                         target->backoff.count++;
2396                         continue;
2397                 }
2398                 target->backoff.count = 0;
2399
2400                 /* only poll target if we've got power and srst isn't asserted */
2401                 if (!powerDropout && !srstAsserted) {
2402                         /* polling may fail silently until the target has been examined */
2403                         retval = target_poll(target);
2404                         if (retval != ERROR_OK) {
2405                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2406                                 if (target->backoff.times * polling_interval < 5000) {
2407                                         target->backoff.times *= 2;
2408                                         target->backoff.times++;
2409                                 }
2410                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2411                                                 target_name(target),
2412                                                 target->backoff.times * polling_interval);
2413
2414                                 /* Tell GDB to halt the debugger. This allows the user to
2415                                  * run monitor commands to handle the situation.
2416                                  */
2417                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2418                                 return retval;
2419                         }
2420                         /* Since we succeeded, we reset backoff count */
2421                         if (target->backoff.times > 0) {
2422                                 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2423                                 target_reset_examined(target);
2424                                 target_examine_one(target);
2425                         }
2426
2427                         target->backoff.times = 0;
2428                 }
2429         }
2430
2431         return retval;
2432 }
2433
2434 COMMAND_HANDLER(handle_reg_command)
2435 {
2436         struct target *target;
2437         struct reg *reg = NULL;
2438         unsigned count = 0;
2439         char *value;
2440
2441         LOG_DEBUG("-");
2442
2443         target = get_current_target(CMD_CTX);
2444
2445         /* list all available registers for the current target */
2446         if (CMD_ARGC == 0) {
2447                 struct reg_cache *cache = target->reg_cache;
2448
2449                 count = 0;
2450                 while (cache) {
2451                         unsigned i;
2452
2453                         command_print(CMD_CTX, "===== %s", cache->name);
2454
2455                         for (i = 0, reg = cache->reg_list;
2456                                         i < cache->num_regs;
2457                                         i++, reg++, count++) {
2458                                 /* only print cached values if they are valid */
2459                                 if (reg->valid) {
2460                                         value = buf_to_str(reg->value,
2461                                                         reg->size, 16);
2462                                         command_print(CMD_CTX,
2463                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2464                                                         count, reg->name,
2465                                                         reg->size, value,
2466                                                         reg->dirty
2467                                                                 ? " (dirty)"
2468                                                                 : "");
2469                                         free(value);
2470                                 } else {
2471                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2472                                                           count, reg->name,
2473                                                           reg->size) ;
2474                                 }
2475                         }
2476                         cache = cache->next;
2477                 }
2478
2479                 return ERROR_OK;
2480         }
2481
2482         /* access a single register by its ordinal number */
2483         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2484                 unsigned num;
2485                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2486
2487                 struct reg_cache *cache = target->reg_cache;
2488                 count = 0;
2489                 while (cache) {
2490                         unsigned i;
2491                         for (i = 0; i < cache->num_regs; i++) {
2492                                 if (count++ == num) {
2493                                         reg = &cache->reg_list[i];
2494                                         break;
2495                                 }
2496                         }
2497                         if (reg)
2498                                 break;
2499                         cache = cache->next;
2500                 }
2501
2502                 if (!reg) {
2503                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2504                                         "has only %i registers (0 - %i)", num, count, count - 1);
2505                         return ERROR_OK;
2506                 }
2507         } else {
2508                 /* access a single register by its name */
2509                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2510
2511                 if (!reg) {
2512                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2513                         return ERROR_OK;
2514                 }
2515         }
2516
2517         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2518
2519         /* display a register */
2520         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2521                         && (CMD_ARGV[1][0] <= '9')))) {
2522                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2523                         reg->valid = 0;
2524
2525                 if (reg->valid == 0)
2526                         reg->type->get(reg);
2527                 value = buf_to_str(reg->value, reg->size, 16);
2528                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2529                 free(value);
2530                 return ERROR_OK;
2531         }
2532
2533         /* set register value */
2534         if (CMD_ARGC == 2) {
2535                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2536                 if (buf == NULL)
2537                         return ERROR_FAIL;
2538                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2539
2540                 reg->type->set(reg, buf);
2541
2542                 value = buf_to_str(reg->value, reg->size, 16);
2543                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2544                 free(value);
2545
2546                 free(buf);
2547
2548                 return ERROR_OK;
2549         }
2550
2551         return ERROR_COMMAND_SYNTAX_ERROR;
2552 }
2553
2554 COMMAND_HANDLER(handle_poll_command)
2555 {
2556         int retval = ERROR_OK;
2557         struct target *target = get_current_target(CMD_CTX);
2558
2559         if (CMD_ARGC == 0) {
2560                 command_print(CMD_CTX, "background polling: %s",
2561                                 jtag_poll_get_enabled() ? "on" : "off");
2562                 command_print(CMD_CTX, "TAP: %s (%s)",
2563                                 target->tap->dotted_name,
2564                                 target->tap->enabled ? "enabled" : "disabled");
2565                 if (!target->tap->enabled)
2566                         return ERROR_OK;
2567                 retval = target_poll(target);
2568                 if (retval != ERROR_OK)
2569                         return retval;
2570                 retval = target_arch_state(target);
2571                 if (retval != ERROR_OK)
2572                         return retval;
2573         } else if (CMD_ARGC == 1) {
2574                 bool enable;
2575                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2576                 jtag_poll_set_enabled(enable);
2577         } else
2578                 return ERROR_COMMAND_SYNTAX_ERROR;
2579
2580         return retval;
2581 }
2582
2583 COMMAND_HANDLER(handle_wait_halt_command)
2584 {
2585         if (CMD_ARGC > 1)
2586                 return ERROR_COMMAND_SYNTAX_ERROR;
2587
2588         unsigned ms = DEFAULT_HALT_TIMEOUT;
2589         if (1 == CMD_ARGC) {
2590                 int retval = parse_uint(CMD_ARGV[0], &ms);
2591                 if (ERROR_OK != retval)
2592                         return ERROR_COMMAND_SYNTAX_ERROR;
2593         }
2594
2595         struct target *target = get_current_target(CMD_CTX);
2596         return target_wait_state(target, TARGET_HALTED, ms);
2597 }
2598
2599 /* wait for target state to change. The trick here is to have a low
2600  * latency for short waits and not to suck up all the CPU time
2601  * on longer waits.
2602  *
2603  * After 500ms, keep_alive() is invoked
2604  */
2605 int target_wait_state(struct target *target, enum target_state state, int ms)
2606 {
2607         int retval;
2608         long long then = 0, cur;
2609         int once = 1;
2610
2611         for (;;) {
2612                 retval = target_poll(target);
2613                 if (retval != ERROR_OK)
2614                         return retval;
2615                 if (target->state == state)
2616                         break;
2617                 cur = timeval_ms();
2618                 if (once) {
2619                         once = 0;
2620                         then = timeval_ms();
2621                         LOG_DEBUG("waiting for target %s...",
2622                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2623                 }
2624
2625                 if (cur-then > 500)
2626                         keep_alive();
2627
2628                 if ((cur-then) > ms) {
2629                         LOG_ERROR("timed out while waiting for target %s",
2630                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2631                         return ERROR_FAIL;
2632                 }
2633         }
2634
2635         return ERROR_OK;
2636 }
2637
2638 COMMAND_HANDLER(handle_halt_command)
2639 {
2640         LOG_DEBUG("-");
2641
2642         struct target *target = get_current_target(CMD_CTX);
2643         int retval = target_halt(target);
2644         if (ERROR_OK != retval)
2645                 return retval;
2646
2647         if (CMD_ARGC == 1) {
2648                 unsigned wait_local;
2649                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2650                 if (ERROR_OK != retval)
2651                         return ERROR_COMMAND_SYNTAX_ERROR;
2652                 if (!wait_local)
2653                         return ERROR_OK;
2654         }
2655
2656         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2657 }
2658
2659 COMMAND_HANDLER(handle_soft_reset_halt_command)
2660 {
2661         struct target *target = get_current_target(CMD_CTX);
2662
2663         LOG_USER("requesting target halt and executing a soft reset");
2664
2665         target_soft_reset_halt(target);
2666
2667         return ERROR_OK;
2668 }
2669
2670 COMMAND_HANDLER(handle_reset_command)
2671 {
2672         if (CMD_ARGC > 1)
2673                 return ERROR_COMMAND_SYNTAX_ERROR;
2674
2675         enum target_reset_mode reset_mode = RESET_RUN;
2676         if (CMD_ARGC == 1) {
2677                 const Jim_Nvp *n;
2678                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2679                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2680                         return ERROR_COMMAND_SYNTAX_ERROR;
2681                 reset_mode = n->value;
2682         }
2683
2684         /* reset *all* targets */
2685         return target_process_reset(CMD_CTX, reset_mode);
2686 }
2687
2688
2689 COMMAND_HANDLER(handle_resume_command)
2690 {
2691         int current = 1;
2692         if (CMD_ARGC > 1)
2693                 return ERROR_COMMAND_SYNTAX_ERROR;
2694
2695         struct target *target = get_current_target(CMD_CTX);
2696
2697         /* with no CMD_ARGV, resume from current pc, addr = 0,
2698          * with one arguments, addr = CMD_ARGV[0],
2699          * handle breakpoints, not debugging */
2700         uint32_t addr = 0;
2701         if (CMD_ARGC == 1) {
2702                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2703                 current = 0;
2704         }
2705
2706         return target_resume(target, current, addr, 1, 0);
2707 }
2708
2709 COMMAND_HANDLER(handle_step_command)
2710 {
2711         if (CMD_ARGC > 1)
2712                 return ERROR_COMMAND_SYNTAX_ERROR;
2713
2714         LOG_DEBUG("-");
2715
2716         /* with no CMD_ARGV, step from current pc, addr = 0,
2717          * with one argument addr = CMD_ARGV[0],
2718          * handle breakpoints, debugging */
2719         uint32_t addr = 0;
2720         int current_pc = 1;
2721         if (CMD_ARGC == 1) {
2722                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2723                 current_pc = 0;
2724         }
2725
2726         struct target *target = get_current_target(CMD_CTX);
2727
2728         return target->type->step(target, current_pc, addr, 1);
2729 }
2730
2731 static void handle_md_output(struct command_context *cmd_ctx,
2732                 struct target *target, uint32_t address, unsigned size,
2733                 unsigned count, const uint8_t *buffer)
2734 {
2735         const unsigned line_bytecnt = 32;
2736         unsigned line_modulo = line_bytecnt / size;
2737
2738         char output[line_bytecnt * 4 + 1];
2739         unsigned output_len = 0;
2740
2741         const char *value_fmt;
2742         switch (size) {
2743         case 4:
2744                 value_fmt = "%8.8x ";
2745                 break;
2746         case 2:
2747                 value_fmt = "%4.4x ";
2748                 break;
2749         case 1:
2750                 value_fmt = "%2.2x ";
2751                 break;
2752         default:
2753                 /* "can't happen", caller checked */
2754                 LOG_ERROR("invalid memory read size: %u", size);
2755                 return;
2756         }
2757
2758         for (unsigned i = 0; i < count; i++) {
2759                 if (i % line_modulo == 0) {
2760                         output_len += snprintf(output + output_len,
2761                                         sizeof(output) - output_len,
2762                                         "0x%8.8x: ",
2763                                         (unsigned)(address + (i*size)));
2764                 }
2765
2766                 uint32_t value = 0;
2767                 const uint8_t *value_ptr = buffer + i * size;
2768                 switch (size) {
2769                 case 4:
2770                         value = target_buffer_get_u32(target, value_ptr);
2771                         break;
2772                 case 2:
2773                         value = target_buffer_get_u16(target, value_ptr);
2774                         break;
2775                 case 1:
2776                         value = *value_ptr;
2777                 }
2778                 output_len += snprintf(output + output_len,
2779                                 sizeof(output) - output_len,
2780                                 value_fmt, value);
2781
2782                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2783                         command_print(cmd_ctx, "%s", output);
2784                         output_len = 0;
2785                 }
2786         }
2787 }
2788
2789 COMMAND_HANDLER(handle_md_command)
2790 {
2791         if (CMD_ARGC < 1)
2792                 return ERROR_COMMAND_SYNTAX_ERROR;
2793
2794         unsigned size = 0;
2795         switch (CMD_NAME[2]) {
2796         case 'w':
2797                 size = 4;
2798                 break;
2799         case 'h':
2800                 size = 2;
2801                 break;
2802         case 'b':
2803                 size = 1;
2804                 break;
2805         default:
2806                 return ERROR_COMMAND_SYNTAX_ERROR;
2807         }
2808
2809         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2810         int (*fn)(struct target *target,
2811                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2812         if (physical) {
2813                 CMD_ARGC--;
2814                 CMD_ARGV++;
2815                 fn = target_read_phys_memory;
2816         } else
2817                 fn = target_read_memory;
2818         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2819                 return ERROR_COMMAND_SYNTAX_ERROR;
2820
2821         uint32_t address;
2822         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2823
2824         unsigned count = 1;
2825         if (CMD_ARGC == 2)
2826                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2827
2828         uint8_t *buffer = calloc(count, size);
2829
2830         struct target *target = get_current_target(CMD_CTX);
2831         int retval = fn(target, address, size, count, buffer);
2832         if (ERROR_OK == retval)
2833                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2834
2835         free(buffer);
2836
2837         return retval;
2838 }
2839
2840 typedef int (*target_write_fn)(struct target *target,
2841                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2842
2843 static int target_fill_mem(struct target *target,
2844                 uint32_t address,
2845                 target_write_fn fn,
2846                 unsigned data_size,
2847                 /* value */
2848                 uint32_t b,
2849                 /* count */
2850                 unsigned c)
2851 {
2852         /* We have to write in reasonably large chunks to be able
2853          * to fill large memory areas with any sane speed */
2854         const unsigned chunk_size = 16384;
2855         uint8_t *target_buf = malloc(chunk_size * data_size);
2856         if (target_buf == NULL) {
2857                 LOG_ERROR("Out of memory");
2858                 return ERROR_FAIL;
2859         }
2860
2861         for (unsigned i = 0; i < chunk_size; i++) {
2862                 switch (data_size) {
2863                 case 4:
2864                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2865                         break;
2866                 case 2:
2867                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2868                         break;
2869                 case 1:
2870                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2871                         break;
2872                 default:
2873                         exit(-1);
2874                 }
2875         }
2876
2877         int retval = ERROR_OK;
2878
2879         for (unsigned x = 0; x < c; x += chunk_size) {
2880                 unsigned current;
2881                 current = c - x;
2882                 if (current > chunk_size)
2883                         current = chunk_size;
2884                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2885                 if (retval != ERROR_OK)
2886                         break;
2887                 /* avoid GDB timeouts */
2888                 keep_alive();
2889         }
2890         free(target_buf);
2891
2892         return retval;
2893 }
2894
2895
2896 COMMAND_HANDLER(handle_mw_command)
2897 {
2898         if (CMD_ARGC < 2)
2899                 return ERROR_COMMAND_SYNTAX_ERROR;
2900         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2901         target_write_fn fn;
2902         if (physical) {
2903                 CMD_ARGC--;
2904                 CMD_ARGV++;
2905                 fn = target_write_phys_memory;
2906         } else
2907                 fn = target_write_memory;
2908         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2909                 return ERROR_COMMAND_SYNTAX_ERROR;
2910
2911         uint32_t address;
2912         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2913
2914         uint32_t value;
2915         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2916
2917         unsigned count = 1;
2918         if (CMD_ARGC == 3)
2919                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2920
2921         struct target *target = get_current_target(CMD_CTX);
2922         unsigned wordsize;
2923         switch (CMD_NAME[2]) {
2924                 case 'w':
2925                         wordsize = 4;
2926                         break;
2927                 case 'h':
2928                         wordsize = 2;
2929                         break;
2930                 case 'b':
2931                         wordsize = 1;
2932                         break;
2933                 default:
2934                         return ERROR_COMMAND_SYNTAX_ERROR;
2935         }
2936
2937         return target_fill_mem(target, address, fn, wordsize, value, count);
2938 }
2939
2940 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2941                 uint32_t *min_address, uint32_t *max_address)
2942 {
2943         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2944                 return ERROR_COMMAND_SYNTAX_ERROR;
2945
2946         /* a base address isn't always necessary,
2947          * default to 0x0 (i.e. don't relocate) */
2948         if (CMD_ARGC >= 2) {
2949                 uint32_t addr;
2950                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2951                 image->base_address = addr;
2952                 image->base_address_set = 1;
2953         } else
2954                 image->base_address_set = 0;
2955
2956         image->start_address_set = 0;
2957
2958         if (CMD_ARGC >= 4)
2959                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2960         if (CMD_ARGC == 5) {
2961                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2962                 /* use size (given) to find max (required) */
2963                 *max_address += *min_address;
2964         }
2965
2966         if (*min_address > *max_address)
2967                 return ERROR_COMMAND_SYNTAX_ERROR;
2968
2969         return ERROR_OK;
2970 }
2971
2972 COMMAND_HANDLER(handle_load_image_command)
2973 {
2974         uint8_t *buffer;
2975         size_t buf_cnt;
2976         uint32_t image_size;
2977         uint32_t min_address = 0;
2978         uint32_t max_address = 0xffffffff;
2979         int i;
2980         struct image image;
2981
2982         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2983                         &image, &min_address, &max_address);
2984         if (ERROR_OK != retval)
2985                 return retval;
2986
2987         struct target *target = get_current_target(CMD_CTX);
2988
2989         struct duration bench;
2990         duration_start(&bench);
2991
2992         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2993                 return ERROR_OK;
2994
2995         image_size = 0x0;
2996         retval = ERROR_OK;
2997         for (i = 0; i < image.num_sections; i++) {
2998                 buffer = malloc(image.sections[i].size);
2999                 if (buffer == NULL) {
3000                         command_print(CMD_CTX,
3001                                                   "error allocating buffer for section (%d bytes)",
3002                                                   (int)(image.sections[i].size));
3003                         break;
3004                 }
3005
3006                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3007                 if (retval != ERROR_OK) {
3008                         free(buffer);
3009                         break;
3010                 }
3011
3012                 uint32_t offset = 0;
3013                 uint32_t length = buf_cnt;
3014
3015                 /* DANGER!!! beware of unsigned comparision here!!! */
3016
3017                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3018                                 (image.sections[i].base_address < max_address)) {
3019
3020                         if (image.sections[i].base_address < min_address) {
3021                                 /* clip addresses below */
3022                                 offset += min_address-image.sections[i].base_address;
3023                                 length -= offset;
3024                         }
3025
3026                         if (image.sections[i].base_address + buf_cnt > max_address)
3027                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3028
3029                         retval = target_write_buffer(target,
3030                                         image.sections[i].base_address + offset, length, buffer + offset);
3031                         if (retval != ERROR_OK) {
3032                                 free(buffer);
3033                                 break;
3034                         }
3035                         image_size += length;
3036                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3037                                         (unsigned int)length,
3038                                         image.sections[i].base_address + offset);
3039                 }
3040
3041                 free(buffer);
3042         }
3043
3044         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3045                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3046                                 "in %fs (%0.3f KiB/s)", image_size,
3047                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3048         }
3049
3050         image_close(&image);
3051
3052         return retval;
3053
3054 }
3055
3056 COMMAND_HANDLER(handle_dump_image_command)
3057 {
3058         struct fileio fileio;
3059         uint8_t *buffer;
3060         int retval, retvaltemp;
3061         uint32_t address, size;
3062         struct duration bench;
3063         struct target *target = get_current_target(CMD_CTX);
3064
3065         if (CMD_ARGC != 3)
3066                 return ERROR_COMMAND_SYNTAX_ERROR;
3067
3068         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3069         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3070
3071         uint32_t buf_size = (size > 4096) ? 4096 : size;
3072         buffer = malloc(buf_size);
3073         if (!buffer)
3074                 return ERROR_FAIL;
3075
3076         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3077         if (retval != ERROR_OK) {
3078                 free(buffer);
3079                 return retval;
3080         }
3081
3082         duration_start(&bench);
3083
3084         while (size > 0) {
3085                 size_t size_written;
3086                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3087                 retval = target_read_buffer(target, address, this_run_size, buffer);
3088                 if (retval != ERROR_OK)
3089                         break;
3090
3091                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3092                 if (retval != ERROR_OK)
3093                         break;
3094
3095                 size -= this_run_size;
3096                 address += this_run_size;
3097         }
3098
3099         free(buffer);
3100
3101         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3102                 int filesize;
3103                 retval = fileio_size(&fileio, &filesize);
3104                 if (retval != ERROR_OK)
3105                         return retval;
3106                 command_print(CMD_CTX,
3107                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3108                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3109         }
3110
3111         retvaltemp = fileio_close(&fileio);
3112         if (retvaltemp != ERROR_OK)
3113                 return retvaltemp;
3114
3115         return retval;
3116 }
3117
3118 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3119 {
3120         uint8_t *buffer;
3121         size_t buf_cnt;
3122         uint32_t image_size;
3123         int i;
3124         int retval;
3125         uint32_t checksum = 0;
3126         uint32_t mem_checksum = 0;
3127
3128         struct image image;
3129
3130         struct target *target = get_current_target(CMD_CTX);
3131
3132         if (CMD_ARGC < 1)
3133                 return ERROR_COMMAND_SYNTAX_ERROR;
3134
3135         if (!target) {
3136                 LOG_ERROR("no target selected");
3137                 return ERROR_FAIL;
3138         }
3139
3140         struct duration bench;
3141         duration_start(&bench);
3142
3143         if (CMD_ARGC >= 2) {
3144                 uint32_t addr;
3145                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3146                 image.base_address = addr;
3147                 image.base_address_set = 1;
3148         } else {
3149                 image.base_address_set = 0;
3150                 image.base_address = 0x0;
3151         }
3152
3153         image.start_address_set = 0;
3154
3155         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3156         if (retval != ERROR_OK)
3157                 return retval;
3158
3159         image_size = 0x0;
3160         int diffs = 0;
3161         retval = ERROR_OK;
3162         for (i = 0; i < image.num_sections; i++) {
3163                 buffer = malloc(image.sections[i].size);
3164                 if (buffer == NULL) {
3165                         command_print(CMD_CTX,
3166                                         "error allocating buffer for section (%d bytes)",
3167                                         (int)(image.sections[i].size));
3168                         break;
3169                 }
3170                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3171                 if (retval != ERROR_OK) {
3172                         free(buffer);
3173                         break;
3174                 }
3175
3176                 if (verify) {
3177                         /* calculate checksum of image */
3178                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3179                         if (retval != ERROR_OK) {
3180                                 free(buffer);
3181                                 break;
3182                         }
3183
3184                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3185                         if (retval != ERROR_OK) {
3186                                 free(buffer);
3187                                 break;
3188                         }
3189
3190                         if (checksum != mem_checksum) {
3191                                 /* failed crc checksum, fall back to a binary compare */
3192                                 uint8_t *data;
3193
3194                                 if (diffs == 0)
3195                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3196
3197                                 data = malloc(buf_cnt);
3198
3199                                 /* Can we use 32bit word accesses? */
3200                                 int size = 1;
3201                                 int count = buf_cnt;
3202                                 if ((count % 4) == 0) {
3203                                         size *= 4;
3204                                         count /= 4;
3205                                 }
3206                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3207                                 if (retval == ERROR_OK) {
3208                                         uint32_t t;
3209                                         for (t = 0; t < buf_cnt; t++) {
3210                                                 if (data[t] != buffer[t]) {
3211                                                         command_print(CMD_CTX,
3212                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3213                                                                                   diffs,
3214                                                                                   (unsigned)(t + image.sections[i].base_address),
3215                                                                                   data[t],
3216                                                                                   buffer[t]);
3217                                                         if (diffs++ >= 127) {
3218                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3219                                                                 free(data);
3220                                                                 free(buffer);
3221                                                                 goto done;
3222                                                         }
3223                                                 }
3224                                                 keep_alive();
3225                                         }
3226                                 }
3227                                 free(data);
3228                         }
3229                 } else {
3230                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3231                                                   image.sections[i].base_address,
3232                                                   buf_cnt);
3233                 }
3234
3235                 free(buffer);
3236                 image_size += buf_cnt;
3237         }
3238         if (diffs > 0)
3239                 command_print(CMD_CTX, "No more differences found.");
3240 done:
3241         if (diffs > 0)
3242                 retval = ERROR_FAIL;
3243         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3244                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3245                                 "in %fs (%0.3f KiB/s)", image_size,
3246                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3247         }
3248
3249         image_close(&image);
3250
3251         return retval;
3252 }
3253
3254 COMMAND_HANDLER(handle_verify_image_command)
3255 {
3256         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3257 }
3258
3259 COMMAND_HANDLER(handle_test_image_command)
3260 {
3261         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3262 }
3263
3264 static int handle_bp_command_list(struct command_context *cmd_ctx)
3265 {
3266         struct target *target = get_current_target(cmd_ctx);
3267         struct breakpoint *breakpoint = target->breakpoints;
3268         while (breakpoint) {
3269                 if (breakpoint->type == BKPT_SOFT) {
3270                         char *buf = buf_to_str(breakpoint->orig_instr,
3271                                         breakpoint->length, 16);
3272                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3273                                         breakpoint->address,
3274                                         breakpoint->length,
3275                                         breakpoint->set, buf);
3276                         free(buf);
3277                 } else {
3278                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3279                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3280                                                         breakpoint->asid,
3281                                                         breakpoint->length, breakpoint->set);
3282                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3283                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3284                                                         breakpoint->address,
3285                                                         breakpoint->length, breakpoint->set);
3286                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3287                                                         breakpoint->asid);
3288                         } else
3289                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3290                                                         breakpoint->address,
3291                                                         breakpoint->length, breakpoint->set);
3292                 }
3293
3294                 breakpoint = breakpoint->next;
3295         }
3296         return ERROR_OK;
3297 }
3298
3299 static int handle_bp_command_set(struct command_context *cmd_ctx,
3300                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3301 {
3302         struct target *target = get_current_target(cmd_ctx);
3303
3304         if (asid == 0) {
3305                 int retval = breakpoint_add(target, addr, length, hw);
3306                 if (ERROR_OK == retval)
3307                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3308                 else {
3309                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3310                         return retval;
3311                 }
3312         } else if (addr == 0) {
3313                 int retval = context_breakpoint_add(target, asid, length, hw);
3314                 if (ERROR_OK == retval)
3315                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3316                 else {
3317                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3318                         return retval;
3319                 }
3320         } else {
3321                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3322                 if (ERROR_OK == retval)
3323                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3324                 else {
3325                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3326                         return retval;
3327                 }
3328         }
3329         return ERROR_OK;
3330 }
3331
3332 COMMAND_HANDLER(handle_bp_command)
3333 {
3334         uint32_t addr;
3335         uint32_t asid;
3336         uint32_t length;
3337         int hw = BKPT_SOFT;
3338
3339         switch (CMD_ARGC) {
3340                 case 0:
3341                         return handle_bp_command_list(CMD_CTX);
3342
3343                 case 2:
3344                         asid = 0;
3345                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3346                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3347                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3348
3349                 case 3:
3350                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3351                                 hw = BKPT_HARD;
3352                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3353
3354                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3355
3356                                 asid = 0;
3357                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3358                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3359                                 hw = BKPT_HARD;
3360                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3361                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3362                                 addr = 0;
3363                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3364                         }
3365
3366                 case 4:
3367                         hw = BKPT_HARD;
3368                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3369                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3370                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3371                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3372
3373                 default:
3374                         return ERROR_COMMAND_SYNTAX_ERROR;
3375         }
3376 }
3377
3378 COMMAND_HANDLER(handle_rbp_command)
3379 {
3380         if (CMD_ARGC != 1)
3381                 return ERROR_COMMAND_SYNTAX_ERROR;
3382
3383         uint32_t addr;
3384         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3385
3386         struct target *target = get_current_target(CMD_CTX);
3387         breakpoint_remove(target, addr);
3388
3389         return ERROR_OK;
3390 }
3391
3392 COMMAND_HANDLER(handle_wp_command)
3393 {
3394         struct target *target = get_current_target(CMD_CTX);
3395
3396         if (CMD_ARGC == 0) {
3397                 struct watchpoint *watchpoint = target->watchpoints;
3398
3399                 while (watchpoint) {
3400                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3401                                         ", len: 0x%8.8" PRIx32
3402                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3403                                         ", mask: 0x%8.8" PRIx32,
3404                                         watchpoint->address,
3405                                         watchpoint->length,
3406                                         (int)watchpoint->rw,
3407                                         watchpoint->value,
3408                                         watchpoint->mask);
3409                         watchpoint = watchpoint->next;
3410                 }
3411                 return ERROR_OK;
3412         }
3413
3414         enum watchpoint_rw type = WPT_ACCESS;
3415         uint32_t addr = 0;
3416         uint32_t length = 0;
3417         uint32_t data_value = 0x0;
3418         uint32_t data_mask = 0xffffffff;
3419
3420         switch (CMD_ARGC) {
3421         case 5:
3422                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3423                 /* fall through */
3424         case 4:
3425                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3426                 /* fall through */
3427         case 3:
3428                 switch (CMD_ARGV[2][0]) {
3429                 case 'r':
3430                         type = WPT_READ;
3431                         break;
3432                 case 'w':
3433                         type = WPT_WRITE;
3434                         break;
3435                 case 'a':
3436                         type = WPT_ACCESS;
3437                         break;
3438                 default:
3439                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3440                         return ERROR_COMMAND_SYNTAX_ERROR;
3441                 }
3442                 /* fall through */
3443         case 2:
3444                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3445                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3446                 break;
3447
3448         default:
3449                 return ERROR_COMMAND_SYNTAX_ERROR;
3450         }
3451
3452         int retval = watchpoint_add(target, addr, length, type,
3453                         data_value, data_mask);
3454         if (ERROR_OK != retval)
3455                 LOG_ERROR("Failure setting watchpoints");
3456
3457         return retval;
3458 }
3459
3460 COMMAND_HANDLER(handle_rwp_command)
3461 {
3462         if (CMD_ARGC != 1)
3463                 return ERROR_COMMAND_SYNTAX_ERROR;
3464
3465         uint32_t addr;
3466         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3467
3468         struct target *target = get_current_target(CMD_CTX);
3469         watchpoint_remove(target, addr);
3470
3471         return ERROR_OK;
3472 }
3473
3474 /**
3475  * Translate a virtual address to a physical address.
3476  *
3477  * The low-level target implementation must have logged a detailed error
3478  * which is forwarded to telnet/GDB session.
3479  */
3480 COMMAND_HANDLER(handle_virt2phys_command)
3481 {
3482         if (CMD_ARGC != 1)
3483                 return ERROR_COMMAND_SYNTAX_ERROR;
3484
3485         uint32_t va;
3486         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3487         uint32_t pa;
3488
3489         struct target *target = get_current_target(CMD_CTX);
3490         int retval = target->type->virt2phys(target, va, &pa);
3491         if (retval == ERROR_OK)
3492                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3493
3494         return retval;
3495 }
3496
3497 static void writeData(FILE *f, const void *data, size_t len)
3498 {
3499         size_t written = fwrite(data, 1, len, f);
3500         if (written != len)
3501                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3502 }
3503
3504 static void writeLong(FILE *f, int l)
3505 {
3506         int i;
3507         for (i = 0; i < 4; i++) {
3508                 char c = (l >> (i*8))&0xff;
3509                 writeData(f, &c, 1);
3510         }
3511
3512 }
3513
3514 static void writeString(FILE *f, char *s)
3515 {
3516         writeData(f, s, strlen(s));
3517 }
3518
3519 typedef unsigned char UNIT[2];  /* unit of profiling */
3520
3521 /* Dump a gmon.out histogram file. */
3522 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3523                 bool with_range, uint32_t start_address, uint32_t end_address)
3524 {
3525         uint32_t i;
3526         FILE *f = fopen(filename, "w");
3527         if (f == NULL)
3528                 return;
3529         writeString(f, "gmon");
3530         writeLong(f, 0x00000001); /* Version */
3531         writeLong(f, 0); /* padding */
3532         writeLong(f, 0); /* padding */
3533         writeLong(f, 0); /* padding */
3534
3535         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3536         writeData(f, &zero, 1);
3537
3538         /* figure out bucket size */
3539         uint32_t min;
3540         uint32_t max;
3541         if (with_range) {
3542                 min = start_address;
3543                 max = end_address;
3544         } else {
3545                 min = samples[0];
3546                 max = samples[0];
3547                 for (i = 0; i < sampleNum; i++) {
3548                         if (min > samples[i])
3549                                 min = samples[i];
3550                         if (max < samples[i])
3551                                 max = samples[i];
3552                 }
3553
3554                 /* max should be (largest sample + 1)
3555                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3556                 max++;
3557         }
3558
3559         int addressSpace = max - min;
3560         assert(addressSpace >= 2);
3561
3562         /* FIXME: What is the reasonable number of buckets?
3563          * The profiling result will be more accurate if there are enough buckets. */
3564         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3565         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3566         if (numBuckets > maxBuckets)
3567                 numBuckets = maxBuckets;
3568         int *buckets = malloc(sizeof(int) * numBuckets);
3569         if (buckets == NULL) {
3570                 fclose(f);
3571                 return;
3572         }
3573         memset(buckets, 0, sizeof(int) * numBuckets);
3574         for (i = 0; i < sampleNum; i++) {
3575                 uint32_t address = samples[i];
3576
3577                 if ((address < min) || (max <= address))
3578                         continue;
3579
3580                 long long a = address - min;
3581                 long long b = numBuckets;
3582                 long long c = addressSpace;
3583                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3584                 buckets[index_t]++;
3585         }
3586
3587         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3588         writeLong(f, min);                      /* low_pc */
3589         writeLong(f, max);                      /* high_pc */
3590         writeLong(f, numBuckets);       /* # of buckets */
3591         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3592         writeString(f, "seconds");
3593         for (i = 0; i < (15-strlen("seconds")); i++)
3594                 writeData(f, &zero, 1);
3595         writeString(f, "s");
3596
3597         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3598
3599         char *data = malloc(2 * numBuckets);
3600         if (data != NULL) {
3601                 for (i = 0; i < numBuckets; i++) {
3602                         int val;
3603                         val = buckets[i];
3604                         if (val > 65535)
3605                                 val = 65535;
3606                         data[i * 2] = val&0xff;
3607                         data[i * 2 + 1] = (val >> 8) & 0xff;
3608                 }
3609                 free(buckets);
3610                 writeData(f, data, numBuckets * 2);
3611                 free(data);
3612         } else
3613                 free(buckets);
3614
3615         fclose(f);
3616 }
3617
3618 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3619  * which will be used as a random sampling of PC */
3620 COMMAND_HANDLER(handle_profile_command)
3621 {
3622         struct target *target = get_current_target(CMD_CTX);
3623
3624         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3625                 return ERROR_COMMAND_SYNTAX_ERROR;
3626
3627         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3628         uint32_t offset;
3629         uint32_t num_of_samples;
3630         int retval = ERROR_OK;
3631
3632         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3633
3634         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3635         if (samples == NULL) {
3636                 LOG_ERROR("No memory to store samples.");
3637                 return ERROR_FAIL;
3638         }
3639
3640         /**
3641          * Some cores let us sample the PC without the
3642          * annoying halt/resume step; for example, ARMv7 PCSR.
3643          * Provide a way to use that more efficient mechanism.
3644          */
3645         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3646                                 &num_of_samples, offset);
3647         if (retval != ERROR_OK) {
3648                 free(samples);
3649                 return retval;
3650         }
3651
3652         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3653
3654         retval = target_poll(target);
3655         if (retval != ERROR_OK) {
3656                 free(samples);
3657                 return retval;
3658         }
3659         if (target->state == TARGET_RUNNING) {
3660                 retval = target_halt(target);
3661                 if (retval != ERROR_OK) {
3662                         free(samples);
3663                         return retval;
3664                 }
3665         }
3666
3667         retval = target_poll(target);
3668         if (retval != ERROR_OK) {
3669                 free(samples);
3670                 return retval;
3671         }
3672
3673         uint32_t start_address = 0;
3674         uint32_t end_address = 0;
3675         bool with_range = false;
3676         if (CMD_ARGC == 4) {
3677                 with_range = true;
3678                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3679                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3680         }
3681
3682         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3683                         with_range, start_address, end_address);
3684         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3685
3686         free(samples);
3687         return retval;
3688 }
3689
3690 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3691 {
3692         char *namebuf;
3693         Jim_Obj *nameObjPtr, *valObjPtr;
3694         int result;
3695
3696         namebuf = alloc_printf("%s(%d)", varname, idx);
3697         if (!namebuf)
3698                 return JIM_ERR;
3699
3700         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3701         valObjPtr = Jim_NewIntObj(interp, val);
3702         if (!nameObjPtr || !valObjPtr) {
3703                 free(namebuf);
3704                 return JIM_ERR;
3705         }
3706
3707         Jim_IncrRefCount(nameObjPtr);
3708         Jim_IncrRefCount(valObjPtr);
3709         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3710         Jim_DecrRefCount(interp, nameObjPtr);
3711         Jim_DecrRefCount(interp, valObjPtr);
3712         free(namebuf);
3713         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3714         return result;
3715 }
3716
3717 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3718 {
3719         struct command_context *context;
3720         struct target *target;
3721
3722         context = current_command_context(interp);
3723         assert(context != NULL);
3724
3725         target = get_current_target(context);
3726         if (target == NULL) {
3727                 LOG_ERROR("mem2array: no current target");
3728                 return JIM_ERR;
3729         }
3730
3731         return target_mem2array(interp, target, argc - 1, argv + 1);
3732 }
3733
3734 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3735 {
3736         long l;
3737         uint32_t width;
3738         int len;
3739         uint32_t addr;
3740         uint32_t count;
3741         uint32_t v;
3742         const char *varname;
3743         int  n, e, retval;
3744         uint32_t i;
3745
3746         /* argv[1] = name of array to receive the data
3747          * argv[2] = desired width
3748          * argv[3] = memory address
3749          * argv[4] = count of times to read
3750          */
3751         if (argc != 4) {
3752                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3753                 return JIM_ERR;
3754         }
3755         varname = Jim_GetString(argv[0], &len);
3756         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3757
3758         e = Jim_GetLong(interp, argv[1], &l);
3759         width = l;
3760         if (e != JIM_OK)
3761                 return e;
3762
3763         e = Jim_GetLong(interp, argv[2], &l);
3764         addr = l;
3765         if (e != JIM_OK)
3766                 return e;
3767         e = Jim_GetLong(interp, argv[3], &l);
3768         len = l;
3769         if (e != JIM_OK)
3770                 return e;
3771         switch (width) {
3772                 case 8:
3773                         width = 1;
3774                         break;
3775                 case 16:
3776                         width = 2;
3777                         break;
3778                 case 32:
3779                         width = 4;
3780                         break;
3781                 default:
3782                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3783                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3784                         return JIM_ERR;
3785         }
3786         if (len == 0) {
3787                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3788                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3789                 return JIM_ERR;
3790         }
3791         if ((addr + (len * width)) < addr) {
3792                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3793                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3794                 return JIM_ERR;
3795         }
3796         /* absurd transfer size? */
3797         if (len > 65536) {
3798                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3799                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3800                 return JIM_ERR;
3801         }
3802
3803         if ((width == 1) ||
3804                 ((width == 2) && ((addr & 1) == 0)) ||
3805                 ((width == 4) && ((addr & 3) == 0))) {
3806                 /* all is well */
3807         } else {
3808                 char buf[100];
3809                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3810                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3811                                 addr,
3812                                 width);
3813                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3814                 return JIM_ERR;
3815         }
3816
3817         /* Transfer loop */
3818
3819         /* index counter */
3820         n = 0;
3821
3822         size_t buffersize = 4096;
3823         uint8_t *buffer = malloc(buffersize);
3824         if (buffer == NULL)
3825                 return JIM_ERR;
3826
3827         /* assume ok */
3828         e = JIM_OK;
3829         while (len) {
3830                 /* Slurp... in buffer size chunks */
3831
3832                 count = len; /* in objects.. */
3833                 if (count > (buffersize / width))
3834                         count = (buffersize / width);
3835
3836                 retval = target_read_memory(target, addr, width, count, buffer);
3837                 if (retval != ERROR_OK) {
3838                         /* BOO !*/
3839                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3840                                           (unsigned int)addr,
3841                                           (int)width,
3842                                           (int)count);
3843                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3844                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3845                         e = JIM_ERR;
3846                         break;
3847                 } else {
3848                         v = 0; /* shut up gcc */
3849                         for (i = 0; i < count ; i++, n++) {
3850                                 switch (width) {
3851                                         case 4:
3852                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3853                                                 break;
3854                                         case 2:
3855                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3856                                                 break;
3857                                         case 1:
3858                                                 v = buffer[i] & 0x0ff;
3859                                                 break;
3860                                 }
3861                                 new_int_array_element(interp, varname, n, v);
3862                         }
3863                         len -= count;
3864                         addr += count * width;
3865                 }
3866         }
3867
3868         free(buffer);
3869
3870         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3871
3872         return e;
3873 }
3874
3875 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3876 {
3877         char *namebuf;
3878         Jim_Obj *nameObjPtr, *valObjPtr;
3879         int result;
3880         long l;
3881
3882         namebuf = alloc_printf("%s(%d)", varname, idx);
3883         if (!namebuf)
3884                 return JIM_ERR;
3885
3886         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3887         if (!nameObjPtr) {
3888                 free(namebuf);
3889                 return JIM_ERR;
3890         }
3891
3892         Jim_IncrRefCount(nameObjPtr);
3893         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3894         Jim_DecrRefCount(interp, nameObjPtr);
3895         free(namebuf);
3896         if (valObjPtr == NULL)
3897                 return JIM_ERR;
3898
3899         result = Jim_GetLong(interp, valObjPtr, &l);
3900         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3901         *val = l;
3902         return result;
3903 }
3904
3905 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3906 {
3907         struct command_context *context;
3908         struct target *target;
3909
3910         context = current_command_context(interp);
3911         assert(context != NULL);
3912
3913         target = get_current_target(context);
3914         if (target == NULL) {
3915                 LOG_ERROR("array2mem: no current target");
3916                 return JIM_ERR;
3917         }
3918
3919         return target_array2mem(interp, target, argc-1, argv + 1);
3920 }
3921
3922 static int target_array2mem(Jim_Interp *interp, struct target *target,
3923                 int argc, Jim_Obj *const *argv)
3924 {
3925         long l;
3926         uint32_t width;
3927         int len;
3928         uint32_t addr;
3929         uint32_t count;
3930         uint32_t v;
3931         const char *varname;
3932         int  n, e, retval;
3933         uint32_t i;
3934
3935         /* argv[1] = name of array to get the data
3936          * argv[2] = desired width
3937          * argv[3] = memory address
3938          * argv[4] = count to write
3939          */
3940         if (argc != 4) {
3941                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3942                 return JIM_ERR;
3943         }
3944         varname = Jim_GetString(argv[0], &len);
3945         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3946
3947         e = Jim_GetLong(interp, argv[1], &l);
3948         width = l;
3949         if (e != JIM_OK)
3950                 return e;
3951
3952         e = Jim_GetLong(interp, argv[2], &l);
3953         addr = l;
3954         if (e != JIM_OK)
3955                 return e;
3956         e = Jim_GetLong(interp, argv[3], &l);
3957         len = l;
3958         if (e != JIM_OK)
3959                 return e;
3960         switch (width) {
3961                 case 8:
3962                         width = 1;
3963                         break;
3964                 case 16:
3965                         width = 2;
3966                         break;
3967                 case 32:
3968                         width = 4;
3969                         break;
3970                 default:
3971                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3972                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3973                                         "Invalid width param, must be 8/16/32", NULL);
3974                         return JIM_ERR;
3975         }
3976         if (len == 0) {
3977                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3978                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3979                                 "array2mem: zero width read?", NULL);
3980                 return JIM_ERR;
3981         }
3982         if ((addr + (len * width)) < addr) {
3983                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3984                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3985                                 "array2mem: addr + len - wraps to zero?", NULL);
3986                 return JIM_ERR;
3987         }
3988         /* absurd transfer size? */
3989         if (len > 65536) {
3990                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3991                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3992                                 "array2mem: absurd > 64K item request", NULL);
3993                 return JIM_ERR;
3994         }
3995
3996         if ((width == 1) ||
3997                 ((width == 2) && ((addr & 1) == 0)) ||
3998                 ((width == 4) && ((addr & 3) == 0))) {
3999                 /* all is well */
4000         } else {
4001                 char buf[100];
4002                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4003                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4004                                 (unsigned int)addr,
4005                                 (int)width);
4006                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4007                 return JIM_ERR;
4008         }
4009
4010         /* Transfer loop */
4011
4012         /* index counter */
4013         n = 0;
4014         /* assume ok */
4015         e = JIM_OK;
4016
4017         size_t buffersize = 4096;
4018         uint8_t *buffer = malloc(buffersize);
4019         if (buffer == NULL)
4020                 return JIM_ERR;
4021
4022         while (len) {
4023                 /* Slurp... in buffer size chunks */
4024
4025                 count = len; /* in objects.. */
4026                 if (count > (buffersize / width))
4027                         count = (buffersize / width);
4028
4029                 v = 0; /* shut up gcc */
4030                 for (i = 0; i < count; i++, n++) {
4031                         get_int_array_element(interp, varname, n, &v);
4032                         switch (width) {
4033                         case 4:
4034                                 target_buffer_set_u32(target, &buffer[i * width], v);
4035                                 break;
4036                         case 2:
4037                                 target_buffer_set_u16(target, &buffer[i * width], v);
4038                                 break;
4039                         case 1:
4040                                 buffer[i] = v & 0x0ff;
4041                                 break;
4042                         }
4043                 }
4044                 len -= count;
4045
4046                 retval = target_write_memory(target, addr, width, count, buffer);
4047                 if (retval != ERROR_OK) {
4048                         /* BOO !*/
4049                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4050                                           (unsigned int)addr,
4051                                           (int)width,
4052                                           (int)count);
4053                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4054                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4055                         e = JIM_ERR;
4056                         break;
4057                 }
4058                 addr += count * width;
4059         }
4060
4061         free(buffer);
4062
4063         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4064
4065         return e;
4066 }
4067
4068 /* FIX? should we propagate errors here rather than printing them
4069  * and continuing?
4070  */
4071 void target_handle_event(struct target *target, enum target_event e)
4072 {
4073         struct target_event_action *teap;
4074
4075         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4076                 if (teap->event == e) {
4077                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4078                                            target->target_number,
4079                                            target_name(target),
4080                                            target_type_name(target),
4081                                            e,
4082                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4083                                            Jim_GetString(teap->body, NULL));
4084                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4085                                 Jim_MakeErrorMessage(teap->interp);
4086                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4087                         }
4088                 }
4089         }
4090 }
4091
4092 /**
4093  * Returns true only if the target has a handler for the specified event.
4094  */
4095 bool target_has_event_action(struct target *target, enum target_event event)
4096 {
4097         struct target_event_action *teap;
4098
4099         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4100                 if (teap->event == event)
4101                         return true;
4102         }
4103         return false;
4104 }
4105
4106 enum target_cfg_param {
4107         TCFG_TYPE,
4108         TCFG_EVENT,
4109         TCFG_WORK_AREA_VIRT,
4110         TCFG_WORK_AREA_PHYS,
4111         TCFG_WORK_AREA_SIZE,
4112         TCFG_WORK_AREA_BACKUP,
4113         TCFG_ENDIAN,
4114         TCFG_VARIANT,
4115         TCFG_COREID,
4116         TCFG_CHAIN_POSITION,
4117         TCFG_DBGBASE,
4118         TCFG_RTOS,
4119 };
4120
4121 static Jim_Nvp nvp_config_opts[] = {
4122         { .name = "-type",             .value = TCFG_TYPE },
4123         { .name = "-event",            .value = TCFG_EVENT },
4124         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4125         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4126         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4127         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4128         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4129         { .name = "-variant",          .value = TCFG_VARIANT },
4130         { .name = "-coreid",           .value = TCFG_COREID },
4131         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4132         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4133         { .name = "-rtos",             .value = TCFG_RTOS },
4134         { .name = NULL, .value = -1 }
4135 };
4136
4137 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4138 {
4139         Jim_Nvp *n;
4140         Jim_Obj *o;
4141         jim_wide w;
4142         char *cp;
4143         int e;
4144
4145         /* parse config or cget options ... */
4146         while (goi->argc > 0) {
4147                 Jim_SetEmptyResult(goi->interp);
4148                 /* Jim_GetOpt_Debug(goi); */
4149
4150                 if (target->type->target_jim_configure) {
4151                         /* target defines a configure function */
4152                         /* target gets first dibs on parameters */
4153                         e = (*(target->type->target_jim_configure))(target, goi);
4154                         if (e == JIM_OK) {
4155                                 /* more? */
4156                                 continue;
4157                         }
4158                         if (e == JIM_ERR) {
4159                                 /* An error */
4160                                 return e;
4161                         }
4162                         /* otherwise we 'continue' below */
4163                 }
4164                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4165                 if (e != JIM_OK) {
4166                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4167                         return e;
4168                 }
4169                 switch (n->value) {
4170                 case TCFG_TYPE:
4171                         /* not setable */
4172                         if (goi->isconfigure) {
4173                                 Jim_SetResultFormatted(goi->interp,
4174                                                 "not settable: %s", n->name);
4175                                 return JIM_ERR;
4176                         } else {
4177 no_params:
4178                                 if (goi->argc != 0) {
4179                                         Jim_WrongNumArgs(goi->interp,
4180                                                         goi->argc, goi->argv,
4181                                                         "NO PARAMS");
4182                                         return JIM_ERR;
4183                                 }
4184                         }
4185                         Jim_SetResultString(goi->interp,
4186                                         target_type_name(target), -1);
4187                         /* loop for more */
4188                         break;
4189                 case TCFG_EVENT:
4190                         if (goi->argc == 0) {
4191                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4192                                 return JIM_ERR;
4193                         }
4194
4195                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4196                         if (e != JIM_OK) {
4197                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4198                                 return e;
4199                         }
4200
4201                         if (goi->isconfigure) {
4202                                 if (goi->argc != 1) {
4203                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4204                                         return JIM_ERR;
4205                                 }
4206                         } else {
4207                                 if (goi->argc != 0) {
4208                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4209                                         return JIM_ERR;
4210                                 }
4211                         }
4212
4213                         {
4214                                 struct target_event_action *teap;
4215
4216                                 teap = target->event_action;
4217                                 /* replace existing? */
4218                                 while (teap) {
4219                                         if (teap->event == (enum target_event)n->value)
4220                                                 break;
4221                                         teap = teap->next;
4222                                 }
4223
4224                                 if (goi->isconfigure) {
4225                                         bool replace = true;
4226                                         if (teap == NULL) {
4227                                                 /* create new */
4228                                                 teap = calloc(1, sizeof(*teap));
4229                                                 replace = false;
4230                                         }
4231                                         teap->event = n->value;
4232                                         teap->interp = goi->interp;
4233                                         Jim_GetOpt_Obj(goi, &o);
4234                                         if (teap->body)
4235                                                 Jim_DecrRefCount(teap->interp, teap->body);
4236                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4237                                         /*
4238                                          * FIXME:
4239                                          *     Tcl/TK - "tk events" have a nice feature.
4240                                          *     See the "BIND" command.
4241                                          *    We should support that here.
4242                                          *     You can specify %X and %Y in the event code.
4243                                          *     The idea is: %T - target name.
4244                                          *     The idea is: %N - target number
4245                                          *     The idea is: %E - event name.
4246                                          */
4247                                         Jim_IncrRefCount(teap->body);
4248
4249                                         if (!replace) {
4250                                                 /* add to head of event list */
4251                                                 teap->next = target->event_action;
4252                                                 target->event_action = teap;
4253                                         }
4254                                         Jim_SetEmptyResult(goi->interp);
4255                                 } else {
4256                                         /* get */
4257                                         if (teap == NULL)
4258                                                 Jim_SetEmptyResult(goi->interp);
4259                                         else
4260                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4261                                 }
4262                         }
4263                         /* loop for more */
4264                         break;
4265
4266                 case TCFG_WORK_AREA_VIRT:
4267                         if (goi->isconfigure) {
4268                                 target_free_all_working_areas(target);
4269                                 e = Jim_GetOpt_Wide(goi, &w);
4270                                 if (e != JIM_OK)
4271                                         return e;
4272                                 target->working_area_virt = w;
4273                                 target->working_area_virt_spec = true;
4274                         } else {
4275                                 if (goi->argc != 0)
4276                                         goto no_params;
4277                         }
4278                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4279                         /* loop for more */
4280                         break;
4281
4282                 case TCFG_WORK_AREA_PHYS:
4283                         if (goi->isconfigure) {
4284                                 target_free_all_working_areas(target);
4285                                 e = Jim_GetOpt_Wide(goi, &w);
4286                                 if (e != JIM_OK)
4287                                         return e;
4288                                 target->working_area_phys = w;
4289                                 target->working_area_phys_spec = true;
4290                         } else {
4291                                 if (goi->argc != 0)
4292                                         goto no_params;
4293                         }
4294                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4295                         /* loop for more */
4296                         break;
4297
4298                 case TCFG_WORK_AREA_SIZE:
4299                         if (goi->isconfigure) {
4300                                 target_free_all_working_areas(target);
4301                                 e = Jim_GetOpt_Wide(goi, &w);
4302                                 if (e != JIM_OK)
4303                                         return e;
4304                                 target->working_area_size = w;
4305                         } else {
4306                                 if (goi->argc != 0)
4307                                         goto no_params;
4308                         }
4309                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4310                         /* loop for more */
4311                         break;
4312
4313                 case TCFG_WORK_AREA_BACKUP:
4314                         if (goi->isconfigure) {
4315                                 target_free_all_working_areas(target);
4316                                 e = Jim_GetOpt_Wide(goi, &w);
4317                                 if (e != JIM_OK)
4318                                         return e;
4319                                 /* make this exactly 1 or 0 */
4320                                 target->backup_working_area = (!!w);
4321                         } else {
4322                                 if (goi->argc != 0)
4323                                         goto no_params;
4324                         }
4325                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4326                         /* loop for more e*/
4327                         break;
4328
4329
4330                 case TCFG_ENDIAN:
4331                         if (goi->isconfigure) {
4332                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4333                                 if (e != JIM_OK) {
4334                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4335                                         return e;
4336                                 }
4337                                 target->endianness = n->value;
4338                         } else {
4339                                 if (goi->argc != 0)
4340                                         goto no_params;
4341                         }
4342                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4343                         if (n->name == NULL) {
4344                                 target->endianness = TARGET_LITTLE_ENDIAN;
4345                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4346                         }
4347                         Jim_SetResultString(goi->interp, n->name, -1);
4348                         /* loop for more */
4349                         break;
4350
4351                 case TCFG_VARIANT:
4352                         if (goi->isconfigure) {
4353                                 if (goi->argc < 1) {
4354                                         Jim_SetResultFormatted(goi->interp,
4355                                                                                    "%s ?STRING?",
4356                                                                                    n->name);
4357                                         return JIM_ERR;
4358                                 }
4359                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4360                                 if (e != JIM_OK)
4361                                         return e;
4362                                 free(target->variant);
4363                                 target->variant = strdup(cp);
4364                         } else {
4365                                 if (goi->argc != 0)
4366                                         goto no_params;
4367                         }
4368                         Jim_SetResultString(goi->interp, target->variant, -1);
4369                         /* loop for more */
4370                         break;
4371
4372                 case TCFG_COREID:
4373                         if (goi->isconfigure) {
4374                                 e = Jim_GetOpt_Wide(goi, &w);
4375                                 if (e != JIM_OK)
4376                                         return e;
4377                                 target->coreid = (int32_t)w;
4378                         } else {
4379                                 if (goi->argc != 0)
4380                                         goto no_params;
4381                         }
4382                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4383                         /* loop for more */
4384                         break;
4385
4386                 case TCFG_CHAIN_POSITION:
4387                         if (goi->isconfigure) {
4388                                 Jim_Obj *o_t;
4389                                 struct jtag_tap *tap;
4390                                 target_free_all_working_areas(target);
4391                                 e = Jim_GetOpt_Obj(goi, &o_t);
4392                                 if (e != JIM_OK)
4393                                         return e;
4394                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4395                                 if (tap == NULL)
4396                                         return JIM_ERR;
4397                                 /* make this exactly 1 or 0 */
4398                                 target->tap = tap;
4399                         } else {
4400                                 if (goi->argc != 0)
4401                                         goto no_params;
4402                         }
4403                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4404                         /* loop for more e*/
4405                         break;
4406                 case TCFG_DBGBASE:
4407                         if (goi->isconfigure) {
4408                                 e = Jim_GetOpt_Wide(goi, &w);
4409                                 if (e != JIM_OK)
4410                                         return e;
4411                                 target->dbgbase = (uint32_t)w;
4412                                 target->dbgbase_set = true;
4413                         } else {
4414                                 if (goi->argc != 0)
4415                                         goto no_params;
4416                         }
4417                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4418                         /* loop for more */
4419                         break;
4420
4421                 case TCFG_RTOS:
4422                         /* RTOS */
4423                         {
4424                                 int result = rtos_create(goi, target);
4425                                 if (result != JIM_OK)
4426                                         return result;
4427                         }
4428                         /* loop for more */
4429                         break;
4430                 }
4431         } /* while (goi->argc) */
4432
4433
4434                 /* done - we return */
4435         return JIM_OK;
4436 }
4437
4438 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4439 {
4440         Jim_GetOptInfo goi;
4441
4442         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4443         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4444         int need_args = 1 + goi.isconfigure;
4445         if (goi.argc < need_args) {
4446                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4447                         goi.isconfigure
4448                                 ? "missing: -option VALUE ..."
4449                                 : "missing: -option ...");
4450                 return JIM_ERR;
4451         }
4452         struct target *target = Jim_CmdPrivData(goi.interp);
4453         return target_configure(&goi, target);
4454 }
4455
4456 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4457 {
4458         const char *cmd_name = Jim_GetString(argv[0], NULL);
4459
4460         Jim_GetOptInfo goi;
4461         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4462
4463         if (goi.argc < 2 || goi.argc > 4) {
4464                 Jim_SetResultFormatted(goi.interp,
4465                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4466                 return JIM_ERR;
4467         }
4468
4469         target_write_fn fn;
4470         fn = target_write_memory;
4471
4472         int e;
4473         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4474                 /* consume it */
4475                 struct Jim_Obj *obj;
4476                 e = Jim_GetOpt_Obj(&goi, &obj);
4477                 if (e != JIM_OK)
4478                         return e;
4479
4480                 fn = target_write_phys_memory;
4481         }
4482
4483         jim_wide a;
4484         e = Jim_GetOpt_Wide(&goi, &a);
4485         if (e != JIM_OK)
4486                 return e;
4487
4488         jim_wide b;
4489         e = Jim_GetOpt_Wide(&goi, &b);
4490         if (e != JIM_OK)
4491                 return e;
4492
4493         jim_wide c = 1;
4494         if (goi.argc == 1) {
4495                 e = Jim_GetOpt_Wide(&goi, &c);
4496                 if (e != JIM_OK)
4497                         return e;
4498         }
4499
4500         /* all args must be consumed */
4501         if (goi.argc != 0)
4502                 return JIM_ERR;
4503
4504         struct target *target = Jim_CmdPrivData(goi.interp);
4505         unsigned data_size;
4506         if (strcasecmp(cmd_name, "mww") == 0)
4507                 data_size = 4;
4508         else if (strcasecmp(cmd_name, "mwh") == 0)
4509                 data_size = 2;
4510         else if (strcasecmp(cmd_name, "mwb") == 0)
4511                 data_size = 1;
4512         else {
4513                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4514                 return JIM_ERR;
4515         }
4516
4517         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4518 }
4519
4520 /**
4521 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4522 *
4523 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4524 *         mdh [phys] <address> [<count>] - for 16 bit reads
4525 *         mdb [phys] <address> [<count>] - for  8 bit reads
4526 *
4527 *  Count defaults to 1.
4528 *
4529 *  Calls target_read_memory or target_read_phys_memory depending on
4530 *  the presence of the "phys" argument
4531 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4532 *  to int representation in base16.
4533 *  Also outputs read data in a human readable form using command_print
4534 *
4535 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4536 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4537 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4538 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4539 *  on success, with [<count>] number of elements.
4540 *
4541 *  In case of little endian target:
4542 *      Example1: "mdw 0x00000000"  returns "10123456"
4543 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4544 *      Example3: "mdb 0x00000000" returns "56"
4545 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4546 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4547 **/
4548 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4549 {
4550         const char *cmd_name = Jim_GetString(argv[0], NULL);
4551
4552         Jim_GetOptInfo goi;
4553         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4554
4555         if ((goi.argc < 1) || (goi.argc > 3)) {
4556                 Jim_SetResultFormatted(goi.interp,
4557                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4558                 return JIM_ERR;
4559         }
4560
4561         int (*fn)(struct target *target,
4562                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4563         fn = target_read_memory;
4564
4565         int e;
4566         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4567                 /* consume it */
4568                 struct Jim_Obj *obj;
4569                 e = Jim_GetOpt_Obj(&goi, &obj);
4570                 if (e != JIM_OK)
4571                         return e;
4572
4573                 fn = target_read_phys_memory;
4574         }
4575
4576         /* Read address parameter */
4577         jim_wide addr;
4578         e = Jim_GetOpt_Wide(&goi, &addr);
4579         if (e != JIM_OK)
4580                 return JIM_ERR;
4581
4582         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4583         jim_wide count;
4584         if (goi.argc == 1) {
4585                 e = Jim_GetOpt_Wide(&goi, &count);
4586                 if (e != JIM_OK)
4587                         return JIM_ERR;
4588         } else
4589                 count = 1;
4590
4591         /* all args must be consumed */
4592         if (goi.argc != 0)
4593                 return JIM_ERR;
4594
4595         jim_wide dwidth = 1; /* shut up gcc */
4596         if (strcasecmp(cmd_name, "mdw") == 0)
4597                 dwidth = 4;
4598         else if (strcasecmp(cmd_name, "mdh") == 0)
4599                 dwidth = 2;
4600         else if (strcasecmp(cmd_name, "mdb") == 0)
4601                 dwidth = 1;
4602         else {
4603                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4604                 return JIM_ERR;
4605         }
4606
4607         /* convert count to "bytes" */
4608         int bytes = count * dwidth;
4609
4610         struct target *target = Jim_CmdPrivData(goi.interp);
4611         uint8_t  target_buf[32];
4612         jim_wide x, y, z;
4613         while (bytes > 0) {
4614                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4615
4616                 /* Try to read out next block */
4617                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4618
4619                 if (e != ERROR_OK) {
4620                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4621                         return JIM_ERR;
4622                 }
4623
4624                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4625                 switch (dwidth) {
4626                 case 4:
4627                         for (x = 0; x < 16 && x < y; x += 4) {
4628                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4629                                 command_print_sameline(NULL, "%08x ", (int)(z));
4630                         }
4631                         for (; (x < 16) ; x += 4)
4632                                 command_print_sameline(NULL, "         ");
4633                         break;
4634                 case 2:
4635                         for (x = 0; x < 16 && x < y; x += 2) {
4636                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4637                                 command_print_sameline(NULL, "%04x ", (int)(z));
4638                         }
4639                         for (; (x < 16) ; x += 2)
4640                                 command_print_sameline(NULL, "     ");
4641                         break;
4642                 case 1:
4643                 default:
4644                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4645                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4646                                 command_print_sameline(NULL, "%02x ", (int)(z));
4647                         }
4648                         for (; (x < 16) ; x += 1)
4649                                 command_print_sameline(NULL, "   ");
4650                         break;
4651                 }
4652                 /* ascii-ify the bytes */
4653                 for (x = 0 ; x < y ; x++) {
4654                         if ((target_buf[x] >= 0x20) &&
4655                                 (target_buf[x] <= 0x7e)) {
4656                                 /* good */
4657                         } else {
4658                                 /* smack it */
4659                                 target_buf[x] = '.';
4660                         }
4661                 }
4662                 /* space pad  */
4663                 while (x < 16) {
4664                         target_buf[x] = ' ';
4665                         x++;
4666                 }
4667                 /* terminate */
4668                 target_buf[16] = 0;
4669                 /* print - with a newline */
4670                 command_print_sameline(NULL, "%s\n", target_buf);
4671                 /* NEXT... */
4672                 bytes -= 16;
4673                 addr += 16;
4674         }
4675         return JIM_OK;
4676 }
4677
4678 static int jim_target_mem2array(Jim_Interp *interp,
4679                 int argc, Jim_Obj *const *argv)
4680 {
4681         struct target *target = Jim_CmdPrivData(interp);
4682         return target_mem2array(interp, target, argc - 1, argv + 1);
4683 }
4684
4685 static int jim_target_array2mem(Jim_Interp *interp,
4686                 int argc, Jim_Obj *const *argv)
4687 {
4688         struct target *target = Jim_CmdPrivData(interp);
4689         return target_array2mem(interp, target, argc - 1, argv + 1);
4690 }
4691
4692 static int jim_target_tap_disabled(Jim_Interp *interp)
4693 {
4694         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4695         return JIM_ERR;
4696 }
4697
4698 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4699 {
4700         if (argc != 1) {
4701                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4702                 return JIM_ERR;
4703         }
4704         struct target *target = Jim_CmdPrivData(interp);
4705         if (!target->tap->enabled)
4706                 return jim_target_tap_disabled(interp);
4707
4708         int e = target->type->examine(target);
4709         if (e != ERROR_OK)
4710                 return JIM_ERR;
4711         return JIM_OK;
4712 }
4713
4714 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4715 {
4716         if (argc != 1) {
4717                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4718                 return JIM_ERR;
4719         }
4720         struct target *target = Jim_CmdPrivData(interp);
4721
4722         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4723                 return JIM_ERR;
4724
4725         return JIM_OK;
4726 }
4727
4728 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4729 {
4730         if (argc != 1) {
4731                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4732                 return JIM_ERR;
4733         }
4734         struct target *target = Jim_CmdPrivData(interp);
4735         if (!target->tap->enabled)
4736                 return jim_target_tap_disabled(interp);
4737
4738         int e;
4739         if (!(target_was_examined(target)))
4740                 e = ERROR_TARGET_NOT_EXAMINED;
4741         else
4742                 e = target->type->poll(target);
4743         if (e != ERROR_OK)
4744                 return JIM_ERR;
4745         return JIM_OK;
4746 }
4747
4748 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4749 {
4750         Jim_GetOptInfo goi;
4751         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4752
4753         if (goi.argc != 2) {
4754                 Jim_WrongNumArgs(interp, 0, argv,
4755                                 "([tT]|[fF]|assert|deassert) BOOL");
4756                 return JIM_ERR;
4757         }
4758
4759         Jim_Nvp *n;
4760         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4761         if (e != JIM_OK) {
4762                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4763                 return e;
4764         }
4765         /* the halt or not param */
4766         jim_wide a;
4767         e = Jim_GetOpt_Wide(&goi, &a);
4768         if (e != JIM_OK)
4769                 return e;
4770
4771         struct target *target = Jim_CmdPrivData(goi.interp);
4772         if (!target->tap->enabled)
4773                 return jim_target_tap_disabled(interp);
4774         if (!(target_was_examined(target))) {
4775                 LOG_ERROR("Target not examined yet");
4776                 return ERROR_TARGET_NOT_EXAMINED;
4777         }
4778         if (!target->type->assert_reset || !target->type->deassert_reset) {
4779                 Jim_SetResultFormatted(interp,
4780                                 "No target-specific reset for %s",
4781                                 target_name(target));
4782                 return JIM_ERR;
4783         }
4784         /* determine if we should halt or not. */
4785         target->reset_halt = !!a;
4786         /* When this happens - all workareas are invalid. */
4787         target_free_all_working_areas_restore(target, 0);
4788
4789         /* do the assert */
4790         if (n->value == NVP_ASSERT)
4791                 e = target->type->assert_reset(target);
4792         else
4793                 e = target->type->deassert_reset(target);
4794         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4795 }
4796
4797 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4798 {
4799         if (argc != 1) {
4800                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4801                 return JIM_ERR;
4802         }
4803         struct target *target = Jim_CmdPrivData(interp);
4804         if (!target->tap->enabled)
4805                 return jim_target_tap_disabled(interp);
4806         int e = target->type->halt(target);
4807         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4808 }
4809
4810 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4811 {
4812         Jim_GetOptInfo goi;
4813         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4814
4815         /* params:  <name>  statename timeoutmsecs */
4816         if (goi.argc != 2) {
4817                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4818                 Jim_SetResultFormatted(goi.interp,
4819                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4820                 return JIM_ERR;
4821         }
4822
4823         Jim_Nvp *n;
4824         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4825         if (e != JIM_OK) {
4826                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4827                 return e;
4828         }
4829         jim_wide a;
4830         e = Jim_GetOpt_Wide(&goi, &a);
4831         if (e != JIM_OK)
4832                 return e;
4833         struct target *target = Jim_CmdPrivData(interp);
4834         if (!target->tap->enabled)
4835                 return jim_target_tap_disabled(interp);
4836
4837         e = target_wait_state(target, n->value, a);
4838         if (e != ERROR_OK) {
4839                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4840                 Jim_SetResultFormatted(goi.interp,
4841                                 "target: %s wait %s fails (%#s) %s",
4842                                 target_name(target), n->name,
4843                                 eObj, target_strerror_safe(e));
4844                 Jim_FreeNewObj(interp, eObj);
4845                 return JIM_ERR;
4846         }
4847         return JIM_OK;
4848 }
4849 /* List for human, Events defined for this target.
4850  * scripts/programs should use 'name cget -event NAME'
4851  */
4852 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4853 {
4854         struct command_context *cmd_ctx = current_command_context(interp);
4855         assert(cmd_ctx != NULL);
4856
4857         struct target *target = Jim_CmdPrivData(interp);
4858         struct target_event_action *teap = target->event_action;
4859         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4860                                    target->target_number,
4861                                    target_name(target));
4862         command_print(cmd_ctx, "%-25s | Body", "Event");
4863         command_print(cmd_ctx, "------------------------- | "
4864                         "----------------------------------------");
4865         while (teap) {
4866                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4867                 command_print(cmd_ctx, "%-25s | %s",
4868                                 opt->name, Jim_GetString(teap->body, NULL));
4869                 teap = teap->next;
4870         }
4871         command_print(cmd_ctx, "***END***");
4872         return JIM_OK;
4873 }
4874 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4875 {
4876         if (argc != 1) {
4877                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4878                 return JIM_ERR;
4879         }
4880         struct target *target = Jim_CmdPrivData(interp);
4881         Jim_SetResultString(interp, target_state_name(target), -1);
4882         return JIM_OK;
4883 }
4884 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4885 {
4886         Jim_GetOptInfo goi;
4887         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4888         if (goi.argc != 1) {
4889                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4890                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4891                 return JIM_ERR;
4892         }
4893         Jim_Nvp *n;
4894         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4895         if (e != JIM_OK) {
4896                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4897                 return e;
4898         }
4899         struct target *target = Jim_CmdPrivData(interp);
4900         target_handle_event(target, n->value);
4901         return JIM_OK;
4902 }
4903
4904 static const struct command_registration target_instance_command_handlers[] = {
4905         {
4906                 .name = "configure",
4907                 .mode = COMMAND_CONFIG,
4908                 .jim_handler = jim_target_configure,
4909                 .help  = "configure a new target for use",
4910                 .usage = "[target_attribute ...]",
4911         },
4912         {
4913                 .name = "cget",
4914                 .mode = COMMAND_ANY,
4915                 .jim_handler = jim_target_configure,
4916                 .help  = "returns the specified target attribute",
4917                 .usage = "target_attribute",
4918         },
4919         {
4920                 .name = "mww",
4921                 .mode = COMMAND_EXEC,
4922                 .jim_handler = jim_target_mw,
4923                 .help = "Write 32-bit word(s) to target memory",
4924                 .usage = "address data [count]",
4925         },
4926         {
4927                 .name = "mwh",
4928                 .mode = COMMAND_EXEC,
4929                 .jim_handler = jim_target_mw,
4930                 .help = "Write 16-bit half-word(s) to target memory",
4931                 .usage = "address data [count]",
4932         },
4933         {
4934                 .name = "mwb",
4935                 .mode = COMMAND_EXEC,
4936                 .jim_handler = jim_target_mw,
4937                 .help = "Write byte(s) to target memory",
4938                 .usage = "address data [count]",
4939         },
4940         {
4941                 .name = "mdw",
4942                 .mode = COMMAND_EXEC,
4943                 .jim_handler = jim_target_md,
4944                 .help = "Display target memory as 32-bit words",
4945                 .usage = "address [count]",
4946         },
4947         {
4948                 .name = "mdh",
4949                 .mode = COMMAND_EXEC,
4950                 .jim_handler = jim_target_md,
4951                 .help = "Display target memory as 16-bit half-words",
4952                 .usage = "address [count]",
4953         },
4954         {
4955                 .name = "mdb",
4956                 .mode = COMMAND_EXEC,
4957                 .jim_handler = jim_target_md,
4958                 .help = "Display target memory as 8-bit bytes",
4959                 .usage = "address [count]",
4960         },
4961         {
4962                 .name = "array2mem",
4963                 .mode = COMMAND_EXEC,
4964                 .jim_handler = jim_target_array2mem,
4965                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4966                         "to target memory",
4967                 .usage = "arrayname bitwidth address count",
4968         },
4969         {
4970                 .name = "mem2array",
4971                 .mode = COMMAND_EXEC,
4972                 .jim_handler = jim_target_mem2array,
4973                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4974                         "from target memory",
4975                 .usage = "arrayname bitwidth address count",
4976         },
4977         {
4978                 .name = "eventlist",
4979                 .mode = COMMAND_EXEC,
4980                 .jim_handler = jim_target_event_list,
4981                 .help = "displays a table of events defined for this target",
4982         },
4983         {
4984                 .name = "curstate",
4985                 .mode = COMMAND_EXEC,
4986                 .jim_handler = jim_target_current_state,
4987                 .help = "displays the current state of this target",
4988         },
4989         {
4990                 .name = "arp_examine",
4991                 .mode = COMMAND_EXEC,
4992                 .jim_handler = jim_target_examine,
4993                 .help = "used internally for reset processing",
4994         },
4995         {
4996                 .name = "arp_halt_gdb",
4997                 .mode = COMMAND_EXEC,
4998                 .jim_handler = jim_target_halt_gdb,
4999                 .help = "used internally for reset processing to halt GDB",
5000         },
5001         {
5002                 .name = "arp_poll",
5003                 .mode = COMMAND_EXEC,
5004                 .jim_handler = jim_target_poll,
5005                 .help = "used internally for reset processing",
5006         },
5007         {
5008                 .name = "arp_reset",
5009                 .mode = COMMAND_EXEC,
5010                 .jim_handler = jim_target_reset,
5011                 .help = "used internally for reset processing",
5012         },
5013         {
5014                 .name = "arp_halt",
5015                 .mode = COMMAND_EXEC,
5016                 .jim_handler = jim_target_halt,
5017                 .help = "used internally for reset processing",
5018         },
5019         {
5020                 .name = "arp_waitstate",
5021                 .mode = COMMAND_EXEC,
5022                 .jim_handler = jim_target_wait_state,
5023                 .help = "used internally for reset processing",
5024         },
5025         {
5026                 .name = "invoke-event",
5027                 .mode = COMMAND_EXEC,
5028                 .jim_handler = jim_target_invoke_event,
5029                 .help = "invoke handler for specified event",
5030                 .usage = "event_name",
5031         },
5032         COMMAND_REGISTRATION_DONE
5033 };
5034
5035 static int target_create(Jim_GetOptInfo *goi)
5036 {
5037         Jim_Obj *new_cmd;
5038         Jim_Cmd *cmd;
5039         const char *cp;
5040         char *cp2;
5041         int e;
5042         int x;
5043         struct target *target;
5044         struct command_context *cmd_ctx;
5045
5046         cmd_ctx = current_command_context(goi->interp);
5047         assert(cmd_ctx != NULL);
5048
5049         if (goi->argc < 3) {
5050                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5051                 return JIM_ERR;
5052         }
5053
5054         /* COMMAND */
5055         Jim_GetOpt_Obj(goi, &new_cmd);
5056         /* does this command exist? */
5057         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5058         if (cmd) {
5059                 cp = Jim_GetString(new_cmd, NULL);
5060                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5061                 return JIM_ERR;
5062         }
5063
5064         /* TYPE */
5065         e = Jim_GetOpt_String(goi, &cp2, NULL);
5066         if (e != JIM_OK)
5067                 return e;
5068         cp = cp2;
5069         /* now does target type exist */
5070         for (x = 0 ; target_types[x] ; x++) {
5071                 if (0 == strcmp(cp, target_types[x]->name)) {
5072                         /* found */
5073                         break;
5074                 }
5075
5076                 /* check for deprecated name */
5077                 if (target_types[x]->deprecated_name) {
5078                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5079                                 /* found */
5080                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5081                                 break;
5082                         }
5083                 }
5084         }
5085         if (target_types[x] == NULL) {
5086                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5087                 for (x = 0 ; target_types[x] ; x++) {
5088                         if (target_types[x + 1]) {
5089                                 Jim_AppendStrings(goi->interp,
5090                                                                    Jim_GetResult(goi->interp),
5091                                                                    target_types[x]->name,
5092                                                                    ", ", NULL);
5093                         } else {
5094                                 Jim_AppendStrings(goi->interp,
5095                                                                    Jim_GetResult(goi->interp),
5096                                                                    " or ",
5097                                                                    target_types[x]->name, NULL);
5098                         }
5099                 }
5100                 return JIM_ERR;
5101         }
5102
5103         /* Create it */
5104         target = calloc(1, sizeof(struct target));
5105         /* set target number */
5106         target->target_number = new_target_number();
5107
5108         /* allocate memory for each unique target type */
5109         target->type = calloc(1, sizeof(struct target_type));
5110
5111         memcpy(target->type, target_types[x], sizeof(struct target_type));
5112
5113         /* will be set by "-endian" */
5114         target->endianness = TARGET_ENDIAN_UNKNOWN;
5115
5116         /* default to first core, override with -coreid */
5117         target->coreid = 0;
5118
5119         target->working_area        = 0x0;
5120         target->working_area_size   = 0x0;
5121         target->working_areas       = NULL;
5122         target->backup_working_area = 0;
5123
5124         target->state               = TARGET_UNKNOWN;
5125         target->debug_reason        = DBG_REASON_UNDEFINED;
5126         target->reg_cache           = NULL;
5127         target->breakpoints         = NULL;
5128         target->watchpoints         = NULL;
5129         target->next                = NULL;
5130         target->arch_info           = NULL;
5131
5132         target->display             = 1;
5133
5134         target->halt_issued                     = false;
5135
5136         /* initialize trace information */
5137         target->trace_info = malloc(sizeof(struct trace));
5138         target->trace_info->num_trace_points         = 0;
5139         target->trace_info->trace_points_size        = 0;
5140         target->trace_info->trace_points             = NULL;
5141         target->trace_info->trace_history_size       = 0;
5142         target->trace_info->trace_history            = NULL;
5143         target->trace_info->trace_history_pos        = 0;
5144         target->trace_info->trace_history_overflowed = 0;
5145
5146         target->dbgmsg          = NULL;
5147         target->dbg_msg_enabled = 0;
5148
5149         target->endianness = TARGET_ENDIAN_UNKNOWN;
5150
5151         target->rtos = NULL;
5152         target->rtos_auto_detect = false;
5153
5154         /* Do the rest as "configure" options */
5155         goi->isconfigure = 1;
5156         e = target_configure(goi, target);
5157
5158         if (target->tap == NULL) {
5159                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5160                 e = JIM_ERR;
5161         }
5162
5163         if (e != JIM_OK) {
5164                 free(target->type);
5165                 free(target);
5166                 return e;
5167         }
5168
5169         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5170                 /* default endian to little if not specified */
5171                 target->endianness = TARGET_LITTLE_ENDIAN;
5172         }
5173
5174         /* incase variant is not set */
5175         if (!target->variant)
5176                 target->variant = strdup("");
5177
5178         cp = Jim_GetString(new_cmd, NULL);
5179         target->cmd_name = strdup(cp);
5180
5181         /* create the target specific commands */
5182         if (target->type->commands) {
5183                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5184                 if (ERROR_OK != e)
5185                         LOG_ERROR("unable to register '%s' commands", cp);
5186         }
5187         if (target->type->target_create)
5188                 (*(target->type->target_create))(target, goi->interp);
5189
5190         /* append to end of list */
5191         {
5192                 struct target **tpp;
5193                 tpp = &(all_targets);
5194                 while (*tpp)
5195                         tpp = &((*tpp)->next);
5196                 *tpp = target;
5197         }
5198
5199         /* now - create the new target name command */
5200         const struct command_registration target_subcommands[] = {
5201                 {
5202                         .chain = target_instance_command_handlers,
5203                 },
5204                 {
5205                         .chain = target->type->commands,
5206                 },
5207                 COMMAND_REGISTRATION_DONE
5208         };
5209         const struct command_registration target_commands[] = {
5210                 {
5211                         .name = cp,
5212                         .mode = COMMAND_ANY,
5213                         .help = "target command group",
5214                         .usage = "",
5215                         .chain = target_subcommands,
5216                 },
5217                 COMMAND_REGISTRATION_DONE
5218         };
5219         e = register_commands(cmd_ctx, NULL, target_commands);
5220         if (ERROR_OK != e)
5221                 return JIM_ERR;
5222
5223         struct command *c = command_find_in_context(cmd_ctx, cp);
5224         assert(c);
5225         command_set_handler_data(c, target);
5226
5227         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5228 }
5229
5230 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5231 {
5232         if (argc != 1) {
5233                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5234                 return JIM_ERR;
5235         }
5236         struct command_context *cmd_ctx = current_command_context(interp);
5237         assert(cmd_ctx != NULL);
5238
5239         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5240         return JIM_OK;
5241 }
5242
5243 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5244 {
5245         if (argc != 1) {
5246                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5247                 return JIM_ERR;
5248         }
5249         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5250         for (unsigned x = 0; NULL != target_types[x]; x++) {
5251                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5252                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5253         }
5254         return JIM_OK;
5255 }
5256
5257 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5258 {
5259         if (argc != 1) {
5260                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5261                 return JIM_ERR;
5262         }
5263         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5264         struct target *target = all_targets;
5265         while (target) {
5266                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5267                         Jim_NewStringObj(interp, target_name(target), -1));
5268                 target = target->next;
5269         }
5270         return JIM_OK;
5271 }
5272
5273 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5274 {
5275         int i;
5276         const char *targetname;
5277         int retval, len;
5278         struct target *target = (struct target *) NULL;
5279         struct target_list *head, *curr, *new;
5280         curr = (struct target_list *) NULL;
5281         head = (struct target_list *) NULL;
5282
5283         retval = 0;
5284         LOG_DEBUG("%d", argc);
5285         /* argv[1] = target to associate in smp
5286          * argv[2] = target to assoicate in smp
5287          * argv[3] ...
5288          */
5289
5290         for (i = 1; i < argc; i++) {
5291
5292                 targetname = Jim_GetString(argv[i], &len);
5293                 target = get_target(targetname);
5294                 LOG_DEBUG("%s ", targetname);
5295                 if (target) {
5296                         new = malloc(sizeof(struct target_list));
5297                         new->target = target;
5298                         new->next = (struct target_list *)NULL;
5299                         if (head == (struct target_list *)NULL) {
5300                                 head = new;
5301                                 curr = head;
5302                         } else {
5303                                 curr->next = new;
5304                                 curr = new;
5305                         }
5306                 }
5307         }
5308         /*  now parse the list of cpu and put the target in smp mode*/
5309         curr = head;
5310
5311         while (curr != (struct target_list *)NULL) {
5312                 target = curr->target;
5313                 target->smp = 1;
5314                 target->head = head;
5315                 curr = curr->next;
5316         }
5317
5318         if (target && target->rtos)
5319                 retval = rtos_smp_init(head->target);
5320
5321         return retval;
5322 }
5323
5324
5325 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5326 {
5327         Jim_GetOptInfo goi;
5328         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5329         if (goi.argc < 3) {
5330                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5331                         "<name> <target_type> [<target_options> ...]");
5332                 return JIM_ERR;
5333         }
5334         return target_create(&goi);
5335 }
5336
5337 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5338 {
5339         Jim_GetOptInfo goi;
5340         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5341
5342         /* It's OK to remove this mechanism sometime after August 2010 or so */
5343         LOG_WARNING("don't use numbers as target identifiers; use names");
5344         if (goi.argc != 1) {
5345                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5346                 return JIM_ERR;
5347         }
5348         jim_wide w;
5349         int e = Jim_GetOpt_Wide(&goi, &w);
5350         if (e != JIM_OK)
5351                 return JIM_ERR;
5352
5353         struct target *target;
5354         for (target = all_targets; NULL != target; target = target->next) {
5355                 if (target->target_number != w)
5356                         continue;
5357
5358                 Jim_SetResultString(goi.interp, target_name(target), -1);
5359                 return JIM_OK;
5360         }
5361         {
5362                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5363                 Jim_SetResultFormatted(goi.interp,
5364                         "Target: number %#s does not exist", wObj);
5365                 Jim_FreeNewObj(interp, wObj);
5366         }
5367         return JIM_ERR;
5368 }
5369
5370 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5371 {
5372         if (argc != 1) {
5373                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5374                 return JIM_ERR;
5375         }
5376         unsigned count = 0;
5377         struct target *target = all_targets;
5378         while (NULL != target) {
5379                 target = target->next;
5380                 count++;
5381         }
5382         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5383         return JIM_OK;
5384 }
5385
5386 static const struct command_registration target_subcommand_handlers[] = {
5387         {
5388                 .name = "init",
5389                 .mode = COMMAND_CONFIG,
5390                 .handler = handle_target_init_command,
5391                 .help = "initialize targets",
5392         },
5393         {
5394                 .name = "create",
5395                 /* REVISIT this should be COMMAND_CONFIG ... */
5396                 .mode = COMMAND_ANY,
5397                 .jim_handler = jim_target_create,
5398                 .usage = "name type '-chain-position' name [options ...]",
5399                 .help = "Creates and selects a new target",
5400         },
5401         {
5402                 .name = "current",
5403                 .mode = COMMAND_ANY,
5404                 .jim_handler = jim_target_current,
5405                 .help = "Returns the currently selected target",
5406         },
5407         {
5408                 .name = "types",
5409                 .mode = COMMAND_ANY,
5410                 .jim_handler = jim_target_types,
5411                 .help = "Returns the available target types as "
5412                                 "a list of strings",
5413         },
5414         {
5415                 .name = "names",
5416                 .mode = COMMAND_ANY,
5417                 .jim_handler = jim_target_names,
5418                 .help = "Returns the names of all targets as a list of strings",
5419         },
5420         {
5421                 .name = "number",
5422                 .mode = COMMAND_ANY,
5423                 .jim_handler = jim_target_number,
5424                 .usage = "number",
5425                 .help = "Returns the name of the numbered target "
5426                         "(DEPRECATED)",
5427         },
5428         {
5429                 .name = "count",
5430                 .mode = COMMAND_ANY,
5431                 .jim_handler = jim_target_count,
5432                 .help = "Returns the number of targets as an integer "
5433                         "(DEPRECATED)",
5434         },
5435         {
5436                 .name = "smp",
5437                 .mode = COMMAND_ANY,
5438                 .jim_handler = jim_target_smp,
5439                 .usage = "targetname1 targetname2 ...",
5440                 .help = "gather several target in a smp list"
5441         },
5442
5443         COMMAND_REGISTRATION_DONE
5444 };
5445
5446 struct FastLoad {
5447         uint32_t address;
5448         uint8_t *data;
5449         int length;
5450
5451 };
5452
5453 static int fastload_num;
5454 static struct FastLoad *fastload;
5455
5456 static void free_fastload(void)
5457 {
5458         if (fastload != NULL) {
5459                 int i;
5460                 for (i = 0; i < fastload_num; i++) {
5461                         if (fastload[i].data)
5462                                 free(fastload[i].data);
5463                 }
5464                 free(fastload);
5465                 fastload = NULL;
5466         }
5467 }
5468
5469 COMMAND_HANDLER(handle_fast_load_image_command)
5470 {
5471         uint8_t *buffer;
5472         size_t buf_cnt;
5473         uint32_t image_size;
5474         uint32_t min_address = 0;
5475         uint32_t max_address = 0xffffffff;
5476         int i;
5477
5478         struct image image;
5479
5480         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5481                         &image, &min_address, &max_address);
5482         if (ERROR_OK != retval)
5483                 return retval;
5484
5485         struct duration bench;
5486         duration_start(&bench);
5487
5488         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5489         if (retval != ERROR_OK)
5490                 return retval;
5491
5492         image_size = 0x0;
5493         retval = ERROR_OK;
5494         fastload_num = image.num_sections;
5495         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5496         if (fastload == NULL) {
5497                 command_print(CMD_CTX, "out of memory");
5498                 image_close(&image);
5499                 return ERROR_FAIL;
5500         }
5501         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5502         for (i = 0; i < image.num_sections; i++) {
5503                 buffer = malloc(image.sections[i].size);
5504                 if (buffer == NULL) {
5505                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5506                                                   (int)(image.sections[i].size));
5507                         retval = ERROR_FAIL;
5508                         break;
5509                 }
5510
5511                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5512                 if (retval != ERROR_OK) {
5513                         free(buffer);
5514                         break;
5515                 }
5516
5517                 uint32_t offset = 0;
5518                 uint32_t length = buf_cnt;
5519
5520                 /* DANGER!!! beware of unsigned comparision here!!! */
5521
5522                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5523                                 (image.sections[i].base_address < max_address)) {
5524                         if (image.sections[i].base_address < min_address) {
5525                                 /* clip addresses below */
5526                                 offset += min_address-image.sections[i].base_address;
5527                                 length -= offset;
5528                         }
5529
5530                         if (image.sections[i].base_address + buf_cnt > max_address)
5531                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5532
5533                         fastload[i].address = image.sections[i].base_address + offset;
5534                         fastload[i].data = malloc(length);
5535                         if (fastload[i].data == NULL) {
5536                                 free(buffer);
5537                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5538                                                           length);
5539                                 retval = ERROR_FAIL;
5540                                 break;
5541                         }
5542                         memcpy(fastload[i].data, buffer + offset, length);
5543                         fastload[i].length = length;
5544
5545                         image_size += length;
5546                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5547                                                   (unsigned int)length,
5548                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5549                 }
5550
5551                 free(buffer);
5552         }
5553
5554         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5555                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5556                                 "in %fs (%0.3f KiB/s)", image_size,
5557                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5558
5559                 command_print(CMD_CTX,
5560                                 "WARNING: image has not been loaded to target!"
5561                                 "You can issue a 'fast_load' to finish loading.");
5562         }
5563
5564         image_close(&image);
5565
5566         if (retval != ERROR_OK)
5567                 free_fastload();
5568
5569         return retval;
5570 }
5571
5572 COMMAND_HANDLER(handle_fast_load_command)
5573 {
5574         if (CMD_ARGC > 0)
5575                 return ERROR_COMMAND_SYNTAX_ERROR;
5576         if (fastload == NULL) {
5577                 LOG_ERROR("No image in memory");
5578                 return ERROR_FAIL;
5579         }
5580         int i;
5581         int ms = timeval_ms();
5582         int size = 0;
5583         int retval = ERROR_OK;
5584         for (i = 0; i < fastload_num; i++) {
5585                 struct target *target = get_current_target(CMD_CTX);
5586                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5587                                           (unsigned int)(fastload[i].address),
5588                                           (unsigned int)(fastload[i].length));
5589                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5590                 if (retval != ERROR_OK)
5591                         break;
5592                 size += fastload[i].length;
5593         }
5594         if (retval == ERROR_OK) {
5595                 int after = timeval_ms();
5596                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5597         }
5598         return retval;
5599 }
5600
5601 static const struct command_registration target_command_handlers[] = {
5602         {
5603                 .name = "targets",
5604                 .handler = handle_targets_command,
5605                 .mode = COMMAND_ANY,
5606                 .help = "change current default target (one parameter) "
5607                         "or prints table of all targets (no parameters)",
5608                 .usage = "[target]",
5609         },
5610         {
5611                 .name = "target",
5612                 .mode = COMMAND_CONFIG,
5613                 .help = "configure target",
5614
5615                 .chain = target_subcommand_handlers,
5616         },
5617         COMMAND_REGISTRATION_DONE
5618 };
5619
5620 int target_register_commands(struct command_context *cmd_ctx)
5621 {
5622         return register_commands(cmd_ctx, NULL, target_command_handlers);
5623 }
5624
5625 static bool target_reset_nag = true;
5626
5627 bool get_target_reset_nag(void)
5628 {
5629         return target_reset_nag;
5630 }
5631
5632 COMMAND_HANDLER(handle_target_reset_nag)
5633 {
5634         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5635                         &target_reset_nag, "Nag after each reset about options to improve "
5636                         "performance");
5637 }
5638
5639 COMMAND_HANDLER(handle_ps_command)
5640 {
5641         struct target *target = get_current_target(CMD_CTX);
5642         char *display;
5643         if (target->state != TARGET_HALTED) {
5644                 LOG_INFO("target not halted !!");
5645                 return ERROR_OK;
5646         }
5647
5648         if ((target->rtos) && (target->rtos->type)
5649                         && (target->rtos->type->ps_command)) {
5650                 display = target->rtos->type->ps_command(target);
5651                 command_print(CMD_CTX, "%s", display);
5652                 free(display);
5653                 return ERROR_OK;
5654         } else {
5655                 LOG_INFO("failed");
5656                 return ERROR_TARGET_FAILURE;
5657         }
5658 }
5659
5660 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5661 {
5662         if (text != NULL)
5663                 command_print_sameline(cmd_ctx, "%s", text);
5664         for (int i = 0; i < size; i++)
5665                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5666         command_print(cmd_ctx, " ");
5667 }
5668
5669 COMMAND_HANDLER(handle_test_mem_access_command)
5670 {
5671         struct target *target = get_current_target(CMD_CTX);
5672         uint32_t test_size;
5673         int retval = ERROR_OK;
5674
5675         if (target->state != TARGET_HALTED) {
5676                 LOG_INFO("target not halted !!");
5677                 return ERROR_FAIL;
5678         }
5679
5680         if (CMD_ARGC != 1)
5681                 return ERROR_COMMAND_SYNTAX_ERROR;
5682
5683         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5684
5685         /* Test reads */
5686         size_t num_bytes = test_size + 4;
5687
5688         struct working_area *wa = NULL;
5689         retval = target_alloc_working_area(target, num_bytes, &wa);
5690         if (retval != ERROR_OK) {
5691                 LOG_ERROR("Not enough working area");
5692                 return ERROR_FAIL;
5693         }
5694
5695         uint8_t *test_pattern = malloc(num_bytes);
5696
5697         for (size_t i = 0; i < num_bytes; i++)
5698                 test_pattern[i] = rand();
5699
5700         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5701         if (retval != ERROR_OK) {
5702                 LOG_ERROR("Test pattern write failed");
5703                 goto out;
5704         }
5705
5706         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5707                 for (int size = 1; size <= 4; size *= 2) {
5708                         for (int offset = 0; offset < 4; offset++) {
5709                                 uint32_t count = test_size / size;
5710                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5711                                 uint8_t *read_ref = malloc(host_bufsiz);
5712                                 uint8_t *read_buf = malloc(host_bufsiz);
5713
5714                                 for (size_t i = 0; i < host_bufsiz; i++) {
5715                                         read_ref[i] = rand();
5716                                         read_buf[i] = read_ref[i];
5717                                 }
5718                                 command_print_sameline(CMD_CTX,
5719                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5720                                                 size, offset, host_offset ? "un" : "");
5721
5722                                 struct duration bench;
5723                                 duration_start(&bench);
5724
5725                                 retval = target_read_memory(target, wa->address + offset, size, count,
5726                                                 read_buf + size + host_offset);
5727
5728                                 duration_measure(&bench);
5729
5730                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5731                                         command_print(CMD_CTX, "Unsupported alignment");
5732                                         goto next;
5733                                 } else if (retval != ERROR_OK) {
5734                                         command_print(CMD_CTX, "Memory read failed");
5735                                         goto next;
5736                                 }
5737
5738                                 /* replay on host */
5739                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5740
5741                                 /* check result */
5742                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5743                                 if (result == 0) {
5744                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5745                                                         duration_elapsed(&bench),
5746                                                         duration_kbps(&bench, count * size));
5747                                 } else {
5748                                         command_print(CMD_CTX, "Compare failed");
5749                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5750                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5751                                 }
5752 next:
5753                                 free(read_ref);
5754                                 free(read_buf);
5755                         }
5756                 }
5757         }
5758
5759 out:
5760         free(test_pattern);
5761
5762         if (wa != NULL)
5763                 target_free_working_area(target, wa);
5764
5765         /* Test writes */
5766         num_bytes = test_size + 4 + 4 + 4;
5767
5768         retval = target_alloc_working_area(target, num_bytes, &wa);
5769         if (retval != ERROR_OK) {
5770                 LOG_ERROR("Not enough working area");
5771                 return ERROR_FAIL;
5772         }
5773
5774         test_pattern = malloc(num_bytes);
5775
5776         for (size_t i = 0; i < num_bytes; i++)
5777                 test_pattern[i] = rand();
5778
5779         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5780                 for (int size = 1; size <= 4; size *= 2) {
5781                         for (int offset = 0; offset < 4; offset++) {
5782                                 uint32_t count = test_size / size;
5783                                 size_t host_bufsiz = count * size + host_offset;
5784                                 uint8_t *read_ref = malloc(num_bytes);
5785                                 uint8_t *read_buf = malloc(num_bytes);
5786                                 uint8_t *write_buf = malloc(host_bufsiz);
5787
5788                                 for (size_t i = 0; i < host_bufsiz; i++)
5789                                         write_buf[i] = rand();
5790                                 command_print_sameline(CMD_CTX,
5791                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5792                                                 size, offset, host_offset ? "un" : "");
5793
5794                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5795                                 if (retval != ERROR_OK) {
5796                                         command_print(CMD_CTX, "Test pattern write failed");
5797                                         goto nextw;
5798                                 }
5799
5800                                 /* replay on host */
5801                                 memcpy(read_ref, test_pattern, num_bytes);
5802                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5803
5804                                 struct duration bench;
5805                                 duration_start(&bench);
5806
5807                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5808                                                 write_buf + host_offset);
5809
5810                                 duration_measure(&bench);
5811
5812                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5813                                         command_print(CMD_CTX, "Unsupported alignment");
5814                                         goto nextw;
5815                                 } else if (retval != ERROR_OK) {
5816                                         command_print(CMD_CTX, "Memory write failed");
5817                                         goto nextw;
5818                                 }
5819
5820                                 /* read back */
5821                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5822                                 if (retval != ERROR_OK) {
5823                                         command_print(CMD_CTX, "Test pattern write failed");
5824                                         goto nextw;
5825                                 }
5826
5827                                 /* check result */
5828                                 int result = memcmp(read_ref, read_buf, num_bytes);
5829                                 if (result == 0) {
5830                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5831                                                         duration_elapsed(&bench),
5832                                                         duration_kbps(&bench, count * size));
5833                                 } else {
5834                                         command_print(CMD_CTX, "Compare failed");
5835                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5836                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5837                                 }
5838 nextw:
5839                                 free(read_ref);
5840                                 free(read_buf);
5841                         }
5842                 }
5843         }
5844
5845         free(test_pattern);
5846
5847         if (wa != NULL)
5848                 target_free_working_area(target, wa);
5849         return retval;
5850 }
5851
5852 static const struct command_registration target_exec_command_handlers[] = {
5853         {
5854                 .name = "fast_load_image",
5855                 .handler = handle_fast_load_image_command,
5856                 .mode = COMMAND_ANY,
5857                 .help = "Load image into server memory for later use by "
5858                         "fast_load; primarily for profiling",
5859                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5860                         "[min_address [max_length]]",
5861         },
5862         {
5863                 .name = "fast_load",
5864                 .handler = handle_fast_load_command,
5865                 .mode = COMMAND_EXEC,
5866                 .help = "loads active fast load image to current target "
5867                         "- mainly for profiling purposes",
5868                 .usage = "",
5869         },
5870         {
5871                 .name = "profile",
5872                 .handler = handle_profile_command,
5873                 .mode = COMMAND_EXEC,
5874                 .usage = "seconds filename [start end]",
5875                 .help = "profiling samples the CPU PC",
5876         },
5877         /** @todo don't register virt2phys() unless target supports it */
5878         {
5879                 .name = "virt2phys",
5880                 .handler = handle_virt2phys_command,
5881                 .mode = COMMAND_ANY,
5882                 .help = "translate a virtual address into a physical address",
5883                 .usage = "virtual_address",
5884         },
5885         {
5886                 .name = "reg",
5887                 .handler = handle_reg_command,
5888                 .mode = COMMAND_EXEC,
5889                 .help = "display (reread from target with \"force\") or set a register; "
5890                         "with no arguments, displays all registers and their values",
5891                 .usage = "[(register_number|register_name) [(value|'force')]]",
5892         },
5893         {
5894                 .name = "poll",
5895                 .handler = handle_poll_command,
5896                 .mode = COMMAND_EXEC,
5897                 .help = "poll target state; or reconfigure background polling",
5898                 .usage = "['on'|'off']",
5899         },
5900         {
5901                 .name = "wait_halt",
5902                 .handler = handle_wait_halt_command,
5903                 .mode = COMMAND_EXEC,
5904                 .help = "wait up to the specified number of milliseconds "
5905                         "(default 5000) for a previously requested halt",
5906                 .usage = "[milliseconds]",
5907         },
5908         {
5909                 .name = "halt",
5910                 .handler = handle_halt_command,
5911                 .mode = COMMAND_EXEC,
5912                 .help = "request target to halt, then wait up to the specified"
5913                         "number of milliseconds (default 5000) for it to complete",
5914                 .usage = "[milliseconds]",
5915         },
5916         {
5917                 .name = "resume",
5918                 .handler = handle_resume_command,
5919                 .mode = COMMAND_EXEC,
5920                 .help = "resume target execution from current PC or address",
5921                 .usage = "[address]",
5922         },
5923         {
5924                 .name = "reset",
5925                 .handler = handle_reset_command,
5926                 .mode = COMMAND_EXEC,
5927                 .usage = "[run|halt|init]",
5928                 .help = "Reset all targets into the specified mode."
5929                         "Default reset mode is run, if not given.",
5930         },
5931         {
5932                 .name = "soft_reset_halt",
5933                 .handler = handle_soft_reset_halt_command,
5934                 .mode = COMMAND_EXEC,
5935                 .usage = "",
5936                 .help = "halt the target and do a soft reset",
5937         },
5938         {
5939                 .name = "step",
5940                 .handler = handle_step_command,
5941                 .mode = COMMAND_EXEC,
5942                 .help = "step one instruction from current PC or address",
5943                 .usage = "[address]",
5944         },
5945         {
5946                 .name = "mdw",
5947                 .handler = handle_md_command,
5948                 .mode = COMMAND_EXEC,
5949                 .help = "display memory words",
5950                 .usage = "['phys'] address [count]",
5951         },
5952         {
5953                 .name = "mdh",
5954                 .handler = handle_md_command,
5955                 .mode = COMMAND_EXEC,
5956                 .help = "display memory half-words",
5957                 .usage = "['phys'] address [count]",
5958         },
5959         {
5960                 .name = "mdb",
5961                 .handler = handle_md_command,
5962                 .mode = COMMAND_EXEC,
5963                 .help = "display memory bytes",
5964                 .usage = "['phys'] address [count]",
5965         },
5966         {
5967                 .name = "mww",
5968                 .handler = handle_mw_command,
5969                 .mode = COMMAND_EXEC,
5970                 .help = "write memory word",
5971                 .usage = "['phys'] address value [count]",
5972         },
5973         {
5974                 .name = "mwh",
5975                 .handler = handle_mw_command,
5976                 .mode = COMMAND_EXEC,
5977                 .help = "write memory half-word",
5978                 .usage = "['phys'] address value [count]",
5979         },
5980         {
5981                 .name = "mwb",
5982                 .handler = handle_mw_command,
5983                 .mode = COMMAND_EXEC,
5984                 .help = "write memory byte",
5985                 .usage = "['phys'] address value [count]",
5986         },
5987         {
5988                 .name = "bp",
5989                 .handler = handle_bp_command,
5990                 .mode = COMMAND_EXEC,
5991                 .help = "list or set hardware or software breakpoint",
5992                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5993         },
5994         {
5995                 .name = "rbp",
5996                 .handler = handle_rbp_command,
5997                 .mode = COMMAND_EXEC,
5998                 .help = "remove breakpoint",
5999                 .usage = "address",
6000         },
6001         {
6002                 .name = "wp",
6003                 .handler = handle_wp_command,
6004                 .mode = COMMAND_EXEC,
6005                 .help = "list (no params) or create watchpoints",
6006                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6007         },
6008         {
6009                 .name = "rwp",
6010                 .handler = handle_rwp_command,
6011                 .mode = COMMAND_EXEC,
6012                 .help = "remove watchpoint",
6013                 .usage = "address",
6014         },
6015         {
6016                 .name = "load_image",
6017                 .handler = handle_load_image_command,
6018                 .mode = COMMAND_EXEC,
6019                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6020                         "[min_address] [max_length]",
6021         },
6022         {
6023                 .name = "dump_image",
6024                 .handler = handle_dump_image_command,
6025                 .mode = COMMAND_EXEC,
6026                 .usage = "filename address size",
6027         },
6028         {
6029                 .name = "verify_image",
6030                 .handler = handle_verify_image_command,
6031                 .mode = COMMAND_EXEC,
6032                 .usage = "filename [offset [type]]",
6033         },
6034         {
6035                 .name = "test_image",
6036                 .handler = handle_test_image_command,
6037                 .mode = COMMAND_EXEC,
6038                 .usage = "filename [offset [type]]",
6039         },
6040         {
6041                 .name = "mem2array",
6042                 .mode = COMMAND_EXEC,
6043                 .jim_handler = jim_mem2array,
6044                 .help = "read 8/16/32 bit memory and return as a TCL array "
6045                         "for script processing",
6046                 .usage = "arrayname bitwidth address count",
6047         },
6048         {
6049                 .name = "array2mem",
6050                 .mode = COMMAND_EXEC,
6051                 .jim_handler = jim_array2mem,
6052                 .help = "convert a TCL array to memory locations "
6053                         "and write the 8/16/32 bit values",
6054                 .usage = "arrayname bitwidth address count",
6055         },
6056         {
6057                 .name = "reset_nag",
6058                 .handler = handle_target_reset_nag,
6059                 .mode = COMMAND_ANY,
6060                 .help = "Nag after each reset about options that could have been "
6061                                 "enabled to improve performance. ",
6062                 .usage = "['enable'|'disable']",
6063         },
6064         {
6065                 .name = "ps",
6066                 .handler = handle_ps_command,
6067                 .mode = COMMAND_EXEC,
6068                 .help = "list all tasks ",
6069                 .usage = " ",
6070         },
6071         {
6072                 .name = "test_mem_access",
6073                 .handler = handle_test_mem_access_command,
6074                 .mode = COMMAND_EXEC,
6075                 .help = "Test the target's memory access functions",
6076                 .usage = "size",
6077         },
6078
6079         COMMAND_REGISTRATION_DONE
6080 };
6081 static int target_register_user_commands(struct command_context *cmd_ctx)
6082 {
6083         int retval = ERROR_OK;
6084         retval = target_request_register_commands(cmd_ctx);
6085         if (retval != ERROR_OK)
6086                 return retval;
6087
6088         retval = trace_register_commands(cmd_ctx);
6089         if (retval != ERROR_OK)
6090                 return retval;
6091
6092
6093         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6094 }