]> git.sur5r.net Git - openocd/blob - src/target/cortex_a.c
target: cortex_a: fix segfault when SPSR is not properly handled
[openocd] / src / target / cortex_a.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2009 by Dirk Behme                                      *
12  *   dirk.behme@gmail.com - copy from cortex_m3                            *
13  *                                                                         *
14  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
15  *   oyvind.harboe@zylin.com                                               *
16  *                                                                         *
17  *   Copyright (C) ST-Ericsson SA 2011                                     *
18  *   michel.jaouen@stericsson.com : smp minimum support                    *
19  *                                                                         *
20  *   Copyright (C) Broadcom 2012                                           *
21  *   ehunter@broadcom.com : Cortex-R4 support                              *
22  *                                                                         *
23  *   Copyright (C) 2013 Kamal Dasu                                         *
24  *   kdasu.kdev@gmail.com                                                  *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  *                                                                         *
39  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
40  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
41  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
42  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
43  *                                                                         *
44  ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "jtag/swd.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64         struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66         struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68         struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70         struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72         uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74         uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78         uint32_t virt, uint32_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /*  restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86         int retval = ERROR_OK;
87         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88         struct armv7a_common *armv7a = target_to_armv7a(target);
89
90         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93                 retval = armv7a->arm.mcr(target, 15,
94                                 0, 0,   /* op1, op2 */
95                                 1, 0,   /* CRn, CRm */
96                                 cortex_a->cp15_control_reg);
97         }
98         return retval;
99 }
100
101 /*
102  * Set up ARM core for memory access.
103  * If !phys_access, switch to SVC mode and make sure MMU is on
104  * If phys_access, switch off mmu
105  */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108         struct armv7a_common *armv7a = target_to_armv7a(target);
109         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110         int mmu_enabled = 0;
111
112         if (phys_access == 0) {
113                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114                 cortex_a_mmu(target, &mmu_enabled);
115                 if (mmu_enabled)
116                         cortex_a_mmu_modify(target, 1);
117                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118                         /* overwrite DACR to all-manager */
119                         armv7a->arm.mcr(target, 15,
120                                         0, 0, 3, 0,
121                                         0xFFFFFFFF);
122                 }
123         } else {
124                 cortex_a_mmu(target, &mmu_enabled);
125                 if (mmu_enabled)
126                         cortex_a_mmu_modify(target, 0);
127         }
128         return ERROR_OK;
129 }
130
131 /*
132  * Restore ARM core after memory access.
133  * If !phys_access, switch to previous mode
134  * If phys_access, restore MMU setting
135  */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138         struct armv7a_common *armv7a = target_to_armv7a(target);
139         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141         if (phys_access == 0) {
142                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143                         /* restore */
144                         armv7a->arm.mcr(target, 15,
145                                         0, 0, 3, 0,
146                                         cortex_a->cp15_dacr_reg);
147                 }
148                 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149         } else {
150                 int mmu_enabled = 0;
151                 cortex_a_mmu(target, &mmu_enabled);
152                 if (mmu_enabled)
153                         cortex_a_mmu_modify(target, 1);
154         }
155         return ERROR_OK;
156 }
157
158
159 /*  modify cp15_control_reg in order to enable or disable mmu for :
160  *  - virt2phys address conversion
161  *  - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165         struct armv7a_common *armv7a = target_to_armv7a(target);
166         int retval = ERROR_OK;
167         int need_write = 0;
168
169         if (enable) {
170                 /*  if mmu enabled at target stop and mmu not enable */
171                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173                         return ERROR_FAIL;
174                 }
175                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176                         cortex_a->cp15_control_reg_curr |= 0x1U;
177                         need_write = 1;
178                 }
179         } else {
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181                         cortex_a->cp15_control_reg_curr &= ~0x1U;
182                         need_write = 1;
183                 }
184         }
185
186         if (need_write) {
187                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188                         enable ? "enable mmu" : "disable mmu",
189                         cortex_a->cp15_control_reg_curr);
190
191                 retval = armv7a->arm.mcr(target, 15,
192                                 0, 0,   /* op1, op2 */
193                                 1, 0,   /* CRn, CRm */
194                                 cortex_a->cp15_control_reg_curr);
195         }
196         return retval;
197 }
198
199 /*
200  * Cortex-A Basic debug access, very low level assumes state is saved
201  */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204         struct armv7a_common *armv7a = target_to_armv7a(target);
205         int retval;
206
207         /* lock memory-mapped access to debug registers to prevent
208          * software interference */
209         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
210                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
211         if (retval != ERROR_OK)
212                 return retval;
213
214         /* Disable cacheline fills and force cache write-through in debug state */
215         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
216                         armv7a->debug_base + CPUDBG_DSCCR, 0);
217         if (retval != ERROR_OK)
218                 return retval;
219
220         /* Disable TLB lookup and refill/eviction in debug state */
221         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
222                         armv7a->debug_base + CPUDBG_DSMCR, 0);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         /* Enabling of instruction execution in debug mode is done in debug_entry code */
227
228         /* Resync breakpoint registers */
229
230         /* Since this is likely called from init or reset, update target state information*/
231         return cortex_a_poll(target);
232 }
233
234 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
235 {
236         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
237          * Writes final value of DSCR into *dscr. Pass force to force always
238          * reading DSCR at least once. */
239         struct armv7a_common *armv7a = target_to_armv7a(target);
240         int64_t then = timeval_ms();
241         while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
242                 force = false;
243                 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
244                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
245                 if (retval != ERROR_OK) {
246                         LOG_ERROR("Could not read DSCR register");
247                         return retval;
248                 }
249                 if (timeval_ms() > then + 1000) {
250                         LOG_ERROR("Timeout waiting for InstrCompl=1");
251                         return ERROR_FAIL;
252                 }
253         }
254         return ERROR_OK;
255 }
256
257 /* To reduce needless round-trips, pass in a pointer to the current
258  * DSCR value.  Initialize it to zero if you just need to know the
259  * value on return from this function; or DSCR_INSTR_COMP if you
260  * happen to know that no instruction is pending.
261  */
262 static int cortex_a_exec_opcode(struct target *target,
263         uint32_t opcode, uint32_t *dscr_p)
264 {
265         uint32_t dscr;
266         int retval;
267         struct armv7a_common *armv7a = target_to_armv7a(target);
268
269         dscr = dscr_p ? *dscr_p : 0;
270
271         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
272
273         /* Wait for InstrCompl bit to be set */
274         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
275         if (retval != ERROR_OK)
276                 return retval;
277
278         retval = mem_ap_write_u32(armv7a->debug_ap,
279                         armv7a->debug_base + CPUDBG_ITR, opcode);
280         if (retval != ERROR_OK)
281                 return retval;
282
283         int64_t then = timeval_ms();
284         do {
285                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
286                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
287                 if (retval != ERROR_OK) {
288                         LOG_ERROR("Could not read DSCR register");
289                         return retval;
290                 }
291                 if (timeval_ms() > then + 1000) {
292                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
293                         return ERROR_FAIL;
294                 }
295         } while ((dscr & DSCR_INSTR_COMP) == 0);        /* Wait for InstrCompl bit to be set */
296
297         if (dscr_p)
298                 *dscr_p = dscr;
299
300         return retval;
301 }
302
303 /**************************************************************************
304 Read core register with very few exec_opcode, fast but needs work_area.
305 This can cause problems with MMU active.
306 **************************************************************************/
307 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
308         uint32_t *regfile)
309 {
310         int retval = ERROR_OK;
311         struct armv7a_common *armv7a = target_to_armv7a(target);
312
313         retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
314         if (retval != ERROR_OK)
315                 return retval;
316         retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
317         if (retval != ERROR_OK)
318                 return retval;
319         retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
320         if (retval != ERROR_OK)
321                 return retval;
322
323         retval = mem_ap_read_buf(armv7a->memory_ap,
324                         (uint8_t *)(&regfile[1]), 4, 15, address);
325
326         return retval;
327 }
328
329 static int cortex_a_dap_read_coreregister_u32(struct target *target,
330         uint32_t *value, int regnum)
331 {
332         int retval = ERROR_OK;
333         uint8_t reg = regnum&0xFF;
334         uint32_t dscr = 0;
335         struct armv7a_common *armv7a = target_to_armv7a(target);
336
337         if (reg > 17)
338                 return retval;
339
340         if (reg < 15) {
341                 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0"  0xEE00nE15 */
342                 retval = cortex_a_exec_opcode(target,
343                                 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
344                                 &dscr);
345                 if (retval != ERROR_OK)
346                         return retval;
347         } else if (reg == 15) {
348                 /* "MOV r0, r15"; then move r0 to DCCTX */
349                 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
350                 if (retval != ERROR_OK)
351                         return retval;
352                 retval = cortex_a_exec_opcode(target,
353                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
354                                 &dscr);
355                 if (retval != ERROR_OK)
356                         return retval;
357         } else {
358                 /* "MRS r0, CPSR" or "MRS r0, SPSR"
359                  * then move r0 to DCCTX
360                  */
361                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
362                 if (retval != ERROR_OK)
363                         return retval;
364                 retval = cortex_a_exec_opcode(target,
365                                 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
366                                 &dscr);
367                 if (retval != ERROR_OK)
368                         return retval;
369         }
370
371         /* Wait for DTRRXfull then read DTRRTX */
372         int64_t then = timeval_ms();
373         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
374                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
375                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
376                 if (retval != ERROR_OK)
377                         return retval;
378                 if (timeval_ms() > then + 1000) {
379                         LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
380                         return ERROR_FAIL;
381                 }
382         }
383
384         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
385                         armv7a->debug_base + CPUDBG_DTRTX, value);
386         LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
387
388         return retval;
389 }
390
391 static int cortex_a_dap_write_coreregister_u32(struct target *target,
392         uint32_t value, int regnum)
393 {
394         int retval = ERROR_OK;
395         uint8_t Rd = regnum&0xFF;
396         uint32_t dscr;
397         struct armv7a_common *armv7a = target_to_armv7a(target);
398
399         LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
400
401         /* Check that DCCRX is not full */
402         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
403                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
404         if (retval != ERROR_OK)
405                 return retval;
406         if (dscr & DSCR_DTR_RX_FULL) {
407                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
408                 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode  0xEE100E15 */
409                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
410                                 &dscr);
411                 if (retval != ERROR_OK)
412                         return retval;
413         }
414
415         if (Rd > 17)
416                 return retval;
417
418         /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
419         LOG_DEBUG("write DCC 0x%08" PRIx32, value);
420         retval = mem_ap_write_u32(armv7a->debug_ap,
421                         armv7a->debug_base + CPUDBG_DTRRX, value);
422         if (retval != ERROR_OK)
423                 return retval;
424
425         if (Rd < 15) {
426                 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
427                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
428                                 &dscr);
429
430                 if (retval != ERROR_OK)
431                         return retval;
432         } else if (Rd == 15) {
433                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
434                  * then "mov r15, r0"
435                  */
436                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
437                                 &dscr);
438                 if (retval != ERROR_OK)
439                         return retval;
440                 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
441                 if (retval != ERROR_OK)
442                         return retval;
443         } else {
444                 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
445                  * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
446                  */
447                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
448                                 &dscr);
449                 if (retval != ERROR_OK)
450                         return retval;
451                 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
452                                 &dscr);
453                 if (retval != ERROR_OK)
454                         return retval;
455
456                 /* "Prefetch flush" after modifying execution status in CPSR */
457                 if (Rd == 16) {
458                         retval = cortex_a_exec_opcode(target,
459                                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
460                                         &dscr);
461                         if (retval != ERROR_OK)
462                                 return retval;
463                 }
464         }
465
466         return retval;
467 }
468
469 /* Write to memory mapped registers directly with no cache or mmu handling */
470 static int cortex_a_dap_write_memap_register_u32(struct target *target,
471         uint32_t address,
472         uint32_t value)
473 {
474         int retval;
475         struct armv7a_common *armv7a = target_to_armv7a(target);
476
477         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
478
479         return retval;
480 }
481
482 /*
483  * Cortex-A implementation of Debug Programmer's Model
484  *
485  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
486  * so there's no need to poll for it before executing an instruction.
487  *
488  * NOTE that in several of these cases the "stall" mode might be useful.
489  * It'd let us queue a few operations together... prepare/finish might
490  * be the places to enable/disable that mode.
491  */
492
493 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
494 {
495         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
496 }
497
498 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
499 {
500         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
501         return mem_ap_write_u32(a->armv7a_common.debug_ap,
502                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
503 }
504
505 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
506         uint32_t *dscr_p)
507 {
508         uint32_t dscr = DSCR_INSTR_COMP;
509         int retval;
510
511         if (dscr_p)
512                 dscr = *dscr_p;
513
514         /* Wait for DTRRXfull */
515         int64_t then = timeval_ms();
516         while ((dscr & DSCR_DTR_TX_FULL) == 0) {
517                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
518                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
519                                 &dscr);
520                 if (retval != ERROR_OK)
521                         return retval;
522                 if (timeval_ms() > then + 1000) {
523                         LOG_ERROR("Timeout waiting for read dcc");
524                         return ERROR_FAIL;
525                 }
526         }
527
528         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
529                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
530         if (retval != ERROR_OK)
531                 return retval;
532         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
533
534         if (dscr_p)
535                 *dscr_p = dscr;
536
537         return retval;
538 }
539
540 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
541 {
542         struct cortex_a_common *a = dpm_to_a(dpm);
543         uint32_t dscr;
544         int retval;
545
546         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
547         int64_t then = timeval_ms();
548         for (;; ) {
549                 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
550                                 a->armv7a_common.debug_base + CPUDBG_DSCR,
551                                 &dscr);
552                 if (retval != ERROR_OK)
553                         return retval;
554                 if ((dscr & DSCR_INSTR_COMP) != 0)
555                         break;
556                 if (timeval_ms() > then + 1000) {
557                         LOG_ERROR("Timeout waiting for dpm prepare");
558                         return ERROR_FAIL;
559                 }
560         }
561
562         /* this "should never happen" ... */
563         if (dscr & DSCR_DTR_RX_FULL) {
564                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
565                 /* Clear DCCRX */
566                 retval = cortex_a_exec_opcode(
567                                 a->armv7a_common.arm.target,
568                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
569                                 &dscr);
570                 if (retval != ERROR_OK)
571                         return retval;
572         }
573
574         return retval;
575 }
576
577 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
578 {
579         /* REVISIT what could be done here? */
580         return ERROR_OK;
581 }
582
583 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
584         uint32_t opcode, uint32_t data)
585 {
586         struct cortex_a_common *a = dpm_to_a(dpm);
587         int retval;
588         uint32_t dscr = DSCR_INSTR_COMP;
589
590         retval = cortex_a_write_dcc(a, data);
591         if (retval != ERROR_OK)
592                 return retval;
593
594         return cortex_a_exec_opcode(
595                         a->armv7a_common.arm.target,
596                         opcode,
597                         &dscr);
598 }
599
600 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
601         uint32_t opcode, uint32_t data)
602 {
603         struct cortex_a_common *a = dpm_to_a(dpm);
604         uint32_t dscr = DSCR_INSTR_COMP;
605         int retval;
606
607         retval = cortex_a_write_dcc(a, data);
608         if (retval != ERROR_OK)
609                 return retval;
610
611         /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
612         retval = cortex_a_exec_opcode(
613                         a->armv7a_common.arm.target,
614                         ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
615                         &dscr);
616         if (retval != ERROR_OK)
617                 return retval;
618
619         /* then the opcode, taking data from R0 */
620         retval = cortex_a_exec_opcode(
621                         a->armv7a_common.arm.target,
622                         opcode,
623                         &dscr);
624
625         return retval;
626 }
627
628 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
629 {
630         struct target *target = dpm->arm->target;
631         uint32_t dscr = DSCR_INSTR_COMP;
632
633         /* "Prefetch flush" after modifying execution status in CPSR */
634         return cortex_a_exec_opcode(target,
635                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
636                         &dscr);
637 }
638
639 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
640         uint32_t opcode, uint32_t *data)
641 {
642         struct cortex_a_common *a = dpm_to_a(dpm);
643         int retval;
644         uint32_t dscr = DSCR_INSTR_COMP;
645
646         /* the opcode, writing data to DCC */
647         retval = cortex_a_exec_opcode(
648                         a->armv7a_common.arm.target,
649                         opcode,
650                         &dscr);
651         if (retval != ERROR_OK)
652                 return retval;
653
654         return cortex_a_read_dcc(a, data, &dscr);
655 }
656
657
658 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
659         uint32_t opcode, uint32_t *data)
660 {
661         struct cortex_a_common *a = dpm_to_a(dpm);
662         uint32_t dscr = DSCR_INSTR_COMP;
663         int retval;
664
665         /* the opcode, writing data to R0 */
666         retval = cortex_a_exec_opcode(
667                         a->armv7a_common.arm.target,
668                         opcode,
669                         &dscr);
670         if (retval != ERROR_OK)
671                 return retval;
672
673         /* write R0 to DCC */
674         retval = cortex_a_exec_opcode(
675                         a->armv7a_common.arm.target,
676                         ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
677                         &dscr);
678         if (retval != ERROR_OK)
679                 return retval;
680
681         return cortex_a_read_dcc(a, data, &dscr);
682 }
683
684 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
685         uint32_t addr, uint32_t control)
686 {
687         struct cortex_a_common *a = dpm_to_a(dpm);
688         uint32_t vr = a->armv7a_common.debug_base;
689         uint32_t cr = a->armv7a_common.debug_base;
690         int retval;
691
692         switch (index_t) {
693                 case 0 ... 15:  /* breakpoints */
694                         vr += CPUDBG_BVR_BASE;
695                         cr += CPUDBG_BCR_BASE;
696                         break;
697                 case 16 ... 31: /* watchpoints */
698                         vr += CPUDBG_WVR_BASE;
699                         cr += CPUDBG_WCR_BASE;
700                         index_t -= 16;
701                         break;
702                 default:
703                         return ERROR_FAIL;
704         }
705         vr += 4 * index_t;
706         cr += 4 * index_t;
707
708         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
709                 (unsigned) vr, (unsigned) cr);
710
711         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
712                         vr, addr);
713         if (retval != ERROR_OK)
714                 return retval;
715         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
716                         cr, control);
717         return retval;
718 }
719
720 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
721 {
722         struct cortex_a_common *a = dpm_to_a(dpm);
723         uint32_t cr;
724
725         switch (index_t) {
726                 case 0 ... 15:
727                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
728                         break;
729                 case 16 ... 31:
730                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
731                         index_t -= 16;
732                         break;
733                 default:
734                         return ERROR_FAIL;
735         }
736         cr += 4 * index_t;
737
738         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
739
740         /* clear control register */
741         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
742 }
743
744 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
745 {
746         struct arm_dpm *dpm = &a->armv7a_common.dpm;
747         int retval;
748
749         dpm->arm = &a->armv7a_common.arm;
750         dpm->didr = didr;
751
752         dpm->prepare = cortex_a_dpm_prepare;
753         dpm->finish = cortex_a_dpm_finish;
754
755         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
756         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
757         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
758
759         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
760         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
761
762         dpm->bpwp_enable = cortex_a_bpwp_enable;
763         dpm->bpwp_disable = cortex_a_bpwp_disable;
764
765         retval = arm_dpm_setup(dpm);
766         if (retval == ERROR_OK)
767                 retval = arm_dpm_initialize(dpm);
768
769         return retval;
770 }
771 static struct target *get_cortex_a(struct target *target, int32_t coreid)
772 {
773         struct target_list *head;
774         struct target *curr;
775
776         head = target->head;
777         while (head != (struct target_list *)NULL) {
778                 curr = head->target;
779                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
780                         return curr;
781                 head = head->next;
782         }
783         return target;
784 }
785 static int cortex_a_halt(struct target *target);
786
787 static int cortex_a_halt_smp(struct target *target)
788 {
789         int retval = 0;
790         struct target_list *head;
791         struct target *curr;
792         head = target->head;
793         while (head != (struct target_list *)NULL) {
794                 curr = head->target;
795                 if ((curr != target) && (curr->state != TARGET_HALTED)
796                         && target_was_examined(curr))
797                         retval += cortex_a_halt(curr);
798                 head = head->next;
799         }
800         return retval;
801 }
802
803 static int update_halt_gdb(struct target *target)
804 {
805         int retval = 0;
806         if (target->gdb_service && target->gdb_service->core[0] == -1) {
807                 target->gdb_service->target = target;
808                 target->gdb_service->core[0] = target->coreid;
809                 retval += cortex_a_halt_smp(target);
810         }
811         return retval;
812 }
813
814 /*
815  * Cortex-A Run control
816  */
817
818 static int cortex_a_poll(struct target *target)
819 {
820         int retval = ERROR_OK;
821         uint32_t dscr;
822         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
823         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
824         enum target_state prev_target_state = target->state;
825         /*  toggle to another core is done by gdb as follow */
826         /*  maint packet J core_id */
827         /*  continue */
828         /*  the next polling trigger an halt event sent to gdb */
829         if ((target->state == TARGET_HALTED) && (target->smp) &&
830                 (target->gdb_service) &&
831                 (target->gdb_service->target == NULL)) {
832                 target->gdb_service->target =
833                         get_cortex_a(target, target->gdb_service->core[1]);
834                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835                 return retval;
836         }
837         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
838                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
839         if (retval != ERROR_OK)
840                 return retval;
841         cortex_a->cpudbg_dscr = dscr;
842
843         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
844                 if (prev_target_state != TARGET_HALTED) {
845                         /* We have a halting debug event */
846                         LOG_DEBUG("Target halted");
847                         target->state = TARGET_HALTED;
848                         if ((prev_target_state == TARGET_RUNNING)
849                                 || (prev_target_state == TARGET_UNKNOWN)
850                                 || (prev_target_state == TARGET_RESET)) {
851                                 retval = cortex_a_debug_entry(target);
852                                 if (retval != ERROR_OK)
853                                         return retval;
854                                 if (target->smp) {
855                                         retval = update_halt_gdb(target);
856                                         if (retval != ERROR_OK)
857                                                 return retval;
858                                 }
859
860                                 if (arm_semihosting(target, &retval) != 0)
861                                         return retval;
862
863                                 target_call_event_callbacks(target,
864                                         TARGET_EVENT_HALTED);
865                         }
866                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
867                                 LOG_DEBUG(" ");
868
869                                 retval = cortex_a_debug_entry(target);
870                                 if (retval != ERROR_OK)
871                                         return retval;
872                                 if (target->smp) {
873                                         retval = update_halt_gdb(target);
874                                         if (retval != ERROR_OK)
875                                                 return retval;
876                                 }
877
878                                 target_call_event_callbacks(target,
879                                         TARGET_EVENT_DEBUG_HALTED);
880                         }
881                 }
882         } else if (DSCR_RUN_MODE(dscr) == DSCR_CORE_RESTARTED)
883                 target->state = TARGET_RUNNING;
884         else {
885                 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
886                 target->state = TARGET_UNKNOWN;
887         }
888
889         return retval;
890 }
891
892 static int cortex_a_halt(struct target *target)
893 {
894         int retval = ERROR_OK;
895         uint32_t dscr;
896         struct armv7a_common *armv7a = target_to_armv7a(target);
897
898         /*
899          * Tell the core to be halted by writing DRCR with 0x1
900          * and then wait for the core to be halted.
901          */
902         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
903                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
904         if (retval != ERROR_OK)
905                 return retval;
906
907         /*
908          * enter halting debug mode
909          */
910         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
911                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
916                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
917         if (retval != ERROR_OK)
918                 return retval;
919
920         int64_t then = timeval_ms();
921         for (;; ) {
922                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
923                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
924                 if (retval != ERROR_OK)
925                         return retval;
926                 if ((dscr & DSCR_CORE_HALTED) != 0)
927                         break;
928                 if (timeval_ms() > then + 1000) {
929                         LOG_ERROR("Timeout waiting for halt");
930                         return ERROR_FAIL;
931                 }
932         }
933
934         target->debug_reason = DBG_REASON_DBGRQ;
935
936         return ERROR_OK;
937 }
938
939 static int cortex_a_internal_restore(struct target *target, int current,
940         uint32_t *address, int handle_breakpoints, int debug_execution)
941 {
942         struct armv7a_common *armv7a = target_to_armv7a(target);
943         struct arm *arm = &armv7a->arm;
944         int retval;
945         uint32_t resume_pc;
946
947         if (!debug_execution)
948                 target_free_all_working_areas(target);
949
950 #if 0
951         if (debug_execution) {
952                 /* Disable interrupts */
953                 /* We disable interrupts in the PRIMASK register instead of
954                  * masking with C_MASKINTS,
955                  * This is probably the same issue as Cortex-M3 Errata 377493:
956                  * C_MASKINTS in parallel with disabled interrupts can cause
957                  * local faults to not be taken. */
958                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
959                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
960                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
961
962                 /* Make sure we are in Thumb mode */
963                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
964                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
965                         32) | (1 << 24));
966                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
967                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
968         }
969 #endif
970
971         /* current = 1: continue on current pc, otherwise continue at <address> */
972         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
973         if (!current)
974                 resume_pc = *address;
975         else
976                 *address = resume_pc;
977
978         /* Make sure that the Armv7 gdb thumb fixups does not
979          * kill the return address
980          */
981         switch (arm->core_state) {
982                 case ARM_STATE_ARM:
983                         resume_pc &= 0xFFFFFFFC;
984                         break;
985                 case ARM_STATE_THUMB:
986                 case ARM_STATE_THUMB_EE:
987                         /* When the return address is loaded into PC
988                          * bit 0 must be 1 to stay in Thumb state
989                          */
990                         resume_pc |= 0x1;
991                         break;
992                 case ARM_STATE_JAZELLE:
993                         LOG_ERROR("How do I resume into Jazelle state??");
994                         return ERROR_FAIL;
995         }
996         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
997         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
998         arm->pc->dirty = 1;
999         arm->pc->valid = 1;
1000
1001         /* restore dpm_mode at system halt */
1002         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1003         /* called it now before restoring context because it uses cpu
1004          * register r0 for restoring cp15 control register */
1005         retval = cortex_a_restore_cp15_control_reg(target);
1006         if (retval != ERROR_OK)
1007                 return retval;
1008         retval = cortex_a_restore_context(target, handle_breakpoints);
1009         if (retval != ERROR_OK)
1010                 return retval;
1011         target->debug_reason = DBG_REASON_NOTHALTED;
1012         target->state = TARGET_RUNNING;
1013
1014         /* registers are now invalid */
1015         register_cache_invalidate(arm->core_cache);
1016
1017 #if 0
1018         /* the front-end may request us not to handle breakpoints */
1019         if (handle_breakpoints) {
1020                 /* Single step past breakpoint at current address */
1021                 breakpoint = breakpoint_find(target, resume_pc);
1022                 if (breakpoint) {
1023                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1024                         cortex_m3_unset_breakpoint(target, breakpoint);
1025                         cortex_m3_single_step_core(target);
1026                         cortex_m3_set_breakpoint(target, breakpoint);
1027                 }
1028         }
1029
1030 #endif
1031         return retval;
1032 }
1033
1034 static int cortex_a_internal_restart(struct target *target)
1035 {
1036         struct armv7a_common *armv7a = target_to_armv7a(target);
1037         struct arm *arm = &armv7a->arm;
1038         int retval;
1039         uint32_t dscr;
1040         /*
1041          * * Restart core and wait for it to be started.  Clear ITRen and sticky
1042          * * exception flags: see ARMv7 ARM, C5.9.
1043          *
1044          * REVISIT: for single stepping, we probably want to
1045          * disable IRQs by default, with optional override...
1046          */
1047
1048         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1049                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1050         if (retval != ERROR_OK)
1051                 return retval;
1052
1053         if ((dscr & DSCR_INSTR_COMP) == 0)
1054                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1055
1056         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1057                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1058         if (retval != ERROR_OK)
1059                 return retval;
1060
1061         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1062                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1063                         DRCR_CLEAR_EXCEPTIONS);
1064         if (retval != ERROR_OK)
1065                 return retval;
1066
1067         int64_t then = timeval_ms();
1068         for (;; ) {
1069                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1070                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1071                 if (retval != ERROR_OK)
1072                         return retval;
1073                 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1074                         break;
1075                 if (timeval_ms() > then + 1000) {
1076                         LOG_ERROR("Timeout waiting for resume");
1077                         return ERROR_FAIL;
1078                 }
1079         }
1080
1081         target->debug_reason = DBG_REASON_NOTHALTED;
1082         target->state = TARGET_RUNNING;
1083
1084         /* registers are now invalid */
1085         register_cache_invalidate(arm->core_cache);
1086
1087         return ERROR_OK;
1088 }
1089
1090 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1091 {
1092         int retval = 0;
1093         struct target_list *head;
1094         struct target *curr;
1095         uint32_t address;
1096         head = target->head;
1097         while (head != (struct target_list *)NULL) {
1098                 curr = head->target;
1099                 if ((curr != target) && (curr->state != TARGET_RUNNING)
1100                         && target_was_examined(curr)) {
1101                         /*  resume current address , not in step mode */
1102                         retval += cortex_a_internal_restore(curr, 1, &address,
1103                                         handle_breakpoints, 0);
1104                         retval += cortex_a_internal_restart(curr);
1105                 }
1106                 head = head->next;
1107
1108         }
1109         return retval;
1110 }
1111
1112 static int cortex_a_resume(struct target *target, int current,
1113         uint32_t address, int handle_breakpoints, int debug_execution)
1114 {
1115         int retval = 0;
1116         /* dummy resume for smp toggle in order to reduce gdb impact  */
1117         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1118                 /*   simulate a start and halt of target */
1119                 target->gdb_service->target = NULL;
1120                 target->gdb_service->core[0] = target->gdb_service->core[1];
1121                 /*  fake resume at next poll we play the  target core[1], see poll*/
1122                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1123                 return 0;
1124         }
1125         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1126         if (target->smp) {
1127                 target->gdb_service->core[0] = -1;
1128                 retval = cortex_a_restore_smp(target, handle_breakpoints);
1129                 if (retval != ERROR_OK)
1130                         return retval;
1131         }
1132         cortex_a_internal_restart(target);
1133
1134         if (!debug_execution) {
1135                 target->state = TARGET_RUNNING;
1136                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1137                 LOG_DEBUG("target resumed at 0x%" PRIx32, address);
1138         } else {
1139                 target->state = TARGET_DEBUG_RUNNING;
1140                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1141                 LOG_DEBUG("target debug resumed at 0x%" PRIx32, address);
1142         }
1143
1144         return ERROR_OK;
1145 }
1146
1147 static int cortex_a_debug_entry(struct target *target)
1148 {
1149         int i;
1150         uint32_t regfile[16], cpsr, spsr, dscr;
1151         int retval = ERROR_OK;
1152         struct working_area *regfile_working_area = NULL;
1153         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1154         struct armv7a_common *armv7a = target_to_armv7a(target);
1155         struct arm *arm = &armv7a->arm;
1156         struct reg *reg;
1157
1158         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1159
1160         /* REVISIT surely we should not re-read DSCR !! */
1161         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1162                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1163         if (retval != ERROR_OK)
1164                 return retval;
1165
1166         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1167          * imprecise data aborts get discarded by issuing a Data
1168          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1169          */
1170
1171         /* Enable the ITR execution once we are in debug mode */
1172         dscr |= DSCR_ITR_EN;
1173         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1174                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1175         if (retval != ERROR_OK)
1176                 return retval;
1177
1178         /* Examine debug reason */
1179         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1180
1181         /* save address of instruction that triggered the watchpoint? */
1182         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1183                 uint32_t wfar;
1184
1185                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1186                                 armv7a->debug_base + CPUDBG_WFAR,
1187                                 &wfar);
1188                 if (retval != ERROR_OK)
1189                         return retval;
1190                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1191         }
1192
1193         /* REVISIT fast_reg_read is never set ... */
1194
1195         /* Examine target state and mode */
1196         if (cortex_a->fast_reg_read)
1197                 target_alloc_working_area(target, 64, &regfile_working_area);
1198
1199
1200         /* First load register acessible through core debug port*/
1201         if (!regfile_working_area)
1202                 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1203         else {
1204                 retval = cortex_a_read_regs_through_mem(target,
1205                                 regfile_working_area->address, regfile);
1206
1207                 target_free_working_area(target, regfile_working_area);
1208                 if (retval != ERROR_OK)
1209                         return retval;
1210
1211                 /* read Current PSR */
1212                 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1213                 /*  store current cpsr */
1214                 if (retval != ERROR_OK)
1215                         return retval;
1216
1217                 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1218
1219                 arm_set_cpsr(arm, cpsr);
1220
1221                 /* update cache */
1222                 for (i = 0; i <= ARM_PC; i++) {
1223                         reg = arm_reg_current(arm, i);
1224
1225                         buf_set_u32(reg->value, 0, 32, regfile[i]);
1226                         reg->valid = 1;
1227                         reg->dirty = 0;
1228                 }
1229
1230                 /* Fixup PC Resume Address */
1231                 if (cpsr & (1 << 5)) {
1232                         /* T bit set for Thumb or ThumbEE state */
1233                         regfile[ARM_PC] -= 4;
1234                 } else {
1235                         /* ARM state */
1236                         regfile[ARM_PC] -= 8;
1237                 }
1238
1239                 reg = arm->pc;
1240                 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1241                 reg->dirty = reg->valid;
1242         }
1243
1244         if (arm->spsr) {
1245                 /* read Saved PSR */
1246                 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1247                 /*  store current spsr */
1248                 if (retval != ERROR_OK)
1249                         return retval;
1250
1251                 reg = arm->spsr;
1252                 buf_set_u32(reg->value, 0, 32, spsr);
1253                 reg->valid = 1;
1254                 reg->dirty = 0;
1255         }
1256
1257 #if 0
1258 /* TODO, Move this */
1259         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1260         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1261         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1262
1263         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1264         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1265
1266         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1267         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1268 #endif
1269
1270         /* Are we in an exception handler */
1271 /*      armv4_5->exception_number = 0; */
1272         if (armv7a->post_debug_entry) {
1273                 retval = armv7a->post_debug_entry(target);
1274                 if (retval != ERROR_OK)
1275                         return retval;
1276         }
1277
1278         return retval;
1279 }
1280
1281 static int cortex_a_post_debug_entry(struct target *target)
1282 {
1283         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1284         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1285         int retval;
1286
1287         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1288         retval = armv7a->arm.mrc(target, 15,
1289                         0, 0,   /* op1, op2 */
1290                         1, 0,   /* CRn, CRm */
1291                         &cortex_a->cp15_control_reg);
1292         if (retval != ERROR_OK)
1293                 return retval;
1294         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1295         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1296
1297         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1298                 armv7a_identify_cache(target);
1299
1300         if (armv7a->is_armv7r) {
1301                 armv7a->armv7a_mmu.mmu_enabled = 0;
1302         } else {
1303                 armv7a->armv7a_mmu.mmu_enabled =
1304                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1305         }
1306         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1307                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1308         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1309                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1310         cortex_a->curr_mode = armv7a->arm.core_mode;
1311
1312         /* switch to SVC mode to read DACR */
1313         dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1314         armv7a->arm.mrc(target, 15,
1315                         0, 0, 3, 0,
1316                         &cortex_a->cp15_dacr_reg);
1317
1318         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1319                         cortex_a->cp15_dacr_reg);
1320
1321         dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1322         return ERROR_OK;
1323 }
1324
1325 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1326 {
1327         struct armv7a_common *armv7a = target_to_armv7a(target);
1328         uint32_t dscr;
1329
1330         /* Read DSCR */
1331         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1332                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1333         if (ERROR_OK != retval)
1334                 return retval;
1335
1336         /* clear bitfield */
1337         dscr &= ~bit_mask;
1338         /* put new value */
1339         dscr |= value & bit_mask;
1340
1341         /* write new DSCR */
1342         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1343                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1344         return retval;
1345 }
1346
1347 static int cortex_a_step(struct target *target, int current, uint32_t address,
1348         int handle_breakpoints)
1349 {
1350         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1351         struct armv7a_common *armv7a = target_to_armv7a(target);
1352         struct arm *arm = &armv7a->arm;
1353         struct breakpoint *breakpoint = NULL;
1354         struct breakpoint stepbreakpoint;
1355         struct reg *r;
1356         int retval;
1357
1358         if (target->state != TARGET_HALTED) {
1359                 LOG_WARNING("target not halted");
1360                 return ERROR_TARGET_NOT_HALTED;
1361         }
1362
1363         /* current = 1: continue on current pc, otherwise continue at <address> */
1364         r = arm->pc;
1365         if (!current)
1366                 buf_set_u32(r->value, 0, 32, address);
1367         else
1368                 address = buf_get_u32(r->value, 0, 32);
1369
1370         /* The front-end may request us not to handle breakpoints.
1371          * But since Cortex-A uses breakpoint for single step,
1372          * we MUST handle breakpoints.
1373          */
1374         handle_breakpoints = 1;
1375         if (handle_breakpoints) {
1376                 breakpoint = breakpoint_find(target, address);
1377                 if (breakpoint)
1378                         cortex_a_unset_breakpoint(target, breakpoint);
1379         }
1380
1381         /* Setup single step breakpoint */
1382         stepbreakpoint.address = address;
1383         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1384                 ? 2 : 4;
1385         stepbreakpoint.type = BKPT_HARD;
1386         stepbreakpoint.set = 0;
1387
1388         /* Disable interrupts during single step if requested */
1389         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1390                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1391                 if (ERROR_OK != retval)
1392                         return retval;
1393         }
1394
1395         /* Break on IVA mismatch */
1396         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1397
1398         target->debug_reason = DBG_REASON_SINGLESTEP;
1399
1400         retval = cortex_a_resume(target, 1, address, 0, 0);
1401         if (retval != ERROR_OK)
1402                 return retval;
1403
1404         int64_t then = timeval_ms();
1405         while (target->state != TARGET_HALTED) {
1406                 retval = cortex_a_poll(target);
1407                 if (retval != ERROR_OK)
1408                         return retval;
1409                 if (timeval_ms() > then + 1000) {
1410                         LOG_ERROR("timeout waiting for target halt");
1411                         return ERROR_FAIL;
1412                 }
1413         }
1414
1415         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1416
1417         /* Re-enable interrupts if they were disabled */
1418         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1419                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1420                 if (ERROR_OK != retval)
1421                         return retval;
1422         }
1423
1424
1425         target->debug_reason = DBG_REASON_BREAKPOINT;
1426
1427         if (breakpoint)
1428                 cortex_a_set_breakpoint(target, breakpoint, 0);
1429
1430         if (target->state != TARGET_HALTED)
1431                 LOG_DEBUG("target stepped");
1432
1433         return ERROR_OK;
1434 }
1435
1436 static int cortex_a_restore_context(struct target *target, bool bpwp)
1437 {
1438         struct armv7a_common *armv7a = target_to_armv7a(target);
1439
1440         LOG_DEBUG(" ");
1441
1442         if (armv7a->pre_restore_context)
1443                 armv7a->pre_restore_context(target);
1444
1445         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1446 }
1447
1448 /*
1449  * Cortex-A Breakpoint and watchpoint functions
1450  */
1451
1452 /* Setup hardware Breakpoint Register Pair */
1453 static int cortex_a_set_breakpoint(struct target *target,
1454         struct breakpoint *breakpoint, uint8_t matchmode)
1455 {
1456         int retval;
1457         int brp_i = 0;
1458         uint32_t control;
1459         uint8_t byte_addr_select = 0x0F;
1460         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1461         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1462         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1463
1464         if (breakpoint->set) {
1465                 LOG_WARNING("breakpoint already set");
1466                 return ERROR_OK;
1467         }
1468
1469         if (breakpoint->type == BKPT_HARD) {
1470                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1471                         brp_i++;
1472                 if (brp_i >= cortex_a->brp_num) {
1473                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1474                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1475                 }
1476                 breakpoint->set = brp_i + 1;
1477                 if (breakpoint->length == 2)
1478                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1479                 control = ((matchmode & 0x7) << 20)
1480                         | (byte_addr_select << 5)
1481                         | (3 << 1) | 1;
1482                 brp_list[brp_i].used = 1;
1483                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1484                 brp_list[brp_i].control = control;
1485                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1486                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1487                                 brp_list[brp_i].value);
1488                 if (retval != ERROR_OK)
1489                         return retval;
1490                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1491                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1492                                 brp_list[brp_i].control);
1493                 if (retval != ERROR_OK)
1494                         return retval;
1495                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1496                         brp_list[brp_i].control,
1497                         brp_list[brp_i].value);
1498         } else if (breakpoint->type == BKPT_SOFT) {
1499                 uint8_t code[4];
1500                 if (breakpoint->length == 2)
1501                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1502                 else
1503                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1504                 retval = target_read_memory(target,
1505                                 breakpoint->address & 0xFFFFFFFE,
1506                                 breakpoint->length, 1,
1507                                 breakpoint->orig_instr);
1508                 if (retval != ERROR_OK)
1509                         return retval;
1510
1511                 /* make sure data cache is cleaned & invalidated down to PoC */
1512                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1513                         armv7a_cache_flush_virt(target, breakpoint->address,
1514                                                 breakpoint->length);
1515                 }
1516
1517                 retval = target_write_memory(target,
1518                                 breakpoint->address & 0xFFFFFFFE,
1519                                 breakpoint->length, 1, code);
1520                 if (retval != ERROR_OK)
1521                         return retval;
1522
1523                 /* update i-cache at breakpoint location */
1524                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1525                                         breakpoint->length);
1526                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1527                                                  breakpoint->length);
1528
1529                 breakpoint->set = 0x11; /* Any nice value but 0 */
1530         }
1531
1532         return ERROR_OK;
1533 }
1534
1535 static int cortex_a_set_context_breakpoint(struct target *target,
1536         struct breakpoint *breakpoint, uint8_t matchmode)
1537 {
1538         int retval = ERROR_FAIL;
1539         int brp_i = 0;
1540         uint32_t control;
1541         uint8_t byte_addr_select = 0x0F;
1542         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1543         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1544         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1545
1546         if (breakpoint->set) {
1547                 LOG_WARNING("breakpoint already set");
1548                 return retval;
1549         }
1550         /*check available context BRPs*/
1551         while ((brp_list[brp_i].used ||
1552                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1553                 brp_i++;
1554
1555         if (brp_i >= cortex_a->brp_num) {
1556                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1557                 return ERROR_FAIL;
1558         }
1559
1560         breakpoint->set = brp_i + 1;
1561         control = ((matchmode & 0x7) << 20)
1562                 | (byte_addr_select << 5)
1563                 | (3 << 1) | 1;
1564         brp_list[brp_i].used = 1;
1565         brp_list[brp_i].value = (breakpoint->asid);
1566         brp_list[brp_i].control = control;
1567         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1568                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1569                         brp_list[brp_i].value);
1570         if (retval != ERROR_OK)
1571                 return retval;
1572         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1573                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1574                         brp_list[brp_i].control);
1575         if (retval != ERROR_OK)
1576                 return retval;
1577         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1578                 brp_list[brp_i].control,
1579                 brp_list[brp_i].value);
1580         return ERROR_OK;
1581
1582 }
1583
1584 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1585 {
1586         int retval = ERROR_FAIL;
1587         int brp_1 = 0;  /* holds the contextID pair */
1588         int brp_2 = 0;  /* holds the IVA pair */
1589         uint32_t control_CTX, control_IVA;
1590         uint8_t CTX_byte_addr_select = 0x0F;
1591         uint8_t IVA_byte_addr_select = 0x0F;
1592         uint8_t CTX_machmode = 0x03;
1593         uint8_t IVA_machmode = 0x01;
1594         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1595         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1596         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1597
1598         if (breakpoint->set) {
1599                 LOG_WARNING("breakpoint already set");
1600                 return retval;
1601         }
1602         /*check available context BRPs*/
1603         while ((brp_list[brp_1].used ||
1604                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1605                 brp_1++;
1606
1607         printf("brp(CTX) found num: %d\n", brp_1);
1608         if (brp_1 >= cortex_a->brp_num) {
1609                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1610                 return ERROR_FAIL;
1611         }
1612
1613         while ((brp_list[brp_2].used ||
1614                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1615                 brp_2++;
1616
1617         printf("brp(IVA) found num: %d\n", brp_2);
1618         if (brp_2 >= cortex_a->brp_num) {
1619                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1620                 return ERROR_FAIL;
1621         }
1622
1623         breakpoint->set = brp_1 + 1;
1624         breakpoint->linked_BRP = brp_2;
1625         control_CTX = ((CTX_machmode & 0x7) << 20)
1626                 | (brp_2 << 16)
1627                 | (0 << 14)
1628                 | (CTX_byte_addr_select << 5)
1629                 | (3 << 1) | 1;
1630         brp_list[brp_1].used = 1;
1631         brp_list[brp_1].value = (breakpoint->asid);
1632         brp_list[brp_1].control = control_CTX;
1633         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1634                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1635                         brp_list[brp_1].value);
1636         if (retval != ERROR_OK)
1637                 return retval;
1638         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1639                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1640                         brp_list[brp_1].control);
1641         if (retval != ERROR_OK)
1642                 return retval;
1643
1644         control_IVA = ((IVA_machmode & 0x7) << 20)
1645                 | (brp_1 << 16)
1646                 | (IVA_byte_addr_select << 5)
1647                 | (3 << 1) | 1;
1648         brp_list[brp_2].used = 1;
1649         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1650         brp_list[brp_2].control = control_IVA;
1651         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1652                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1653                         brp_list[brp_2].value);
1654         if (retval != ERROR_OK)
1655                 return retval;
1656         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1657                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1658                         brp_list[brp_2].control);
1659         if (retval != ERROR_OK)
1660                 return retval;
1661
1662         return ERROR_OK;
1663 }
1664
1665 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1666 {
1667         int retval;
1668         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1669         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1670         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1671
1672         if (!breakpoint->set) {
1673                 LOG_WARNING("breakpoint not set");
1674                 return ERROR_OK;
1675         }
1676
1677         if (breakpoint->type == BKPT_HARD) {
1678                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1679                         int brp_i = breakpoint->set - 1;
1680                         int brp_j = breakpoint->linked_BRP;
1681                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1682                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1683                                 return ERROR_OK;
1684                         }
1685                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1686                                 brp_list[brp_i].control, brp_list[brp_i].value);
1687                         brp_list[brp_i].used = 0;
1688                         brp_list[brp_i].value = 0;
1689                         brp_list[brp_i].control = 0;
1690                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1691                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1692                                         brp_list[brp_i].control);
1693                         if (retval != ERROR_OK)
1694                                 return retval;
1695                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1696                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1697                                         brp_list[brp_i].value);
1698                         if (retval != ERROR_OK)
1699                                 return retval;
1700                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1701                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1702                                 return ERROR_OK;
1703                         }
1704                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1705                                 brp_list[brp_j].control, brp_list[brp_j].value);
1706                         brp_list[brp_j].used = 0;
1707                         brp_list[brp_j].value = 0;
1708                         brp_list[brp_j].control = 0;
1709                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1710                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1711                                         brp_list[brp_j].control);
1712                         if (retval != ERROR_OK)
1713                                 return retval;
1714                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1715                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1716                                         brp_list[brp_j].value);
1717                         if (retval != ERROR_OK)
1718                                 return retval;
1719                         breakpoint->linked_BRP = 0;
1720                         breakpoint->set = 0;
1721                         return ERROR_OK;
1722
1723                 } else {
1724                         int brp_i = breakpoint->set - 1;
1725                         if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1726                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1727                                 return ERROR_OK;
1728                         }
1729                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1730                                 brp_list[brp_i].control, brp_list[brp_i].value);
1731                         brp_list[brp_i].used = 0;
1732                         brp_list[brp_i].value = 0;
1733                         brp_list[brp_i].control = 0;
1734                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1735                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1736                                         brp_list[brp_i].control);
1737                         if (retval != ERROR_OK)
1738                                 return retval;
1739                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1740                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1741                                         brp_list[brp_i].value);
1742                         if (retval != ERROR_OK)
1743                                 return retval;
1744                         breakpoint->set = 0;
1745                         return ERROR_OK;
1746                 }
1747         } else {
1748
1749                 /* make sure data cache is cleaned & invalidated down to PoC */
1750                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1751                         armv7a_cache_flush_virt(target, breakpoint->address,
1752                                                 breakpoint->length);
1753                 }
1754
1755                 /* restore original instruction (kept in target endianness) */
1756                 if (breakpoint->length == 4) {
1757                         retval = target_write_memory(target,
1758                                         breakpoint->address & 0xFFFFFFFE,
1759                                         4, 1, breakpoint->orig_instr);
1760                         if (retval != ERROR_OK)
1761                                 return retval;
1762                 } else {
1763                         retval = target_write_memory(target,
1764                                         breakpoint->address & 0xFFFFFFFE,
1765                                         2, 1, breakpoint->orig_instr);
1766                         if (retval != ERROR_OK)
1767                                 return retval;
1768                 }
1769
1770                 /* update i-cache at breakpoint location */
1771                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1772                                                  breakpoint->length);
1773                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1774                                                  breakpoint->length);
1775         }
1776         breakpoint->set = 0;
1777
1778         return ERROR_OK;
1779 }
1780
1781 static int cortex_a_add_breakpoint(struct target *target,
1782         struct breakpoint *breakpoint)
1783 {
1784         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1785
1786         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1787                 LOG_INFO("no hardware breakpoint available");
1788                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1789         }
1790
1791         if (breakpoint->type == BKPT_HARD)
1792                 cortex_a->brp_num_available--;
1793
1794         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1795 }
1796
1797 static int cortex_a_add_context_breakpoint(struct target *target,
1798         struct breakpoint *breakpoint)
1799 {
1800         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1801
1802         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1803                 LOG_INFO("no hardware breakpoint available");
1804                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1805         }
1806
1807         if (breakpoint->type == BKPT_HARD)
1808                 cortex_a->brp_num_available--;
1809
1810         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1811 }
1812
1813 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1814         struct breakpoint *breakpoint)
1815 {
1816         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1817
1818         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1819                 LOG_INFO("no hardware breakpoint available");
1820                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1821         }
1822
1823         if (breakpoint->type == BKPT_HARD)
1824                 cortex_a->brp_num_available--;
1825
1826         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1827 }
1828
1829
1830 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1831 {
1832         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1833
1834 #if 0
1835 /* It is perfectly possible to remove breakpoints while the target is running */
1836         if (target->state != TARGET_HALTED) {
1837                 LOG_WARNING("target not halted");
1838                 return ERROR_TARGET_NOT_HALTED;
1839         }
1840 #endif
1841
1842         if (breakpoint->set) {
1843                 cortex_a_unset_breakpoint(target, breakpoint);
1844                 if (breakpoint->type == BKPT_HARD)
1845                         cortex_a->brp_num_available++;
1846         }
1847
1848
1849         return ERROR_OK;
1850 }
1851
1852 /*
1853  * Cortex-A Reset functions
1854  */
1855
1856 static int cortex_a_assert_reset(struct target *target)
1857 {
1858         struct armv7a_common *armv7a = target_to_armv7a(target);
1859
1860         LOG_DEBUG(" ");
1861
1862         /* FIXME when halt is requested, make it work somehow... */
1863
1864         /* This function can be called in "target not examined" state */
1865
1866         /* Issue some kind of warm reset. */
1867         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1868                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1869         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1870                 /* REVISIT handle "pulls" cases, if there's
1871                  * hardware that needs them to work.
1872                  */
1873
1874                 /*
1875                  * FIXME: fix reset when transport is SWD. This is a temporary
1876                  * work-around for release v0.10 that is not intended to stay!
1877                  */
1878                 if (transport_is_swd() ||
1879                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1880                         jtag_add_reset(0, 1);
1881
1882         } else {
1883                 LOG_ERROR("%s: how to reset?", target_name(target));
1884                 return ERROR_FAIL;
1885         }
1886
1887         /* registers are now invalid */
1888         if (target_was_examined(target))
1889                 register_cache_invalidate(armv7a->arm.core_cache);
1890
1891         target->state = TARGET_RESET;
1892
1893         return ERROR_OK;
1894 }
1895
1896 static int cortex_a_deassert_reset(struct target *target)
1897 {
1898         int retval;
1899
1900         LOG_DEBUG(" ");
1901
1902         /* be certain SRST is off */
1903         jtag_add_reset(0, 0);
1904
1905         if (target_was_examined(target)) {
1906                 retval = cortex_a_poll(target);
1907                 if (retval != ERROR_OK)
1908                         return retval;
1909         }
1910
1911         if (target->reset_halt) {
1912                 if (target->state != TARGET_HALTED) {
1913                         LOG_WARNING("%s: ran after reset and before halt ...",
1914                                 target_name(target));
1915                         if (target_was_examined(target)) {
1916                                 retval = target_halt(target);
1917                                 if (retval != ERROR_OK)
1918                                         return retval;
1919                         } else
1920                                 target->state = TARGET_UNKNOWN;
1921                 }
1922         }
1923
1924         return ERROR_OK;
1925 }
1926
1927 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1928 {
1929         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1930          * New desired mode must be in mode. Current value of DSCR must be in
1931          * *dscr, which is updated with new value.
1932          *
1933          * This function elides actually sending the mode-change over the debug
1934          * interface if the mode is already set as desired.
1935          */
1936         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1937         if (new_dscr != *dscr) {
1938                 struct armv7a_common *armv7a = target_to_armv7a(target);
1939                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1940                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1941                 if (retval == ERROR_OK)
1942                         *dscr = new_dscr;
1943                 return retval;
1944         } else {
1945                 return ERROR_OK;
1946         }
1947 }
1948
1949 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1950         uint32_t value, uint32_t *dscr)
1951 {
1952         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1953         struct armv7a_common *armv7a = target_to_armv7a(target);
1954         int64_t then = timeval_ms();
1955         int retval;
1956
1957         while ((*dscr & mask) != value) {
1958                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1959                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1960                 if (retval != ERROR_OK)
1961                         return retval;
1962                 if (timeval_ms() > then + 1000) {
1963                         LOG_ERROR("timeout waiting for DSCR bit change");
1964                         return ERROR_FAIL;
1965                 }
1966         }
1967         return ERROR_OK;
1968 }
1969
1970 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1971         uint32_t *data, uint32_t *dscr)
1972 {
1973         int retval;
1974         struct armv7a_common *armv7a = target_to_armv7a(target);
1975
1976         /* Move from coprocessor to R0. */
1977         retval = cortex_a_exec_opcode(target, opcode, dscr);
1978         if (retval != ERROR_OK)
1979                 return retval;
1980
1981         /* Move from R0 to DTRTX. */
1982         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1983         if (retval != ERROR_OK)
1984                 return retval;
1985
1986         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1987          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1988          * must also check TXfull_l). Most of the time this will be free
1989          * because TXfull_l will be set immediately and cached in dscr. */
1990         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1991                         DSCR_DTRTX_FULL_LATCHED, dscr);
1992         if (retval != ERROR_OK)
1993                 return retval;
1994
1995         /* Read the value transferred to DTRTX. */
1996         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1997                         armv7a->debug_base + CPUDBG_DTRTX, data);
1998         if (retval != ERROR_OK)
1999                 return retval;
2000
2001         return ERROR_OK;
2002 }
2003
2004 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2005         uint32_t *dfsr, uint32_t *dscr)
2006 {
2007         int retval;
2008
2009         if (dfar) {
2010                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2011                 if (retval != ERROR_OK)
2012                         return retval;
2013         }
2014
2015         if (dfsr) {
2016                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2017                 if (retval != ERROR_OK)
2018                         return retval;
2019         }
2020
2021         return ERROR_OK;
2022 }
2023
2024 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2025         uint32_t data, uint32_t *dscr)
2026 {
2027         int retval;
2028         struct armv7a_common *armv7a = target_to_armv7a(target);
2029
2030         /* Write the value into DTRRX. */
2031         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2032                         armv7a->debug_base + CPUDBG_DTRRX, data);
2033         if (retval != ERROR_OK)
2034                 return retval;
2035
2036         /* Move from DTRRX to R0. */
2037         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2038         if (retval != ERROR_OK)
2039                 return retval;
2040
2041         /* Move from R0 to coprocessor. */
2042         retval = cortex_a_exec_opcode(target, opcode, dscr);
2043         if (retval != ERROR_OK)
2044                 return retval;
2045
2046         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2047          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2048          * check RXfull_l). Most of the time this will be free because RXfull_l
2049          * will be cleared immediately and cached in dscr. */
2050         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2051         if (retval != ERROR_OK)
2052                 return retval;
2053
2054         return ERROR_OK;
2055 }
2056
2057 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2058         uint32_t dfsr, uint32_t *dscr)
2059 {
2060         int retval;
2061
2062         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2063         if (retval != ERROR_OK)
2064                 return retval;
2065
2066         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2067         if (retval != ERROR_OK)
2068                 return retval;
2069
2070         return ERROR_OK;
2071 }
2072
2073 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2074 {
2075         uint32_t status, upper4;
2076
2077         if (dfsr & (1 << 9)) {
2078                 /* LPAE format. */
2079                 status = dfsr & 0x3f;
2080                 upper4 = status >> 2;
2081                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2082                         return ERROR_TARGET_TRANSLATION_FAULT;
2083                 else if (status == 33)
2084                         return ERROR_TARGET_UNALIGNED_ACCESS;
2085                 else
2086                         return ERROR_TARGET_DATA_ABORT;
2087         } else {
2088                 /* Normal format. */
2089                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2090                 if (status == 1)
2091                         return ERROR_TARGET_UNALIGNED_ACCESS;
2092                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2093                                 status == 9 || status == 11 || status == 13 || status == 15)
2094                         return ERROR_TARGET_TRANSLATION_FAULT;
2095                 else
2096                         return ERROR_TARGET_DATA_ABORT;
2097         }
2098 }
2099
2100 static int cortex_a_write_cpu_memory_slow(struct target *target,
2101         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2102 {
2103         /* Writes count objects of size size from *buffer. Old value of DSCR must
2104          * be in *dscr; updated to new value. This is slow because it works for
2105          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2106          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2107          * preferred.
2108          * Preconditions:
2109          * - Address is in R0.
2110          * - R0 is marked dirty.
2111          */
2112         struct armv7a_common *armv7a = target_to_armv7a(target);
2113         struct arm *arm = &armv7a->arm;
2114         int retval;
2115
2116         /* Mark register R1 as dirty, to use for transferring data. */
2117         arm_reg_current(arm, 1)->dirty = true;
2118
2119         /* Switch to non-blocking mode if not already in that mode. */
2120         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2121         if (retval != ERROR_OK)
2122                 return retval;
2123
2124         /* Go through the objects. */
2125         while (count) {
2126                 /* Write the value to store into DTRRX. */
2127                 uint32_t data, opcode;
2128                 if (size == 1)
2129                         data = *buffer;
2130                 else if (size == 2)
2131                         data = target_buffer_get_u16(target, buffer);
2132                 else
2133                         data = target_buffer_get_u32(target, buffer);
2134                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2135                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2136                 if (retval != ERROR_OK)
2137                         return retval;
2138
2139                 /* Transfer the value from DTRRX to R1. */
2140                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2141                 if (retval != ERROR_OK)
2142                         return retval;
2143
2144                 /* Write the value transferred to R1 into memory. */
2145                 if (size == 1)
2146                         opcode = ARMV4_5_STRB_IP(1, 0);
2147                 else if (size == 2)
2148                         opcode = ARMV4_5_STRH_IP(1, 0);
2149                 else
2150                         opcode = ARMV4_5_STRW_IP(1, 0);
2151                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2152                 if (retval != ERROR_OK)
2153                         return retval;
2154
2155                 /* Check for faults and return early. */
2156                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2157                         return ERROR_OK; /* A data fault is not considered a system failure. */
2158
2159                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2160                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2161                  * must also check RXfull_l). Most of the time this will be free
2162                  * because RXfull_l will be cleared immediately and cached in dscr. */
2163                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2164                 if (retval != ERROR_OK)
2165                         return retval;
2166
2167                 /* Advance. */
2168                 buffer += size;
2169                 --count;
2170         }
2171
2172         return ERROR_OK;
2173 }
2174
2175 static int cortex_a_write_cpu_memory_fast(struct target *target,
2176         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2177 {
2178         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2179          * in *dscr; updated to new value. This is fast but only works for
2180          * word-sized objects at aligned addresses.
2181          * Preconditions:
2182          * - Address is in R0 and must be a multiple of 4.
2183          * - R0 is marked dirty.
2184          */
2185         struct armv7a_common *armv7a = target_to_armv7a(target);
2186         int retval;
2187
2188         /* Switch to fast mode if not already in that mode. */
2189         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2190         if (retval != ERROR_OK)
2191                 return retval;
2192
2193         /* Latch STC instruction. */
2194         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2195                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2196         if (retval != ERROR_OK)
2197                 return retval;
2198
2199         /* Transfer all the data and issue all the instructions. */
2200         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2201                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2202 }
2203
2204 static int cortex_a_write_cpu_memory(struct target *target,
2205         uint32_t address, uint32_t size,
2206         uint32_t count, const uint8_t *buffer)
2207 {
2208         /* Write memory through the CPU. */
2209         int retval, final_retval;
2210         struct armv7a_common *armv7a = target_to_armv7a(target);
2211         struct arm *arm = &armv7a->arm;
2212         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2213
2214         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2215                           address, size, count);
2216         if (target->state != TARGET_HALTED) {
2217                 LOG_WARNING("target not halted");
2218                 return ERROR_TARGET_NOT_HALTED;
2219         }
2220
2221         if (!count)
2222                 return ERROR_OK;
2223
2224         /* Clear any abort. */
2225         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2226                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2227         if (retval != ERROR_OK)
2228                 return retval;
2229
2230         /* Read DSCR. */
2231         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2232                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2233         if (retval != ERROR_OK)
2234                 return retval;
2235
2236         /* Switch to non-blocking mode if not already in that mode. */
2237         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2238         if (retval != ERROR_OK)
2239                 goto out;
2240
2241         /* Mark R0 as dirty. */
2242         arm_reg_current(arm, 0)->dirty = true;
2243
2244         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2245         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2246         if (retval != ERROR_OK)
2247                 goto out;
2248
2249         /* Get the memory address into R0. */
2250         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2251                         armv7a->debug_base + CPUDBG_DTRRX, address);
2252         if (retval != ERROR_OK)
2253                 goto out;
2254         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2255         if (retval != ERROR_OK)
2256                 goto out;
2257
2258         if (size == 4 && (address % 4) == 0) {
2259                 /* We are doing a word-aligned transfer, so use fast mode. */
2260                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2261         } else {
2262                 /* Use slow path. */
2263                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2264         }
2265
2266 out:
2267         final_retval = retval;
2268
2269         /* Switch to non-blocking mode if not already in that mode. */
2270         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2271         if (final_retval == ERROR_OK)
2272                 final_retval = retval;
2273
2274         /* Wait for last issued instruction to complete. */
2275         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2276         if (final_retval == ERROR_OK)
2277                 final_retval = retval;
2278
2279         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2280          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2281          * check RXfull_l). Most of the time this will be free because RXfull_l
2282          * will be cleared immediately and cached in dscr. However, don't do this
2283          * if there is fault, because then the instruction might not have completed
2284          * successfully. */
2285         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2286                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2287                 if (retval != ERROR_OK)
2288                         return retval;
2289         }
2290
2291         /* If there were any sticky abort flags, clear them. */
2292         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2293                 fault_dscr = dscr;
2294                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2295                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2296                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2297         } else {
2298                 fault_dscr = 0;
2299         }
2300
2301         /* Handle synchronous data faults. */
2302         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2303                 if (final_retval == ERROR_OK) {
2304                         /* Final return value will reflect cause of fault. */
2305                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2306                         if (retval == ERROR_OK) {
2307                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2308                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2309                         } else
2310                                 final_retval = retval;
2311                 }
2312                 /* Fault destroyed DFAR/DFSR; restore them. */
2313                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2314                 if (retval != ERROR_OK)
2315                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2316         }
2317
2318         /* Handle asynchronous data faults. */
2319         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2320                 if (final_retval == ERROR_OK)
2321                         /* No other error has been recorded so far, so keep this one. */
2322                         final_retval = ERROR_TARGET_DATA_ABORT;
2323         }
2324
2325         /* If the DCC is nonempty, clear it. */
2326         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2327                 uint32_t dummy;
2328                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2329                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2330                 if (final_retval == ERROR_OK)
2331                         final_retval = retval;
2332         }
2333         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2334                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2335                 if (final_retval == ERROR_OK)
2336                         final_retval = retval;
2337         }
2338
2339         /* Done. */
2340         return final_retval;
2341 }
2342
2343 static int cortex_a_read_cpu_memory_slow(struct target *target,
2344         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2345 {
2346         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2347          * in *dscr; updated to new value. This is slow because it works for
2348          * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2349          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2350          * preferred.
2351          * Preconditions:
2352          * - Address is in R0.
2353          * - R0 is marked dirty.
2354          */
2355         struct armv7a_common *armv7a = target_to_armv7a(target);
2356         struct arm *arm = &armv7a->arm;
2357         int retval;
2358
2359         /* Mark register R1 as dirty, to use for transferring data. */
2360         arm_reg_current(arm, 1)->dirty = true;
2361
2362         /* Switch to non-blocking mode if not already in that mode. */
2363         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2364         if (retval != ERROR_OK)
2365                 return retval;
2366
2367         /* Go through the objects. */
2368         while (count) {
2369                 /* Issue a load of the appropriate size to R1. */
2370                 uint32_t opcode, data;
2371                 if (size == 1)
2372                         opcode = ARMV4_5_LDRB_IP(1, 0);
2373                 else if (size == 2)
2374                         opcode = ARMV4_5_LDRH_IP(1, 0);
2375                 else
2376                         opcode = ARMV4_5_LDRW_IP(1, 0);
2377                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2378                 if (retval != ERROR_OK)
2379                         return retval;
2380
2381                 /* Issue a write of R1 to DTRTX. */
2382                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2383                 if (retval != ERROR_OK)
2384                         return retval;
2385
2386                 /* Check for faults and return early. */
2387                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2388                         return ERROR_OK; /* A data fault is not considered a system failure. */
2389
2390                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2391                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2392                  * must also check TXfull_l). Most of the time this will be free
2393                  * because TXfull_l will be set immediately and cached in dscr. */
2394                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2395                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2396                 if (retval != ERROR_OK)
2397                         return retval;
2398
2399                 /* Read the value transferred to DTRTX into the buffer. */
2400                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2401                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2402                 if (retval != ERROR_OK)
2403                         return retval;
2404                 if (size == 1)
2405                         *buffer = (uint8_t) data;
2406                 else if (size == 2)
2407                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2408                 else
2409                         target_buffer_set_u32(target, buffer, data);
2410
2411                 /* Advance. */
2412                 buffer += size;
2413                 --count;
2414         }
2415
2416         return ERROR_OK;
2417 }
2418
2419 static int cortex_a_read_cpu_memory_fast(struct target *target,
2420         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2421 {
2422         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2423          * *dscr; updated to new value. This is fast but only works for word-sized
2424          * objects at aligned addresses.
2425          * Preconditions:
2426          * - Address is in R0 and must be a multiple of 4.
2427          * - R0 is marked dirty.
2428          */
2429         struct armv7a_common *armv7a = target_to_armv7a(target);
2430         uint32_t u32;
2431         int retval;
2432
2433         /* Switch to non-blocking mode if not already in that mode. */
2434         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2435         if (retval != ERROR_OK)
2436                 return retval;
2437
2438         /* Issue the LDC instruction via a write to ITR. */
2439         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2440         if (retval != ERROR_OK)
2441                 return retval;
2442
2443         count--;
2444
2445         if (count > 0) {
2446                 /* Switch to fast mode if not already in that mode. */
2447                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2448                 if (retval != ERROR_OK)
2449                         return retval;
2450
2451                 /* Latch LDC instruction. */
2452                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2453                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2454                 if (retval != ERROR_OK)
2455                         return retval;
2456
2457                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2458                  * mode rules, this blocks until the instruction finishes executing and
2459                  * then reissues the read instruction to read the next word from
2460                  * memory. The last read of DTRTX in this call reads the second-to-last
2461                  * word from memory and issues the read instruction for the last word.
2462                  */
2463                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2464                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2465                 if (retval != ERROR_OK)
2466                         return retval;
2467
2468                 /* Advance. */
2469                 buffer += count * 4;
2470         }
2471
2472         /* Wait for last issued instruction to complete. */
2473         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2474         if (retval != ERROR_OK)
2475                 return retval;
2476
2477         /* Switch to non-blocking mode if not already in that mode. */
2478         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2479         if (retval != ERROR_OK)
2480                 return retval;
2481
2482         /* Check for faults and return early. */
2483         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2484                 return ERROR_OK; /* A data fault is not considered a system failure. */
2485
2486         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2487          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2488          * check TXfull_l). Most of the time this will be free because TXfull_l
2489          * will be set immediately and cached in dscr. */
2490         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2491                         DSCR_DTRTX_FULL_LATCHED, dscr);
2492         if (retval != ERROR_OK)
2493                 return retval;
2494
2495         /* Read the value transferred to DTRTX into the buffer. This is the last
2496          * word. */
2497         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2498                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2499         if (retval != ERROR_OK)
2500                 return retval;
2501         target_buffer_set_u32(target, buffer, u32);
2502
2503         return ERROR_OK;
2504 }
2505
2506 static int cortex_a_read_cpu_memory(struct target *target,
2507         uint32_t address, uint32_t size,
2508         uint32_t count, uint8_t *buffer)
2509 {
2510         /* Read memory through the CPU. */
2511         int retval, final_retval;
2512         struct armv7a_common *armv7a = target_to_armv7a(target);
2513         struct arm *arm = &armv7a->arm;
2514         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2515
2516         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2517                           address, size, count);
2518         if (target->state != TARGET_HALTED) {
2519                 LOG_WARNING("target not halted");
2520                 return ERROR_TARGET_NOT_HALTED;
2521         }
2522
2523         if (!count)
2524                 return ERROR_OK;
2525
2526         /* Clear any abort. */
2527         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2528                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2529         if (retval != ERROR_OK)
2530                 return retval;
2531
2532         /* Read DSCR */
2533         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2534                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2535         if (retval != ERROR_OK)
2536                 return retval;
2537
2538         /* Switch to non-blocking mode if not already in that mode. */
2539         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2540         if (retval != ERROR_OK)
2541                 goto out;
2542
2543         /* Mark R0 as dirty. */
2544         arm_reg_current(arm, 0)->dirty = true;
2545
2546         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2547         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2548         if (retval != ERROR_OK)
2549                 goto out;
2550
2551         /* Get the memory address into R0. */
2552         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2553                         armv7a->debug_base + CPUDBG_DTRRX, address);
2554         if (retval != ERROR_OK)
2555                 goto out;
2556         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2557         if (retval != ERROR_OK)
2558                 goto out;
2559
2560         if (size == 4 && (address % 4) == 0) {
2561                 /* We are doing a word-aligned transfer, so use fast mode. */
2562                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2563         } else {
2564                 /* Use slow path. */
2565                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2566         }
2567
2568 out:
2569         final_retval = retval;
2570
2571         /* Switch to non-blocking mode if not already in that mode. */
2572         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2573         if (final_retval == ERROR_OK)
2574                 final_retval = retval;
2575
2576         /* Wait for last issued instruction to complete. */
2577         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2578         if (final_retval == ERROR_OK)
2579                 final_retval = retval;
2580
2581         /* If there were any sticky abort flags, clear them. */
2582         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2583                 fault_dscr = dscr;
2584                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2585                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2586                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2587         } else {
2588                 fault_dscr = 0;
2589         }
2590
2591         /* Handle synchronous data faults. */
2592         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2593                 if (final_retval == ERROR_OK) {
2594                         /* Final return value will reflect cause of fault. */
2595                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2596                         if (retval == ERROR_OK) {
2597                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2598                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2599                         } else
2600                                 final_retval = retval;
2601                 }
2602                 /* Fault destroyed DFAR/DFSR; restore them. */
2603                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2604                 if (retval != ERROR_OK)
2605                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2606         }
2607
2608         /* Handle asynchronous data faults. */
2609         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2610                 if (final_retval == ERROR_OK)
2611                         /* No other error has been recorded so far, so keep this one. */
2612                         final_retval = ERROR_TARGET_DATA_ABORT;
2613         }
2614
2615         /* If the DCC is nonempty, clear it. */
2616         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2617                 uint32_t dummy;
2618                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2619                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2620                 if (final_retval == ERROR_OK)
2621                         final_retval = retval;
2622         }
2623         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2624                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2625                 if (final_retval == ERROR_OK)
2626                         final_retval = retval;
2627         }
2628
2629         /* Done. */
2630         return final_retval;
2631 }
2632
2633
2634 /*
2635  * Cortex-A Memory access
2636  *
2637  * This is same Cortex-M3 but we must also use the correct
2638  * ap number for every access.
2639  */
2640
2641 static int cortex_a_read_phys_memory(struct target *target,
2642         uint32_t address, uint32_t size,
2643         uint32_t count, uint8_t *buffer)
2644 {
2645         struct armv7a_common *armv7a = target_to_armv7a(target);
2646         struct adiv5_dap *swjdp = armv7a->arm.dap;
2647         uint8_t apsel = swjdp->apsel;
2648         int retval;
2649
2650         if (!count || !buffer)
2651                 return ERROR_COMMAND_SYNTAX_ERROR;
2652
2653         LOG_DEBUG("Reading memory at real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32,
2654                 address, size, count);
2655
2656         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2657                 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2658
2659         /* read memory through the CPU */
2660         cortex_a_prep_memaccess(target, 1);
2661         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2662         cortex_a_post_memaccess(target, 1);
2663
2664         return retval;
2665 }
2666
2667 static int cortex_a_read_memory(struct target *target, uint32_t address,
2668         uint32_t size, uint32_t count, uint8_t *buffer)
2669 {
2670         int retval;
2671
2672         /* cortex_a handles unaligned memory access */
2673         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2674                 size, count);
2675
2676         cortex_a_prep_memaccess(target, 0);
2677         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2678         cortex_a_post_memaccess(target, 0);
2679
2680         return retval;
2681 }
2682
2683 static int cortex_a_read_memory_ahb(struct target *target, uint32_t address,
2684         uint32_t size, uint32_t count, uint8_t *buffer)
2685 {
2686         int mmu_enabled = 0;
2687         uint32_t virt, phys;
2688         int retval;
2689         struct armv7a_common *armv7a = target_to_armv7a(target);
2690         struct adiv5_dap *swjdp = armv7a->arm.dap;
2691         uint8_t apsel = swjdp->apsel;
2692
2693         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2694                 return target_read_memory(target, address, size, count, buffer);
2695
2696         /* cortex_a handles unaligned memory access */
2697         LOG_DEBUG("Reading memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2698                 size, count);
2699
2700         /* determine if MMU was enabled on target stop */
2701         if (!armv7a->is_armv7r) {
2702                 retval = cortex_a_mmu(target, &mmu_enabled);
2703                 if (retval != ERROR_OK)
2704                         return retval;
2705         }
2706
2707         if (mmu_enabled) {
2708                 virt = address;
2709                 retval = cortex_a_virt2phys(target, virt, &phys);
2710                 if (retval != ERROR_OK)
2711                         return retval;
2712
2713                 LOG_DEBUG("Reading at virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2714                           virt, phys);
2715                 address = phys;
2716         }
2717
2718         if (!count || !buffer)
2719                 return ERROR_COMMAND_SYNTAX_ERROR;
2720
2721         retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2722
2723         return retval;
2724 }
2725
2726 static int cortex_a_write_phys_memory(struct target *target,
2727         uint32_t address, uint32_t size,
2728         uint32_t count, const uint8_t *buffer)
2729 {
2730         struct armv7a_common *armv7a = target_to_armv7a(target);
2731         struct adiv5_dap *swjdp = armv7a->arm.dap;
2732         uint8_t apsel = swjdp->apsel;
2733         int retval;
2734
2735         if (!count || !buffer)
2736                 return ERROR_COMMAND_SYNTAX_ERROR;
2737
2738         LOG_DEBUG("Writing memory to real address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2739                 size, count);
2740
2741         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2742                 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2743
2744         /* write memory through the CPU */
2745         cortex_a_prep_memaccess(target, 1);
2746         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2747         cortex_a_post_memaccess(target, 1);
2748
2749         return retval;
2750 }
2751
2752 static int cortex_a_write_memory(struct target *target, uint32_t address,
2753         uint32_t size, uint32_t count, const uint8_t *buffer)
2754 {
2755         int retval;
2756
2757         /* cortex_a handles unaligned memory access */
2758         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2759                 size, count);
2760
2761         /* memory writes bypass the caches, must flush before writing */
2762         armv7a_cache_auto_flush_on_write(target, address, size * count);
2763
2764         cortex_a_prep_memaccess(target, 0);
2765         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2766         cortex_a_post_memaccess(target, 0);
2767         return retval;
2768 }
2769
2770 static int cortex_a_write_memory_ahb(struct target *target, uint32_t address,
2771         uint32_t size, uint32_t count, const uint8_t *buffer)
2772 {
2773         int mmu_enabled = 0;
2774         uint32_t virt, phys;
2775         int retval;
2776         struct armv7a_common *armv7a = target_to_armv7a(target);
2777         struct adiv5_dap *swjdp = armv7a->arm.dap;
2778         uint8_t apsel = swjdp->apsel;
2779
2780         if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2781                 return target_write_memory(target, address, size, count, buffer);
2782
2783         /* cortex_a handles unaligned memory access */
2784         LOG_DEBUG("Writing memory at address 0x%" PRIx32 "; size %" PRId32 "; count %" PRId32, address,
2785                 size, count);
2786
2787         /* determine if MMU was enabled on target stop */
2788         if (!armv7a->is_armv7r) {
2789                 retval = cortex_a_mmu(target, &mmu_enabled);
2790                 if (retval != ERROR_OK)
2791                         return retval;
2792         }
2793
2794         if (mmu_enabled) {
2795                 virt = address;
2796                 retval = cortex_a_virt2phys(target, virt, &phys);
2797                 if (retval != ERROR_OK)
2798                         return retval;
2799
2800                 LOG_DEBUG("Writing to virtual address. Translating v:0x%" PRIx32 " to r:0x%" PRIx32,
2801                           virt,
2802                           phys);
2803                 address = phys;
2804         }
2805
2806         if (!count || !buffer)
2807                 return ERROR_COMMAND_SYNTAX_ERROR;
2808
2809         retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2810
2811         return retval;
2812 }
2813
2814 static int cortex_a_read_buffer(struct target *target, uint32_t address,
2815                                 uint32_t count, uint8_t *buffer)
2816 {
2817         uint32_t size;
2818
2819         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2820          * will have something to do with the size we leave to it. */
2821         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2822                 if (address & size) {
2823                         int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2824                         if (retval != ERROR_OK)
2825                                 return retval;
2826                         address += size;
2827                         count -= size;
2828                         buffer += size;
2829                 }
2830         }
2831
2832         /* Read the data with as large access size as possible. */
2833         for (; size > 0; size /= 2) {
2834                 uint32_t aligned = count - count % size;
2835                 if (aligned > 0) {
2836                         int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2837                         if (retval != ERROR_OK)
2838                                 return retval;
2839                         address += aligned;
2840                         count -= aligned;
2841                         buffer += aligned;
2842                 }
2843         }
2844
2845         return ERROR_OK;
2846 }
2847
2848 static int cortex_a_write_buffer(struct target *target, uint32_t address,
2849                                  uint32_t count, const uint8_t *buffer)
2850 {
2851         uint32_t size;
2852
2853         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2854          * will have something to do with the size we leave to it. */
2855         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2856                 if (address & size) {
2857                         int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2858                         if (retval != ERROR_OK)
2859                                 return retval;
2860                         address += size;
2861                         count -= size;
2862                         buffer += size;
2863                 }
2864         }
2865
2866         /* Write the data with as large access size as possible. */
2867         for (; size > 0; size /= 2) {
2868                 uint32_t aligned = count - count % size;
2869                 if (aligned > 0) {
2870                         int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2871                         if (retval != ERROR_OK)
2872                                 return retval;
2873                         address += aligned;
2874                         count -= aligned;
2875                         buffer += aligned;
2876                 }
2877         }
2878
2879         return ERROR_OK;
2880 }
2881
2882 static int cortex_a_handle_target_request(void *priv)
2883 {
2884         struct target *target = priv;
2885         struct armv7a_common *armv7a = target_to_armv7a(target);
2886         int retval;
2887
2888         if (!target_was_examined(target))
2889                 return ERROR_OK;
2890         if (!target->dbg_msg_enabled)
2891                 return ERROR_OK;
2892
2893         if (target->state == TARGET_RUNNING) {
2894                 uint32_t request;
2895                 uint32_t dscr;
2896                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2897                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2898
2899                 /* check if we have data */
2900                 int64_t then = timeval_ms();
2901                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2902                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2903                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2904                         if (retval == ERROR_OK) {
2905                                 target_request(target, request);
2906                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2907                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2908                         }
2909                         if (timeval_ms() > then + 1000) {
2910                                 LOG_ERROR("Timeout waiting for dtr tx full");
2911                                 return ERROR_FAIL;
2912                         }
2913                 }
2914         }
2915
2916         return ERROR_OK;
2917 }
2918
2919 /*
2920  * Cortex-A target information and configuration
2921  */
2922
2923 static int cortex_a_examine_first(struct target *target)
2924 {
2925         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2926         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2927         struct adiv5_dap *swjdp = armv7a->arm.dap;
2928
2929         int i;
2930         int retval = ERROR_OK;
2931         uint32_t didr, cpuid, dbg_osreg;
2932
2933         retval = dap_dp_init(swjdp);
2934         if (retval != ERROR_OK) {
2935                 LOG_ERROR("Could not initialize the debug port");
2936                 return retval;
2937         }
2938
2939         /* Search for the APB-AP - it is needed for access to debug registers */
2940         retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2941         if (retval != ERROR_OK) {
2942                 LOG_ERROR("Could not find APB-AP for debug access");
2943                 return retval;
2944         }
2945
2946         retval = mem_ap_init(armv7a->debug_ap);
2947         if (retval != ERROR_OK) {
2948                 LOG_ERROR("Could not initialize the APB-AP");
2949                 return retval;
2950         }
2951
2952         armv7a->debug_ap->memaccess_tck = 80;
2953
2954         /* Search for the AHB-AB.
2955          * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2956          * can access system memory. */
2957         armv7a->memory_ap_available = false;
2958         retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2959         if (retval == ERROR_OK) {
2960                 retval = mem_ap_init(armv7a->memory_ap);
2961                 if (retval == ERROR_OK)
2962                         armv7a->memory_ap_available = true;
2963         }
2964         if (retval != ERROR_OK) {
2965                 /* AHB-AP not found or unavailable - use the CPU */
2966                 LOG_DEBUG("No AHB-AP available for memory access");
2967         }
2968
2969         if (!target->dbgbase_set) {
2970                 uint32_t dbgbase;
2971                 /* Get ROM Table base */
2972                 uint32_t apid;
2973                 int32_t coreidx = target->coreid;
2974                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2975                           target->cmd_name);
2976                 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2977                 if (retval != ERROR_OK)
2978                         return retval;
2979                 /* Lookup 0x15 -- Processor DAP */
2980                 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2981                                 &armv7a->debug_base, &coreidx);
2982                 if (retval != ERROR_OK) {
2983                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2984                                   target->cmd_name);
2985                         return retval;
2986                 }
2987                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2988                           target->coreid, armv7a->debug_base);
2989         } else
2990                 armv7a->debug_base = target->dbgbase;
2991
2992         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2993                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2994         if (retval != ERROR_OK) {
2995                 LOG_DEBUG("Examine %s failed", "DIDR");
2996                 return retval;
2997         }
2998
2999         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3000                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3001         if (retval != ERROR_OK) {
3002                 LOG_DEBUG("Examine %s failed", "CPUID");
3003                 return retval;
3004         }
3005
3006         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3007         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3008
3009         cortex_a->didr = didr;
3010         cortex_a->cpuid = cpuid;
3011
3012         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3013                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3014         if (retval != ERROR_OK)
3015                 return retval;
3016         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
3017
3018         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3019                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3020                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3021                 return ERROR_TARGET_INIT_FAILED;
3022         }
3023
3024         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3025                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3026
3027         /* Read DBGOSLSR and check if OSLK is implemented */
3028         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3029                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3030         if (retval != ERROR_OK)
3031                 return retval;
3032         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3033
3034         /* check if OS Lock is implemented */
3035         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3036                 /* check if OS Lock is set */
3037                 if (dbg_osreg & OSLSR_OSLK) {
3038                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3039
3040                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3041                                                         armv7a->debug_base + CPUDBG_OSLAR,
3042                                                         0);
3043                         if (retval == ERROR_OK)
3044                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3045                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3046
3047                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3048                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3049                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3050                                                 target->coreid);
3051                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3052                                 return ERROR_TARGET_INIT_FAILED;
3053                         }
3054                 }
3055         }
3056
3057         armv7a->arm.core_type = ARM_MODE_MON;
3058
3059         /* Avoid recreating the registers cache */
3060         if (!target_was_examined(target)) {
3061                 retval = cortex_a_dpm_setup(cortex_a, didr);
3062                 if (retval != ERROR_OK)
3063                         return retval;
3064         }
3065
3066         /* Setup Breakpoint Register Pairs */
3067         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3068         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3069         cortex_a->brp_num_available = cortex_a->brp_num;
3070         free(cortex_a->brp_list);
3071         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3072 /*      cortex_a->brb_enabled = ????; */
3073         for (i = 0; i < cortex_a->brp_num; i++) {
3074                 cortex_a->brp_list[i].used = 0;
3075                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3076                         cortex_a->brp_list[i].type = BRP_NORMAL;
3077                 else
3078                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3079                 cortex_a->brp_list[i].value = 0;
3080                 cortex_a->brp_list[i].control = 0;
3081                 cortex_a->brp_list[i].BRPn = i;
3082         }
3083
3084         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3085
3086         /* select debug_ap as default */
3087         swjdp->apsel = armv7a->debug_ap->ap_num;
3088
3089         target_set_examined(target);
3090         return ERROR_OK;
3091 }
3092
3093 static int cortex_a_examine(struct target *target)
3094 {
3095         int retval = ERROR_OK;
3096
3097         /* Reestablish communication after target reset */
3098         retval = cortex_a_examine_first(target);
3099
3100         /* Configure core debug access */
3101         if (retval == ERROR_OK)
3102                 retval = cortex_a_init_debug_access(target);
3103
3104         return retval;
3105 }
3106
3107 /*
3108  *      Cortex-A target creation and initialization
3109  */
3110
3111 static int cortex_a_init_target(struct command_context *cmd_ctx,
3112         struct target *target)
3113 {
3114         /* examine_first() does a bunch of this */
3115         arm_semihosting_init(target);
3116         return ERROR_OK;
3117 }
3118
3119 static int cortex_a_init_arch_info(struct target *target,
3120         struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3121 {
3122         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3123
3124         /* Setup struct cortex_a_common */
3125         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3126
3127         /*  tap has no dap initialized */
3128         if (!tap->dap) {
3129                 tap->dap = dap_init();
3130
3131                 /* Leave (only) generic DAP stuff for debugport_init() */
3132                 tap->dap->tap = tap;
3133         }
3134
3135         armv7a->arm.dap = tap->dap;
3136
3137         cortex_a->fast_reg_read = 0;
3138
3139         /* register arch-specific functions */
3140         armv7a->examine_debug_reason = NULL;
3141
3142         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3143
3144         armv7a->pre_restore_context = NULL;
3145
3146         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3147
3148
3149 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3150
3151         /* REVISIT v7a setup should be in a v7a-specific routine */
3152         armv7a_init_arch_info(target, armv7a);
3153         target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3154
3155         return ERROR_OK;
3156 }
3157
3158 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3159 {
3160         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3161
3162         cortex_a->armv7a_common.is_armv7r = false;
3163
3164         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3165 }
3166
3167 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3168 {
3169         struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3170
3171         cortex_a->armv7a_common.is_armv7r = true;
3172
3173         return cortex_a_init_arch_info(target, cortex_a, target->tap);
3174 }
3175
3176 static void cortex_a_deinit_target(struct target *target)
3177 {
3178         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3179         struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3180
3181         free(cortex_a->brp_list);
3182         free(dpm->dbp);
3183         free(dpm->dwp);
3184         free(cortex_a);
3185 }
3186
3187 static int cortex_a_mmu(struct target *target, int *enabled)
3188 {
3189         struct armv7a_common *armv7a = target_to_armv7a(target);
3190
3191         if (target->state != TARGET_HALTED) {
3192                 LOG_ERROR("%s: target not halted", __func__);
3193                 return ERROR_TARGET_INVALID;
3194         }
3195
3196         if (armv7a->is_armv7r)
3197                 *enabled = 0;
3198         else
3199                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3200
3201         return ERROR_OK;
3202 }
3203
3204 static int cortex_a_virt2phys(struct target *target,
3205         uint32_t virt, uint32_t *phys)
3206 {
3207         int retval = ERROR_FAIL;
3208         struct armv7a_common *armv7a = target_to_armv7a(target);
3209         struct adiv5_dap *swjdp = armv7a->arm.dap;
3210         uint8_t apsel = swjdp->apsel;
3211         if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3212                 uint32_t ret;
3213                 retval = armv7a_mmu_translate_va(target,
3214                                 virt, &ret);
3215                 if (retval != ERROR_OK)
3216                         goto done;
3217                 *phys = ret;
3218         } else {/*  use this method if armv7a->memory_ap not selected
3219                  *  mmu must be enable in order to get a correct translation */
3220                 retval = cortex_a_mmu_modify(target, 1);
3221                 if (retval != ERROR_OK)
3222                         goto done;
3223                 retval = armv7a_mmu_translate_va_pa(target, virt,  phys, 1);
3224         }
3225 done:
3226         return retval;
3227 }
3228
3229 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3230 {
3231         struct target *target = get_current_target(CMD_CTX);
3232         struct armv7a_common *armv7a = target_to_armv7a(target);
3233
3234         return armv7a_handle_cache_info_command(CMD_CTX,
3235                         &armv7a->armv7a_mmu.armv7a_cache);
3236 }
3237
3238
3239 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3240 {
3241         struct target *target = get_current_target(CMD_CTX);
3242         if (!target_was_examined(target)) {
3243                 LOG_ERROR("target not examined yet");
3244                 return ERROR_FAIL;
3245         }
3246
3247         return cortex_a_init_debug_access(target);
3248 }
3249 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3250 {
3251         struct target *target = get_current_target(CMD_CTX);
3252         /* check target is an smp target */
3253         struct target_list *head;
3254         struct target *curr;
3255         head = target->head;
3256         target->smp = 0;
3257         if (head != (struct target_list *)NULL) {
3258                 while (head != (struct target_list *)NULL) {
3259                         curr = head->target;
3260                         curr->smp = 0;
3261                         head = head->next;
3262                 }
3263                 /*  fixes the target display to the debugger */
3264                 target->gdb_service->target = target;
3265         }
3266         return ERROR_OK;
3267 }
3268
3269 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3270 {
3271         struct target *target = get_current_target(CMD_CTX);
3272         struct target_list *head;
3273         struct target *curr;
3274         head = target->head;
3275         if (head != (struct target_list *)NULL) {
3276                 target->smp = 1;
3277                 while (head != (struct target_list *)NULL) {
3278                         curr = head->target;
3279                         curr->smp = 1;
3280                         head = head->next;
3281                 }
3282         }
3283         return ERROR_OK;
3284 }
3285
3286 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3287 {
3288         struct target *target = get_current_target(CMD_CTX);
3289         int retval = ERROR_OK;
3290         struct target_list *head;
3291         head = target->head;
3292         if (head != (struct target_list *)NULL) {
3293                 if (CMD_ARGC == 1) {
3294                         int coreid = 0;
3295                         COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3296                         if (ERROR_OK != retval)
3297                                 return retval;
3298                         target->gdb_service->core[1] = coreid;
3299
3300                 }
3301                 command_print(CMD_CTX, "gdb coreid  %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3302                         , target->gdb_service->core[1]);
3303         }
3304         return ERROR_OK;
3305 }
3306
3307 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3308 {
3309         struct target *target = get_current_target(CMD_CTX);
3310         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3311
3312         static const Jim_Nvp nvp_maskisr_modes[] = {
3313                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3314                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3315                 { .name = NULL, .value = -1 },
3316         };
3317         const Jim_Nvp *n;
3318
3319         if (CMD_ARGC > 0) {
3320                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3321                 if (n->name == NULL) {
3322                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3323                         return ERROR_COMMAND_SYNTAX_ERROR;
3324                 }
3325
3326                 cortex_a->isrmasking_mode = n->value;
3327         }
3328
3329         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3330         command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3331
3332         return ERROR_OK;
3333 }
3334
3335 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3336 {
3337         struct target *target = get_current_target(CMD_CTX);
3338         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3339
3340         static const Jim_Nvp nvp_dacrfixup_modes[] = {
3341                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3342                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3343                 { .name = NULL, .value = -1 },
3344         };
3345         const Jim_Nvp *n;
3346
3347         if (CMD_ARGC > 0) {
3348                 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3349                 if (n->name == NULL)
3350                         return ERROR_COMMAND_SYNTAX_ERROR;
3351                 cortex_a->dacrfixup_mode = n->value;
3352
3353         }
3354
3355         n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3356         command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3357
3358         return ERROR_OK;
3359 }
3360
3361 static const struct command_registration cortex_a_exec_command_handlers[] = {
3362         {
3363                 .name = "cache_info",
3364                 .handler = cortex_a_handle_cache_info_command,
3365                 .mode = COMMAND_EXEC,
3366                 .help = "display information about target caches",
3367                 .usage = "",
3368         },
3369         {
3370                 .name = "dbginit",
3371                 .handler = cortex_a_handle_dbginit_command,
3372                 .mode = COMMAND_EXEC,
3373                 .help = "Initialize core debug",
3374                 .usage = "",
3375         },
3376         {   .name = "smp_off",
3377             .handler = cortex_a_handle_smp_off_command,
3378             .mode = COMMAND_EXEC,
3379             .help = "Stop smp handling",
3380             .usage = "",},
3381         {
3382                 .name = "smp_on",
3383                 .handler = cortex_a_handle_smp_on_command,
3384                 .mode = COMMAND_EXEC,
3385                 .help = "Restart smp handling",
3386                 .usage = "",
3387         },
3388         {
3389                 .name = "smp_gdb",
3390                 .handler = cortex_a_handle_smp_gdb_command,
3391                 .mode = COMMAND_EXEC,
3392                 .help = "display/fix current core played to gdb",
3393                 .usage = "",
3394         },
3395         {
3396                 .name = "maskisr",
3397                 .handler = handle_cortex_a_mask_interrupts_command,
3398                 .mode = COMMAND_ANY,
3399                 .help = "mask cortex_a interrupts",
3400                 .usage = "['on'|'off']",
3401         },
3402         {
3403                 .name = "dacrfixup",
3404                 .handler = handle_cortex_a_dacrfixup_command,
3405                 .mode = COMMAND_EXEC,
3406                 .help = "set domain access control (DACR) to all-manager "
3407                         "on memory access",
3408                 .usage = "['on'|'off']",
3409         },
3410
3411         COMMAND_REGISTRATION_DONE
3412 };
3413 static const struct command_registration cortex_a_command_handlers[] = {
3414         {
3415                 .chain = arm_command_handlers,
3416         },
3417         {
3418                 .chain = armv7a_command_handlers,
3419         },
3420         {
3421                 .name = "cortex_a",
3422                 .mode = COMMAND_ANY,
3423                 .help = "Cortex-A command group",
3424                 .usage = "",
3425                 .chain = cortex_a_exec_command_handlers,
3426         },
3427         COMMAND_REGISTRATION_DONE
3428 };
3429
3430 struct target_type cortexa_target = {
3431         .name = "cortex_a",
3432         .deprecated_name = "cortex_a8",
3433
3434         .poll = cortex_a_poll,
3435         .arch_state = armv7a_arch_state,
3436
3437         .halt = cortex_a_halt,
3438         .resume = cortex_a_resume,
3439         .step = cortex_a_step,
3440
3441         .assert_reset = cortex_a_assert_reset,
3442         .deassert_reset = cortex_a_deassert_reset,
3443
3444         /* REVISIT allow exporting VFP3 registers ... */
3445         .get_gdb_reg_list = arm_get_gdb_reg_list,
3446
3447         .read_memory = cortex_a_read_memory,
3448         .write_memory = cortex_a_write_memory,
3449
3450         .read_buffer = cortex_a_read_buffer,
3451         .write_buffer = cortex_a_write_buffer,
3452
3453         .checksum_memory = arm_checksum_memory,
3454         .blank_check_memory = arm_blank_check_memory,
3455
3456         .run_algorithm = armv4_5_run_algorithm,
3457
3458         .add_breakpoint = cortex_a_add_breakpoint,
3459         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3460         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3461         .remove_breakpoint = cortex_a_remove_breakpoint,
3462         .add_watchpoint = NULL,
3463         .remove_watchpoint = NULL,
3464
3465         .commands = cortex_a_command_handlers,
3466         .target_create = cortex_a_target_create,
3467         .init_target = cortex_a_init_target,
3468         .examine = cortex_a_examine,
3469         .deinit_target = cortex_a_deinit_target,
3470
3471         .read_phys_memory = cortex_a_read_phys_memory,
3472         .write_phys_memory = cortex_a_write_phys_memory,
3473         .mmu = cortex_a_mmu,
3474         .virt2phys = cortex_a_virt2phys,
3475 };
3476
3477 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3478         {
3479                 .name = "cache_info",
3480                 .handler = cortex_a_handle_cache_info_command,
3481                 .mode = COMMAND_EXEC,
3482                 .help = "display information about target caches",
3483                 .usage = "",
3484         },
3485         {
3486                 .name = "dbginit",
3487                 .handler = cortex_a_handle_dbginit_command,
3488                 .mode = COMMAND_EXEC,
3489                 .help = "Initialize core debug",
3490                 .usage = "",
3491         },
3492         {
3493                 .name = "maskisr",
3494                 .handler = handle_cortex_a_mask_interrupts_command,
3495                 .mode = COMMAND_EXEC,
3496                 .help = "mask cortex_r4 interrupts",
3497                 .usage = "['on'|'off']",
3498         },
3499
3500         COMMAND_REGISTRATION_DONE
3501 };
3502 static const struct command_registration cortex_r4_command_handlers[] = {
3503         {
3504                 .chain = arm_command_handlers,
3505         },
3506         {
3507                 .chain = armv7a_command_handlers,
3508         },
3509         {
3510                 .name = "cortex_r4",
3511                 .mode = COMMAND_ANY,
3512                 .help = "Cortex-R4 command group",
3513                 .usage = "",
3514                 .chain = cortex_r4_exec_command_handlers,
3515         },
3516         COMMAND_REGISTRATION_DONE
3517 };
3518
3519 struct target_type cortexr4_target = {
3520         .name = "cortex_r4",
3521
3522         .poll = cortex_a_poll,
3523         .arch_state = armv7a_arch_state,
3524
3525         .halt = cortex_a_halt,
3526         .resume = cortex_a_resume,
3527         .step = cortex_a_step,
3528
3529         .assert_reset = cortex_a_assert_reset,
3530         .deassert_reset = cortex_a_deassert_reset,
3531
3532         /* REVISIT allow exporting VFP3 registers ... */
3533         .get_gdb_reg_list = arm_get_gdb_reg_list,
3534
3535         .read_memory = cortex_a_read_phys_memory,
3536         .write_memory = cortex_a_write_phys_memory,
3537
3538         .checksum_memory = arm_checksum_memory,
3539         .blank_check_memory = arm_blank_check_memory,
3540
3541         .run_algorithm = armv4_5_run_algorithm,
3542
3543         .add_breakpoint = cortex_a_add_breakpoint,
3544         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3545         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3546         .remove_breakpoint = cortex_a_remove_breakpoint,
3547         .add_watchpoint = NULL,
3548         .remove_watchpoint = NULL,
3549
3550         .commands = cortex_r4_command_handlers,
3551         .target_create = cortex_r4_target_create,
3552         .init_target = cortex_a_init_target,
3553         .examine = cortex_a_examine,
3554         .deinit_target = cortex_a_deinit_target,
3555 };