]> git.sur5r.net Git - u-boot/blob - fs/ubifs/debug.c
SPDX: Convert all of our single license tags to Linux Kernel style
[u-boot] / fs / ubifs / debug.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17
18 #ifndef __UBOOT__
19 #include <linux/module.h>
20 #include <linux/debugfs.h>
21 #include <linux/math64.h>
22 #include <linux/uaccess.h>
23 #include <linux/random.h>
24 #else
25 #include <linux/compat.h>
26 #include <linux/err.h>
27 #endif
28 #include "ubifs.h"
29
30 #ifndef __UBOOT__
31 static DEFINE_SPINLOCK(dbg_lock);
32 #endif
33
34 static const char *get_key_fmt(int fmt)
35 {
36         switch (fmt) {
37         case UBIFS_SIMPLE_KEY_FMT:
38                 return "simple";
39         default:
40                 return "unknown/invalid format";
41         }
42 }
43
44 static const char *get_key_hash(int hash)
45 {
46         switch (hash) {
47         case UBIFS_KEY_HASH_R5:
48                 return "R5";
49         case UBIFS_KEY_HASH_TEST:
50                 return "test";
51         default:
52                 return "unknown/invalid name hash";
53         }
54 }
55
56 static const char *get_key_type(int type)
57 {
58         switch (type) {
59         case UBIFS_INO_KEY:
60                 return "inode";
61         case UBIFS_DENT_KEY:
62                 return "direntry";
63         case UBIFS_XENT_KEY:
64                 return "xentry";
65         case UBIFS_DATA_KEY:
66                 return "data";
67         case UBIFS_TRUN_KEY:
68                 return "truncate";
69         default:
70                 return "unknown/invalid key";
71         }
72 }
73
74 #ifndef __UBOOT__
75 static const char *get_dent_type(int type)
76 {
77         switch (type) {
78         case UBIFS_ITYPE_REG:
79                 return "file";
80         case UBIFS_ITYPE_DIR:
81                 return "dir";
82         case UBIFS_ITYPE_LNK:
83                 return "symlink";
84         case UBIFS_ITYPE_BLK:
85                 return "blkdev";
86         case UBIFS_ITYPE_CHR:
87                 return "char dev";
88         case UBIFS_ITYPE_FIFO:
89                 return "fifo";
90         case UBIFS_ITYPE_SOCK:
91                 return "socket";
92         default:
93                 return "unknown/invalid type";
94         }
95 }
96 #endif
97
98 const char *dbg_snprintf_key(const struct ubifs_info *c,
99                              const union ubifs_key *key, char *buffer, int len)
100 {
101         char *p = buffer;
102         int type = key_type(c, key);
103
104         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
105                 switch (type) {
106                 case UBIFS_INO_KEY:
107                         len -= snprintf(p, len, "(%lu, %s)",
108                                         (unsigned long)key_inum(c, key),
109                                         get_key_type(type));
110                         break;
111                 case UBIFS_DENT_KEY:
112                 case UBIFS_XENT_KEY:
113                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
114                                         (unsigned long)key_inum(c, key),
115                                         get_key_type(type), key_hash(c, key));
116                         break;
117                 case UBIFS_DATA_KEY:
118                         len -= snprintf(p, len, "(%lu, %s, %u)",
119                                         (unsigned long)key_inum(c, key),
120                                         get_key_type(type), key_block(c, key));
121                         break;
122                 case UBIFS_TRUN_KEY:
123                         len -= snprintf(p, len, "(%lu, %s)",
124                                         (unsigned long)key_inum(c, key),
125                                         get_key_type(type));
126                         break;
127                 default:
128                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
129                                         key->u32[0], key->u32[1]);
130                 }
131         } else
132                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
133         ubifs_assert(len > 0);
134         return p;
135 }
136
137 const char *dbg_ntype(int type)
138 {
139         switch (type) {
140         case UBIFS_PAD_NODE:
141                 return "padding node";
142         case UBIFS_SB_NODE:
143                 return "superblock node";
144         case UBIFS_MST_NODE:
145                 return "master node";
146         case UBIFS_REF_NODE:
147                 return "reference node";
148         case UBIFS_INO_NODE:
149                 return "inode node";
150         case UBIFS_DENT_NODE:
151                 return "direntry node";
152         case UBIFS_XENT_NODE:
153                 return "xentry node";
154         case UBIFS_DATA_NODE:
155                 return "data node";
156         case UBIFS_TRUN_NODE:
157                 return "truncate node";
158         case UBIFS_IDX_NODE:
159                 return "indexing node";
160         case UBIFS_CS_NODE:
161                 return "commit start node";
162         case UBIFS_ORPH_NODE:
163                 return "orphan node";
164         default:
165                 return "unknown node";
166         }
167 }
168
169 static const char *dbg_gtype(int type)
170 {
171         switch (type) {
172         case UBIFS_NO_NODE_GROUP:
173                 return "no node group";
174         case UBIFS_IN_NODE_GROUP:
175                 return "in node group";
176         case UBIFS_LAST_OF_NODE_GROUP:
177                 return "last of node group";
178         default:
179                 return "unknown";
180         }
181 }
182
183 const char *dbg_cstate(int cmt_state)
184 {
185         switch (cmt_state) {
186         case COMMIT_RESTING:
187                 return "commit resting";
188         case COMMIT_BACKGROUND:
189                 return "background commit requested";
190         case COMMIT_REQUIRED:
191                 return "commit required";
192         case COMMIT_RUNNING_BACKGROUND:
193                 return "BACKGROUND commit running";
194         case COMMIT_RUNNING_REQUIRED:
195                 return "commit running and required";
196         case COMMIT_BROKEN:
197                 return "broken commit";
198         default:
199                 return "unknown commit state";
200         }
201 }
202
203 const char *dbg_jhead(int jhead)
204 {
205         switch (jhead) {
206         case GCHD:
207                 return "0 (GC)";
208         case BASEHD:
209                 return "1 (base)";
210         case DATAHD:
211                 return "2 (data)";
212         default:
213                 return "unknown journal head";
214         }
215 }
216
217 static void dump_ch(const struct ubifs_ch *ch)
218 {
219         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
220         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
221         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
222                dbg_ntype(ch->node_type));
223         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
224                dbg_gtype(ch->group_type));
225         pr_err("\tsqnum          %llu\n",
226                (unsigned long long)le64_to_cpu(ch->sqnum));
227         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
228 }
229
230 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
231 {
232 #ifndef __UBOOT__
233         const struct ubifs_inode *ui = ubifs_inode(inode);
234         struct qstr nm = { .name = NULL };
235         union ubifs_key key;
236         struct ubifs_dent_node *dent, *pdent = NULL;
237         int count = 2;
238
239         pr_err("Dump in-memory inode:");
240         pr_err("\tinode          %lu\n", inode->i_ino);
241         pr_err("\tsize           %llu\n",
242                (unsigned long long)i_size_read(inode));
243         pr_err("\tnlink          %u\n", inode->i_nlink);
244         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
245         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
246         pr_err("\tatime          %u.%u\n",
247                (unsigned int)inode->i_atime.tv_sec,
248                (unsigned int)inode->i_atime.tv_nsec);
249         pr_err("\tmtime          %u.%u\n",
250                (unsigned int)inode->i_mtime.tv_sec,
251                (unsigned int)inode->i_mtime.tv_nsec);
252         pr_err("\tctime          %u.%u\n",
253                (unsigned int)inode->i_ctime.tv_sec,
254                (unsigned int)inode->i_ctime.tv_nsec);
255         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
256         pr_err("\txattr_size     %u\n", ui->xattr_size);
257         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
258         pr_err("\txattr_names    %u\n", ui->xattr_names);
259         pr_err("\tdirty          %u\n", ui->dirty);
260         pr_err("\txattr          %u\n", ui->xattr);
261         pr_err("\tbulk_read      %u\n", ui->xattr);
262         pr_err("\tsynced_i_size  %llu\n",
263                (unsigned long long)ui->synced_i_size);
264         pr_err("\tui_size        %llu\n",
265                (unsigned long long)ui->ui_size);
266         pr_err("\tflags          %d\n", ui->flags);
267         pr_err("\tcompr_type     %d\n", ui->compr_type);
268         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
269         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
270         pr_err("\tdata_len       %d\n", ui->data_len);
271
272         if (!S_ISDIR(inode->i_mode))
273                 return;
274
275         pr_err("List of directory entries:\n");
276         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
277
278         lowest_dent_key(c, &key, inode->i_ino);
279         while (1) {
280                 dent = ubifs_tnc_next_ent(c, &key, &nm);
281                 if (IS_ERR(dent)) {
282                         if (PTR_ERR(dent) != -ENOENT)
283                                 pr_err("error %ld\n", PTR_ERR(dent));
284                         break;
285                 }
286
287                 pr_err("\t%d: %s (%s)\n",
288                        count++, dent->name, get_dent_type(dent->type));
289
290                 nm.name = dent->name;
291                 nm.len = le16_to_cpu(dent->nlen);
292                 kfree(pdent);
293                 pdent = dent;
294                 key_read(c, &dent->key, &key);
295         }
296         kfree(pdent);
297 #endif
298 }
299
300 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
301 {
302         int i, n;
303         union ubifs_key key;
304         const struct ubifs_ch *ch = node;
305         char key_buf[DBG_KEY_BUF_LEN];
306
307         /* If the magic is incorrect, just hexdump the first bytes */
308         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
309                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
310                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
311                                (void *)node, UBIFS_CH_SZ, 1);
312                 return;
313         }
314
315         spin_lock(&dbg_lock);
316         dump_ch(node);
317
318         switch (ch->node_type) {
319         case UBIFS_PAD_NODE:
320         {
321                 const struct ubifs_pad_node *pad = node;
322
323                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
324                 break;
325         }
326         case UBIFS_SB_NODE:
327         {
328                 const struct ubifs_sb_node *sup = node;
329                 unsigned int sup_flags = le32_to_cpu(sup->flags);
330
331                 pr_err("\tkey_hash       %d (%s)\n",
332                        (int)sup->key_hash, get_key_hash(sup->key_hash));
333                 pr_err("\tkey_fmt        %d (%s)\n",
334                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
335                 pr_err("\tflags          %#x\n", sup_flags);
336                 pr_err("\tbig_lpt        %u\n",
337                        !!(sup_flags & UBIFS_FLG_BIGLPT));
338                 pr_err("\tspace_fixup    %u\n",
339                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
340                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
341                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
342                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
343                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
344                 pr_err("\tmax_bud_bytes  %llu\n",
345                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
346                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
347                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
348                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
349                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
350                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
351                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
352                 pr_err("\tdefault_compr  %u\n",
353                        (int)le16_to_cpu(sup->default_compr));
354                 pr_err("\trp_size        %llu\n",
355                        (unsigned long long)le64_to_cpu(sup->rp_size));
356                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
357                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
358                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
359                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
360                 pr_err("\tUUID           %pUB\n", sup->uuid);
361                 break;
362         }
363         case UBIFS_MST_NODE:
364         {
365                 const struct ubifs_mst_node *mst = node;
366
367                 pr_err("\thighest_inum   %llu\n",
368                        (unsigned long long)le64_to_cpu(mst->highest_inum));
369                 pr_err("\tcommit number  %llu\n",
370                        (unsigned long long)le64_to_cpu(mst->cmt_no));
371                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
372                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
373                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
374                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
375                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
376                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
377                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
378                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
379                 pr_err("\tindex_size     %llu\n",
380                        (unsigned long long)le64_to_cpu(mst->index_size));
381                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
382                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
383                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
384                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
385                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
386                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
387                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
388                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
389                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
390                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
391                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
392                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
393                 pr_err("\ttotal_free     %llu\n",
394                        (unsigned long long)le64_to_cpu(mst->total_free));
395                 pr_err("\ttotal_dirty    %llu\n",
396                        (unsigned long long)le64_to_cpu(mst->total_dirty));
397                 pr_err("\ttotal_used     %llu\n",
398                        (unsigned long long)le64_to_cpu(mst->total_used));
399                 pr_err("\ttotal_dead     %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_dead));
401                 pr_err("\ttotal_dark     %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_dark));
403                 break;
404         }
405         case UBIFS_REF_NODE:
406         {
407                 const struct ubifs_ref_node *ref = node;
408
409                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
410                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
411                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
412                 break;
413         }
414         case UBIFS_INO_NODE:
415         {
416                 const struct ubifs_ino_node *ino = node;
417
418                 key_read(c, &ino->key, &key);
419                 pr_err("\tkey            %s\n",
420                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
421                 pr_err("\tcreat_sqnum    %llu\n",
422                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
423                 pr_err("\tsize           %llu\n",
424                        (unsigned long long)le64_to_cpu(ino->size));
425                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
426                 pr_err("\tatime          %lld.%u\n",
427                        (long long)le64_to_cpu(ino->atime_sec),
428                        le32_to_cpu(ino->atime_nsec));
429                 pr_err("\tmtime          %lld.%u\n",
430                        (long long)le64_to_cpu(ino->mtime_sec),
431                        le32_to_cpu(ino->mtime_nsec));
432                 pr_err("\tctime          %lld.%u\n",
433                        (long long)le64_to_cpu(ino->ctime_sec),
434                        le32_to_cpu(ino->ctime_nsec));
435                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
436                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
437                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
438                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
439                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
440                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
441                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
442                 pr_err("\tcompr_type     %#x\n",
443                        (int)le16_to_cpu(ino->compr_type));
444                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
445                 break;
446         }
447         case UBIFS_DENT_NODE:
448         case UBIFS_XENT_NODE:
449         {
450                 const struct ubifs_dent_node *dent = node;
451                 int nlen = le16_to_cpu(dent->nlen);
452
453                 key_read(c, &dent->key, &key);
454                 pr_err("\tkey            %s\n",
455                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
456                 pr_err("\tinum           %llu\n",
457                        (unsigned long long)le64_to_cpu(dent->inum));
458                 pr_err("\ttype           %d\n", (int)dent->type);
459                 pr_err("\tnlen           %d\n", nlen);
460                 pr_err("\tname           ");
461
462                 if (nlen > UBIFS_MAX_NLEN)
463                         pr_err("(bad name length, not printing, bad or corrupted node)");
464                 else {
465                         for (i = 0; i < nlen && dent->name[i]; i++)
466                                 pr_cont("%c", dent->name[i]);
467                 }
468                 pr_cont("\n");
469
470                 break;
471         }
472         case UBIFS_DATA_NODE:
473         {
474                 const struct ubifs_data_node *dn = node;
475                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
476
477                 key_read(c, &dn->key, &key);
478                 pr_err("\tkey            %s\n",
479                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
481                 pr_err("\tcompr_typ      %d\n",
482                        (int)le16_to_cpu(dn->compr_type));
483                 pr_err("\tdata size      %d\n", dlen);
484                 pr_err("\tdata:\n");
485                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
486                                (void *)&dn->data, dlen, 0);
487                 break;
488         }
489         case UBIFS_TRUN_NODE:
490         {
491                 const struct ubifs_trun_node *trun = node;
492
493                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
494                 pr_err("\told_size       %llu\n",
495                        (unsigned long long)le64_to_cpu(trun->old_size));
496                 pr_err("\tnew_size       %llu\n",
497                        (unsigned long long)le64_to_cpu(trun->new_size));
498                 break;
499         }
500         case UBIFS_IDX_NODE:
501         {
502                 const struct ubifs_idx_node *idx = node;
503
504                 n = le16_to_cpu(idx->child_cnt);
505                 pr_err("\tchild_cnt      %d\n", n);
506                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
507                 pr_err("\tBranches:\n");
508
509                 for (i = 0; i < n && i < c->fanout - 1; i++) {
510                         const struct ubifs_branch *br;
511
512                         br = ubifs_idx_branch(c, idx, i);
513                         key_read(c, &br->key, &key);
514                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
515                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
516                                le32_to_cpu(br->len),
517                                dbg_snprintf_key(c, &key, key_buf,
518                                                 DBG_KEY_BUF_LEN));
519                 }
520                 break;
521         }
522         case UBIFS_CS_NODE:
523                 break;
524         case UBIFS_ORPH_NODE:
525         {
526                 const struct ubifs_orph_node *orph = node;
527
528                 pr_err("\tcommit number  %llu\n",
529                        (unsigned long long)
530                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
531                 pr_err("\tlast node flag %llu\n",
532                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
533                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
534                 pr_err("\t%d orphan inode numbers:\n", n);
535                 for (i = 0; i < n; i++)
536                         pr_err("\t  ino %llu\n",
537                                (unsigned long long)le64_to_cpu(orph->inos[i]));
538                 break;
539         }
540         default:
541                 pr_err("node type %d was not recognized\n",
542                        (int)ch->node_type);
543         }
544         spin_unlock(&dbg_lock);
545 }
546
547 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
548 {
549         spin_lock(&dbg_lock);
550         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
551                req->new_ino, req->dirtied_ino);
552         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
553                req->new_ino_d, req->dirtied_ino_d);
554         pr_err("\tnew_page    %d, dirtied_page %d\n",
555                req->new_page, req->dirtied_page);
556         pr_err("\tnew_dent    %d, mod_dent     %d\n",
557                req->new_dent, req->mod_dent);
558         pr_err("\tidx_growth  %d\n", req->idx_growth);
559         pr_err("\tdata_growth %d dd_growth     %d\n",
560                req->data_growth, req->dd_growth);
561         spin_unlock(&dbg_lock);
562 }
563
564 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
565 {
566         spin_lock(&dbg_lock);
567         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
568                current->pid, lst->empty_lebs, lst->idx_lebs);
569         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
570                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
571         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
572                lst->total_used, lst->total_dark, lst->total_dead);
573         spin_unlock(&dbg_lock);
574 }
575
576 #ifndef __UBOOT__
577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578 {
579         int i;
580         struct rb_node *rb;
581         struct ubifs_bud *bud;
582         struct ubifs_gced_idx_leb *idx_gc;
583         long long available, outstanding, free;
584
585         spin_lock(&c->space_lock);
586         spin_lock(&dbg_lock);
587         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588                current->pid, bi->data_growth + bi->dd_growth,
589                bi->data_growth + bi->dd_growth + bi->idx_growth);
590         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591                bi->data_growth, bi->dd_growth, bi->idx_growth);
592         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595                bi->page_budget, bi->inode_budget, bi->dent_budget);
596         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599
600         if (bi != &c->bi)
601                 /*
602                  * If we are dumping saved budgeting data, do not print
603                  * additional information which is about the current state, not
604                  * the old one which corresponded to the saved budgeting data.
605                  */
606                 goto out_unlock;
607
608         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611                atomic_long_read(&c->dirty_pg_cnt),
612                atomic_long_read(&c->dirty_zn_cnt),
613                atomic_long_read(&c->clean_zn_cnt));
614         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615
616         /* If we are in R/O mode, journal heads do not exist */
617         if (c->jheads)
618                 for (i = 0; i < c->jhead_cnt; i++)
619                         pr_err("\tjhead %s\t LEB %d\n",
620                                dbg_jhead(c->jheads[i].wbuf.jhead),
621                                c->jheads[i].wbuf.lnum);
622         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623                 bud = rb_entry(rb, struct ubifs_bud, rb);
624                 pr_err("\tbud LEB %d\n", bud->lnum);
625         }
626         list_for_each_entry(bud, &c->old_buds, list)
627                 pr_err("\told bud LEB %d\n", bud->lnum);
628         list_for_each_entry(idx_gc, &c->idx_gc, list)
629                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630                        idx_gc->lnum, idx_gc->unmap);
631         pr_err("\tcommit state %d\n", c->cmt_state);
632
633         /* Print budgeting predictions */
634         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635         outstanding = c->bi.data_growth + c->bi.dd_growth;
636         free = ubifs_get_free_space_nolock(c);
637         pr_err("Budgeting predictions:\n");
638         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639                available, outstanding, free);
640 out_unlock:
641         spin_unlock(&dbg_lock);
642         spin_unlock(&c->space_lock);
643 }
644 #else
645 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
646 {
647 }
648 #endif
649
650 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
651 {
652         int i, spc, dark = 0, dead = 0;
653         struct rb_node *rb;
654         struct ubifs_bud *bud;
655
656         spc = lp->free + lp->dirty;
657         if (spc < c->dead_wm)
658                 dead = spc;
659         else
660                 dark = ubifs_calc_dark(c, spc);
661
662         if (lp->flags & LPROPS_INDEX)
663                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
664                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
665                        lp->flags);
666         else
667                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
668                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
669                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
670
671         if (lp->flags & LPROPS_TAKEN) {
672                 if (lp->flags & LPROPS_INDEX)
673                         pr_cont("index, taken");
674                 else
675                         pr_cont("taken");
676         } else {
677                 const char *s;
678
679                 if (lp->flags & LPROPS_INDEX) {
680                         switch (lp->flags & LPROPS_CAT_MASK) {
681                         case LPROPS_DIRTY_IDX:
682                                 s = "dirty index";
683                                 break;
684                         case LPROPS_FRDI_IDX:
685                                 s = "freeable index";
686                                 break;
687                         default:
688                                 s = "index";
689                         }
690                 } else {
691                         switch (lp->flags & LPROPS_CAT_MASK) {
692                         case LPROPS_UNCAT:
693                                 s = "not categorized";
694                                 break;
695                         case LPROPS_DIRTY:
696                                 s = "dirty";
697                                 break;
698                         case LPROPS_FREE:
699                                 s = "free";
700                                 break;
701                         case LPROPS_EMPTY:
702                                 s = "empty";
703                                 break;
704                         case LPROPS_FREEABLE:
705                                 s = "freeable";
706                                 break;
707                         default:
708                                 s = NULL;
709                                 break;
710                         }
711                 }
712                 pr_cont("%s", s);
713         }
714
715         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
716                 bud = rb_entry(rb, struct ubifs_bud, rb);
717                 if (bud->lnum == lp->lnum) {
718                         int head = 0;
719                         for (i = 0; i < c->jhead_cnt; i++) {
720                                 /*
721                                  * Note, if we are in R/O mode or in the middle
722                                  * of mounting/re-mounting, the write-buffers do
723                                  * not exist.
724                                  */
725                                 if (c->jheads &&
726                                     lp->lnum == c->jheads[i].wbuf.lnum) {
727                                         pr_cont(", jhead %s", dbg_jhead(i));
728                                         head = 1;
729                                 }
730                         }
731                         if (!head)
732                                 pr_cont(", bud of jhead %s",
733                                        dbg_jhead(bud->jhead));
734                 }
735         }
736         if (lp->lnum == c->gc_lnum)
737                 pr_cont(", GC LEB");
738         pr_cont(")\n");
739 }
740
741 void ubifs_dump_lprops(struct ubifs_info *c)
742 {
743         int lnum, err;
744         struct ubifs_lprops lp;
745         struct ubifs_lp_stats lst;
746
747         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
748         ubifs_get_lp_stats(c, &lst);
749         ubifs_dump_lstats(&lst);
750
751         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
752                 err = ubifs_read_one_lp(c, lnum, &lp);
753                 if (err) {
754                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
755                         continue;
756                 }
757
758                 ubifs_dump_lprop(c, &lp);
759         }
760         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
761 }
762
763 void ubifs_dump_lpt_info(struct ubifs_info *c)
764 {
765         int i;
766
767         spin_lock(&dbg_lock);
768         pr_err("(pid %d) dumping LPT information\n", current->pid);
769         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
770         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
771         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
772         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
773         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
774         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
775         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
776         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
777         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
778         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
779         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
780         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
781         pr_err("\tspace_bits:    %d\n", c->space_bits);
782         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
783         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
784         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
785         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
786         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
787         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
788         pr_err("\tLPT head is at %d:%d\n",
789                c->nhead_lnum, c->nhead_offs);
790         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
791         if (c->big_lpt)
792                 pr_err("\tLPT lsave is at %d:%d\n",
793                        c->lsave_lnum, c->lsave_offs);
794         for (i = 0; i < c->lpt_lebs; i++)
795                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
796                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
797                        c->ltab[i].tgc, c->ltab[i].cmt);
798         spin_unlock(&dbg_lock);
799 }
800
801 void ubifs_dump_sleb(const struct ubifs_info *c,
802                      const struct ubifs_scan_leb *sleb, int offs)
803 {
804         struct ubifs_scan_node *snod;
805
806         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
807                current->pid, sleb->lnum, offs);
808
809         list_for_each_entry(snod, &sleb->nodes, list) {
810                 cond_resched();
811                 pr_err("Dumping node at LEB %d:%d len %d\n",
812                        sleb->lnum, snod->offs, snod->len);
813                 ubifs_dump_node(c, snod->node);
814         }
815 }
816
817 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
818 {
819         struct ubifs_scan_leb *sleb;
820         struct ubifs_scan_node *snod;
821         void *buf;
822
823         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
824
825         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
826         if (!buf) {
827                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
828                 return;
829         }
830
831         sleb = ubifs_scan(c, lnum, 0, buf, 0);
832         if (IS_ERR(sleb)) {
833                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
834                 goto out;
835         }
836
837         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
838                sleb->nodes_cnt, sleb->endpt);
839
840         list_for_each_entry(snod, &sleb->nodes, list) {
841                 cond_resched();
842                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
843                        snod->offs, snod->len);
844                 ubifs_dump_node(c, snod->node);
845         }
846
847         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
848         ubifs_scan_destroy(sleb);
849
850 out:
851         vfree(buf);
852         return;
853 }
854
855 void ubifs_dump_znode(const struct ubifs_info *c,
856                       const struct ubifs_znode *znode)
857 {
858         int n;
859         const struct ubifs_zbranch *zbr;
860         char key_buf[DBG_KEY_BUF_LEN];
861
862         spin_lock(&dbg_lock);
863         if (znode->parent)
864                 zbr = &znode->parent->zbranch[znode->iip];
865         else
866                 zbr = &c->zroot;
867
868         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
869                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
870                znode->level, znode->child_cnt, znode->flags);
871
872         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
873                 spin_unlock(&dbg_lock);
874                 return;
875         }
876
877         pr_err("zbranches:\n");
878         for (n = 0; n < znode->child_cnt; n++) {
879                 zbr = &znode->zbranch[n];
880                 if (znode->level > 0)
881                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
882                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883                                dbg_snprintf_key(c, &zbr->key, key_buf,
884                                                 DBG_KEY_BUF_LEN));
885                 else
886                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
887                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
888                                dbg_snprintf_key(c, &zbr->key, key_buf,
889                                                 DBG_KEY_BUF_LEN));
890         }
891         spin_unlock(&dbg_lock);
892 }
893
894 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
895 {
896         int i;
897
898         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
899                current->pid, cat, heap->cnt);
900         for (i = 0; i < heap->cnt; i++) {
901                 struct ubifs_lprops *lprops = heap->arr[i];
902
903                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
904                        i, lprops->lnum, lprops->hpos, lprops->free,
905                        lprops->dirty, lprops->flags);
906         }
907         pr_err("(pid %d) finish dumping heap\n", current->pid);
908 }
909
910 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
911                       struct ubifs_nnode *parent, int iip)
912 {
913         int i;
914
915         pr_err("(pid %d) dumping pnode:\n", current->pid);
916         pr_err("\taddress %zx parent %zx cnext %zx\n",
917                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
918         pr_err("\tflags %lu iip %d level %d num %d\n",
919                pnode->flags, iip, pnode->level, pnode->num);
920         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
921                 struct ubifs_lprops *lp = &pnode->lprops[i];
922
923                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
924                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
925         }
926 }
927
928 void ubifs_dump_tnc(struct ubifs_info *c)
929 {
930         struct ubifs_znode *znode;
931         int level;
932
933         pr_err("\n");
934         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
935         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
936         level = znode->level;
937         pr_err("== Level %d ==\n", level);
938         while (znode) {
939                 if (level != znode->level) {
940                         level = znode->level;
941                         pr_err("== Level %d ==\n", level);
942                 }
943                 ubifs_dump_znode(c, znode);
944                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
945         }
946         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
947 }
948
949 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
950                       void *priv)
951 {
952         ubifs_dump_znode(c, znode);
953         return 0;
954 }
955
956 /**
957  * ubifs_dump_index - dump the on-flash index.
958  * @c: UBIFS file-system description object
959  *
960  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
961  * which dumps only in-memory znodes and does not read znodes which from flash.
962  */
963 void ubifs_dump_index(struct ubifs_info *c)
964 {
965         dbg_walk_index(c, NULL, dump_znode, NULL);
966 }
967
968 #ifndef __UBOOT__
969 /**
970  * dbg_save_space_info - save information about flash space.
971  * @c: UBIFS file-system description object
972  *
973  * This function saves information about UBIFS free space, dirty space, etc, in
974  * order to check it later.
975  */
976 void dbg_save_space_info(struct ubifs_info *c)
977 {
978         struct ubifs_debug_info *d = c->dbg;
979         int freeable_cnt;
980
981         spin_lock(&c->space_lock);
982         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
983         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
984         d->saved_idx_gc_cnt = c->idx_gc_cnt;
985
986         /*
987          * We use a dirty hack here and zero out @c->freeable_cnt, because it
988          * affects the free space calculations, and UBIFS might not know about
989          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
990          * only when we read their lprops, and we do this only lazily, upon the
991          * need. So at any given point of time @c->freeable_cnt might be not
992          * exactly accurate.
993          *
994          * Just one example about the issue we hit when we did not zero
995          * @c->freeable_cnt.
996          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
997          *    amount of free space in @d->saved_free
998          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
999          *    information from flash, where we cache LEBs from various
1000          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1001          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1002          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1003          *    -> 'ubifs_add_to_cat()').
1004          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1005          *    becomes %1.
1006          * 4. We calculate the amount of free space when the re-mount is
1007          *    finished in 'dbg_check_space_info()' and it does not match
1008          *    @d->saved_free.
1009          */
1010         freeable_cnt = c->freeable_cnt;
1011         c->freeable_cnt = 0;
1012         d->saved_free = ubifs_get_free_space_nolock(c);
1013         c->freeable_cnt = freeable_cnt;
1014         spin_unlock(&c->space_lock);
1015 }
1016
1017 /**
1018  * dbg_check_space_info - check flash space information.
1019  * @c: UBIFS file-system description object
1020  *
1021  * This function compares current flash space information with the information
1022  * which was saved when the 'dbg_save_space_info()' function was called.
1023  * Returns zero if the information has not changed, and %-EINVAL it it has
1024  * changed.
1025  */
1026 int dbg_check_space_info(struct ubifs_info *c)
1027 {
1028         struct ubifs_debug_info *d = c->dbg;
1029         struct ubifs_lp_stats lst;
1030         long long free;
1031         int freeable_cnt;
1032
1033         spin_lock(&c->space_lock);
1034         freeable_cnt = c->freeable_cnt;
1035         c->freeable_cnt = 0;
1036         free = ubifs_get_free_space_nolock(c);
1037         c->freeable_cnt = freeable_cnt;
1038         spin_unlock(&c->space_lock);
1039
1040         if (free != d->saved_free) {
1041                 ubifs_err(c, "free space changed from %lld to %lld",
1042                           d->saved_free, free);
1043                 goto out;
1044         }
1045
1046         return 0;
1047
1048 out:
1049         ubifs_msg(c, "saved lprops statistics dump");
1050         ubifs_dump_lstats(&d->saved_lst);
1051         ubifs_msg(c, "saved budgeting info dump");
1052         ubifs_dump_budg(c, &d->saved_bi);
1053         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1054         ubifs_msg(c, "current lprops statistics dump");
1055         ubifs_get_lp_stats(c, &lst);
1056         ubifs_dump_lstats(&lst);
1057         ubifs_msg(c, "current budgeting info dump");
1058         ubifs_dump_budg(c, &c->bi);
1059         dump_stack();
1060         return -EINVAL;
1061 }
1062
1063 /**
1064  * dbg_check_synced_i_size - check synchronized inode size.
1065  * @c: UBIFS file-system description object
1066  * @inode: inode to check
1067  *
1068  * If inode is clean, synchronized inode size has to be equivalent to current
1069  * inode size. This function has to be called only for locked inodes (@i_mutex
1070  * has to be locked). Returns %0 if synchronized inode size if correct, and
1071  * %-EINVAL if not.
1072  */
1073 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1074 {
1075         int err = 0;
1076         struct ubifs_inode *ui = ubifs_inode(inode);
1077
1078         if (!dbg_is_chk_gen(c))
1079                 return 0;
1080         if (!S_ISREG(inode->i_mode))
1081                 return 0;
1082
1083         mutex_lock(&ui->ui_mutex);
1084         spin_lock(&ui->ui_lock);
1085         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1086                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1087                           ui->ui_size, ui->synced_i_size);
1088                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1089                           inode->i_mode, i_size_read(inode));
1090                 dump_stack();
1091                 err = -EINVAL;
1092         }
1093         spin_unlock(&ui->ui_lock);
1094         mutex_unlock(&ui->ui_mutex);
1095         return err;
1096 }
1097
1098 /*
1099  * dbg_check_dir - check directory inode size and link count.
1100  * @c: UBIFS file-system description object
1101  * @dir: the directory to calculate size for
1102  * @size: the result is returned here
1103  *
1104  * This function makes sure that directory size and link count are correct.
1105  * Returns zero in case of success and a negative error code in case of
1106  * failure.
1107  *
1108  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1109  * calling this function.
1110  */
1111 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1112 {
1113         unsigned int nlink = 2;
1114         union ubifs_key key;
1115         struct ubifs_dent_node *dent, *pdent = NULL;
1116         struct qstr nm = { .name = NULL };
1117         loff_t size = UBIFS_INO_NODE_SZ;
1118
1119         if (!dbg_is_chk_gen(c))
1120                 return 0;
1121
1122         if (!S_ISDIR(dir->i_mode))
1123                 return 0;
1124
1125         lowest_dent_key(c, &key, dir->i_ino);
1126         while (1) {
1127                 int err;
1128
1129                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1130                 if (IS_ERR(dent)) {
1131                         err = PTR_ERR(dent);
1132                         if (err == -ENOENT)
1133                                 break;
1134                         return err;
1135                 }
1136
1137                 nm.name = dent->name;
1138                 nm.len = le16_to_cpu(dent->nlen);
1139                 size += CALC_DENT_SIZE(nm.len);
1140                 if (dent->type == UBIFS_ITYPE_DIR)
1141                         nlink += 1;
1142                 kfree(pdent);
1143                 pdent = dent;
1144                 key_read(c, &dent->key, &key);
1145         }
1146         kfree(pdent);
1147
1148         if (i_size_read(dir) != size) {
1149                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1150                           dir->i_ino, (unsigned long long)i_size_read(dir),
1151                           (unsigned long long)size);
1152                 ubifs_dump_inode(c, dir);
1153                 dump_stack();
1154                 return -EINVAL;
1155         }
1156         if (dir->i_nlink != nlink) {
1157                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1158                           dir->i_ino, dir->i_nlink, nlink);
1159                 ubifs_dump_inode(c, dir);
1160                 dump_stack();
1161                 return -EINVAL;
1162         }
1163
1164         return 0;
1165 }
1166
1167 /**
1168  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1169  * @c: UBIFS file-system description object
1170  * @zbr1: first zbranch
1171  * @zbr2: following zbranch
1172  *
1173  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1174  * names of the direntries/xentries which are referred by the keys. This
1175  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1176  * sure the name of direntry/xentry referred by @zbr1 is less than
1177  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1178  * and a negative error code in case of failure.
1179  */
1180 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1181                                struct ubifs_zbranch *zbr2)
1182 {
1183         int err, nlen1, nlen2, cmp;
1184         struct ubifs_dent_node *dent1, *dent2;
1185         union ubifs_key key;
1186         char key_buf[DBG_KEY_BUF_LEN];
1187
1188         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1189         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1190         if (!dent1)
1191                 return -ENOMEM;
1192         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1193         if (!dent2) {
1194                 err = -ENOMEM;
1195                 goto out_free;
1196         }
1197
1198         err = ubifs_tnc_read_node(c, zbr1, dent1);
1199         if (err)
1200                 goto out_free;
1201         err = ubifs_validate_entry(c, dent1);
1202         if (err)
1203                 goto out_free;
1204
1205         err = ubifs_tnc_read_node(c, zbr2, dent2);
1206         if (err)
1207                 goto out_free;
1208         err = ubifs_validate_entry(c, dent2);
1209         if (err)
1210                 goto out_free;
1211
1212         /* Make sure node keys are the same as in zbranch */
1213         err = 1;
1214         key_read(c, &dent1->key, &key);
1215         if (keys_cmp(c, &zbr1->key, &key)) {
1216                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1217                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1218                                                        DBG_KEY_BUF_LEN));
1219                 ubifs_err(c, "but it should have key %s according to tnc",
1220                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1221                                            DBG_KEY_BUF_LEN));
1222                 ubifs_dump_node(c, dent1);
1223                 goto out_free;
1224         }
1225
1226         key_read(c, &dent2->key, &key);
1227         if (keys_cmp(c, &zbr2->key, &key)) {
1228                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1229                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1230                                                        DBG_KEY_BUF_LEN));
1231                 ubifs_err(c, "but it should have key %s according to tnc",
1232                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1233                                            DBG_KEY_BUF_LEN));
1234                 ubifs_dump_node(c, dent2);
1235                 goto out_free;
1236         }
1237
1238         nlen1 = le16_to_cpu(dent1->nlen);
1239         nlen2 = le16_to_cpu(dent2->nlen);
1240
1241         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1242         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1243                 err = 0;
1244                 goto out_free;
1245         }
1246         if (cmp == 0 && nlen1 == nlen2)
1247                 ubifs_err(c, "2 xent/dent nodes with the same name");
1248         else
1249                 ubifs_err(c, "bad order of colliding key %s",
1250                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1251
1252         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1253         ubifs_dump_node(c, dent1);
1254         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1255         ubifs_dump_node(c, dent2);
1256
1257 out_free:
1258         kfree(dent2);
1259         kfree(dent1);
1260         return err;
1261 }
1262
1263 /**
1264  * dbg_check_znode - check if znode is all right.
1265  * @c: UBIFS file-system description object
1266  * @zbr: zbranch which points to this znode
1267  *
1268  * This function makes sure that znode referred to by @zbr is all right.
1269  * Returns zero if it is, and %-EINVAL if it is not.
1270  */
1271 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1272 {
1273         struct ubifs_znode *znode = zbr->znode;
1274         struct ubifs_znode *zp = znode->parent;
1275         int n, err, cmp;
1276
1277         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1278                 err = 1;
1279                 goto out;
1280         }
1281         if (znode->level < 0) {
1282                 err = 2;
1283                 goto out;
1284         }
1285         if (znode->iip < 0 || znode->iip >= c->fanout) {
1286                 err = 3;
1287                 goto out;
1288         }
1289
1290         if (zbr->len == 0)
1291                 /* Only dirty zbranch may have no on-flash nodes */
1292                 if (!ubifs_zn_dirty(znode)) {
1293                         err = 4;
1294                         goto out;
1295                 }
1296
1297         if (ubifs_zn_dirty(znode)) {
1298                 /*
1299                  * If znode is dirty, its parent has to be dirty as well. The
1300                  * order of the operation is important, so we have to have
1301                  * memory barriers.
1302                  */
1303                 smp_mb();
1304                 if (zp && !ubifs_zn_dirty(zp)) {
1305                         /*
1306                          * The dirty flag is atomic and is cleared outside the
1307                          * TNC mutex, so znode's dirty flag may now have
1308                          * been cleared. The child is always cleared before the
1309                          * parent, so we just need to check again.
1310                          */
1311                         smp_mb();
1312                         if (ubifs_zn_dirty(znode)) {
1313                                 err = 5;
1314                                 goto out;
1315                         }
1316                 }
1317         }
1318
1319         if (zp) {
1320                 const union ubifs_key *min, *max;
1321
1322                 if (znode->level != zp->level - 1) {
1323                         err = 6;
1324                         goto out;
1325                 }
1326
1327                 /* Make sure the 'parent' pointer in our znode is correct */
1328                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1329                 if (!err) {
1330                         /* This zbranch does not exist in the parent */
1331                         err = 7;
1332                         goto out;
1333                 }
1334
1335                 if (znode->iip >= zp->child_cnt) {
1336                         err = 8;
1337                         goto out;
1338                 }
1339
1340                 if (znode->iip != n) {
1341                         /* This may happen only in case of collisions */
1342                         if (keys_cmp(c, &zp->zbranch[n].key,
1343                                      &zp->zbranch[znode->iip].key)) {
1344                                 err = 9;
1345                                 goto out;
1346                         }
1347                         n = znode->iip;
1348                 }
1349
1350                 /*
1351                  * Make sure that the first key in our znode is greater than or
1352                  * equal to the key in the pointing zbranch.
1353                  */
1354                 min = &zbr->key;
1355                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1356                 if (cmp == 1) {
1357                         err = 10;
1358                         goto out;
1359                 }
1360
1361                 if (n + 1 < zp->child_cnt) {
1362                         max = &zp->zbranch[n + 1].key;
1363
1364                         /*
1365                          * Make sure the last key in our znode is less or
1366                          * equivalent than the key in the zbranch which goes
1367                          * after our pointing zbranch.
1368                          */
1369                         cmp = keys_cmp(c, max,
1370                                 &znode->zbranch[znode->child_cnt - 1].key);
1371                         if (cmp == -1) {
1372                                 err = 11;
1373                                 goto out;
1374                         }
1375                 }
1376         } else {
1377                 /* This may only be root znode */
1378                 if (zbr != &c->zroot) {
1379                         err = 12;
1380                         goto out;
1381                 }
1382         }
1383
1384         /*
1385          * Make sure that next key is greater or equivalent then the previous
1386          * one.
1387          */
1388         for (n = 1; n < znode->child_cnt; n++) {
1389                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1390                                &znode->zbranch[n].key);
1391                 if (cmp > 0) {
1392                         err = 13;
1393                         goto out;
1394                 }
1395                 if (cmp == 0) {
1396                         /* This can only be keys with colliding hash */
1397                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1398                                 err = 14;
1399                                 goto out;
1400                         }
1401
1402                         if (znode->level != 0 || c->replaying)
1403                                 continue;
1404
1405                         /*
1406                          * Colliding keys should follow binary order of
1407                          * corresponding xentry/dentry names.
1408                          */
1409                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1410                                                   &znode->zbranch[n]);
1411                         if (err < 0)
1412                                 return err;
1413                         if (err) {
1414                                 err = 15;
1415                                 goto out;
1416                         }
1417                 }
1418         }
1419
1420         for (n = 0; n < znode->child_cnt; n++) {
1421                 if (!znode->zbranch[n].znode &&
1422                     (znode->zbranch[n].lnum == 0 ||
1423                      znode->zbranch[n].len == 0)) {
1424                         err = 16;
1425                         goto out;
1426                 }
1427
1428                 if (znode->zbranch[n].lnum != 0 &&
1429                     znode->zbranch[n].len == 0) {
1430                         err = 17;
1431                         goto out;
1432                 }
1433
1434                 if (znode->zbranch[n].lnum == 0 &&
1435                     znode->zbranch[n].len != 0) {
1436                         err = 18;
1437                         goto out;
1438                 }
1439
1440                 if (znode->zbranch[n].lnum == 0 &&
1441                     znode->zbranch[n].offs != 0) {
1442                         err = 19;
1443                         goto out;
1444                 }
1445
1446                 if (znode->level != 0 && znode->zbranch[n].znode)
1447                         if (znode->zbranch[n].znode->parent != znode) {
1448                                 err = 20;
1449                                 goto out;
1450                         }
1451         }
1452
1453         return 0;
1454
1455 out:
1456         ubifs_err(c, "failed, error %d", err);
1457         ubifs_msg(c, "dump of the znode");
1458         ubifs_dump_znode(c, znode);
1459         if (zp) {
1460                 ubifs_msg(c, "dump of the parent znode");
1461                 ubifs_dump_znode(c, zp);
1462         }
1463         dump_stack();
1464         return -EINVAL;
1465 }
1466 #else
1467
1468 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1469 {
1470         return 0;
1471 }
1472
1473 void dbg_debugfs_exit_fs(struct ubifs_info *c)
1474 {
1475         return;
1476 }
1477
1478 int ubifs_debugging_init(struct ubifs_info *c)
1479 {
1480         return 0;
1481 }
1482 void ubifs_debugging_exit(struct ubifs_info *c)
1483 {
1484 }
1485 int dbg_check_filesystem(struct ubifs_info *c)
1486 {
1487         return 0;
1488 }
1489 int dbg_debugfs_init_fs(struct ubifs_info *c)
1490 {
1491         return 0;
1492 }
1493 #endif
1494
1495 #ifndef __UBOOT__
1496 /**
1497  * dbg_check_tnc - check TNC tree.
1498  * @c: UBIFS file-system description object
1499  * @extra: do extra checks that are possible at start commit
1500  *
1501  * This function traverses whole TNC tree and checks every znode. Returns zero
1502  * if everything is all right and %-EINVAL if something is wrong with TNC.
1503  */
1504 int dbg_check_tnc(struct ubifs_info *c, int extra)
1505 {
1506         struct ubifs_znode *znode;
1507         long clean_cnt = 0, dirty_cnt = 0;
1508         int err, last;
1509
1510         if (!dbg_is_chk_index(c))
1511                 return 0;
1512
1513         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1514         if (!c->zroot.znode)
1515                 return 0;
1516
1517         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1518         while (1) {
1519                 struct ubifs_znode *prev;
1520                 struct ubifs_zbranch *zbr;
1521
1522                 if (!znode->parent)
1523                         zbr = &c->zroot;
1524                 else
1525                         zbr = &znode->parent->zbranch[znode->iip];
1526
1527                 err = dbg_check_znode(c, zbr);
1528                 if (err)
1529                         return err;
1530
1531                 if (extra) {
1532                         if (ubifs_zn_dirty(znode))
1533                                 dirty_cnt += 1;
1534                         else
1535                                 clean_cnt += 1;
1536                 }
1537
1538                 prev = znode;
1539                 znode = ubifs_tnc_postorder_next(znode);
1540                 if (!znode)
1541                         break;
1542
1543                 /*
1544                  * If the last key of this znode is equivalent to the first key
1545                  * of the next znode (collision), then check order of the keys.
1546                  */
1547                 last = prev->child_cnt - 1;
1548                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1549                     !keys_cmp(c, &prev->zbranch[last].key,
1550                               &znode->zbranch[0].key)) {
1551                         err = dbg_check_key_order(c, &prev->zbranch[last],
1552                                                   &znode->zbranch[0]);
1553                         if (err < 0)
1554                                 return err;
1555                         if (err) {
1556                                 ubifs_msg(c, "first znode");
1557                                 ubifs_dump_znode(c, prev);
1558                                 ubifs_msg(c, "second znode");
1559                                 ubifs_dump_znode(c, znode);
1560                                 return -EINVAL;
1561                         }
1562                 }
1563         }
1564
1565         if (extra) {
1566                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1567                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1568                                   atomic_long_read(&c->clean_zn_cnt),
1569                                   clean_cnt);
1570                         return -EINVAL;
1571                 }
1572                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1573                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1574                                   atomic_long_read(&c->dirty_zn_cnt),
1575                                   dirty_cnt);
1576                         return -EINVAL;
1577                 }
1578         }
1579
1580         return 0;
1581 }
1582 #else
1583 int dbg_check_tnc(struct ubifs_info *c, int extra)
1584 {
1585         return 0;
1586 }
1587 #endif
1588
1589 /**
1590  * dbg_walk_index - walk the on-flash index.
1591  * @c: UBIFS file-system description object
1592  * @leaf_cb: called for each leaf node
1593  * @znode_cb: called for each indexing node
1594  * @priv: private data which is passed to callbacks
1595  *
1596  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1597  * node and @znode_cb for each indexing node. Returns zero in case of success
1598  * and a negative error code in case of failure.
1599  *
1600  * It would be better if this function removed every znode it pulled to into
1601  * the TNC, so that the behavior more closely matched the non-debugging
1602  * behavior.
1603  */
1604 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1605                    dbg_znode_callback znode_cb, void *priv)
1606 {
1607         int err;
1608         struct ubifs_zbranch *zbr;
1609         struct ubifs_znode *znode, *child;
1610
1611         mutex_lock(&c->tnc_mutex);
1612         /* If the root indexing node is not in TNC - pull it */
1613         if (!c->zroot.znode) {
1614                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1615                 if (IS_ERR(c->zroot.znode)) {
1616                         err = PTR_ERR(c->zroot.znode);
1617                         c->zroot.znode = NULL;
1618                         goto out_unlock;
1619                 }
1620         }
1621
1622         /*
1623          * We are going to traverse the indexing tree in the postorder manner.
1624          * Go down and find the leftmost indexing node where we are going to
1625          * start from.
1626          */
1627         znode = c->zroot.znode;
1628         while (znode->level > 0) {
1629                 zbr = &znode->zbranch[0];
1630                 child = zbr->znode;
1631                 if (!child) {
1632                         child = ubifs_load_znode(c, zbr, znode, 0);
1633                         if (IS_ERR(child)) {
1634                                 err = PTR_ERR(child);
1635                                 goto out_unlock;
1636                         }
1637                         zbr->znode = child;
1638                 }
1639
1640                 znode = child;
1641         }
1642
1643         /* Iterate over all indexing nodes */
1644         while (1) {
1645                 int idx;
1646
1647                 cond_resched();
1648
1649                 if (znode_cb) {
1650                         err = znode_cb(c, znode, priv);
1651                         if (err) {
1652                                 ubifs_err(c, "znode checking function returned error %d",
1653                                           err);
1654                                 ubifs_dump_znode(c, znode);
1655                                 goto out_dump;
1656                         }
1657                 }
1658                 if (leaf_cb && znode->level == 0) {
1659                         for (idx = 0; idx < znode->child_cnt; idx++) {
1660                                 zbr = &znode->zbranch[idx];
1661                                 err = leaf_cb(c, zbr, priv);
1662                                 if (err) {
1663                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1664                                                   err, zbr->lnum, zbr->offs);
1665                                         goto out_dump;
1666                                 }
1667                         }
1668                 }
1669
1670                 if (!znode->parent)
1671                         break;
1672
1673                 idx = znode->iip + 1;
1674                 znode = znode->parent;
1675                 if (idx < znode->child_cnt) {
1676                         /* Switch to the next index in the parent */
1677                         zbr = &znode->zbranch[idx];
1678                         child = zbr->znode;
1679                         if (!child) {
1680                                 child = ubifs_load_znode(c, zbr, znode, idx);
1681                                 if (IS_ERR(child)) {
1682                                         err = PTR_ERR(child);
1683                                         goto out_unlock;
1684                                 }
1685                                 zbr->znode = child;
1686                         }
1687                         znode = child;
1688                 } else
1689                         /*
1690                          * This is the last child, switch to the parent and
1691                          * continue.
1692                          */
1693                         continue;
1694
1695                 /* Go to the lowest leftmost znode in the new sub-tree */
1696                 while (znode->level > 0) {
1697                         zbr = &znode->zbranch[0];
1698                         child = zbr->znode;
1699                         if (!child) {
1700                                 child = ubifs_load_znode(c, zbr, znode, 0);
1701                                 if (IS_ERR(child)) {
1702                                         err = PTR_ERR(child);
1703                                         goto out_unlock;
1704                                 }
1705                                 zbr->znode = child;
1706                         }
1707                         znode = child;
1708                 }
1709         }
1710
1711         mutex_unlock(&c->tnc_mutex);
1712         return 0;
1713
1714 out_dump:
1715         if (znode->parent)
1716                 zbr = &znode->parent->zbranch[znode->iip];
1717         else
1718                 zbr = &c->zroot;
1719         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1720         ubifs_dump_znode(c, znode);
1721 out_unlock:
1722         mutex_unlock(&c->tnc_mutex);
1723         return err;
1724 }
1725
1726 /**
1727  * add_size - add znode size to partially calculated index size.
1728  * @c: UBIFS file-system description object
1729  * @znode: znode to add size for
1730  * @priv: partially calculated index size
1731  *
1732  * This is a helper function for 'dbg_check_idx_size()' which is called for
1733  * every indexing node and adds its size to the 'long long' variable pointed to
1734  * by @priv.
1735  */
1736 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1737 {
1738         long long *idx_size = priv;
1739         int add;
1740
1741         add = ubifs_idx_node_sz(c, znode->child_cnt);
1742         add = ALIGN(add, 8);
1743         *idx_size += add;
1744         return 0;
1745 }
1746
1747 /**
1748  * dbg_check_idx_size - check index size.
1749  * @c: UBIFS file-system description object
1750  * @idx_size: size to check
1751  *
1752  * This function walks the UBIFS index, calculates its size and checks that the
1753  * size is equivalent to @idx_size. Returns zero in case of success and a
1754  * negative error code in case of failure.
1755  */
1756 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1757 {
1758         int err;
1759         long long calc = 0;
1760
1761         if (!dbg_is_chk_index(c))
1762                 return 0;
1763
1764         err = dbg_walk_index(c, NULL, add_size, &calc);
1765         if (err) {
1766                 ubifs_err(c, "error %d while walking the index", err);
1767                 return err;
1768         }
1769
1770         if (calc != idx_size) {
1771                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1772                           calc, idx_size);
1773                 dump_stack();
1774                 return -EINVAL;
1775         }
1776
1777         return 0;
1778 }
1779
1780 #ifndef __UBOOT__
1781 /**
1782  * struct fsck_inode - information about an inode used when checking the file-system.
1783  * @rb: link in the RB-tree of inodes
1784  * @inum: inode number
1785  * @mode: inode type, permissions, etc
1786  * @nlink: inode link count
1787  * @xattr_cnt: count of extended attributes
1788  * @references: how many directory/xattr entries refer this inode (calculated
1789  *              while walking the index)
1790  * @calc_cnt: for directory inode count of child directories
1791  * @size: inode size (read from on-flash inode)
1792  * @xattr_sz: summary size of all extended attributes (read from on-flash
1793  *            inode)
1794  * @calc_sz: for directories calculated directory size
1795  * @calc_xcnt: count of extended attributes
1796  * @calc_xsz: calculated summary size of all extended attributes
1797  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1798  *             inode (read from on-flash inode)
1799  * @calc_xnms: calculated sum of lengths of all extended attribute names
1800  */
1801 struct fsck_inode {
1802         struct rb_node rb;
1803         ino_t inum;
1804         umode_t mode;
1805         unsigned int nlink;
1806         unsigned int xattr_cnt;
1807         int references;
1808         int calc_cnt;
1809         long long size;
1810         unsigned int xattr_sz;
1811         long long calc_sz;
1812         long long calc_xcnt;
1813         long long calc_xsz;
1814         unsigned int xattr_nms;
1815         long long calc_xnms;
1816 };
1817
1818 /**
1819  * struct fsck_data - private FS checking information.
1820  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1821  */
1822 struct fsck_data {
1823         struct rb_root inodes;
1824 };
1825
1826 /**
1827  * add_inode - add inode information to RB-tree of inodes.
1828  * @c: UBIFS file-system description object
1829  * @fsckd: FS checking information
1830  * @ino: raw UBIFS inode to add
1831  *
1832  * This is a helper function for 'check_leaf()' which adds information about
1833  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1834  * case of success and a negative error code in case of failure.
1835  */
1836 static struct fsck_inode *add_inode(struct ubifs_info *c,
1837                                     struct fsck_data *fsckd,
1838                                     struct ubifs_ino_node *ino)
1839 {
1840         struct rb_node **p, *parent = NULL;
1841         struct fsck_inode *fscki;
1842         ino_t inum = key_inum_flash(c, &ino->key);
1843         struct inode *inode;
1844         struct ubifs_inode *ui;
1845
1846         p = &fsckd->inodes.rb_node;
1847         while (*p) {
1848                 parent = *p;
1849                 fscki = rb_entry(parent, struct fsck_inode, rb);
1850                 if (inum < fscki->inum)
1851                         p = &(*p)->rb_left;
1852                 else if (inum > fscki->inum)
1853                         p = &(*p)->rb_right;
1854                 else
1855                         return fscki;
1856         }
1857
1858         if (inum > c->highest_inum) {
1859                 ubifs_err(c, "too high inode number, max. is %lu",
1860                           (unsigned long)c->highest_inum);
1861                 return ERR_PTR(-EINVAL);
1862         }
1863
1864         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1865         if (!fscki)
1866                 return ERR_PTR(-ENOMEM);
1867
1868         inode = ilookup(c->vfs_sb, inum);
1869
1870         fscki->inum = inum;
1871         /*
1872          * If the inode is present in the VFS inode cache, use it instead of
1873          * the on-flash inode which might be out-of-date. E.g., the size might
1874          * be out-of-date. If we do not do this, the following may happen, for
1875          * example:
1876          *   1. A power cut happens
1877          *   2. We mount the file-system R/O, the replay process fixes up the
1878          *      inode size in the VFS cache, but on on-flash.
1879          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1880          *      size.
1881          */
1882         if (!inode) {
1883                 fscki->nlink = le32_to_cpu(ino->nlink);
1884                 fscki->size = le64_to_cpu(ino->size);
1885                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1886                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1887                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1888                 fscki->mode = le32_to_cpu(ino->mode);
1889         } else {
1890                 ui = ubifs_inode(inode);
1891                 fscki->nlink = inode->i_nlink;
1892                 fscki->size = inode->i_size;
1893                 fscki->xattr_cnt = ui->xattr_cnt;
1894                 fscki->xattr_sz = ui->xattr_size;
1895                 fscki->xattr_nms = ui->xattr_names;
1896                 fscki->mode = inode->i_mode;
1897                 iput(inode);
1898         }
1899
1900         if (S_ISDIR(fscki->mode)) {
1901                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1902                 fscki->calc_cnt = 2;
1903         }
1904
1905         rb_link_node(&fscki->rb, parent, p);
1906         rb_insert_color(&fscki->rb, &fsckd->inodes);
1907
1908         return fscki;
1909 }
1910
1911 /**
1912  * search_inode - search inode in the RB-tree of inodes.
1913  * @fsckd: FS checking information
1914  * @inum: inode number to search
1915  *
1916  * This is a helper function for 'check_leaf()' which searches inode @inum in
1917  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1918  * the inode was not found.
1919  */
1920 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1921 {
1922         struct rb_node *p;
1923         struct fsck_inode *fscki;
1924
1925         p = fsckd->inodes.rb_node;
1926         while (p) {
1927                 fscki = rb_entry(p, struct fsck_inode, rb);
1928                 if (inum < fscki->inum)
1929                         p = p->rb_left;
1930                 else if (inum > fscki->inum)
1931                         p = p->rb_right;
1932                 else
1933                         return fscki;
1934         }
1935         return NULL;
1936 }
1937
1938 /**
1939  * read_add_inode - read inode node and add it to RB-tree of inodes.
1940  * @c: UBIFS file-system description object
1941  * @fsckd: FS checking information
1942  * @inum: inode number to read
1943  *
1944  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1945  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1946  * information pointer in case of success and a negative error code in case of
1947  * failure.
1948  */
1949 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1950                                          struct fsck_data *fsckd, ino_t inum)
1951 {
1952         int n, err;
1953         union ubifs_key key;
1954         struct ubifs_znode *znode;
1955         struct ubifs_zbranch *zbr;
1956         struct ubifs_ino_node *ino;
1957         struct fsck_inode *fscki;
1958
1959         fscki = search_inode(fsckd, inum);
1960         if (fscki)
1961                 return fscki;
1962
1963         ino_key_init(c, &key, inum);
1964         err = ubifs_lookup_level0(c, &key, &znode, &n);
1965         if (!err) {
1966                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1967                 return ERR_PTR(-ENOENT);
1968         } else if (err < 0) {
1969                 ubifs_err(c, "error %d while looking up inode %lu",
1970                           err, (unsigned long)inum);
1971                 return ERR_PTR(err);
1972         }
1973
1974         zbr = &znode->zbranch[n];
1975         if (zbr->len < UBIFS_INO_NODE_SZ) {
1976                 ubifs_err(c, "bad node %lu node length %d",
1977                           (unsigned long)inum, zbr->len);
1978                 return ERR_PTR(-EINVAL);
1979         }
1980
1981         ino = kmalloc(zbr->len, GFP_NOFS);
1982         if (!ino)
1983                 return ERR_PTR(-ENOMEM);
1984
1985         err = ubifs_tnc_read_node(c, zbr, ino);
1986         if (err) {
1987                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1988                           zbr->lnum, zbr->offs, err);
1989                 kfree(ino);
1990                 return ERR_PTR(err);
1991         }
1992
1993         fscki = add_inode(c, fsckd, ino);
1994         kfree(ino);
1995         if (IS_ERR(fscki)) {
1996                 ubifs_err(c, "error %ld while adding inode %lu node",
1997                           PTR_ERR(fscki), (unsigned long)inum);
1998                 return fscki;
1999         }
2000
2001         return fscki;
2002 }
2003
2004 /**
2005  * check_leaf - check leaf node.
2006  * @c: UBIFS file-system description object
2007  * @zbr: zbranch of the leaf node to check
2008  * @priv: FS checking information
2009  *
2010  * This is a helper function for 'dbg_check_filesystem()' which is called for
2011  * every single leaf node while walking the indexing tree. It checks that the
2012  * leaf node referred from the indexing tree exists, has correct CRC, and does
2013  * some other basic validation. This function is also responsible for building
2014  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2015  * calculates reference count, size, etc for each inode in order to later
2016  * compare them to the information stored inside the inodes and detect possible
2017  * inconsistencies. Returns zero in case of success and a negative error code
2018  * in case of failure.
2019  */
2020 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2021                       void *priv)
2022 {
2023         ino_t inum;
2024         void *node;
2025         struct ubifs_ch *ch;
2026         int err, type = key_type(c, &zbr->key);
2027         struct fsck_inode *fscki;
2028
2029         if (zbr->len < UBIFS_CH_SZ) {
2030                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2031                           zbr->len, zbr->lnum, zbr->offs);
2032                 return -EINVAL;
2033         }
2034
2035         node = kmalloc(zbr->len, GFP_NOFS);
2036         if (!node)
2037                 return -ENOMEM;
2038
2039         err = ubifs_tnc_read_node(c, zbr, node);
2040         if (err) {
2041                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2042                           zbr->lnum, zbr->offs, err);
2043                 goto out_free;
2044         }
2045
2046         /* If this is an inode node, add it to RB-tree of inodes */
2047         if (type == UBIFS_INO_KEY) {
2048                 fscki = add_inode(c, priv, node);
2049                 if (IS_ERR(fscki)) {
2050                         err = PTR_ERR(fscki);
2051                         ubifs_err(c, "error %d while adding inode node", err);
2052                         goto out_dump;
2053                 }
2054                 goto out;
2055         }
2056
2057         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2058             type != UBIFS_DATA_KEY) {
2059                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2060                           type, zbr->lnum, zbr->offs);
2061                 err = -EINVAL;
2062                 goto out_free;
2063         }
2064
2065         ch = node;
2066         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2067                 ubifs_err(c, "too high sequence number, max. is %llu",
2068                           c->max_sqnum);
2069                 err = -EINVAL;
2070                 goto out_dump;
2071         }
2072
2073         if (type == UBIFS_DATA_KEY) {
2074                 long long blk_offs;
2075                 struct ubifs_data_node *dn = node;
2076
2077                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2078
2079                 /*
2080                  * Search the inode node this data node belongs to and insert
2081                  * it to the RB-tree of inodes.
2082                  */
2083                 inum = key_inum_flash(c, &dn->key);
2084                 fscki = read_add_inode(c, priv, inum);
2085                 if (IS_ERR(fscki)) {
2086                         err = PTR_ERR(fscki);
2087                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2088                                   err, (unsigned long)inum);
2089                         goto out_dump;
2090                 }
2091
2092                 /* Make sure the data node is within inode size */
2093                 blk_offs = key_block_flash(c, &dn->key);
2094                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2095                 blk_offs += le32_to_cpu(dn->size);
2096                 if (blk_offs > fscki->size) {
2097                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2098                                   zbr->lnum, zbr->offs, fscki->size);
2099                         err = -EINVAL;
2100                         goto out_dump;
2101                 }
2102         } else {
2103                 int nlen;
2104                 struct ubifs_dent_node *dent = node;
2105                 struct fsck_inode *fscki1;
2106
2107                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2108
2109                 err = ubifs_validate_entry(c, dent);
2110                 if (err)
2111                         goto out_dump;
2112
2113                 /*
2114                  * Search the inode node this entry refers to and the parent
2115                  * inode node and insert them to the RB-tree of inodes.
2116                  */
2117                 inum = le64_to_cpu(dent->inum);
2118                 fscki = read_add_inode(c, priv, inum);
2119                 if (IS_ERR(fscki)) {
2120                         err = PTR_ERR(fscki);
2121                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2122                                   err, (unsigned long)inum);
2123                         goto out_dump;
2124                 }
2125
2126                 /* Count how many direntries or xentries refers this inode */
2127                 fscki->references += 1;
2128
2129                 inum = key_inum_flash(c, &dent->key);
2130                 fscki1 = read_add_inode(c, priv, inum);
2131                 if (IS_ERR(fscki1)) {
2132                         err = PTR_ERR(fscki1);
2133                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2134                                   err, (unsigned long)inum);
2135                         goto out_dump;
2136                 }
2137
2138                 nlen = le16_to_cpu(dent->nlen);
2139                 if (type == UBIFS_XENT_KEY) {
2140                         fscki1->calc_xcnt += 1;
2141                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2142                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2143                         fscki1->calc_xnms += nlen;
2144                 } else {
2145                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2146                         if (dent->type == UBIFS_ITYPE_DIR)
2147                                 fscki1->calc_cnt += 1;
2148                 }
2149         }
2150
2151 out:
2152         kfree(node);
2153         return 0;
2154
2155 out_dump:
2156         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2157         ubifs_dump_node(c, node);
2158 out_free:
2159         kfree(node);
2160         return err;
2161 }
2162
2163 /**
2164  * free_inodes - free RB-tree of inodes.
2165  * @fsckd: FS checking information
2166  */
2167 static void free_inodes(struct fsck_data *fsckd)
2168 {
2169         struct fsck_inode *fscki, *n;
2170
2171         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2172                 kfree(fscki);
2173 }
2174
2175 /**
2176  * check_inodes - checks all inodes.
2177  * @c: UBIFS file-system description object
2178  * @fsckd: FS checking information
2179  *
2180  * This is a helper function for 'dbg_check_filesystem()' which walks the
2181  * RB-tree of inodes after the index scan has been finished, and checks that
2182  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2183  * %-EINVAL if not, and a negative error code in case of failure.
2184  */
2185 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2186 {
2187         int n, err;
2188         union ubifs_key key;
2189         struct ubifs_znode *znode;
2190         struct ubifs_zbranch *zbr;
2191         struct ubifs_ino_node *ino;
2192         struct fsck_inode *fscki;
2193         struct rb_node *this = rb_first(&fsckd->inodes);
2194
2195         while (this) {
2196                 fscki = rb_entry(this, struct fsck_inode, rb);
2197                 this = rb_next(this);
2198
2199                 if (S_ISDIR(fscki->mode)) {
2200                         /*
2201                          * Directories have to have exactly one reference (they
2202                          * cannot have hardlinks), although root inode is an
2203                          * exception.
2204                          */
2205                         if (fscki->inum != UBIFS_ROOT_INO &&
2206                             fscki->references != 1) {
2207                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2208                                           (unsigned long)fscki->inum,
2209                                           fscki->references);
2210                                 goto out_dump;
2211                         }
2212                         if (fscki->inum == UBIFS_ROOT_INO &&
2213                             fscki->references != 0) {
2214                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2215                                           (unsigned long)fscki->inum,
2216                                           fscki->references);
2217                                 goto out_dump;
2218                         }
2219                         if (fscki->calc_sz != fscki->size) {
2220                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2221                                           (unsigned long)fscki->inum,
2222                                           fscki->size, fscki->calc_sz);
2223                                 goto out_dump;
2224                         }
2225                         if (fscki->calc_cnt != fscki->nlink) {
2226                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2227                                           (unsigned long)fscki->inum,
2228                                           fscki->nlink, fscki->calc_cnt);
2229                                 goto out_dump;
2230                         }
2231                 } else {
2232                         if (fscki->references != fscki->nlink) {
2233                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2234                                           (unsigned long)fscki->inum,
2235                                           fscki->nlink, fscki->references);
2236                                 goto out_dump;
2237                         }
2238                 }
2239                 if (fscki->xattr_sz != fscki->calc_xsz) {
2240                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2241                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2242                                   fscki->calc_xsz);
2243                         goto out_dump;
2244                 }
2245                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2246                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2247                                   (unsigned long)fscki->inum,
2248                                   fscki->xattr_cnt, fscki->calc_xcnt);
2249                         goto out_dump;
2250                 }
2251                 if (fscki->xattr_nms != fscki->calc_xnms) {
2252                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2253                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2254                                   fscki->calc_xnms);
2255                         goto out_dump;
2256                 }
2257         }
2258
2259         return 0;
2260
2261 out_dump:
2262         /* Read the bad inode and dump it */
2263         ino_key_init(c, &key, fscki->inum);
2264         err = ubifs_lookup_level0(c, &key, &znode, &n);
2265         if (!err) {
2266                 ubifs_err(c, "inode %lu not found in index",
2267                           (unsigned long)fscki->inum);
2268                 return -ENOENT;
2269         } else if (err < 0) {
2270                 ubifs_err(c, "error %d while looking up inode %lu",
2271                           err, (unsigned long)fscki->inum);
2272                 return err;
2273         }
2274
2275         zbr = &znode->zbranch[n];
2276         ino = kmalloc(zbr->len, GFP_NOFS);
2277         if (!ino)
2278                 return -ENOMEM;
2279
2280         err = ubifs_tnc_read_node(c, zbr, ino);
2281         if (err) {
2282                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2283                           zbr->lnum, zbr->offs, err);
2284                 kfree(ino);
2285                 return err;
2286         }
2287
2288         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2289                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2290         ubifs_dump_node(c, ino);
2291         kfree(ino);
2292         return -EINVAL;
2293 }
2294
2295 /**
2296  * dbg_check_filesystem - check the file-system.
2297  * @c: UBIFS file-system description object
2298  *
2299  * This function checks the file system, namely:
2300  * o makes sure that all leaf nodes exist and their CRCs are correct;
2301  * o makes sure inode nlink, size, xattr size/count are correct (for all
2302  *   inodes).
2303  *
2304  * The function reads whole indexing tree and all nodes, so it is pretty
2305  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2306  * not, and a negative error code in case of failure.
2307  */
2308 int dbg_check_filesystem(struct ubifs_info *c)
2309 {
2310         int err;
2311         struct fsck_data fsckd;
2312
2313         if (!dbg_is_chk_fs(c))
2314                 return 0;
2315
2316         fsckd.inodes = RB_ROOT;
2317         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2318         if (err)
2319                 goto out_free;
2320
2321         err = check_inodes(c, &fsckd);
2322         if (err)
2323                 goto out_free;
2324
2325         free_inodes(&fsckd);
2326         return 0;
2327
2328 out_free:
2329         ubifs_err(c, "file-system check failed with error %d", err);
2330         dump_stack();
2331         free_inodes(&fsckd);
2332         return err;
2333 }
2334
2335 /**
2336  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2337  * @c: UBIFS file-system description object
2338  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2339  *
2340  * This function returns zero if the list of data nodes is sorted correctly,
2341  * and %-EINVAL if not.
2342  */
2343 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2344 {
2345         struct list_head *cur;
2346         struct ubifs_scan_node *sa, *sb;
2347
2348         if (!dbg_is_chk_gen(c))
2349                 return 0;
2350
2351         for (cur = head->next; cur->next != head; cur = cur->next) {
2352                 ino_t inuma, inumb;
2353                 uint32_t blka, blkb;
2354
2355                 cond_resched();
2356                 sa = container_of(cur, struct ubifs_scan_node, list);
2357                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2358
2359                 if (sa->type != UBIFS_DATA_NODE) {
2360                         ubifs_err(c, "bad node type %d", sa->type);
2361                         ubifs_dump_node(c, sa->node);
2362                         return -EINVAL;
2363                 }
2364                 if (sb->type != UBIFS_DATA_NODE) {
2365                         ubifs_err(c, "bad node type %d", sb->type);
2366                         ubifs_dump_node(c, sb->node);
2367                         return -EINVAL;
2368                 }
2369
2370                 inuma = key_inum(c, &sa->key);
2371                 inumb = key_inum(c, &sb->key);
2372
2373                 if (inuma < inumb)
2374                         continue;
2375                 if (inuma > inumb) {
2376                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2377                                   (unsigned long)inuma, (unsigned long)inumb);
2378                         goto error_dump;
2379                 }
2380
2381                 blka = key_block(c, &sa->key);
2382                 blkb = key_block(c, &sb->key);
2383
2384                 if (blka > blkb) {
2385                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2386                         goto error_dump;
2387                 }
2388                 if (blka == blkb) {
2389                         ubifs_err(c, "two data nodes for the same block");
2390                         goto error_dump;
2391                 }
2392         }
2393
2394         return 0;
2395
2396 error_dump:
2397         ubifs_dump_node(c, sa->node);
2398         ubifs_dump_node(c, sb->node);
2399         return -EINVAL;
2400 }
2401
2402 /**
2403  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2404  * @c: UBIFS file-system description object
2405  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2406  *
2407  * This function returns zero if the list of non-data nodes is sorted correctly,
2408  * and %-EINVAL if not.
2409  */
2410 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2411 {
2412         struct list_head *cur;
2413         struct ubifs_scan_node *sa, *sb;
2414
2415         if (!dbg_is_chk_gen(c))
2416                 return 0;
2417
2418         for (cur = head->next; cur->next != head; cur = cur->next) {
2419                 ino_t inuma, inumb;
2420                 uint32_t hasha, hashb;
2421
2422                 cond_resched();
2423                 sa = container_of(cur, struct ubifs_scan_node, list);
2424                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2425
2426                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2427                     sa->type != UBIFS_XENT_NODE) {
2428                         ubifs_err(c, "bad node type %d", sa->type);
2429                         ubifs_dump_node(c, sa->node);
2430                         return -EINVAL;
2431                 }
2432                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2433                     sa->type != UBIFS_XENT_NODE) {
2434                         ubifs_err(c, "bad node type %d", sb->type);
2435                         ubifs_dump_node(c, sb->node);
2436                         return -EINVAL;
2437                 }
2438
2439                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2440                         ubifs_err(c, "non-inode node goes before inode node");
2441                         goto error_dump;
2442                 }
2443
2444                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2445                         continue;
2446
2447                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2448                         /* Inode nodes are sorted in descending size order */
2449                         if (sa->len < sb->len) {
2450                                 ubifs_err(c, "smaller inode node goes first");
2451                                 goto error_dump;
2452                         }
2453                         continue;
2454                 }
2455
2456                 /*
2457                  * This is either a dentry or xentry, which should be sorted in
2458                  * ascending (parent ino, hash) order.
2459                  */
2460                 inuma = key_inum(c, &sa->key);
2461                 inumb = key_inum(c, &sb->key);
2462
2463                 if (inuma < inumb)
2464                         continue;
2465                 if (inuma > inumb) {
2466                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2467                                   (unsigned long)inuma, (unsigned long)inumb);
2468                         goto error_dump;
2469                 }
2470
2471                 hasha = key_block(c, &sa->key);
2472                 hashb = key_block(c, &sb->key);
2473
2474                 if (hasha > hashb) {
2475                         ubifs_err(c, "larger hash %u goes before %u",
2476                                   hasha, hashb);
2477                         goto error_dump;
2478                 }
2479         }
2480
2481         return 0;
2482
2483 error_dump:
2484         ubifs_msg(c, "dumping first node");
2485         ubifs_dump_node(c, sa->node);
2486         ubifs_msg(c, "dumping second node");
2487         ubifs_dump_node(c, sb->node);
2488         return -EINVAL;
2489         return 0;
2490 }
2491
2492 static inline int chance(unsigned int n, unsigned int out_of)
2493 {
2494         return !!((prandom_u32() % out_of) + 1 <= n);
2495
2496 }
2497
2498 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2499 {
2500         struct ubifs_debug_info *d = c->dbg;
2501
2502         ubifs_assert(dbg_is_tst_rcvry(c));
2503
2504         if (!d->pc_cnt) {
2505                 /* First call - decide delay to the power cut */
2506                 if (chance(1, 2)) {
2507                         unsigned long delay;
2508
2509                         if (chance(1, 2)) {
2510                                 d->pc_delay = 1;
2511                                 /* Fail within 1 minute */
2512                                 delay = prandom_u32() % 60000;
2513                                 d->pc_timeout = jiffies;
2514                                 d->pc_timeout += msecs_to_jiffies(delay);
2515                                 ubifs_warn(c, "failing after %lums", delay);
2516                         } else {
2517                                 d->pc_delay = 2;
2518                                 delay = prandom_u32() % 10000;
2519                                 /* Fail within 10000 operations */
2520                                 d->pc_cnt_max = delay;
2521                                 ubifs_warn(c, "failing after %lu calls", delay);
2522                         }
2523                 }
2524
2525                 d->pc_cnt += 1;
2526         }
2527
2528         /* Determine if failure delay has expired */
2529         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2530                         return 0;
2531         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2532                         return 0;
2533
2534         if (lnum == UBIFS_SB_LNUM) {
2535                 if (write && chance(1, 2))
2536                         return 0;
2537                 if (chance(19, 20))
2538                         return 0;
2539                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2540         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2541                 if (chance(19, 20))
2542                         return 0;
2543                 ubifs_warn(c, "failing in master LEB %d", lnum);
2544         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2545                 if (write && chance(99, 100))
2546                         return 0;
2547                 if (chance(399, 400))
2548                         return 0;
2549                 ubifs_warn(c, "failing in log LEB %d", lnum);
2550         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2551                 if (write && chance(7, 8))
2552                         return 0;
2553                 if (chance(19, 20))
2554                         return 0;
2555                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2556         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2557                 if (write && chance(1, 2))
2558                         return 0;
2559                 if (chance(9, 10))
2560                         return 0;
2561                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2562         } else if (lnum == c->ihead_lnum) {
2563                 if (chance(99, 100))
2564                         return 0;
2565                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2566         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2567                 if (chance(9, 10))
2568                         return 0;
2569                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2570         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2571                    !ubifs_search_bud(c, lnum)) {
2572                 if (chance(19, 20))
2573                         return 0;
2574                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2575         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2576                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2577                 if (chance(999, 1000))
2578                         return 0;
2579                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2580         } else {
2581                 if (chance(9999, 10000))
2582                         return 0;
2583                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2584         }
2585
2586         d->pc_happened = 1;
2587         ubifs_warn(c, "========== Power cut emulated ==========");
2588         dump_stack();
2589         return 1;
2590 }
2591
2592 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2593                         unsigned int len)
2594 {
2595         unsigned int from, to, ffs = chance(1, 2);
2596         unsigned char *p = (void *)buf;
2597
2598         from = prandom_u32() % len;
2599         /* Corruption span max to end of write unit */
2600         to = min(len, ALIGN(from + 1, c->max_write_size));
2601
2602         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2603                    ffs ? "0xFFs" : "random data");
2604
2605         if (ffs)
2606                 memset(p + from, 0xFF, to - from);
2607         else
2608                 prandom_bytes(p + from, to - from);
2609
2610         return to;
2611 }
2612
2613 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2614                   int offs, int len)
2615 {
2616         int err, failing;
2617
2618         if (c->dbg->pc_happened)
2619                 return -EROFS;
2620
2621         failing = power_cut_emulated(c, lnum, 1);
2622         if (failing) {
2623                 len = corrupt_data(c, buf, len);
2624                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2625                            len, lnum, offs);
2626         }
2627         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2628         if (err)
2629                 return err;
2630         if (failing)
2631                 return -EROFS;
2632         return 0;
2633 }
2634
2635 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2636                    int len)
2637 {
2638         int err;
2639
2640         if (c->dbg->pc_happened)
2641                 return -EROFS;
2642         if (power_cut_emulated(c, lnum, 1))
2643                 return -EROFS;
2644         err = ubi_leb_change(c->ubi, lnum, buf, len);
2645         if (err)
2646                 return err;
2647         if (power_cut_emulated(c, lnum, 1))
2648                 return -EROFS;
2649         return 0;
2650 }
2651
2652 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2653 {
2654         int err;
2655
2656         if (c->dbg->pc_happened)
2657                 return -EROFS;
2658         if (power_cut_emulated(c, lnum, 0))
2659                 return -EROFS;
2660         err = ubi_leb_unmap(c->ubi, lnum);
2661         if (err)
2662                 return err;
2663         if (power_cut_emulated(c, lnum, 0))
2664                 return -EROFS;
2665         return 0;
2666 }
2667
2668 int dbg_leb_map(struct ubifs_info *c, int lnum)
2669 {
2670         int err;
2671
2672         if (c->dbg->pc_happened)
2673                 return -EROFS;
2674         if (power_cut_emulated(c, lnum, 0))
2675                 return -EROFS;
2676         err = ubi_leb_map(c->ubi, lnum);
2677         if (err)
2678                 return err;
2679         if (power_cut_emulated(c, lnum, 0))
2680                 return -EROFS;
2681         return 0;
2682 }
2683
2684 /*
2685  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2686  * contain the stuff specific to particular file-system mounts.
2687  */
2688 static struct dentry *dfs_rootdir;
2689
2690 static int dfs_file_open(struct inode *inode, struct file *file)
2691 {
2692         file->private_data = inode->i_private;
2693         return nonseekable_open(inode, file);
2694 }
2695
2696 /**
2697  * provide_user_output - provide output to the user reading a debugfs file.
2698  * @val: boolean value for the answer
2699  * @u: the buffer to store the answer at
2700  * @count: size of the buffer
2701  * @ppos: position in the @u output buffer
2702  *
2703  * This is a simple helper function which stores @val boolean value in the user
2704  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2705  * bytes written to @u in case of success and a negative error code in case of
2706  * failure.
2707  */
2708 static int provide_user_output(int val, char __user *u, size_t count,
2709                                loff_t *ppos)
2710 {
2711         char buf[3];
2712
2713         if (val)
2714                 buf[0] = '1';
2715         else
2716                 buf[0] = '0';
2717         buf[1] = '\n';
2718         buf[2] = 0x00;
2719
2720         return simple_read_from_buffer(u, count, ppos, buf, 2);
2721 }
2722
2723 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2724                              loff_t *ppos)
2725 {
2726         struct dentry *dent = file->f_path.dentry;
2727         struct ubifs_info *c = file->private_data;
2728         struct ubifs_debug_info *d = c->dbg;
2729         int val;
2730
2731         if (dent == d->dfs_chk_gen)
2732                 val = d->chk_gen;
2733         else if (dent == d->dfs_chk_index)
2734                 val = d->chk_index;
2735         else if (dent == d->dfs_chk_orph)
2736                 val = d->chk_orph;
2737         else if (dent == d->dfs_chk_lprops)
2738                 val = d->chk_lprops;
2739         else if (dent == d->dfs_chk_fs)
2740                 val = d->chk_fs;
2741         else if (dent == d->dfs_tst_rcvry)
2742                 val = d->tst_rcvry;
2743         else if (dent == d->dfs_ro_error)
2744                 val = c->ro_error;
2745         else
2746                 return -EINVAL;
2747
2748         return provide_user_output(val, u, count, ppos);
2749 }
2750
2751 /**
2752  * interpret_user_input - interpret user debugfs file input.
2753  * @u: user-provided buffer with the input
2754  * @count: buffer size
2755  *
2756  * This is a helper function which interpret user input to a boolean UBIFS
2757  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2758  * in case of failure.
2759  */
2760 static int interpret_user_input(const char __user *u, size_t count)
2761 {
2762         size_t buf_size;
2763         char buf[8];
2764
2765         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2766         if (copy_from_user(buf, u, buf_size))
2767                 return -EFAULT;
2768
2769         if (buf[0] == '1')
2770                 return 1;
2771         else if (buf[0] == '0')
2772                 return 0;
2773
2774         return -EINVAL;
2775 }
2776
2777 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2778                               size_t count, loff_t *ppos)
2779 {
2780         struct ubifs_info *c = file->private_data;
2781         struct ubifs_debug_info *d = c->dbg;
2782         struct dentry *dent = file->f_path.dentry;
2783         int val;
2784
2785         /*
2786          * TODO: this is racy - the file-system might have already been
2787          * unmounted and we'd oops in this case. The plan is to fix it with
2788          * help of 'iterate_supers_type()' which we should have in v3.0: when
2789          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2790          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2791          * superblocks and fine the one with the same UUID, and take the
2792          * locking right.
2793          *
2794          * The other way to go suggested by Al Viro is to create a separate
2795          * 'ubifs-debug' file-system instead.
2796          */
2797         if (file->f_path.dentry == d->dfs_dump_lprops) {
2798                 ubifs_dump_lprops(c);
2799                 return count;
2800         }
2801         if (file->f_path.dentry == d->dfs_dump_budg) {
2802                 ubifs_dump_budg(c, &c->bi);
2803                 return count;
2804         }
2805         if (file->f_path.dentry == d->dfs_dump_tnc) {
2806                 mutex_lock(&c->tnc_mutex);
2807                 ubifs_dump_tnc(c);
2808                 mutex_unlock(&c->tnc_mutex);
2809                 return count;
2810         }
2811
2812         val = interpret_user_input(u, count);
2813         if (val < 0)
2814                 return val;
2815
2816         if (dent == d->dfs_chk_gen)
2817                 d->chk_gen = val;
2818         else if (dent == d->dfs_chk_index)
2819                 d->chk_index = val;
2820         else if (dent == d->dfs_chk_orph)
2821                 d->chk_orph = val;
2822         else if (dent == d->dfs_chk_lprops)
2823                 d->chk_lprops = val;
2824         else if (dent == d->dfs_chk_fs)
2825                 d->chk_fs = val;
2826         else if (dent == d->dfs_tst_rcvry)
2827                 d->tst_rcvry = val;
2828         else if (dent == d->dfs_ro_error)
2829                 c->ro_error = !!val;
2830         else
2831                 return -EINVAL;
2832
2833         return count;
2834 }
2835
2836 static const struct file_operations dfs_fops = {
2837         .open = dfs_file_open,
2838         .read = dfs_file_read,
2839         .write = dfs_file_write,
2840         .owner = THIS_MODULE,
2841         .llseek = no_llseek,
2842 };
2843
2844 /**
2845  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2846  * @c: UBIFS file-system description object
2847  *
2848  * This function creates all debugfs files for this instance of UBIFS. Returns
2849  * zero in case of success and a negative error code in case of failure.
2850  *
2851  * Note, the only reason we have not merged this function with the
2852  * 'ubifs_debugging_init()' function is because it is better to initialize
2853  * debugfs interfaces at the very end of the mount process, and remove them at
2854  * the very beginning of the mount process.
2855  */
2856 int dbg_debugfs_init_fs(struct ubifs_info *c)
2857 {
2858         int err, n;
2859         const char *fname;
2860         struct dentry *dent;
2861         struct ubifs_debug_info *d = c->dbg;
2862
2863         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2864                 return 0;
2865
2866         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2867                      c->vi.ubi_num, c->vi.vol_id);
2868         if (n == UBIFS_DFS_DIR_LEN) {
2869                 /* The array size is too small */
2870                 fname = UBIFS_DFS_DIR_NAME;
2871                 dent = ERR_PTR(-EINVAL);
2872                 goto out;
2873         }
2874
2875         fname = d->dfs_dir_name;
2876         dent = debugfs_create_dir(fname, dfs_rootdir);
2877         if (IS_ERR_OR_NULL(dent))
2878                 goto out;
2879         d->dfs_dir = dent;
2880
2881         fname = "dump_lprops";
2882         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2883         if (IS_ERR_OR_NULL(dent))
2884                 goto out_remove;
2885         d->dfs_dump_lprops = dent;
2886
2887         fname = "dump_budg";
2888         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2889         if (IS_ERR_OR_NULL(dent))
2890                 goto out_remove;
2891         d->dfs_dump_budg = dent;
2892
2893         fname = "dump_tnc";
2894         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2895         if (IS_ERR_OR_NULL(dent))
2896                 goto out_remove;
2897         d->dfs_dump_tnc = dent;
2898
2899         fname = "chk_general";
2900         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2901                                    &dfs_fops);
2902         if (IS_ERR_OR_NULL(dent))
2903                 goto out_remove;
2904         d->dfs_chk_gen = dent;
2905
2906         fname = "chk_index";
2907         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2908                                    &dfs_fops);
2909         if (IS_ERR_OR_NULL(dent))
2910                 goto out_remove;
2911         d->dfs_chk_index = dent;
2912
2913         fname = "chk_orphans";
2914         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2915                                    &dfs_fops);
2916         if (IS_ERR_OR_NULL(dent))
2917                 goto out_remove;
2918         d->dfs_chk_orph = dent;
2919
2920         fname = "chk_lprops";
2921         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2922                                    &dfs_fops);
2923         if (IS_ERR_OR_NULL(dent))
2924                 goto out_remove;
2925         d->dfs_chk_lprops = dent;
2926
2927         fname = "chk_fs";
2928         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2929                                    &dfs_fops);
2930         if (IS_ERR_OR_NULL(dent))
2931                 goto out_remove;
2932         d->dfs_chk_fs = dent;
2933
2934         fname = "tst_recovery";
2935         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2936                                    &dfs_fops);
2937         if (IS_ERR_OR_NULL(dent))
2938                 goto out_remove;
2939         d->dfs_tst_rcvry = dent;
2940
2941         fname = "ro_error";
2942         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2943                                    &dfs_fops);
2944         if (IS_ERR_OR_NULL(dent))
2945                 goto out_remove;
2946         d->dfs_ro_error = dent;
2947
2948         return 0;
2949
2950 out_remove:
2951         debugfs_remove_recursive(d->dfs_dir);
2952 out:
2953         err = dent ? PTR_ERR(dent) : -ENODEV;
2954         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2955                   fname, err);
2956         return err;
2957 }
2958
2959 /**
2960  * dbg_debugfs_exit_fs - remove all debugfs files.
2961  * @c: UBIFS file-system description object
2962  */
2963 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2964 {
2965         if (IS_ENABLED(CONFIG_DEBUG_FS))
2966                 debugfs_remove_recursive(c->dbg->dfs_dir);
2967 }
2968
2969 struct ubifs_global_debug_info ubifs_dbg;
2970
2971 static struct dentry *dfs_chk_gen;
2972 static struct dentry *dfs_chk_index;
2973 static struct dentry *dfs_chk_orph;
2974 static struct dentry *dfs_chk_lprops;
2975 static struct dentry *dfs_chk_fs;
2976 static struct dentry *dfs_tst_rcvry;
2977
2978 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2979                                     size_t count, loff_t *ppos)
2980 {
2981         struct dentry *dent = file->f_path.dentry;
2982         int val;
2983
2984         if (dent == dfs_chk_gen)
2985                 val = ubifs_dbg.chk_gen;
2986         else if (dent == dfs_chk_index)
2987                 val = ubifs_dbg.chk_index;
2988         else if (dent == dfs_chk_orph)
2989                 val = ubifs_dbg.chk_orph;
2990         else if (dent == dfs_chk_lprops)
2991                 val = ubifs_dbg.chk_lprops;
2992         else if (dent == dfs_chk_fs)
2993                 val = ubifs_dbg.chk_fs;
2994         else if (dent == dfs_tst_rcvry)
2995                 val = ubifs_dbg.tst_rcvry;
2996         else
2997                 return -EINVAL;
2998
2999         return provide_user_output(val, u, count, ppos);
3000 }
3001
3002 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3003                                      size_t count, loff_t *ppos)
3004 {
3005         struct dentry *dent = file->f_path.dentry;
3006         int val;
3007
3008         val = interpret_user_input(u, count);
3009         if (val < 0)
3010                 return val;
3011
3012         if (dent == dfs_chk_gen)
3013                 ubifs_dbg.chk_gen = val;
3014         else if (dent == dfs_chk_index)
3015                 ubifs_dbg.chk_index = val;
3016         else if (dent == dfs_chk_orph)
3017                 ubifs_dbg.chk_orph = val;
3018         else if (dent == dfs_chk_lprops)
3019                 ubifs_dbg.chk_lprops = val;
3020         else if (dent == dfs_chk_fs)
3021                 ubifs_dbg.chk_fs = val;
3022         else if (dent == dfs_tst_rcvry)
3023                 ubifs_dbg.tst_rcvry = val;
3024         else
3025                 return -EINVAL;
3026
3027         return count;
3028 }
3029
3030 static const struct file_operations dfs_global_fops = {
3031         .read = dfs_global_file_read,
3032         .write = dfs_global_file_write,
3033         .owner = THIS_MODULE,
3034         .llseek = no_llseek,
3035 };
3036
3037 /**
3038  * dbg_debugfs_init - initialize debugfs file-system.
3039  *
3040  * UBIFS uses debugfs file-system to expose various debugging knobs to
3041  * user-space. This function creates "ubifs" directory in the debugfs
3042  * file-system. Returns zero in case of success and a negative error code in
3043  * case of failure.
3044  */
3045 int dbg_debugfs_init(void)
3046 {
3047         int err;
3048         const char *fname;
3049         struct dentry *dent;
3050
3051         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3052                 return 0;
3053
3054         fname = "ubifs";
3055         dent = debugfs_create_dir(fname, NULL);
3056         if (IS_ERR_OR_NULL(dent))
3057                 goto out;
3058         dfs_rootdir = dent;
3059
3060         fname = "chk_general";
3061         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3062                                    &dfs_global_fops);
3063         if (IS_ERR_OR_NULL(dent))
3064                 goto out_remove;
3065         dfs_chk_gen = dent;
3066
3067         fname = "chk_index";
3068         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3069                                    &dfs_global_fops);
3070         if (IS_ERR_OR_NULL(dent))
3071                 goto out_remove;
3072         dfs_chk_index = dent;
3073
3074         fname = "chk_orphans";
3075         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3076                                    &dfs_global_fops);
3077         if (IS_ERR_OR_NULL(dent))
3078                 goto out_remove;
3079         dfs_chk_orph = dent;
3080
3081         fname = "chk_lprops";
3082         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3083                                    &dfs_global_fops);
3084         if (IS_ERR_OR_NULL(dent))
3085                 goto out_remove;
3086         dfs_chk_lprops = dent;
3087
3088         fname = "chk_fs";
3089         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090                                    &dfs_global_fops);
3091         if (IS_ERR_OR_NULL(dent))
3092                 goto out_remove;
3093         dfs_chk_fs = dent;
3094
3095         fname = "tst_recovery";
3096         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097                                    &dfs_global_fops);
3098         if (IS_ERR_OR_NULL(dent))
3099                 goto out_remove;
3100         dfs_tst_rcvry = dent;
3101
3102         return 0;
3103
3104 out_remove:
3105         debugfs_remove_recursive(dfs_rootdir);
3106 out:
3107         err = dent ? PTR_ERR(dent) : -ENODEV;
3108         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3109                current->pid, fname, err);
3110         return err;
3111 }
3112
3113 /**
3114  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3115  */
3116 void dbg_debugfs_exit(void)
3117 {
3118         if (IS_ENABLED(CONFIG_DEBUG_FS))
3119                 debugfs_remove_recursive(dfs_rootdir);
3120 }
3121
3122 /**
3123  * ubifs_debugging_init - initialize UBIFS debugging.
3124  * @c: UBIFS file-system description object
3125  *
3126  * This function initializes debugging-related data for the file system.
3127  * Returns zero in case of success and a negative error code in case of
3128  * failure.
3129  */
3130 int ubifs_debugging_init(struct ubifs_info *c)
3131 {
3132         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3133         if (!c->dbg)
3134                 return -ENOMEM;
3135
3136         return 0;
3137 }
3138
3139 /**
3140  * ubifs_debugging_exit - free debugging data.
3141  * @c: UBIFS file-system description object
3142  */
3143 void ubifs_debugging_exit(struct ubifs_info *c)
3144 {
3145         kfree(c->dbg);
3146 }
3147 #endif