]> git.sur5r.net Git - openocd/blob - src/target/target.c
target/target: call event handlers around examine when polling resumes
[openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64                 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66                 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68                 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70                 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73                 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75                 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109         &arm7tdmi_target,
110         &arm9tdmi_target,
111         &arm920t_target,
112         &arm720t_target,
113         &arm966e_target,
114         &arm946e_target,
115         &arm926ejs_target,
116         &fa526_target,
117         &feroceon_target,
118         &dragonite_target,
119         &xscale_target,
120         &cortexm_target,
121         &cortexa_target,
122         &cortexr4_target,
123         &arm11_target,
124         &mips_m4k_target,
125         &avr_target,
126         &dsp563xx_target,
127         &dsp5680xx_target,
128         &testee_target,
129         &avr32_ap7k_target,
130         &hla_target,
131         &nds32_v2_target,
132         &nds32_v3_target,
133         &nds32_v3m_target,
134         &or1k_target,
135         &quark_x10xx_target,
136         NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 static const int polling_interval = 100;
144
145 static const Jim_Nvp nvp_assert[] = {
146         { .name = "assert", NVP_ASSERT },
147         { .name = "deassert", NVP_DEASSERT },
148         { .name = "T", NVP_ASSERT },
149         { .name = "F", NVP_DEASSERT },
150         { .name = "t", NVP_ASSERT },
151         { .name = "f", NVP_DEASSERT },
152         { .name = NULL, .value = -1 }
153 };
154
155 static const Jim_Nvp nvp_error_target[] = {
156         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
157         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
158         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
159         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
160         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
161         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
162         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
163         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
164         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
165         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
166         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
167         { .value = -1, .name = NULL }
168 };
169
170 static const char *target_strerror_safe(int err)
171 {
172         const Jim_Nvp *n;
173
174         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
175         if (n->name == NULL)
176                 return "unknown";
177         else
178                 return n->name;
179 }
180
181 static const Jim_Nvp nvp_target_event[] = {
182
183         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
184         { .value = TARGET_EVENT_HALTED, .name = "halted" },
185         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
186         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
187         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
188
189         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
190         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
191
192         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
193         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
194         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
195         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
196         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
197         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
198         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
199         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
200         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
201         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
202         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
203         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
204
205         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
206         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
207
208         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
209         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
210
211         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
212         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
213
214         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
215         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
216
217         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
218         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
219
220         { .name = NULL, .value = -1 }
221 };
222
223 static const Jim_Nvp nvp_target_state[] = {
224         { .name = "unknown", .value = TARGET_UNKNOWN },
225         { .name = "running", .value = TARGET_RUNNING },
226         { .name = "halted",  .value = TARGET_HALTED },
227         { .name = "reset",   .value = TARGET_RESET },
228         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
229         { .name = NULL, .value = -1 },
230 };
231
232 static const Jim_Nvp nvp_target_debug_reason[] = {
233         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
234         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
235         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
236         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
237         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
238         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
239         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
240         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
241         { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_target_endian[] = {
245         { .name = "big",    .value = TARGET_BIG_ENDIAN },
246         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
247         { .name = "be",     .value = TARGET_BIG_ENDIAN },
248         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
249         { .name = NULL,     .value = -1 },
250 };
251
252 static const Jim_Nvp nvp_reset_modes[] = {
253         { .name = "unknown", .value = RESET_UNKNOWN },
254         { .name = "run"    , .value = RESET_RUN },
255         { .name = "halt"   , .value = RESET_HALT },
256         { .name = "init"   , .value = RESET_INIT },
257         { .name = NULL     , .value = -1 },
258 };
259
260 const char *debug_reason_name(struct target *t)
261 {
262         const char *cp;
263
264         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
265                         t->debug_reason)->name;
266         if (!cp) {
267                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
268                 cp = "(*BUG*unknown*BUG*)";
269         }
270         return cp;
271 }
272
273 const char *target_state_name(struct target *t)
274 {
275         const char *cp;
276         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
277         if (!cp) {
278                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
279                 cp = "(*BUG*unknown*BUG*)";
280         }
281         return cp;
282 }
283
284 const char *target_event_name(enum target_event event)
285 {
286         const char *cp;
287         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
288         if (!cp) {
289                 LOG_ERROR("Invalid target event: %d", (int)(event));
290                 cp = "(*BUG*unknown*BUG*)";
291         }
292         return cp;
293 }
294
295 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
296 {
297         const char *cp;
298         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
299         if (!cp) {
300                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
301                 cp = "(*BUG*unknown*BUG*)";
302         }
303         return cp;
304 }
305
306 /* determine the number of the new target */
307 static int new_target_number(void)
308 {
309         struct target *t;
310         int x;
311
312         /* number is 0 based */
313         x = -1;
314         t = all_targets;
315         while (t) {
316                 if (x < t->target_number)
317                         x = t->target_number;
318                 t = t->next;
319         }
320         return x + 1;
321 }
322
323 /* read a uint64_t from a buffer in target memory endianness */
324 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
325 {
326         if (target->endianness == TARGET_LITTLE_ENDIAN)
327                 return le_to_h_u64(buffer);
328         else
329                 return be_to_h_u64(buffer);
330 }
331
332 /* read a uint32_t from a buffer in target memory endianness */
333 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
334 {
335         if (target->endianness == TARGET_LITTLE_ENDIAN)
336                 return le_to_h_u32(buffer);
337         else
338                 return be_to_h_u32(buffer);
339 }
340
341 /* read a uint24_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 return le_to_h_u24(buffer);
346         else
347                 return be_to_h_u24(buffer);
348 }
349
350 /* read a uint16_t from a buffer in target memory endianness */
351 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 return le_to_h_u16(buffer);
355         else
356                 return be_to_h_u16(buffer);
357 }
358
359 /* read a uint8_t from a buffer in target memory endianness */
360 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
361 {
362         return *buffer & 0x0ff;
363 }
364
365 /* write a uint64_t to a buffer in target memory endianness */
366 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
367 {
368         if (target->endianness == TARGET_LITTLE_ENDIAN)
369                 h_u64_to_le(buffer, value);
370         else
371                 h_u64_to_be(buffer, value);
372 }
373
374 /* write a uint32_t to a buffer in target memory endianness */
375 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
376 {
377         if (target->endianness == TARGET_LITTLE_ENDIAN)
378                 h_u32_to_le(buffer, value);
379         else
380                 h_u32_to_be(buffer, value);
381 }
382
383 /* write a uint24_t to a buffer in target memory endianness */
384 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
385 {
386         if (target->endianness == TARGET_LITTLE_ENDIAN)
387                 h_u24_to_le(buffer, value);
388         else
389                 h_u24_to_be(buffer, value);
390 }
391
392 /* write a uint16_t to a buffer in target memory endianness */
393 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
394 {
395         if (target->endianness == TARGET_LITTLE_ENDIAN)
396                 h_u16_to_le(buffer, value);
397         else
398                 h_u16_to_be(buffer, value);
399 }
400
401 /* write a uint8_t to a buffer in target memory endianness */
402 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
403 {
404         *buffer = value;
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
409 {
410         uint32_t i;
411         for (i = 0; i < count; i++)
412                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
417 {
418         uint32_t i;
419         for (i = 0; i < count; i++)
420                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
429 }
430
431 /* write a uint64_t array to a buffer in target memory endianness */
432 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
433 {
434         uint32_t i;
435         for (i = 0; i < count; i++)
436                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
437 }
438
439 /* write a uint32_t array to a buffer in target memory endianness */
440 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
441 {
442         uint32_t i;
443         for (i = 0; i < count; i++)
444                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
445 }
446
447 /* write a uint16_t array to a buffer in target memory endianness */
448 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
449 {
450         uint32_t i;
451         for (i = 0; i < count; i++)
452                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
453 }
454
455 /* return a pointer to a configured target; id is name or number */
456 struct target *get_target(const char *id)
457 {
458         struct target *target;
459
460         /* try as tcltarget name */
461         for (target = all_targets; target; target = target->next) {
462                 if (target_name(target) == NULL)
463                         continue;
464                 if (strcmp(id, target_name(target)) == 0)
465                         return target;
466         }
467
468         /* It's OK to remove this fallback sometime after August 2010 or so */
469
470         /* no match, try as number */
471         unsigned num;
472         if (parse_uint(id, &num) != ERROR_OK)
473                 return NULL;
474
475         for (target = all_targets; target; target = target->next) {
476                 if (target->target_number == (int)num) {
477                         LOG_WARNING("use '%s' as target identifier, not '%u'",
478                                         target_name(target), num);
479                         return target;
480                 }
481         }
482
483         return NULL;
484 }
485
486 /* returns a pointer to the n-th configured target */
487 static struct target *get_target_by_num(int num)
488 {
489         struct target *target = all_targets;
490
491         while (target) {
492                 if (target->target_number == num)
493                         return target;
494                 target = target->next;
495         }
496
497         return NULL;
498 }
499
500 struct target *get_current_target(struct command_context *cmd_ctx)
501 {
502         struct target *target = get_target_by_num(cmd_ctx->current_target);
503
504         if (target == NULL) {
505                 LOG_ERROR("BUG: current_target out of bounds");
506                 exit(-1);
507         }
508
509         return target;
510 }
511
512 int target_poll(struct target *target)
513 {
514         int retval;
515
516         /* We can't poll until after examine */
517         if (!target_was_examined(target)) {
518                 /* Fail silently lest we pollute the log */
519                 return ERROR_FAIL;
520         }
521
522         retval = target->type->poll(target);
523         if (retval != ERROR_OK)
524                 return retval;
525
526         if (target->halt_issued) {
527                 if (target->state == TARGET_HALTED)
528                         target->halt_issued = false;
529                 else {
530                         long long t = timeval_ms() - target->halt_issued_time;
531                         if (t > DEFAULT_HALT_TIMEOUT) {
532                                 target->halt_issued = false;
533                                 LOG_INFO("Halt timed out, wake up GDB.");
534                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
535                         }
536                 }
537         }
538
539         return ERROR_OK;
540 }
541
542 int target_halt(struct target *target)
543 {
544         int retval;
545         /* We can't poll until after examine */
546         if (!target_was_examined(target)) {
547                 LOG_ERROR("Target not examined yet");
548                 return ERROR_FAIL;
549         }
550
551         retval = target->type->halt(target);
552         if (retval != ERROR_OK)
553                 return retval;
554
555         target->halt_issued = true;
556         target->halt_issued_time = timeval_ms();
557
558         return ERROR_OK;
559 }
560
561 /**
562  * Make the target (re)start executing using its saved execution
563  * context (possibly with some modifications).
564  *
565  * @param target Which target should start executing.
566  * @param current True to use the target's saved program counter instead
567  *      of the address parameter
568  * @param address Optionally used as the program counter.
569  * @param handle_breakpoints True iff breakpoints at the resumption PC
570  *      should be skipped.  (For example, maybe execution was stopped by
571  *      such a breakpoint, in which case it would be counterprodutive to
572  *      let it re-trigger.
573  * @param debug_execution False if all working areas allocated by OpenOCD
574  *      should be released and/or restored to their original contents.
575  *      (This would for example be true to run some downloaded "helper"
576  *      algorithm code, which resides in one such working buffer and uses
577  *      another for data storage.)
578  *
579  * @todo Resolve the ambiguity about what the "debug_execution" flag
580  * signifies.  For example, Target implementations don't agree on how
581  * it relates to invalidation of the register cache, or to whether
582  * breakpoints and watchpoints should be enabled.  (It would seem wrong
583  * to enable breakpoints when running downloaded "helper" algorithms
584  * (debug_execution true), since the breakpoints would be set to match
585  * target firmware being debugged, not the helper algorithm.... and
586  * enabling them could cause such helpers to malfunction (for example,
587  * by overwriting data with a breakpoint instruction.  On the other
588  * hand the infrastructure for running such helpers might use this
589  * procedure but rely on hardware breakpoint to detect termination.)
590  */
591 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
592 {
593         int retval;
594
595         /* We can't poll until after examine */
596         if (!target_was_examined(target)) {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600
601         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
602
603         /* note that resume *must* be asynchronous. The CPU can halt before
604          * we poll. The CPU can even halt at the current PC as a result of
605          * a software breakpoint being inserted by (a bug?) the application.
606          */
607         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
608         if (retval != ERROR_OK)
609                 return retval;
610
611         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
612
613         return retval;
614 }
615
616 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
617 {
618         char buf[100];
619         int retval;
620         Jim_Nvp *n;
621         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
622         if (n->name == NULL) {
623                 LOG_ERROR("invalid reset mode");
624                 return ERROR_FAIL;
625         }
626
627         struct target *target;
628         for (target = all_targets; target; target = target->next)
629                 target_call_reset_callbacks(target, reset_mode);
630
631         /* disable polling during reset to make reset event scripts
632          * more predictable, i.e. dr/irscan & pathmove in events will
633          * not have JTAG operations injected into the middle of a sequence.
634          */
635         bool save_poll = jtag_poll_get_enabled();
636
637         jtag_poll_set_enabled(false);
638
639         sprintf(buf, "ocd_process_reset %s", n->name);
640         retval = Jim_Eval(cmd_ctx->interp, buf);
641
642         jtag_poll_set_enabled(save_poll);
643
644         if (retval != JIM_OK) {
645                 Jim_MakeErrorMessage(cmd_ctx->interp);
646                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
647                 return ERROR_FAIL;
648         }
649
650         /* We want any events to be processed before the prompt */
651         retval = target_call_timer_callbacks_now();
652
653         for (target = all_targets; target; target = target->next) {
654                 target->type->check_reset(target);
655                 target->running_alg = false;
656         }
657
658         return retval;
659 }
660
661 static int identity_virt2phys(struct target *target,
662                 uint32_t virtual, uint32_t *physical)
663 {
664         *physical = virtual;
665         return ERROR_OK;
666 }
667
668 static int no_mmu(struct target *target, int *enabled)
669 {
670         *enabled = 0;
671         return ERROR_OK;
672 }
673
674 static int default_examine(struct target *target)
675 {
676         target_set_examined(target);
677         return ERROR_OK;
678 }
679
680 /* no check by default */
681 static int default_check_reset(struct target *target)
682 {
683         return ERROR_OK;
684 }
685
686 int target_examine_one(struct target *target)
687 {
688         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
689
690         int retval = target->type->examine(target);
691         if (retval != ERROR_OK)
692                 return retval;
693
694         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
695
696         return ERROR_OK;
697 }
698
699 static int jtag_enable_callback(enum jtag_event event, void *priv)
700 {
701         struct target *target = priv;
702
703         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
704                 return ERROR_OK;
705
706         jtag_unregister_event_callback(jtag_enable_callback, target);
707
708         return target_examine_one(target);
709 }
710
711 /* Targets that correctly implement init + examine, i.e.
712  * no communication with target during init:
713  *
714  * XScale
715  */
716 int target_examine(void)
717 {
718         int retval = ERROR_OK;
719         struct target *target;
720
721         for (target = all_targets; target; target = target->next) {
722                 /* defer examination, but don't skip it */
723                 if (!target->tap->enabled) {
724                         jtag_register_event_callback(jtag_enable_callback,
725                                         target);
726                         continue;
727                 }
728
729                 retval = target_examine_one(target);
730                 if (retval != ERROR_OK)
731                         return retval;
732         }
733         return retval;
734 }
735
736 const char *target_type_name(struct target *target)
737 {
738         return target->type->name;
739 }
740
741 static int target_soft_reset_halt(struct target *target)
742 {
743         if (!target_was_examined(target)) {
744                 LOG_ERROR("Target not examined yet");
745                 return ERROR_FAIL;
746         }
747         if (!target->type->soft_reset_halt) {
748                 LOG_ERROR("Target %s does not support soft_reset_halt",
749                                 target_name(target));
750                 return ERROR_FAIL;
751         }
752         return target->type->soft_reset_halt(target);
753 }
754
755 /**
756  * Downloads a target-specific native code algorithm to the target,
757  * and executes it.  * Note that some targets may need to set up, enable,
758  * and tear down a breakpoint (hard or * soft) to detect algorithm
759  * termination, while others may support  lower overhead schemes where
760  * soft breakpoints embedded in the algorithm automatically terminate the
761  * algorithm.
762  *
763  * @param target used to run the algorithm
764  * @param arch_info target-specific description of the algorithm.
765  */
766 int target_run_algorithm(struct target *target,
767                 int num_mem_params, struct mem_param *mem_params,
768                 int num_reg_params, struct reg_param *reg_param,
769                 uint32_t entry_point, uint32_t exit_point,
770                 int timeout_ms, void *arch_info)
771 {
772         int retval = ERROR_FAIL;
773
774         if (!target_was_examined(target)) {
775                 LOG_ERROR("Target not examined yet");
776                 goto done;
777         }
778         if (!target->type->run_algorithm) {
779                 LOG_ERROR("Target type '%s' does not support %s",
780                                 target_type_name(target), __func__);
781                 goto done;
782         }
783
784         target->running_alg = true;
785         retval = target->type->run_algorithm(target,
786                         num_mem_params, mem_params,
787                         num_reg_params, reg_param,
788                         entry_point, exit_point, timeout_ms, arch_info);
789         target->running_alg = false;
790
791 done:
792         return retval;
793 }
794
795 /**
796  * Downloads a target-specific native code algorithm to the target,
797  * executes and leaves it running.
798  *
799  * @param target used to run the algorithm
800  * @param arch_info target-specific description of the algorithm.
801  */
802 int target_start_algorithm(struct target *target,
803                 int num_mem_params, struct mem_param *mem_params,
804                 int num_reg_params, struct reg_param *reg_params,
805                 uint32_t entry_point, uint32_t exit_point,
806                 void *arch_info)
807 {
808         int retval = ERROR_FAIL;
809
810         if (!target_was_examined(target)) {
811                 LOG_ERROR("Target not examined yet");
812                 goto done;
813         }
814         if (!target->type->start_algorithm) {
815                 LOG_ERROR("Target type '%s' does not support %s",
816                                 target_type_name(target), __func__);
817                 goto done;
818         }
819         if (target->running_alg) {
820                 LOG_ERROR("Target is already running an algorithm");
821                 goto done;
822         }
823
824         target->running_alg = true;
825         retval = target->type->start_algorithm(target,
826                         num_mem_params, mem_params,
827                         num_reg_params, reg_params,
828                         entry_point, exit_point, arch_info);
829
830 done:
831         return retval;
832 }
833
834 /**
835  * Waits for an algorithm started with target_start_algorithm() to complete.
836  *
837  * @param target used to run the algorithm
838  * @param arch_info target-specific description of the algorithm.
839  */
840 int target_wait_algorithm(struct target *target,
841                 int num_mem_params, struct mem_param *mem_params,
842                 int num_reg_params, struct reg_param *reg_params,
843                 uint32_t exit_point, int timeout_ms,
844                 void *arch_info)
845 {
846         int retval = ERROR_FAIL;
847
848         if (!target->type->wait_algorithm) {
849                 LOG_ERROR("Target type '%s' does not support %s",
850                                 target_type_name(target), __func__);
851                 goto done;
852         }
853         if (!target->running_alg) {
854                 LOG_ERROR("Target is not running an algorithm");
855                 goto done;
856         }
857
858         retval = target->type->wait_algorithm(target,
859                         num_mem_params, mem_params,
860                         num_reg_params, reg_params,
861                         exit_point, timeout_ms, arch_info);
862         if (retval != ERROR_TARGET_TIMEOUT)
863                 target->running_alg = false;
864
865 done:
866         return retval;
867 }
868
869 /**
870  * Executes a target-specific native code algorithm in the target.
871  * It differs from target_run_algorithm in that the algorithm is asynchronous.
872  * Because of this it requires an compliant algorithm:
873  * see contrib/loaders/flash/stm32f1x.S for example.
874  *
875  * @param target used to run the algorithm
876  */
877
878 int target_run_flash_async_algorithm(struct target *target,
879                 const uint8_t *buffer, uint32_t count, int block_size,
880                 int num_mem_params, struct mem_param *mem_params,
881                 int num_reg_params, struct reg_param *reg_params,
882                 uint32_t buffer_start, uint32_t buffer_size,
883                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
884 {
885         int retval;
886         int timeout = 0;
887
888         const uint8_t *buffer_orig = buffer;
889
890         /* Set up working area. First word is write pointer, second word is read pointer,
891          * rest is fifo data area. */
892         uint32_t wp_addr = buffer_start;
893         uint32_t rp_addr = buffer_start + 4;
894         uint32_t fifo_start_addr = buffer_start + 8;
895         uint32_t fifo_end_addr = buffer_start + buffer_size;
896
897         uint32_t wp = fifo_start_addr;
898         uint32_t rp = fifo_start_addr;
899
900         /* validate block_size is 2^n */
901         assert(!block_size || !(block_size & (block_size - 1)));
902
903         retval = target_write_u32(target, wp_addr, wp);
904         if (retval != ERROR_OK)
905                 return retval;
906         retval = target_write_u32(target, rp_addr, rp);
907         if (retval != ERROR_OK)
908                 return retval;
909
910         /* Start up algorithm on target and let it idle while writing the first chunk */
911         retval = target_start_algorithm(target, num_mem_params, mem_params,
912                         num_reg_params, reg_params,
913                         entry_point,
914                         exit_point,
915                         arch_info);
916
917         if (retval != ERROR_OK) {
918                 LOG_ERROR("error starting target flash write algorithm");
919                 return retval;
920         }
921
922         while (count > 0) {
923
924                 retval = target_read_u32(target, rp_addr, &rp);
925                 if (retval != ERROR_OK) {
926                         LOG_ERROR("failed to get read pointer");
927                         break;
928                 }
929
930                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
931                         (size_t) (buffer - buffer_orig), count, wp, rp);
932
933                 if (rp == 0) {
934                         LOG_ERROR("flash write algorithm aborted by target");
935                         retval = ERROR_FLASH_OPERATION_FAILED;
936                         break;
937                 }
938
939                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
940                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
941                         break;
942                 }
943
944                 /* Count the number of bytes available in the fifo without
945                  * crossing the wrap around. Make sure to not fill it completely,
946                  * because that would make wp == rp and that's the empty condition. */
947                 uint32_t thisrun_bytes;
948                 if (rp > wp)
949                         thisrun_bytes = rp - wp - block_size;
950                 else if (rp > fifo_start_addr)
951                         thisrun_bytes = fifo_end_addr - wp;
952                 else
953                         thisrun_bytes = fifo_end_addr - wp - block_size;
954
955                 if (thisrun_bytes == 0) {
956                         /* Throttle polling a bit if transfer is (much) faster than flash
957                          * programming. The exact delay shouldn't matter as long as it's
958                          * less than buffer size / flash speed. This is very unlikely to
959                          * run when using high latency connections such as USB. */
960                         alive_sleep(10);
961
962                         /* to stop an infinite loop on some targets check and increment a timeout
963                          * this issue was observed on a stellaris using the new ICDI interface */
964                         if (timeout++ >= 500) {
965                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
966                                 return ERROR_FLASH_OPERATION_FAILED;
967                         }
968                         continue;
969                 }
970
971                 /* reset our timeout */
972                 timeout = 0;
973
974                 /* Limit to the amount of data we actually want to write */
975                 if (thisrun_bytes > count * block_size)
976                         thisrun_bytes = count * block_size;
977
978                 /* Write data to fifo */
979                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
980                 if (retval != ERROR_OK)
981                         break;
982
983                 /* Update counters and wrap write pointer */
984                 buffer += thisrun_bytes;
985                 count -= thisrun_bytes / block_size;
986                 wp += thisrun_bytes;
987                 if (wp >= fifo_end_addr)
988                         wp = fifo_start_addr;
989
990                 /* Store updated write pointer to target */
991                 retval = target_write_u32(target, wp_addr, wp);
992                 if (retval != ERROR_OK)
993                         break;
994         }
995
996         if (retval != ERROR_OK) {
997                 /* abort flash write algorithm on target */
998                 target_write_u32(target, wp_addr, 0);
999         }
1000
1001         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1002                         num_reg_params, reg_params,
1003                         exit_point,
1004                         10000,
1005                         arch_info);
1006
1007         if (retval2 != ERROR_OK) {
1008                 LOG_ERROR("error waiting for target flash write algorithm");
1009                 retval = retval2;
1010         }
1011
1012         return retval;
1013 }
1014
1015 int target_read_memory(struct target *target,
1016                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1017 {
1018         if (!target_was_examined(target)) {
1019                 LOG_ERROR("Target not examined yet");
1020                 return ERROR_FAIL;
1021         }
1022         return target->type->read_memory(target, address, size, count, buffer);
1023 }
1024
1025 int target_read_phys_memory(struct target *target,
1026                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1027 {
1028         if (!target_was_examined(target)) {
1029                 LOG_ERROR("Target not examined yet");
1030                 return ERROR_FAIL;
1031         }
1032         return target->type->read_phys_memory(target, address, size, count, buffer);
1033 }
1034
1035 int target_write_memory(struct target *target,
1036                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1037 {
1038         if (!target_was_examined(target)) {
1039                 LOG_ERROR("Target not examined yet");
1040                 return ERROR_FAIL;
1041         }
1042         return target->type->write_memory(target, address, size, count, buffer);
1043 }
1044
1045 int target_write_phys_memory(struct target *target,
1046                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1047 {
1048         if (!target_was_examined(target)) {
1049                 LOG_ERROR("Target not examined yet");
1050                 return ERROR_FAIL;
1051         }
1052         return target->type->write_phys_memory(target, address, size, count, buffer);
1053 }
1054
1055 int target_add_breakpoint(struct target *target,
1056                 struct breakpoint *breakpoint)
1057 {
1058         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1059                 LOG_WARNING("target %s is not halted", target_name(target));
1060                 return ERROR_TARGET_NOT_HALTED;
1061         }
1062         return target->type->add_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_context_breakpoint(struct target *target,
1066                 struct breakpoint *breakpoint)
1067 {
1068         if (target->state != TARGET_HALTED) {
1069                 LOG_WARNING("target %s is not halted", target_name(target));
1070                 return ERROR_TARGET_NOT_HALTED;
1071         }
1072         return target->type->add_context_breakpoint(target, breakpoint);
1073 }
1074
1075 int target_add_hybrid_breakpoint(struct target *target,
1076                 struct breakpoint *breakpoint)
1077 {
1078         if (target->state != TARGET_HALTED) {
1079                 LOG_WARNING("target %s is not halted", target_name(target));
1080                 return ERROR_TARGET_NOT_HALTED;
1081         }
1082         return target->type->add_hybrid_breakpoint(target, breakpoint);
1083 }
1084
1085 int target_remove_breakpoint(struct target *target,
1086                 struct breakpoint *breakpoint)
1087 {
1088         return target->type->remove_breakpoint(target, breakpoint);
1089 }
1090
1091 int target_add_watchpoint(struct target *target,
1092                 struct watchpoint *watchpoint)
1093 {
1094         if (target->state != TARGET_HALTED) {
1095                 LOG_WARNING("target %s is not halted", target_name(target));
1096                 return ERROR_TARGET_NOT_HALTED;
1097         }
1098         return target->type->add_watchpoint(target, watchpoint);
1099 }
1100 int target_remove_watchpoint(struct target *target,
1101                 struct watchpoint *watchpoint)
1102 {
1103         return target->type->remove_watchpoint(target, watchpoint);
1104 }
1105 int target_hit_watchpoint(struct target *target,
1106                 struct watchpoint **hit_watchpoint)
1107 {
1108         if (target->state != TARGET_HALTED) {
1109                 LOG_WARNING("target %s is not halted", target->cmd_name);
1110                 return ERROR_TARGET_NOT_HALTED;
1111         }
1112
1113         if (target->type->hit_watchpoint == NULL) {
1114                 /* For backward compatible, if hit_watchpoint is not implemented,
1115                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1116                  * information. */
1117                 return ERROR_FAIL;
1118         }
1119
1120         return target->type->hit_watchpoint(target, hit_watchpoint);
1121 }
1122
1123 int target_get_gdb_reg_list(struct target *target,
1124                 struct reg **reg_list[], int *reg_list_size,
1125                 enum target_register_class reg_class)
1126 {
1127         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1128 }
1129 int target_step(struct target *target,
1130                 int current, uint32_t address, int handle_breakpoints)
1131 {
1132         return target->type->step(target, current, address, handle_breakpoints);
1133 }
1134
1135 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1136 {
1137         if (target->state != TARGET_HALTED) {
1138                 LOG_WARNING("target %s is not halted", target->cmd_name);
1139                 return ERROR_TARGET_NOT_HALTED;
1140         }
1141         return target->type->get_gdb_fileio_info(target, fileio_info);
1142 }
1143
1144 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1145 {
1146         if (target->state != TARGET_HALTED) {
1147                 LOG_WARNING("target %s is not halted", target->cmd_name);
1148                 return ERROR_TARGET_NOT_HALTED;
1149         }
1150         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1151 }
1152
1153 int target_profiling(struct target *target, uint32_t *samples,
1154                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1155 {
1156         if (target->state != TARGET_HALTED) {
1157                 LOG_WARNING("target %s is not halted", target->cmd_name);
1158                 return ERROR_TARGET_NOT_HALTED;
1159         }
1160         return target->type->profiling(target, samples, max_num_samples,
1161                         num_samples, seconds);
1162 }
1163
1164 /**
1165  * Reset the @c examined flag for the given target.
1166  * Pure paranoia -- targets are zeroed on allocation.
1167  */
1168 static void target_reset_examined(struct target *target)
1169 {
1170         target->examined = false;
1171 }
1172
1173 static int err_read_phys_memory(struct target *target, uint32_t address,
1174                 uint32_t size, uint32_t count, uint8_t *buffer)
1175 {
1176         LOG_ERROR("Not implemented: %s", __func__);
1177         return ERROR_FAIL;
1178 }
1179
1180 static int err_write_phys_memory(struct target *target, uint32_t address,
1181                 uint32_t size, uint32_t count, const uint8_t *buffer)
1182 {
1183         LOG_ERROR("Not implemented: %s", __func__);
1184         return ERROR_FAIL;
1185 }
1186
1187 static int handle_target(void *priv);
1188
1189 static int target_init_one(struct command_context *cmd_ctx,
1190                 struct target *target)
1191 {
1192         target_reset_examined(target);
1193
1194         struct target_type *type = target->type;
1195         if (type->examine == NULL)
1196                 type->examine = default_examine;
1197
1198         if (type->check_reset == NULL)
1199                 type->check_reset = default_check_reset;
1200
1201         assert(type->init_target != NULL);
1202
1203         int retval = type->init_target(cmd_ctx, target);
1204         if (ERROR_OK != retval) {
1205                 LOG_ERROR("target '%s' init failed", target_name(target));
1206                 return retval;
1207         }
1208
1209         /* Sanity-check MMU support ... stub in what we must, to help
1210          * implement it in stages, but warn if we need to do so.
1211          */
1212         if (type->mmu) {
1213                 if (type->write_phys_memory == NULL) {
1214                         LOG_ERROR("type '%s' is missing write_phys_memory",
1215                                         type->name);
1216                         type->write_phys_memory = err_write_phys_memory;
1217                 }
1218                 if (type->read_phys_memory == NULL) {
1219                         LOG_ERROR("type '%s' is missing read_phys_memory",
1220                                         type->name);
1221                         type->read_phys_memory = err_read_phys_memory;
1222                 }
1223                 if (type->virt2phys == NULL) {
1224                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1225                         type->virt2phys = identity_virt2phys;
1226                 }
1227         } else {
1228                 /* Make sure no-MMU targets all behave the same:  make no
1229                  * distinction between physical and virtual addresses, and
1230                  * ensure that virt2phys() is always an identity mapping.
1231                  */
1232                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1233                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1234
1235                 type->mmu = no_mmu;
1236                 type->write_phys_memory = type->write_memory;
1237                 type->read_phys_memory = type->read_memory;
1238                 type->virt2phys = identity_virt2phys;
1239         }
1240
1241         if (target->type->read_buffer == NULL)
1242                 target->type->read_buffer = target_read_buffer_default;
1243
1244         if (target->type->write_buffer == NULL)
1245                 target->type->write_buffer = target_write_buffer_default;
1246
1247         if (target->type->get_gdb_fileio_info == NULL)
1248                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1249
1250         if (target->type->gdb_fileio_end == NULL)
1251                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1252
1253         if (target->type->profiling == NULL)
1254                 target->type->profiling = target_profiling_default;
1255
1256         return ERROR_OK;
1257 }
1258
1259 static int target_init(struct command_context *cmd_ctx)
1260 {
1261         struct target *target;
1262         int retval;
1263
1264         for (target = all_targets; target; target = target->next) {
1265                 retval = target_init_one(cmd_ctx, target);
1266                 if (ERROR_OK != retval)
1267                         return retval;
1268         }
1269
1270         if (!all_targets)
1271                 return ERROR_OK;
1272
1273         retval = target_register_user_commands(cmd_ctx);
1274         if (ERROR_OK != retval)
1275                 return retval;
1276
1277         retval = target_register_timer_callback(&handle_target,
1278                         polling_interval, 1, cmd_ctx->interp);
1279         if (ERROR_OK != retval)
1280                 return retval;
1281
1282         return ERROR_OK;
1283 }
1284
1285 COMMAND_HANDLER(handle_target_init_command)
1286 {
1287         int retval;
1288
1289         if (CMD_ARGC != 0)
1290                 return ERROR_COMMAND_SYNTAX_ERROR;
1291
1292         static bool target_initialized;
1293         if (target_initialized) {
1294                 LOG_INFO("'target init' has already been called");
1295                 return ERROR_OK;
1296         }
1297         target_initialized = true;
1298
1299         retval = command_run_line(CMD_CTX, "init_targets");
1300         if (ERROR_OK != retval)
1301                 return retval;
1302
1303         retval = command_run_line(CMD_CTX, "init_target_events");
1304         if (ERROR_OK != retval)
1305                 return retval;
1306
1307         retval = command_run_line(CMD_CTX, "init_board");
1308         if (ERROR_OK != retval)
1309                 return retval;
1310
1311         LOG_DEBUG("Initializing targets...");
1312         return target_init(CMD_CTX);
1313 }
1314
1315 int target_register_event_callback(int (*callback)(struct target *target,
1316                 enum target_event event, void *priv), void *priv)
1317 {
1318         struct target_event_callback **callbacks_p = &target_event_callbacks;
1319
1320         if (callback == NULL)
1321                 return ERROR_COMMAND_SYNTAX_ERROR;
1322
1323         if (*callbacks_p) {
1324                 while ((*callbacks_p)->next)
1325                         callbacks_p = &((*callbacks_p)->next);
1326                 callbacks_p = &((*callbacks_p)->next);
1327         }
1328
1329         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1330         (*callbacks_p)->callback = callback;
1331         (*callbacks_p)->priv = priv;
1332         (*callbacks_p)->next = NULL;
1333
1334         return ERROR_OK;
1335 }
1336
1337 int target_register_reset_callback(int (*callback)(struct target *target,
1338                 enum target_reset_mode reset_mode, void *priv), void *priv)
1339 {
1340         struct target_reset_callback *entry;
1341
1342         if (callback == NULL)
1343                 return ERROR_COMMAND_SYNTAX_ERROR;
1344
1345         entry = malloc(sizeof(struct target_reset_callback));
1346         if (entry == NULL) {
1347                 LOG_ERROR("error allocating buffer for reset callback entry");
1348                 return ERROR_COMMAND_SYNTAX_ERROR;
1349         }
1350
1351         entry->callback = callback;
1352         entry->priv = priv;
1353         list_add(&entry->list, &target_reset_callback_list);
1354
1355
1356         return ERROR_OK;
1357 }
1358
1359 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1360 {
1361         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1362         struct timeval now;
1363
1364         if (callback == NULL)
1365                 return ERROR_COMMAND_SYNTAX_ERROR;
1366
1367         if (*callbacks_p) {
1368                 while ((*callbacks_p)->next)
1369                         callbacks_p = &((*callbacks_p)->next);
1370                 callbacks_p = &((*callbacks_p)->next);
1371         }
1372
1373         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1374         (*callbacks_p)->callback = callback;
1375         (*callbacks_p)->periodic = periodic;
1376         (*callbacks_p)->time_ms = time_ms;
1377         (*callbacks_p)->removed = false;
1378
1379         gettimeofday(&now, NULL);
1380         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1381         time_ms -= (time_ms % 1000);
1382         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1383         if ((*callbacks_p)->when.tv_usec > 1000000) {
1384                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1385                 (*callbacks_p)->when.tv_sec += 1;
1386         }
1387
1388         (*callbacks_p)->priv = priv;
1389         (*callbacks_p)->next = NULL;
1390
1391         return ERROR_OK;
1392 }
1393
1394 int target_unregister_event_callback(int (*callback)(struct target *target,
1395                 enum target_event event, void *priv), void *priv)
1396 {
1397         struct target_event_callback **p = &target_event_callbacks;
1398         struct target_event_callback *c = target_event_callbacks;
1399
1400         if (callback == NULL)
1401                 return ERROR_COMMAND_SYNTAX_ERROR;
1402
1403         while (c) {
1404                 struct target_event_callback *next = c->next;
1405                 if ((c->callback == callback) && (c->priv == priv)) {
1406                         *p = next;
1407                         free(c);
1408                         return ERROR_OK;
1409                 } else
1410                         p = &(c->next);
1411                 c = next;
1412         }
1413
1414         return ERROR_OK;
1415 }
1416
1417 int target_unregister_reset_callback(int (*callback)(struct target *target,
1418                 enum target_reset_mode reset_mode, void *priv), void *priv)
1419 {
1420         struct target_reset_callback *entry;
1421
1422         if (callback == NULL)
1423                 return ERROR_COMMAND_SYNTAX_ERROR;
1424
1425         list_for_each_entry(entry, &target_reset_callback_list, list) {
1426                 if (entry->callback == callback && entry->priv == priv) {
1427                         list_del(&entry->list);
1428                         free(entry);
1429                         break;
1430                 }
1431         }
1432
1433         return ERROR_OK;
1434 }
1435
1436 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1437 {
1438         if (callback == NULL)
1439                 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441         for (struct target_timer_callback *c = target_timer_callbacks;
1442              c; c = c->next) {
1443                 if ((c->callback == callback) && (c->priv == priv)) {
1444                         c->removed = true;
1445                         return ERROR_OK;
1446                 }
1447         }
1448
1449         return ERROR_FAIL;
1450 }
1451
1452 int target_call_event_callbacks(struct target *target, enum target_event event)
1453 {
1454         struct target_event_callback *callback = target_event_callbacks;
1455         struct target_event_callback *next_callback;
1456
1457         if (event == TARGET_EVENT_HALTED) {
1458                 /* execute early halted first */
1459                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1460         }
1461
1462         LOG_DEBUG("target event %i (%s)", event,
1463                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1464
1465         target_handle_event(target, event);
1466
1467         while (callback) {
1468                 next_callback = callback->next;
1469                 callback->callback(target, event, callback->priv);
1470                 callback = next_callback;
1471         }
1472
1473         return ERROR_OK;
1474 }
1475
1476 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1477 {
1478         struct target_reset_callback *callback;
1479
1480         LOG_DEBUG("target reset %i (%s)", reset_mode,
1481                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1482
1483         list_for_each_entry(callback, &target_reset_callback_list, list)
1484                 callback->callback(target, reset_mode, callback->priv);
1485
1486         return ERROR_OK;
1487 }
1488
1489 static int target_timer_callback_periodic_restart(
1490                 struct target_timer_callback *cb, struct timeval *now)
1491 {
1492         int time_ms = cb->time_ms;
1493         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1494         time_ms -= (time_ms % 1000);
1495         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1496         if (cb->when.tv_usec > 1000000) {
1497                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1498                 cb->when.tv_sec += 1;
1499         }
1500         return ERROR_OK;
1501 }
1502
1503 static int target_call_timer_callback(struct target_timer_callback *cb,
1504                 struct timeval *now)
1505 {
1506         cb->callback(cb->priv);
1507
1508         if (cb->periodic)
1509                 return target_timer_callback_periodic_restart(cb, now);
1510
1511         return target_unregister_timer_callback(cb->callback, cb->priv);
1512 }
1513
1514 static int target_call_timer_callbacks_check_time(int checktime)
1515 {
1516         static bool callback_processing;
1517
1518         /* Do not allow nesting */
1519         if (callback_processing)
1520                 return ERROR_OK;
1521
1522         callback_processing = true;
1523
1524         keep_alive();
1525
1526         struct timeval now;
1527         gettimeofday(&now, NULL);
1528
1529         /* Store an address of the place containing a pointer to the
1530          * next item; initially, that's a standalone "root of the
1531          * list" variable. */
1532         struct target_timer_callback **callback = &target_timer_callbacks;
1533         while (*callback) {
1534                 if ((*callback)->removed) {
1535                         struct target_timer_callback *p = *callback;
1536                         *callback = (*callback)->next;
1537                         free(p);
1538                         continue;
1539                 }
1540
1541                 bool call_it = (*callback)->callback &&
1542                         ((!checktime && (*callback)->periodic) ||
1543                          now.tv_sec > (*callback)->when.tv_sec ||
1544                          (now.tv_sec == (*callback)->when.tv_sec &&
1545                           now.tv_usec >= (*callback)->when.tv_usec));
1546
1547                 if (call_it)
1548                         target_call_timer_callback(*callback, &now);
1549
1550                 callback = &(*callback)->next;
1551         }
1552
1553         callback_processing = false;
1554         return ERROR_OK;
1555 }
1556
1557 int target_call_timer_callbacks(void)
1558 {
1559         return target_call_timer_callbacks_check_time(1);
1560 }
1561
1562 /* invoke periodic callbacks immediately */
1563 int target_call_timer_callbacks_now(void)
1564 {
1565         return target_call_timer_callbacks_check_time(0);
1566 }
1567
1568 /* Prints the working area layout for debug purposes */
1569 static void print_wa_layout(struct target *target)
1570 {
1571         struct working_area *c = target->working_areas;
1572
1573         while (c) {
1574                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1575                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1576                         c->address, c->address + c->size - 1, c->size);
1577                 c = c->next;
1578         }
1579 }
1580
1581 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1582 static void target_split_working_area(struct working_area *area, uint32_t size)
1583 {
1584         assert(area->free); /* Shouldn't split an allocated area */
1585         assert(size <= area->size); /* Caller should guarantee this */
1586
1587         /* Split only if not already the right size */
1588         if (size < area->size) {
1589                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1590
1591                 if (new_wa == NULL)
1592                         return;
1593
1594                 new_wa->next = area->next;
1595                 new_wa->size = area->size - size;
1596                 new_wa->address = area->address + size;
1597                 new_wa->backup = NULL;
1598                 new_wa->user = NULL;
1599                 new_wa->free = true;
1600
1601                 area->next = new_wa;
1602                 area->size = size;
1603
1604                 /* If backup memory was allocated to this area, it has the wrong size
1605                  * now so free it and it will be reallocated if/when needed */
1606                 if (area->backup) {
1607                         free(area->backup);
1608                         area->backup = NULL;
1609                 }
1610         }
1611 }
1612
1613 /* Merge all adjacent free areas into one */
1614 static void target_merge_working_areas(struct target *target)
1615 {
1616         struct working_area *c = target->working_areas;
1617
1618         while (c && c->next) {
1619                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1620
1621                 /* Find two adjacent free areas */
1622                 if (c->free && c->next->free) {
1623                         /* Merge the last into the first */
1624                         c->size += c->next->size;
1625
1626                         /* Remove the last */
1627                         struct working_area *to_be_freed = c->next;
1628                         c->next = c->next->next;
1629                         if (to_be_freed->backup)
1630                                 free(to_be_freed->backup);
1631                         free(to_be_freed);
1632
1633                         /* If backup memory was allocated to the remaining area, it's has
1634                          * the wrong size now */
1635                         if (c->backup) {
1636                                 free(c->backup);
1637                                 c->backup = NULL;
1638                         }
1639                 } else {
1640                         c = c->next;
1641                 }
1642         }
1643 }
1644
1645 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1646 {
1647         /* Reevaluate working area address based on MMU state*/
1648         if (target->working_areas == NULL) {
1649                 int retval;
1650                 int enabled;
1651
1652                 retval = target->type->mmu(target, &enabled);
1653                 if (retval != ERROR_OK)
1654                         return retval;
1655
1656                 if (!enabled) {
1657                         if (target->working_area_phys_spec) {
1658                                 LOG_DEBUG("MMU disabled, using physical "
1659                                         "address for working memory 0x%08"PRIx32,
1660                                         target->working_area_phys);
1661                                 target->working_area = target->working_area_phys;
1662                         } else {
1663                                 LOG_ERROR("No working memory available. "
1664                                         "Specify -work-area-phys to target.");
1665                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1666                         }
1667                 } else {
1668                         if (target->working_area_virt_spec) {
1669                                 LOG_DEBUG("MMU enabled, using virtual "
1670                                         "address for working memory 0x%08"PRIx32,
1671                                         target->working_area_virt);
1672                                 target->working_area = target->working_area_virt;
1673                         } else {
1674                                 LOG_ERROR("No working memory available. "
1675                                         "Specify -work-area-virt to target.");
1676                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1677                         }
1678                 }
1679
1680                 /* Set up initial working area on first call */
1681                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1682                 if (new_wa) {
1683                         new_wa->next = NULL;
1684                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1685                         new_wa->address = target->working_area;
1686                         new_wa->backup = NULL;
1687                         new_wa->user = NULL;
1688                         new_wa->free = true;
1689                 }
1690
1691                 target->working_areas = new_wa;
1692         }
1693
1694         /* only allocate multiples of 4 byte */
1695         if (size % 4)
1696                 size = (size + 3) & (~3UL);
1697
1698         struct working_area *c = target->working_areas;
1699
1700         /* Find the first large enough working area */
1701         while (c) {
1702                 if (c->free && c->size >= size)
1703                         break;
1704                 c = c->next;
1705         }
1706
1707         if (c == NULL)
1708                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1709
1710         /* Split the working area into the requested size */
1711         target_split_working_area(c, size);
1712
1713         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1714
1715         if (target->backup_working_area) {
1716                 if (c->backup == NULL) {
1717                         c->backup = malloc(c->size);
1718                         if (c->backup == NULL)
1719                                 return ERROR_FAIL;
1720                 }
1721
1722                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1723                 if (retval != ERROR_OK)
1724                         return retval;
1725         }
1726
1727         /* mark as used, and return the new (reused) area */
1728         c->free = false;
1729         *area = c;
1730
1731         /* user pointer */
1732         c->user = area;
1733
1734         print_wa_layout(target);
1735
1736         return ERROR_OK;
1737 }
1738
1739 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1740 {
1741         int retval;
1742
1743         retval = target_alloc_working_area_try(target, size, area);
1744         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1745                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1746         return retval;
1747
1748 }
1749
1750 static int target_restore_working_area(struct target *target, struct working_area *area)
1751 {
1752         int retval = ERROR_OK;
1753
1754         if (target->backup_working_area && area->backup != NULL) {
1755                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1756                 if (retval != ERROR_OK)
1757                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1758                                         area->size, area->address);
1759         }
1760
1761         return retval;
1762 }
1763
1764 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1765 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1766 {
1767         int retval = ERROR_OK;
1768
1769         if (area->free)
1770                 return retval;
1771
1772         if (restore) {
1773                 retval = target_restore_working_area(target, area);
1774                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1775                 if (retval != ERROR_OK)
1776                         return retval;
1777         }
1778
1779         area->free = true;
1780
1781         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1782                         area->size, area->address);
1783
1784         /* mark user pointer invalid */
1785         /* TODO: Is this really safe? It points to some previous caller's memory.
1786          * How could we know that the area pointer is still in that place and not
1787          * some other vital data? What's the purpose of this, anyway? */
1788         *area->user = NULL;
1789         area->user = NULL;
1790
1791         target_merge_working_areas(target);
1792
1793         print_wa_layout(target);
1794
1795         return retval;
1796 }
1797
1798 int target_free_working_area(struct target *target, struct working_area *area)
1799 {
1800         return target_free_working_area_restore(target, area, 1);
1801 }
1802
1803 /* free resources and restore memory, if restoring memory fails,
1804  * free up resources anyway
1805  */
1806 static void target_free_all_working_areas_restore(struct target *target, int restore)
1807 {
1808         struct working_area *c = target->working_areas;
1809
1810         LOG_DEBUG("freeing all working areas");
1811
1812         /* Loop through all areas, restoring the allocated ones and marking them as free */
1813         while (c) {
1814                 if (!c->free) {
1815                         if (restore)
1816                                 target_restore_working_area(target, c);
1817                         c->free = true;
1818                         *c->user = NULL; /* Same as above */
1819                         c->user = NULL;
1820                 }
1821                 c = c->next;
1822         }
1823
1824         /* Run a merge pass to combine all areas into one */
1825         target_merge_working_areas(target);
1826
1827         print_wa_layout(target);
1828 }
1829
1830 void target_free_all_working_areas(struct target *target)
1831 {
1832         target_free_all_working_areas_restore(target, 1);
1833 }
1834
1835 /* Find the largest number of bytes that can be allocated */
1836 uint32_t target_get_working_area_avail(struct target *target)
1837 {
1838         struct working_area *c = target->working_areas;
1839         uint32_t max_size = 0;
1840
1841         if (c == NULL)
1842                 return target->working_area_size;
1843
1844         while (c) {
1845                 if (c->free && max_size < c->size)
1846                         max_size = c->size;
1847
1848                 c = c->next;
1849         }
1850
1851         return max_size;
1852 }
1853
1854 int target_arch_state(struct target *target)
1855 {
1856         int retval;
1857         if (target == NULL) {
1858                 LOG_USER("No target has been configured");
1859                 return ERROR_OK;
1860         }
1861
1862         LOG_USER("target state: %s", target_state_name(target));
1863
1864         if (target->state != TARGET_HALTED)
1865                 return ERROR_OK;
1866
1867         retval = target->type->arch_state(target);
1868         return retval;
1869 }
1870
1871 static int target_get_gdb_fileio_info_default(struct target *target,
1872                 struct gdb_fileio_info *fileio_info)
1873 {
1874         /* If target does not support semi-hosting function, target
1875            has no need to provide .get_gdb_fileio_info callback.
1876            It just return ERROR_FAIL and gdb_server will return "Txx"
1877            as target halted every time.  */
1878         return ERROR_FAIL;
1879 }
1880
1881 static int target_gdb_fileio_end_default(struct target *target,
1882                 int retcode, int fileio_errno, bool ctrl_c)
1883 {
1884         return ERROR_OK;
1885 }
1886
1887 static int target_profiling_default(struct target *target, uint32_t *samples,
1888                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1889 {
1890         struct timeval timeout, now;
1891
1892         gettimeofday(&timeout, NULL);
1893         timeval_add_time(&timeout, seconds, 0);
1894
1895         LOG_INFO("Starting profiling. Halting and resuming the"
1896                         " target as often as we can...");
1897
1898         uint32_t sample_count = 0;
1899         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1900         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1901
1902         int retval = ERROR_OK;
1903         for (;;) {
1904                 target_poll(target);
1905                 if (target->state == TARGET_HALTED) {
1906                         uint32_t t = buf_get_u32(reg->value, 0, 32);
1907                         samples[sample_count++] = t;
1908                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1909                         retval = target_resume(target, 1, 0, 0, 0);
1910                         target_poll(target);
1911                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1912                 } else if (target->state == TARGET_RUNNING) {
1913                         /* We want to quickly sample the PC. */
1914                         retval = target_halt(target);
1915                 } else {
1916                         LOG_INFO("Target not halted or running");
1917                         retval = ERROR_OK;
1918                         break;
1919                 }
1920
1921                 if (retval != ERROR_OK)
1922                         break;
1923
1924                 gettimeofday(&now, NULL);
1925                 if ((sample_count >= max_num_samples) ||
1926                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1927                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1928                         break;
1929                 }
1930         }
1931
1932         *num_samples = sample_count;
1933         return retval;
1934 }
1935
1936 /* Single aligned words are guaranteed to use 16 or 32 bit access
1937  * mode respectively, otherwise data is handled as quickly as
1938  * possible
1939  */
1940 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1941 {
1942         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1943                         (int)size, (unsigned)address);
1944
1945         if (!target_was_examined(target)) {
1946                 LOG_ERROR("Target not examined yet");
1947                 return ERROR_FAIL;
1948         }
1949
1950         if (size == 0)
1951                 return ERROR_OK;
1952
1953         if ((address + size - 1) < address) {
1954                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1955                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1956                                   (unsigned)address,
1957                                   (unsigned)size);
1958                 return ERROR_FAIL;
1959         }
1960
1961         return target->type->write_buffer(target, address, size, buffer);
1962 }
1963
1964 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1965 {
1966         uint32_t size;
1967
1968         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1969          * will have something to do with the size we leave to it. */
1970         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1971                 if (address & size) {
1972                         int retval = target_write_memory(target, address, size, 1, buffer);
1973                         if (retval != ERROR_OK)
1974                                 return retval;
1975                         address += size;
1976                         count -= size;
1977                         buffer += size;
1978                 }
1979         }
1980
1981         /* Write the data with as large access size as possible. */
1982         for (; size > 0; size /= 2) {
1983                 uint32_t aligned = count - count % size;
1984                 if (aligned > 0) {
1985                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1986                         if (retval != ERROR_OK)
1987                                 return retval;
1988                         address += aligned;
1989                         count -= aligned;
1990                         buffer += aligned;
1991                 }
1992         }
1993
1994         return ERROR_OK;
1995 }
1996
1997 /* Single aligned words are guaranteed to use 16 or 32 bit access
1998  * mode respectively, otherwise data is handled as quickly as
1999  * possible
2000  */
2001 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2002 {
2003         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2004                           (int)size, (unsigned)address);
2005
2006         if (!target_was_examined(target)) {
2007                 LOG_ERROR("Target not examined yet");
2008                 return ERROR_FAIL;
2009         }
2010
2011         if (size == 0)
2012                 return ERROR_OK;
2013
2014         if ((address + size - 1) < address) {
2015                 /* GDB can request this when e.g. PC is 0xfffffffc*/
2016                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2017                                   address,
2018                                   size);
2019                 return ERROR_FAIL;
2020         }
2021
2022         return target->type->read_buffer(target, address, size, buffer);
2023 }
2024
2025 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2026 {
2027         uint32_t size;
2028
2029         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2030          * will have something to do with the size we leave to it. */
2031         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2032                 if (address & size) {
2033                         int retval = target_read_memory(target, address, size, 1, buffer);
2034                         if (retval != ERROR_OK)
2035                                 return retval;
2036                         address += size;
2037                         count -= size;
2038                         buffer += size;
2039                 }
2040         }
2041
2042         /* Read the data with as large access size as possible. */
2043         for (; size > 0; size /= 2) {
2044                 uint32_t aligned = count - count % size;
2045                 if (aligned > 0) {
2046                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2047                         if (retval != ERROR_OK)
2048                                 return retval;
2049                         address += aligned;
2050                         count -= aligned;
2051                         buffer += aligned;
2052                 }
2053         }
2054
2055         return ERROR_OK;
2056 }
2057
2058 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2059 {
2060         uint8_t *buffer;
2061         int retval;
2062         uint32_t i;
2063         uint32_t checksum = 0;
2064         if (!target_was_examined(target)) {
2065                 LOG_ERROR("Target not examined yet");
2066                 return ERROR_FAIL;
2067         }
2068
2069         retval = target->type->checksum_memory(target, address, size, &checksum);
2070         if (retval != ERROR_OK) {
2071                 buffer = malloc(size);
2072                 if (buffer == NULL) {
2073                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2074                         return ERROR_COMMAND_SYNTAX_ERROR;
2075                 }
2076                 retval = target_read_buffer(target, address, size, buffer);
2077                 if (retval != ERROR_OK) {
2078                         free(buffer);
2079                         return retval;
2080                 }
2081
2082                 /* convert to target endianness */
2083                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2084                         uint32_t target_data;
2085                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2086                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2087                 }
2088
2089                 retval = image_calculate_checksum(buffer, size, &checksum);
2090                 free(buffer);
2091         }
2092
2093         *crc = checksum;
2094
2095         return retval;
2096 }
2097
2098 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2099 {
2100         int retval;
2101         if (!target_was_examined(target)) {
2102                 LOG_ERROR("Target not examined yet");
2103                 return ERROR_FAIL;
2104         }
2105
2106         if (target->type->blank_check_memory == 0)
2107                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2108
2109         retval = target->type->blank_check_memory(target, address, size, blank);
2110
2111         return retval;
2112 }
2113
2114 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2115 {
2116         uint8_t value_buf[8];
2117         if (!target_was_examined(target)) {
2118                 LOG_ERROR("Target not examined yet");
2119                 return ERROR_FAIL;
2120         }
2121
2122         int retval = target_read_memory(target, address, 8, 1, value_buf);
2123
2124         if (retval == ERROR_OK) {
2125                 *value = target_buffer_get_u64(target, value_buf);
2126                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2127                                   address,
2128                                   *value);
2129         } else {
2130                 *value = 0x0;
2131                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2132                                   address);
2133         }
2134
2135         return retval;
2136 }
2137
2138 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2139 {
2140         uint8_t value_buf[4];
2141         if (!target_was_examined(target)) {
2142                 LOG_ERROR("Target not examined yet");
2143                 return ERROR_FAIL;
2144         }
2145
2146         int retval = target_read_memory(target, address, 4, 1, value_buf);
2147
2148         if (retval == ERROR_OK) {
2149                 *value = target_buffer_get_u32(target, value_buf);
2150                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2151                                   address,
2152                                   *value);
2153         } else {
2154                 *value = 0x0;
2155                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2156                                   address);
2157         }
2158
2159         return retval;
2160 }
2161
2162 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2163 {
2164         uint8_t value_buf[2];
2165         if (!target_was_examined(target)) {
2166                 LOG_ERROR("Target not examined yet");
2167                 return ERROR_FAIL;
2168         }
2169
2170         int retval = target_read_memory(target, address, 2, 1, value_buf);
2171
2172         if (retval == ERROR_OK) {
2173                 *value = target_buffer_get_u16(target, value_buf);
2174                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2175                                   address,
2176                                   *value);
2177         } else {
2178                 *value = 0x0;
2179                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2180                                   address);
2181         }
2182
2183         return retval;
2184 }
2185
2186 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2187 {
2188         if (!target_was_examined(target)) {
2189                 LOG_ERROR("Target not examined yet");
2190                 return ERROR_FAIL;
2191         }
2192
2193         int retval = target_read_memory(target, address, 1, 1, value);
2194
2195         if (retval == ERROR_OK) {
2196                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2197                                   address,
2198                                   *value);
2199         } else {
2200                 *value = 0x0;
2201                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2202                                   address);
2203         }
2204
2205         return retval;
2206 }
2207
2208 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2209 {
2210         int retval;
2211         uint8_t value_buf[8];
2212         if (!target_was_examined(target)) {
2213                 LOG_ERROR("Target not examined yet");
2214                 return ERROR_FAIL;
2215         }
2216
2217         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2218                           address,
2219                           value);
2220
2221         target_buffer_set_u64(target, value_buf, value);
2222         retval = target_write_memory(target, address, 8, 1, value_buf);
2223         if (retval != ERROR_OK)
2224                 LOG_DEBUG("failed: %i", retval);
2225
2226         return retval;
2227 }
2228
2229 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2230 {
2231         int retval;
2232         uint8_t value_buf[4];
2233         if (!target_was_examined(target)) {
2234                 LOG_ERROR("Target not examined yet");
2235                 return ERROR_FAIL;
2236         }
2237
2238         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2239                           address,
2240                           value);
2241
2242         target_buffer_set_u32(target, value_buf, value);
2243         retval = target_write_memory(target, address, 4, 1, value_buf);
2244         if (retval != ERROR_OK)
2245                 LOG_DEBUG("failed: %i", retval);
2246
2247         return retval;
2248 }
2249
2250 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2251 {
2252         int retval;
2253         uint8_t value_buf[2];
2254         if (!target_was_examined(target)) {
2255                 LOG_ERROR("Target not examined yet");
2256                 return ERROR_FAIL;
2257         }
2258
2259         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2260                           address,
2261                           value);
2262
2263         target_buffer_set_u16(target, value_buf, value);
2264         retval = target_write_memory(target, address, 2, 1, value_buf);
2265         if (retval != ERROR_OK)
2266                 LOG_DEBUG("failed: %i", retval);
2267
2268         return retval;
2269 }
2270
2271 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2272 {
2273         int retval;
2274         if (!target_was_examined(target)) {
2275                 LOG_ERROR("Target not examined yet");
2276                 return ERROR_FAIL;
2277         }
2278
2279         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2280                           address, value);
2281
2282         retval = target_write_memory(target, address, 1, 1, &value);
2283         if (retval != ERROR_OK)
2284                 LOG_DEBUG("failed: %i", retval);
2285
2286         return retval;
2287 }
2288
2289 static int find_target(struct command_context *cmd_ctx, const char *name)
2290 {
2291         struct target *target = get_target(name);
2292         if (target == NULL) {
2293                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2294                 return ERROR_FAIL;
2295         }
2296         if (!target->tap->enabled) {
2297                 LOG_USER("Target: TAP %s is disabled, "
2298                          "can't be the current target\n",
2299                          target->tap->dotted_name);
2300                 return ERROR_FAIL;
2301         }
2302
2303         cmd_ctx->current_target = target->target_number;
2304         return ERROR_OK;
2305 }
2306
2307
2308 COMMAND_HANDLER(handle_targets_command)
2309 {
2310         int retval = ERROR_OK;
2311         if (CMD_ARGC == 1) {
2312                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2313                 if (retval == ERROR_OK) {
2314                         /* we're done! */
2315                         return retval;
2316                 }
2317         }
2318
2319         struct target *target = all_targets;
2320         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2321         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2322         while (target) {
2323                 const char *state;
2324                 char marker = ' ';
2325
2326                 if (target->tap->enabled)
2327                         state = target_state_name(target);
2328                 else
2329                         state = "tap-disabled";
2330
2331                 if (CMD_CTX->current_target == target->target_number)
2332                         marker = '*';
2333
2334                 /* keep columns lined up to match the headers above */
2335                 command_print(CMD_CTX,
2336                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2337                                 target->target_number,
2338                                 marker,
2339                                 target_name(target),
2340                                 target_type_name(target),
2341                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2342                                         target->endianness)->name,
2343                                 target->tap->dotted_name,
2344                                 state);
2345                 target = target->next;
2346         }
2347
2348         return retval;
2349 }
2350
2351 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2352
2353 static int powerDropout;
2354 static int srstAsserted;
2355
2356 static int runPowerRestore;
2357 static int runPowerDropout;
2358 static int runSrstAsserted;
2359 static int runSrstDeasserted;
2360
2361 static int sense_handler(void)
2362 {
2363         static int prevSrstAsserted;
2364         static int prevPowerdropout;
2365
2366         int retval = jtag_power_dropout(&powerDropout);
2367         if (retval != ERROR_OK)
2368                 return retval;
2369
2370         int powerRestored;
2371         powerRestored = prevPowerdropout && !powerDropout;
2372         if (powerRestored)
2373                 runPowerRestore = 1;
2374
2375         long long current = timeval_ms();
2376         static long long lastPower;
2377         int waitMore = lastPower + 2000 > current;
2378         if (powerDropout && !waitMore) {
2379                 runPowerDropout = 1;
2380                 lastPower = current;
2381         }
2382
2383         retval = jtag_srst_asserted(&srstAsserted);
2384         if (retval != ERROR_OK)
2385                 return retval;
2386
2387         int srstDeasserted;
2388         srstDeasserted = prevSrstAsserted && !srstAsserted;
2389
2390         static long long lastSrst;
2391         waitMore = lastSrst + 2000 > current;
2392         if (srstDeasserted && !waitMore) {
2393                 runSrstDeasserted = 1;
2394                 lastSrst = current;
2395         }
2396
2397         if (!prevSrstAsserted && srstAsserted)
2398                 runSrstAsserted = 1;
2399
2400         prevSrstAsserted = srstAsserted;
2401         prevPowerdropout = powerDropout;
2402
2403         if (srstDeasserted || powerRestored) {
2404                 /* Other than logging the event we can't do anything here.
2405                  * Issuing a reset is a particularly bad idea as we might
2406                  * be inside a reset already.
2407                  */
2408         }
2409
2410         return ERROR_OK;
2411 }
2412
2413 /* process target state changes */
2414 static int handle_target(void *priv)
2415 {
2416         Jim_Interp *interp = (Jim_Interp *)priv;
2417         int retval = ERROR_OK;
2418
2419         if (!is_jtag_poll_safe()) {
2420                 /* polling is disabled currently */
2421                 return ERROR_OK;
2422         }
2423
2424         /* we do not want to recurse here... */
2425         static int recursive;
2426         if (!recursive) {
2427                 recursive = 1;
2428                 sense_handler();
2429                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2430                  * We need to avoid an infinite loop/recursion here and we do that by
2431                  * clearing the flags after running these events.
2432                  */
2433                 int did_something = 0;
2434                 if (runSrstAsserted) {
2435                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2436                         Jim_Eval(interp, "srst_asserted");
2437                         did_something = 1;
2438                 }
2439                 if (runSrstDeasserted) {
2440                         Jim_Eval(interp, "srst_deasserted");
2441                         did_something = 1;
2442                 }
2443                 if (runPowerDropout) {
2444                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2445                         Jim_Eval(interp, "power_dropout");
2446                         did_something = 1;
2447                 }
2448                 if (runPowerRestore) {
2449                         Jim_Eval(interp, "power_restore");
2450                         did_something = 1;
2451                 }
2452
2453                 if (did_something) {
2454                         /* clear detect flags */
2455                         sense_handler();
2456                 }
2457
2458                 /* clear action flags */
2459
2460                 runSrstAsserted = 0;
2461                 runSrstDeasserted = 0;
2462                 runPowerRestore = 0;
2463                 runPowerDropout = 0;
2464
2465                 recursive = 0;
2466         }
2467
2468         /* Poll targets for state changes unless that's globally disabled.
2469          * Skip targets that are currently disabled.
2470          */
2471         for (struct target *target = all_targets;
2472                         is_jtag_poll_safe() && target;
2473                         target = target->next) {
2474
2475                 if (!target_was_examined(target))
2476                         continue;
2477
2478                 if (!target->tap->enabled)
2479                         continue;
2480
2481                 if (target->backoff.times > target->backoff.count) {
2482                         /* do not poll this time as we failed previously */
2483                         target->backoff.count++;
2484                         continue;
2485                 }
2486                 target->backoff.count = 0;
2487
2488                 /* only poll target if we've got power and srst isn't asserted */
2489                 if (!powerDropout && !srstAsserted) {
2490                         /* polling may fail silently until the target has been examined */
2491                         retval = target_poll(target);
2492                         if (retval != ERROR_OK) {
2493                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2494                                 if (target->backoff.times * polling_interval < 5000) {
2495                                         target->backoff.times *= 2;
2496                                         target->backoff.times++;
2497                                 }
2498                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2499                                                 target_name(target),
2500                                                 target->backoff.times * polling_interval);
2501
2502                                 /* Tell GDB to halt the debugger. This allows the user to
2503                                  * run monitor commands to handle the situation.
2504                                  */
2505                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2506                                 return retval;
2507                         }
2508                         /* Since we succeeded, we reset backoff count */
2509                         if (target->backoff.times > 0) {
2510                                 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2511                                 target_reset_examined(target);
2512                                 retval = target_examine_one(target);
2513                                 /* Target examination could have failed due to unstable connection,
2514                                  * but we set the examined flag anyway to repoll it later */
2515                                 if (retval != ERROR_OK) {
2516                                         target->examined = true;
2517                                         return retval;
2518                                 }
2519                         }
2520
2521                         target->backoff.times = 0;
2522                 }
2523         }
2524
2525         return retval;
2526 }
2527
2528 COMMAND_HANDLER(handle_reg_command)
2529 {
2530         struct target *target;
2531         struct reg *reg = NULL;
2532         unsigned count = 0;
2533         char *value;
2534
2535         LOG_DEBUG("-");
2536
2537         target = get_current_target(CMD_CTX);
2538
2539         /* list all available registers for the current target */
2540         if (CMD_ARGC == 0) {
2541                 struct reg_cache *cache = target->reg_cache;
2542
2543                 count = 0;
2544                 while (cache) {
2545                         unsigned i;
2546
2547                         command_print(CMD_CTX, "===== %s", cache->name);
2548
2549                         for (i = 0, reg = cache->reg_list;
2550                                         i < cache->num_regs;
2551                                         i++, reg++, count++) {
2552                                 /* only print cached values if they are valid */
2553                                 if (reg->valid) {
2554                                         value = buf_to_str(reg->value,
2555                                                         reg->size, 16);
2556                                         command_print(CMD_CTX,
2557                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2558                                                         count, reg->name,
2559                                                         reg->size, value,
2560                                                         reg->dirty
2561                                                                 ? " (dirty)"
2562                                                                 : "");
2563                                         free(value);
2564                                 } else {
2565                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2566                                                           count, reg->name,
2567                                                           reg->size) ;
2568                                 }
2569                         }
2570                         cache = cache->next;
2571                 }
2572
2573                 return ERROR_OK;
2574         }
2575
2576         /* access a single register by its ordinal number */
2577         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2578                 unsigned num;
2579                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2580
2581                 struct reg_cache *cache = target->reg_cache;
2582                 count = 0;
2583                 while (cache) {
2584                         unsigned i;
2585                         for (i = 0; i < cache->num_regs; i++) {
2586                                 if (count++ == num) {
2587                                         reg = &cache->reg_list[i];
2588                                         break;
2589                                 }
2590                         }
2591                         if (reg)
2592                                 break;
2593                         cache = cache->next;
2594                 }
2595
2596                 if (!reg) {
2597                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2598                                         "has only %i registers (0 - %i)", num, count, count - 1);
2599                         return ERROR_OK;
2600                 }
2601         } else {
2602                 /* access a single register by its name */
2603                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2604
2605                 if (!reg) {
2606                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2607                         return ERROR_OK;
2608                 }
2609         }
2610
2611         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2612
2613         /* display a register */
2614         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2615                         && (CMD_ARGV[1][0] <= '9')))) {
2616                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2617                         reg->valid = 0;
2618
2619                 if (reg->valid == 0)
2620                         reg->type->get(reg);
2621                 value = buf_to_str(reg->value, reg->size, 16);
2622                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2623                 free(value);
2624                 return ERROR_OK;
2625         }
2626
2627         /* set register value */
2628         if (CMD_ARGC == 2) {
2629                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2630                 if (buf == NULL)
2631                         return ERROR_FAIL;
2632                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2633
2634                 reg->type->set(reg, buf);
2635
2636                 value = buf_to_str(reg->value, reg->size, 16);
2637                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2638                 free(value);
2639
2640                 free(buf);
2641
2642                 return ERROR_OK;
2643         }
2644
2645         return ERROR_COMMAND_SYNTAX_ERROR;
2646 }
2647
2648 COMMAND_HANDLER(handle_poll_command)
2649 {
2650         int retval = ERROR_OK;
2651         struct target *target = get_current_target(CMD_CTX);
2652
2653         if (CMD_ARGC == 0) {
2654                 command_print(CMD_CTX, "background polling: %s",
2655                                 jtag_poll_get_enabled() ? "on" : "off");
2656                 command_print(CMD_CTX, "TAP: %s (%s)",
2657                                 target->tap->dotted_name,
2658                                 target->tap->enabled ? "enabled" : "disabled");
2659                 if (!target->tap->enabled)
2660                         return ERROR_OK;
2661                 retval = target_poll(target);
2662                 if (retval != ERROR_OK)
2663                         return retval;
2664                 retval = target_arch_state(target);
2665                 if (retval != ERROR_OK)
2666                         return retval;
2667         } else if (CMD_ARGC == 1) {
2668                 bool enable;
2669                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2670                 jtag_poll_set_enabled(enable);
2671         } else
2672                 return ERROR_COMMAND_SYNTAX_ERROR;
2673
2674         return retval;
2675 }
2676
2677 COMMAND_HANDLER(handle_wait_halt_command)
2678 {
2679         if (CMD_ARGC > 1)
2680                 return ERROR_COMMAND_SYNTAX_ERROR;
2681
2682         unsigned ms = DEFAULT_HALT_TIMEOUT;
2683         if (1 == CMD_ARGC) {
2684                 int retval = parse_uint(CMD_ARGV[0], &ms);
2685                 if (ERROR_OK != retval)
2686                         return ERROR_COMMAND_SYNTAX_ERROR;
2687         }
2688
2689         struct target *target = get_current_target(CMD_CTX);
2690         return target_wait_state(target, TARGET_HALTED, ms);
2691 }
2692
2693 /* wait for target state to change. The trick here is to have a low
2694  * latency for short waits and not to suck up all the CPU time
2695  * on longer waits.
2696  *
2697  * After 500ms, keep_alive() is invoked
2698  */
2699 int target_wait_state(struct target *target, enum target_state state, int ms)
2700 {
2701         int retval;
2702         long long then = 0, cur;
2703         int once = 1;
2704
2705         for (;;) {
2706                 retval = target_poll(target);
2707                 if (retval != ERROR_OK)
2708                         return retval;
2709                 if (target->state == state)
2710                         break;
2711                 cur = timeval_ms();
2712                 if (once) {
2713                         once = 0;
2714                         then = timeval_ms();
2715                         LOG_DEBUG("waiting for target %s...",
2716                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2717                 }
2718
2719                 if (cur-then > 500)
2720                         keep_alive();
2721
2722                 if ((cur-then) > ms) {
2723                         LOG_ERROR("timed out while waiting for target %s",
2724                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2725                         return ERROR_FAIL;
2726                 }
2727         }
2728
2729         return ERROR_OK;
2730 }
2731
2732 COMMAND_HANDLER(handle_halt_command)
2733 {
2734         LOG_DEBUG("-");
2735
2736         struct target *target = get_current_target(CMD_CTX);
2737         int retval = target_halt(target);
2738         if (ERROR_OK != retval)
2739                 return retval;
2740
2741         if (CMD_ARGC == 1) {
2742                 unsigned wait_local;
2743                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2744                 if (ERROR_OK != retval)
2745                         return ERROR_COMMAND_SYNTAX_ERROR;
2746                 if (!wait_local)
2747                         return ERROR_OK;
2748         }
2749
2750         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2751 }
2752
2753 COMMAND_HANDLER(handle_soft_reset_halt_command)
2754 {
2755         struct target *target = get_current_target(CMD_CTX);
2756
2757         LOG_USER("requesting target halt and executing a soft reset");
2758
2759         target_soft_reset_halt(target);
2760
2761         return ERROR_OK;
2762 }
2763
2764 COMMAND_HANDLER(handle_reset_command)
2765 {
2766         if (CMD_ARGC > 1)
2767                 return ERROR_COMMAND_SYNTAX_ERROR;
2768
2769         enum target_reset_mode reset_mode = RESET_RUN;
2770         if (CMD_ARGC == 1) {
2771                 const Jim_Nvp *n;
2772                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2773                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2774                         return ERROR_COMMAND_SYNTAX_ERROR;
2775                 reset_mode = n->value;
2776         }
2777
2778         /* reset *all* targets */
2779         return target_process_reset(CMD_CTX, reset_mode);
2780 }
2781
2782
2783 COMMAND_HANDLER(handle_resume_command)
2784 {
2785         int current = 1;
2786         if (CMD_ARGC > 1)
2787                 return ERROR_COMMAND_SYNTAX_ERROR;
2788
2789         struct target *target = get_current_target(CMD_CTX);
2790
2791         /* with no CMD_ARGV, resume from current pc, addr = 0,
2792          * with one arguments, addr = CMD_ARGV[0],
2793          * handle breakpoints, not debugging */
2794         uint32_t addr = 0;
2795         if (CMD_ARGC == 1) {
2796                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2797                 current = 0;
2798         }
2799
2800         return target_resume(target, current, addr, 1, 0);
2801 }
2802
2803 COMMAND_HANDLER(handle_step_command)
2804 {
2805         if (CMD_ARGC > 1)
2806                 return ERROR_COMMAND_SYNTAX_ERROR;
2807
2808         LOG_DEBUG("-");
2809
2810         /* with no CMD_ARGV, step from current pc, addr = 0,
2811          * with one argument addr = CMD_ARGV[0],
2812          * handle breakpoints, debugging */
2813         uint32_t addr = 0;
2814         int current_pc = 1;
2815         if (CMD_ARGC == 1) {
2816                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2817                 current_pc = 0;
2818         }
2819
2820         struct target *target = get_current_target(CMD_CTX);
2821
2822         return target->type->step(target, current_pc, addr, 1);
2823 }
2824
2825 static void handle_md_output(struct command_context *cmd_ctx,
2826                 struct target *target, uint32_t address, unsigned size,
2827                 unsigned count, const uint8_t *buffer)
2828 {
2829         const unsigned line_bytecnt = 32;
2830         unsigned line_modulo = line_bytecnt / size;
2831
2832         char output[line_bytecnt * 4 + 1];
2833         unsigned output_len = 0;
2834
2835         const char *value_fmt;
2836         switch (size) {
2837         case 4:
2838                 value_fmt = "%8.8x ";
2839                 break;
2840         case 2:
2841                 value_fmt = "%4.4x ";
2842                 break;
2843         case 1:
2844                 value_fmt = "%2.2x ";
2845                 break;
2846         default:
2847                 /* "can't happen", caller checked */
2848                 LOG_ERROR("invalid memory read size: %u", size);
2849                 return;
2850         }
2851
2852         for (unsigned i = 0; i < count; i++) {
2853                 if (i % line_modulo == 0) {
2854                         output_len += snprintf(output + output_len,
2855                                         sizeof(output) - output_len,
2856                                         "0x%8.8x: ",
2857                                         (unsigned)(address + (i*size)));
2858                 }
2859
2860                 uint32_t value = 0;
2861                 const uint8_t *value_ptr = buffer + i * size;
2862                 switch (size) {
2863                 case 4:
2864                         value = target_buffer_get_u32(target, value_ptr);
2865                         break;
2866                 case 2:
2867                         value = target_buffer_get_u16(target, value_ptr);
2868                         break;
2869                 case 1:
2870                         value = *value_ptr;
2871                 }
2872                 output_len += snprintf(output + output_len,
2873                                 sizeof(output) - output_len,
2874                                 value_fmt, value);
2875
2876                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2877                         command_print(cmd_ctx, "%s", output);
2878                         output_len = 0;
2879                 }
2880         }
2881 }
2882
2883 COMMAND_HANDLER(handle_md_command)
2884 {
2885         if (CMD_ARGC < 1)
2886                 return ERROR_COMMAND_SYNTAX_ERROR;
2887
2888         unsigned size = 0;
2889         switch (CMD_NAME[2]) {
2890         case 'w':
2891                 size = 4;
2892                 break;
2893         case 'h':
2894                 size = 2;
2895                 break;
2896         case 'b':
2897                 size = 1;
2898                 break;
2899         default:
2900                 return ERROR_COMMAND_SYNTAX_ERROR;
2901         }
2902
2903         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2904         int (*fn)(struct target *target,
2905                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2906         if (physical) {
2907                 CMD_ARGC--;
2908                 CMD_ARGV++;
2909                 fn = target_read_phys_memory;
2910         } else
2911                 fn = target_read_memory;
2912         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2913                 return ERROR_COMMAND_SYNTAX_ERROR;
2914
2915         uint32_t address;
2916         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2917
2918         unsigned count = 1;
2919         if (CMD_ARGC == 2)
2920                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2921
2922         uint8_t *buffer = calloc(count, size);
2923
2924         struct target *target = get_current_target(CMD_CTX);
2925         int retval = fn(target, address, size, count, buffer);
2926         if (ERROR_OK == retval)
2927                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2928
2929         free(buffer);
2930
2931         return retval;
2932 }
2933
2934 typedef int (*target_write_fn)(struct target *target,
2935                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2936
2937 static int target_fill_mem(struct target *target,
2938                 uint32_t address,
2939                 target_write_fn fn,
2940                 unsigned data_size,
2941                 /* value */
2942                 uint32_t b,
2943                 /* count */
2944                 unsigned c)
2945 {
2946         /* We have to write in reasonably large chunks to be able
2947          * to fill large memory areas with any sane speed */
2948         const unsigned chunk_size = 16384;
2949         uint8_t *target_buf = malloc(chunk_size * data_size);
2950         if (target_buf == NULL) {
2951                 LOG_ERROR("Out of memory");
2952                 return ERROR_FAIL;
2953         }
2954
2955         for (unsigned i = 0; i < chunk_size; i++) {
2956                 switch (data_size) {
2957                 case 4:
2958                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2959                         break;
2960                 case 2:
2961                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2962                         break;
2963                 case 1:
2964                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2965                         break;
2966                 default:
2967                         exit(-1);
2968                 }
2969         }
2970
2971         int retval = ERROR_OK;
2972
2973         for (unsigned x = 0; x < c; x += chunk_size) {
2974                 unsigned current;
2975                 current = c - x;
2976                 if (current > chunk_size)
2977                         current = chunk_size;
2978                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2979                 if (retval != ERROR_OK)
2980                         break;
2981                 /* avoid GDB timeouts */
2982                 keep_alive();
2983         }
2984         free(target_buf);
2985
2986         return retval;
2987 }
2988
2989
2990 COMMAND_HANDLER(handle_mw_command)
2991 {
2992         if (CMD_ARGC < 2)
2993                 return ERROR_COMMAND_SYNTAX_ERROR;
2994         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2995         target_write_fn fn;
2996         if (physical) {
2997                 CMD_ARGC--;
2998                 CMD_ARGV++;
2999                 fn = target_write_phys_memory;
3000         } else
3001                 fn = target_write_memory;
3002         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3003                 return ERROR_COMMAND_SYNTAX_ERROR;
3004
3005         uint32_t address;
3006         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3007
3008         uint32_t value;
3009         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3010
3011         unsigned count = 1;
3012         if (CMD_ARGC == 3)
3013                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3014
3015         struct target *target = get_current_target(CMD_CTX);
3016         unsigned wordsize;
3017         switch (CMD_NAME[2]) {
3018                 case 'w':
3019                         wordsize = 4;
3020                         break;
3021                 case 'h':
3022                         wordsize = 2;
3023                         break;
3024                 case 'b':
3025                         wordsize = 1;
3026                         break;
3027                 default:
3028                         return ERROR_COMMAND_SYNTAX_ERROR;
3029         }
3030
3031         return target_fill_mem(target, address, fn, wordsize, value, count);
3032 }
3033
3034 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3035                 uint32_t *min_address, uint32_t *max_address)
3036 {
3037         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3038                 return ERROR_COMMAND_SYNTAX_ERROR;
3039
3040         /* a base address isn't always necessary,
3041          * default to 0x0 (i.e. don't relocate) */
3042         if (CMD_ARGC >= 2) {
3043                 uint32_t addr;
3044                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3045                 image->base_address = addr;
3046                 image->base_address_set = 1;
3047         } else
3048                 image->base_address_set = 0;
3049
3050         image->start_address_set = 0;
3051
3052         if (CMD_ARGC >= 4)
3053                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3054         if (CMD_ARGC == 5) {
3055                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3056                 /* use size (given) to find max (required) */
3057                 *max_address += *min_address;
3058         }
3059
3060         if (*min_address > *max_address)
3061                 return ERROR_COMMAND_SYNTAX_ERROR;
3062
3063         return ERROR_OK;
3064 }
3065
3066 COMMAND_HANDLER(handle_load_image_command)
3067 {
3068         uint8_t *buffer;
3069         size_t buf_cnt;
3070         uint32_t image_size;
3071         uint32_t min_address = 0;
3072         uint32_t max_address = 0xffffffff;
3073         int i;
3074         struct image image;
3075
3076         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3077                         &image, &min_address, &max_address);
3078         if (ERROR_OK != retval)
3079                 return retval;
3080
3081         struct target *target = get_current_target(CMD_CTX);
3082
3083         struct duration bench;
3084         duration_start(&bench);
3085
3086         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3087                 return ERROR_OK;
3088
3089         image_size = 0x0;
3090         retval = ERROR_OK;
3091         for (i = 0; i < image.num_sections; i++) {
3092                 buffer = malloc(image.sections[i].size);
3093                 if (buffer == NULL) {
3094                         command_print(CMD_CTX,
3095                                                   "error allocating buffer for section (%d bytes)",
3096                                                   (int)(image.sections[i].size));
3097                         break;
3098                 }
3099
3100                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3101                 if (retval != ERROR_OK) {
3102                         free(buffer);
3103                         break;
3104                 }
3105
3106                 uint32_t offset = 0;
3107                 uint32_t length = buf_cnt;
3108
3109                 /* DANGER!!! beware of unsigned comparision here!!! */
3110
3111                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3112                                 (image.sections[i].base_address < max_address)) {
3113
3114                         if (image.sections[i].base_address < min_address) {
3115                                 /* clip addresses below */
3116                                 offset += min_address-image.sections[i].base_address;
3117                                 length -= offset;
3118                         }
3119
3120                         if (image.sections[i].base_address + buf_cnt > max_address)
3121                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3122
3123                         retval = target_write_buffer(target,
3124                                         image.sections[i].base_address + offset, length, buffer + offset);
3125                         if (retval != ERROR_OK) {
3126                                 free(buffer);
3127                                 break;
3128                         }
3129                         image_size += length;
3130                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3131                                         (unsigned int)length,
3132                                         image.sections[i].base_address + offset);
3133                 }
3134
3135                 free(buffer);
3136         }
3137
3138         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3139                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3140                                 "in %fs (%0.3f KiB/s)", image_size,
3141                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3142         }
3143
3144         image_close(&image);
3145
3146         return retval;
3147
3148 }
3149
3150 COMMAND_HANDLER(handle_dump_image_command)
3151 {
3152         struct fileio fileio;
3153         uint8_t *buffer;
3154         int retval, retvaltemp;
3155         uint32_t address, size;
3156         struct duration bench;
3157         struct target *target = get_current_target(CMD_CTX);
3158
3159         if (CMD_ARGC != 3)
3160                 return ERROR_COMMAND_SYNTAX_ERROR;
3161
3162         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3163         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3164
3165         uint32_t buf_size = (size > 4096) ? 4096 : size;
3166         buffer = malloc(buf_size);
3167         if (!buffer)
3168                 return ERROR_FAIL;
3169
3170         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3171         if (retval != ERROR_OK) {
3172                 free(buffer);
3173                 return retval;
3174         }
3175
3176         duration_start(&bench);
3177
3178         while (size > 0) {
3179                 size_t size_written;
3180                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3181                 retval = target_read_buffer(target, address, this_run_size, buffer);
3182                 if (retval != ERROR_OK)
3183                         break;
3184
3185                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3186                 if (retval != ERROR_OK)
3187                         break;
3188
3189                 size -= this_run_size;
3190                 address += this_run_size;
3191         }
3192
3193         free(buffer);
3194
3195         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3196                 int filesize;
3197                 retval = fileio_size(&fileio, &filesize);
3198                 if (retval != ERROR_OK)
3199                         return retval;
3200                 command_print(CMD_CTX,
3201                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3202                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3203         }
3204
3205         retvaltemp = fileio_close(&fileio);
3206         if (retvaltemp != ERROR_OK)
3207                 return retvaltemp;
3208
3209         return retval;
3210 }
3211
3212 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3213 {
3214         uint8_t *buffer;
3215         size_t buf_cnt;
3216         uint32_t image_size;
3217         int i;
3218         int retval;
3219         uint32_t checksum = 0;
3220         uint32_t mem_checksum = 0;
3221
3222         struct image image;
3223
3224         struct target *target = get_current_target(CMD_CTX);
3225
3226         if (CMD_ARGC < 1)
3227                 return ERROR_COMMAND_SYNTAX_ERROR;
3228
3229         if (!target) {
3230                 LOG_ERROR("no target selected");
3231                 return ERROR_FAIL;
3232         }
3233
3234         struct duration bench;
3235         duration_start(&bench);
3236
3237         if (CMD_ARGC >= 2) {
3238                 uint32_t addr;
3239                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3240                 image.base_address = addr;
3241                 image.base_address_set = 1;
3242         } else {
3243                 image.base_address_set = 0;
3244                 image.base_address = 0x0;
3245         }
3246
3247         image.start_address_set = 0;
3248
3249         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3250         if (retval != ERROR_OK)
3251                 return retval;
3252
3253         image_size = 0x0;
3254         int diffs = 0;
3255         retval = ERROR_OK;
3256         for (i = 0; i < image.num_sections; i++) {
3257                 buffer = malloc(image.sections[i].size);
3258                 if (buffer == NULL) {
3259                         command_print(CMD_CTX,
3260                                         "error allocating buffer for section (%d bytes)",
3261                                         (int)(image.sections[i].size));
3262                         break;
3263                 }
3264                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3265                 if (retval != ERROR_OK) {
3266                         free(buffer);
3267                         break;
3268                 }
3269
3270                 if (verify) {
3271                         /* calculate checksum of image */
3272                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3273                         if (retval != ERROR_OK) {
3274                                 free(buffer);
3275                                 break;
3276                         }
3277
3278                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3279                         if (retval != ERROR_OK) {
3280                                 free(buffer);
3281                                 break;
3282                         }
3283
3284                         if (checksum != mem_checksum) {
3285                                 /* failed crc checksum, fall back to a binary compare */
3286                                 uint8_t *data;
3287
3288                                 if (diffs == 0)
3289                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3290
3291                                 data = malloc(buf_cnt);
3292
3293                                 /* Can we use 32bit word accesses? */
3294                                 int size = 1;
3295                                 int count = buf_cnt;
3296                                 if ((count % 4) == 0) {
3297                                         size *= 4;
3298                                         count /= 4;
3299                                 }
3300                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3301                                 if (retval == ERROR_OK) {
3302                                         uint32_t t;
3303                                         for (t = 0; t < buf_cnt; t++) {
3304                                                 if (data[t] != buffer[t]) {
3305                                                         command_print(CMD_CTX,
3306                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3307                                                                                   diffs,
3308                                                                                   (unsigned)(t + image.sections[i].base_address),
3309                                                                                   data[t],
3310                                                                                   buffer[t]);
3311                                                         if (diffs++ >= 127) {
3312                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3313                                                                 free(data);
3314                                                                 free(buffer);
3315                                                                 goto done;
3316                                                         }
3317                                                 }
3318                                                 keep_alive();
3319                                         }
3320                                 }
3321                                 free(data);
3322                         }
3323                 } else {
3324                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3325                                                   image.sections[i].base_address,
3326                                                   buf_cnt);
3327                 }
3328
3329                 free(buffer);
3330                 image_size += buf_cnt;
3331         }
3332         if (diffs > 0)
3333                 command_print(CMD_CTX, "No more differences found.");
3334 done:
3335         if (diffs > 0)
3336                 retval = ERROR_FAIL;
3337         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3338                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3339                                 "in %fs (%0.3f KiB/s)", image_size,
3340                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3341         }
3342
3343         image_close(&image);
3344
3345         return retval;
3346 }
3347
3348 COMMAND_HANDLER(handle_verify_image_command)
3349 {
3350         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3351 }
3352
3353 COMMAND_HANDLER(handle_test_image_command)
3354 {
3355         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3356 }
3357
3358 static int handle_bp_command_list(struct command_context *cmd_ctx)
3359 {
3360         struct target *target = get_current_target(cmd_ctx);
3361         struct breakpoint *breakpoint = target->breakpoints;
3362         while (breakpoint) {
3363                 if (breakpoint->type == BKPT_SOFT) {
3364                         char *buf = buf_to_str(breakpoint->orig_instr,
3365                                         breakpoint->length, 16);
3366                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3367                                         breakpoint->address,
3368                                         breakpoint->length,
3369                                         breakpoint->set, buf);
3370                         free(buf);
3371                 } else {
3372                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3373                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3374                                                         breakpoint->asid,
3375                                                         breakpoint->length, breakpoint->set);
3376                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3377                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3378                                                         breakpoint->address,
3379                                                         breakpoint->length, breakpoint->set);
3380                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3381                                                         breakpoint->asid);
3382                         } else
3383                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3384                                                         breakpoint->address,
3385                                                         breakpoint->length, breakpoint->set);
3386                 }
3387
3388                 breakpoint = breakpoint->next;
3389         }
3390         return ERROR_OK;
3391 }
3392
3393 static int handle_bp_command_set(struct command_context *cmd_ctx,
3394                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3395 {
3396         struct target *target = get_current_target(cmd_ctx);
3397         int retval;
3398
3399         if (asid == 0) {
3400                 retval = breakpoint_add(target, addr, length, hw);
3401                 if (ERROR_OK == retval)
3402                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3403                 else {
3404                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3405                         return retval;
3406                 }
3407         } else if (addr == 0) {
3408                 if (target->type->add_context_breakpoint == NULL) {
3409                         LOG_WARNING("Context breakpoint not available");
3410                         return ERROR_OK;
3411                 }
3412                 retval = context_breakpoint_add(target, asid, length, hw);
3413                 if (ERROR_OK == retval)
3414                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3415                 else {
3416                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3417                         return retval;
3418                 }
3419         } else {
3420                 if (target->type->add_hybrid_breakpoint == NULL) {
3421                         LOG_WARNING("Hybrid breakpoint not available");
3422                         return ERROR_OK;
3423                 }
3424                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3425                 if (ERROR_OK == retval)
3426                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3427                 else {
3428                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3429                         return retval;
3430                 }
3431         }
3432         return ERROR_OK;
3433 }
3434
3435 COMMAND_HANDLER(handle_bp_command)
3436 {
3437         uint32_t addr;
3438         uint32_t asid;
3439         uint32_t length;
3440         int hw = BKPT_SOFT;
3441
3442         switch (CMD_ARGC) {
3443                 case 0:
3444                         return handle_bp_command_list(CMD_CTX);
3445
3446                 case 2:
3447                         asid = 0;
3448                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3449                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3450                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3451
3452                 case 3:
3453                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3454                                 hw = BKPT_HARD;
3455                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3456
3457                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3458
3459                                 asid = 0;
3460                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3461                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3462                                 hw = BKPT_HARD;
3463                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3464                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3465                                 addr = 0;
3466                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3467                         }
3468
3469                 case 4:
3470                         hw = BKPT_HARD;
3471                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3472                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3473                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3474                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3475
3476                 default:
3477                         return ERROR_COMMAND_SYNTAX_ERROR;
3478         }
3479 }
3480
3481 COMMAND_HANDLER(handle_rbp_command)
3482 {
3483         if (CMD_ARGC != 1)
3484                 return ERROR_COMMAND_SYNTAX_ERROR;
3485
3486         uint32_t addr;
3487         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3488
3489         struct target *target = get_current_target(CMD_CTX);
3490         breakpoint_remove(target, addr);
3491
3492         return ERROR_OK;
3493 }
3494
3495 COMMAND_HANDLER(handle_wp_command)
3496 {
3497         struct target *target = get_current_target(CMD_CTX);
3498
3499         if (CMD_ARGC == 0) {
3500                 struct watchpoint *watchpoint = target->watchpoints;
3501
3502                 while (watchpoint) {
3503                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3504                                         ", len: 0x%8.8" PRIx32
3505                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3506                                         ", mask: 0x%8.8" PRIx32,
3507                                         watchpoint->address,
3508                                         watchpoint->length,
3509                                         (int)watchpoint->rw,
3510                                         watchpoint->value,
3511                                         watchpoint->mask);
3512                         watchpoint = watchpoint->next;
3513                 }
3514                 return ERROR_OK;
3515         }
3516
3517         enum watchpoint_rw type = WPT_ACCESS;
3518         uint32_t addr = 0;
3519         uint32_t length = 0;
3520         uint32_t data_value = 0x0;
3521         uint32_t data_mask = 0xffffffff;
3522
3523         switch (CMD_ARGC) {
3524         case 5:
3525                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3526                 /* fall through */
3527         case 4:
3528                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3529                 /* fall through */
3530         case 3:
3531                 switch (CMD_ARGV[2][0]) {
3532                 case 'r':
3533                         type = WPT_READ;
3534                         break;
3535                 case 'w':
3536                         type = WPT_WRITE;
3537                         break;
3538                 case 'a':
3539                         type = WPT_ACCESS;
3540                         break;
3541                 default:
3542                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3543                         return ERROR_COMMAND_SYNTAX_ERROR;
3544                 }
3545                 /* fall through */
3546         case 2:
3547                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3548                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3549                 break;
3550
3551         default:
3552                 return ERROR_COMMAND_SYNTAX_ERROR;
3553         }
3554
3555         int retval = watchpoint_add(target, addr, length, type,
3556                         data_value, data_mask);
3557         if (ERROR_OK != retval)
3558                 LOG_ERROR("Failure setting watchpoints");
3559
3560         return retval;
3561 }
3562
3563 COMMAND_HANDLER(handle_rwp_command)
3564 {
3565         if (CMD_ARGC != 1)
3566                 return ERROR_COMMAND_SYNTAX_ERROR;
3567
3568         uint32_t addr;
3569         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3570
3571         struct target *target = get_current_target(CMD_CTX);
3572         watchpoint_remove(target, addr);
3573
3574         return ERROR_OK;
3575 }
3576
3577 /**
3578  * Translate a virtual address to a physical address.
3579  *
3580  * The low-level target implementation must have logged a detailed error
3581  * which is forwarded to telnet/GDB session.
3582  */
3583 COMMAND_HANDLER(handle_virt2phys_command)
3584 {
3585         if (CMD_ARGC != 1)
3586                 return ERROR_COMMAND_SYNTAX_ERROR;
3587
3588         uint32_t va;
3589         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3590         uint32_t pa;
3591
3592         struct target *target = get_current_target(CMD_CTX);
3593         int retval = target->type->virt2phys(target, va, &pa);
3594         if (retval == ERROR_OK)
3595                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3596
3597         return retval;
3598 }
3599
3600 static void writeData(FILE *f, const void *data, size_t len)
3601 {
3602         size_t written = fwrite(data, 1, len, f);
3603         if (written != len)
3604                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3605 }
3606
3607 static void writeLong(FILE *f, int l, struct target *target)
3608 {
3609         uint8_t val[4];
3610
3611         target_buffer_set_u32(target, val, l);
3612         writeData(f, val, 4);
3613 }
3614
3615 static void writeString(FILE *f, char *s)
3616 {
3617         writeData(f, s, strlen(s));
3618 }
3619
3620 typedef unsigned char UNIT[2];  /* unit of profiling */
3621
3622 /* Dump a gmon.out histogram file. */
3623 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3624                         uint32_t start_address, uint32_t end_address, struct target *target)
3625 {
3626         uint32_t i;
3627         FILE *f = fopen(filename, "w");
3628         if (f == NULL)
3629                 return;
3630         writeString(f, "gmon");
3631         writeLong(f, 0x00000001, target); /* Version */
3632         writeLong(f, 0, target); /* padding */
3633         writeLong(f, 0, target); /* padding */
3634         writeLong(f, 0, target); /* padding */
3635
3636         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3637         writeData(f, &zero, 1);
3638
3639         /* figure out bucket size */
3640         uint32_t min;
3641         uint32_t max;
3642         if (with_range) {
3643                 min = start_address;
3644                 max = end_address;
3645         } else {
3646                 min = samples[0];
3647                 max = samples[0];
3648                 for (i = 0; i < sampleNum; i++) {
3649                         if (min > samples[i])
3650                                 min = samples[i];
3651                         if (max < samples[i])
3652                                 max = samples[i];
3653                 }
3654
3655                 /* max should be (largest sample + 1)
3656                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3657                 max++;
3658         }
3659
3660         int addressSpace = max - min;
3661         assert(addressSpace >= 2);
3662
3663         /* FIXME: What is the reasonable number of buckets?
3664          * The profiling result will be more accurate if there are enough buckets. */
3665         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3666         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3667         if (numBuckets > maxBuckets)
3668                 numBuckets = maxBuckets;
3669         int *buckets = malloc(sizeof(int) * numBuckets);
3670         if (buckets == NULL) {
3671                 fclose(f);
3672                 return;
3673         }
3674         memset(buckets, 0, sizeof(int) * numBuckets);
3675         for (i = 0; i < sampleNum; i++) {
3676                 uint32_t address = samples[i];
3677
3678                 if ((address < min) || (max <= address))
3679                         continue;
3680
3681                 long long a = address - min;
3682                 long long b = numBuckets;
3683                 long long c = addressSpace;
3684                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3685                 buckets[index_t]++;
3686         }
3687
3688         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3689         writeLong(f, min, target);                      /* low_pc */
3690         writeLong(f, max, target);                      /* high_pc */
3691         writeLong(f, numBuckets, target);       /* # of buckets */
3692         writeLong(f, 100, target);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3693         writeString(f, "seconds");
3694         for (i = 0; i < (15-strlen("seconds")); i++)
3695                 writeData(f, &zero, 1);
3696         writeString(f, "s");
3697
3698         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3699
3700         char *data = malloc(2 * numBuckets);
3701         if (data != NULL) {
3702                 for (i = 0; i < numBuckets; i++) {
3703                         int val;
3704                         val = buckets[i];
3705                         if (val > 65535)
3706                                 val = 65535;
3707                         data[i * 2] = val&0xff;
3708                         data[i * 2 + 1] = (val >> 8) & 0xff;
3709                 }
3710                 free(buckets);
3711                 writeData(f, data, numBuckets * 2);
3712                 free(data);
3713         } else
3714                 free(buckets);
3715
3716         fclose(f);
3717 }
3718
3719 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3720  * which will be used as a random sampling of PC */
3721 COMMAND_HANDLER(handle_profile_command)
3722 {
3723         struct target *target = get_current_target(CMD_CTX);
3724
3725         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3726                 return ERROR_COMMAND_SYNTAX_ERROR;
3727
3728         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3729         uint32_t offset;
3730         uint32_t num_of_samples;
3731         int retval = ERROR_OK;
3732
3733         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3734
3735         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3736         if (samples == NULL) {
3737                 LOG_ERROR("No memory to store samples.");
3738                 return ERROR_FAIL;
3739         }
3740
3741         /**
3742          * Some cores let us sample the PC without the
3743          * annoying halt/resume step; for example, ARMv7 PCSR.
3744          * Provide a way to use that more efficient mechanism.
3745          */
3746         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3747                                 &num_of_samples, offset);
3748         if (retval != ERROR_OK) {
3749                 free(samples);
3750                 return retval;
3751         }
3752
3753         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
3754
3755         retval = target_poll(target);
3756         if (retval != ERROR_OK) {
3757                 free(samples);
3758                 return retval;
3759         }
3760         if (target->state == TARGET_RUNNING) {
3761                 retval = target_halt(target);
3762                 if (retval != ERROR_OK) {
3763                         free(samples);
3764                         return retval;
3765                 }
3766         }
3767
3768         retval = target_poll(target);
3769         if (retval != ERROR_OK) {
3770                 free(samples);
3771                 return retval;
3772         }
3773
3774         uint32_t start_address = 0;
3775         uint32_t end_address = 0;
3776         bool with_range = false;
3777         if (CMD_ARGC == 4) {
3778                 with_range = true;
3779                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3780                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3781         }
3782
3783         write_gmon(samples, num_of_samples, CMD_ARGV[1],
3784                    with_range, start_address, end_address, target);
3785         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3786
3787         free(samples);
3788         return retval;
3789 }
3790
3791 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3792 {
3793         char *namebuf;
3794         Jim_Obj *nameObjPtr, *valObjPtr;
3795         int result;
3796
3797         namebuf = alloc_printf("%s(%d)", varname, idx);
3798         if (!namebuf)
3799                 return JIM_ERR;
3800
3801         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3802         valObjPtr = Jim_NewIntObj(interp, val);
3803         if (!nameObjPtr || !valObjPtr) {
3804                 free(namebuf);
3805                 return JIM_ERR;
3806         }
3807
3808         Jim_IncrRefCount(nameObjPtr);
3809         Jim_IncrRefCount(valObjPtr);
3810         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3811         Jim_DecrRefCount(interp, nameObjPtr);
3812         Jim_DecrRefCount(interp, valObjPtr);
3813         free(namebuf);
3814         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3815         return result;
3816 }
3817
3818 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3819 {
3820         struct command_context *context;
3821         struct target *target;
3822
3823         context = current_command_context(interp);
3824         assert(context != NULL);
3825
3826         target = get_current_target(context);
3827         if (target == NULL) {
3828                 LOG_ERROR("mem2array: no current target");
3829                 return JIM_ERR;
3830         }
3831
3832         return target_mem2array(interp, target, argc - 1, argv + 1);
3833 }
3834
3835 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3836 {
3837         long l;
3838         uint32_t width;
3839         int len;
3840         uint32_t addr;
3841         uint32_t count;
3842         uint32_t v;
3843         const char *varname;
3844         int  n, e, retval;
3845         uint32_t i;
3846
3847         /* argv[1] = name of array to receive the data
3848          * argv[2] = desired width
3849          * argv[3] = memory address
3850          * argv[4] = count of times to read
3851          */
3852         if (argc != 4) {
3853                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3854                 return JIM_ERR;
3855         }
3856         varname = Jim_GetString(argv[0], &len);
3857         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3858
3859         e = Jim_GetLong(interp, argv[1], &l);
3860         width = l;
3861         if (e != JIM_OK)
3862                 return e;
3863
3864         e = Jim_GetLong(interp, argv[2], &l);
3865         addr = l;
3866         if (e != JIM_OK)
3867                 return e;
3868         e = Jim_GetLong(interp, argv[3], &l);
3869         len = l;
3870         if (e != JIM_OK)
3871                 return e;
3872         switch (width) {
3873                 case 8:
3874                         width = 1;
3875                         break;
3876                 case 16:
3877                         width = 2;
3878                         break;
3879                 case 32:
3880                         width = 4;
3881                         break;
3882                 default:
3883                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3884                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3885                         return JIM_ERR;
3886         }
3887         if (len == 0) {
3888                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3889                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3890                 return JIM_ERR;
3891         }
3892         if ((addr + (len * width)) < addr) {
3893                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3894                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3895                 return JIM_ERR;
3896         }
3897         /* absurd transfer size? */
3898         if (len > 65536) {
3899                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3900                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3901                 return JIM_ERR;
3902         }
3903
3904         if ((width == 1) ||
3905                 ((width == 2) && ((addr & 1) == 0)) ||
3906                 ((width == 4) && ((addr & 3) == 0))) {
3907                 /* all is well */
3908         } else {
3909                 char buf[100];
3910                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3911                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3912                                 addr,
3913                                 width);
3914                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3915                 return JIM_ERR;
3916         }
3917
3918         /* Transfer loop */
3919
3920         /* index counter */
3921         n = 0;
3922
3923         size_t buffersize = 4096;
3924         uint8_t *buffer = malloc(buffersize);
3925         if (buffer == NULL)
3926                 return JIM_ERR;
3927
3928         /* assume ok */
3929         e = JIM_OK;
3930         while (len) {
3931                 /* Slurp... in buffer size chunks */
3932
3933                 count = len; /* in objects.. */
3934                 if (count > (buffersize / width))
3935                         count = (buffersize / width);
3936
3937                 retval = target_read_memory(target, addr, width, count, buffer);
3938                 if (retval != ERROR_OK) {
3939                         /* BOO !*/
3940                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3941                                           (unsigned int)addr,
3942                                           (int)width,
3943                                           (int)count);
3944                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3945                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3946                         e = JIM_ERR;
3947                         break;
3948                 } else {
3949                         v = 0; /* shut up gcc */
3950                         for (i = 0; i < count ; i++, n++) {
3951                                 switch (width) {
3952                                         case 4:
3953                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3954                                                 break;
3955                                         case 2:
3956                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3957                                                 break;
3958                                         case 1:
3959                                                 v = buffer[i] & 0x0ff;
3960                                                 break;
3961                                 }
3962                                 new_int_array_element(interp, varname, n, v);
3963                         }
3964                         len -= count;
3965                         addr += count * width;
3966                 }
3967         }
3968
3969         free(buffer);
3970
3971         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3972
3973         return e;
3974 }
3975
3976 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3977 {
3978         char *namebuf;
3979         Jim_Obj *nameObjPtr, *valObjPtr;
3980         int result;
3981         long l;
3982
3983         namebuf = alloc_printf("%s(%d)", varname, idx);
3984         if (!namebuf)
3985                 return JIM_ERR;
3986
3987         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3988         if (!nameObjPtr) {
3989                 free(namebuf);
3990                 return JIM_ERR;
3991         }
3992
3993         Jim_IncrRefCount(nameObjPtr);
3994         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3995         Jim_DecrRefCount(interp, nameObjPtr);
3996         free(namebuf);
3997         if (valObjPtr == NULL)
3998                 return JIM_ERR;
3999
4000         result = Jim_GetLong(interp, valObjPtr, &l);
4001         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4002         *val = l;
4003         return result;
4004 }
4005
4006 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4007 {
4008         struct command_context *context;
4009         struct target *target;
4010
4011         context = current_command_context(interp);
4012         assert(context != NULL);
4013
4014         target = get_current_target(context);
4015         if (target == NULL) {
4016                 LOG_ERROR("array2mem: no current target");
4017                 return JIM_ERR;
4018         }
4019
4020         return target_array2mem(interp, target, argc-1, argv + 1);
4021 }
4022
4023 static int target_array2mem(Jim_Interp *interp, struct target *target,
4024                 int argc, Jim_Obj *const *argv)
4025 {
4026         long l;
4027         uint32_t width;
4028         int len;
4029         uint32_t addr;
4030         uint32_t count;
4031         uint32_t v;
4032         const char *varname;
4033         int  n, e, retval;
4034         uint32_t i;
4035
4036         /* argv[1] = name of array to get the data
4037          * argv[2] = desired width
4038          * argv[3] = memory address
4039          * argv[4] = count to write
4040          */
4041         if (argc != 4) {
4042                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
4043                 return JIM_ERR;
4044         }
4045         varname = Jim_GetString(argv[0], &len);
4046         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4047
4048         e = Jim_GetLong(interp, argv[1], &l);
4049         width = l;
4050         if (e != JIM_OK)
4051                 return e;
4052
4053         e = Jim_GetLong(interp, argv[2], &l);
4054         addr = l;
4055         if (e != JIM_OK)
4056                 return e;
4057         e = Jim_GetLong(interp, argv[3], &l);
4058         len = l;
4059         if (e != JIM_OK)
4060                 return e;
4061         switch (width) {
4062                 case 8:
4063                         width = 1;
4064                         break;
4065                 case 16:
4066                         width = 2;
4067                         break;
4068                 case 32:
4069                         width = 4;
4070                         break;
4071                 default:
4072                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4073                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4074                                         "Invalid width param, must be 8/16/32", NULL);
4075                         return JIM_ERR;
4076         }
4077         if (len == 0) {
4078                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4079                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4080                                 "array2mem: zero width read?", NULL);
4081                 return JIM_ERR;
4082         }
4083         if ((addr + (len * width)) < addr) {
4084                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4085                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4086                                 "array2mem: addr + len - wraps to zero?", NULL);
4087                 return JIM_ERR;
4088         }
4089         /* absurd transfer size? */
4090         if (len > 65536) {
4091                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4092                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4093                                 "array2mem: absurd > 64K item request", NULL);
4094                 return JIM_ERR;
4095         }
4096
4097         if ((width == 1) ||
4098                 ((width == 2) && ((addr & 1) == 0)) ||
4099                 ((width == 4) && ((addr & 3) == 0))) {
4100                 /* all is well */
4101         } else {
4102                 char buf[100];
4103                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4104                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
4105                                 (unsigned int)addr,
4106                                 (int)width);
4107                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
4108                 return JIM_ERR;
4109         }
4110
4111         /* Transfer loop */
4112
4113         /* index counter */
4114         n = 0;
4115         /* assume ok */
4116         e = JIM_OK;
4117
4118         size_t buffersize = 4096;
4119         uint8_t *buffer = malloc(buffersize);
4120         if (buffer == NULL)
4121                 return JIM_ERR;
4122
4123         while (len) {
4124                 /* Slurp... in buffer size chunks */
4125
4126                 count = len; /* in objects.. */
4127                 if (count > (buffersize / width))
4128                         count = (buffersize / width);
4129
4130                 v = 0; /* shut up gcc */
4131                 for (i = 0; i < count; i++, n++) {
4132                         get_int_array_element(interp, varname, n, &v);
4133                         switch (width) {
4134                         case 4:
4135                                 target_buffer_set_u32(target, &buffer[i * width], v);
4136                                 break;
4137                         case 2:
4138                                 target_buffer_set_u16(target, &buffer[i * width], v);
4139                                 break;
4140                         case 1:
4141                                 buffer[i] = v & 0x0ff;
4142                                 break;
4143                         }
4144                 }
4145                 len -= count;
4146
4147                 retval = target_write_memory(target, addr, width, count, buffer);
4148                 if (retval != ERROR_OK) {
4149                         /* BOO !*/
4150                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4151                                           (unsigned int)addr,
4152                                           (int)width,
4153                                           (int)count);
4154                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4155                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4156                         e = JIM_ERR;
4157                         break;
4158                 }
4159                 addr += count * width;
4160         }
4161
4162         free(buffer);
4163
4164         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4165
4166         return e;
4167 }
4168
4169 /* FIX? should we propagate errors here rather than printing them
4170  * and continuing?
4171  */
4172 void target_handle_event(struct target *target, enum target_event e)
4173 {
4174         struct target_event_action *teap;
4175
4176         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4177                 if (teap->event == e) {
4178                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4179                                            target->target_number,
4180                                            target_name(target),
4181                                            target_type_name(target),
4182                                            e,
4183                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4184                                            Jim_GetString(teap->body, NULL));
4185                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4186                                 Jim_MakeErrorMessage(teap->interp);
4187                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4188                         }
4189                 }
4190         }
4191 }
4192
4193 /**
4194  * Returns true only if the target has a handler for the specified event.
4195  */
4196 bool target_has_event_action(struct target *target, enum target_event event)
4197 {
4198         struct target_event_action *teap;
4199
4200         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4201                 if (teap->event == event)
4202                         return true;
4203         }
4204         return false;
4205 }
4206
4207 enum target_cfg_param {
4208         TCFG_TYPE,
4209         TCFG_EVENT,
4210         TCFG_WORK_AREA_VIRT,
4211         TCFG_WORK_AREA_PHYS,
4212         TCFG_WORK_AREA_SIZE,
4213         TCFG_WORK_AREA_BACKUP,
4214         TCFG_ENDIAN,
4215         TCFG_COREID,
4216         TCFG_CHAIN_POSITION,
4217         TCFG_DBGBASE,
4218         TCFG_RTOS,
4219 };
4220
4221 static Jim_Nvp nvp_config_opts[] = {
4222         { .name = "-type",             .value = TCFG_TYPE },
4223         { .name = "-event",            .value = TCFG_EVENT },
4224         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4225         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4226         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4227         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4228         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4229         { .name = "-coreid",           .value = TCFG_COREID },
4230         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4231         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4232         { .name = "-rtos",             .value = TCFG_RTOS },
4233         { .name = NULL, .value = -1 }
4234 };
4235
4236 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4237 {
4238         Jim_Nvp *n;
4239         Jim_Obj *o;
4240         jim_wide w;
4241         int e;
4242
4243         /* parse config or cget options ... */
4244         while (goi->argc > 0) {
4245                 Jim_SetEmptyResult(goi->interp);
4246                 /* Jim_GetOpt_Debug(goi); */
4247
4248                 if (target->type->target_jim_configure) {
4249                         /* target defines a configure function */
4250                         /* target gets first dibs on parameters */
4251                         e = (*(target->type->target_jim_configure))(target, goi);
4252                         if (e == JIM_OK) {
4253                                 /* more? */
4254                                 continue;
4255                         }
4256                         if (e == JIM_ERR) {
4257                                 /* An error */
4258                                 return e;
4259                         }
4260                         /* otherwise we 'continue' below */
4261                 }
4262                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4263                 if (e != JIM_OK) {
4264                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4265                         return e;
4266                 }
4267                 switch (n->value) {
4268                 case TCFG_TYPE:
4269                         /* not setable */
4270                         if (goi->isconfigure) {
4271                                 Jim_SetResultFormatted(goi->interp,
4272                                                 "not settable: %s", n->name);
4273                                 return JIM_ERR;
4274                         } else {
4275 no_params:
4276                                 if (goi->argc != 0) {
4277                                         Jim_WrongNumArgs(goi->interp,
4278                                                         goi->argc, goi->argv,
4279                                                         "NO PARAMS");
4280                                         return JIM_ERR;
4281                                 }
4282                         }
4283                         Jim_SetResultString(goi->interp,
4284                                         target_type_name(target), -1);
4285                         /* loop for more */
4286                         break;
4287                 case TCFG_EVENT:
4288                         if (goi->argc == 0) {
4289                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4290                                 return JIM_ERR;
4291                         }
4292
4293                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4294                         if (e != JIM_OK) {
4295                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4296                                 return e;
4297                         }
4298
4299                         if (goi->isconfigure) {
4300                                 if (goi->argc != 1) {
4301                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4302                                         return JIM_ERR;
4303                                 }
4304                         } else {
4305                                 if (goi->argc != 0) {
4306                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4307                                         return JIM_ERR;
4308                                 }
4309                         }
4310
4311                         {
4312                                 struct target_event_action *teap;
4313
4314                                 teap = target->event_action;
4315                                 /* replace existing? */
4316                                 while (teap) {
4317                                         if (teap->event == (enum target_event)n->value)
4318                                                 break;
4319                                         teap = teap->next;
4320                                 }
4321
4322                                 if (goi->isconfigure) {
4323                                         bool replace = true;
4324                                         if (teap == NULL) {
4325                                                 /* create new */
4326                                                 teap = calloc(1, sizeof(*teap));
4327                                                 replace = false;
4328                                         }
4329                                         teap->event = n->value;
4330                                         teap->interp = goi->interp;
4331                                         Jim_GetOpt_Obj(goi, &o);
4332                                         if (teap->body)
4333                                                 Jim_DecrRefCount(teap->interp, teap->body);
4334                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4335                                         /*
4336                                          * FIXME:
4337                                          *     Tcl/TK - "tk events" have a nice feature.
4338                                          *     See the "BIND" command.
4339                                          *    We should support that here.
4340                                          *     You can specify %X and %Y in the event code.
4341                                          *     The idea is: %T - target name.
4342                                          *     The idea is: %N - target number
4343                                          *     The idea is: %E - event name.
4344                                          */
4345                                         Jim_IncrRefCount(teap->body);
4346
4347                                         if (!replace) {
4348                                                 /* add to head of event list */
4349                                                 teap->next = target->event_action;
4350                                                 target->event_action = teap;
4351                                         }
4352                                         Jim_SetEmptyResult(goi->interp);
4353                                 } else {
4354                                         /* get */
4355                                         if (teap == NULL)
4356                                                 Jim_SetEmptyResult(goi->interp);
4357                                         else
4358                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4359                                 }
4360                         }
4361                         /* loop for more */
4362                         break;
4363
4364                 case TCFG_WORK_AREA_VIRT:
4365                         if (goi->isconfigure) {
4366                                 target_free_all_working_areas(target);
4367                                 e = Jim_GetOpt_Wide(goi, &w);
4368                                 if (e != JIM_OK)
4369                                         return e;
4370                                 target->working_area_virt = w;
4371                                 target->working_area_virt_spec = true;
4372                         } else {
4373                                 if (goi->argc != 0)
4374                                         goto no_params;
4375                         }
4376                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4377                         /* loop for more */
4378                         break;
4379
4380                 case TCFG_WORK_AREA_PHYS:
4381                         if (goi->isconfigure) {
4382                                 target_free_all_working_areas(target);
4383                                 e = Jim_GetOpt_Wide(goi, &w);
4384                                 if (e != JIM_OK)
4385                                         return e;
4386                                 target->working_area_phys = w;
4387                                 target->working_area_phys_spec = true;
4388                         } else {
4389                                 if (goi->argc != 0)
4390                                         goto no_params;
4391                         }
4392                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4393                         /* loop for more */
4394                         break;
4395
4396                 case TCFG_WORK_AREA_SIZE:
4397                         if (goi->isconfigure) {
4398                                 target_free_all_working_areas(target);
4399                                 e = Jim_GetOpt_Wide(goi, &w);
4400                                 if (e != JIM_OK)
4401                                         return e;
4402                                 target->working_area_size = w;
4403                         } else {
4404                                 if (goi->argc != 0)
4405                                         goto no_params;
4406                         }
4407                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4408                         /* loop for more */
4409                         break;
4410
4411                 case TCFG_WORK_AREA_BACKUP:
4412                         if (goi->isconfigure) {
4413                                 target_free_all_working_areas(target);
4414                                 e = Jim_GetOpt_Wide(goi, &w);
4415                                 if (e != JIM_OK)
4416                                         return e;
4417                                 /* make this exactly 1 or 0 */
4418                                 target->backup_working_area = (!!w);
4419                         } else {
4420                                 if (goi->argc != 0)
4421                                         goto no_params;
4422                         }
4423                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4424                         /* loop for more e*/
4425                         break;
4426
4427
4428                 case TCFG_ENDIAN:
4429                         if (goi->isconfigure) {
4430                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4431                                 if (e != JIM_OK) {
4432                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4433                                         return e;
4434                                 }
4435                                 target->endianness = n->value;
4436                         } else {
4437                                 if (goi->argc != 0)
4438                                         goto no_params;
4439                         }
4440                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4441                         if (n->name == NULL) {
4442                                 target->endianness = TARGET_LITTLE_ENDIAN;
4443                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4444                         }
4445                         Jim_SetResultString(goi->interp, n->name, -1);
4446                         /* loop for more */
4447                         break;
4448
4449                 case TCFG_COREID:
4450                         if (goi->isconfigure) {
4451                                 e = Jim_GetOpt_Wide(goi, &w);
4452                                 if (e != JIM_OK)
4453                                         return e;
4454                                 target->coreid = (int32_t)w;
4455                         } else {
4456                                 if (goi->argc != 0)
4457                                         goto no_params;
4458                         }
4459                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4460                         /* loop for more */
4461                         break;
4462
4463                 case TCFG_CHAIN_POSITION:
4464                         if (goi->isconfigure) {
4465                                 Jim_Obj *o_t;
4466                                 struct jtag_tap *tap;
4467                                 target_free_all_working_areas(target);
4468                                 e = Jim_GetOpt_Obj(goi, &o_t);
4469                                 if (e != JIM_OK)
4470                                         return e;
4471                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4472                                 if (tap == NULL)
4473                                         return JIM_ERR;
4474                                 /* make this exactly 1 or 0 */
4475                                 target->tap = tap;
4476                         } else {
4477                                 if (goi->argc != 0)
4478                                         goto no_params;
4479                         }
4480                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4481                         /* loop for more e*/
4482                         break;
4483                 case TCFG_DBGBASE:
4484                         if (goi->isconfigure) {
4485                                 e = Jim_GetOpt_Wide(goi, &w);
4486                                 if (e != JIM_OK)
4487                                         return e;
4488                                 target->dbgbase = (uint32_t)w;
4489                                 target->dbgbase_set = true;
4490                         } else {
4491                                 if (goi->argc != 0)
4492                                         goto no_params;
4493                         }
4494                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4495                         /* loop for more */
4496                         break;
4497
4498                 case TCFG_RTOS:
4499                         /* RTOS */
4500                         {
4501                                 int result = rtos_create(goi, target);
4502                                 if (result != JIM_OK)
4503                                         return result;
4504                         }
4505                         /* loop for more */
4506                         break;
4507                 }
4508         } /* while (goi->argc) */
4509
4510
4511                 /* done - we return */
4512         return JIM_OK;
4513 }
4514
4515 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4516 {
4517         Jim_GetOptInfo goi;
4518
4519         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4520         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4521         int need_args = 1 + goi.isconfigure;
4522         if (goi.argc < need_args) {
4523                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4524                         goi.isconfigure
4525                                 ? "missing: -option VALUE ..."
4526                                 : "missing: -option ...");
4527                 return JIM_ERR;
4528         }
4529         struct target *target = Jim_CmdPrivData(goi.interp);
4530         return target_configure(&goi, target);
4531 }
4532
4533 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4534 {
4535         const char *cmd_name = Jim_GetString(argv[0], NULL);
4536
4537         Jim_GetOptInfo goi;
4538         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4539
4540         if (goi.argc < 2 || goi.argc > 4) {
4541                 Jim_SetResultFormatted(goi.interp,
4542                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4543                 return JIM_ERR;
4544         }
4545
4546         target_write_fn fn;
4547         fn = target_write_memory;
4548
4549         int e;
4550         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4551                 /* consume it */
4552                 struct Jim_Obj *obj;
4553                 e = Jim_GetOpt_Obj(&goi, &obj);
4554                 if (e != JIM_OK)
4555                         return e;
4556
4557                 fn = target_write_phys_memory;
4558         }
4559
4560         jim_wide a;
4561         e = Jim_GetOpt_Wide(&goi, &a);
4562         if (e != JIM_OK)
4563                 return e;
4564
4565         jim_wide b;
4566         e = Jim_GetOpt_Wide(&goi, &b);
4567         if (e != JIM_OK)
4568                 return e;
4569
4570         jim_wide c = 1;
4571         if (goi.argc == 1) {
4572                 e = Jim_GetOpt_Wide(&goi, &c);
4573                 if (e != JIM_OK)
4574                         return e;
4575         }
4576
4577         /* all args must be consumed */
4578         if (goi.argc != 0)
4579                 return JIM_ERR;
4580
4581         struct target *target = Jim_CmdPrivData(goi.interp);
4582         unsigned data_size;
4583         if (strcasecmp(cmd_name, "mww") == 0)
4584                 data_size = 4;
4585         else if (strcasecmp(cmd_name, "mwh") == 0)
4586                 data_size = 2;
4587         else if (strcasecmp(cmd_name, "mwb") == 0)
4588                 data_size = 1;
4589         else {
4590                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4591                 return JIM_ERR;
4592         }
4593
4594         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4595 }
4596
4597 /**
4598 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4599 *
4600 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4601 *         mdh [phys] <address> [<count>] - for 16 bit reads
4602 *         mdb [phys] <address> [<count>] - for  8 bit reads
4603 *
4604 *  Count defaults to 1.
4605 *
4606 *  Calls target_read_memory or target_read_phys_memory depending on
4607 *  the presence of the "phys" argument
4608 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4609 *  to int representation in base16.
4610 *  Also outputs read data in a human readable form using command_print
4611 *
4612 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4613 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4614 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4615 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4616 *  on success, with [<count>] number of elements.
4617 *
4618 *  In case of little endian target:
4619 *      Example1: "mdw 0x00000000"  returns "10123456"
4620 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4621 *      Example3: "mdb 0x00000000" returns "56"
4622 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4623 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4624 **/
4625 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4626 {
4627         const char *cmd_name = Jim_GetString(argv[0], NULL);
4628
4629         Jim_GetOptInfo goi;
4630         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4631
4632         if ((goi.argc < 1) || (goi.argc > 3)) {
4633                 Jim_SetResultFormatted(goi.interp,
4634                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4635                 return JIM_ERR;
4636         }
4637
4638         int (*fn)(struct target *target,
4639                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4640         fn = target_read_memory;
4641
4642         int e;
4643         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4644                 /* consume it */
4645                 struct Jim_Obj *obj;
4646                 e = Jim_GetOpt_Obj(&goi, &obj);
4647                 if (e != JIM_OK)
4648                         return e;
4649
4650                 fn = target_read_phys_memory;
4651         }
4652
4653         /* Read address parameter */
4654         jim_wide addr;
4655         e = Jim_GetOpt_Wide(&goi, &addr);
4656         if (e != JIM_OK)
4657                 return JIM_ERR;
4658
4659         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4660         jim_wide count;
4661         if (goi.argc == 1) {
4662                 e = Jim_GetOpt_Wide(&goi, &count);
4663                 if (e != JIM_OK)
4664                         return JIM_ERR;
4665         } else
4666                 count = 1;
4667
4668         /* all args must be consumed */
4669         if (goi.argc != 0)
4670                 return JIM_ERR;
4671
4672         jim_wide dwidth = 1; /* shut up gcc */
4673         if (strcasecmp(cmd_name, "mdw") == 0)
4674                 dwidth = 4;
4675         else if (strcasecmp(cmd_name, "mdh") == 0)
4676                 dwidth = 2;
4677         else if (strcasecmp(cmd_name, "mdb") == 0)
4678                 dwidth = 1;
4679         else {
4680                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4681                 return JIM_ERR;
4682         }
4683
4684         /* convert count to "bytes" */
4685         int bytes = count * dwidth;
4686
4687         struct target *target = Jim_CmdPrivData(goi.interp);
4688         uint8_t  target_buf[32];
4689         jim_wide x, y, z;
4690         while (bytes > 0) {
4691                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4692
4693                 /* Try to read out next block */
4694                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4695
4696                 if (e != ERROR_OK) {
4697                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4698                         return JIM_ERR;
4699                 }
4700
4701                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4702                 switch (dwidth) {
4703                 case 4:
4704                         for (x = 0; x < 16 && x < y; x += 4) {
4705                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4706                                 command_print_sameline(NULL, "%08x ", (int)(z));
4707                         }
4708                         for (; (x < 16) ; x += 4)
4709                                 command_print_sameline(NULL, "         ");
4710                         break;
4711                 case 2:
4712                         for (x = 0; x < 16 && x < y; x += 2) {
4713                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4714                                 command_print_sameline(NULL, "%04x ", (int)(z));
4715                         }
4716                         for (; (x < 16) ; x += 2)
4717                                 command_print_sameline(NULL, "     ");
4718                         break;
4719                 case 1:
4720                 default:
4721                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4722                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4723                                 command_print_sameline(NULL, "%02x ", (int)(z));
4724                         }
4725                         for (; (x < 16) ; x += 1)
4726                                 command_print_sameline(NULL, "   ");
4727                         break;
4728                 }
4729                 /* ascii-ify the bytes */
4730                 for (x = 0 ; x < y ; x++) {
4731                         if ((target_buf[x] >= 0x20) &&
4732                                 (target_buf[x] <= 0x7e)) {
4733                                 /* good */
4734                         } else {
4735                                 /* smack it */
4736                                 target_buf[x] = '.';
4737                         }
4738                 }
4739                 /* space pad  */
4740                 while (x < 16) {
4741                         target_buf[x] = ' ';
4742                         x++;
4743                 }
4744                 /* terminate */
4745                 target_buf[16] = 0;
4746                 /* print - with a newline */
4747                 command_print_sameline(NULL, "%s\n", target_buf);
4748                 /* NEXT... */
4749                 bytes -= 16;
4750                 addr += 16;
4751         }
4752         return JIM_OK;
4753 }
4754
4755 static int jim_target_mem2array(Jim_Interp *interp,
4756                 int argc, Jim_Obj *const *argv)
4757 {
4758         struct target *target = Jim_CmdPrivData(interp);
4759         return target_mem2array(interp, target, argc - 1, argv + 1);
4760 }
4761
4762 static int jim_target_array2mem(Jim_Interp *interp,
4763                 int argc, Jim_Obj *const *argv)
4764 {
4765         struct target *target = Jim_CmdPrivData(interp);
4766         return target_array2mem(interp, target, argc - 1, argv + 1);
4767 }
4768
4769 static int jim_target_tap_disabled(Jim_Interp *interp)
4770 {
4771         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4772         return JIM_ERR;
4773 }
4774
4775 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4776 {
4777         if (argc != 1) {
4778                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4779                 return JIM_ERR;
4780         }
4781         struct target *target = Jim_CmdPrivData(interp);
4782         if (!target->tap->enabled)
4783                 return jim_target_tap_disabled(interp);
4784
4785         int e = target->type->examine(target);
4786         if (e != ERROR_OK)
4787                 return JIM_ERR;
4788         return JIM_OK;
4789 }
4790
4791 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4792 {
4793         if (argc != 1) {
4794                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4795                 return JIM_ERR;
4796         }
4797         struct target *target = Jim_CmdPrivData(interp);
4798
4799         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4800                 return JIM_ERR;
4801
4802         return JIM_OK;
4803 }
4804
4805 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4806 {
4807         if (argc != 1) {
4808                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4809                 return JIM_ERR;
4810         }
4811         struct target *target = Jim_CmdPrivData(interp);
4812         if (!target->tap->enabled)
4813                 return jim_target_tap_disabled(interp);
4814
4815         int e;
4816         if (!(target_was_examined(target)))
4817                 e = ERROR_TARGET_NOT_EXAMINED;
4818         else
4819                 e = target->type->poll(target);
4820         if (e != ERROR_OK)
4821                 return JIM_ERR;
4822         return JIM_OK;
4823 }
4824
4825 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4826 {
4827         Jim_GetOptInfo goi;
4828         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4829
4830         if (goi.argc != 2) {
4831                 Jim_WrongNumArgs(interp, 0, argv,
4832                                 "([tT]|[fF]|assert|deassert) BOOL");
4833                 return JIM_ERR;
4834         }
4835
4836         Jim_Nvp *n;
4837         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4838         if (e != JIM_OK) {
4839                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4840                 return e;
4841         }
4842         /* the halt or not param */
4843         jim_wide a;
4844         e = Jim_GetOpt_Wide(&goi, &a);
4845         if (e != JIM_OK)
4846                 return e;
4847
4848         struct target *target = Jim_CmdPrivData(goi.interp);
4849         if (!target->tap->enabled)
4850                 return jim_target_tap_disabled(interp);
4851         if (!(target_was_examined(target))) {
4852                 LOG_ERROR("Target not examined yet");
4853                 return ERROR_TARGET_NOT_EXAMINED;
4854         }
4855         if (!target->type->assert_reset || !target->type->deassert_reset) {
4856                 Jim_SetResultFormatted(interp,
4857                                 "No target-specific reset for %s",
4858                                 target_name(target));
4859                 return JIM_ERR;
4860         }
4861         /* determine if we should halt or not. */
4862         target->reset_halt = !!a;
4863         /* When this happens - all workareas are invalid. */
4864         target_free_all_working_areas_restore(target, 0);
4865
4866         /* do the assert */
4867         if (n->value == NVP_ASSERT)
4868                 e = target->type->assert_reset(target);
4869         else
4870                 e = target->type->deassert_reset(target);
4871         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4872 }
4873
4874 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4875 {
4876         if (argc != 1) {
4877                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4878                 return JIM_ERR;
4879         }
4880         struct target *target = Jim_CmdPrivData(interp);
4881         if (!target->tap->enabled)
4882                 return jim_target_tap_disabled(interp);
4883         int e = target->type->halt(target);
4884         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4885 }
4886
4887 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4888 {
4889         Jim_GetOptInfo goi;
4890         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4891
4892         /* params:  <name>  statename timeoutmsecs */
4893         if (goi.argc != 2) {
4894                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4895                 Jim_SetResultFormatted(goi.interp,
4896                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4897                 return JIM_ERR;
4898         }
4899
4900         Jim_Nvp *n;
4901         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4902         if (e != JIM_OK) {
4903                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4904                 return e;
4905         }
4906         jim_wide a;
4907         e = Jim_GetOpt_Wide(&goi, &a);
4908         if (e != JIM_OK)
4909                 return e;
4910         struct target *target = Jim_CmdPrivData(interp);
4911         if (!target->tap->enabled)
4912                 return jim_target_tap_disabled(interp);
4913
4914         e = target_wait_state(target, n->value, a);
4915         if (e != ERROR_OK) {
4916                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4917                 Jim_SetResultFormatted(goi.interp,
4918                                 "target: %s wait %s fails (%#s) %s",
4919                                 target_name(target), n->name,
4920                                 eObj, target_strerror_safe(e));
4921                 Jim_FreeNewObj(interp, eObj);
4922                 return JIM_ERR;
4923         }
4924         return JIM_OK;
4925 }
4926 /* List for human, Events defined for this target.
4927  * scripts/programs should use 'name cget -event NAME'
4928  */
4929 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4930 {
4931         struct command_context *cmd_ctx = current_command_context(interp);
4932         assert(cmd_ctx != NULL);
4933
4934         struct target *target = Jim_CmdPrivData(interp);
4935         struct target_event_action *teap = target->event_action;
4936         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4937                                    target->target_number,
4938                                    target_name(target));
4939         command_print(cmd_ctx, "%-25s | Body", "Event");
4940         command_print(cmd_ctx, "------------------------- | "
4941                         "----------------------------------------");
4942         while (teap) {
4943                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4944                 command_print(cmd_ctx, "%-25s | %s",
4945                                 opt->name, Jim_GetString(teap->body, NULL));
4946                 teap = teap->next;
4947         }
4948         command_print(cmd_ctx, "***END***");
4949         return JIM_OK;
4950 }
4951 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4952 {
4953         if (argc != 1) {
4954                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4955                 return JIM_ERR;
4956         }
4957         struct target *target = Jim_CmdPrivData(interp);
4958         Jim_SetResultString(interp, target_state_name(target), -1);
4959         return JIM_OK;
4960 }
4961 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4962 {
4963         Jim_GetOptInfo goi;
4964         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4965         if (goi.argc != 1) {
4966                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4967                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4968                 return JIM_ERR;
4969         }
4970         Jim_Nvp *n;
4971         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4972         if (e != JIM_OK) {
4973                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4974                 return e;
4975         }
4976         struct target *target = Jim_CmdPrivData(interp);
4977         target_handle_event(target, n->value);
4978         return JIM_OK;
4979 }
4980
4981 static const struct command_registration target_instance_command_handlers[] = {
4982         {
4983                 .name = "configure",
4984                 .mode = COMMAND_CONFIG,
4985                 .jim_handler = jim_target_configure,
4986                 .help  = "configure a new target for use",
4987                 .usage = "[target_attribute ...]",
4988         },
4989         {
4990                 .name = "cget",
4991                 .mode = COMMAND_ANY,
4992                 .jim_handler = jim_target_configure,
4993                 .help  = "returns the specified target attribute",
4994                 .usage = "target_attribute",
4995         },
4996         {
4997                 .name = "mww",
4998                 .mode = COMMAND_EXEC,
4999                 .jim_handler = jim_target_mw,
5000                 .help = "Write 32-bit word(s) to target memory",
5001                 .usage = "address data [count]",
5002         },
5003         {
5004                 .name = "mwh",
5005                 .mode = COMMAND_EXEC,
5006                 .jim_handler = jim_target_mw,
5007                 .help = "Write 16-bit half-word(s) to target memory",
5008                 .usage = "address data [count]",
5009         },
5010         {
5011                 .name = "mwb",
5012                 .mode = COMMAND_EXEC,
5013                 .jim_handler = jim_target_mw,
5014                 .help = "Write byte(s) to target memory",
5015                 .usage = "address data [count]",
5016         },
5017         {
5018                 .name = "mdw",
5019                 .mode = COMMAND_EXEC,
5020                 .jim_handler = jim_target_md,
5021                 .help = "Display target memory as 32-bit words",
5022                 .usage = "address [count]",
5023         },
5024         {
5025                 .name = "mdh",
5026                 .mode = COMMAND_EXEC,
5027                 .jim_handler = jim_target_md,
5028                 .help = "Display target memory as 16-bit half-words",
5029                 .usage = "address [count]",
5030         },
5031         {
5032                 .name = "mdb",
5033                 .mode = COMMAND_EXEC,
5034                 .jim_handler = jim_target_md,
5035                 .help = "Display target memory as 8-bit bytes",
5036                 .usage = "address [count]",
5037         },
5038         {
5039                 .name = "array2mem",
5040                 .mode = COMMAND_EXEC,
5041                 .jim_handler = jim_target_array2mem,
5042                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5043                         "to target memory",
5044                 .usage = "arrayname bitwidth address count",
5045         },
5046         {
5047                 .name = "mem2array",
5048                 .mode = COMMAND_EXEC,
5049                 .jim_handler = jim_target_mem2array,
5050                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5051                         "from target memory",
5052                 .usage = "arrayname bitwidth address count",
5053         },
5054         {
5055                 .name = "eventlist",
5056                 .mode = COMMAND_EXEC,
5057                 .jim_handler = jim_target_event_list,
5058                 .help = "displays a table of events defined for this target",
5059         },
5060         {
5061                 .name = "curstate",
5062                 .mode = COMMAND_EXEC,
5063                 .jim_handler = jim_target_current_state,
5064                 .help = "displays the current state of this target",
5065         },
5066         {
5067                 .name = "arp_examine",
5068                 .mode = COMMAND_EXEC,
5069                 .jim_handler = jim_target_examine,
5070                 .help = "used internally for reset processing",
5071         },
5072         {
5073                 .name = "arp_halt_gdb",
5074                 .mode = COMMAND_EXEC,
5075                 .jim_handler = jim_target_halt_gdb,
5076                 .help = "used internally for reset processing to halt GDB",
5077         },
5078         {
5079                 .name = "arp_poll",
5080                 .mode = COMMAND_EXEC,
5081                 .jim_handler = jim_target_poll,
5082                 .help = "used internally for reset processing",
5083         },
5084         {
5085                 .name = "arp_reset",
5086                 .mode = COMMAND_EXEC,
5087                 .jim_handler = jim_target_reset,
5088                 .help = "used internally for reset processing",
5089         },
5090         {
5091                 .name = "arp_halt",
5092                 .mode = COMMAND_EXEC,
5093                 .jim_handler = jim_target_halt,
5094                 .help = "used internally for reset processing",
5095         },
5096         {
5097                 .name = "arp_waitstate",
5098                 .mode = COMMAND_EXEC,
5099                 .jim_handler = jim_target_wait_state,
5100                 .help = "used internally for reset processing",
5101         },
5102         {
5103                 .name = "invoke-event",
5104                 .mode = COMMAND_EXEC,
5105                 .jim_handler = jim_target_invoke_event,
5106                 .help = "invoke handler for specified event",
5107                 .usage = "event_name",
5108         },
5109         COMMAND_REGISTRATION_DONE
5110 };
5111
5112 static int target_create(Jim_GetOptInfo *goi)
5113 {
5114         Jim_Obj *new_cmd;
5115         Jim_Cmd *cmd;
5116         const char *cp;
5117         char *cp2;
5118         int e;
5119         int x;
5120         struct target *target;
5121         struct command_context *cmd_ctx;
5122
5123         cmd_ctx = current_command_context(goi->interp);
5124         assert(cmd_ctx != NULL);
5125
5126         if (goi->argc < 3) {
5127                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5128                 return JIM_ERR;
5129         }
5130
5131         /* COMMAND */
5132         Jim_GetOpt_Obj(goi, &new_cmd);
5133         /* does this command exist? */
5134         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5135         if (cmd) {
5136                 cp = Jim_GetString(new_cmd, NULL);
5137                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5138                 return JIM_ERR;
5139         }
5140
5141         /* TYPE */
5142         e = Jim_GetOpt_String(goi, &cp2, NULL);
5143         if (e != JIM_OK)
5144                 return e;
5145         cp = cp2;
5146         struct transport *tr = get_current_transport();
5147         if (tr->override_target) {
5148                 e = tr->override_target(&cp);
5149                 if (e != ERROR_OK) {
5150                         LOG_ERROR("The selected transport doesn't support this target");
5151                         return JIM_ERR;
5152                 }
5153                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5154         }
5155         /* now does target type exist */
5156         for (x = 0 ; target_types[x] ; x++) {
5157                 if (0 == strcmp(cp, target_types[x]->name)) {
5158                         /* found */
5159                         break;
5160                 }
5161
5162                 /* check for deprecated name */
5163                 if (target_types[x]->deprecated_name) {
5164                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5165                                 /* found */
5166                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5167                                 break;
5168                         }
5169                 }
5170         }
5171         if (target_types[x] == NULL) {
5172                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5173                 for (x = 0 ; target_types[x] ; x++) {
5174                         if (target_types[x + 1]) {
5175                                 Jim_AppendStrings(goi->interp,
5176                                                                    Jim_GetResult(goi->interp),
5177                                                                    target_types[x]->name,
5178                                                                    ", ", NULL);
5179                         } else {
5180                                 Jim_AppendStrings(goi->interp,
5181                                                                    Jim_GetResult(goi->interp),
5182                                                                    " or ",
5183                                                                    target_types[x]->name, NULL);
5184                         }
5185                 }
5186                 return JIM_ERR;
5187         }
5188
5189         /* Create it */
5190         target = calloc(1, sizeof(struct target));
5191         /* set target number */
5192         target->target_number = new_target_number();
5193         cmd_ctx->current_target = target->target_number;
5194
5195         /* allocate memory for each unique target type */
5196         target->type = calloc(1, sizeof(struct target_type));
5197
5198         memcpy(target->type, target_types[x], sizeof(struct target_type));
5199
5200         /* will be set by "-endian" */
5201         target->endianness = TARGET_ENDIAN_UNKNOWN;
5202
5203         /* default to first core, override with -coreid */
5204         target->coreid = 0;
5205
5206         target->working_area        = 0x0;
5207         target->working_area_size   = 0x0;
5208         target->working_areas       = NULL;
5209         target->backup_working_area = 0;
5210
5211         target->state               = TARGET_UNKNOWN;
5212         target->debug_reason        = DBG_REASON_UNDEFINED;
5213         target->reg_cache           = NULL;
5214         target->breakpoints         = NULL;
5215         target->watchpoints         = NULL;
5216         target->next                = NULL;
5217         target->arch_info           = NULL;
5218
5219         target->display             = 1;
5220
5221         target->halt_issued                     = false;
5222
5223         /* initialize trace information */
5224         target->trace_info = malloc(sizeof(struct trace));
5225         target->trace_info->num_trace_points         = 0;
5226         target->trace_info->trace_points_size        = 0;
5227         target->trace_info->trace_points             = NULL;
5228         target->trace_info->trace_history_size       = 0;
5229         target->trace_info->trace_history            = NULL;
5230         target->trace_info->trace_history_pos        = 0;
5231         target->trace_info->trace_history_overflowed = 0;
5232
5233         target->dbgmsg          = NULL;
5234         target->dbg_msg_enabled = 0;
5235
5236         target->endianness = TARGET_ENDIAN_UNKNOWN;
5237
5238         target->rtos = NULL;
5239         target->rtos_auto_detect = false;
5240
5241         /* Do the rest as "configure" options */
5242         goi->isconfigure = 1;
5243         e = target_configure(goi, target);
5244
5245         if (target->tap == NULL) {
5246                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5247                 e = JIM_ERR;
5248         }
5249
5250         if (e != JIM_OK) {
5251                 free(target->type);
5252                 free(target);
5253                 return e;
5254         }
5255
5256         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5257                 /* default endian to little if not specified */
5258                 target->endianness = TARGET_LITTLE_ENDIAN;
5259         }
5260
5261         cp = Jim_GetString(new_cmd, NULL);
5262         target->cmd_name = strdup(cp);
5263
5264         /* create the target specific commands */
5265         if (target->type->commands) {
5266                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5267                 if (ERROR_OK != e)
5268                         LOG_ERROR("unable to register '%s' commands", cp);
5269         }
5270         if (target->type->target_create)
5271                 (*(target->type->target_create))(target, goi->interp);
5272
5273         /* append to end of list */
5274         {
5275                 struct target **tpp;
5276                 tpp = &(all_targets);
5277                 while (*tpp)
5278                         tpp = &((*tpp)->next);
5279                 *tpp = target;
5280         }
5281
5282         /* now - create the new target name command */
5283         const struct command_registration target_subcommands[] = {
5284                 {
5285                         .chain = target_instance_command_handlers,
5286                 },
5287                 {
5288                         .chain = target->type->commands,
5289                 },
5290                 COMMAND_REGISTRATION_DONE
5291         };
5292         const struct command_registration target_commands[] = {
5293                 {
5294                         .name = cp,
5295                         .mode = COMMAND_ANY,
5296                         .help = "target command group",
5297                         .usage = "",
5298                         .chain = target_subcommands,
5299                 },
5300                 COMMAND_REGISTRATION_DONE
5301         };
5302         e = register_commands(cmd_ctx, NULL, target_commands);
5303         if (ERROR_OK != e)
5304                 return JIM_ERR;
5305
5306         struct command *c = command_find_in_context(cmd_ctx, cp);
5307         assert(c);
5308         command_set_handler_data(c, target);
5309
5310         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5311 }
5312
5313 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5314 {
5315         if (argc != 1) {
5316                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5317                 return JIM_ERR;
5318         }
5319         struct command_context *cmd_ctx = current_command_context(interp);
5320         assert(cmd_ctx != NULL);
5321
5322         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5323         return JIM_OK;
5324 }
5325
5326 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5327 {
5328         if (argc != 1) {
5329                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5330                 return JIM_ERR;
5331         }
5332         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5333         for (unsigned x = 0; NULL != target_types[x]; x++) {
5334                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5335                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5336         }
5337         return JIM_OK;
5338 }
5339
5340 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5341 {
5342         if (argc != 1) {
5343                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5344                 return JIM_ERR;
5345         }
5346         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5347         struct target *target = all_targets;
5348         while (target) {
5349                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5350                         Jim_NewStringObj(interp, target_name(target), -1));
5351                 target = target->next;
5352         }
5353         return JIM_OK;
5354 }
5355
5356 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5357 {
5358         int i;
5359         const char *targetname;
5360         int retval, len;
5361         struct target *target = (struct target *) NULL;
5362         struct target_list *head, *curr, *new;
5363         curr = (struct target_list *) NULL;
5364         head = (struct target_list *) NULL;
5365
5366         retval = 0;
5367         LOG_DEBUG("%d", argc);
5368         /* argv[1] = target to associate in smp
5369          * argv[2] = target to assoicate in smp
5370          * argv[3] ...
5371          */
5372
5373         for (i = 1; i < argc; i++) {
5374
5375                 targetname = Jim_GetString(argv[i], &len);
5376                 target = get_target(targetname);
5377                 LOG_DEBUG("%s ", targetname);
5378                 if (target) {
5379                         new = malloc(sizeof(struct target_list));
5380                         new->target = target;
5381                         new->next = (struct target_list *)NULL;
5382                         if (head == (struct target_list *)NULL) {
5383                                 head = new;
5384                                 curr = head;
5385                         } else {
5386                                 curr->next = new;
5387                                 curr = new;
5388                         }
5389                 }
5390         }
5391         /*  now parse the list of cpu and put the target in smp mode*/
5392         curr = head;
5393
5394         while (curr != (struct target_list *)NULL) {
5395                 target = curr->target;
5396                 target->smp = 1;
5397                 target->head = head;
5398                 curr = curr->next;
5399         }
5400
5401         if (target && target->rtos)
5402                 retval = rtos_smp_init(head->target);
5403
5404         return retval;
5405 }
5406
5407
5408 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5409 {
5410         Jim_GetOptInfo goi;
5411         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5412         if (goi.argc < 3) {
5413                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5414                         "<name> <target_type> [<target_options> ...]");
5415                 return JIM_ERR;
5416         }
5417         return target_create(&goi);
5418 }
5419
5420 static const struct command_registration target_subcommand_handlers[] = {
5421         {
5422                 .name = "init",
5423                 .mode = COMMAND_CONFIG,
5424                 .handler = handle_target_init_command,
5425                 .help = "initialize targets",
5426         },
5427         {
5428                 .name = "create",
5429                 /* REVISIT this should be COMMAND_CONFIG ... */
5430                 .mode = COMMAND_ANY,
5431                 .jim_handler = jim_target_create,
5432                 .usage = "name type '-chain-position' name [options ...]",
5433                 .help = "Creates and selects a new target",
5434         },
5435         {
5436                 .name = "current",
5437                 .mode = COMMAND_ANY,
5438                 .jim_handler = jim_target_current,
5439                 .help = "Returns the currently selected target",
5440         },
5441         {
5442                 .name = "types",
5443                 .mode = COMMAND_ANY,
5444                 .jim_handler = jim_target_types,
5445                 .help = "Returns the available target types as "
5446                                 "a list of strings",
5447         },
5448         {
5449                 .name = "names",
5450                 .mode = COMMAND_ANY,
5451                 .jim_handler = jim_target_names,
5452                 .help = "Returns the names of all targets as a list of strings",
5453         },
5454         {
5455                 .name = "smp",
5456                 .mode = COMMAND_ANY,
5457                 .jim_handler = jim_target_smp,
5458                 .usage = "targetname1 targetname2 ...",
5459                 .help = "gather several target in a smp list"
5460         },
5461
5462         COMMAND_REGISTRATION_DONE
5463 };
5464
5465 struct FastLoad {
5466         uint32_t address;
5467         uint8_t *data;
5468         int length;
5469
5470 };
5471
5472 static int fastload_num;
5473 static struct FastLoad *fastload;
5474
5475 static void free_fastload(void)
5476 {
5477         if (fastload != NULL) {
5478                 int i;
5479                 for (i = 0; i < fastload_num; i++) {
5480                         if (fastload[i].data)
5481                                 free(fastload[i].data);
5482                 }
5483                 free(fastload);
5484                 fastload = NULL;
5485         }
5486 }
5487
5488 COMMAND_HANDLER(handle_fast_load_image_command)
5489 {
5490         uint8_t *buffer;
5491         size_t buf_cnt;
5492         uint32_t image_size;
5493         uint32_t min_address = 0;
5494         uint32_t max_address = 0xffffffff;
5495         int i;
5496
5497         struct image image;
5498
5499         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5500                         &image, &min_address, &max_address);
5501         if (ERROR_OK != retval)
5502                 return retval;
5503
5504         struct duration bench;
5505         duration_start(&bench);
5506
5507         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5508         if (retval != ERROR_OK)
5509                 return retval;
5510
5511         image_size = 0x0;
5512         retval = ERROR_OK;
5513         fastload_num = image.num_sections;
5514         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5515         if (fastload == NULL) {
5516                 command_print(CMD_CTX, "out of memory");
5517                 image_close(&image);
5518                 return ERROR_FAIL;
5519         }
5520         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5521         for (i = 0; i < image.num_sections; i++) {
5522                 buffer = malloc(image.sections[i].size);
5523                 if (buffer == NULL) {
5524                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5525                                                   (int)(image.sections[i].size));
5526                         retval = ERROR_FAIL;
5527                         break;
5528                 }
5529
5530                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5531                 if (retval != ERROR_OK) {
5532                         free(buffer);
5533                         break;
5534                 }
5535
5536                 uint32_t offset = 0;
5537                 uint32_t length = buf_cnt;
5538
5539                 /* DANGER!!! beware of unsigned comparision here!!! */
5540
5541                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5542                                 (image.sections[i].base_address < max_address)) {
5543                         if (image.sections[i].base_address < min_address) {
5544                                 /* clip addresses below */
5545                                 offset += min_address-image.sections[i].base_address;
5546                                 length -= offset;
5547                         }
5548
5549                         if (image.sections[i].base_address + buf_cnt > max_address)
5550                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5551
5552                         fastload[i].address = image.sections[i].base_address + offset;
5553                         fastload[i].data = malloc(length);
5554                         if (fastload[i].data == NULL) {
5555                                 free(buffer);
5556                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5557                                                           length);
5558                                 retval = ERROR_FAIL;
5559                                 break;
5560                         }
5561                         memcpy(fastload[i].data, buffer + offset, length);
5562                         fastload[i].length = length;
5563
5564                         image_size += length;
5565                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5566                                                   (unsigned int)length,
5567                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5568                 }
5569
5570                 free(buffer);
5571         }
5572
5573         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5574                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5575                                 "in %fs (%0.3f KiB/s)", image_size,
5576                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5577
5578                 command_print(CMD_CTX,
5579                                 "WARNING: image has not been loaded to target!"
5580                                 "You can issue a 'fast_load' to finish loading.");
5581         }
5582
5583         image_close(&image);
5584
5585         if (retval != ERROR_OK)
5586                 free_fastload();
5587
5588         return retval;
5589 }
5590
5591 COMMAND_HANDLER(handle_fast_load_command)
5592 {
5593         if (CMD_ARGC > 0)
5594                 return ERROR_COMMAND_SYNTAX_ERROR;
5595         if (fastload == NULL) {
5596                 LOG_ERROR("No image in memory");
5597                 return ERROR_FAIL;
5598         }
5599         int i;
5600         int ms = timeval_ms();
5601         int size = 0;
5602         int retval = ERROR_OK;
5603         for (i = 0; i < fastload_num; i++) {
5604                 struct target *target = get_current_target(CMD_CTX);
5605                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5606                                           (unsigned int)(fastload[i].address),
5607                                           (unsigned int)(fastload[i].length));
5608                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5609                 if (retval != ERROR_OK)
5610                         break;
5611                 size += fastload[i].length;
5612         }
5613         if (retval == ERROR_OK) {
5614                 int after = timeval_ms();
5615                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5616         }
5617         return retval;
5618 }
5619
5620 static const struct command_registration target_command_handlers[] = {
5621         {
5622                 .name = "targets",
5623                 .handler = handle_targets_command,
5624                 .mode = COMMAND_ANY,
5625                 .help = "change current default target (one parameter) "
5626                         "or prints table of all targets (no parameters)",
5627                 .usage = "[target]",
5628         },
5629         {
5630                 .name = "target",
5631                 .mode = COMMAND_CONFIG,
5632                 .help = "configure target",
5633
5634                 .chain = target_subcommand_handlers,
5635         },
5636         COMMAND_REGISTRATION_DONE
5637 };
5638
5639 int target_register_commands(struct command_context *cmd_ctx)
5640 {
5641         return register_commands(cmd_ctx, NULL, target_command_handlers);
5642 }
5643
5644 static bool target_reset_nag = true;
5645
5646 bool get_target_reset_nag(void)
5647 {
5648         return target_reset_nag;
5649 }
5650
5651 COMMAND_HANDLER(handle_target_reset_nag)
5652 {
5653         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5654                         &target_reset_nag, "Nag after each reset about options to improve "
5655                         "performance");
5656 }
5657
5658 COMMAND_HANDLER(handle_ps_command)
5659 {
5660         struct target *target = get_current_target(CMD_CTX);
5661         char *display;
5662         if (target->state != TARGET_HALTED) {
5663                 LOG_INFO("target not halted !!");
5664                 return ERROR_OK;
5665         }
5666
5667         if ((target->rtos) && (target->rtos->type)
5668                         && (target->rtos->type->ps_command)) {
5669                 display = target->rtos->type->ps_command(target);
5670                 command_print(CMD_CTX, "%s", display);
5671                 free(display);
5672                 return ERROR_OK;
5673         } else {
5674                 LOG_INFO("failed");
5675                 return ERROR_TARGET_FAILURE;
5676         }
5677 }
5678
5679 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5680 {
5681         if (text != NULL)
5682                 command_print_sameline(cmd_ctx, "%s", text);
5683         for (int i = 0; i < size; i++)
5684                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5685         command_print(cmd_ctx, " ");
5686 }
5687
5688 COMMAND_HANDLER(handle_test_mem_access_command)
5689 {
5690         struct target *target = get_current_target(CMD_CTX);
5691         uint32_t test_size;
5692         int retval = ERROR_OK;
5693
5694         if (target->state != TARGET_HALTED) {
5695                 LOG_INFO("target not halted !!");
5696                 return ERROR_FAIL;
5697         }
5698
5699         if (CMD_ARGC != 1)
5700                 return ERROR_COMMAND_SYNTAX_ERROR;
5701
5702         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5703
5704         /* Test reads */
5705         size_t num_bytes = test_size + 4;
5706
5707         struct working_area *wa = NULL;
5708         retval = target_alloc_working_area(target, num_bytes, &wa);
5709         if (retval != ERROR_OK) {
5710                 LOG_ERROR("Not enough working area");
5711                 return ERROR_FAIL;
5712         }
5713
5714         uint8_t *test_pattern = malloc(num_bytes);
5715
5716         for (size_t i = 0; i < num_bytes; i++)
5717                 test_pattern[i] = rand();
5718
5719         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5720         if (retval != ERROR_OK) {
5721                 LOG_ERROR("Test pattern write failed");
5722                 goto out;
5723         }
5724
5725         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5726                 for (int size = 1; size <= 4; size *= 2) {
5727                         for (int offset = 0; offset < 4; offset++) {
5728                                 uint32_t count = test_size / size;
5729                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5730                                 uint8_t *read_ref = malloc(host_bufsiz);
5731                                 uint8_t *read_buf = malloc(host_bufsiz);
5732
5733                                 for (size_t i = 0; i < host_bufsiz; i++) {
5734                                         read_ref[i] = rand();
5735                                         read_buf[i] = read_ref[i];
5736                                 }
5737                                 command_print_sameline(CMD_CTX,
5738                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
5739                                                 size, offset, host_offset ? "un" : "");
5740
5741                                 struct duration bench;
5742                                 duration_start(&bench);
5743
5744                                 retval = target_read_memory(target, wa->address + offset, size, count,
5745                                                 read_buf + size + host_offset);
5746
5747                                 duration_measure(&bench);
5748
5749                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5750                                         command_print(CMD_CTX, "Unsupported alignment");
5751                                         goto next;
5752                                 } else if (retval != ERROR_OK) {
5753                                         command_print(CMD_CTX, "Memory read failed");
5754                                         goto next;
5755                                 }
5756
5757                                 /* replay on host */
5758                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5759
5760                                 /* check result */
5761                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5762                                 if (result == 0) {
5763                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5764                                                         duration_elapsed(&bench),
5765                                                         duration_kbps(&bench, count * size));
5766                                 } else {
5767                                         command_print(CMD_CTX, "Compare failed");
5768                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5769                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5770                                 }
5771 next:
5772                                 free(read_ref);
5773                                 free(read_buf);
5774                         }
5775                 }
5776         }
5777
5778 out:
5779         free(test_pattern);
5780
5781         if (wa != NULL)
5782                 target_free_working_area(target, wa);
5783
5784         /* Test writes */
5785         num_bytes = test_size + 4 + 4 + 4;
5786
5787         retval = target_alloc_working_area(target, num_bytes, &wa);
5788         if (retval != ERROR_OK) {
5789                 LOG_ERROR("Not enough working area");
5790                 return ERROR_FAIL;
5791         }
5792
5793         test_pattern = malloc(num_bytes);
5794
5795         for (size_t i = 0; i < num_bytes; i++)
5796                 test_pattern[i] = rand();
5797
5798         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5799                 for (int size = 1; size <= 4; size *= 2) {
5800                         for (int offset = 0; offset < 4; offset++) {
5801                                 uint32_t count = test_size / size;
5802                                 size_t host_bufsiz = count * size + host_offset;
5803                                 uint8_t *read_ref = malloc(num_bytes);
5804                                 uint8_t *read_buf = malloc(num_bytes);
5805                                 uint8_t *write_buf = malloc(host_bufsiz);
5806
5807                                 for (size_t i = 0; i < host_bufsiz; i++)
5808                                         write_buf[i] = rand();
5809                                 command_print_sameline(CMD_CTX,
5810                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
5811                                                 size, offset, host_offset ? "un" : "");
5812
5813                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5814                                 if (retval != ERROR_OK) {
5815                                         command_print(CMD_CTX, "Test pattern write failed");
5816                                         goto nextw;
5817                                 }
5818
5819                                 /* replay on host */
5820                                 memcpy(read_ref, test_pattern, num_bytes);
5821                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5822
5823                                 struct duration bench;
5824                                 duration_start(&bench);
5825
5826                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5827                                                 write_buf + host_offset);
5828
5829                                 duration_measure(&bench);
5830
5831                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5832                                         command_print(CMD_CTX, "Unsupported alignment");
5833                                         goto nextw;
5834                                 } else if (retval != ERROR_OK) {
5835                                         command_print(CMD_CTX, "Memory write failed");
5836                                         goto nextw;
5837                                 }
5838
5839                                 /* read back */
5840                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5841                                 if (retval != ERROR_OK) {
5842                                         command_print(CMD_CTX, "Test pattern write failed");
5843                                         goto nextw;
5844                                 }
5845
5846                                 /* check result */
5847                                 int result = memcmp(read_ref, read_buf, num_bytes);
5848                                 if (result == 0) {
5849                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5850                                                         duration_elapsed(&bench),
5851                                                         duration_kbps(&bench, count * size));
5852                                 } else {
5853                                         command_print(CMD_CTX, "Compare failed");
5854                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5855                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5856                                 }
5857 nextw:
5858                                 free(read_ref);
5859                                 free(read_buf);
5860                         }
5861                 }
5862         }
5863
5864         free(test_pattern);
5865
5866         if (wa != NULL)
5867                 target_free_working_area(target, wa);
5868         return retval;
5869 }
5870
5871 static const struct command_registration target_exec_command_handlers[] = {
5872         {
5873                 .name = "fast_load_image",
5874                 .handler = handle_fast_load_image_command,
5875                 .mode = COMMAND_ANY,
5876                 .help = "Load image into server memory for later use by "
5877                         "fast_load; primarily for profiling",
5878                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5879                         "[min_address [max_length]]",
5880         },
5881         {
5882                 .name = "fast_load",
5883                 .handler = handle_fast_load_command,
5884                 .mode = COMMAND_EXEC,
5885                 .help = "loads active fast load image to current target "
5886                         "- mainly for profiling purposes",
5887                 .usage = "",
5888         },
5889         {
5890                 .name = "profile",
5891                 .handler = handle_profile_command,
5892                 .mode = COMMAND_EXEC,
5893                 .usage = "seconds filename [start end]",
5894                 .help = "profiling samples the CPU PC",
5895         },
5896         /** @todo don't register virt2phys() unless target supports it */
5897         {
5898                 .name = "virt2phys",
5899                 .handler = handle_virt2phys_command,
5900                 .mode = COMMAND_ANY,
5901                 .help = "translate a virtual address into a physical address",
5902                 .usage = "virtual_address",
5903         },
5904         {
5905                 .name = "reg",
5906                 .handler = handle_reg_command,
5907                 .mode = COMMAND_EXEC,
5908                 .help = "display (reread from target with \"force\") or set a register; "
5909                         "with no arguments, displays all registers and their values",
5910                 .usage = "[(register_number|register_name) [(value|'force')]]",
5911         },
5912         {
5913                 .name = "poll",
5914                 .handler = handle_poll_command,
5915                 .mode = COMMAND_EXEC,
5916                 .help = "poll target state; or reconfigure background polling",
5917                 .usage = "['on'|'off']",
5918         },
5919         {
5920                 .name = "wait_halt",
5921                 .handler = handle_wait_halt_command,
5922                 .mode = COMMAND_EXEC,
5923                 .help = "wait up to the specified number of milliseconds "
5924                         "(default 5000) for a previously requested halt",
5925                 .usage = "[milliseconds]",
5926         },
5927         {
5928                 .name = "halt",
5929                 .handler = handle_halt_command,
5930                 .mode = COMMAND_EXEC,
5931                 .help = "request target to halt, then wait up to the specified"
5932                         "number of milliseconds (default 5000) for it to complete",
5933                 .usage = "[milliseconds]",
5934         },
5935         {
5936                 .name = "resume",
5937                 .handler = handle_resume_command,
5938                 .mode = COMMAND_EXEC,
5939                 .help = "resume target execution from current PC or address",
5940                 .usage = "[address]",
5941         },
5942         {
5943                 .name = "reset",
5944                 .handler = handle_reset_command,
5945                 .mode = COMMAND_EXEC,
5946                 .usage = "[run|halt|init]",
5947                 .help = "Reset all targets into the specified mode."
5948                         "Default reset mode is run, if not given.",
5949         },
5950         {
5951                 .name = "soft_reset_halt",
5952                 .handler = handle_soft_reset_halt_command,
5953                 .mode = COMMAND_EXEC,
5954                 .usage = "",
5955                 .help = "halt the target and do a soft reset",
5956         },
5957         {
5958                 .name = "step",
5959                 .handler = handle_step_command,
5960                 .mode = COMMAND_EXEC,
5961                 .help = "step one instruction from current PC or address",
5962                 .usage = "[address]",
5963         },
5964         {
5965                 .name = "mdw",
5966                 .handler = handle_md_command,
5967                 .mode = COMMAND_EXEC,
5968                 .help = "display memory words",
5969                 .usage = "['phys'] address [count]",
5970         },
5971         {
5972                 .name = "mdh",
5973                 .handler = handle_md_command,
5974                 .mode = COMMAND_EXEC,
5975                 .help = "display memory half-words",
5976                 .usage = "['phys'] address [count]",
5977         },
5978         {
5979                 .name = "mdb",
5980                 .handler = handle_md_command,
5981                 .mode = COMMAND_EXEC,
5982                 .help = "display memory bytes",
5983                 .usage = "['phys'] address [count]",
5984         },
5985         {
5986                 .name = "mww",
5987                 .handler = handle_mw_command,
5988                 .mode = COMMAND_EXEC,
5989                 .help = "write memory word",
5990                 .usage = "['phys'] address value [count]",
5991         },
5992         {
5993                 .name = "mwh",
5994                 .handler = handle_mw_command,
5995                 .mode = COMMAND_EXEC,
5996                 .help = "write memory half-word",
5997                 .usage = "['phys'] address value [count]",
5998         },
5999         {
6000                 .name = "mwb",
6001                 .handler = handle_mw_command,
6002                 .mode = COMMAND_EXEC,
6003                 .help = "write memory byte",
6004                 .usage = "['phys'] address value [count]",
6005         },
6006         {
6007                 .name = "bp",
6008                 .handler = handle_bp_command,
6009                 .mode = COMMAND_EXEC,
6010                 .help = "list or set hardware or software breakpoint",
6011                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
6012         },
6013         {
6014                 .name = "rbp",
6015                 .handler = handle_rbp_command,
6016                 .mode = COMMAND_EXEC,
6017                 .help = "remove breakpoint",
6018                 .usage = "address",
6019         },
6020         {
6021                 .name = "wp",
6022                 .handler = handle_wp_command,
6023                 .mode = COMMAND_EXEC,
6024                 .help = "list (no params) or create watchpoints",
6025                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6026         },
6027         {
6028                 .name = "rwp",
6029                 .handler = handle_rwp_command,
6030                 .mode = COMMAND_EXEC,
6031                 .help = "remove watchpoint",
6032                 .usage = "address",
6033         },
6034         {
6035                 .name = "load_image",
6036                 .handler = handle_load_image_command,
6037                 .mode = COMMAND_EXEC,
6038                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6039                         "[min_address] [max_length]",
6040         },
6041         {
6042                 .name = "dump_image",
6043                 .handler = handle_dump_image_command,
6044                 .mode = COMMAND_EXEC,
6045                 .usage = "filename address size",
6046         },
6047         {
6048                 .name = "verify_image",
6049                 .handler = handle_verify_image_command,
6050                 .mode = COMMAND_EXEC,
6051                 .usage = "filename [offset [type]]",
6052         },
6053         {
6054                 .name = "test_image",
6055                 .handler = handle_test_image_command,
6056                 .mode = COMMAND_EXEC,
6057                 .usage = "filename [offset [type]]",
6058         },
6059         {
6060                 .name = "mem2array",
6061                 .mode = COMMAND_EXEC,
6062                 .jim_handler = jim_mem2array,
6063                 .help = "read 8/16/32 bit memory and return as a TCL array "
6064                         "for script processing",
6065                 .usage = "arrayname bitwidth address count",
6066         },
6067         {
6068                 .name = "array2mem",
6069                 .mode = COMMAND_EXEC,
6070                 .jim_handler = jim_array2mem,
6071                 .help = "convert a TCL array to memory locations "
6072                         "and write the 8/16/32 bit values",
6073                 .usage = "arrayname bitwidth address count",
6074         },
6075         {
6076                 .name = "reset_nag",
6077                 .handler = handle_target_reset_nag,
6078                 .mode = COMMAND_ANY,
6079                 .help = "Nag after each reset about options that could have been "
6080                                 "enabled to improve performance. ",
6081                 .usage = "['enable'|'disable']",
6082         },
6083         {
6084                 .name = "ps",
6085                 .handler = handle_ps_command,
6086                 .mode = COMMAND_EXEC,
6087                 .help = "list all tasks ",
6088                 .usage = " ",
6089         },
6090         {
6091                 .name = "test_mem_access",
6092                 .handler = handle_test_mem_access_command,
6093                 .mode = COMMAND_EXEC,
6094                 .help = "Test the target's memory access functions",
6095                 .usage = "size",
6096         },
6097
6098         COMMAND_REGISTRATION_DONE
6099 };
6100 static int target_register_user_commands(struct command_context *cmd_ctx)
6101 {
6102         int retval = ERROR_OK;
6103         retval = target_request_register_commands(cmd_ctx);
6104         if (retval != ERROR_OK)
6105                 return retval;
6106
6107         retval = trace_register_commands(cmd_ctx);
6108         if (retval != ERROR_OK)
6109                 return retval;
6110
6111
6112         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6113 }