]> git.sur5r.net Git - u-boot/blob - drivers/net/pfe_eth/pfe_hw.c
SPDX: Convert all of our single license tags to Linux Kernel style
[u-boot] / drivers / net / pfe_eth / pfe_hw.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2015-2016 Freescale Semiconductor, Inc.
4  * Copyright 2017 NXP
5  */
6 #include <net/pfe_eth/pfe_eth.h>
7 #include <net/pfe_eth/pfe/pfe_hw.h>
8
9 static struct pe_info pe[MAX_PE];
10
11 /*
12  * Initializes the PFE library.
13  * Must be called before using any of the library functions.
14  */
15 void pfe_lib_init(void)
16 {
17         int pfe_pe_id;
18
19         for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
20                 pe[pfe_pe_id].dmem_base_addr =
21                         (u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
22                 pe[pfe_pe_id].pmem_base_addr =
23                         (u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
24                 pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
25                 pe[pfe_pe_id].mem_access_wdata =
26                         (void *)CLASS_MEM_ACCESS_WDATA;
27                 pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
28                 pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
29         }
30
31         for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
32                 if (pfe_pe_id == TMU2_ID)
33                         continue;
34                 pe[pfe_pe_id].dmem_base_addr =
35                         (u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
36                 pe[pfe_pe_id].pmem_base_addr =
37                         (u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
38                 pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
39                 pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
40                 pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
41                 pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
42         }
43 }
44
45 /*
46  * Writes a buffer to PE internal memory from the host
47  * through indirect access registers.
48  *
49  * @param[in] id               PE identification (CLASS0_ID, ..., TMU0_ID,
50  *                              ..., UTIL_ID)
51  * @param[in] mem_access_addr   DMEM destination address (must be 32bit
52  *                              aligned)
53  * @param[in] src               Buffer source address
54  * @param[in] len               Number of bytes to copy
55  */
56 static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
57                                unsigned int len)
58 {
59         u32 offset = 0, val, addr;
60         unsigned int len32 = len >> 2;
61         int i;
62
63         addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
64                 PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
65
66         for (i = 0; i < len32; i++, offset += 4, src += 4) {
67                 val = *(u32 *)src;
68                 writel(cpu_to_be32(val), pe[id].mem_access_wdata);
69                 writel(addr + offset, pe[id].mem_access_addr);
70         }
71
72         len = (len & 0x3);
73         if (len) {
74                 val = 0;
75
76                 addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
77                         PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
78
79                 for (i = 0; i < len; i++, src++)
80                         val |= (*(u8 *)src) << (8 * i);
81
82                 writel(cpu_to_be32(val), pe[id].mem_access_wdata);
83                 writel(addr, pe[id].mem_access_addr);
84         }
85 }
86
87 /*
88  * Writes a buffer to PE internal data memory (DMEM) from the host
89  * through indirect access registers.
90  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
91  *                      ..., UTIL_ID)
92  * @param[in] dst       DMEM destination address (must be 32bit
93  *                      aligned)
94  * @param[in] src       Buffer source address
95  * @param[in] len       Number of bytes to copy
96  */
97 static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
98                                 unsigned int len)
99 {
100         pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
101                            src, len);
102 }
103
104 /*
105  * Writes a buffer to PE internal program memory (PMEM) from the host
106  * through indirect access registers.
107  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
108  *                      ..., TMU3_ID)
109  * @param[in] dst       PMEM destination address (must be 32bit
110  *                      aligned)
111  * @param[in] src       Buffer source address
112  * @param[in] len       Number of bytes to copy
113  */
114 static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
115                                 unsigned int len)
116 {
117         pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
118                                 - 1)) | PE_MEM_ACCESS_IMEM, src, len);
119 }
120
121 /*
122  * Reads PE internal program memory (IMEM) from the host
123  * through indirect access registers.
124  * @param[in] id                PE identification (CLASS0_ID, ..., TMU0_ID,
125  *                              ..., TMU3_ID)
126  * @param[in] addr              PMEM read address (must be aligned on size)
127  * @param[in] size              Number of bytes to read (maximum 4, must not
128  *                              cross 32bit boundaries)
129  * @return                      the data read (in PE endianness, i.e BE).
130  */
131 u32 pe_pmem_read(int id, u32 addr, u8 size)
132 {
133         u32 offset = addr & 0x3;
134         u32 mask = 0xffffffff >> ((4 - size) << 3);
135         u32 val;
136
137         addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
138                 | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
139                 PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
140
141         writel(addr, pe[id].mem_access_addr);
142         val = be32_to_cpu(readl(pe[id].mem_access_rdata));
143
144         return (val >> (offset << 3)) & mask;
145 }
146
147 /*
148  * Writes PE internal data memory (DMEM) from the host
149  * through indirect access registers.
150  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
151  *                      ..., UTIL_ID)
152  * @param[in] val       Value to write (in PE endianness, i.e BE)
153  * @param[in] addr      DMEM write address (must be aligned on size)
154  * @param[in] size      Number of bytes to write (maximum 4, must not
155  *                      cross 32bit boundaries)
156  */
157 void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
158 {
159         u32 offset = addr & 0x3;
160
161         addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
162                 PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
163
164         /* Indirect access interface is byte swapping data being written */
165         writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
166         writel(addr, pe[id].mem_access_addr);
167 }
168
169 /*
170  * Reads PE internal data memory (DMEM) from the host
171  * through indirect access registers.
172  * @param[in] id                PE identification (CLASS0_ID, ..., TMU0_ID,
173  *                              ..., UTIL_ID)
174  * @param[in] addr              DMEM read address (must be aligned on size)
175  * @param[in] size              Number of bytes to read (maximum 4, must not
176  *                              cross 32bit boundaries)
177  * @return                      the data read (in PE endianness, i.e BE).
178  */
179 u32 pe_dmem_read(int id, u32 addr, u8 size)
180 {
181         u32 offset = addr & 0x3;
182         u32 mask = 0xffffffff >> ((4 - size) << 3);
183         u32 val;
184
185         addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
186                 PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
187
188         writel(addr, pe[id].mem_access_addr);
189
190         /* Indirect access interface is byte swapping data being read */
191         val = be32_to_cpu(readl(pe[id].mem_access_rdata));
192
193         return (val >> (offset << 3)) & mask;
194 }
195
196 /*
197  * This function is used to write to CLASS internal bus peripherals (ccu,
198  * pe-lem) from the host
199  * through indirect access registers.
200  * @param[in]   val     value to write
201  * @param[in]   addr    Address to write to (must be aligned on size)
202  * @param[in]   size    Number of bytes to write (1, 2 or 4)
203  *
204  */
205 static void class_bus_write(u32 val, u32 addr, u8 size)
206 {
207         u32 offset = addr & 0x3;
208
209         writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
210
211         addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
212                 (size << 24);
213
214         writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
215         writel(addr, CLASS_BUS_ACCESS_ADDR);
216 }
217
218 /*
219  * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
220  * through indirect access registers.
221  * @param[in] addr      Address to read from (must be aligned on size)
222  * @param[in] size      Number of bytes to read (1, 2 or 4)
223  * @return              the read data
224  */
225 static u32 class_bus_read(u32 addr, u8 size)
226 {
227         u32 offset = addr & 0x3;
228         u32 mask = 0xffffffff >> ((4 - size) << 3);
229         u32 val;
230
231         writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
232
233         addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
234
235         writel(addr, CLASS_BUS_ACCESS_ADDR);
236         val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
237
238         return (val >> (offset << 3)) & mask;
239 }
240
241 /*
242  * Writes data to the cluster memory (PE_LMEM)
243  * @param[in] dst       PE LMEM destination address (must be 32bit aligned)
244  * @param[in] src       Buffer source address
245  * @param[in] len       Number of bytes to copy
246  */
247 static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
248                                       unsigned int len)
249 {
250         u32 len32 = len >> 2;
251         int i;
252
253         for (i = 0; i < len32; i++, src += 4, dst += 4)
254                 class_bus_write(*(u32 *)src, dst, 4);
255
256         if (len & 0x2) {
257                 class_bus_write(*(u16 *)src, dst, 2);
258                 src += 2;
259                 dst += 2;
260         }
261
262         if (len & 0x1) {
263                 class_bus_write(*(u8 *)src, dst, 1);
264                 src++;
265                 dst++;
266         }
267 }
268
269 /*
270  * Writes value to the cluster memory (PE_LMEM)
271  * @param[in] dst       PE LMEM destination address (must be 32bit aligned)
272  * @param[in] val       Value to write
273  * @param[in] len       Number of bytes to write
274  */
275 static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
276 {
277         u32 len32 = len >> 2;
278         int i;
279
280         val = val | (val << 8) | (val << 16) | (val << 24);
281
282         for (i = 0; i < len32; i++, dst += 4)
283                 class_bus_write(val, dst, 4);
284
285         if (len & 0x2) {
286                 class_bus_write(val, dst, 2);
287                 dst += 2;
288         }
289
290         if (len & 0x1) {
291                 class_bus_write(val, dst, 1);
292                 dst++;
293         }
294 }
295
296 /*
297  * Reads data from the cluster memory (PE_LMEM)
298  * @param[out] dst      pointer to the source buffer data are copied to
299  * @param[in] len       length in bytes of the amount of data to read
300  *                      from cluster memory
301  * @param[in] offset    offset in bytes in the cluster memory where data are
302  *                      read from
303  */
304 void pe_lmem_read(u32 *dst, u32 len, u32 offset)
305 {
306         u32 len32 = len >> 2;
307         int i = 0;
308
309         for (i = 0; i < len32; dst++, i++, offset += 4)
310                 *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
311
312         if (len & 0x03)
313                 *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
314 }
315
316 /*
317  * Writes data to the cluster memory (PE_LMEM)
318  * @param[in] src       pointer to the source buffer data are copied from
319  * @param[in] len       length in bytes of the amount of data to write to the
320  *                              cluster memory
321  * @param[in] offset    offset in bytes in the cluster memory where data are
322  *                              written to
323  */
324 void pe_lmem_write(u32 *src, u32 len, u32 offset)
325 {
326         u32 len32 = len >> 2;
327         int i = 0;
328
329         for (i = 0; i < len32; src++, i++, offset += 4)
330                 class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
331
332         if (len & 0x03)
333                 class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
334                                         0x03));
335 }
336
337 /*
338  * Loads an elf section into pmem
339  * Code needs to be at least 16bit aligned and only PROGBITS sections are
340  * supported
341  *
342  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID, ...,
343  *                                      TMU3_ID)
344  * @param[in] data      pointer to the elf firmware
345  * @param[in] shdr      pointer to the elf section header
346  */
347 static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
348 {
349         u32 offset = be32_to_cpu(shdr->sh_offset);
350         u32 addr = be32_to_cpu(shdr->sh_addr);
351         u32 size = be32_to_cpu(shdr->sh_size);
352         u32 type = be32_to_cpu(shdr->sh_type);
353
354         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
355                 printf(
356                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
357                         __func__, addr, (unsigned long)data + offset);
358
359                 return -1;
360         }
361
362         if (addr & 0x1) {
363                 printf("%s: load address(%x) is not 16bit aligned\n",
364                        __func__, addr);
365                 return -1;
366         }
367
368         if (size & 0x1) {
369                 printf("%s: load size(%x) is not 16bit aligned\n", __func__,
370                        size);
371                 return -1;
372         }
373
374                 debug("pmem pe%d @%x len %d\n", id, addr, size);
375         switch (type) {
376         case SHT_PROGBITS:
377                 pe_pmem_memcpy_to32(id, addr, data + offset, size);
378                 break;
379
380         default:
381                 printf("%s: unsupported section type(%x)\n", __func__, type);
382                 return -1;
383         }
384
385         return 0;
386 }
387
388 /*
389  * Loads an elf section into dmem
390  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
391  * initialized to 0
392  *
393  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
394  *                      ..., UTIL_ID)
395  * @param[in] data      pointer to the elf firmware
396  * @param[in] shdr      pointer to the elf section header
397  */
398 static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
399 {
400         u32 offset = be32_to_cpu(shdr->sh_offset);
401         u32 addr = be32_to_cpu(shdr->sh_addr);
402         u32 size = be32_to_cpu(shdr->sh_size);
403         u32 type = be32_to_cpu(shdr->sh_type);
404         u32 size32 = size >> 2;
405         int i;
406
407         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
408                 printf(
409                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
410                         __func__, addr, (unsigned long)data + offset);
411
412                 return -1;
413         }
414
415         if (addr & 0x3) {
416                 printf("%s: load address(%x) is not 32bit aligned\n",
417                        __func__, addr);
418                 return -1;
419         }
420
421         switch (type) {
422         case SHT_PROGBITS:
423                 debug("dmem pe%d @%x len %d\n", id, addr, size);
424                 pe_dmem_memcpy_to32(id, addr, data + offset, size);
425                 break;
426
427         case SHT_NOBITS:
428                 debug("dmem zero pe%d @%x len %d\n", id, addr, size);
429                 for (i = 0; i < size32; i++, addr += 4)
430                         pe_dmem_write(id, 0, addr, 4);
431
432                 if (size & 0x3)
433                         pe_dmem_write(id, 0, addr, size & 0x3);
434
435                 break;
436
437         default:
438                 printf("%s: unsupported section type(%x)\n", __func__, type);
439                 return -1;
440         }
441
442         return 0;
443 }
444
445 /*
446  * Loads an elf section into DDR
447  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
448  *              initialized to 0
449  *
450  * @param[in] id        PE identification (CLASS0_ID, ..., TMU0_ID,
451  *                      ..., UTIL_ID)
452  * @param[in] data      pointer to the elf firmware
453  * @param[in] shdr      pointer to the elf section header
454  */
455 static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
456 {
457         u32 offset = be32_to_cpu(shdr->sh_offset);
458         u32 addr = be32_to_cpu(shdr->sh_addr);
459         u32 size = be32_to_cpu(shdr->sh_size);
460         u32 type = be32_to_cpu(shdr->sh_type);
461         u32 flags = be32_to_cpu(shdr->sh_flags);
462
463         switch (type) {
464         case SHT_PROGBITS:
465                 debug("ddr  pe%d @%x len %d\n", id, addr, size);
466                 if (flags & SHF_EXECINSTR) {
467                         if (id <= CLASS_MAX_ID) {
468                                 /* DO the loading only once in DDR */
469                                 if (id == CLASS0_ID) {
470                                         debug(
471                                                 "%s: load address(%x) and elf file address(%lx) rcvd\n"
472                                                 , __func__, addr,
473                                                 (unsigned long)data + offset);
474                                         if (((unsigned long)(data + offset)
475                                                 & 0x3) != (addr & 0x3)) {
476                                                 printf(
477                                                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
478                                                         __func__, addr,
479                                                         (unsigned long)data +
480                                                         offset);
481
482                                                 return -1;
483                                         }
484
485                                         if (addr & 0x1) {
486                                                 printf(
487                                                         "%s: load address(%x) is not 16bit aligned\n"
488                                                         , __func__, addr);
489                                                 return -1;
490                                         }
491
492                                         if (size & 0x1) {
493                                                 printf(
494                                                         "%s: load length(%x) is not 16bit aligned\n"
495                                                         , __func__, size);
496                                                 return -1;
497                                         }
498
499                                         memcpy((void *)DDR_PFE_TO_VIRT(addr),
500                                                data + offset, size);
501                                 }
502                         } else {
503                                 printf(
504                                         "%s: unsupported ddr section type(%x) for PE(%d)\n"
505                                         , __func__, type, id);
506                                 return -1;
507                         }
508
509                 } else {
510                         memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
511                                size);
512                 }
513
514                 break;
515
516         case SHT_NOBITS:
517                 debug("ddr zero pe%d @%x len %d\n", id, addr, size);
518                 memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
519
520                 break;
521
522         default:
523                 printf("%s: unsupported section type(%x)\n", __func__, type);
524                 return -1;
525         }
526
527         return 0;
528 }
529
530 /*
531  * Loads an elf section into pe lmem
532  * Data needs to be at least 32bit aligned, NOBITS sections are correctly
533  * initialized to 0
534  *
535  * @param[in] id        PE identification (CLASS0_ID,..., CLASS5_ID)
536  * @param[in] data      pointer to the elf firmware
537  * @param[in] shdr      pointer to the elf section header
538  */
539 static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
540 {
541         u32 offset = be32_to_cpu(shdr->sh_offset);
542         u32 addr = be32_to_cpu(shdr->sh_addr);
543         u32 size = be32_to_cpu(shdr->sh_size);
544         u32 type = be32_to_cpu(shdr->sh_type);
545
546         if (id > CLASS_MAX_ID) {
547                 printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
548                        __func__, type, id);
549                 return -1;
550         }
551
552         if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
553                 printf(
554                         "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
555                         __func__, addr, (unsigned long)data + offset);
556
557                 return -1;
558         }
559
560         if (addr & 0x3) {
561                 printf("%s: load address(%x) is not 32bit aligned\n",
562                        __func__, addr);
563                 return -1;
564         }
565
566         debug("lmem  pe%d @%x len %d\n", id, addr, size);
567
568         switch (type) {
569         case SHT_PROGBITS:
570                 class_pe_lmem_memcpy_to32(addr, data + offset, size);
571                 break;
572
573         case SHT_NOBITS:
574                 class_pe_lmem_memset(addr, 0, size);
575                 break;
576
577         default:
578                 printf("%s: unsupported section type(%x)\n", __func__, type);
579                 return -1;
580         }
581
582         return 0;
583 }
584
585 /*
586  * Loads an elf section into a PE
587  * For now only supports loading a section to dmem (all PE's), pmem (class and
588  * tmu PE's), DDDR (util PE code)
589  * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
590  * ..., UTIL_ID)
591  * @param[in] data      pointer to the elf firmware
592  * @param[in] shdr      pointer to the elf section header
593  */
594 int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
595 {
596         u32 addr = be32_to_cpu(shdr->sh_addr);
597         u32 size = be32_to_cpu(shdr->sh_size);
598
599         if (IS_DMEM(addr, size))
600                 return pe_load_dmem_section(id, data, shdr);
601         else if (IS_PMEM(addr, size))
602                 return pe_load_pmem_section(id, data, shdr);
603         else if (IS_PFE_LMEM(addr, size))
604                 return 0;
605         else if (IS_PHYS_DDR(addr, size))
606                 return pe_load_ddr_section(id, data, shdr);
607         else if (IS_PE_LMEM(addr, size))
608                 return pe_load_pe_lmem_section(id, data, shdr);
609
610         printf("%s: unsupported memory range(%x)\n", __func__, addr);
611
612         return 0;
613 }
614
615 /**************************** BMU ***************************/
616 /*
617  * Resets a BMU block.
618  * @param[in] base      BMU block base address
619  */
620 static inline void bmu_reset(void *base)
621 {
622         writel(CORE_SW_RESET, base + BMU_CTRL);
623
624         /* Wait for self clear */
625         while (readl(base + BMU_CTRL) & CORE_SW_RESET)
626                 ;
627 }
628
629 /*
630  * Enabled a BMU block.
631  * @param[in] base      BMU block base address
632  */
633 void bmu_enable(void *base)
634 {
635         writel(CORE_ENABLE, base + BMU_CTRL);
636 }
637
638 /*
639  * Disables a BMU block.
640  * @param[in] base      BMU block base address
641  */
642 static inline void bmu_disable(void *base)
643 {
644         writel(CORE_DISABLE, base + BMU_CTRL);
645 }
646
647 /*
648  * Sets the configuration of a BMU block.
649  * @param[in] base      BMU block base address
650  * @param[in] cfg       BMU configuration
651  */
652 static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
653 {
654         writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
655         writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
656         writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
657
658         /* Interrupts are never used */
659         writel(0x0, base + BMU_INT_ENABLE);
660 }
661
662 /*
663  * Initializes a BMU block.
664  * @param[in] base      BMU block base address
665  * @param[in] cfg       BMU configuration
666  */
667 void bmu_init(void *base, struct bmu_cfg *cfg)
668 {
669         bmu_disable(base);
670
671         bmu_set_config(base, cfg);
672
673         bmu_reset(base);
674 }
675
676 /**************************** GPI ***************************/
677 /*
678  * Resets a GPI block.
679  * @param[in] base      GPI base address
680  */
681 static inline void gpi_reset(void *base)
682 {
683         writel(CORE_SW_RESET, base + GPI_CTRL);
684 }
685
686 /*
687  * Enables a GPI block.
688  * @param[in] base      GPI base address
689  */
690 void gpi_enable(void *base)
691 {
692         writel(CORE_ENABLE, base + GPI_CTRL);
693 }
694
695 /*
696  * Disables a GPI block.
697  * @param[in] base      GPI base address
698  */
699 void gpi_disable(void *base)
700 {
701         writel(CORE_DISABLE, base + GPI_CTRL);
702 }
703
704 /*
705  * Sets the configuration of a GPI block.
706  * @param[in] base      GPI base address
707  * @param[in] cfg       GPI configuration
708  */
709 static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
710 {
711         writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
712                + GPI_LMEM_ALLOC_ADDR);
713         writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
714                + GPI_LMEM_FREE_ADDR);
715         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
716                + GPI_DDR_ALLOC_ADDR);
717         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
718                + GPI_DDR_FREE_ADDR);
719         writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
720         writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
721         writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
722         writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
723         writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
724         writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
725         writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
726
727         writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
728                 GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
729         writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
730         writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
731
732         /*Make GPI AXI transactions non-bufferable */
733         writel(0x1, base + GPI_AXI_CTRL);
734 }
735
736 /*
737  * Initializes a GPI block.
738  * @param[in] base      GPI base address
739  * @param[in] cfg       GPI configuration
740  */
741 void gpi_init(void *base, struct gpi_cfg *cfg)
742 {
743         gpi_reset(base);
744
745         gpi_disable(base);
746
747         gpi_set_config(base, cfg);
748 }
749
750 /**************************** CLASSIFIER ***************************/
751 /*
752  * Resets CLASSIFIER block.
753  */
754 static inline void class_reset(void)
755 {
756         writel(CORE_SW_RESET, CLASS_TX_CTRL);
757 }
758
759 /*
760  * Enables all CLASS-PE's cores.
761  */
762 void class_enable(void)
763 {
764         writel(CORE_ENABLE, CLASS_TX_CTRL);
765 }
766
767 /*
768  * Disables all CLASS-PE's cores.
769  */
770 void class_disable(void)
771 {
772         writel(CORE_DISABLE, CLASS_TX_CTRL);
773 }
774
775 /*
776  * Sets the configuration of the CLASSIFIER block.
777  * @param[in] cfg       CLASSIFIER configuration
778  */
779 static inline void class_set_config(struct class_cfg *cfg)
780 {
781         if (PLL_CLK_EN == 0) {
782                 /* Clock ratio: for 1:1 the value is 0 */
783                 writel(0x0, CLASS_PE_SYS_CLK_RATIO);
784         } else {
785                 /* Clock ratio: for 1:2 the value is 1 */
786                 writel(0x1, CLASS_PE_SYS_CLK_RATIO);
787         }
788         writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
789         writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
790         writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
791                 CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
792                 CLASS_ROUTE_HASH_ENTRY_SIZE);
793         writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
794
795         writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
796         memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
797                ROUTE_TABLE_SIZE);
798
799         writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
800         writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
801         writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
802         writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
803         writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
804
805         writel(23, CLASS_AFULL_THRES);
806         writel(23, CLASS_TSQ_FIFO_THRES);
807
808         writel(24, CLASS_MAX_BUF_CNT);
809         writel(24, CLASS_TSQ_MAX_CNT);
810
811         /*Make Class AXI transactions non-bufferable */
812         writel(0x1, CLASS_AXI_CTRL);
813
814         /*Make Util AXI transactions non-bufferable */
815         /*Util is disabled in U-boot, do it from here */
816         writel(0x1, UTIL_AXI_CTRL);
817 }
818
819 /*
820  * Initializes CLASSIFIER block.
821  * @param[in] cfg       CLASSIFIER configuration
822  */
823 void class_init(struct class_cfg *cfg)
824 {
825         class_reset();
826
827         class_disable();
828
829         class_set_config(cfg);
830 }
831
832 /**************************** TMU ***************************/
833 /*
834  * Enables TMU-PE cores.
835  * @param[in] pe_mask   TMU PE mask
836  */
837 void tmu_enable(u32 pe_mask)
838 {
839         writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
840 }
841
842 /*
843  * Disables TMU cores.
844  * @param[in] pe_mask   TMU PE mask
845  */
846 void tmu_disable(u32 pe_mask)
847 {
848         writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
849 }
850
851 /*
852  * Initializes TMU block.
853  * @param[in] cfg       TMU configuration
854  */
855 void tmu_init(struct tmu_cfg *cfg)
856 {
857         int q, phyno;
858
859         /* keep in soft reset */
860         writel(SW_RESET, TMU_CTRL);
861
862         /*Make Class AXI transactions non-bufferable */
863         writel(0x1, TMU_AXI_CTRL);
864
865         /* enable EMAC PHY ports */
866         writel(0x3, TMU_SYS_GENERIC_CONTROL);
867
868         writel(750, TMU_INQ_WATERMARK);
869
870         writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
871                TMU_PHY0_INQ_ADDR);
872         writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
873                TMU_PHY1_INQ_ADDR);
874
875         writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
876                TMU_PHY3_INQ_ADDR);
877         writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
878         writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
879         writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
880                TMU_BMU_INQ_ADDR);
881
882         /* enabling all 10 schedulers [9:0] of each TDQ  */
883         writel(0x3FF, TMU_TDQ0_SCH_CTRL);
884         writel(0x3FF, TMU_TDQ1_SCH_CTRL);
885         writel(0x3FF, TMU_TDQ3_SCH_CTRL);
886
887         if (PLL_CLK_EN == 0) {
888                 /* Clock ratio: for 1:1 the value is 0 */
889                 writel(0x0, TMU_PE_SYS_CLK_RATIO);
890         } else {
891                 /* Clock ratio: for 1:2 the value is 1 */
892                 writel(0x1, TMU_PE_SYS_CLK_RATIO);
893         }
894
895         /* Extra packet pointers will be stored from this address onwards */
896         debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
897         writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
898
899         debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
900         writel(cfg->llm_queue_len,      TMU_LLM_QUE_LEN);
901
902         writel(5, TMU_TDQ_IIFG_CFG);
903         writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
904
905         writel(0x0, TMU_CTRL);
906
907         /* MEM init */
908         writel(MEM_INIT, TMU_CTRL);
909
910         while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
911                 ;
912
913         /* LLM init */
914         writel(LLM_INIT, TMU_CTRL);
915
916         while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
917                 ;
918
919         /* set up each queue for tail drop */
920         for (phyno = 0; phyno < 4; phyno++) {
921                 if (phyno == 2)
922                         continue;
923                 for (q = 0; q < 16; q++) {
924                         u32 qmax;
925
926                         writel((phyno << 8) | q, TMU_TEQ_CTRL);
927                         writel(BIT(22), TMU_TEQ_QCFG);
928
929                         if (phyno == 3)
930                                 qmax = DEFAULT_TMU3_QDEPTH;
931                         else
932                                 qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
933                                         DEFAULT_MAX_QDEPTH;
934
935                         writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
936                         writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
937                 }
938         }
939         writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
940         writel(0, TMU_CTRL);
941 }
942
943 /**************************** HIF ***************************/
944 /*
945  * Enable hif tx DMA and interrupt
946  */
947 void hif_tx_enable(void)
948 {
949         writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
950 }
951
952 /*
953  * Disable hif tx DMA and interrupt
954  */
955 void hif_tx_disable(void)
956 {
957         u32 hif_int;
958
959         writel(0, HIF_TX_CTRL);
960
961         hif_int = readl(HIF_INT_ENABLE);
962         hif_int &= HIF_TXPKT_INT_EN;
963         writel(hif_int, HIF_INT_ENABLE);
964 }
965
966 /*
967  * Enable hif rx DMA and interrupt
968  */
969 void hif_rx_enable(void)
970 {
971         writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
972 }
973
974 /*
975  * Disable hif rx DMA and interrupt
976  */
977 void hif_rx_disable(void)
978 {
979         u32 hif_int;
980
981         writel(0, HIF_RX_CTRL);
982
983         hif_int = readl(HIF_INT_ENABLE);
984         hif_int &= HIF_RXPKT_INT_EN;
985         writel(hif_int, HIF_INT_ENABLE);
986 }
987
988 /*
989  * Initializes HIF copy block.
990  */
991 void hif_init(void)
992 {
993         /* Initialize HIF registers */
994         writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
995                HIF_POLL_CTRL);
996         /* Make HIF AXI transactions non-bufferable */
997         writel(0x1, HIF_AXI_CTRL);
998 }