]> git.sur5r.net Git - u-boot/blob - arch/arm/mach-sunxi/clock_sun9i.c
SPDX: Convert all of our single license tags to Linux Kernel style
[u-boot] / arch / arm / mach-sunxi / clock_sun9i.c
1 // SPDX-License-Identifier: GPL-2.0+
2
3 /*
4  * sun9i specific clock code
5  *
6  * (C) Copyright 2015 Hans de Goede <hdegoede@redhat.com>
7  *
8  * (C) Copyright 2016 Theobroma Systems Design und Consulting GmbH
9  *                    Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
10  */
11
12 #include <common.h>
13 #include <asm/io.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/prcm.h>
16 #include <asm/arch/sys_proto.h>
17
18
19 #ifdef CONFIG_SPL_BUILD
20
21 void clock_init_safe(void)
22 {
23         struct sunxi_ccm_reg * const ccm =
24                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
25
26         /* Set up PLL12 (peripheral 1) */
27         clock_set_pll12(1200000000);
28
29         /* Set up PLL1 (cluster 0) and PLL2 (cluster 1) */
30         clock_set_pll1(408000000);
31         clock_set_pll2(408000000);
32
33         /* Set up PLL4 (peripheral 0) */
34         clock_set_pll4(960000000);
35
36         /* Set up dividers for AXI0 and APB0 on cluster 0: PLL1 / 2 = 204MHz */
37         writel(C0_CFG_AXI0_CLK_DIV_RATIO(2) |
38                C0_CFG_APB0_CLK_DIV_RATIO(2), &ccm->c0_cfg);
39
40         /* AHB0: 120 MHz (PLL_PERIPH0 / 8) */
41         writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
42                &ccm->ahb0_cfg);
43         /* AHB1: 240 MHz (PLL_PERIPH0 / 4) */
44         writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(4),
45                &ccm->ahb1_cfg);
46         /* AHB2: 120 MHz (PLL_PERIPH0 / 8) */
47         writel(AHBx_SRC_PLL_PERIPH0 | AHBx_CLK_DIV_RATIO(8),
48                &ccm->ahb2_cfg);
49         /* APB0: 120 MHz (PLL_PERIPH0 / 8) */
50         writel(APB0_SRC_PLL_PERIPH0 | APB0_CLK_DIV_RATIO(8),
51                &ccm->apb0_cfg);
52
53         /* GTBUS: 400MHz (PERIPH0 div 3) */
54         writel(GTBUS_SRC_PLL_PERIPH1 | GTBUS_CLK_DIV_RATIO(3),
55                &ccm->gtbus_cfg);
56         /* CCI400: 480MHz (PERIPH1 div 2) */
57         writel(CCI400_SRC_PLL_PERIPH0 | CCI400_CLK_DIV_RATIO(2),
58                &ccm->cci400_cfg);
59
60         /* Deassert DMA reset and open clock gating for DMA */
61         setbits_le32(&ccm->ahb_reset1_cfg, (1 << 24));
62         setbits_le32(&ccm->apb1_gate, (1 << 24));
63
64         /* set enable-bit in TSTAMP_CTRL_REG */
65         writel(1, 0x01720000);
66 }
67 #endif
68
69 void clock_init_uart(void)
70 {
71         struct sunxi_ccm_reg *const ccm =
72                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
73
74         /* open the clock for uart */
75         setbits_le32(&ccm->apb1_gate,
76                      CLK_GATE_OPEN << (APB1_GATE_UART_SHIFT +
77                                        CONFIG_CONS_INDEX - 1));
78         /* deassert uart reset */
79         setbits_le32(&ccm->apb1_reset_cfg,
80                      1 << (APB1_RESET_UART_SHIFT +
81                            CONFIG_CONS_INDEX - 1));
82 }
83
84 #ifdef CONFIG_SPL_BUILD
85 void clock_set_pll1(unsigned int clk)
86 {
87         struct sunxi_ccm_reg * const ccm =
88                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
89         const int p = 0;
90
91         /* Switch cluster 0 to 24MHz clock while changing PLL1 */
92         clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
93                         C0_CPUX_CLK_SRC_OSC24M);
94
95         writel(CCM_PLL1_CTRL_EN | CCM_PLL1_CTRL_P(p) |
96                CCM_PLL1_CLOCK_TIME_2 |
97                CCM_PLL1_CTRL_N(clk / 24000000),
98                &ccm->pll1_c0_cfg);
99         /*
100          * Don't bother with the stable-time registers, as it doesn't
101          * wait until the PLL is stable.  Note, that even Allwinner
102          * just uses a delay loop (or rather the AVS timer) for this
103          * instead of the PLL_STABLE_STATUS register.
104          */
105         sdelay(2000);
106
107         /* Switch cluster 0 back to PLL1 */
108         clrsetbits_le32(&ccm->cpu_clk_source, C0_CPUX_CLK_SRC_MASK,
109                         C0_CPUX_CLK_SRC_PLL1);
110 }
111
112 void clock_set_pll2(unsigned int clk)
113 {
114         struct sunxi_ccm_reg * const ccm =
115                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
116         const int p = 0;
117
118         /* Switch cluster 1 to 24MHz clock while changing PLL2 */
119         clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
120                         C1_CPUX_CLK_SRC_OSC24M);
121
122         writel(CCM_PLL2_CTRL_EN | CCM_PLL2_CTRL_P(p) |
123                CCM_PLL2_CLOCK_TIME_2 | CCM_PLL2_CTRL_N(clk / 24000000),
124                &ccm->pll2_c1_cfg);
125
126         sdelay(2000);
127
128         /* Switch cluster 1 back to PLL2 */
129         clrsetbits_le32(&ccm->cpu_clk_source, C1_CPUX_CLK_SRC_MASK,
130                         C1_CPUX_CLK_SRC_PLL2);
131 }
132
133 void clock_set_pll6(unsigned int clk)
134 {
135         struct sunxi_ccm_reg * const ccm =
136                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
137         const int p = 0;
138
139         writel(CCM_PLL6_CTRL_EN | CCM_PLL6_CFG_UPDATE | CCM_PLL6_CTRL_P(p)
140                | CCM_PLL6_CTRL_N(clk / 24000000),
141                &ccm->pll6_ddr_cfg);
142         do { } while (!(readl(&ccm->pll_stable_status) & PLL_DDR_STATUS));
143
144         sdelay(2000);
145 }
146
147 void clock_set_pll12(unsigned int clk)
148 {
149         struct sunxi_ccm_reg * const ccm =
150                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
151
152         if (readl(&ccm->pll12_periph1_cfg) & CCM_PLL12_CTRL_EN)
153                 return;
154
155         writel(CCM_PLL12_CTRL_EN | CCM_PLL12_CTRL_N(clk / 24000000),
156                &ccm->pll12_periph1_cfg);
157
158         sdelay(2000);
159 }
160
161
162 void clock_set_pll4(unsigned int clk)
163 {
164         struct sunxi_ccm_reg * const ccm =
165                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
166
167         writel(CCM_PLL4_CTRL_EN | CCM_PLL4_CTRL_N(clk / 24000000),
168                &ccm->pll4_periph0_cfg);
169
170         sdelay(2000);
171 }
172 #endif
173
174 int clock_twi_onoff(int port, int state)
175 {
176         struct sunxi_ccm_reg *const ccm =
177                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
178
179         if (port > 4)
180                 return -1;
181
182         /* set the apb reset and clock gate for twi */
183         if (state) {
184                 setbits_le32(&ccm->apb1_gate,
185                              CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
186                 setbits_le32(&ccm->apb1_reset_cfg,
187                              1 << (APB1_RESET_TWI_SHIFT + port));
188         } else {
189                 clrbits_le32(&ccm->apb1_reset_cfg,
190                              1 << (APB1_RESET_TWI_SHIFT + port));
191                 clrbits_le32(&ccm->apb1_gate,
192                              CLK_GATE_OPEN << (APB1_GATE_TWI_SHIFT + port));
193         }
194
195         return 0;
196 }
197
198 unsigned int clock_get_pll4_periph0(void)
199 {
200         struct sunxi_ccm_reg *const ccm =
201                 (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
202         uint32_t rval = readl(&ccm->pll4_periph0_cfg);
203         int n = ((rval & CCM_PLL4_CTRL_N_MASK) >> CCM_PLL4_CTRL_N_SHIFT);
204         int p = ((rval & CCM_PLL4_CTRL_P_MASK) >> CCM_PLL4_CTRL_P_SHIFT);
205         int m = ((rval & CCM_PLL4_CTRL_M_MASK) >> CCM_PLL4_CTRL_M_SHIFT) + 1;
206         const int k = 1;
207
208         return ((24000000 * n * k) >> p) / m;
209 }